Merge tag 'pm-5.15-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[linux-2.6-microblaze.git] / kernel / futex.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Fast Userspace Mutexes (which I call "Futexes!").
4  *  (C) Rusty Russell, IBM 2002
5  *
6  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
7  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8  *
9  *  Removed page pinning, fix privately mapped COW pages and other cleanups
10  *  (C) Copyright 2003, 2004 Jamie Lokier
11  *
12  *  Robust futex support started by Ingo Molnar
13  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
14  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15  *
16  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
17  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
18  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19  *
20  *  PRIVATE futexes by Eric Dumazet
21  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22  *
23  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
24  *  Copyright (C) IBM Corporation, 2009
25  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
26  *
27  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
28  *  enough at me, Linus for the original (flawed) idea, Matthew
29  *  Kirkwood for proof-of-concept implementation.
30  *
31  *  "The futexes are also cursed."
32  *  "But they come in a choice of three flavours!"
33  */
34 #include <linux/compat.h>
35 #include <linux/jhash.h>
36 #include <linux/pagemap.h>
37 #include <linux/syscalls.h>
38 #include <linux/freezer.h>
39 #include <linux/memblock.h>
40 #include <linux/fault-inject.h>
41 #include <linux/time_namespace.h>
42
43 #include <asm/futex.h>
44
45 #include "locking/rtmutex_common.h"
46
47 /*
48  * READ this before attempting to hack on futexes!
49  *
50  * Basic futex operation and ordering guarantees
51  * =============================================
52  *
53  * The waiter reads the futex value in user space and calls
54  * futex_wait(). This function computes the hash bucket and acquires
55  * the hash bucket lock. After that it reads the futex user space value
56  * again and verifies that the data has not changed. If it has not changed
57  * it enqueues itself into the hash bucket, releases the hash bucket lock
58  * and schedules.
59  *
60  * The waker side modifies the user space value of the futex and calls
61  * futex_wake(). This function computes the hash bucket and acquires the
62  * hash bucket lock. Then it looks for waiters on that futex in the hash
63  * bucket and wakes them.
64  *
65  * In futex wake up scenarios where no tasks are blocked on a futex, taking
66  * the hb spinlock can be avoided and simply return. In order for this
67  * optimization to work, ordering guarantees must exist so that the waiter
68  * being added to the list is acknowledged when the list is concurrently being
69  * checked by the waker, avoiding scenarios like the following:
70  *
71  * CPU 0                               CPU 1
72  * val = *futex;
73  * sys_futex(WAIT, futex, val);
74  *   futex_wait(futex, val);
75  *   uval = *futex;
76  *                                     *futex = newval;
77  *                                     sys_futex(WAKE, futex);
78  *                                       futex_wake(futex);
79  *                                       if (queue_empty())
80  *                                         return;
81  *   if (uval == val)
82  *      lock(hash_bucket(futex));
83  *      queue();
84  *     unlock(hash_bucket(futex));
85  *     schedule();
86  *
87  * This would cause the waiter on CPU 0 to wait forever because it
88  * missed the transition of the user space value from val to newval
89  * and the waker did not find the waiter in the hash bucket queue.
90  *
91  * The correct serialization ensures that a waiter either observes
92  * the changed user space value before blocking or is woken by a
93  * concurrent waker:
94  *
95  * CPU 0                                 CPU 1
96  * val = *futex;
97  * sys_futex(WAIT, futex, val);
98  *   futex_wait(futex, val);
99  *
100  *   waiters++; (a)
101  *   smp_mb(); (A) <-- paired with -.
102  *                                  |
103  *   lock(hash_bucket(futex));      |
104  *                                  |
105  *   uval = *futex;                 |
106  *                                  |        *futex = newval;
107  *                                  |        sys_futex(WAKE, futex);
108  *                                  |          futex_wake(futex);
109  *                                  |
110  *                                  `--------> smp_mb(); (B)
111  *   if (uval == val)
112  *     queue();
113  *     unlock(hash_bucket(futex));
114  *     schedule();                         if (waiters)
115  *                                           lock(hash_bucket(futex));
116  *   else                                    wake_waiters(futex);
117  *     waiters--; (b)                        unlock(hash_bucket(futex));
118  *
119  * Where (A) orders the waiters increment and the futex value read through
120  * atomic operations (see hb_waiters_inc) and where (B) orders the write
121  * to futex and the waiters read (see hb_waiters_pending()).
122  *
123  * This yields the following case (where X:=waiters, Y:=futex):
124  *
125  *      X = Y = 0
126  *
127  *      w[X]=1          w[Y]=1
128  *      MB              MB
129  *      r[Y]=y          r[X]=x
130  *
131  * Which guarantees that x==0 && y==0 is impossible; which translates back into
132  * the guarantee that we cannot both miss the futex variable change and the
133  * enqueue.
134  *
135  * Note that a new waiter is accounted for in (a) even when it is possible that
136  * the wait call can return error, in which case we backtrack from it in (b).
137  * Refer to the comment in queue_lock().
138  *
139  * Similarly, in order to account for waiters being requeued on another
140  * address we always increment the waiters for the destination bucket before
141  * acquiring the lock. It then decrements them again  after releasing it -
142  * the code that actually moves the futex(es) between hash buckets (requeue_futex)
143  * will do the additional required waiter count housekeeping. This is done for
144  * double_lock_hb() and double_unlock_hb(), respectively.
145  */
146
147 #ifdef CONFIG_HAVE_FUTEX_CMPXCHG
148 #define futex_cmpxchg_enabled 1
149 #else
150 static int  __read_mostly futex_cmpxchg_enabled;
151 #endif
152
153 /*
154  * Futex flags used to encode options to functions and preserve them across
155  * restarts.
156  */
157 #ifdef CONFIG_MMU
158 # define FLAGS_SHARED           0x01
159 #else
160 /*
161  * NOMMU does not have per process address space. Let the compiler optimize
162  * code away.
163  */
164 # define FLAGS_SHARED           0x00
165 #endif
166 #define FLAGS_CLOCKRT           0x02
167 #define FLAGS_HAS_TIMEOUT       0x04
168
169 /*
170  * Priority Inheritance state:
171  */
172 struct futex_pi_state {
173         /*
174          * list of 'owned' pi_state instances - these have to be
175          * cleaned up in do_exit() if the task exits prematurely:
176          */
177         struct list_head list;
178
179         /*
180          * The PI object:
181          */
182         struct rt_mutex_base pi_mutex;
183
184         struct task_struct *owner;
185         refcount_t refcount;
186
187         union futex_key key;
188 } __randomize_layout;
189
190 /**
191  * struct futex_q - The hashed futex queue entry, one per waiting task
192  * @list:               priority-sorted list of tasks waiting on this futex
193  * @task:               the task waiting on the futex
194  * @lock_ptr:           the hash bucket lock
195  * @key:                the key the futex is hashed on
196  * @pi_state:           optional priority inheritance state
197  * @rt_waiter:          rt_waiter storage for use with requeue_pi
198  * @requeue_pi_key:     the requeue_pi target futex key
199  * @bitset:             bitset for the optional bitmasked wakeup
200  * @requeue_state:      State field for futex_requeue_pi()
201  * @requeue_wait:       RCU wait for futex_requeue_pi() (RT only)
202  *
203  * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
204  * we can wake only the relevant ones (hashed queues may be shared).
205  *
206  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
207  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
208  * The order of wakeup is always to make the first condition true, then
209  * the second.
210  *
211  * PI futexes are typically woken before they are removed from the hash list via
212  * the rt_mutex code. See unqueue_me_pi().
213  */
214 struct futex_q {
215         struct plist_node list;
216
217         struct task_struct *task;
218         spinlock_t *lock_ptr;
219         union futex_key key;
220         struct futex_pi_state *pi_state;
221         struct rt_mutex_waiter *rt_waiter;
222         union futex_key *requeue_pi_key;
223         u32 bitset;
224         atomic_t requeue_state;
225 #ifdef CONFIG_PREEMPT_RT
226         struct rcuwait requeue_wait;
227 #endif
228 } __randomize_layout;
229
230 /*
231  * On PREEMPT_RT, the hash bucket lock is a 'sleeping' spinlock with an
232  * underlying rtmutex. The task which is about to be requeued could have
233  * just woken up (timeout, signal). After the wake up the task has to
234  * acquire hash bucket lock, which is held by the requeue code.  As a task
235  * can only be blocked on _ONE_ rtmutex at a time, the proxy lock blocking
236  * and the hash bucket lock blocking would collide and corrupt state.
237  *
238  * On !PREEMPT_RT this is not a problem and everything could be serialized
239  * on hash bucket lock, but aside of having the benefit of common code,
240  * this allows to avoid doing the requeue when the task is already on the
241  * way out and taking the hash bucket lock of the original uaddr1 when the
242  * requeue has been completed.
243  *
244  * The following state transitions are valid:
245  *
246  * On the waiter side:
247  *   Q_REQUEUE_PI_NONE          -> Q_REQUEUE_PI_IGNORE
248  *   Q_REQUEUE_PI_IN_PROGRESS   -> Q_REQUEUE_PI_WAIT
249  *
250  * On the requeue side:
251  *   Q_REQUEUE_PI_NONE          -> Q_REQUEUE_PI_INPROGRESS
252  *   Q_REQUEUE_PI_IN_PROGRESS   -> Q_REQUEUE_PI_DONE/LOCKED
253  *   Q_REQUEUE_PI_IN_PROGRESS   -> Q_REQUEUE_PI_NONE (requeue failed)
254  *   Q_REQUEUE_PI_WAIT          -> Q_REQUEUE_PI_DONE/LOCKED
255  *   Q_REQUEUE_PI_WAIT          -> Q_REQUEUE_PI_IGNORE (requeue failed)
256  *
257  * The requeue side ignores a waiter with state Q_REQUEUE_PI_IGNORE as this
258  * signals that the waiter is already on the way out. It also means that
259  * the waiter is still on the 'wait' futex, i.e. uaddr1.
260  *
261  * The waiter side signals early wakeup to the requeue side either through
262  * setting state to Q_REQUEUE_PI_IGNORE or to Q_REQUEUE_PI_WAIT depending
263  * on the current state. In case of Q_REQUEUE_PI_IGNORE it can immediately
264  * proceed to take the hash bucket lock of uaddr1. If it set state to WAIT,
265  * which means the wakeup is interleaving with a requeue in progress it has
266  * to wait for the requeue side to change the state. Either to DONE/LOCKED
267  * or to IGNORE. DONE/LOCKED means the waiter q is now on the uaddr2 futex
268  * and either blocked (DONE) or has acquired it (LOCKED). IGNORE is set by
269  * the requeue side when the requeue attempt failed via deadlock detection
270  * and therefore the waiter q is still on the uaddr1 futex.
271  */
272 enum {
273         Q_REQUEUE_PI_NONE               =  0,
274         Q_REQUEUE_PI_IGNORE,
275         Q_REQUEUE_PI_IN_PROGRESS,
276         Q_REQUEUE_PI_WAIT,
277         Q_REQUEUE_PI_DONE,
278         Q_REQUEUE_PI_LOCKED,
279 };
280
281 static const struct futex_q futex_q_init = {
282         /* list gets initialized in queue_me()*/
283         .key            = FUTEX_KEY_INIT,
284         .bitset         = FUTEX_BITSET_MATCH_ANY,
285         .requeue_state  = ATOMIC_INIT(Q_REQUEUE_PI_NONE),
286 };
287
288 /*
289  * Hash buckets are shared by all the futex_keys that hash to the same
290  * location.  Each key may have multiple futex_q structures, one for each task
291  * waiting on a futex.
292  */
293 struct futex_hash_bucket {
294         atomic_t waiters;
295         spinlock_t lock;
296         struct plist_head chain;
297 } ____cacheline_aligned_in_smp;
298
299 /*
300  * The base of the bucket array and its size are always used together
301  * (after initialization only in hash_futex()), so ensure that they
302  * reside in the same cacheline.
303  */
304 static struct {
305         struct futex_hash_bucket *queues;
306         unsigned long            hashsize;
307 } __futex_data __read_mostly __aligned(2*sizeof(long));
308 #define futex_queues   (__futex_data.queues)
309 #define futex_hashsize (__futex_data.hashsize)
310
311
312 /*
313  * Fault injections for futexes.
314  */
315 #ifdef CONFIG_FAIL_FUTEX
316
317 static struct {
318         struct fault_attr attr;
319
320         bool ignore_private;
321 } fail_futex = {
322         .attr = FAULT_ATTR_INITIALIZER,
323         .ignore_private = false,
324 };
325
326 static int __init setup_fail_futex(char *str)
327 {
328         return setup_fault_attr(&fail_futex.attr, str);
329 }
330 __setup("fail_futex=", setup_fail_futex);
331
332 static bool should_fail_futex(bool fshared)
333 {
334         if (fail_futex.ignore_private && !fshared)
335                 return false;
336
337         return should_fail(&fail_futex.attr, 1);
338 }
339
340 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
341
342 static int __init fail_futex_debugfs(void)
343 {
344         umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
345         struct dentry *dir;
346
347         dir = fault_create_debugfs_attr("fail_futex", NULL,
348                                         &fail_futex.attr);
349         if (IS_ERR(dir))
350                 return PTR_ERR(dir);
351
352         debugfs_create_bool("ignore-private", mode, dir,
353                             &fail_futex.ignore_private);
354         return 0;
355 }
356
357 late_initcall(fail_futex_debugfs);
358
359 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
360
361 #else
362 static inline bool should_fail_futex(bool fshared)
363 {
364         return false;
365 }
366 #endif /* CONFIG_FAIL_FUTEX */
367
368 #ifdef CONFIG_COMPAT
369 static void compat_exit_robust_list(struct task_struct *curr);
370 #endif
371
372 /*
373  * Reflects a new waiter being added to the waitqueue.
374  */
375 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
376 {
377 #ifdef CONFIG_SMP
378         atomic_inc(&hb->waiters);
379         /*
380          * Full barrier (A), see the ordering comment above.
381          */
382         smp_mb__after_atomic();
383 #endif
384 }
385
386 /*
387  * Reflects a waiter being removed from the waitqueue by wakeup
388  * paths.
389  */
390 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
391 {
392 #ifdef CONFIG_SMP
393         atomic_dec(&hb->waiters);
394 #endif
395 }
396
397 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
398 {
399 #ifdef CONFIG_SMP
400         /*
401          * Full barrier (B), see the ordering comment above.
402          */
403         smp_mb();
404         return atomic_read(&hb->waiters);
405 #else
406         return 1;
407 #endif
408 }
409
410 /**
411  * hash_futex - Return the hash bucket in the global hash
412  * @key:        Pointer to the futex key for which the hash is calculated
413  *
414  * We hash on the keys returned from get_futex_key (see below) and return the
415  * corresponding hash bucket in the global hash.
416  */
417 static struct futex_hash_bucket *hash_futex(union futex_key *key)
418 {
419         u32 hash = jhash2((u32 *)key, offsetof(typeof(*key), both.offset) / 4,
420                           key->both.offset);
421
422         return &futex_queues[hash & (futex_hashsize - 1)];
423 }
424
425
426 /**
427  * match_futex - Check whether two futex keys are equal
428  * @key1:       Pointer to key1
429  * @key2:       Pointer to key2
430  *
431  * Return 1 if two futex_keys are equal, 0 otherwise.
432  */
433 static inline int match_futex(union futex_key *key1, union futex_key *key2)
434 {
435         return (key1 && key2
436                 && key1->both.word == key2->both.word
437                 && key1->both.ptr == key2->both.ptr
438                 && key1->both.offset == key2->both.offset);
439 }
440
441 enum futex_access {
442         FUTEX_READ,
443         FUTEX_WRITE
444 };
445
446 /**
447  * futex_setup_timer - set up the sleeping hrtimer.
448  * @time:       ptr to the given timeout value
449  * @timeout:    the hrtimer_sleeper structure to be set up
450  * @flags:      futex flags
451  * @range_ns:   optional range in ns
452  *
453  * Return: Initialized hrtimer_sleeper structure or NULL if no timeout
454  *         value given
455  */
456 static inline struct hrtimer_sleeper *
457 futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
458                   int flags, u64 range_ns)
459 {
460         if (!time)
461                 return NULL;
462
463         hrtimer_init_sleeper_on_stack(timeout, (flags & FLAGS_CLOCKRT) ?
464                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
465                                       HRTIMER_MODE_ABS);
466         /*
467          * If range_ns is 0, calling hrtimer_set_expires_range_ns() is
468          * effectively the same as calling hrtimer_set_expires().
469          */
470         hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns);
471
472         return timeout;
473 }
474
475 /*
476  * Generate a machine wide unique identifier for this inode.
477  *
478  * This relies on u64 not wrapping in the life-time of the machine; which with
479  * 1ns resolution means almost 585 years.
480  *
481  * This further relies on the fact that a well formed program will not unmap
482  * the file while it has a (shared) futex waiting on it. This mapping will have
483  * a file reference which pins the mount and inode.
484  *
485  * If for some reason an inode gets evicted and read back in again, it will get
486  * a new sequence number and will _NOT_ match, even though it is the exact same
487  * file.
488  *
489  * It is important that match_futex() will never have a false-positive, esp.
490  * for PI futexes that can mess up the state. The above argues that false-negatives
491  * are only possible for malformed programs.
492  */
493 static u64 get_inode_sequence_number(struct inode *inode)
494 {
495         static atomic64_t i_seq;
496         u64 old;
497
498         /* Does the inode already have a sequence number? */
499         old = atomic64_read(&inode->i_sequence);
500         if (likely(old))
501                 return old;
502
503         for (;;) {
504                 u64 new = atomic64_add_return(1, &i_seq);
505                 if (WARN_ON_ONCE(!new))
506                         continue;
507
508                 old = atomic64_cmpxchg_relaxed(&inode->i_sequence, 0, new);
509                 if (old)
510                         return old;
511                 return new;
512         }
513 }
514
515 /**
516  * get_futex_key() - Get parameters which are the keys for a futex
517  * @uaddr:      virtual address of the futex
518  * @fshared:    false for a PROCESS_PRIVATE futex, true for PROCESS_SHARED
519  * @key:        address where result is stored.
520  * @rw:         mapping needs to be read/write (values: FUTEX_READ,
521  *              FUTEX_WRITE)
522  *
523  * Return: a negative error code or 0
524  *
525  * The key words are stored in @key on success.
526  *
527  * For shared mappings (when @fshared), the key is:
528  *
529  *   ( inode->i_sequence, page->index, offset_within_page )
530  *
531  * [ also see get_inode_sequence_number() ]
532  *
533  * For private mappings (or when !@fshared), the key is:
534  *
535  *   ( current->mm, address, 0 )
536  *
537  * This allows (cross process, where applicable) identification of the futex
538  * without keeping the page pinned for the duration of the FUTEX_WAIT.
539  *
540  * lock_page() might sleep, the caller should not hold a spinlock.
541  */
542 static int get_futex_key(u32 __user *uaddr, bool fshared, union futex_key *key,
543                          enum futex_access rw)
544 {
545         unsigned long address = (unsigned long)uaddr;
546         struct mm_struct *mm = current->mm;
547         struct page *page, *tail;
548         struct address_space *mapping;
549         int err, ro = 0;
550
551         /*
552          * The futex address must be "naturally" aligned.
553          */
554         key->both.offset = address % PAGE_SIZE;
555         if (unlikely((address % sizeof(u32)) != 0))
556                 return -EINVAL;
557         address -= key->both.offset;
558
559         if (unlikely(!access_ok(uaddr, sizeof(u32))))
560                 return -EFAULT;
561
562         if (unlikely(should_fail_futex(fshared)))
563                 return -EFAULT;
564
565         /*
566          * PROCESS_PRIVATE futexes are fast.
567          * As the mm cannot disappear under us and the 'key' only needs
568          * virtual address, we dont even have to find the underlying vma.
569          * Note : We do have to check 'uaddr' is a valid user address,
570          *        but access_ok() should be faster than find_vma()
571          */
572         if (!fshared) {
573                 key->private.mm = mm;
574                 key->private.address = address;
575                 return 0;
576         }
577
578 again:
579         /* Ignore any VERIFY_READ mapping (futex common case) */
580         if (unlikely(should_fail_futex(true)))
581                 return -EFAULT;
582
583         err = get_user_pages_fast(address, 1, FOLL_WRITE, &page);
584         /*
585          * If write access is not required (eg. FUTEX_WAIT), try
586          * and get read-only access.
587          */
588         if (err == -EFAULT && rw == FUTEX_READ) {
589                 err = get_user_pages_fast(address, 1, 0, &page);
590                 ro = 1;
591         }
592         if (err < 0)
593                 return err;
594         else
595                 err = 0;
596
597         /*
598          * The treatment of mapping from this point on is critical. The page
599          * lock protects many things but in this context the page lock
600          * stabilizes mapping, prevents inode freeing in the shared
601          * file-backed region case and guards against movement to swap cache.
602          *
603          * Strictly speaking the page lock is not needed in all cases being
604          * considered here and page lock forces unnecessarily serialization
605          * From this point on, mapping will be re-verified if necessary and
606          * page lock will be acquired only if it is unavoidable
607          *
608          * Mapping checks require the head page for any compound page so the
609          * head page and mapping is looked up now. For anonymous pages, it
610          * does not matter if the page splits in the future as the key is
611          * based on the address. For filesystem-backed pages, the tail is
612          * required as the index of the page determines the key. For
613          * base pages, there is no tail page and tail == page.
614          */
615         tail = page;
616         page = compound_head(page);
617         mapping = READ_ONCE(page->mapping);
618
619         /*
620          * If page->mapping is NULL, then it cannot be a PageAnon
621          * page; but it might be the ZERO_PAGE or in the gate area or
622          * in a special mapping (all cases which we are happy to fail);
623          * or it may have been a good file page when get_user_pages_fast
624          * found it, but truncated or holepunched or subjected to
625          * invalidate_complete_page2 before we got the page lock (also
626          * cases which we are happy to fail).  And we hold a reference,
627          * so refcount care in invalidate_complete_page's remove_mapping
628          * prevents drop_caches from setting mapping to NULL beneath us.
629          *
630          * The case we do have to guard against is when memory pressure made
631          * shmem_writepage move it from filecache to swapcache beneath us:
632          * an unlikely race, but we do need to retry for page->mapping.
633          */
634         if (unlikely(!mapping)) {
635                 int shmem_swizzled;
636
637                 /*
638                  * Page lock is required to identify which special case above
639                  * applies. If this is really a shmem page then the page lock
640                  * will prevent unexpected transitions.
641                  */
642                 lock_page(page);
643                 shmem_swizzled = PageSwapCache(page) || page->mapping;
644                 unlock_page(page);
645                 put_page(page);
646
647                 if (shmem_swizzled)
648                         goto again;
649
650                 return -EFAULT;
651         }
652
653         /*
654          * Private mappings are handled in a simple way.
655          *
656          * If the futex key is stored on an anonymous page, then the associated
657          * object is the mm which is implicitly pinned by the calling process.
658          *
659          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
660          * it's a read-only handle, it's expected that futexes attach to
661          * the object not the particular process.
662          */
663         if (PageAnon(page)) {
664                 /*
665                  * A RO anonymous page will never change and thus doesn't make
666                  * sense for futex operations.
667                  */
668                 if (unlikely(should_fail_futex(true)) || ro) {
669                         err = -EFAULT;
670                         goto out;
671                 }
672
673                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
674                 key->private.mm = mm;
675                 key->private.address = address;
676
677         } else {
678                 struct inode *inode;
679
680                 /*
681                  * The associated futex object in this case is the inode and
682                  * the page->mapping must be traversed. Ordinarily this should
683                  * be stabilised under page lock but it's not strictly
684                  * necessary in this case as we just want to pin the inode, not
685                  * update the radix tree or anything like that.
686                  *
687                  * The RCU read lock is taken as the inode is finally freed
688                  * under RCU. If the mapping still matches expectations then the
689                  * mapping->host can be safely accessed as being a valid inode.
690                  */
691                 rcu_read_lock();
692
693                 if (READ_ONCE(page->mapping) != mapping) {
694                         rcu_read_unlock();
695                         put_page(page);
696
697                         goto again;
698                 }
699
700                 inode = READ_ONCE(mapping->host);
701                 if (!inode) {
702                         rcu_read_unlock();
703                         put_page(page);
704
705                         goto again;
706                 }
707
708                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
709                 key->shared.i_seq = get_inode_sequence_number(inode);
710                 key->shared.pgoff = page_to_pgoff(tail);
711                 rcu_read_unlock();
712         }
713
714 out:
715         put_page(page);
716         return err;
717 }
718
719 /**
720  * fault_in_user_writeable() - Fault in user address and verify RW access
721  * @uaddr:      pointer to faulting user space address
722  *
723  * Slow path to fixup the fault we just took in the atomic write
724  * access to @uaddr.
725  *
726  * We have no generic implementation of a non-destructive write to the
727  * user address. We know that we faulted in the atomic pagefault
728  * disabled section so we can as well avoid the #PF overhead by
729  * calling get_user_pages() right away.
730  */
731 static int fault_in_user_writeable(u32 __user *uaddr)
732 {
733         struct mm_struct *mm = current->mm;
734         int ret;
735
736         mmap_read_lock(mm);
737         ret = fixup_user_fault(mm, (unsigned long)uaddr,
738                                FAULT_FLAG_WRITE, NULL);
739         mmap_read_unlock(mm);
740
741         return ret < 0 ? ret : 0;
742 }
743
744 /**
745  * futex_top_waiter() - Return the highest priority waiter on a futex
746  * @hb:         the hash bucket the futex_q's reside in
747  * @key:        the futex key (to distinguish it from other futex futex_q's)
748  *
749  * Must be called with the hb lock held.
750  */
751 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
752                                         union futex_key *key)
753 {
754         struct futex_q *this;
755
756         plist_for_each_entry(this, &hb->chain, list) {
757                 if (match_futex(&this->key, key))
758                         return this;
759         }
760         return NULL;
761 }
762
763 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
764                                       u32 uval, u32 newval)
765 {
766         int ret;
767
768         pagefault_disable();
769         ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
770         pagefault_enable();
771
772         return ret;
773 }
774
775 static int get_futex_value_locked(u32 *dest, u32 __user *from)
776 {
777         int ret;
778
779         pagefault_disable();
780         ret = __get_user(*dest, from);
781         pagefault_enable();
782
783         return ret ? -EFAULT : 0;
784 }
785
786
787 /*
788  * PI code:
789  */
790 static int refill_pi_state_cache(void)
791 {
792         struct futex_pi_state *pi_state;
793
794         if (likely(current->pi_state_cache))
795                 return 0;
796
797         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
798
799         if (!pi_state)
800                 return -ENOMEM;
801
802         INIT_LIST_HEAD(&pi_state->list);
803         /* pi_mutex gets initialized later */
804         pi_state->owner = NULL;
805         refcount_set(&pi_state->refcount, 1);
806         pi_state->key = FUTEX_KEY_INIT;
807
808         current->pi_state_cache = pi_state;
809
810         return 0;
811 }
812
813 static struct futex_pi_state *alloc_pi_state(void)
814 {
815         struct futex_pi_state *pi_state = current->pi_state_cache;
816
817         WARN_ON(!pi_state);
818         current->pi_state_cache = NULL;
819
820         return pi_state;
821 }
822
823 static void pi_state_update_owner(struct futex_pi_state *pi_state,
824                                   struct task_struct *new_owner)
825 {
826         struct task_struct *old_owner = pi_state->owner;
827
828         lockdep_assert_held(&pi_state->pi_mutex.wait_lock);
829
830         if (old_owner) {
831                 raw_spin_lock(&old_owner->pi_lock);
832                 WARN_ON(list_empty(&pi_state->list));
833                 list_del_init(&pi_state->list);
834                 raw_spin_unlock(&old_owner->pi_lock);
835         }
836
837         if (new_owner) {
838                 raw_spin_lock(&new_owner->pi_lock);
839                 WARN_ON(!list_empty(&pi_state->list));
840                 list_add(&pi_state->list, &new_owner->pi_state_list);
841                 pi_state->owner = new_owner;
842                 raw_spin_unlock(&new_owner->pi_lock);
843         }
844 }
845
846 static void get_pi_state(struct futex_pi_state *pi_state)
847 {
848         WARN_ON_ONCE(!refcount_inc_not_zero(&pi_state->refcount));
849 }
850
851 /*
852  * Drops a reference to the pi_state object and frees or caches it
853  * when the last reference is gone.
854  */
855 static void put_pi_state(struct futex_pi_state *pi_state)
856 {
857         if (!pi_state)
858                 return;
859
860         if (!refcount_dec_and_test(&pi_state->refcount))
861                 return;
862
863         /*
864          * If pi_state->owner is NULL, the owner is most probably dying
865          * and has cleaned up the pi_state already
866          */
867         if (pi_state->owner) {
868                 unsigned long flags;
869
870                 raw_spin_lock_irqsave(&pi_state->pi_mutex.wait_lock, flags);
871                 pi_state_update_owner(pi_state, NULL);
872                 rt_mutex_proxy_unlock(&pi_state->pi_mutex);
873                 raw_spin_unlock_irqrestore(&pi_state->pi_mutex.wait_lock, flags);
874         }
875
876         if (current->pi_state_cache) {
877                 kfree(pi_state);
878         } else {
879                 /*
880                  * pi_state->list is already empty.
881                  * clear pi_state->owner.
882                  * refcount is at 0 - put it back to 1.
883                  */
884                 pi_state->owner = NULL;
885                 refcount_set(&pi_state->refcount, 1);
886                 current->pi_state_cache = pi_state;
887         }
888 }
889
890 #ifdef CONFIG_FUTEX_PI
891
892 /*
893  * This task is holding PI mutexes at exit time => bad.
894  * Kernel cleans up PI-state, but userspace is likely hosed.
895  * (Robust-futex cleanup is separate and might save the day for userspace.)
896  */
897 static void exit_pi_state_list(struct task_struct *curr)
898 {
899         struct list_head *next, *head = &curr->pi_state_list;
900         struct futex_pi_state *pi_state;
901         struct futex_hash_bucket *hb;
902         union futex_key key = FUTEX_KEY_INIT;
903
904         if (!futex_cmpxchg_enabled)
905                 return;
906         /*
907          * We are a ZOMBIE and nobody can enqueue itself on
908          * pi_state_list anymore, but we have to be careful
909          * versus waiters unqueueing themselves:
910          */
911         raw_spin_lock_irq(&curr->pi_lock);
912         while (!list_empty(head)) {
913                 next = head->next;
914                 pi_state = list_entry(next, struct futex_pi_state, list);
915                 key = pi_state->key;
916                 hb = hash_futex(&key);
917
918                 /*
919                  * We can race against put_pi_state() removing itself from the
920                  * list (a waiter going away). put_pi_state() will first
921                  * decrement the reference count and then modify the list, so
922                  * its possible to see the list entry but fail this reference
923                  * acquire.
924                  *
925                  * In that case; drop the locks to let put_pi_state() make
926                  * progress and retry the loop.
927                  */
928                 if (!refcount_inc_not_zero(&pi_state->refcount)) {
929                         raw_spin_unlock_irq(&curr->pi_lock);
930                         cpu_relax();
931                         raw_spin_lock_irq(&curr->pi_lock);
932                         continue;
933                 }
934                 raw_spin_unlock_irq(&curr->pi_lock);
935
936                 spin_lock(&hb->lock);
937                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
938                 raw_spin_lock(&curr->pi_lock);
939                 /*
940                  * We dropped the pi-lock, so re-check whether this
941                  * task still owns the PI-state:
942                  */
943                 if (head->next != next) {
944                         /* retain curr->pi_lock for the loop invariant */
945                         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
946                         spin_unlock(&hb->lock);
947                         put_pi_state(pi_state);
948                         continue;
949                 }
950
951                 WARN_ON(pi_state->owner != curr);
952                 WARN_ON(list_empty(&pi_state->list));
953                 list_del_init(&pi_state->list);
954                 pi_state->owner = NULL;
955
956                 raw_spin_unlock(&curr->pi_lock);
957                 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
958                 spin_unlock(&hb->lock);
959
960                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
961                 put_pi_state(pi_state);
962
963                 raw_spin_lock_irq(&curr->pi_lock);
964         }
965         raw_spin_unlock_irq(&curr->pi_lock);
966 }
967 #else
968 static inline void exit_pi_state_list(struct task_struct *curr) { }
969 #endif
970
971 /*
972  * We need to check the following states:
973  *
974  *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
975  *
976  * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
977  * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
978  *
979  * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
980  *
981  * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
982  * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
983  *
984  * [6]  Found  | Found    | task      | 0         | 1      | Valid
985  *
986  * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
987  *
988  * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
989  * [9]  Found  | Found    | task      | 0         | 0      | Invalid
990  * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
991  *
992  * [1]  Indicates that the kernel can acquire the futex atomically. We
993  *      came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
994  *
995  * [2]  Valid, if TID does not belong to a kernel thread. If no matching
996  *      thread is found then it indicates that the owner TID has died.
997  *
998  * [3]  Invalid. The waiter is queued on a non PI futex
999  *
1000  * [4]  Valid state after exit_robust_list(), which sets the user space
1001  *      value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
1002  *
1003  * [5]  The user space value got manipulated between exit_robust_list()
1004  *      and exit_pi_state_list()
1005  *
1006  * [6]  Valid state after exit_pi_state_list() which sets the new owner in
1007  *      the pi_state but cannot access the user space value.
1008  *
1009  * [7]  pi_state->owner can only be NULL when the OWNER_DIED bit is set.
1010  *
1011  * [8]  Owner and user space value match
1012  *
1013  * [9]  There is no transient state which sets the user space TID to 0
1014  *      except exit_robust_list(), but this is indicated by the
1015  *      FUTEX_OWNER_DIED bit. See [4]
1016  *
1017  * [10] There is no transient state which leaves owner and user space
1018  *      TID out of sync. Except one error case where the kernel is denied
1019  *      write access to the user address, see fixup_pi_state_owner().
1020  *
1021  *
1022  * Serialization and lifetime rules:
1023  *
1024  * hb->lock:
1025  *
1026  *      hb -> futex_q, relation
1027  *      futex_q -> pi_state, relation
1028  *
1029  *      (cannot be raw because hb can contain arbitrary amount
1030  *       of futex_q's)
1031  *
1032  * pi_mutex->wait_lock:
1033  *
1034  *      {uval, pi_state}
1035  *
1036  *      (and pi_mutex 'obviously')
1037  *
1038  * p->pi_lock:
1039  *
1040  *      p->pi_state_list -> pi_state->list, relation
1041  *      pi_mutex->owner -> pi_state->owner, relation
1042  *
1043  * pi_state->refcount:
1044  *
1045  *      pi_state lifetime
1046  *
1047  *
1048  * Lock order:
1049  *
1050  *   hb->lock
1051  *     pi_mutex->wait_lock
1052  *       p->pi_lock
1053  *
1054  */
1055
1056 /*
1057  * Validate that the existing waiter has a pi_state and sanity check
1058  * the pi_state against the user space value. If correct, attach to
1059  * it.
1060  */
1061 static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1062                               struct futex_pi_state *pi_state,
1063                               struct futex_pi_state **ps)
1064 {
1065         pid_t pid = uval & FUTEX_TID_MASK;
1066         u32 uval2;
1067         int ret;
1068
1069         /*
1070          * Userspace might have messed up non-PI and PI futexes [3]
1071          */
1072         if (unlikely(!pi_state))
1073                 return -EINVAL;
1074
1075         /*
1076          * We get here with hb->lock held, and having found a
1077          * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1078          * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1079          * which in turn means that futex_lock_pi() still has a reference on
1080          * our pi_state.
1081          *
1082          * The waiter holding a reference on @pi_state also protects against
1083          * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1084          * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1085          * free pi_state before we can take a reference ourselves.
1086          */
1087         WARN_ON(!refcount_read(&pi_state->refcount));
1088
1089         /*
1090          * Now that we have a pi_state, we can acquire wait_lock
1091          * and do the state validation.
1092          */
1093         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1094
1095         /*
1096          * Since {uval, pi_state} is serialized by wait_lock, and our current
1097          * uval was read without holding it, it can have changed. Verify it
1098          * still is what we expect it to be, otherwise retry the entire
1099          * operation.
1100          */
1101         if (get_futex_value_locked(&uval2, uaddr))
1102                 goto out_efault;
1103
1104         if (uval != uval2)
1105                 goto out_eagain;
1106
1107         /*
1108          * Handle the owner died case:
1109          */
1110         if (uval & FUTEX_OWNER_DIED) {
1111                 /*
1112                  * exit_pi_state_list sets owner to NULL and wakes the
1113                  * topmost waiter. The task which acquires the
1114                  * pi_state->rt_mutex will fixup owner.
1115                  */
1116                 if (!pi_state->owner) {
1117                         /*
1118                          * No pi state owner, but the user space TID
1119                          * is not 0. Inconsistent state. [5]
1120                          */
1121                         if (pid)
1122                                 goto out_einval;
1123                         /*
1124                          * Take a ref on the state and return success. [4]
1125                          */
1126                         goto out_attach;
1127                 }
1128
1129                 /*
1130                  * If TID is 0, then either the dying owner has not
1131                  * yet executed exit_pi_state_list() or some waiter
1132                  * acquired the rtmutex in the pi state, but did not
1133                  * yet fixup the TID in user space.
1134                  *
1135                  * Take a ref on the state and return success. [6]
1136                  */
1137                 if (!pid)
1138                         goto out_attach;
1139         } else {
1140                 /*
1141                  * If the owner died bit is not set, then the pi_state
1142                  * must have an owner. [7]
1143                  */
1144                 if (!pi_state->owner)
1145                         goto out_einval;
1146         }
1147
1148         /*
1149          * Bail out if user space manipulated the futex value. If pi
1150          * state exists then the owner TID must be the same as the
1151          * user space TID. [9/10]
1152          */
1153         if (pid != task_pid_vnr(pi_state->owner))
1154                 goto out_einval;
1155
1156 out_attach:
1157         get_pi_state(pi_state);
1158         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1159         *ps = pi_state;
1160         return 0;
1161
1162 out_einval:
1163         ret = -EINVAL;
1164         goto out_error;
1165
1166 out_eagain:
1167         ret = -EAGAIN;
1168         goto out_error;
1169
1170 out_efault:
1171         ret = -EFAULT;
1172         goto out_error;
1173
1174 out_error:
1175         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1176         return ret;
1177 }
1178
1179 /**
1180  * wait_for_owner_exiting - Block until the owner has exited
1181  * @ret: owner's current futex lock status
1182  * @exiting:    Pointer to the exiting task
1183  *
1184  * Caller must hold a refcount on @exiting.
1185  */
1186 static void wait_for_owner_exiting(int ret, struct task_struct *exiting)
1187 {
1188         if (ret != -EBUSY) {
1189                 WARN_ON_ONCE(exiting);
1190                 return;
1191         }
1192
1193         if (WARN_ON_ONCE(ret == -EBUSY && !exiting))
1194                 return;
1195
1196         mutex_lock(&exiting->futex_exit_mutex);
1197         /*
1198          * No point in doing state checking here. If the waiter got here
1199          * while the task was in exec()->exec_futex_release() then it can
1200          * have any FUTEX_STATE_* value when the waiter has acquired the
1201          * mutex. OK, if running, EXITING or DEAD if it reached exit()
1202          * already. Highly unlikely and not a problem. Just one more round
1203          * through the futex maze.
1204          */
1205         mutex_unlock(&exiting->futex_exit_mutex);
1206
1207         put_task_struct(exiting);
1208 }
1209
1210 static int handle_exit_race(u32 __user *uaddr, u32 uval,
1211                             struct task_struct *tsk)
1212 {
1213         u32 uval2;
1214
1215         /*
1216          * If the futex exit state is not yet FUTEX_STATE_DEAD, tell the
1217          * caller that the alleged owner is busy.
1218          */
1219         if (tsk && tsk->futex_state != FUTEX_STATE_DEAD)
1220                 return -EBUSY;
1221
1222         /*
1223          * Reread the user space value to handle the following situation:
1224          *
1225          * CPU0                         CPU1
1226          *
1227          * sys_exit()                   sys_futex()
1228          *  do_exit()                    futex_lock_pi()
1229          *                                futex_lock_pi_atomic()
1230          *   exit_signals(tsk)              No waiters:
1231          *    tsk->flags |= PF_EXITING;     *uaddr == 0x00000PID
1232          *  mm_release(tsk)                 Set waiter bit
1233          *   exit_robust_list(tsk) {        *uaddr = 0x80000PID;
1234          *      Set owner died              attach_to_pi_owner() {
1235          *    *uaddr = 0xC0000000;           tsk = get_task(PID);
1236          *   }                               if (!tsk->flags & PF_EXITING) {
1237          *  ...                                attach();
1238          *  tsk->futex_state =               } else {
1239          *      FUTEX_STATE_DEAD;              if (tsk->futex_state !=
1240          *                                        FUTEX_STATE_DEAD)
1241          *                                       return -EAGAIN;
1242          *                                     return -ESRCH; <--- FAIL
1243          *                                   }
1244          *
1245          * Returning ESRCH unconditionally is wrong here because the
1246          * user space value has been changed by the exiting task.
1247          *
1248          * The same logic applies to the case where the exiting task is
1249          * already gone.
1250          */
1251         if (get_futex_value_locked(&uval2, uaddr))
1252                 return -EFAULT;
1253
1254         /* If the user space value has changed, try again. */
1255         if (uval2 != uval)
1256                 return -EAGAIN;
1257
1258         /*
1259          * The exiting task did not have a robust list, the robust list was
1260          * corrupted or the user space value in *uaddr is simply bogus.
1261          * Give up and tell user space.
1262          */
1263         return -ESRCH;
1264 }
1265
1266 /*
1267  * Lookup the task for the TID provided from user space and attach to
1268  * it after doing proper sanity checks.
1269  */
1270 static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
1271                               struct futex_pi_state **ps,
1272                               struct task_struct **exiting)
1273 {
1274         pid_t pid = uval & FUTEX_TID_MASK;
1275         struct futex_pi_state *pi_state;
1276         struct task_struct *p;
1277
1278         /*
1279          * We are the first waiter - try to look up the real owner and attach
1280          * the new pi_state to it, but bail out when TID = 0 [1]
1281          *
1282          * The !pid check is paranoid. None of the call sites should end up
1283          * with pid == 0, but better safe than sorry. Let the caller retry
1284          */
1285         if (!pid)
1286                 return -EAGAIN;
1287         p = find_get_task_by_vpid(pid);
1288         if (!p)
1289                 return handle_exit_race(uaddr, uval, NULL);
1290
1291         if (unlikely(p->flags & PF_KTHREAD)) {
1292                 put_task_struct(p);
1293                 return -EPERM;
1294         }
1295
1296         /*
1297          * We need to look at the task state to figure out, whether the
1298          * task is exiting. To protect against the change of the task state
1299          * in futex_exit_release(), we do this protected by p->pi_lock:
1300          */
1301         raw_spin_lock_irq(&p->pi_lock);
1302         if (unlikely(p->futex_state != FUTEX_STATE_OK)) {
1303                 /*
1304                  * The task is on the way out. When the futex state is
1305                  * FUTEX_STATE_DEAD, we know that the task has finished
1306                  * the cleanup:
1307                  */
1308                 int ret = handle_exit_race(uaddr, uval, p);
1309
1310                 raw_spin_unlock_irq(&p->pi_lock);
1311                 /*
1312                  * If the owner task is between FUTEX_STATE_EXITING and
1313                  * FUTEX_STATE_DEAD then store the task pointer and keep
1314                  * the reference on the task struct. The calling code will
1315                  * drop all locks, wait for the task to reach
1316                  * FUTEX_STATE_DEAD and then drop the refcount. This is
1317                  * required to prevent a live lock when the current task
1318                  * preempted the exiting task between the two states.
1319                  */
1320                 if (ret == -EBUSY)
1321                         *exiting = p;
1322                 else
1323                         put_task_struct(p);
1324                 return ret;
1325         }
1326
1327         /*
1328          * No existing pi state. First waiter. [2]
1329          *
1330          * This creates pi_state, we have hb->lock held, this means nothing can
1331          * observe this state, wait_lock is irrelevant.
1332          */
1333         pi_state = alloc_pi_state();
1334
1335         /*
1336          * Initialize the pi_mutex in locked state and make @p
1337          * the owner of it:
1338          */
1339         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1340
1341         /* Store the key for possible exit cleanups: */
1342         pi_state->key = *key;
1343
1344         WARN_ON(!list_empty(&pi_state->list));
1345         list_add(&pi_state->list, &p->pi_state_list);
1346         /*
1347          * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1348          * because there is no concurrency as the object is not published yet.
1349          */
1350         pi_state->owner = p;
1351         raw_spin_unlock_irq(&p->pi_lock);
1352
1353         put_task_struct(p);
1354
1355         *ps = pi_state;
1356
1357         return 0;
1358 }
1359
1360 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1361 {
1362         int err;
1363         u32 curval;
1364
1365         if (unlikely(should_fail_futex(true)))
1366                 return -EFAULT;
1367
1368         err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1369         if (unlikely(err))
1370                 return err;
1371
1372         /* If user space value changed, let the caller retry */
1373         return curval != uval ? -EAGAIN : 0;
1374 }
1375
1376 /**
1377  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1378  * @uaddr:              the pi futex user address
1379  * @hb:                 the pi futex hash bucket
1380  * @key:                the futex key associated with uaddr and hb
1381  * @ps:                 the pi_state pointer where we store the result of the
1382  *                      lookup
1383  * @task:               the task to perform the atomic lock work for.  This will
1384  *                      be "current" except in the case of requeue pi.
1385  * @exiting:            Pointer to store the task pointer of the owner task
1386  *                      which is in the middle of exiting
1387  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1388  *
1389  * Return:
1390  *  -  0 - ready to wait;
1391  *  -  1 - acquired the lock;
1392  *  - <0 - error
1393  *
1394  * The hb->lock must be held by the caller.
1395  *
1396  * @exiting is only set when the return value is -EBUSY. If so, this holds
1397  * a refcount on the exiting task on return and the caller needs to drop it
1398  * after waiting for the exit to complete.
1399  */
1400 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1401                                 union futex_key *key,
1402                                 struct futex_pi_state **ps,
1403                                 struct task_struct *task,
1404                                 struct task_struct **exiting,
1405                                 int set_waiters)
1406 {
1407         u32 uval, newval, vpid = task_pid_vnr(task);
1408         struct futex_q *top_waiter;
1409         int ret;
1410
1411         /*
1412          * Read the user space value first so we can validate a few
1413          * things before proceeding further.
1414          */
1415         if (get_futex_value_locked(&uval, uaddr))
1416                 return -EFAULT;
1417
1418         if (unlikely(should_fail_futex(true)))
1419                 return -EFAULT;
1420
1421         /*
1422          * Detect deadlocks.
1423          */
1424         if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1425                 return -EDEADLK;
1426
1427         if ((unlikely(should_fail_futex(true))))
1428                 return -EDEADLK;
1429
1430         /*
1431          * Lookup existing state first. If it exists, try to attach to
1432          * its pi_state.
1433          */
1434         top_waiter = futex_top_waiter(hb, key);
1435         if (top_waiter)
1436                 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1437
1438         /*
1439          * No waiter and user TID is 0. We are here because the
1440          * waiters or the owner died bit is set or called from
1441          * requeue_cmp_pi or for whatever reason something took the
1442          * syscall.
1443          */
1444         if (!(uval & FUTEX_TID_MASK)) {
1445                 /*
1446                  * We take over the futex. No other waiters and the user space
1447                  * TID is 0. We preserve the owner died bit.
1448                  */
1449                 newval = uval & FUTEX_OWNER_DIED;
1450                 newval |= vpid;
1451
1452                 /* The futex requeue_pi code can enforce the waiters bit */
1453                 if (set_waiters)
1454                         newval |= FUTEX_WAITERS;
1455
1456                 ret = lock_pi_update_atomic(uaddr, uval, newval);
1457                 /* If the take over worked, return 1 */
1458                 return ret < 0 ? ret : 1;
1459         }
1460
1461         /*
1462          * First waiter. Set the waiters bit before attaching ourself to
1463          * the owner. If owner tries to unlock, it will be forced into
1464          * the kernel and blocked on hb->lock.
1465          */
1466         newval = uval | FUTEX_WAITERS;
1467         ret = lock_pi_update_atomic(uaddr, uval, newval);
1468         if (ret)
1469                 return ret;
1470         /*
1471          * If the update of the user space value succeeded, we try to
1472          * attach to the owner. If that fails, no harm done, we only
1473          * set the FUTEX_WAITERS bit in the user space variable.
1474          */
1475         return attach_to_pi_owner(uaddr, newval, key, ps, exiting);
1476 }
1477
1478 /**
1479  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1480  * @q:  The futex_q to unqueue
1481  *
1482  * The q->lock_ptr must not be NULL and must be held by the caller.
1483  */
1484 static void __unqueue_futex(struct futex_q *q)
1485 {
1486         struct futex_hash_bucket *hb;
1487
1488         if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
1489                 return;
1490         lockdep_assert_held(q->lock_ptr);
1491
1492         hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1493         plist_del(&q->list, &hb->chain);
1494         hb_waiters_dec(hb);
1495 }
1496
1497 /*
1498  * The hash bucket lock must be held when this is called.
1499  * Afterwards, the futex_q must not be accessed. Callers
1500  * must ensure to later call wake_up_q() for the actual
1501  * wakeups to occur.
1502  */
1503 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1504 {
1505         struct task_struct *p = q->task;
1506
1507         if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1508                 return;
1509
1510         get_task_struct(p);
1511         __unqueue_futex(q);
1512         /*
1513          * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1514          * is written, without taking any locks. This is possible in the event
1515          * of a spurious wakeup, for example. A memory barrier is required here
1516          * to prevent the following store to lock_ptr from getting ahead of the
1517          * plist_del in __unqueue_futex().
1518          */
1519         smp_store_release(&q->lock_ptr, NULL);
1520
1521         /*
1522          * Queue the task for later wakeup for after we've released
1523          * the hb->lock.
1524          */
1525         wake_q_add_safe(wake_q, p);
1526 }
1527
1528 /*
1529  * Caller must hold a reference on @pi_state.
1530  */
1531 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1532 {
1533         struct rt_mutex_waiter *top_waiter;
1534         struct task_struct *new_owner;
1535         bool postunlock = false;
1536         DEFINE_RT_WAKE_Q(wqh);
1537         u32 curval, newval;
1538         int ret = 0;
1539
1540         top_waiter = rt_mutex_top_waiter(&pi_state->pi_mutex);
1541         if (WARN_ON_ONCE(!top_waiter)) {
1542                 /*
1543                  * As per the comment in futex_unlock_pi() this should not happen.
1544                  *
1545                  * When this happens, give up our locks and try again, giving
1546                  * the futex_lock_pi() instance time to complete, either by
1547                  * waiting on the rtmutex or removing itself from the futex
1548                  * queue.
1549                  */
1550                 ret = -EAGAIN;
1551                 goto out_unlock;
1552         }
1553
1554         new_owner = top_waiter->task;
1555
1556         /*
1557          * We pass it to the next owner. The WAITERS bit is always kept
1558          * enabled while there is PI state around. We cleanup the owner
1559          * died bit, because we are the owner.
1560          */
1561         newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1562
1563         if (unlikely(should_fail_futex(true))) {
1564                 ret = -EFAULT;
1565                 goto out_unlock;
1566         }
1567
1568         ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1569         if (!ret && (curval != uval)) {
1570                 /*
1571                  * If a unconditional UNLOCK_PI operation (user space did not
1572                  * try the TID->0 transition) raced with a waiter setting the
1573                  * FUTEX_WAITERS flag between get_user() and locking the hash
1574                  * bucket lock, retry the operation.
1575                  */
1576                 if ((FUTEX_TID_MASK & curval) == uval)
1577                         ret = -EAGAIN;
1578                 else
1579                         ret = -EINVAL;
1580         }
1581
1582         if (!ret) {
1583                 /*
1584                  * This is a point of no return; once we modified the uval
1585                  * there is no going back and subsequent operations must
1586                  * not fail.
1587                  */
1588                 pi_state_update_owner(pi_state, new_owner);
1589                 postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wqh);
1590         }
1591
1592 out_unlock:
1593         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1594
1595         if (postunlock)
1596                 rt_mutex_postunlock(&wqh);
1597
1598         return ret;
1599 }
1600
1601 /*
1602  * Express the locking dependencies for lockdep:
1603  */
1604 static inline void
1605 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1606 {
1607         if (hb1 <= hb2) {
1608                 spin_lock(&hb1->lock);
1609                 if (hb1 < hb2)
1610                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1611         } else { /* hb1 > hb2 */
1612                 spin_lock(&hb2->lock);
1613                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1614         }
1615 }
1616
1617 static inline void
1618 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1619 {
1620         spin_unlock(&hb1->lock);
1621         if (hb1 != hb2)
1622                 spin_unlock(&hb2->lock);
1623 }
1624
1625 /*
1626  * Wake up waiters matching bitset queued on this futex (uaddr).
1627  */
1628 static int
1629 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1630 {
1631         struct futex_hash_bucket *hb;
1632         struct futex_q *this, *next;
1633         union futex_key key = FUTEX_KEY_INIT;
1634         int ret;
1635         DEFINE_WAKE_Q(wake_q);
1636
1637         if (!bitset)
1638                 return -EINVAL;
1639
1640         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ);
1641         if (unlikely(ret != 0))
1642                 return ret;
1643
1644         hb = hash_futex(&key);
1645
1646         /* Make sure we really have tasks to wakeup */
1647         if (!hb_waiters_pending(hb))
1648                 return ret;
1649
1650         spin_lock(&hb->lock);
1651
1652         plist_for_each_entry_safe(this, next, &hb->chain, list) {
1653                 if (match_futex (&this->key, &key)) {
1654                         if (this->pi_state || this->rt_waiter) {
1655                                 ret = -EINVAL;
1656                                 break;
1657                         }
1658
1659                         /* Check if one of the bits is set in both bitsets */
1660                         if (!(this->bitset & bitset))
1661                                 continue;
1662
1663                         mark_wake_futex(&wake_q, this);
1664                         if (++ret >= nr_wake)
1665                                 break;
1666                 }
1667         }
1668
1669         spin_unlock(&hb->lock);
1670         wake_up_q(&wake_q);
1671         return ret;
1672 }
1673
1674 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1675 {
1676         unsigned int op =         (encoded_op & 0x70000000) >> 28;
1677         unsigned int cmp =        (encoded_op & 0x0f000000) >> 24;
1678         int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1679         int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
1680         int oldval, ret;
1681
1682         if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1683                 if (oparg < 0 || oparg > 31) {
1684                         char comm[sizeof(current->comm)];
1685                         /*
1686                          * kill this print and return -EINVAL when userspace
1687                          * is sane again
1688                          */
1689                         pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1690                                         get_task_comm(comm, current), oparg);
1691                         oparg &= 31;
1692                 }
1693                 oparg = 1 << oparg;
1694         }
1695
1696         pagefault_disable();
1697         ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1698         pagefault_enable();
1699         if (ret)
1700                 return ret;
1701
1702         switch (cmp) {
1703         case FUTEX_OP_CMP_EQ:
1704                 return oldval == cmparg;
1705         case FUTEX_OP_CMP_NE:
1706                 return oldval != cmparg;
1707         case FUTEX_OP_CMP_LT:
1708                 return oldval < cmparg;
1709         case FUTEX_OP_CMP_GE:
1710                 return oldval >= cmparg;
1711         case FUTEX_OP_CMP_LE:
1712                 return oldval <= cmparg;
1713         case FUTEX_OP_CMP_GT:
1714                 return oldval > cmparg;
1715         default:
1716                 return -ENOSYS;
1717         }
1718 }
1719
1720 /*
1721  * Wake up all waiters hashed on the physical page that is mapped
1722  * to this virtual address:
1723  */
1724 static int
1725 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1726               int nr_wake, int nr_wake2, int op)
1727 {
1728         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1729         struct futex_hash_bucket *hb1, *hb2;
1730         struct futex_q *this, *next;
1731         int ret, op_ret;
1732         DEFINE_WAKE_Q(wake_q);
1733
1734 retry:
1735         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1736         if (unlikely(ret != 0))
1737                 return ret;
1738         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
1739         if (unlikely(ret != 0))
1740                 return ret;
1741
1742         hb1 = hash_futex(&key1);
1743         hb2 = hash_futex(&key2);
1744
1745 retry_private:
1746         double_lock_hb(hb1, hb2);
1747         op_ret = futex_atomic_op_inuser(op, uaddr2);
1748         if (unlikely(op_ret < 0)) {
1749                 double_unlock_hb(hb1, hb2);
1750
1751                 if (!IS_ENABLED(CONFIG_MMU) ||
1752                     unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
1753                         /*
1754                          * we don't get EFAULT from MMU faults if we don't have
1755                          * an MMU, but we might get them from range checking
1756                          */
1757                         ret = op_ret;
1758                         return ret;
1759                 }
1760
1761                 if (op_ret == -EFAULT) {
1762                         ret = fault_in_user_writeable(uaddr2);
1763                         if (ret)
1764                                 return ret;
1765                 }
1766
1767                 cond_resched();
1768                 if (!(flags & FLAGS_SHARED))
1769                         goto retry_private;
1770                 goto retry;
1771         }
1772
1773         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1774                 if (match_futex (&this->key, &key1)) {
1775                         if (this->pi_state || this->rt_waiter) {
1776                                 ret = -EINVAL;
1777                                 goto out_unlock;
1778                         }
1779                         mark_wake_futex(&wake_q, this);
1780                         if (++ret >= nr_wake)
1781                                 break;
1782                 }
1783         }
1784
1785         if (op_ret > 0) {
1786                 op_ret = 0;
1787                 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1788                         if (match_futex (&this->key, &key2)) {
1789                                 if (this->pi_state || this->rt_waiter) {
1790                                         ret = -EINVAL;
1791                                         goto out_unlock;
1792                                 }
1793                                 mark_wake_futex(&wake_q, this);
1794                                 if (++op_ret >= nr_wake2)
1795                                         break;
1796                         }
1797                 }
1798                 ret += op_ret;
1799         }
1800
1801 out_unlock:
1802         double_unlock_hb(hb1, hb2);
1803         wake_up_q(&wake_q);
1804         return ret;
1805 }
1806
1807 /**
1808  * requeue_futex() - Requeue a futex_q from one hb to another
1809  * @q:          the futex_q to requeue
1810  * @hb1:        the source hash_bucket
1811  * @hb2:        the target hash_bucket
1812  * @key2:       the new key for the requeued futex_q
1813  */
1814 static inline
1815 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1816                    struct futex_hash_bucket *hb2, union futex_key *key2)
1817 {
1818
1819         /*
1820          * If key1 and key2 hash to the same bucket, no need to
1821          * requeue.
1822          */
1823         if (likely(&hb1->chain != &hb2->chain)) {
1824                 plist_del(&q->list, &hb1->chain);
1825                 hb_waiters_dec(hb1);
1826                 hb_waiters_inc(hb2);
1827                 plist_add(&q->list, &hb2->chain);
1828                 q->lock_ptr = &hb2->lock;
1829         }
1830         q->key = *key2;
1831 }
1832
1833 static inline bool futex_requeue_pi_prepare(struct futex_q *q,
1834                                             struct futex_pi_state *pi_state)
1835 {
1836         int old, new;
1837
1838         /*
1839          * Set state to Q_REQUEUE_PI_IN_PROGRESS unless an early wakeup has
1840          * already set Q_REQUEUE_PI_IGNORE to signal that requeue should
1841          * ignore the waiter.
1842          */
1843         old = atomic_read_acquire(&q->requeue_state);
1844         do {
1845                 if (old == Q_REQUEUE_PI_IGNORE)
1846                         return false;
1847
1848                 /*
1849                  * futex_proxy_trylock_atomic() might have set it to
1850                  * IN_PROGRESS and a interleaved early wake to WAIT.
1851                  *
1852                  * It was considered to have an extra state for that
1853                  * trylock, but that would just add more conditionals
1854                  * all over the place for a dubious value.
1855                  */
1856                 if (old != Q_REQUEUE_PI_NONE)
1857                         break;
1858
1859                 new = Q_REQUEUE_PI_IN_PROGRESS;
1860         } while (!atomic_try_cmpxchg(&q->requeue_state, &old, new));
1861
1862         q->pi_state = pi_state;
1863         return true;
1864 }
1865
1866 static inline void futex_requeue_pi_complete(struct futex_q *q, int locked)
1867 {
1868         int old, new;
1869
1870         old = atomic_read_acquire(&q->requeue_state);
1871         do {
1872                 if (old == Q_REQUEUE_PI_IGNORE)
1873                         return;
1874
1875                 if (locked >= 0) {
1876                         /* Requeue succeeded. Set DONE or LOCKED */
1877                         WARN_ON_ONCE(old != Q_REQUEUE_PI_IN_PROGRESS &&
1878                                      old != Q_REQUEUE_PI_WAIT);
1879                         new = Q_REQUEUE_PI_DONE + locked;
1880                 } else if (old == Q_REQUEUE_PI_IN_PROGRESS) {
1881                         /* Deadlock, no early wakeup interleave */
1882                         new = Q_REQUEUE_PI_NONE;
1883                 } else {
1884                         /* Deadlock, early wakeup interleave. */
1885                         WARN_ON_ONCE(old != Q_REQUEUE_PI_WAIT);
1886                         new = Q_REQUEUE_PI_IGNORE;
1887                 }
1888         } while (!atomic_try_cmpxchg(&q->requeue_state, &old, new));
1889
1890 #ifdef CONFIG_PREEMPT_RT
1891         /* If the waiter interleaved with the requeue let it know */
1892         if (unlikely(old == Q_REQUEUE_PI_WAIT))
1893                 rcuwait_wake_up(&q->requeue_wait);
1894 #endif
1895 }
1896
1897 static inline int futex_requeue_pi_wakeup_sync(struct futex_q *q)
1898 {
1899         int old, new;
1900
1901         old = atomic_read_acquire(&q->requeue_state);
1902         do {
1903                 /* Is requeue done already? */
1904                 if (old >= Q_REQUEUE_PI_DONE)
1905                         return old;
1906
1907                 /*
1908                  * If not done, then tell the requeue code to either ignore
1909                  * the waiter or to wake it up once the requeue is done.
1910                  */
1911                 new = Q_REQUEUE_PI_WAIT;
1912                 if (old == Q_REQUEUE_PI_NONE)
1913                         new = Q_REQUEUE_PI_IGNORE;
1914         } while (!atomic_try_cmpxchg(&q->requeue_state, &old, new));
1915
1916         /* If the requeue was in progress, wait for it to complete */
1917         if (old == Q_REQUEUE_PI_IN_PROGRESS) {
1918 #ifdef CONFIG_PREEMPT_RT
1919                 rcuwait_wait_event(&q->requeue_wait,
1920                                    atomic_read(&q->requeue_state) != Q_REQUEUE_PI_WAIT,
1921                                    TASK_UNINTERRUPTIBLE);
1922 #else
1923                 (void)atomic_cond_read_relaxed(&q->requeue_state, VAL != Q_REQUEUE_PI_WAIT);
1924 #endif
1925         }
1926
1927         /*
1928          * Requeue is now either prohibited or complete. Reread state
1929          * because during the wait above it might have changed. Nothing
1930          * will modify q->requeue_state after this point.
1931          */
1932         return atomic_read(&q->requeue_state);
1933 }
1934
1935 /**
1936  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1937  * @q:          the futex_q
1938  * @key:        the key of the requeue target futex
1939  * @hb:         the hash_bucket of the requeue target futex
1940  *
1941  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1942  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1943  * to the requeue target futex so the waiter can detect the wakeup on the right
1944  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1945  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1946  * to protect access to the pi_state to fixup the owner later.  Must be called
1947  * with both q->lock_ptr and hb->lock held.
1948  */
1949 static inline
1950 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1951                            struct futex_hash_bucket *hb)
1952 {
1953         q->key = *key;
1954
1955         __unqueue_futex(q);
1956
1957         WARN_ON(!q->rt_waiter);
1958         q->rt_waiter = NULL;
1959
1960         q->lock_ptr = &hb->lock;
1961
1962         /* Signal locked state to the waiter */
1963         futex_requeue_pi_complete(q, 1);
1964         wake_up_state(q->task, TASK_NORMAL);
1965 }
1966
1967 /**
1968  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1969  * @pifutex:            the user address of the to futex
1970  * @hb1:                the from futex hash bucket, must be locked by the caller
1971  * @hb2:                the to futex hash bucket, must be locked by the caller
1972  * @key1:               the from futex key
1973  * @key2:               the to futex key
1974  * @ps:                 address to store the pi_state pointer
1975  * @exiting:            Pointer to store the task pointer of the owner task
1976  *                      which is in the middle of exiting
1977  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1978  *
1979  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1980  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1981  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1982  * hb1 and hb2 must be held by the caller.
1983  *
1984  * @exiting is only set when the return value is -EBUSY. If so, this holds
1985  * a refcount on the exiting task on return and the caller needs to drop it
1986  * after waiting for the exit to complete.
1987  *
1988  * Return:
1989  *  -  0 - failed to acquire the lock atomically;
1990  *  - >0 - acquired the lock, return value is vpid of the top_waiter
1991  *  - <0 - error
1992  */
1993 static int
1994 futex_proxy_trylock_atomic(u32 __user *pifutex, struct futex_hash_bucket *hb1,
1995                            struct futex_hash_bucket *hb2, union futex_key *key1,
1996                            union futex_key *key2, struct futex_pi_state **ps,
1997                            struct task_struct **exiting, int set_waiters)
1998 {
1999         struct futex_q *top_waiter = NULL;
2000         u32 curval;
2001         int ret, vpid;
2002
2003         if (get_futex_value_locked(&curval, pifutex))
2004                 return -EFAULT;
2005
2006         if (unlikely(should_fail_futex(true)))
2007                 return -EFAULT;
2008
2009         /*
2010          * Find the top_waiter and determine if there are additional waiters.
2011          * If the caller intends to requeue more than 1 waiter to pifutex,
2012          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
2013          * as we have means to handle the possible fault.  If not, don't set
2014          * the bit unnecessarily as it will force the subsequent unlock to enter
2015          * the kernel.
2016          */
2017         top_waiter = futex_top_waiter(hb1, key1);
2018
2019         /* There are no waiters, nothing for us to do. */
2020         if (!top_waiter)
2021                 return 0;
2022
2023         /*
2024          * Ensure that this is a waiter sitting in futex_wait_requeue_pi()
2025          * and waiting on the 'waitqueue' futex which is always !PI.
2026          */
2027         if (!top_waiter->rt_waiter || top_waiter->pi_state)
2028                 ret = -EINVAL;
2029
2030         /* Ensure we requeue to the expected futex. */
2031         if (!match_futex(top_waiter->requeue_pi_key, key2))
2032                 return -EINVAL;
2033
2034         /* Ensure that this does not race against an early wakeup */
2035         if (!futex_requeue_pi_prepare(top_waiter, NULL))
2036                 return -EAGAIN;
2037
2038         /*
2039          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
2040          * the contended case or if set_waiters is 1.  The pi_state is returned
2041          * in ps in contended cases.
2042          */
2043         vpid = task_pid_vnr(top_waiter->task);
2044         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
2045                                    exiting, set_waiters);
2046         if (ret == 1) {
2047                 /* Dequeue, wake up and update top_waiter::requeue_state */
2048                 requeue_pi_wake_futex(top_waiter, key2, hb2);
2049                 return vpid;
2050         } else if (ret < 0) {
2051                 /* Rewind top_waiter::requeue_state */
2052                 futex_requeue_pi_complete(top_waiter, ret);
2053         } else {
2054                 /*
2055                  * futex_lock_pi_atomic() did not acquire the user space
2056                  * futex, but managed to establish the proxy lock and pi
2057                  * state. top_waiter::requeue_state cannot be fixed up here
2058                  * because the waiter is not enqueued on the rtmutex
2059                  * yet. This is handled at the callsite depending on the
2060                  * result of rt_mutex_start_proxy_lock() which is
2061                  * guaranteed to be reached with this function returning 0.
2062                  */
2063         }
2064         return ret;
2065 }
2066
2067 /**
2068  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
2069  * @uaddr1:     source futex user address
2070  * @flags:      futex flags (FLAGS_SHARED, etc.)
2071  * @uaddr2:     target futex user address
2072  * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
2073  * @nr_requeue: number of waiters to requeue (0-INT_MAX)
2074  * @cmpval:     @uaddr1 expected value (or %NULL)
2075  * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
2076  *              pi futex (pi to pi requeue is not supported)
2077  *
2078  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
2079  * uaddr2 atomically on behalf of the top waiter.
2080  *
2081  * Return:
2082  *  - >=0 - on success, the number of tasks requeued or woken;
2083  *  -  <0 - on error
2084  */
2085 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
2086                          u32 __user *uaddr2, int nr_wake, int nr_requeue,
2087                          u32 *cmpval, int requeue_pi)
2088 {
2089         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
2090         int task_count = 0, ret;
2091         struct futex_pi_state *pi_state = NULL;
2092         struct futex_hash_bucket *hb1, *hb2;
2093         struct futex_q *this, *next;
2094         DEFINE_WAKE_Q(wake_q);
2095
2096         if (nr_wake < 0 || nr_requeue < 0)
2097                 return -EINVAL;
2098
2099         /*
2100          * When PI not supported: return -ENOSYS if requeue_pi is true,
2101          * consequently the compiler knows requeue_pi is always false past
2102          * this point which will optimize away all the conditional code
2103          * further down.
2104          */
2105         if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
2106                 return -ENOSYS;
2107
2108         if (requeue_pi) {
2109                 /*
2110                  * Requeue PI only works on two distinct uaddrs. This
2111                  * check is only valid for private futexes. See below.
2112                  */
2113                 if (uaddr1 == uaddr2)
2114                         return -EINVAL;
2115
2116                 /*
2117                  * futex_requeue() allows the caller to define the number
2118                  * of waiters to wake up via the @nr_wake argument. With
2119                  * REQUEUE_PI, waking up more than one waiter is creating
2120                  * more problems than it solves. Waking up a waiter makes
2121                  * only sense if the PI futex @uaddr2 is uncontended as
2122                  * this allows the requeue code to acquire the futex
2123                  * @uaddr2 before waking the waiter. The waiter can then
2124                  * return to user space without further action. A secondary
2125                  * wakeup would just make the futex_wait_requeue_pi()
2126                  * handling more complex, because that code would have to
2127                  * look up pi_state and do more or less all the handling
2128                  * which the requeue code has to do for the to be requeued
2129                  * waiters. So restrict the number of waiters to wake to
2130                  * one, and only wake it up when the PI futex is
2131                  * uncontended. Otherwise requeue it and let the unlock of
2132                  * the PI futex handle the wakeup.
2133                  *
2134                  * All REQUEUE_PI users, e.g. pthread_cond_signal() and
2135                  * pthread_cond_broadcast() must use nr_wake=1.
2136                  */
2137                 if (nr_wake != 1)
2138                         return -EINVAL;
2139
2140                 /*
2141                  * requeue_pi requires a pi_state, try to allocate it now
2142                  * without any locks in case it fails.
2143                  */
2144                 if (refill_pi_state_cache())
2145                         return -ENOMEM;
2146         }
2147
2148 retry:
2149         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
2150         if (unlikely(ret != 0))
2151                 return ret;
2152         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
2153                             requeue_pi ? FUTEX_WRITE : FUTEX_READ);
2154         if (unlikely(ret != 0))
2155                 return ret;
2156
2157         /*
2158          * The check above which compares uaddrs is not sufficient for
2159          * shared futexes. We need to compare the keys:
2160          */
2161         if (requeue_pi && match_futex(&key1, &key2))
2162                 return -EINVAL;
2163
2164         hb1 = hash_futex(&key1);
2165         hb2 = hash_futex(&key2);
2166
2167 retry_private:
2168         hb_waiters_inc(hb2);
2169         double_lock_hb(hb1, hb2);
2170
2171         if (likely(cmpval != NULL)) {
2172                 u32 curval;
2173
2174                 ret = get_futex_value_locked(&curval, uaddr1);
2175
2176                 if (unlikely(ret)) {
2177                         double_unlock_hb(hb1, hb2);
2178                         hb_waiters_dec(hb2);
2179
2180                         ret = get_user(curval, uaddr1);
2181                         if (ret)
2182                                 return ret;
2183
2184                         if (!(flags & FLAGS_SHARED))
2185                                 goto retry_private;
2186
2187                         goto retry;
2188                 }
2189                 if (curval != *cmpval) {
2190                         ret = -EAGAIN;
2191                         goto out_unlock;
2192                 }
2193         }
2194
2195         if (requeue_pi) {
2196                 struct task_struct *exiting = NULL;
2197
2198                 /*
2199                  * Attempt to acquire uaddr2 and wake the top waiter. If we
2200                  * intend to requeue waiters, force setting the FUTEX_WAITERS
2201                  * bit.  We force this here where we are able to easily handle
2202                  * faults rather in the requeue loop below.
2203                  *
2204                  * Updates topwaiter::requeue_state if a top waiter exists.
2205                  */
2206                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
2207                                                  &key2, &pi_state,
2208                                                  &exiting, nr_requeue);
2209
2210                 /*
2211                  * At this point the top_waiter has either taken uaddr2 or is
2212                  * waiting on it.  If the former, then the pi_state will not
2213                  * exist yet, look it up one more time to ensure we have a
2214                  * reference to it. If the lock was taken, @ret contains the
2215                  * VPID of the top waiter task.
2216                  * If the lock was not taken, we have pi_state and an initial
2217                  * refcount on it. In case of an error we have nothing.
2218                  *
2219                  * The top waiter's requeue_state is up to date:
2220                  *
2221                  *  - If the lock was acquired atomically (ret > 0), then
2222                  *    the state is Q_REQUEUE_PI_LOCKED.
2223                  *
2224                  *  - If the trylock failed with an error (ret < 0) then
2225                  *    the state is either Q_REQUEUE_PI_NONE, i.e. "nothing
2226                  *    happened", or Q_REQUEUE_PI_IGNORE when there was an
2227                  *    interleaved early wakeup.
2228                  *
2229                  *  - If the trylock did not succeed (ret == 0) then the
2230                  *    state is either Q_REQUEUE_PI_IN_PROGRESS or
2231                  *    Q_REQUEUE_PI_WAIT if an early wakeup interleaved.
2232                  *    This will be cleaned up in the loop below, which
2233                  *    cannot fail because futex_proxy_trylock_atomic() did
2234                  *    the same sanity checks for requeue_pi as the loop
2235                  *    below does.
2236                  */
2237                 if (ret > 0) {
2238                         WARN_ON(pi_state);
2239                         task_count++;
2240                         /*
2241                          * If futex_proxy_trylock_atomic() acquired the
2242                          * user space futex, then the user space value
2243                          * @uaddr2 has been set to the @hb1's top waiter
2244                          * task VPID. This task is guaranteed to be alive
2245                          * and cannot be exiting because it is either
2246                          * sleeping or blocked on @hb2 lock.
2247                          *
2248                          * The @uaddr2 futex cannot have waiters either as
2249                          * otherwise futex_proxy_trylock_atomic() would not
2250                          * have succeeded.
2251                          *
2252                          * In order to requeue waiters to @hb2, pi state is
2253                          * required. Hand in the VPID value (@ret) and
2254                          * allocate PI state with an initial refcount on
2255                          * it.
2256                          */
2257                         ret = attach_to_pi_owner(uaddr2, ret, &key2, &pi_state,
2258                                                  &exiting);
2259                         WARN_ON(ret);
2260                 }
2261
2262                 switch (ret) {
2263                 case 0:
2264                         /* We hold a reference on the pi state. */
2265                         break;
2266
2267                 /*
2268                  * If the above failed, then pi_state is NULL and
2269                  * waiter::requeue_state is correct.
2270                  */
2271                 case -EFAULT:
2272                         double_unlock_hb(hb1, hb2);
2273                         hb_waiters_dec(hb2);
2274                         ret = fault_in_user_writeable(uaddr2);
2275                         if (!ret)
2276                                 goto retry;
2277                         return ret;
2278                 case -EBUSY:
2279                 case -EAGAIN:
2280                         /*
2281                          * Two reasons for this:
2282                          * - EBUSY: Owner is exiting and we just wait for the
2283                          *   exit to complete.
2284                          * - EAGAIN: The user space value changed.
2285                          */
2286                         double_unlock_hb(hb1, hb2);
2287                         hb_waiters_dec(hb2);
2288                         /*
2289                          * Handle the case where the owner is in the middle of
2290                          * exiting. Wait for the exit to complete otherwise
2291                          * this task might loop forever, aka. live lock.
2292                          */
2293                         wait_for_owner_exiting(ret, exiting);
2294                         cond_resched();
2295                         goto retry;
2296                 default:
2297                         goto out_unlock;
2298                 }
2299         }
2300
2301         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2302                 if (task_count - nr_wake >= nr_requeue)
2303                         break;
2304
2305                 if (!match_futex(&this->key, &key1))
2306                         continue;
2307
2308                 /*
2309                  * FUTEX_WAIT_REQUEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2310                  * be paired with each other and no other futex ops.
2311                  *
2312                  * We should never be requeueing a futex_q with a pi_state,
2313                  * which is awaiting a futex_unlock_pi().
2314                  */
2315                 if ((requeue_pi && !this->rt_waiter) ||
2316                     (!requeue_pi && this->rt_waiter) ||
2317                     this->pi_state) {
2318                         ret = -EINVAL;
2319                         break;
2320                 }
2321
2322                 /* Plain futexes just wake or requeue and are done */
2323                 if (!requeue_pi) {
2324                         if (++task_count <= nr_wake)
2325                                 mark_wake_futex(&wake_q, this);
2326                         else
2327                                 requeue_futex(this, hb1, hb2, &key2);
2328                         continue;
2329                 }
2330
2331                 /* Ensure we requeue to the expected futex for requeue_pi. */
2332                 if (!match_futex(this->requeue_pi_key, &key2)) {
2333                         ret = -EINVAL;
2334                         break;
2335                 }
2336
2337                 /*
2338                  * Requeue nr_requeue waiters and possibly one more in the case
2339                  * of requeue_pi if we couldn't acquire the lock atomically.
2340                  *
2341                  * Prepare the waiter to take the rt_mutex. Take a refcount
2342                  * on the pi_state and store the pointer in the futex_q
2343                  * object of the waiter.
2344                  */
2345                 get_pi_state(pi_state);
2346
2347                 /* Don't requeue when the waiter is already on the way out. */
2348                 if (!futex_requeue_pi_prepare(this, pi_state)) {
2349                         /*
2350                          * Early woken waiter signaled that it is on the
2351                          * way out. Drop the pi_state reference and try the
2352                          * next waiter. @this->pi_state is still NULL.
2353                          */
2354                         put_pi_state(pi_state);
2355                         continue;
2356                 }
2357
2358                 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2359                                                 this->rt_waiter,
2360                                                 this->task);
2361
2362                 if (ret == 1) {
2363                         /*
2364                          * We got the lock. We do neither drop the refcount
2365                          * on pi_state nor clear this->pi_state because the
2366                          * waiter needs the pi_state for cleaning up the
2367                          * user space value. It will drop the refcount
2368                          * after doing so. this::requeue_state is updated
2369                          * in the wakeup as well.
2370                          */
2371                         requeue_pi_wake_futex(this, &key2, hb2);
2372                         task_count++;
2373                 } else if (!ret) {
2374                         /* Waiter is queued, move it to hb2 */
2375                         requeue_futex(this, hb1, hb2, &key2);
2376                         futex_requeue_pi_complete(this, 0);
2377                         task_count++;
2378                 } else {
2379                         /*
2380                          * rt_mutex_start_proxy_lock() detected a potential
2381                          * deadlock when we tried to queue that waiter.
2382                          * Drop the pi_state reference which we took above
2383                          * and remove the pointer to the state from the
2384                          * waiters futex_q object.
2385                          */
2386                         this->pi_state = NULL;
2387                         put_pi_state(pi_state);
2388                         futex_requeue_pi_complete(this, ret);
2389                         /*
2390                          * We stop queueing more waiters and let user space
2391                          * deal with the mess.
2392                          */
2393                         break;
2394                 }
2395         }
2396
2397         /*
2398          * We took an extra initial reference to the pi_state either in
2399          * futex_proxy_trylock_atomic() or in attach_to_pi_owner(). We need
2400          * to drop it here again.
2401          */
2402         put_pi_state(pi_state);
2403
2404 out_unlock:
2405         double_unlock_hb(hb1, hb2);
2406         wake_up_q(&wake_q);
2407         hb_waiters_dec(hb2);
2408         return ret ? ret : task_count;
2409 }
2410
2411 /* The key must be already stored in q->key. */
2412 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2413         __acquires(&hb->lock)
2414 {
2415         struct futex_hash_bucket *hb;
2416
2417         hb = hash_futex(&q->key);
2418
2419         /*
2420          * Increment the counter before taking the lock so that
2421          * a potential waker won't miss a to-be-slept task that is
2422          * waiting for the spinlock. This is safe as all queue_lock()
2423          * users end up calling queue_me(). Similarly, for housekeeping,
2424          * decrement the counter at queue_unlock() when some error has
2425          * occurred and we don't end up adding the task to the list.
2426          */
2427         hb_waiters_inc(hb); /* implies smp_mb(); (A) */
2428
2429         q->lock_ptr = &hb->lock;
2430
2431         spin_lock(&hb->lock);
2432         return hb;
2433 }
2434
2435 static inline void
2436 queue_unlock(struct futex_hash_bucket *hb)
2437         __releases(&hb->lock)
2438 {
2439         spin_unlock(&hb->lock);
2440         hb_waiters_dec(hb);
2441 }
2442
2443 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2444 {
2445         int prio;
2446
2447         /*
2448          * The priority used to register this element is
2449          * - either the real thread-priority for the real-time threads
2450          * (i.e. threads with a priority lower than MAX_RT_PRIO)
2451          * - or MAX_RT_PRIO for non-RT threads.
2452          * Thus, all RT-threads are woken first in priority order, and
2453          * the others are woken last, in FIFO order.
2454          */
2455         prio = min(current->normal_prio, MAX_RT_PRIO);
2456
2457         plist_node_init(&q->list, prio);
2458         plist_add(&q->list, &hb->chain);
2459         q->task = current;
2460 }
2461
2462 /**
2463  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2464  * @q:  The futex_q to enqueue
2465  * @hb: The destination hash bucket
2466  *
2467  * The hb->lock must be held by the caller, and is released here. A call to
2468  * queue_me() is typically paired with exactly one call to unqueue_me().  The
2469  * exceptions involve the PI related operations, which may use unqueue_me_pi()
2470  * or nothing if the unqueue is done as part of the wake process and the unqueue
2471  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2472  * an example).
2473  */
2474 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2475         __releases(&hb->lock)
2476 {
2477         __queue_me(q, hb);
2478         spin_unlock(&hb->lock);
2479 }
2480
2481 /**
2482  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2483  * @q:  The futex_q to unqueue
2484  *
2485  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2486  * be paired with exactly one earlier call to queue_me().
2487  *
2488  * Return:
2489  *  - 1 - if the futex_q was still queued (and we removed unqueued it);
2490  *  - 0 - if the futex_q was already removed by the waking thread
2491  */
2492 static int unqueue_me(struct futex_q *q)
2493 {
2494         spinlock_t *lock_ptr;
2495         int ret = 0;
2496
2497         /* In the common case we don't take the spinlock, which is nice. */
2498 retry:
2499         /*
2500          * q->lock_ptr can change between this read and the following spin_lock.
2501          * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2502          * optimizing lock_ptr out of the logic below.
2503          */
2504         lock_ptr = READ_ONCE(q->lock_ptr);
2505         if (lock_ptr != NULL) {
2506                 spin_lock(lock_ptr);
2507                 /*
2508                  * q->lock_ptr can change between reading it and
2509                  * spin_lock(), causing us to take the wrong lock.  This
2510                  * corrects the race condition.
2511                  *
2512                  * Reasoning goes like this: if we have the wrong lock,
2513                  * q->lock_ptr must have changed (maybe several times)
2514                  * between reading it and the spin_lock().  It can
2515                  * change again after the spin_lock() but only if it was
2516                  * already changed before the spin_lock().  It cannot,
2517                  * however, change back to the original value.  Therefore
2518                  * we can detect whether we acquired the correct lock.
2519                  */
2520                 if (unlikely(lock_ptr != q->lock_ptr)) {
2521                         spin_unlock(lock_ptr);
2522                         goto retry;
2523                 }
2524                 __unqueue_futex(q);
2525
2526                 BUG_ON(q->pi_state);
2527
2528                 spin_unlock(lock_ptr);
2529                 ret = 1;
2530         }
2531
2532         return ret;
2533 }
2534
2535 /*
2536  * PI futexes can not be requeued and must remove themselves from the
2537  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held.
2538  */
2539 static void unqueue_me_pi(struct futex_q *q)
2540 {
2541         __unqueue_futex(q);
2542
2543         BUG_ON(!q->pi_state);
2544         put_pi_state(q->pi_state);
2545         q->pi_state = NULL;
2546 }
2547
2548 static int __fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2549                                   struct task_struct *argowner)
2550 {
2551         struct futex_pi_state *pi_state = q->pi_state;
2552         struct task_struct *oldowner, *newowner;
2553         u32 uval, curval, newval, newtid;
2554         int err = 0;
2555
2556         oldowner = pi_state->owner;
2557
2558         /*
2559          * We are here because either:
2560          *
2561          *  - we stole the lock and pi_state->owner needs updating to reflect
2562          *    that (@argowner == current),
2563          *
2564          * or:
2565          *
2566          *  - someone stole our lock and we need to fix things to point to the
2567          *    new owner (@argowner == NULL).
2568          *
2569          * Either way, we have to replace the TID in the user space variable.
2570          * This must be atomic as we have to preserve the owner died bit here.
2571          *
2572          * Note: We write the user space value _before_ changing the pi_state
2573          * because we can fault here. Imagine swapped out pages or a fork
2574          * that marked all the anonymous memory readonly for cow.
2575          *
2576          * Modifying pi_state _before_ the user space value would leave the
2577          * pi_state in an inconsistent state when we fault here, because we
2578          * need to drop the locks to handle the fault. This might be observed
2579          * in the PID checks when attaching to PI state .
2580          */
2581 retry:
2582         if (!argowner) {
2583                 if (oldowner != current) {
2584                         /*
2585                          * We raced against a concurrent self; things are
2586                          * already fixed up. Nothing to do.
2587                          */
2588                         return 0;
2589                 }
2590
2591                 if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2592                         /* We got the lock. pi_state is correct. Tell caller. */
2593                         return 1;
2594                 }
2595
2596                 /*
2597                  * The trylock just failed, so either there is an owner or
2598                  * there is a higher priority waiter than this one.
2599                  */
2600                 newowner = rt_mutex_owner(&pi_state->pi_mutex);
2601                 /*
2602                  * If the higher priority waiter has not yet taken over the
2603                  * rtmutex then newowner is NULL. We can't return here with
2604                  * that state because it's inconsistent vs. the user space
2605                  * state. So drop the locks and try again. It's a valid
2606                  * situation and not any different from the other retry
2607                  * conditions.
2608                  */
2609                 if (unlikely(!newowner)) {
2610                         err = -EAGAIN;
2611                         goto handle_err;
2612                 }
2613         } else {
2614                 WARN_ON_ONCE(argowner != current);
2615                 if (oldowner == current) {
2616                         /*
2617                          * We raced against a concurrent self; things are
2618                          * already fixed up. Nothing to do.
2619                          */
2620                         return 1;
2621                 }
2622                 newowner = argowner;
2623         }
2624
2625         newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2626         /* Owner died? */
2627         if (!pi_state->owner)
2628                 newtid |= FUTEX_OWNER_DIED;
2629
2630         err = get_futex_value_locked(&uval, uaddr);
2631         if (err)
2632                 goto handle_err;
2633
2634         for (;;) {
2635                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2636
2637                 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
2638                 if (err)
2639                         goto handle_err;
2640
2641                 if (curval == uval)
2642                         break;
2643                 uval = curval;
2644         }
2645
2646         /*
2647          * We fixed up user space. Now we need to fix the pi_state
2648          * itself.
2649          */
2650         pi_state_update_owner(pi_state, newowner);
2651
2652         return argowner == current;
2653
2654         /*
2655          * In order to reschedule or handle a page fault, we need to drop the
2656          * locks here. In the case of a fault, this gives the other task
2657          * (either the highest priority waiter itself or the task which stole
2658          * the rtmutex) the chance to try the fixup of the pi_state. So once we
2659          * are back from handling the fault we need to check the pi_state after
2660          * reacquiring the locks and before trying to do another fixup. When
2661          * the fixup has been done already we simply return.
2662          *
2663          * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2664          * drop hb->lock since the caller owns the hb -> futex_q relation.
2665          * Dropping the pi_mutex->wait_lock requires the state revalidate.
2666          */
2667 handle_err:
2668         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2669         spin_unlock(q->lock_ptr);
2670
2671         switch (err) {
2672         case -EFAULT:
2673                 err = fault_in_user_writeable(uaddr);
2674                 break;
2675
2676         case -EAGAIN:
2677                 cond_resched();
2678                 err = 0;
2679                 break;
2680
2681         default:
2682                 WARN_ON_ONCE(1);
2683                 break;
2684         }
2685
2686         spin_lock(q->lock_ptr);
2687         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2688
2689         /*
2690          * Check if someone else fixed it for us:
2691          */
2692         if (pi_state->owner != oldowner)
2693                 return argowner == current;
2694
2695         /* Retry if err was -EAGAIN or the fault in succeeded */
2696         if (!err)
2697                 goto retry;
2698
2699         /*
2700          * fault_in_user_writeable() failed so user state is immutable. At
2701          * best we can make the kernel state consistent but user state will
2702          * be most likely hosed and any subsequent unlock operation will be
2703          * rejected due to PI futex rule [10].
2704          *
2705          * Ensure that the rtmutex owner is also the pi_state owner despite
2706          * the user space value claiming something different. There is no
2707          * point in unlocking the rtmutex if current is the owner as it
2708          * would need to wait until the next waiter has taken the rtmutex
2709          * to guarantee consistent state. Keep it simple. Userspace asked
2710          * for this wreckaged state.
2711          *
2712          * The rtmutex has an owner - either current or some other
2713          * task. See the EAGAIN loop above.
2714          */
2715         pi_state_update_owner(pi_state, rt_mutex_owner(&pi_state->pi_mutex));
2716
2717         return err;
2718 }
2719
2720 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2721                                 struct task_struct *argowner)
2722 {
2723         struct futex_pi_state *pi_state = q->pi_state;
2724         int ret;
2725
2726         lockdep_assert_held(q->lock_ptr);
2727
2728         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2729         ret = __fixup_pi_state_owner(uaddr, q, argowner);
2730         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2731         return ret;
2732 }
2733
2734 static long futex_wait_restart(struct restart_block *restart);
2735
2736 /**
2737  * fixup_owner() - Post lock pi_state and corner case management
2738  * @uaddr:      user address of the futex
2739  * @q:          futex_q (contains pi_state and access to the rt_mutex)
2740  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
2741  *
2742  * After attempting to lock an rt_mutex, this function is called to cleanup
2743  * the pi_state owner as well as handle race conditions that may allow us to
2744  * acquire the lock. Must be called with the hb lock held.
2745  *
2746  * Return:
2747  *  -  1 - success, lock taken;
2748  *  -  0 - success, lock not taken;
2749  *  - <0 - on error (-EFAULT)
2750  */
2751 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2752 {
2753         if (locked) {
2754                 /*
2755                  * Got the lock. We might not be the anticipated owner if we
2756                  * did a lock-steal - fix up the PI-state in that case:
2757                  *
2758                  * Speculative pi_state->owner read (we don't hold wait_lock);
2759                  * since we own the lock pi_state->owner == current is the
2760                  * stable state, anything else needs more attention.
2761                  */
2762                 if (q->pi_state->owner != current)
2763                         return fixup_pi_state_owner(uaddr, q, current);
2764                 return 1;
2765         }
2766
2767         /*
2768          * If we didn't get the lock; check if anybody stole it from us. In
2769          * that case, we need to fix up the uval to point to them instead of
2770          * us, otherwise bad things happen. [10]
2771          *
2772          * Another speculative read; pi_state->owner == current is unstable
2773          * but needs our attention.
2774          */
2775         if (q->pi_state->owner == current)
2776                 return fixup_pi_state_owner(uaddr, q, NULL);
2777
2778         /*
2779          * Paranoia check. If we did not take the lock, then we should not be
2780          * the owner of the rt_mutex. Warn and establish consistent state.
2781          */
2782         if (WARN_ON_ONCE(rt_mutex_owner(&q->pi_state->pi_mutex) == current))
2783                 return fixup_pi_state_owner(uaddr, q, current);
2784
2785         return 0;
2786 }
2787
2788 /**
2789  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2790  * @hb:         the futex hash bucket, must be locked by the caller
2791  * @q:          the futex_q to queue up on
2792  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
2793  */
2794 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2795                                 struct hrtimer_sleeper *timeout)
2796 {
2797         /*
2798          * The task state is guaranteed to be set before another task can
2799          * wake it. set_current_state() is implemented using smp_store_mb() and
2800          * queue_me() calls spin_unlock() upon completion, both serializing
2801          * access to the hash list and forcing another memory barrier.
2802          */
2803         set_current_state(TASK_INTERRUPTIBLE);
2804         queue_me(q, hb);
2805
2806         /* Arm the timer */
2807         if (timeout)
2808                 hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS);
2809
2810         /*
2811          * If we have been removed from the hash list, then another task
2812          * has tried to wake us, and we can skip the call to schedule().
2813          */
2814         if (likely(!plist_node_empty(&q->list))) {
2815                 /*
2816                  * If the timer has already expired, current will already be
2817                  * flagged for rescheduling. Only call schedule if there
2818                  * is no timeout, or if it has yet to expire.
2819                  */
2820                 if (!timeout || timeout->task)
2821                         freezable_schedule();
2822         }
2823         __set_current_state(TASK_RUNNING);
2824 }
2825
2826 /**
2827  * futex_wait_setup() - Prepare to wait on a futex
2828  * @uaddr:      the futex userspace address
2829  * @val:        the expected value
2830  * @flags:      futex flags (FLAGS_SHARED, etc.)
2831  * @q:          the associated futex_q
2832  * @hb:         storage for hash_bucket pointer to be returned to caller
2833  *
2834  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2835  * compare it with the expected value.  Handle atomic faults internally.
2836  * Return with the hb lock held on success, and unlocked on failure.
2837  *
2838  * Return:
2839  *  -  0 - uaddr contains val and hb has been locked;
2840  *  - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2841  */
2842 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2843                            struct futex_q *q, struct futex_hash_bucket **hb)
2844 {
2845         u32 uval;
2846         int ret;
2847
2848         /*
2849          * Access the page AFTER the hash-bucket is locked.
2850          * Order is important:
2851          *
2852          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2853          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2854          *
2855          * The basic logical guarantee of a futex is that it blocks ONLY
2856          * if cond(var) is known to be true at the time of blocking, for
2857          * any cond.  If we locked the hash-bucket after testing *uaddr, that
2858          * would open a race condition where we could block indefinitely with
2859          * cond(var) false, which would violate the guarantee.
2860          *
2861          * On the other hand, we insert q and release the hash-bucket only
2862          * after testing *uaddr.  This guarantees that futex_wait() will NOT
2863          * absorb a wakeup if *uaddr does not match the desired values
2864          * while the syscall executes.
2865          */
2866 retry:
2867         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ);
2868         if (unlikely(ret != 0))
2869                 return ret;
2870
2871 retry_private:
2872         *hb = queue_lock(q);
2873
2874         ret = get_futex_value_locked(&uval, uaddr);
2875
2876         if (ret) {
2877                 queue_unlock(*hb);
2878
2879                 ret = get_user(uval, uaddr);
2880                 if (ret)
2881                         return ret;
2882
2883                 if (!(flags & FLAGS_SHARED))
2884                         goto retry_private;
2885
2886                 goto retry;
2887         }
2888
2889         if (uval != val) {
2890                 queue_unlock(*hb);
2891                 ret = -EWOULDBLOCK;
2892         }
2893
2894         return ret;
2895 }
2896
2897 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2898                       ktime_t *abs_time, u32 bitset)
2899 {
2900         struct hrtimer_sleeper timeout, *to;
2901         struct restart_block *restart;
2902         struct futex_hash_bucket *hb;
2903         struct futex_q q = futex_q_init;
2904         int ret;
2905
2906         if (!bitset)
2907                 return -EINVAL;
2908         q.bitset = bitset;
2909
2910         to = futex_setup_timer(abs_time, &timeout, flags,
2911                                current->timer_slack_ns);
2912 retry:
2913         /*
2914          * Prepare to wait on uaddr. On success, it holds hb->lock and q
2915          * is initialized.
2916          */
2917         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2918         if (ret)
2919                 goto out;
2920
2921         /* queue_me and wait for wakeup, timeout, or a signal. */
2922         futex_wait_queue_me(hb, &q, to);
2923
2924         /* If we were woken (and unqueued), we succeeded, whatever. */
2925         ret = 0;
2926         if (!unqueue_me(&q))
2927                 goto out;
2928         ret = -ETIMEDOUT;
2929         if (to && !to->task)
2930                 goto out;
2931
2932         /*
2933          * We expect signal_pending(current), but we might be the
2934          * victim of a spurious wakeup as well.
2935          */
2936         if (!signal_pending(current))
2937                 goto retry;
2938
2939         ret = -ERESTARTSYS;
2940         if (!abs_time)
2941                 goto out;
2942
2943         restart = &current->restart_block;
2944         restart->futex.uaddr = uaddr;
2945         restart->futex.val = val;
2946         restart->futex.time = *abs_time;
2947         restart->futex.bitset = bitset;
2948         restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2949
2950         ret = set_restart_fn(restart, futex_wait_restart);
2951
2952 out:
2953         if (to) {
2954                 hrtimer_cancel(&to->timer);
2955                 destroy_hrtimer_on_stack(&to->timer);
2956         }
2957         return ret;
2958 }
2959
2960
2961 static long futex_wait_restart(struct restart_block *restart)
2962 {
2963         u32 __user *uaddr = restart->futex.uaddr;
2964         ktime_t t, *tp = NULL;
2965
2966         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2967                 t = restart->futex.time;
2968                 tp = &t;
2969         }
2970         restart->fn = do_no_restart_syscall;
2971
2972         return (long)futex_wait(uaddr, restart->futex.flags,
2973                                 restart->futex.val, tp, restart->futex.bitset);
2974 }
2975
2976
2977 /*
2978  * Userspace tried a 0 -> TID atomic transition of the futex value
2979  * and failed. The kernel side here does the whole locking operation:
2980  * if there are waiters then it will block as a consequence of relying
2981  * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2982  * a 0 value of the futex too.).
2983  *
2984  * Also serves as futex trylock_pi()'ing, and due semantics.
2985  */
2986 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2987                          ktime_t *time, int trylock)
2988 {
2989         struct hrtimer_sleeper timeout, *to;
2990         struct task_struct *exiting = NULL;
2991         struct rt_mutex_waiter rt_waiter;
2992         struct futex_hash_bucket *hb;
2993         struct futex_q q = futex_q_init;
2994         int res, ret;
2995
2996         if (!IS_ENABLED(CONFIG_FUTEX_PI))
2997                 return -ENOSYS;
2998
2999         if (refill_pi_state_cache())
3000                 return -ENOMEM;
3001
3002         to = futex_setup_timer(time, &timeout, flags, 0);
3003
3004 retry:
3005         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, FUTEX_WRITE);
3006         if (unlikely(ret != 0))
3007                 goto out;
3008
3009 retry_private:
3010         hb = queue_lock(&q);
3011
3012         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current,
3013                                    &exiting, 0);
3014         if (unlikely(ret)) {
3015                 /*
3016                  * Atomic work succeeded and we got the lock,
3017                  * or failed. Either way, we do _not_ block.
3018                  */
3019                 switch (ret) {
3020                 case 1:
3021                         /* We got the lock. */
3022                         ret = 0;
3023                         goto out_unlock_put_key;
3024                 case -EFAULT:
3025                         goto uaddr_faulted;
3026                 case -EBUSY:
3027                 case -EAGAIN:
3028                         /*
3029                          * Two reasons for this:
3030                          * - EBUSY: Task is exiting and we just wait for the
3031                          *   exit to complete.
3032                          * - EAGAIN: The user space value changed.
3033                          */
3034                         queue_unlock(hb);
3035                         /*
3036                          * Handle the case where the owner is in the middle of
3037                          * exiting. Wait for the exit to complete otherwise
3038                          * this task might loop forever, aka. live lock.
3039                          */
3040                         wait_for_owner_exiting(ret, exiting);
3041                         cond_resched();
3042                         goto retry;
3043                 default:
3044                         goto out_unlock_put_key;
3045                 }
3046         }
3047
3048         WARN_ON(!q.pi_state);
3049
3050         /*
3051          * Only actually queue now that the atomic ops are done:
3052          */
3053         __queue_me(&q, hb);
3054
3055         if (trylock) {
3056                 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
3057                 /* Fixup the trylock return value: */
3058                 ret = ret ? 0 : -EWOULDBLOCK;
3059                 goto no_block;
3060         }
3061
3062         rt_mutex_init_waiter(&rt_waiter);
3063
3064         /*
3065          * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
3066          * hold it while doing rt_mutex_start_proxy(), because then it will
3067          * include hb->lock in the blocking chain, even through we'll not in
3068          * fact hold it while blocking. This will lead it to report -EDEADLK
3069          * and BUG when futex_unlock_pi() interleaves with this.
3070          *
3071          * Therefore acquire wait_lock while holding hb->lock, but drop the
3072          * latter before calling __rt_mutex_start_proxy_lock(). This
3073          * interleaves with futex_unlock_pi() -- which does a similar lock
3074          * handoff -- such that the latter can observe the futex_q::pi_state
3075          * before __rt_mutex_start_proxy_lock() is done.
3076          */
3077         raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
3078         spin_unlock(q.lock_ptr);
3079         /*
3080          * __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter
3081          * such that futex_unlock_pi() is guaranteed to observe the waiter when
3082          * it sees the futex_q::pi_state.
3083          */
3084         ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
3085         raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
3086
3087         if (ret) {
3088                 if (ret == 1)
3089                         ret = 0;
3090                 goto cleanup;
3091         }
3092
3093         if (unlikely(to))
3094                 hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS);
3095
3096         ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
3097
3098 cleanup:
3099         spin_lock(q.lock_ptr);
3100         /*
3101          * If we failed to acquire the lock (deadlock/signal/timeout), we must
3102          * first acquire the hb->lock before removing the lock from the
3103          * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait
3104          * lists consistent.
3105          *
3106          * In particular; it is important that futex_unlock_pi() can not
3107          * observe this inconsistency.
3108          */
3109         if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
3110                 ret = 0;
3111
3112 no_block:
3113         /*
3114          * Fixup the pi_state owner and possibly acquire the lock if we
3115          * haven't already.
3116          */
3117         res = fixup_owner(uaddr, &q, !ret);
3118         /*
3119          * If fixup_owner() returned an error, propagate that.  If it acquired
3120          * the lock, clear our -ETIMEDOUT or -EINTR.
3121          */
3122         if (res)
3123                 ret = (res < 0) ? res : 0;
3124
3125         unqueue_me_pi(&q);
3126         spin_unlock(q.lock_ptr);
3127         goto out;
3128
3129 out_unlock_put_key:
3130         queue_unlock(hb);
3131
3132 out:
3133         if (to) {
3134                 hrtimer_cancel(&to->timer);
3135                 destroy_hrtimer_on_stack(&to->timer);
3136         }
3137         return ret != -EINTR ? ret : -ERESTARTNOINTR;
3138
3139 uaddr_faulted:
3140         queue_unlock(hb);
3141
3142         ret = fault_in_user_writeable(uaddr);
3143         if (ret)
3144                 goto out;
3145
3146         if (!(flags & FLAGS_SHARED))
3147                 goto retry_private;
3148
3149         goto retry;
3150 }
3151
3152 /*
3153  * Userspace attempted a TID -> 0 atomic transition, and failed.
3154  * This is the in-kernel slowpath: we look up the PI state (if any),
3155  * and do the rt-mutex unlock.
3156  */
3157 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
3158 {
3159         u32 curval, uval, vpid = task_pid_vnr(current);
3160         union futex_key key = FUTEX_KEY_INIT;
3161         struct futex_hash_bucket *hb;
3162         struct futex_q *top_waiter;
3163         int ret;
3164
3165         if (!IS_ENABLED(CONFIG_FUTEX_PI))
3166                 return -ENOSYS;
3167
3168 retry:
3169         if (get_user(uval, uaddr))
3170                 return -EFAULT;
3171         /*
3172          * We release only a lock we actually own:
3173          */
3174         if ((uval & FUTEX_TID_MASK) != vpid)
3175                 return -EPERM;
3176
3177         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_WRITE);
3178         if (ret)
3179                 return ret;
3180
3181         hb = hash_futex(&key);
3182         spin_lock(&hb->lock);
3183
3184         /*
3185          * Check waiters first. We do not trust user space values at
3186          * all and we at least want to know if user space fiddled
3187          * with the futex value instead of blindly unlocking.
3188          */
3189         top_waiter = futex_top_waiter(hb, &key);
3190         if (top_waiter) {
3191                 struct futex_pi_state *pi_state = top_waiter->pi_state;
3192
3193                 ret = -EINVAL;
3194                 if (!pi_state)
3195                         goto out_unlock;
3196
3197                 /*
3198                  * If current does not own the pi_state then the futex is
3199                  * inconsistent and user space fiddled with the futex value.
3200                  */
3201                 if (pi_state->owner != current)
3202                         goto out_unlock;
3203
3204                 get_pi_state(pi_state);
3205                 /*
3206                  * By taking wait_lock while still holding hb->lock, we ensure
3207                  * there is no point where we hold neither; and therefore
3208                  * wake_futex_pi() must observe a state consistent with what we
3209                  * observed.
3210                  *
3211                  * In particular; this forces __rt_mutex_start_proxy() to
3212                  * complete such that we're guaranteed to observe the
3213                  * rt_waiter. Also see the WARN in wake_futex_pi().
3214                  */
3215                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
3216                 spin_unlock(&hb->lock);
3217
3218                 /* drops pi_state->pi_mutex.wait_lock */
3219                 ret = wake_futex_pi(uaddr, uval, pi_state);
3220
3221                 put_pi_state(pi_state);
3222
3223                 /*
3224                  * Success, we're done! No tricky corner cases.
3225                  */
3226                 if (!ret)
3227                         return ret;
3228                 /*
3229                  * The atomic access to the futex value generated a
3230                  * pagefault, so retry the user-access and the wakeup:
3231                  */
3232                 if (ret == -EFAULT)
3233                         goto pi_faulted;
3234                 /*
3235                  * A unconditional UNLOCK_PI op raced against a waiter
3236                  * setting the FUTEX_WAITERS bit. Try again.
3237                  */
3238                 if (ret == -EAGAIN)
3239                         goto pi_retry;
3240                 /*
3241                  * wake_futex_pi has detected invalid state. Tell user
3242                  * space.
3243                  */
3244                 return ret;
3245         }
3246
3247         /*
3248          * We have no kernel internal state, i.e. no waiters in the
3249          * kernel. Waiters which are about to queue themselves are stuck
3250          * on hb->lock. So we can safely ignore them. We do neither
3251          * preserve the WAITERS bit not the OWNER_DIED one. We are the
3252          * owner.
3253          */
3254         if ((ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))) {
3255                 spin_unlock(&hb->lock);
3256                 switch (ret) {
3257                 case -EFAULT:
3258                         goto pi_faulted;
3259
3260                 case -EAGAIN:
3261                         goto pi_retry;
3262
3263                 default:
3264                         WARN_ON_ONCE(1);
3265                         return ret;
3266                 }
3267         }
3268
3269         /*
3270          * If uval has changed, let user space handle it.
3271          */
3272         ret = (curval == uval) ? 0 : -EAGAIN;
3273
3274 out_unlock:
3275         spin_unlock(&hb->lock);
3276         return ret;
3277
3278 pi_retry:
3279         cond_resched();
3280         goto retry;
3281
3282 pi_faulted:
3283
3284         ret = fault_in_user_writeable(uaddr);
3285         if (!ret)
3286                 goto retry;
3287
3288         return ret;
3289 }
3290
3291 /**
3292  * handle_early_requeue_pi_wakeup() - Handle early wakeup on the initial futex
3293  * @hb:         the hash_bucket futex_q was original enqueued on
3294  * @q:          the futex_q woken while waiting to be requeued
3295  * @timeout:    the timeout associated with the wait (NULL if none)
3296  *
3297  * Determine the cause for the early wakeup.
3298  *
3299  * Return:
3300  *  -EWOULDBLOCK or -ETIMEDOUT or -ERESTARTNOINTR
3301  */
3302 static inline
3303 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3304                                    struct futex_q *q,
3305                                    struct hrtimer_sleeper *timeout)
3306 {
3307         int ret;
3308
3309         /*
3310          * With the hb lock held, we avoid races while we process the wakeup.
3311          * We only need to hold hb (and not hb2) to ensure atomicity as the
3312          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3313          * It can't be requeued from uaddr2 to something else since we don't
3314          * support a PI aware source futex for requeue.
3315          */
3316         WARN_ON_ONCE(&hb->lock != q->lock_ptr);
3317
3318         /*
3319          * We were woken prior to requeue by a timeout or a signal.
3320          * Unqueue the futex_q and determine which it was.
3321          */
3322         plist_del(&q->list, &hb->chain);
3323         hb_waiters_dec(hb);
3324
3325         /* Handle spurious wakeups gracefully */
3326         ret = -EWOULDBLOCK;
3327         if (timeout && !timeout->task)
3328                 ret = -ETIMEDOUT;
3329         else if (signal_pending(current))
3330                 ret = -ERESTARTNOINTR;
3331         return ret;
3332 }
3333
3334 /**
3335  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3336  * @uaddr:      the futex we initially wait on (non-pi)
3337  * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3338  *              the same type, no requeueing from private to shared, etc.
3339  * @val:        the expected value of uaddr
3340  * @abs_time:   absolute timeout
3341  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
3342  * @uaddr2:     the pi futex we will take prior to returning to user-space
3343  *
3344  * The caller will wait on uaddr and will be requeued by futex_requeue() to
3345  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
3346  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3347  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
3348  * without one, the pi logic would not know which task to boost/deboost, if
3349  * there was a need to.
3350  *
3351  * We call schedule in futex_wait_queue_me() when we enqueue and return there
3352  * via the following--
3353  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3354  * 2) wakeup on uaddr2 after a requeue
3355  * 3) signal
3356  * 4) timeout
3357  *
3358  * If 3, cleanup and return -ERESTARTNOINTR.
3359  *
3360  * If 2, we may then block on trying to take the rt_mutex and return via:
3361  * 5) successful lock
3362  * 6) signal
3363  * 7) timeout
3364  * 8) other lock acquisition failure
3365  *
3366  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3367  *
3368  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3369  *
3370  * Return:
3371  *  -  0 - On success;
3372  *  - <0 - On error
3373  */
3374 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3375                                  u32 val, ktime_t *abs_time, u32 bitset,
3376                                  u32 __user *uaddr2)
3377 {
3378         struct hrtimer_sleeper timeout, *to;
3379         struct rt_mutex_waiter rt_waiter;
3380         struct futex_hash_bucket *hb;
3381         union futex_key key2 = FUTEX_KEY_INIT;
3382         struct futex_q q = futex_q_init;
3383         struct rt_mutex_base *pi_mutex;
3384         int res, ret;
3385
3386         if (!IS_ENABLED(CONFIG_FUTEX_PI))
3387                 return -ENOSYS;
3388
3389         if (uaddr == uaddr2)
3390                 return -EINVAL;
3391
3392         if (!bitset)
3393                 return -EINVAL;
3394
3395         to = futex_setup_timer(abs_time, &timeout, flags,
3396                                current->timer_slack_ns);
3397
3398         /*
3399          * The waiter is allocated on our stack, manipulated by the requeue
3400          * code while we sleep on uaddr.
3401          */
3402         rt_mutex_init_waiter(&rt_waiter);
3403
3404         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
3405         if (unlikely(ret != 0))
3406                 goto out;
3407
3408         q.bitset = bitset;
3409         q.rt_waiter = &rt_waiter;
3410         q.requeue_pi_key = &key2;
3411
3412         /*
3413          * Prepare to wait on uaddr. On success, it holds hb->lock and q
3414          * is initialized.
3415          */
3416         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3417         if (ret)
3418                 goto out;
3419
3420         /*
3421          * The check above which compares uaddrs is not sufficient for
3422          * shared futexes. We need to compare the keys:
3423          */
3424         if (match_futex(&q.key, &key2)) {
3425                 queue_unlock(hb);
3426                 ret = -EINVAL;
3427                 goto out;
3428         }
3429
3430         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
3431         futex_wait_queue_me(hb, &q, to);
3432
3433         switch (futex_requeue_pi_wakeup_sync(&q)) {
3434         case Q_REQUEUE_PI_IGNORE:
3435                 /* The waiter is still on uaddr1 */
3436                 spin_lock(&hb->lock);
3437                 ret = handle_early_requeue_pi_wakeup(hb, &q, to);
3438                 spin_unlock(&hb->lock);
3439                 break;
3440
3441         case Q_REQUEUE_PI_LOCKED:
3442                 /* The requeue acquired the lock */
3443                 if (q.pi_state && (q.pi_state->owner != current)) {
3444                         spin_lock(q.lock_ptr);
3445                         ret = fixup_owner(uaddr2, &q, true);
3446                         /*
3447                          * Drop the reference to the pi state which the
3448                          * requeue_pi() code acquired for us.
3449                          */
3450                         put_pi_state(q.pi_state);
3451                         spin_unlock(q.lock_ptr);
3452                         /*
3453                          * Adjust the return value. It's either -EFAULT or
3454                          * success (1) but the caller expects 0 for success.
3455                          */
3456                         ret = ret < 0 ? ret : 0;
3457                 }
3458                 break;
3459
3460         case Q_REQUEUE_PI_DONE:
3461                 /* Requeue completed. Current is 'pi_blocked_on' the rtmutex */
3462                 pi_mutex = &q.pi_state->pi_mutex;
3463                 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3464
3465                 /* Current is not longer pi_blocked_on */
3466                 spin_lock(q.lock_ptr);
3467                 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3468                         ret = 0;
3469
3470                 debug_rt_mutex_free_waiter(&rt_waiter);
3471                 /*
3472                  * Fixup the pi_state owner and possibly acquire the lock if we
3473                  * haven't already.
3474                  */
3475                 res = fixup_owner(uaddr2, &q, !ret);
3476                 /*
3477                  * If fixup_owner() returned an error, propagate that.  If it
3478                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
3479                  */
3480                 if (res)
3481                         ret = (res < 0) ? res : 0;
3482
3483                 unqueue_me_pi(&q);
3484                 spin_unlock(q.lock_ptr);
3485
3486                 if (ret == -EINTR) {
3487                         /*
3488                          * We've already been requeued, but cannot restart
3489                          * by calling futex_lock_pi() directly. We could
3490                          * restart this syscall, but it would detect that
3491                          * the user space "val" changed and return
3492                          * -EWOULDBLOCK.  Save the overhead of the restart
3493                          * and return -EWOULDBLOCK directly.
3494                          */
3495                         ret = -EWOULDBLOCK;
3496                 }
3497                 break;
3498         default:
3499                 BUG();
3500         }
3501
3502 out:
3503         if (to) {
3504                 hrtimer_cancel(&to->timer);
3505                 destroy_hrtimer_on_stack(&to->timer);
3506         }
3507         return ret;
3508 }
3509
3510 /*
3511  * Support for robust futexes: the kernel cleans up held futexes at
3512  * thread exit time.
3513  *
3514  * Implementation: user-space maintains a per-thread list of locks it
3515  * is holding. Upon do_exit(), the kernel carefully walks this list,
3516  * and marks all locks that are owned by this thread with the
3517  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3518  * always manipulated with the lock held, so the list is private and
3519  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3520  * field, to allow the kernel to clean up if the thread dies after
3521  * acquiring the lock, but just before it could have added itself to
3522  * the list. There can only be one such pending lock.
3523  */
3524
3525 /**
3526  * sys_set_robust_list() - Set the robust-futex list head of a task
3527  * @head:       pointer to the list-head
3528  * @len:        length of the list-head, as userspace expects
3529  */
3530 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3531                 size_t, len)
3532 {
3533         if (!futex_cmpxchg_enabled)
3534                 return -ENOSYS;
3535         /*
3536          * The kernel knows only one size for now:
3537          */
3538         if (unlikely(len != sizeof(*head)))
3539                 return -EINVAL;
3540
3541         current->robust_list = head;
3542
3543         return 0;
3544 }
3545
3546 /**
3547  * sys_get_robust_list() - Get the robust-futex list head of a task
3548  * @pid:        pid of the process [zero for current task]
3549  * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
3550  * @len_ptr:    pointer to a length field, the kernel fills in the header size
3551  */
3552 SYSCALL_DEFINE3(get_robust_list, int, pid,
3553                 struct robust_list_head __user * __user *, head_ptr,
3554                 size_t __user *, len_ptr)
3555 {
3556         struct robust_list_head __user *head;
3557         unsigned long ret;
3558         struct task_struct *p;
3559
3560         if (!futex_cmpxchg_enabled)
3561                 return -ENOSYS;
3562
3563         rcu_read_lock();
3564
3565         ret = -ESRCH;
3566         if (!pid)
3567                 p = current;
3568         else {
3569                 p = find_task_by_vpid(pid);
3570                 if (!p)
3571                         goto err_unlock;
3572         }
3573
3574         ret = -EPERM;
3575         if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3576                 goto err_unlock;
3577
3578         head = p->robust_list;
3579         rcu_read_unlock();
3580
3581         if (put_user(sizeof(*head), len_ptr))
3582                 return -EFAULT;
3583         return put_user(head, head_ptr);
3584
3585 err_unlock:
3586         rcu_read_unlock();
3587
3588         return ret;
3589 }
3590
3591 /* Constants for the pending_op argument of handle_futex_death */
3592 #define HANDLE_DEATH_PENDING    true
3593 #define HANDLE_DEATH_LIST       false
3594
3595 /*
3596  * Process a futex-list entry, check whether it's owned by the
3597  * dying task, and do notification if so:
3598  */
3599 static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr,
3600                               bool pi, bool pending_op)
3601 {
3602         u32 uval, nval, mval;
3603         int err;
3604
3605         /* Futex address must be 32bit aligned */
3606         if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
3607                 return -1;
3608
3609 retry:
3610         if (get_user(uval, uaddr))
3611                 return -1;
3612
3613         /*
3614          * Special case for regular (non PI) futexes. The unlock path in
3615          * user space has two race scenarios:
3616          *
3617          * 1. The unlock path releases the user space futex value and
3618          *    before it can execute the futex() syscall to wake up
3619          *    waiters it is killed.
3620          *
3621          * 2. A woken up waiter is killed before it can acquire the
3622          *    futex in user space.
3623          *
3624          * In both cases the TID validation below prevents a wakeup of
3625          * potential waiters which can cause these waiters to block
3626          * forever.
3627          *
3628          * In both cases the following conditions are met:
3629          *
3630          *      1) task->robust_list->list_op_pending != NULL
3631          *         @pending_op == true
3632          *      2) User space futex value == 0
3633          *      3) Regular futex: @pi == false
3634          *
3635          * If these conditions are met, it is safe to attempt waking up a
3636          * potential waiter without touching the user space futex value and
3637          * trying to set the OWNER_DIED bit. The user space futex value is
3638          * uncontended and the rest of the user space mutex state is
3639          * consistent, so a woken waiter will just take over the
3640          * uncontended futex. Setting the OWNER_DIED bit would create
3641          * inconsistent state and malfunction of the user space owner died
3642          * handling.
3643          */
3644         if (pending_op && !pi && !uval) {
3645                 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3646                 return 0;
3647         }
3648
3649         if ((uval & FUTEX_TID_MASK) != task_pid_vnr(curr))
3650                 return 0;
3651
3652         /*
3653          * Ok, this dying thread is truly holding a futex
3654          * of interest. Set the OWNER_DIED bit atomically
3655          * via cmpxchg, and if the value had FUTEX_WAITERS
3656          * set, wake up a waiter (if any). (We have to do a
3657          * futex_wake() even if OWNER_DIED is already set -
3658          * to handle the rare but possible case of recursive
3659          * thread-death.) The rest of the cleanup is done in
3660          * userspace.
3661          */
3662         mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3663
3664         /*
3665          * We are not holding a lock here, but we want to have
3666          * the pagefault_disable/enable() protection because
3667          * we want to handle the fault gracefully. If the
3668          * access fails we try to fault in the futex with R/W
3669          * verification via get_user_pages. get_user() above
3670          * does not guarantee R/W access. If that fails we
3671          * give up and leave the futex locked.
3672          */
3673         if ((err = cmpxchg_futex_value_locked(&nval, uaddr, uval, mval))) {
3674                 switch (err) {
3675                 case -EFAULT:
3676                         if (fault_in_user_writeable(uaddr))
3677                                 return -1;
3678                         goto retry;
3679
3680                 case -EAGAIN:
3681                         cond_resched();
3682                         goto retry;
3683
3684                 default:
3685                         WARN_ON_ONCE(1);
3686                         return err;
3687                 }
3688         }
3689
3690         if (nval != uval)
3691                 goto retry;
3692
3693         /*
3694          * Wake robust non-PI futexes here. The wakeup of
3695          * PI futexes happens in exit_pi_state():
3696          */
3697         if (!pi && (uval & FUTEX_WAITERS))
3698                 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3699
3700         return 0;
3701 }
3702
3703 /*
3704  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3705  */
3706 static inline int fetch_robust_entry(struct robust_list __user **entry,
3707                                      struct robust_list __user * __user *head,
3708                                      unsigned int *pi)
3709 {
3710         unsigned long uentry;
3711
3712         if (get_user(uentry, (unsigned long __user *)head))
3713                 return -EFAULT;
3714
3715         *entry = (void __user *)(uentry & ~1UL);
3716         *pi = uentry & 1;
3717
3718         return 0;
3719 }
3720
3721 /*
3722  * Walk curr->robust_list (very carefully, it's a userspace list!)
3723  * and mark any locks found there dead, and notify any waiters.
3724  *
3725  * We silently return on any sign of list-walking problem.
3726  */
3727 static void exit_robust_list(struct task_struct *curr)
3728 {
3729         struct robust_list_head __user *head = curr->robust_list;
3730         struct robust_list __user *entry, *next_entry, *pending;
3731         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3732         unsigned int next_pi;
3733         unsigned long futex_offset;
3734         int rc;
3735
3736         if (!futex_cmpxchg_enabled)
3737                 return;
3738
3739         /*
3740          * Fetch the list head (which was registered earlier, via
3741          * sys_set_robust_list()):
3742          */
3743         if (fetch_robust_entry(&entry, &head->list.next, &pi))
3744                 return;
3745         /*
3746          * Fetch the relative futex offset:
3747          */
3748         if (get_user(futex_offset, &head->futex_offset))
3749                 return;
3750         /*
3751          * Fetch any possibly pending lock-add first, and handle it
3752          * if it exists:
3753          */
3754         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3755                 return;
3756
3757         next_entry = NULL;      /* avoid warning with gcc */
3758         while (entry != &head->list) {
3759                 /*
3760                  * Fetch the next entry in the list before calling
3761                  * handle_futex_death:
3762                  */
3763                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3764                 /*
3765                  * A pending lock might already be on the list, so
3766                  * don't process it twice:
3767                  */
3768                 if (entry != pending) {
3769                         if (handle_futex_death((void __user *)entry + futex_offset,
3770                                                 curr, pi, HANDLE_DEATH_LIST))
3771                                 return;
3772                 }
3773                 if (rc)
3774                         return;
3775                 entry = next_entry;
3776                 pi = next_pi;
3777                 /*
3778                  * Avoid excessively long or circular lists:
3779                  */
3780                 if (!--limit)
3781                         break;
3782
3783                 cond_resched();
3784         }
3785
3786         if (pending) {
3787                 handle_futex_death((void __user *)pending + futex_offset,
3788                                    curr, pip, HANDLE_DEATH_PENDING);
3789         }
3790 }
3791
3792 static void futex_cleanup(struct task_struct *tsk)
3793 {
3794         if (unlikely(tsk->robust_list)) {
3795                 exit_robust_list(tsk);
3796                 tsk->robust_list = NULL;
3797         }
3798
3799 #ifdef CONFIG_COMPAT
3800         if (unlikely(tsk->compat_robust_list)) {
3801                 compat_exit_robust_list(tsk);
3802                 tsk->compat_robust_list = NULL;
3803         }
3804 #endif
3805
3806         if (unlikely(!list_empty(&tsk->pi_state_list)))
3807                 exit_pi_state_list(tsk);
3808 }
3809
3810 /**
3811  * futex_exit_recursive - Set the tasks futex state to FUTEX_STATE_DEAD
3812  * @tsk:        task to set the state on
3813  *
3814  * Set the futex exit state of the task lockless. The futex waiter code
3815  * observes that state when a task is exiting and loops until the task has
3816  * actually finished the futex cleanup. The worst case for this is that the
3817  * waiter runs through the wait loop until the state becomes visible.
3818  *
3819  * This is called from the recursive fault handling path in do_exit().
3820  *
3821  * This is best effort. Either the futex exit code has run already or
3822  * not. If the OWNER_DIED bit has been set on the futex then the waiter can
3823  * take it over. If not, the problem is pushed back to user space. If the
3824  * futex exit code did not run yet, then an already queued waiter might
3825  * block forever, but there is nothing which can be done about that.
3826  */
3827 void futex_exit_recursive(struct task_struct *tsk)
3828 {
3829         /* If the state is FUTEX_STATE_EXITING then futex_exit_mutex is held */
3830         if (tsk->futex_state == FUTEX_STATE_EXITING)
3831                 mutex_unlock(&tsk->futex_exit_mutex);
3832         tsk->futex_state = FUTEX_STATE_DEAD;
3833 }
3834
3835 static void futex_cleanup_begin(struct task_struct *tsk)
3836 {
3837         /*
3838          * Prevent various race issues against a concurrent incoming waiter
3839          * including live locks by forcing the waiter to block on
3840          * tsk->futex_exit_mutex when it observes FUTEX_STATE_EXITING in
3841          * attach_to_pi_owner().
3842          */
3843         mutex_lock(&tsk->futex_exit_mutex);
3844
3845         /*
3846          * Switch the state to FUTEX_STATE_EXITING under tsk->pi_lock.
3847          *
3848          * This ensures that all subsequent checks of tsk->futex_state in
3849          * attach_to_pi_owner() must observe FUTEX_STATE_EXITING with
3850          * tsk->pi_lock held.
3851          *
3852          * It guarantees also that a pi_state which was queued right before
3853          * the state change under tsk->pi_lock by a concurrent waiter must
3854          * be observed in exit_pi_state_list().
3855          */
3856         raw_spin_lock_irq(&tsk->pi_lock);
3857         tsk->futex_state = FUTEX_STATE_EXITING;
3858         raw_spin_unlock_irq(&tsk->pi_lock);
3859 }
3860
3861 static void futex_cleanup_end(struct task_struct *tsk, int state)
3862 {
3863         /*
3864          * Lockless store. The only side effect is that an observer might
3865          * take another loop until it becomes visible.
3866          */
3867         tsk->futex_state = state;
3868         /*
3869          * Drop the exit protection. This unblocks waiters which observed
3870          * FUTEX_STATE_EXITING to reevaluate the state.
3871          */
3872         mutex_unlock(&tsk->futex_exit_mutex);
3873 }
3874
3875 void futex_exec_release(struct task_struct *tsk)
3876 {
3877         /*
3878          * The state handling is done for consistency, but in the case of
3879          * exec() there is no way to prevent further damage as the PID stays
3880          * the same. But for the unlikely and arguably buggy case that a
3881          * futex is held on exec(), this provides at least as much state
3882          * consistency protection which is possible.
3883          */
3884         futex_cleanup_begin(tsk);
3885         futex_cleanup(tsk);
3886         /*
3887          * Reset the state to FUTEX_STATE_OK. The task is alive and about
3888          * exec a new binary.
3889          */
3890         futex_cleanup_end(tsk, FUTEX_STATE_OK);
3891 }
3892
3893 void futex_exit_release(struct task_struct *tsk)
3894 {
3895         futex_cleanup_begin(tsk);
3896         futex_cleanup(tsk);
3897         futex_cleanup_end(tsk, FUTEX_STATE_DEAD);
3898 }
3899
3900 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3901                 u32 __user *uaddr2, u32 val2, u32 val3)
3902 {
3903         int cmd = op & FUTEX_CMD_MASK;
3904         unsigned int flags = 0;
3905
3906         if (!(op & FUTEX_PRIVATE_FLAG))
3907                 flags |= FLAGS_SHARED;
3908
3909         if (op & FUTEX_CLOCK_REALTIME) {
3910                 flags |= FLAGS_CLOCKRT;
3911                 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI &&
3912                     cmd != FUTEX_LOCK_PI2)
3913                         return -ENOSYS;
3914         }
3915
3916         switch (cmd) {
3917         case FUTEX_LOCK_PI:
3918         case FUTEX_LOCK_PI2:
3919         case FUTEX_UNLOCK_PI:
3920         case FUTEX_TRYLOCK_PI:
3921         case FUTEX_WAIT_REQUEUE_PI:
3922         case FUTEX_CMP_REQUEUE_PI:
3923                 if (!futex_cmpxchg_enabled)
3924                         return -ENOSYS;
3925         }
3926
3927         switch (cmd) {
3928         case FUTEX_WAIT:
3929                 val3 = FUTEX_BITSET_MATCH_ANY;
3930                 fallthrough;
3931         case FUTEX_WAIT_BITSET:
3932                 return futex_wait(uaddr, flags, val, timeout, val3);
3933         case FUTEX_WAKE:
3934                 val3 = FUTEX_BITSET_MATCH_ANY;
3935                 fallthrough;
3936         case FUTEX_WAKE_BITSET:
3937                 return futex_wake(uaddr, flags, val, val3);
3938         case FUTEX_REQUEUE:
3939                 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3940         case FUTEX_CMP_REQUEUE:
3941                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3942         case FUTEX_WAKE_OP:
3943                 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3944         case FUTEX_LOCK_PI:
3945                 flags |= FLAGS_CLOCKRT;
3946                 fallthrough;
3947         case FUTEX_LOCK_PI2:
3948                 return futex_lock_pi(uaddr, flags, timeout, 0);
3949         case FUTEX_UNLOCK_PI:
3950                 return futex_unlock_pi(uaddr, flags);
3951         case FUTEX_TRYLOCK_PI:
3952                 return futex_lock_pi(uaddr, flags, NULL, 1);
3953         case FUTEX_WAIT_REQUEUE_PI:
3954                 val3 = FUTEX_BITSET_MATCH_ANY;
3955                 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3956                                              uaddr2);
3957         case FUTEX_CMP_REQUEUE_PI:
3958                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3959         }
3960         return -ENOSYS;
3961 }
3962
3963 static __always_inline bool futex_cmd_has_timeout(u32 cmd)
3964 {
3965         switch (cmd) {
3966         case FUTEX_WAIT:
3967         case FUTEX_LOCK_PI:
3968         case FUTEX_LOCK_PI2:
3969         case FUTEX_WAIT_BITSET:
3970         case FUTEX_WAIT_REQUEUE_PI:
3971                 return true;
3972         }
3973         return false;
3974 }
3975
3976 static __always_inline int
3977 futex_init_timeout(u32 cmd, u32 op, struct timespec64 *ts, ktime_t *t)
3978 {
3979         if (!timespec64_valid(ts))
3980                 return -EINVAL;
3981
3982         *t = timespec64_to_ktime(*ts);
3983         if (cmd == FUTEX_WAIT)
3984                 *t = ktime_add_safe(ktime_get(), *t);
3985         else if (cmd != FUTEX_LOCK_PI && !(op & FUTEX_CLOCK_REALTIME))
3986                 *t = timens_ktime_to_host(CLOCK_MONOTONIC, *t);
3987         return 0;
3988 }
3989
3990 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3991                 const struct __kernel_timespec __user *, utime,
3992                 u32 __user *, uaddr2, u32, val3)
3993 {
3994         int ret, cmd = op & FUTEX_CMD_MASK;
3995         ktime_t t, *tp = NULL;
3996         struct timespec64 ts;
3997
3998         if (utime && futex_cmd_has_timeout(cmd)) {
3999                 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
4000                         return -EFAULT;
4001                 if (get_timespec64(&ts, utime))
4002                         return -EFAULT;
4003                 ret = futex_init_timeout(cmd, op, &ts, &t);
4004                 if (ret)
4005                         return ret;
4006                 tp = &t;
4007         }
4008
4009         return do_futex(uaddr, op, val, tp, uaddr2, (unsigned long)utime, val3);
4010 }
4011
4012 #ifdef CONFIG_COMPAT
4013 /*
4014  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
4015  */
4016 static inline int
4017 compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
4018                    compat_uptr_t __user *head, unsigned int *pi)
4019 {
4020         if (get_user(*uentry, head))
4021                 return -EFAULT;
4022
4023         *entry = compat_ptr((*uentry) & ~1);
4024         *pi = (unsigned int)(*uentry) & 1;
4025
4026         return 0;
4027 }
4028
4029 static void __user *futex_uaddr(struct robust_list __user *entry,
4030                                 compat_long_t futex_offset)
4031 {
4032         compat_uptr_t base = ptr_to_compat(entry);
4033         void __user *uaddr = compat_ptr(base + futex_offset);
4034
4035         return uaddr;
4036 }
4037
4038 /*
4039  * Walk curr->robust_list (very carefully, it's a userspace list!)
4040  * and mark any locks found there dead, and notify any waiters.
4041  *
4042  * We silently return on any sign of list-walking problem.
4043  */
4044 static void compat_exit_robust_list(struct task_struct *curr)
4045 {
4046         struct compat_robust_list_head __user *head = curr->compat_robust_list;
4047         struct robust_list __user *entry, *next_entry, *pending;
4048         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
4049         unsigned int next_pi;
4050         compat_uptr_t uentry, next_uentry, upending;
4051         compat_long_t futex_offset;
4052         int rc;
4053
4054         if (!futex_cmpxchg_enabled)
4055                 return;
4056
4057         /*
4058          * Fetch the list head (which was registered earlier, via
4059          * sys_set_robust_list()):
4060          */
4061         if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
4062                 return;
4063         /*
4064          * Fetch the relative futex offset:
4065          */
4066         if (get_user(futex_offset, &head->futex_offset))
4067                 return;
4068         /*
4069          * Fetch any possibly pending lock-add first, and handle it
4070          * if it exists:
4071          */
4072         if (compat_fetch_robust_entry(&upending, &pending,
4073                                &head->list_op_pending, &pip))
4074                 return;
4075
4076         next_entry = NULL;      /* avoid warning with gcc */
4077         while (entry != (struct robust_list __user *) &head->list) {
4078                 /*
4079                  * Fetch the next entry in the list before calling
4080                  * handle_futex_death:
4081                  */
4082                 rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
4083                         (compat_uptr_t __user *)&entry->next, &next_pi);
4084                 /*
4085                  * A pending lock might already be on the list, so
4086                  * dont process it twice:
4087                  */
4088                 if (entry != pending) {
4089                         void __user *uaddr = futex_uaddr(entry, futex_offset);
4090
4091                         if (handle_futex_death(uaddr, curr, pi,
4092                                                HANDLE_DEATH_LIST))
4093                                 return;
4094                 }
4095                 if (rc)
4096                         return;
4097                 uentry = next_uentry;
4098                 entry = next_entry;
4099                 pi = next_pi;
4100                 /*
4101                  * Avoid excessively long or circular lists:
4102                  */
4103                 if (!--limit)
4104                         break;
4105
4106                 cond_resched();
4107         }
4108         if (pending) {
4109                 void __user *uaddr = futex_uaddr(pending, futex_offset);
4110
4111                 handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING);
4112         }
4113 }
4114
4115 COMPAT_SYSCALL_DEFINE2(set_robust_list,
4116                 struct compat_robust_list_head __user *, head,
4117                 compat_size_t, len)
4118 {
4119         if (!futex_cmpxchg_enabled)
4120                 return -ENOSYS;
4121
4122         if (unlikely(len != sizeof(*head)))
4123                 return -EINVAL;
4124
4125         current->compat_robust_list = head;
4126
4127         return 0;
4128 }
4129
4130 COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
4131                         compat_uptr_t __user *, head_ptr,
4132                         compat_size_t __user *, len_ptr)
4133 {
4134         struct compat_robust_list_head __user *head;
4135         unsigned long ret;
4136         struct task_struct *p;
4137
4138         if (!futex_cmpxchg_enabled)
4139                 return -ENOSYS;
4140
4141         rcu_read_lock();
4142
4143         ret = -ESRCH;
4144         if (!pid)
4145                 p = current;
4146         else {
4147                 p = find_task_by_vpid(pid);
4148                 if (!p)
4149                         goto err_unlock;
4150         }
4151
4152         ret = -EPERM;
4153         if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
4154                 goto err_unlock;
4155
4156         head = p->compat_robust_list;
4157         rcu_read_unlock();
4158
4159         if (put_user(sizeof(*head), len_ptr))
4160                 return -EFAULT;
4161         return put_user(ptr_to_compat(head), head_ptr);
4162
4163 err_unlock:
4164         rcu_read_unlock();
4165
4166         return ret;
4167 }
4168 #endif /* CONFIG_COMPAT */
4169
4170 #ifdef CONFIG_COMPAT_32BIT_TIME
4171 SYSCALL_DEFINE6(futex_time32, u32 __user *, uaddr, int, op, u32, val,
4172                 const struct old_timespec32 __user *, utime, u32 __user *, uaddr2,
4173                 u32, val3)
4174 {
4175         int ret, cmd = op & FUTEX_CMD_MASK;
4176         ktime_t t, *tp = NULL;
4177         struct timespec64 ts;
4178
4179         if (utime && futex_cmd_has_timeout(cmd)) {
4180                 if (get_old_timespec32(&ts, utime))
4181                         return -EFAULT;
4182                 ret = futex_init_timeout(cmd, op, &ts, &t);
4183                 if (ret)
4184                         return ret;
4185                 tp = &t;
4186         }
4187
4188         return do_futex(uaddr, op, val, tp, uaddr2, (unsigned long)utime, val3);
4189 }
4190 #endif /* CONFIG_COMPAT_32BIT_TIME */
4191
4192 static void __init futex_detect_cmpxchg(void)
4193 {
4194 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
4195         u32 curval;
4196
4197         /*
4198          * This will fail and we want it. Some arch implementations do
4199          * runtime detection of the futex_atomic_cmpxchg_inatomic()
4200          * functionality. We want to know that before we call in any
4201          * of the complex code paths. Also we want to prevent
4202          * registration of robust lists in that case. NULL is
4203          * guaranteed to fault and we get -EFAULT on functional
4204          * implementation, the non-functional ones will return
4205          * -ENOSYS.
4206          */
4207         if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
4208                 futex_cmpxchg_enabled = 1;
4209 #endif
4210 }
4211
4212 static int __init futex_init(void)
4213 {
4214         unsigned int futex_shift;
4215         unsigned long i;
4216
4217 #if CONFIG_BASE_SMALL
4218         futex_hashsize = 16;
4219 #else
4220         futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
4221 #endif
4222
4223         futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
4224                                                futex_hashsize, 0,
4225                                                futex_hashsize < 256 ? HASH_SMALL : 0,
4226                                                &futex_shift, NULL,
4227                                                futex_hashsize, futex_hashsize);
4228         futex_hashsize = 1UL << futex_shift;
4229
4230         futex_detect_cmpxchg();
4231
4232         for (i = 0; i < futex_hashsize; i++) {
4233                 atomic_set(&futex_queues[i].waiters, 0);
4234                 plist_head_init(&futex_queues[i].chain);
4235                 spin_lock_init(&futex_queues[i].lock);
4236         }
4237
4238         return 0;
4239 }
4240 core_initcall(futex_init);