tools headers UAPI: Sync linux/prctl.h with the kernel sources
[linux-2.6-microblaze.git] / kernel / kexec_core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kexec.c - kexec system call core code.
4  * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
5  */
6
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8
9 #include <linux/capability.h>
10 #include <linux/mm.h>
11 #include <linux/file.h>
12 #include <linux/slab.h>
13 #include <linux/fs.h>
14 #include <linux/kexec.h>
15 #include <linux/mutex.h>
16 #include <linux/list.h>
17 #include <linux/highmem.h>
18 #include <linux/syscalls.h>
19 #include <linux/reboot.h>
20 #include <linux/ioport.h>
21 #include <linux/hardirq.h>
22 #include <linux/elf.h>
23 #include <linux/elfcore.h>
24 #include <linux/utsname.h>
25 #include <linux/numa.h>
26 #include <linux/suspend.h>
27 #include <linux/device.h>
28 #include <linux/freezer.h>
29 #include <linux/pm.h>
30 #include <linux/cpu.h>
31 #include <linux/uaccess.h>
32 #include <linux/io.h>
33 #include <linux/console.h>
34 #include <linux/vmalloc.h>
35 #include <linux/swap.h>
36 #include <linux/syscore_ops.h>
37 #include <linux/compiler.h>
38 #include <linux/hugetlb.h>
39 #include <linux/objtool.h>
40 #include <linux/kmsg_dump.h>
41
42 #include <asm/page.h>
43 #include <asm/sections.h>
44
45 #include <crypto/hash.h>
46 #include "kexec_internal.h"
47
48 DEFINE_MUTEX(kexec_mutex);
49
50 /* Per cpu memory for storing cpu states in case of system crash. */
51 note_buf_t __percpu *crash_notes;
52
53 /* Flag to indicate we are going to kexec a new kernel */
54 bool kexec_in_progress = false;
55
56
57 /* Location of the reserved area for the crash kernel */
58 struct resource crashk_res = {
59         .name  = "Crash kernel",
60         .start = 0,
61         .end   = 0,
62         .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
63         .desc  = IORES_DESC_CRASH_KERNEL
64 };
65 struct resource crashk_low_res = {
66         .name  = "Crash kernel",
67         .start = 0,
68         .end   = 0,
69         .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
70         .desc  = IORES_DESC_CRASH_KERNEL
71 };
72
73 int kexec_should_crash(struct task_struct *p)
74 {
75         /*
76          * If crash_kexec_post_notifiers is enabled, don't run
77          * crash_kexec() here yet, which must be run after panic
78          * notifiers in panic().
79          */
80         if (crash_kexec_post_notifiers)
81                 return 0;
82         /*
83          * There are 4 panic() calls in do_exit() path, each of which
84          * corresponds to each of these 4 conditions.
85          */
86         if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
87                 return 1;
88         return 0;
89 }
90
91 int kexec_crash_loaded(void)
92 {
93         return !!kexec_crash_image;
94 }
95 EXPORT_SYMBOL_GPL(kexec_crash_loaded);
96
97 /*
98  * When kexec transitions to the new kernel there is a one-to-one
99  * mapping between physical and virtual addresses.  On processors
100  * where you can disable the MMU this is trivial, and easy.  For
101  * others it is still a simple predictable page table to setup.
102  *
103  * In that environment kexec copies the new kernel to its final
104  * resting place.  This means I can only support memory whose
105  * physical address can fit in an unsigned long.  In particular
106  * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
107  * If the assembly stub has more restrictive requirements
108  * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
109  * defined more restrictively in <asm/kexec.h>.
110  *
111  * The code for the transition from the current kernel to the
112  * new kernel is placed in the control_code_buffer, whose size
113  * is given by KEXEC_CONTROL_PAGE_SIZE.  In the best case only a single
114  * page of memory is necessary, but some architectures require more.
115  * Because this memory must be identity mapped in the transition from
116  * virtual to physical addresses it must live in the range
117  * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
118  * modifiable.
119  *
120  * The assembly stub in the control code buffer is passed a linked list
121  * of descriptor pages detailing the source pages of the new kernel,
122  * and the destination addresses of those source pages.  As this data
123  * structure is not used in the context of the current OS, it must
124  * be self-contained.
125  *
126  * The code has been made to work with highmem pages and will use a
127  * destination page in its final resting place (if it happens
128  * to allocate it).  The end product of this is that most of the
129  * physical address space, and most of RAM can be used.
130  *
131  * Future directions include:
132  *  - allocating a page table with the control code buffer identity
133  *    mapped, to simplify machine_kexec and make kexec_on_panic more
134  *    reliable.
135  */
136
137 /*
138  * KIMAGE_NO_DEST is an impossible destination address..., for
139  * allocating pages whose destination address we do not care about.
140  */
141 #define KIMAGE_NO_DEST (-1UL)
142 #define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT)
143
144 static struct page *kimage_alloc_page(struct kimage *image,
145                                        gfp_t gfp_mask,
146                                        unsigned long dest);
147
148 int sanity_check_segment_list(struct kimage *image)
149 {
150         int i;
151         unsigned long nr_segments = image->nr_segments;
152         unsigned long total_pages = 0;
153         unsigned long nr_pages = totalram_pages();
154
155         /*
156          * Verify we have good destination addresses.  The caller is
157          * responsible for making certain we don't attempt to load
158          * the new image into invalid or reserved areas of RAM.  This
159          * just verifies it is an address we can use.
160          *
161          * Since the kernel does everything in page size chunks ensure
162          * the destination addresses are page aligned.  Too many
163          * special cases crop of when we don't do this.  The most
164          * insidious is getting overlapping destination addresses
165          * simply because addresses are changed to page size
166          * granularity.
167          */
168         for (i = 0; i < nr_segments; i++) {
169                 unsigned long mstart, mend;
170
171                 mstart = image->segment[i].mem;
172                 mend   = mstart + image->segment[i].memsz;
173                 if (mstart > mend)
174                         return -EADDRNOTAVAIL;
175                 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
176                         return -EADDRNOTAVAIL;
177                 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
178                         return -EADDRNOTAVAIL;
179         }
180
181         /* Verify our destination addresses do not overlap.
182          * If we alloed overlapping destination addresses
183          * through very weird things can happen with no
184          * easy explanation as one segment stops on another.
185          */
186         for (i = 0; i < nr_segments; i++) {
187                 unsigned long mstart, mend;
188                 unsigned long j;
189
190                 mstart = image->segment[i].mem;
191                 mend   = mstart + image->segment[i].memsz;
192                 for (j = 0; j < i; j++) {
193                         unsigned long pstart, pend;
194
195                         pstart = image->segment[j].mem;
196                         pend   = pstart + image->segment[j].memsz;
197                         /* Do the segments overlap ? */
198                         if ((mend > pstart) && (mstart < pend))
199                                 return -EINVAL;
200                 }
201         }
202
203         /* Ensure our buffer sizes are strictly less than
204          * our memory sizes.  This should always be the case,
205          * and it is easier to check up front than to be surprised
206          * later on.
207          */
208         for (i = 0; i < nr_segments; i++) {
209                 if (image->segment[i].bufsz > image->segment[i].memsz)
210                         return -EINVAL;
211         }
212
213         /*
214          * Verify that no more than half of memory will be consumed. If the
215          * request from userspace is too large, a large amount of time will be
216          * wasted allocating pages, which can cause a soft lockup.
217          */
218         for (i = 0; i < nr_segments; i++) {
219                 if (PAGE_COUNT(image->segment[i].memsz) > nr_pages / 2)
220                         return -EINVAL;
221
222                 total_pages += PAGE_COUNT(image->segment[i].memsz);
223         }
224
225         if (total_pages > nr_pages / 2)
226                 return -EINVAL;
227
228         /*
229          * Verify we have good destination addresses.  Normally
230          * the caller is responsible for making certain we don't
231          * attempt to load the new image into invalid or reserved
232          * areas of RAM.  But crash kernels are preloaded into a
233          * reserved area of ram.  We must ensure the addresses
234          * are in the reserved area otherwise preloading the
235          * kernel could corrupt things.
236          */
237
238         if (image->type == KEXEC_TYPE_CRASH) {
239                 for (i = 0; i < nr_segments; i++) {
240                         unsigned long mstart, mend;
241
242                         mstart = image->segment[i].mem;
243                         mend = mstart + image->segment[i].memsz - 1;
244                         /* Ensure we are within the crash kernel limits */
245                         if ((mstart < phys_to_boot_phys(crashk_res.start)) ||
246                             (mend > phys_to_boot_phys(crashk_res.end)))
247                                 return -EADDRNOTAVAIL;
248                 }
249         }
250
251         return 0;
252 }
253
254 struct kimage *do_kimage_alloc_init(void)
255 {
256         struct kimage *image;
257
258         /* Allocate a controlling structure */
259         image = kzalloc(sizeof(*image), GFP_KERNEL);
260         if (!image)
261                 return NULL;
262
263         image->head = 0;
264         image->entry = &image->head;
265         image->last_entry = &image->head;
266         image->control_page = ~0; /* By default this does not apply */
267         image->type = KEXEC_TYPE_DEFAULT;
268
269         /* Initialize the list of control pages */
270         INIT_LIST_HEAD(&image->control_pages);
271
272         /* Initialize the list of destination pages */
273         INIT_LIST_HEAD(&image->dest_pages);
274
275         /* Initialize the list of unusable pages */
276         INIT_LIST_HEAD(&image->unusable_pages);
277
278         return image;
279 }
280
281 int kimage_is_destination_range(struct kimage *image,
282                                         unsigned long start,
283                                         unsigned long end)
284 {
285         unsigned long i;
286
287         for (i = 0; i < image->nr_segments; i++) {
288                 unsigned long mstart, mend;
289
290                 mstart = image->segment[i].mem;
291                 mend = mstart + image->segment[i].memsz;
292                 if ((end > mstart) && (start < mend))
293                         return 1;
294         }
295
296         return 0;
297 }
298
299 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
300 {
301         struct page *pages;
302
303         if (fatal_signal_pending(current))
304                 return NULL;
305         pages = alloc_pages(gfp_mask & ~__GFP_ZERO, order);
306         if (pages) {
307                 unsigned int count, i;
308
309                 pages->mapping = NULL;
310                 set_page_private(pages, order);
311                 count = 1 << order;
312                 for (i = 0; i < count; i++)
313                         SetPageReserved(pages + i);
314
315                 arch_kexec_post_alloc_pages(page_address(pages), count,
316                                             gfp_mask);
317
318                 if (gfp_mask & __GFP_ZERO)
319                         for (i = 0; i < count; i++)
320                                 clear_highpage(pages + i);
321         }
322
323         return pages;
324 }
325
326 static void kimage_free_pages(struct page *page)
327 {
328         unsigned int order, count, i;
329
330         order = page_private(page);
331         count = 1 << order;
332
333         arch_kexec_pre_free_pages(page_address(page), count);
334
335         for (i = 0; i < count; i++)
336                 ClearPageReserved(page + i);
337         __free_pages(page, order);
338 }
339
340 void kimage_free_page_list(struct list_head *list)
341 {
342         struct page *page, *next;
343
344         list_for_each_entry_safe(page, next, list, lru) {
345                 list_del(&page->lru);
346                 kimage_free_pages(page);
347         }
348 }
349
350 static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
351                                                         unsigned int order)
352 {
353         /* Control pages are special, they are the intermediaries
354          * that are needed while we copy the rest of the pages
355          * to their final resting place.  As such they must
356          * not conflict with either the destination addresses
357          * or memory the kernel is already using.
358          *
359          * The only case where we really need more than one of
360          * these are for architectures where we cannot disable
361          * the MMU and must instead generate an identity mapped
362          * page table for all of the memory.
363          *
364          * At worst this runs in O(N) of the image size.
365          */
366         struct list_head extra_pages;
367         struct page *pages;
368         unsigned int count;
369
370         count = 1 << order;
371         INIT_LIST_HEAD(&extra_pages);
372
373         /* Loop while I can allocate a page and the page allocated
374          * is a destination page.
375          */
376         do {
377                 unsigned long pfn, epfn, addr, eaddr;
378
379                 pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order);
380                 if (!pages)
381                         break;
382                 pfn   = page_to_boot_pfn(pages);
383                 epfn  = pfn + count;
384                 addr  = pfn << PAGE_SHIFT;
385                 eaddr = epfn << PAGE_SHIFT;
386                 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
387                               kimage_is_destination_range(image, addr, eaddr)) {
388                         list_add(&pages->lru, &extra_pages);
389                         pages = NULL;
390                 }
391         } while (!pages);
392
393         if (pages) {
394                 /* Remember the allocated page... */
395                 list_add(&pages->lru, &image->control_pages);
396
397                 /* Because the page is already in it's destination
398                  * location we will never allocate another page at
399                  * that address.  Therefore kimage_alloc_pages
400                  * will not return it (again) and we don't need
401                  * to give it an entry in image->segment[].
402                  */
403         }
404         /* Deal with the destination pages I have inadvertently allocated.
405          *
406          * Ideally I would convert multi-page allocations into single
407          * page allocations, and add everything to image->dest_pages.
408          *
409          * For now it is simpler to just free the pages.
410          */
411         kimage_free_page_list(&extra_pages);
412
413         return pages;
414 }
415
416 static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
417                                                       unsigned int order)
418 {
419         /* Control pages are special, they are the intermediaries
420          * that are needed while we copy the rest of the pages
421          * to their final resting place.  As such they must
422          * not conflict with either the destination addresses
423          * or memory the kernel is already using.
424          *
425          * Control pages are also the only pags we must allocate
426          * when loading a crash kernel.  All of the other pages
427          * are specified by the segments and we just memcpy
428          * into them directly.
429          *
430          * The only case where we really need more than one of
431          * these are for architectures where we cannot disable
432          * the MMU and must instead generate an identity mapped
433          * page table for all of the memory.
434          *
435          * Given the low demand this implements a very simple
436          * allocator that finds the first hole of the appropriate
437          * size in the reserved memory region, and allocates all
438          * of the memory up to and including the hole.
439          */
440         unsigned long hole_start, hole_end, size;
441         struct page *pages;
442
443         pages = NULL;
444         size = (1 << order) << PAGE_SHIFT;
445         hole_start = (image->control_page + (size - 1)) & ~(size - 1);
446         hole_end   = hole_start + size - 1;
447         while (hole_end <= crashk_res.end) {
448                 unsigned long i;
449
450                 cond_resched();
451
452                 if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
453                         break;
454                 /* See if I overlap any of the segments */
455                 for (i = 0; i < image->nr_segments; i++) {
456                         unsigned long mstart, mend;
457
458                         mstart = image->segment[i].mem;
459                         mend   = mstart + image->segment[i].memsz - 1;
460                         if ((hole_end >= mstart) && (hole_start <= mend)) {
461                                 /* Advance the hole to the end of the segment */
462                                 hole_start = (mend + (size - 1)) & ~(size - 1);
463                                 hole_end   = hole_start + size - 1;
464                                 break;
465                         }
466                 }
467                 /* If I don't overlap any segments I have found my hole! */
468                 if (i == image->nr_segments) {
469                         pages = pfn_to_page(hole_start >> PAGE_SHIFT);
470                         image->control_page = hole_end;
471                         break;
472                 }
473         }
474
475         /* Ensure that these pages are decrypted if SME is enabled. */
476         if (pages)
477                 arch_kexec_post_alloc_pages(page_address(pages), 1 << order, 0);
478
479         return pages;
480 }
481
482
483 struct page *kimage_alloc_control_pages(struct kimage *image,
484                                          unsigned int order)
485 {
486         struct page *pages = NULL;
487
488         switch (image->type) {
489         case KEXEC_TYPE_DEFAULT:
490                 pages = kimage_alloc_normal_control_pages(image, order);
491                 break;
492         case KEXEC_TYPE_CRASH:
493                 pages = kimage_alloc_crash_control_pages(image, order);
494                 break;
495         }
496
497         return pages;
498 }
499
500 int kimage_crash_copy_vmcoreinfo(struct kimage *image)
501 {
502         struct page *vmcoreinfo_page;
503         void *safecopy;
504
505         if (image->type != KEXEC_TYPE_CRASH)
506                 return 0;
507
508         /*
509          * For kdump, allocate one vmcoreinfo safe copy from the
510          * crash memory. as we have arch_kexec_protect_crashkres()
511          * after kexec syscall, we naturally protect it from write
512          * (even read) access under kernel direct mapping. But on
513          * the other hand, we still need to operate it when crash
514          * happens to generate vmcoreinfo note, hereby we rely on
515          * vmap for this purpose.
516          */
517         vmcoreinfo_page = kimage_alloc_control_pages(image, 0);
518         if (!vmcoreinfo_page) {
519                 pr_warn("Could not allocate vmcoreinfo buffer\n");
520                 return -ENOMEM;
521         }
522         safecopy = vmap(&vmcoreinfo_page, 1, VM_MAP, PAGE_KERNEL);
523         if (!safecopy) {
524                 pr_warn("Could not vmap vmcoreinfo buffer\n");
525                 return -ENOMEM;
526         }
527
528         image->vmcoreinfo_data_copy = safecopy;
529         crash_update_vmcoreinfo_safecopy(safecopy);
530
531         return 0;
532 }
533
534 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
535 {
536         if (*image->entry != 0)
537                 image->entry++;
538
539         if (image->entry == image->last_entry) {
540                 kimage_entry_t *ind_page;
541                 struct page *page;
542
543                 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
544                 if (!page)
545                         return -ENOMEM;
546
547                 ind_page = page_address(page);
548                 *image->entry = virt_to_boot_phys(ind_page) | IND_INDIRECTION;
549                 image->entry = ind_page;
550                 image->last_entry = ind_page +
551                                       ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
552         }
553         *image->entry = entry;
554         image->entry++;
555         *image->entry = 0;
556
557         return 0;
558 }
559
560 static int kimage_set_destination(struct kimage *image,
561                                    unsigned long destination)
562 {
563         int result;
564
565         destination &= PAGE_MASK;
566         result = kimage_add_entry(image, destination | IND_DESTINATION);
567
568         return result;
569 }
570
571
572 static int kimage_add_page(struct kimage *image, unsigned long page)
573 {
574         int result;
575
576         page &= PAGE_MASK;
577         result = kimage_add_entry(image, page | IND_SOURCE);
578
579         return result;
580 }
581
582
583 static void kimage_free_extra_pages(struct kimage *image)
584 {
585         /* Walk through and free any extra destination pages I may have */
586         kimage_free_page_list(&image->dest_pages);
587
588         /* Walk through and free any unusable pages I have cached */
589         kimage_free_page_list(&image->unusable_pages);
590
591 }
592
593 int __weak machine_kexec_post_load(struct kimage *image)
594 {
595         return 0;
596 }
597
598 void kimage_terminate(struct kimage *image)
599 {
600         if (*image->entry != 0)
601                 image->entry++;
602
603         *image->entry = IND_DONE;
604 }
605
606 #define for_each_kimage_entry(image, ptr, entry) \
607         for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
608                 ptr = (entry & IND_INDIRECTION) ? \
609                         boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
610
611 static void kimage_free_entry(kimage_entry_t entry)
612 {
613         struct page *page;
614
615         page = boot_pfn_to_page(entry >> PAGE_SHIFT);
616         kimage_free_pages(page);
617 }
618
619 void kimage_free(struct kimage *image)
620 {
621         kimage_entry_t *ptr, entry;
622         kimage_entry_t ind = 0;
623
624         if (!image)
625                 return;
626
627         if (image->vmcoreinfo_data_copy) {
628                 crash_update_vmcoreinfo_safecopy(NULL);
629                 vunmap(image->vmcoreinfo_data_copy);
630         }
631
632         kimage_free_extra_pages(image);
633         for_each_kimage_entry(image, ptr, entry) {
634                 if (entry & IND_INDIRECTION) {
635                         /* Free the previous indirection page */
636                         if (ind & IND_INDIRECTION)
637                                 kimage_free_entry(ind);
638                         /* Save this indirection page until we are
639                          * done with it.
640                          */
641                         ind = entry;
642                 } else if (entry & IND_SOURCE)
643                         kimage_free_entry(entry);
644         }
645         /* Free the final indirection page */
646         if (ind & IND_INDIRECTION)
647                 kimage_free_entry(ind);
648
649         /* Handle any machine specific cleanup */
650         machine_kexec_cleanup(image);
651
652         /* Free the kexec control pages... */
653         kimage_free_page_list(&image->control_pages);
654
655         /*
656          * Free up any temporary buffers allocated. This might hit if
657          * error occurred much later after buffer allocation.
658          */
659         if (image->file_mode)
660                 kimage_file_post_load_cleanup(image);
661
662         kfree(image);
663 }
664
665 static kimage_entry_t *kimage_dst_used(struct kimage *image,
666                                         unsigned long page)
667 {
668         kimage_entry_t *ptr, entry;
669         unsigned long destination = 0;
670
671         for_each_kimage_entry(image, ptr, entry) {
672                 if (entry & IND_DESTINATION)
673                         destination = entry & PAGE_MASK;
674                 else if (entry & IND_SOURCE) {
675                         if (page == destination)
676                                 return ptr;
677                         destination += PAGE_SIZE;
678                 }
679         }
680
681         return NULL;
682 }
683
684 static struct page *kimage_alloc_page(struct kimage *image,
685                                         gfp_t gfp_mask,
686                                         unsigned long destination)
687 {
688         /*
689          * Here we implement safeguards to ensure that a source page
690          * is not copied to its destination page before the data on
691          * the destination page is no longer useful.
692          *
693          * To do this we maintain the invariant that a source page is
694          * either its own destination page, or it is not a
695          * destination page at all.
696          *
697          * That is slightly stronger than required, but the proof
698          * that no problems will not occur is trivial, and the
699          * implementation is simply to verify.
700          *
701          * When allocating all pages normally this algorithm will run
702          * in O(N) time, but in the worst case it will run in O(N^2)
703          * time.   If the runtime is a problem the data structures can
704          * be fixed.
705          */
706         struct page *page;
707         unsigned long addr;
708
709         /*
710          * Walk through the list of destination pages, and see if I
711          * have a match.
712          */
713         list_for_each_entry(page, &image->dest_pages, lru) {
714                 addr = page_to_boot_pfn(page) << PAGE_SHIFT;
715                 if (addr == destination) {
716                         list_del(&page->lru);
717                         return page;
718                 }
719         }
720         page = NULL;
721         while (1) {
722                 kimage_entry_t *old;
723
724                 /* Allocate a page, if we run out of memory give up */
725                 page = kimage_alloc_pages(gfp_mask, 0);
726                 if (!page)
727                         return NULL;
728                 /* If the page cannot be used file it away */
729                 if (page_to_boot_pfn(page) >
730                                 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
731                         list_add(&page->lru, &image->unusable_pages);
732                         continue;
733                 }
734                 addr = page_to_boot_pfn(page) << PAGE_SHIFT;
735
736                 /* If it is the destination page we want use it */
737                 if (addr == destination)
738                         break;
739
740                 /* If the page is not a destination page use it */
741                 if (!kimage_is_destination_range(image, addr,
742                                                   addr + PAGE_SIZE))
743                         break;
744
745                 /*
746                  * I know that the page is someones destination page.
747                  * See if there is already a source page for this
748                  * destination page.  And if so swap the source pages.
749                  */
750                 old = kimage_dst_used(image, addr);
751                 if (old) {
752                         /* If so move it */
753                         unsigned long old_addr;
754                         struct page *old_page;
755
756                         old_addr = *old & PAGE_MASK;
757                         old_page = boot_pfn_to_page(old_addr >> PAGE_SHIFT);
758                         copy_highpage(page, old_page);
759                         *old = addr | (*old & ~PAGE_MASK);
760
761                         /* The old page I have found cannot be a
762                          * destination page, so return it if it's
763                          * gfp_flags honor the ones passed in.
764                          */
765                         if (!(gfp_mask & __GFP_HIGHMEM) &&
766                             PageHighMem(old_page)) {
767                                 kimage_free_pages(old_page);
768                                 continue;
769                         }
770                         addr = old_addr;
771                         page = old_page;
772                         break;
773                 }
774                 /* Place the page on the destination list, to be used later */
775                 list_add(&page->lru, &image->dest_pages);
776         }
777
778         return page;
779 }
780
781 static int kimage_load_normal_segment(struct kimage *image,
782                                          struct kexec_segment *segment)
783 {
784         unsigned long maddr;
785         size_t ubytes, mbytes;
786         int result;
787         unsigned char __user *buf = NULL;
788         unsigned char *kbuf = NULL;
789
790         result = 0;
791         if (image->file_mode)
792                 kbuf = segment->kbuf;
793         else
794                 buf = segment->buf;
795         ubytes = segment->bufsz;
796         mbytes = segment->memsz;
797         maddr = segment->mem;
798
799         result = kimage_set_destination(image, maddr);
800         if (result < 0)
801                 goto out;
802
803         while (mbytes) {
804                 struct page *page;
805                 char *ptr;
806                 size_t uchunk, mchunk;
807
808                 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
809                 if (!page) {
810                         result  = -ENOMEM;
811                         goto out;
812                 }
813                 result = kimage_add_page(image, page_to_boot_pfn(page)
814                                                                 << PAGE_SHIFT);
815                 if (result < 0)
816                         goto out;
817
818                 ptr = kmap(page);
819                 /* Start with a clear page */
820                 clear_page(ptr);
821                 ptr += maddr & ~PAGE_MASK;
822                 mchunk = min_t(size_t, mbytes,
823                                 PAGE_SIZE - (maddr & ~PAGE_MASK));
824                 uchunk = min(ubytes, mchunk);
825
826                 /* For file based kexec, source pages are in kernel memory */
827                 if (image->file_mode)
828                         memcpy(ptr, kbuf, uchunk);
829                 else
830                         result = copy_from_user(ptr, buf, uchunk);
831                 kunmap(page);
832                 if (result) {
833                         result = -EFAULT;
834                         goto out;
835                 }
836                 ubytes -= uchunk;
837                 maddr  += mchunk;
838                 if (image->file_mode)
839                         kbuf += mchunk;
840                 else
841                         buf += mchunk;
842                 mbytes -= mchunk;
843
844                 cond_resched();
845         }
846 out:
847         return result;
848 }
849
850 static int kimage_load_crash_segment(struct kimage *image,
851                                         struct kexec_segment *segment)
852 {
853         /* For crash dumps kernels we simply copy the data from
854          * user space to it's destination.
855          * We do things a page at a time for the sake of kmap.
856          */
857         unsigned long maddr;
858         size_t ubytes, mbytes;
859         int result;
860         unsigned char __user *buf = NULL;
861         unsigned char *kbuf = NULL;
862
863         result = 0;
864         if (image->file_mode)
865                 kbuf = segment->kbuf;
866         else
867                 buf = segment->buf;
868         ubytes = segment->bufsz;
869         mbytes = segment->memsz;
870         maddr = segment->mem;
871         while (mbytes) {
872                 struct page *page;
873                 char *ptr;
874                 size_t uchunk, mchunk;
875
876                 page = boot_pfn_to_page(maddr >> PAGE_SHIFT);
877                 if (!page) {
878                         result  = -ENOMEM;
879                         goto out;
880                 }
881                 arch_kexec_post_alloc_pages(page_address(page), 1, 0);
882                 ptr = kmap(page);
883                 ptr += maddr & ~PAGE_MASK;
884                 mchunk = min_t(size_t, mbytes,
885                                 PAGE_SIZE - (maddr & ~PAGE_MASK));
886                 uchunk = min(ubytes, mchunk);
887                 if (mchunk > uchunk) {
888                         /* Zero the trailing part of the page */
889                         memset(ptr + uchunk, 0, mchunk - uchunk);
890                 }
891
892                 /* For file based kexec, source pages are in kernel memory */
893                 if (image->file_mode)
894                         memcpy(ptr, kbuf, uchunk);
895                 else
896                         result = copy_from_user(ptr, buf, uchunk);
897                 kexec_flush_icache_page(page);
898                 kunmap(page);
899                 arch_kexec_pre_free_pages(page_address(page), 1);
900                 if (result) {
901                         result = -EFAULT;
902                         goto out;
903                 }
904                 ubytes -= uchunk;
905                 maddr  += mchunk;
906                 if (image->file_mode)
907                         kbuf += mchunk;
908                 else
909                         buf += mchunk;
910                 mbytes -= mchunk;
911
912                 cond_resched();
913         }
914 out:
915         return result;
916 }
917
918 int kimage_load_segment(struct kimage *image,
919                                 struct kexec_segment *segment)
920 {
921         int result = -ENOMEM;
922
923         switch (image->type) {
924         case KEXEC_TYPE_DEFAULT:
925                 result = kimage_load_normal_segment(image, segment);
926                 break;
927         case KEXEC_TYPE_CRASH:
928                 result = kimage_load_crash_segment(image, segment);
929                 break;
930         }
931
932         return result;
933 }
934
935 struct kimage *kexec_image;
936 struct kimage *kexec_crash_image;
937 int kexec_load_disabled;
938
939 /*
940  * No panic_cpu check version of crash_kexec().  This function is called
941  * only when panic_cpu holds the current CPU number; this is the only CPU
942  * which processes crash_kexec routines.
943  */
944 void __noclone __crash_kexec(struct pt_regs *regs)
945 {
946         /* Take the kexec_mutex here to prevent sys_kexec_load
947          * running on one cpu from replacing the crash kernel
948          * we are using after a panic on a different cpu.
949          *
950          * If the crash kernel was not located in a fixed area
951          * of memory the xchg(&kexec_crash_image) would be
952          * sufficient.  But since I reuse the memory...
953          */
954         if (mutex_trylock(&kexec_mutex)) {
955                 if (kexec_crash_image) {
956                         struct pt_regs fixed_regs;
957
958                         crash_setup_regs(&fixed_regs, regs);
959                         crash_save_vmcoreinfo();
960                         machine_crash_shutdown(&fixed_regs);
961                         machine_kexec(kexec_crash_image);
962                 }
963                 mutex_unlock(&kexec_mutex);
964         }
965 }
966 STACK_FRAME_NON_STANDARD(__crash_kexec);
967
968 void crash_kexec(struct pt_regs *regs)
969 {
970         int old_cpu, this_cpu;
971
972         /*
973          * Only one CPU is allowed to execute the crash_kexec() code as with
974          * panic().  Otherwise parallel calls of panic() and crash_kexec()
975          * may stop each other.  To exclude them, we use panic_cpu here too.
976          */
977         this_cpu = raw_smp_processor_id();
978         old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu);
979         if (old_cpu == PANIC_CPU_INVALID) {
980                 /* This is the 1st CPU which comes here, so go ahead. */
981                 printk_safe_flush_on_panic();
982                 __crash_kexec(regs);
983
984                 /*
985                  * Reset panic_cpu to allow another panic()/crash_kexec()
986                  * call.
987                  */
988                 atomic_set(&panic_cpu, PANIC_CPU_INVALID);
989         }
990 }
991
992 size_t crash_get_memory_size(void)
993 {
994         size_t size = 0;
995
996         mutex_lock(&kexec_mutex);
997         if (crashk_res.end != crashk_res.start)
998                 size = resource_size(&crashk_res);
999         mutex_unlock(&kexec_mutex);
1000         return size;
1001 }
1002
1003 void __weak crash_free_reserved_phys_range(unsigned long begin,
1004                                            unsigned long end)
1005 {
1006         unsigned long addr;
1007
1008         for (addr = begin; addr < end; addr += PAGE_SIZE)
1009                 free_reserved_page(boot_pfn_to_page(addr >> PAGE_SHIFT));
1010 }
1011
1012 int crash_shrink_memory(unsigned long new_size)
1013 {
1014         int ret = 0;
1015         unsigned long start, end;
1016         unsigned long old_size;
1017         struct resource *ram_res;
1018
1019         mutex_lock(&kexec_mutex);
1020
1021         if (kexec_crash_image) {
1022                 ret = -ENOENT;
1023                 goto unlock;
1024         }
1025         start = crashk_res.start;
1026         end = crashk_res.end;
1027         old_size = (end == 0) ? 0 : end - start + 1;
1028         if (new_size >= old_size) {
1029                 ret = (new_size == old_size) ? 0 : -EINVAL;
1030                 goto unlock;
1031         }
1032
1033         ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
1034         if (!ram_res) {
1035                 ret = -ENOMEM;
1036                 goto unlock;
1037         }
1038
1039         start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
1040         end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
1041
1042         crash_free_reserved_phys_range(end, crashk_res.end);
1043
1044         if ((start == end) && (crashk_res.parent != NULL))
1045                 release_resource(&crashk_res);
1046
1047         ram_res->start = end;
1048         ram_res->end = crashk_res.end;
1049         ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
1050         ram_res->name = "System RAM";
1051
1052         crashk_res.end = end - 1;
1053
1054         insert_resource(&iomem_resource, ram_res);
1055
1056 unlock:
1057         mutex_unlock(&kexec_mutex);
1058         return ret;
1059 }
1060
1061 void crash_save_cpu(struct pt_regs *regs, int cpu)
1062 {
1063         struct elf_prstatus prstatus;
1064         u32 *buf;
1065
1066         if ((cpu < 0) || (cpu >= nr_cpu_ids))
1067                 return;
1068
1069         /* Using ELF notes here is opportunistic.
1070          * I need a well defined structure format
1071          * for the data I pass, and I need tags
1072          * on the data to indicate what information I have
1073          * squirrelled away.  ELF notes happen to provide
1074          * all of that, so there is no need to invent something new.
1075          */
1076         buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
1077         if (!buf)
1078                 return;
1079         memset(&prstatus, 0, sizeof(prstatus));
1080         prstatus.common.pr_pid = current->pid;
1081         elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
1082         buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1083                               &prstatus, sizeof(prstatus));
1084         final_note(buf);
1085 }
1086
1087 static int __init crash_notes_memory_init(void)
1088 {
1089         /* Allocate memory for saving cpu registers. */
1090         size_t size, align;
1091
1092         /*
1093          * crash_notes could be allocated across 2 vmalloc pages when percpu
1094          * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc
1095          * pages are also on 2 continuous physical pages. In this case the
1096          * 2nd part of crash_notes in 2nd page could be lost since only the
1097          * starting address and size of crash_notes are exported through sysfs.
1098          * Here round up the size of crash_notes to the nearest power of two
1099          * and pass it to __alloc_percpu as align value. This can make sure
1100          * crash_notes is allocated inside one physical page.
1101          */
1102         size = sizeof(note_buf_t);
1103         align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE);
1104
1105         /*
1106          * Break compile if size is bigger than PAGE_SIZE since crash_notes
1107          * definitely will be in 2 pages with that.
1108          */
1109         BUILD_BUG_ON(size > PAGE_SIZE);
1110
1111         crash_notes = __alloc_percpu(size, align);
1112         if (!crash_notes) {
1113                 pr_warn("Memory allocation for saving cpu register states failed\n");
1114                 return -ENOMEM;
1115         }
1116         return 0;
1117 }
1118 subsys_initcall(crash_notes_memory_init);
1119
1120
1121 /*
1122  * Move into place and start executing a preloaded standalone
1123  * executable.  If nothing was preloaded return an error.
1124  */
1125 int kernel_kexec(void)
1126 {
1127         int error = 0;
1128
1129         if (!mutex_trylock(&kexec_mutex))
1130                 return -EBUSY;
1131         if (!kexec_image) {
1132                 error = -EINVAL;
1133                 goto Unlock;
1134         }
1135
1136 #ifdef CONFIG_KEXEC_JUMP
1137         if (kexec_image->preserve_context) {
1138                 pm_prepare_console();
1139                 error = freeze_processes();
1140                 if (error) {
1141                         error = -EBUSY;
1142                         goto Restore_console;
1143                 }
1144                 suspend_console();
1145                 error = dpm_suspend_start(PMSG_FREEZE);
1146                 if (error)
1147                         goto Resume_console;
1148                 /* At this point, dpm_suspend_start() has been called,
1149                  * but *not* dpm_suspend_end(). We *must* call
1150                  * dpm_suspend_end() now.  Otherwise, drivers for
1151                  * some devices (e.g. interrupt controllers) become
1152                  * desynchronized with the actual state of the
1153                  * hardware at resume time, and evil weirdness ensues.
1154                  */
1155                 error = dpm_suspend_end(PMSG_FREEZE);
1156                 if (error)
1157                         goto Resume_devices;
1158                 error = suspend_disable_secondary_cpus();
1159                 if (error)
1160                         goto Enable_cpus;
1161                 local_irq_disable();
1162                 error = syscore_suspend();
1163                 if (error)
1164                         goto Enable_irqs;
1165         } else
1166 #endif
1167         {
1168                 kexec_in_progress = true;
1169                 kernel_restart_prepare("kexec reboot");
1170                 migrate_to_reboot_cpu();
1171
1172                 /*
1173                  * migrate_to_reboot_cpu() disables CPU hotplug assuming that
1174                  * no further code needs to use CPU hotplug (which is true in
1175                  * the reboot case). However, the kexec path depends on using
1176                  * CPU hotplug again; so re-enable it here.
1177                  */
1178                 cpu_hotplug_enable();
1179                 pr_notice("Starting new kernel\n");
1180                 machine_shutdown();
1181         }
1182
1183         kmsg_dump(KMSG_DUMP_SHUTDOWN);
1184         machine_kexec(kexec_image);
1185
1186 #ifdef CONFIG_KEXEC_JUMP
1187         if (kexec_image->preserve_context) {
1188                 syscore_resume();
1189  Enable_irqs:
1190                 local_irq_enable();
1191  Enable_cpus:
1192                 suspend_enable_secondary_cpus();
1193                 dpm_resume_start(PMSG_RESTORE);
1194  Resume_devices:
1195                 dpm_resume_end(PMSG_RESTORE);
1196  Resume_console:
1197                 resume_console();
1198                 thaw_processes();
1199  Restore_console:
1200                 pm_restore_console();
1201         }
1202 #endif
1203
1204  Unlock:
1205         mutex_unlock(&kexec_mutex);
1206         return error;
1207 }
1208
1209 /*
1210  * Protection mechanism for crashkernel reserved memory after
1211  * the kdump kernel is loaded.
1212  *
1213  * Provide an empty default implementation here -- architecture
1214  * code may override this
1215  */
1216 void __weak arch_kexec_protect_crashkres(void)
1217 {}
1218
1219 void __weak arch_kexec_unprotect_crashkres(void)
1220 {}