Merge tag 'perf-tools-for-v5.15-2021-09-11' of git://git.kernel.org/pub/scm/linux...
[linux-2.6-microblaze.git] / kernel / futex.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Fast Userspace Mutexes (which I call "Futexes!").
4  *  (C) Rusty Russell, IBM 2002
5  *
6  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
7  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8  *
9  *  Removed page pinning, fix privately mapped COW pages and other cleanups
10  *  (C) Copyright 2003, 2004 Jamie Lokier
11  *
12  *  Robust futex support started by Ingo Molnar
13  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
14  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15  *
16  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
17  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
18  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19  *
20  *  PRIVATE futexes by Eric Dumazet
21  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22  *
23  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
24  *  Copyright (C) IBM Corporation, 2009
25  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
26  *
27  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
28  *  enough at me, Linus for the original (flawed) idea, Matthew
29  *  Kirkwood for proof-of-concept implementation.
30  *
31  *  "The futexes are also cursed."
32  *  "But they come in a choice of three flavours!"
33  */
34 #include <linux/compat.h>
35 #include <linux/jhash.h>
36 #include <linux/pagemap.h>
37 #include <linux/syscalls.h>
38 #include <linux/freezer.h>
39 #include <linux/memblock.h>
40 #include <linux/fault-inject.h>
41 #include <linux/time_namespace.h>
42
43 #include <asm/futex.h>
44
45 #include "locking/rtmutex_common.h"
46
47 /*
48  * READ this before attempting to hack on futexes!
49  *
50  * Basic futex operation and ordering guarantees
51  * =============================================
52  *
53  * The waiter reads the futex value in user space and calls
54  * futex_wait(). This function computes the hash bucket and acquires
55  * the hash bucket lock. After that it reads the futex user space value
56  * again and verifies that the data has not changed. If it has not changed
57  * it enqueues itself into the hash bucket, releases the hash bucket lock
58  * and schedules.
59  *
60  * The waker side modifies the user space value of the futex and calls
61  * futex_wake(). This function computes the hash bucket and acquires the
62  * hash bucket lock. Then it looks for waiters on that futex in the hash
63  * bucket and wakes them.
64  *
65  * In futex wake up scenarios where no tasks are blocked on a futex, taking
66  * the hb spinlock can be avoided and simply return. In order for this
67  * optimization to work, ordering guarantees must exist so that the waiter
68  * being added to the list is acknowledged when the list is concurrently being
69  * checked by the waker, avoiding scenarios like the following:
70  *
71  * CPU 0                               CPU 1
72  * val = *futex;
73  * sys_futex(WAIT, futex, val);
74  *   futex_wait(futex, val);
75  *   uval = *futex;
76  *                                     *futex = newval;
77  *                                     sys_futex(WAKE, futex);
78  *                                       futex_wake(futex);
79  *                                       if (queue_empty())
80  *                                         return;
81  *   if (uval == val)
82  *      lock(hash_bucket(futex));
83  *      queue();
84  *     unlock(hash_bucket(futex));
85  *     schedule();
86  *
87  * This would cause the waiter on CPU 0 to wait forever because it
88  * missed the transition of the user space value from val to newval
89  * and the waker did not find the waiter in the hash bucket queue.
90  *
91  * The correct serialization ensures that a waiter either observes
92  * the changed user space value before blocking or is woken by a
93  * concurrent waker:
94  *
95  * CPU 0                                 CPU 1
96  * val = *futex;
97  * sys_futex(WAIT, futex, val);
98  *   futex_wait(futex, val);
99  *
100  *   waiters++; (a)
101  *   smp_mb(); (A) <-- paired with -.
102  *                                  |
103  *   lock(hash_bucket(futex));      |
104  *                                  |
105  *   uval = *futex;                 |
106  *                                  |        *futex = newval;
107  *                                  |        sys_futex(WAKE, futex);
108  *                                  |          futex_wake(futex);
109  *                                  |
110  *                                  `--------> smp_mb(); (B)
111  *   if (uval == val)
112  *     queue();
113  *     unlock(hash_bucket(futex));
114  *     schedule();                         if (waiters)
115  *                                           lock(hash_bucket(futex));
116  *   else                                    wake_waiters(futex);
117  *     waiters--; (b)                        unlock(hash_bucket(futex));
118  *
119  * Where (A) orders the waiters increment and the futex value read through
120  * atomic operations (see hb_waiters_inc) and where (B) orders the write
121  * to futex and the waiters read (see hb_waiters_pending()).
122  *
123  * This yields the following case (where X:=waiters, Y:=futex):
124  *
125  *      X = Y = 0
126  *
127  *      w[X]=1          w[Y]=1
128  *      MB              MB
129  *      r[Y]=y          r[X]=x
130  *
131  * Which guarantees that x==0 && y==0 is impossible; which translates back into
132  * the guarantee that we cannot both miss the futex variable change and the
133  * enqueue.
134  *
135  * Note that a new waiter is accounted for in (a) even when it is possible that
136  * the wait call can return error, in which case we backtrack from it in (b).
137  * Refer to the comment in queue_lock().
138  *
139  * Similarly, in order to account for waiters being requeued on another
140  * address we always increment the waiters for the destination bucket before
141  * acquiring the lock. It then decrements them again  after releasing it -
142  * the code that actually moves the futex(es) between hash buckets (requeue_futex)
143  * will do the additional required waiter count housekeeping. This is done for
144  * double_lock_hb() and double_unlock_hb(), respectively.
145  */
146
147 #ifdef CONFIG_HAVE_FUTEX_CMPXCHG
148 #define futex_cmpxchg_enabled 1
149 #else
150 static int  __read_mostly futex_cmpxchg_enabled;
151 #endif
152
153 /*
154  * Futex flags used to encode options to functions and preserve them across
155  * restarts.
156  */
157 #ifdef CONFIG_MMU
158 # define FLAGS_SHARED           0x01
159 #else
160 /*
161  * NOMMU does not have per process address space. Let the compiler optimize
162  * code away.
163  */
164 # define FLAGS_SHARED           0x00
165 #endif
166 #define FLAGS_CLOCKRT           0x02
167 #define FLAGS_HAS_TIMEOUT       0x04
168
169 /*
170  * Priority Inheritance state:
171  */
172 struct futex_pi_state {
173         /*
174          * list of 'owned' pi_state instances - these have to be
175          * cleaned up in do_exit() if the task exits prematurely:
176          */
177         struct list_head list;
178
179         /*
180          * The PI object:
181          */
182         struct rt_mutex_base pi_mutex;
183
184         struct task_struct *owner;
185         refcount_t refcount;
186
187         union futex_key key;
188 } __randomize_layout;
189
190 /**
191  * struct futex_q - The hashed futex queue entry, one per waiting task
192  * @list:               priority-sorted list of tasks waiting on this futex
193  * @task:               the task waiting on the futex
194  * @lock_ptr:           the hash bucket lock
195  * @key:                the key the futex is hashed on
196  * @pi_state:           optional priority inheritance state
197  * @rt_waiter:          rt_waiter storage for use with requeue_pi
198  * @requeue_pi_key:     the requeue_pi target futex key
199  * @bitset:             bitset for the optional bitmasked wakeup
200  * @requeue_state:      State field for futex_requeue_pi()
201  * @requeue_wait:       RCU wait for futex_requeue_pi() (RT only)
202  *
203  * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
204  * we can wake only the relevant ones (hashed queues may be shared).
205  *
206  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
207  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
208  * The order of wakeup is always to make the first condition true, then
209  * the second.
210  *
211  * PI futexes are typically woken before they are removed from the hash list via
212  * the rt_mutex code. See unqueue_me_pi().
213  */
214 struct futex_q {
215         struct plist_node list;
216
217         struct task_struct *task;
218         spinlock_t *lock_ptr;
219         union futex_key key;
220         struct futex_pi_state *pi_state;
221         struct rt_mutex_waiter *rt_waiter;
222         union futex_key *requeue_pi_key;
223         u32 bitset;
224         atomic_t requeue_state;
225 #ifdef CONFIG_PREEMPT_RT
226         struct rcuwait requeue_wait;
227 #endif
228 } __randomize_layout;
229
230 /*
231  * On PREEMPT_RT, the hash bucket lock is a 'sleeping' spinlock with an
232  * underlying rtmutex. The task which is about to be requeued could have
233  * just woken up (timeout, signal). After the wake up the task has to
234  * acquire hash bucket lock, which is held by the requeue code.  As a task
235  * can only be blocked on _ONE_ rtmutex at a time, the proxy lock blocking
236  * and the hash bucket lock blocking would collide and corrupt state.
237  *
238  * On !PREEMPT_RT this is not a problem and everything could be serialized
239  * on hash bucket lock, but aside of having the benefit of common code,
240  * this allows to avoid doing the requeue when the task is already on the
241  * way out and taking the hash bucket lock of the original uaddr1 when the
242  * requeue has been completed.
243  *
244  * The following state transitions are valid:
245  *
246  * On the waiter side:
247  *   Q_REQUEUE_PI_NONE          -> Q_REQUEUE_PI_IGNORE
248  *   Q_REQUEUE_PI_IN_PROGRESS   -> Q_REQUEUE_PI_WAIT
249  *
250  * On the requeue side:
251  *   Q_REQUEUE_PI_NONE          -> Q_REQUEUE_PI_INPROGRESS
252  *   Q_REQUEUE_PI_IN_PROGRESS   -> Q_REQUEUE_PI_DONE/LOCKED
253  *   Q_REQUEUE_PI_IN_PROGRESS   -> Q_REQUEUE_PI_NONE (requeue failed)
254  *   Q_REQUEUE_PI_WAIT          -> Q_REQUEUE_PI_DONE/LOCKED
255  *   Q_REQUEUE_PI_WAIT          -> Q_REQUEUE_PI_IGNORE (requeue failed)
256  *
257  * The requeue side ignores a waiter with state Q_REQUEUE_PI_IGNORE as this
258  * signals that the waiter is already on the way out. It also means that
259  * the waiter is still on the 'wait' futex, i.e. uaddr1.
260  *
261  * The waiter side signals early wakeup to the requeue side either through
262  * setting state to Q_REQUEUE_PI_IGNORE or to Q_REQUEUE_PI_WAIT depending
263  * on the current state. In case of Q_REQUEUE_PI_IGNORE it can immediately
264  * proceed to take the hash bucket lock of uaddr1. If it set state to WAIT,
265  * which means the wakeup is interleaving with a requeue in progress it has
266  * to wait for the requeue side to change the state. Either to DONE/LOCKED
267  * or to IGNORE. DONE/LOCKED means the waiter q is now on the uaddr2 futex
268  * and either blocked (DONE) or has acquired it (LOCKED). IGNORE is set by
269  * the requeue side when the requeue attempt failed via deadlock detection
270  * and therefore the waiter q is still on the uaddr1 futex.
271  */
272 enum {
273         Q_REQUEUE_PI_NONE               =  0,
274         Q_REQUEUE_PI_IGNORE,
275         Q_REQUEUE_PI_IN_PROGRESS,
276         Q_REQUEUE_PI_WAIT,
277         Q_REQUEUE_PI_DONE,
278         Q_REQUEUE_PI_LOCKED,
279 };
280
281 static const struct futex_q futex_q_init = {
282         /* list gets initialized in queue_me()*/
283         .key            = FUTEX_KEY_INIT,
284         .bitset         = FUTEX_BITSET_MATCH_ANY,
285         .requeue_state  = ATOMIC_INIT(Q_REQUEUE_PI_NONE),
286 };
287
288 /*
289  * Hash buckets are shared by all the futex_keys that hash to the same
290  * location.  Each key may have multiple futex_q structures, one for each task
291  * waiting on a futex.
292  */
293 struct futex_hash_bucket {
294         atomic_t waiters;
295         spinlock_t lock;
296         struct plist_head chain;
297 } ____cacheline_aligned_in_smp;
298
299 /*
300  * The base of the bucket array and its size are always used together
301  * (after initialization only in hash_futex()), so ensure that they
302  * reside in the same cacheline.
303  */
304 static struct {
305         struct futex_hash_bucket *queues;
306         unsigned long            hashsize;
307 } __futex_data __read_mostly __aligned(2*sizeof(long));
308 #define futex_queues   (__futex_data.queues)
309 #define futex_hashsize (__futex_data.hashsize)
310
311
312 /*
313  * Fault injections for futexes.
314  */
315 #ifdef CONFIG_FAIL_FUTEX
316
317 static struct {
318         struct fault_attr attr;
319
320         bool ignore_private;
321 } fail_futex = {
322         .attr = FAULT_ATTR_INITIALIZER,
323         .ignore_private = false,
324 };
325
326 static int __init setup_fail_futex(char *str)
327 {
328         return setup_fault_attr(&fail_futex.attr, str);
329 }
330 __setup("fail_futex=", setup_fail_futex);
331
332 static bool should_fail_futex(bool fshared)
333 {
334         if (fail_futex.ignore_private && !fshared)
335                 return false;
336
337         return should_fail(&fail_futex.attr, 1);
338 }
339
340 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
341
342 static int __init fail_futex_debugfs(void)
343 {
344         umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
345         struct dentry *dir;
346
347         dir = fault_create_debugfs_attr("fail_futex", NULL,
348                                         &fail_futex.attr);
349         if (IS_ERR(dir))
350                 return PTR_ERR(dir);
351
352         debugfs_create_bool("ignore-private", mode, dir,
353                             &fail_futex.ignore_private);
354         return 0;
355 }
356
357 late_initcall(fail_futex_debugfs);
358
359 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
360
361 #else
362 static inline bool should_fail_futex(bool fshared)
363 {
364         return false;
365 }
366 #endif /* CONFIG_FAIL_FUTEX */
367
368 #ifdef CONFIG_COMPAT
369 static void compat_exit_robust_list(struct task_struct *curr);
370 #endif
371
372 /*
373  * Reflects a new waiter being added to the waitqueue.
374  */
375 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
376 {
377 #ifdef CONFIG_SMP
378         atomic_inc(&hb->waiters);
379         /*
380          * Full barrier (A), see the ordering comment above.
381          */
382         smp_mb__after_atomic();
383 #endif
384 }
385
386 /*
387  * Reflects a waiter being removed from the waitqueue by wakeup
388  * paths.
389  */
390 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
391 {
392 #ifdef CONFIG_SMP
393         atomic_dec(&hb->waiters);
394 #endif
395 }
396
397 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
398 {
399 #ifdef CONFIG_SMP
400         /*
401          * Full barrier (B), see the ordering comment above.
402          */
403         smp_mb();
404         return atomic_read(&hb->waiters);
405 #else
406         return 1;
407 #endif
408 }
409
410 /**
411  * hash_futex - Return the hash bucket in the global hash
412  * @key:        Pointer to the futex key for which the hash is calculated
413  *
414  * We hash on the keys returned from get_futex_key (see below) and return the
415  * corresponding hash bucket in the global hash.
416  */
417 static struct futex_hash_bucket *hash_futex(union futex_key *key)
418 {
419         u32 hash = jhash2((u32 *)key, offsetof(typeof(*key), both.offset) / 4,
420                           key->both.offset);
421
422         return &futex_queues[hash & (futex_hashsize - 1)];
423 }
424
425
426 /**
427  * match_futex - Check whether two futex keys are equal
428  * @key1:       Pointer to key1
429  * @key2:       Pointer to key2
430  *
431  * Return 1 if two futex_keys are equal, 0 otherwise.
432  */
433 static inline int match_futex(union futex_key *key1, union futex_key *key2)
434 {
435         return (key1 && key2
436                 && key1->both.word == key2->both.word
437                 && key1->both.ptr == key2->both.ptr
438                 && key1->both.offset == key2->both.offset);
439 }
440
441 enum futex_access {
442         FUTEX_READ,
443         FUTEX_WRITE
444 };
445
446 /**
447  * futex_setup_timer - set up the sleeping hrtimer.
448  * @time:       ptr to the given timeout value
449  * @timeout:    the hrtimer_sleeper structure to be set up
450  * @flags:      futex flags
451  * @range_ns:   optional range in ns
452  *
453  * Return: Initialized hrtimer_sleeper structure or NULL if no timeout
454  *         value given
455  */
456 static inline struct hrtimer_sleeper *
457 futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
458                   int flags, u64 range_ns)
459 {
460         if (!time)
461                 return NULL;
462
463         hrtimer_init_sleeper_on_stack(timeout, (flags & FLAGS_CLOCKRT) ?
464                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
465                                       HRTIMER_MODE_ABS);
466         /*
467          * If range_ns is 0, calling hrtimer_set_expires_range_ns() is
468          * effectively the same as calling hrtimer_set_expires().
469          */
470         hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns);
471
472         return timeout;
473 }
474
475 /*
476  * Generate a machine wide unique identifier for this inode.
477  *
478  * This relies on u64 not wrapping in the life-time of the machine; which with
479  * 1ns resolution means almost 585 years.
480  *
481  * This further relies on the fact that a well formed program will not unmap
482  * the file while it has a (shared) futex waiting on it. This mapping will have
483  * a file reference which pins the mount and inode.
484  *
485  * If for some reason an inode gets evicted and read back in again, it will get
486  * a new sequence number and will _NOT_ match, even though it is the exact same
487  * file.
488  *
489  * It is important that match_futex() will never have a false-positive, esp.
490  * for PI futexes that can mess up the state. The above argues that false-negatives
491  * are only possible for malformed programs.
492  */
493 static u64 get_inode_sequence_number(struct inode *inode)
494 {
495         static atomic64_t i_seq;
496         u64 old;
497
498         /* Does the inode already have a sequence number? */
499         old = atomic64_read(&inode->i_sequence);
500         if (likely(old))
501                 return old;
502
503         for (;;) {
504                 u64 new = atomic64_add_return(1, &i_seq);
505                 if (WARN_ON_ONCE(!new))
506                         continue;
507
508                 old = atomic64_cmpxchg_relaxed(&inode->i_sequence, 0, new);
509                 if (old)
510                         return old;
511                 return new;
512         }
513 }
514
515 /**
516  * get_futex_key() - Get parameters which are the keys for a futex
517  * @uaddr:      virtual address of the futex
518  * @fshared:    false for a PROCESS_PRIVATE futex, true for PROCESS_SHARED
519  * @key:        address where result is stored.
520  * @rw:         mapping needs to be read/write (values: FUTEX_READ,
521  *              FUTEX_WRITE)
522  *
523  * Return: a negative error code or 0
524  *
525  * The key words are stored in @key on success.
526  *
527  * For shared mappings (when @fshared), the key is:
528  *
529  *   ( inode->i_sequence, page->index, offset_within_page )
530  *
531  * [ also see get_inode_sequence_number() ]
532  *
533  * For private mappings (or when !@fshared), the key is:
534  *
535  *   ( current->mm, address, 0 )
536  *
537  * This allows (cross process, where applicable) identification of the futex
538  * without keeping the page pinned for the duration of the FUTEX_WAIT.
539  *
540  * lock_page() might sleep, the caller should not hold a spinlock.
541  */
542 static int get_futex_key(u32 __user *uaddr, bool fshared, union futex_key *key,
543                          enum futex_access rw)
544 {
545         unsigned long address = (unsigned long)uaddr;
546         struct mm_struct *mm = current->mm;
547         struct page *page, *tail;
548         struct address_space *mapping;
549         int err, ro = 0;
550
551         /*
552          * The futex address must be "naturally" aligned.
553          */
554         key->both.offset = address % PAGE_SIZE;
555         if (unlikely((address % sizeof(u32)) != 0))
556                 return -EINVAL;
557         address -= key->both.offset;
558
559         if (unlikely(!access_ok(uaddr, sizeof(u32))))
560                 return -EFAULT;
561
562         if (unlikely(should_fail_futex(fshared)))
563                 return -EFAULT;
564
565         /*
566          * PROCESS_PRIVATE futexes are fast.
567          * As the mm cannot disappear under us and the 'key' only needs
568          * virtual address, we dont even have to find the underlying vma.
569          * Note : We do have to check 'uaddr' is a valid user address,
570          *        but access_ok() should be faster than find_vma()
571          */
572         if (!fshared) {
573                 key->private.mm = mm;
574                 key->private.address = address;
575                 return 0;
576         }
577
578 again:
579         /* Ignore any VERIFY_READ mapping (futex common case) */
580         if (unlikely(should_fail_futex(true)))
581                 return -EFAULT;
582
583         err = get_user_pages_fast(address, 1, FOLL_WRITE, &page);
584         /*
585          * If write access is not required (eg. FUTEX_WAIT), try
586          * and get read-only access.
587          */
588         if (err == -EFAULT && rw == FUTEX_READ) {
589                 err = get_user_pages_fast(address, 1, 0, &page);
590                 ro = 1;
591         }
592         if (err < 0)
593                 return err;
594         else
595                 err = 0;
596
597         /*
598          * The treatment of mapping from this point on is critical. The page
599          * lock protects many things but in this context the page lock
600          * stabilizes mapping, prevents inode freeing in the shared
601          * file-backed region case and guards against movement to swap cache.
602          *
603          * Strictly speaking the page lock is not needed in all cases being
604          * considered here and page lock forces unnecessarily serialization
605          * From this point on, mapping will be re-verified if necessary and
606          * page lock will be acquired only if it is unavoidable
607          *
608          * Mapping checks require the head page for any compound page so the
609          * head page and mapping is looked up now. For anonymous pages, it
610          * does not matter if the page splits in the future as the key is
611          * based on the address. For filesystem-backed pages, the tail is
612          * required as the index of the page determines the key. For
613          * base pages, there is no tail page and tail == page.
614          */
615         tail = page;
616         page = compound_head(page);
617         mapping = READ_ONCE(page->mapping);
618
619         /*
620          * If page->mapping is NULL, then it cannot be a PageAnon
621          * page; but it might be the ZERO_PAGE or in the gate area or
622          * in a special mapping (all cases which we are happy to fail);
623          * or it may have been a good file page when get_user_pages_fast
624          * found it, but truncated or holepunched or subjected to
625          * invalidate_complete_page2 before we got the page lock (also
626          * cases which we are happy to fail).  And we hold a reference,
627          * so refcount care in invalidate_complete_page's remove_mapping
628          * prevents drop_caches from setting mapping to NULL beneath us.
629          *
630          * The case we do have to guard against is when memory pressure made
631          * shmem_writepage move it from filecache to swapcache beneath us:
632          * an unlikely race, but we do need to retry for page->mapping.
633          */
634         if (unlikely(!mapping)) {
635                 int shmem_swizzled;
636
637                 /*
638                  * Page lock is required to identify which special case above
639                  * applies. If this is really a shmem page then the page lock
640                  * will prevent unexpected transitions.
641                  */
642                 lock_page(page);
643                 shmem_swizzled = PageSwapCache(page) || page->mapping;
644                 unlock_page(page);
645                 put_page(page);
646
647                 if (shmem_swizzled)
648                         goto again;
649
650                 return -EFAULT;
651         }
652
653         /*
654          * Private mappings are handled in a simple way.
655          *
656          * If the futex key is stored on an anonymous page, then the associated
657          * object is the mm which is implicitly pinned by the calling process.
658          *
659          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
660          * it's a read-only handle, it's expected that futexes attach to
661          * the object not the particular process.
662          */
663         if (PageAnon(page)) {
664                 /*
665                  * A RO anonymous page will never change and thus doesn't make
666                  * sense for futex operations.
667                  */
668                 if (unlikely(should_fail_futex(true)) || ro) {
669                         err = -EFAULT;
670                         goto out;
671                 }
672
673                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
674                 key->private.mm = mm;
675                 key->private.address = address;
676
677         } else {
678                 struct inode *inode;
679
680                 /*
681                  * The associated futex object in this case is the inode and
682                  * the page->mapping must be traversed. Ordinarily this should
683                  * be stabilised under page lock but it's not strictly
684                  * necessary in this case as we just want to pin the inode, not
685                  * update the radix tree or anything like that.
686                  *
687                  * The RCU read lock is taken as the inode is finally freed
688                  * under RCU. If the mapping still matches expectations then the
689                  * mapping->host can be safely accessed as being a valid inode.
690                  */
691                 rcu_read_lock();
692
693                 if (READ_ONCE(page->mapping) != mapping) {
694                         rcu_read_unlock();
695                         put_page(page);
696
697                         goto again;
698                 }
699
700                 inode = READ_ONCE(mapping->host);
701                 if (!inode) {
702                         rcu_read_unlock();
703                         put_page(page);
704
705                         goto again;
706                 }
707
708                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
709                 key->shared.i_seq = get_inode_sequence_number(inode);
710                 key->shared.pgoff = page_to_pgoff(tail);
711                 rcu_read_unlock();
712         }
713
714 out:
715         put_page(page);
716         return err;
717 }
718
719 /**
720  * fault_in_user_writeable() - Fault in user address and verify RW access
721  * @uaddr:      pointer to faulting user space address
722  *
723  * Slow path to fixup the fault we just took in the atomic write
724  * access to @uaddr.
725  *
726  * We have no generic implementation of a non-destructive write to the
727  * user address. We know that we faulted in the atomic pagefault
728  * disabled section so we can as well avoid the #PF overhead by
729  * calling get_user_pages() right away.
730  */
731 static int fault_in_user_writeable(u32 __user *uaddr)
732 {
733         struct mm_struct *mm = current->mm;
734         int ret;
735
736         mmap_read_lock(mm);
737         ret = fixup_user_fault(mm, (unsigned long)uaddr,
738                                FAULT_FLAG_WRITE, NULL);
739         mmap_read_unlock(mm);
740
741         return ret < 0 ? ret : 0;
742 }
743
744 /**
745  * futex_top_waiter() - Return the highest priority waiter on a futex
746  * @hb:         the hash bucket the futex_q's reside in
747  * @key:        the futex key (to distinguish it from other futex futex_q's)
748  *
749  * Must be called with the hb lock held.
750  */
751 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
752                                         union futex_key *key)
753 {
754         struct futex_q *this;
755
756         plist_for_each_entry(this, &hb->chain, list) {
757                 if (match_futex(&this->key, key))
758                         return this;
759         }
760         return NULL;
761 }
762
763 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
764                                       u32 uval, u32 newval)
765 {
766         int ret;
767
768         pagefault_disable();
769         ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
770         pagefault_enable();
771
772         return ret;
773 }
774
775 static int get_futex_value_locked(u32 *dest, u32 __user *from)
776 {
777         int ret;
778
779         pagefault_disable();
780         ret = __get_user(*dest, from);
781         pagefault_enable();
782
783         return ret ? -EFAULT : 0;
784 }
785
786
787 /*
788  * PI code:
789  */
790 static int refill_pi_state_cache(void)
791 {
792         struct futex_pi_state *pi_state;
793
794         if (likely(current->pi_state_cache))
795                 return 0;
796
797         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
798
799         if (!pi_state)
800                 return -ENOMEM;
801
802         INIT_LIST_HEAD(&pi_state->list);
803         /* pi_mutex gets initialized later */
804         pi_state->owner = NULL;
805         refcount_set(&pi_state->refcount, 1);
806         pi_state->key = FUTEX_KEY_INIT;
807
808         current->pi_state_cache = pi_state;
809
810         return 0;
811 }
812
813 static struct futex_pi_state *alloc_pi_state(void)
814 {
815         struct futex_pi_state *pi_state = current->pi_state_cache;
816
817         WARN_ON(!pi_state);
818         current->pi_state_cache = NULL;
819
820         return pi_state;
821 }
822
823 static void pi_state_update_owner(struct futex_pi_state *pi_state,
824                                   struct task_struct *new_owner)
825 {
826         struct task_struct *old_owner = pi_state->owner;
827
828         lockdep_assert_held(&pi_state->pi_mutex.wait_lock);
829
830         if (old_owner) {
831                 raw_spin_lock(&old_owner->pi_lock);
832                 WARN_ON(list_empty(&pi_state->list));
833                 list_del_init(&pi_state->list);
834                 raw_spin_unlock(&old_owner->pi_lock);
835         }
836
837         if (new_owner) {
838                 raw_spin_lock(&new_owner->pi_lock);
839                 WARN_ON(!list_empty(&pi_state->list));
840                 list_add(&pi_state->list, &new_owner->pi_state_list);
841                 pi_state->owner = new_owner;
842                 raw_spin_unlock(&new_owner->pi_lock);
843         }
844 }
845
846 static void get_pi_state(struct futex_pi_state *pi_state)
847 {
848         WARN_ON_ONCE(!refcount_inc_not_zero(&pi_state->refcount));
849 }
850
851 /*
852  * Drops a reference to the pi_state object and frees or caches it
853  * when the last reference is gone.
854  */
855 static void put_pi_state(struct futex_pi_state *pi_state)
856 {
857         if (!pi_state)
858                 return;
859
860         if (!refcount_dec_and_test(&pi_state->refcount))
861                 return;
862
863         /*
864          * If pi_state->owner is NULL, the owner is most probably dying
865          * and has cleaned up the pi_state already
866          */
867         if (pi_state->owner) {
868                 unsigned long flags;
869
870                 raw_spin_lock_irqsave(&pi_state->pi_mutex.wait_lock, flags);
871                 pi_state_update_owner(pi_state, NULL);
872                 rt_mutex_proxy_unlock(&pi_state->pi_mutex);
873                 raw_spin_unlock_irqrestore(&pi_state->pi_mutex.wait_lock, flags);
874         }
875
876         if (current->pi_state_cache) {
877                 kfree(pi_state);
878         } else {
879                 /*
880                  * pi_state->list is already empty.
881                  * clear pi_state->owner.
882                  * refcount is at 0 - put it back to 1.
883                  */
884                 pi_state->owner = NULL;
885                 refcount_set(&pi_state->refcount, 1);
886                 current->pi_state_cache = pi_state;
887         }
888 }
889
890 #ifdef CONFIG_FUTEX_PI
891
892 /*
893  * This task is holding PI mutexes at exit time => bad.
894  * Kernel cleans up PI-state, but userspace is likely hosed.
895  * (Robust-futex cleanup is separate and might save the day for userspace.)
896  */
897 static void exit_pi_state_list(struct task_struct *curr)
898 {
899         struct list_head *next, *head = &curr->pi_state_list;
900         struct futex_pi_state *pi_state;
901         struct futex_hash_bucket *hb;
902         union futex_key key = FUTEX_KEY_INIT;
903
904         if (!futex_cmpxchg_enabled)
905                 return;
906         /*
907          * We are a ZOMBIE and nobody can enqueue itself on
908          * pi_state_list anymore, but we have to be careful
909          * versus waiters unqueueing themselves:
910          */
911         raw_spin_lock_irq(&curr->pi_lock);
912         while (!list_empty(head)) {
913                 next = head->next;
914                 pi_state = list_entry(next, struct futex_pi_state, list);
915                 key = pi_state->key;
916                 hb = hash_futex(&key);
917
918                 /*
919                  * We can race against put_pi_state() removing itself from the
920                  * list (a waiter going away). put_pi_state() will first
921                  * decrement the reference count and then modify the list, so
922                  * its possible to see the list entry but fail this reference
923                  * acquire.
924                  *
925                  * In that case; drop the locks to let put_pi_state() make
926                  * progress and retry the loop.
927                  */
928                 if (!refcount_inc_not_zero(&pi_state->refcount)) {
929                         raw_spin_unlock_irq(&curr->pi_lock);
930                         cpu_relax();
931                         raw_spin_lock_irq(&curr->pi_lock);
932                         continue;
933                 }
934                 raw_spin_unlock_irq(&curr->pi_lock);
935
936                 spin_lock(&hb->lock);
937                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
938                 raw_spin_lock(&curr->pi_lock);
939                 /*
940                  * We dropped the pi-lock, so re-check whether this
941                  * task still owns the PI-state:
942                  */
943                 if (head->next != next) {
944                         /* retain curr->pi_lock for the loop invariant */
945                         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
946                         spin_unlock(&hb->lock);
947                         put_pi_state(pi_state);
948                         continue;
949                 }
950
951                 WARN_ON(pi_state->owner != curr);
952                 WARN_ON(list_empty(&pi_state->list));
953                 list_del_init(&pi_state->list);
954                 pi_state->owner = NULL;
955
956                 raw_spin_unlock(&curr->pi_lock);
957                 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
958                 spin_unlock(&hb->lock);
959
960                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
961                 put_pi_state(pi_state);
962
963                 raw_spin_lock_irq(&curr->pi_lock);
964         }
965         raw_spin_unlock_irq(&curr->pi_lock);
966 }
967 #else
968 static inline void exit_pi_state_list(struct task_struct *curr) { }
969 #endif
970
971 /*
972  * We need to check the following states:
973  *
974  *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
975  *
976  * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
977  * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
978  *
979  * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
980  *
981  * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
982  * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
983  *
984  * [6]  Found  | Found    | task      | 0         | 1      | Valid
985  *
986  * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
987  *
988  * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
989  * [9]  Found  | Found    | task      | 0         | 0      | Invalid
990  * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
991  *
992  * [1]  Indicates that the kernel can acquire the futex atomically. We
993  *      came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
994  *
995  * [2]  Valid, if TID does not belong to a kernel thread. If no matching
996  *      thread is found then it indicates that the owner TID has died.
997  *
998  * [3]  Invalid. The waiter is queued on a non PI futex
999  *
1000  * [4]  Valid state after exit_robust_list(), which sets the user space
1001  *      value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
1002  *
1003  * [5]  The user space value got manipulated between exit_robust_list()
1004  *      and exit_pi_state_list()
1005  *
1006  * [6]  Valid state after exit_pi_state_list() which sets the new owner in
1007  *      the pi_state but cannot access the user space value.
1008  *
1009  * [7]  pi_state->owner can only be NULL when the OWNER_DIED bit is set.
1010  *
1011  * [8]  Owner and user space value match
1012  *
1013  * [9]  There is no transient state which sets the user space TID to 0
1014  *      except exit_robust_list(), but this is indicated by the
1015  *      FUTEX_OWNER_DIED bit. See [4]
1016  *
1017  * [10] There is no transient state which leaves owner and user space
1018  *      TID out of sync. Except one error case where the kernel is denied
1019  *      write access to the user address, see fixup_pi_state_owner().
1020  *
1021  *
1022  * Serialization and lifetime rules:
1023  *
1024  * hb->lock:
1025  *
1026  *      hb -> futex_q, relation
1027  *      futex_q -> pi_state, relation
1028  *
1029  *      (cannot be raw because hb can contain arbitrary amount
1030  *       of futex_q's)
1031  *
1032  * pi_mutex->wait_lock:
1033  *
1034  *      {uval, pi_state}
1035  *
1036  *      (and pi_mutex 'obviously')
1037  *
1038  * p->pi_lock:
1039  *
1040  *      p->pi_state_list -> pi_state->list, relation
1041  *      pi_mutex->owner -> pi_state->owner, relation
1042  *
1043  * pi_state->refcount:
1044  *
1045  *      pi_state lifetime
1046  *
1047  *
1048  * Lock order:
1049  *
1050  *   hb->lock
1051  *     pi_mutex->wait_lock
1052  *       p->pi_lock
1053  *
1054  */
1055
1056 /*
1057  * Validate that the existing waiter has a pi_state and sanity check
1058  * the pi_state against the user space value. If correct, attach to
1059  * it.
1060  */
1061 static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1062                               struct futex_pi_state *pi_state,
1063                               struct futex_pi_state **ps)
1064 {
1065         pid_t pid = uval & FUTEX_TID_MASK;
1066         u32 uval2;
1067         int ret;
1068
1069         /*
1070          * Userspace might have messed up non-PI and PI futexes [3]
1071          */
1072         if (unlikely(!pi_state))
1073                 return -EINVAL;
1074
1075         /*
1076          * We get here with hb->lock held, and having found a
1077          * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1078          * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1079          * which in turn means that futex_lock_pi() still has a reference on
1080          * our pi_state.
1081          *
1082          * The waiter holding a reference on @pi_state also protects against
1083          * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1084          * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1085          * free pi_state before we can take a reference ourselves.
1086          */
1087         WARN_ON(!refcount_read(&pi_state->refcount));
1088
1089         /*
1090          * Now that we have a pi_state, we can acquire wait_lock
1091          * and do the state validation.
1092          */
1093         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1094
1095         /*
1096          * Since {uval, pi_state} is serialized by wait_lock, and our current
1097          * uval was read without holding it, it can have changed. Verify it
1098          * still is what we expect it to be, otherwise retry the entire
1099          * operation.
1100          */
1101         if (get_futex_value_locked(&uval2, uaddr))
1102                 goto out_efault;
1103
1104         if (uval != uval2)
1105                 goto out_eagain;
1106
1107         /*
1108          * Handle the owner died case:
1109          */
1110         if (uval & FUTEX_OWNER_DIED) {
1111                 /*
1112                  * exit_pi_state_list sets owner to NULL and wakes the
1113                  * topmost waiter. The task which acquires the
1114                  * pi_state->rt_mutex will fixup owner.
1115                  */
1116                 if (!pi_state->owner) {
1117                         /*
1118                          * No pi state owner, but the user space TID
1119                          * is not 0. Inconsistent state. [5]
1120                          */
1121                         if (pid)
1122                                 goto out_einval;
1123                         /*
1124                          * Take a ref on the state and return success. [4]
1125                          */
1126                         goto out_attach;
1127                 }
1128
1129                 /*
1130                  * If TID is 0, then either the dying owner has not
1131                  * yet executed exit_pi_state_list() or some waiter
1132                  * acquired the rtmutex in the pi state, but did not
1133                  * yet fixup the TID in user space.
1134                  *
1135                  * Take a ref on the state and return success. [6]
1136                  */
1137                 if (!pid)
1138                         goto out_attach;
1139         } else {
1140                 /*
1141                  * If the owner died bit is not set, then the pi_state
1142                  * must have an owner. [7]
1143                  */
1144                 if (!pi_state->owner)
1145                         goto out_einval;
1146         }
1147
1148         /*
1149          * Bail out if user space manipulated the futex value. If pi
1150          * state exists then the owner TID must be the same as the
1151          * user space TID. [9/10]
1152          */
1153         if (pid != task_pid_vnr(pi_state->owner))
1154                 goto out_einval;
1155
1156 out_attach:
1157         get_pi_state(pi_state);
1158         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1159         *ps = pi_state;
1160         return 0;
1161
1162 out_einval:
1163         ret = -EINVAL;
1164         goto out_error;
1165
1166 out_eagain:
1167         ret = -EAGAIN;
1168         goto out_error;
1169
1170 out_efault:
1171         ret = -EFAULT;
1172         goto out_error;
1173
1174 out_error:
1175         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1176         return ret;
1177 }
1178
1179 /**
1180  * wait_for_owner_exiting - Block until the owner has exited
1181  * @ret: owner's current futex lock status
1182  * @exiting:    Pointer to the exiting task
1183  *
1184  * Caller must hold a refcount on @exiting.
1185  */
1186 static void wait_for_owner_exiting(int ret, struct task_struct *exiting)
1187 {
1188         if (ret != -EBUSY) {
1189                 WARN_ON_ONCE(exiting);
1190                 return;
1191         }
1192
1193         if (WARN_ON_ONCE(ret == -EBUSY && !exiting))
1194                 return;
1195
1196         mutex_lock(&exiting->futex_exit_mutex);
1197         /*
1198          * No point in doing state checking here. If the waiter got here
1199          * while the task was in exec()->exec_futex_release() then it can
1200          * have any FUTEX_STATE_* value when the waiter has acquired the
1201          * mutex. OK, if running, EXITING or DEAD if it reached exit()
1202          * already. Highly unlikely and not a problem. Just one more round
1203          * through the futex maze.
1204          */
1205         mutex_unlock(&exiting->futex_exit_mutex);
1206
1207         put_task_struct(exiting);
1208 }
1209
1210 static int handle_exit_race(u32 __user *uaddr, u32 uval,
1211                             struct task_struct *tsk)
1212 {
1213         u32 uval2;
1214
1215         /*
1216          * If the futex exit state is not yet FUTEX_STATE_DEAD, tell the
1217          * caller that the alleged owner is busy.
1218          */
1219         if (tsk && tsk->futex_state != FUTEX_STATE_DEAD)
1220                 return -EBUSY;
1221
1222         /*
1223          * Reread the user space value to handle the following situation:
1224          *
1225          * CPU0                         CPU1
1226          *
1227          * sys_exit()                   sys_futex()
1228          *  do_exit()                    futex_lock_pi()
1229          *                                futex_lock_pi_atomic()
1230          *   exit_signals(tsk)              No waiters:
1231          *    tsk->flags |= PF_EXITING;     *uaddr == 0x00000PID
1232          *  mm_release(tsk)                 Set waiter bit
1233          *   exit_robust_list(tsk) {        *uaddr = 0x80000PID;
1234          *      Set owner died              attach_to_pi_owner() {
1235          *    *uaddr = 0xC0000000;           tsk = get_task(PID);
1236          *   }                               if (!tsk->flags & PF_EXITING) {
1237          *  ...                                attach();
1238          *  tsk->futex_state =               } else {
1239          *      FUTEX_STATE_DEAD;              if (tsk->futex_state !=
1240          *                                        FUTEX_STATE_DEAD)
1241          *                                       return -EAGAIN;
1242          *                                     return -ESRCH; <--- FAIL
1243          *                                   }
1244          *
1245          * Returning ESRCH unconditionally is wrong here because the
1246          * user space value has been changed by the exiting task.
1247          *
1248          * The same logic applies to the case where the exiting task is
1249          * already gone.
1250          */
1251         if (get_futex_value_locked(&uval2, uaddr))
1252                 return -EFAULT;
1253
1254         /* If the user space value has changed, try again. */
1255         if (uval2 != uval)
1256                 return -EAGAIN;
1257
1258         /*
1259          * The exiting task did not have a robust list, the robust list was
1260          * corrupted or the user space value in *uaddr is simply bogus.
1261          * Give up and tell user space.
1262          */
1263         return -ESRCH;
1264 }
1265
1266 static void __attach_to_pi_owner(struct task_struct *p, union futex_key *key,
1267                                  struct futex_pi_state **ps)
1268 {
1269         /*
1270          * No existing pi state. First waiter. [2]
1271          *
1272          * This creates pi_state, we have hb->lock held, this means nothing can
1273          * observe this state, wait_lock is irrelevant.
1274          */
1275         struct futex_pi_state *pi_state = alloc_pi_state();
1276
1277         /*
1278          * Initialize the pi_mutex in locked state and make @p
1279          * the owner of it:
1280          */
1281         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1282
1283         /* Store the key for possible exit cleanups: */
1284         pi_state->key = *key;
1285
1286         WARN_ON(!list_empty(&pi_state->list));
1287         list_add(&pi_state->list, &p->pi_state_list);
1288         /*
1289          * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1290          * because there is no concurrency as the object is not published yet.
1291          */
1292         pi_state->owner = p;
1293
1294         *ps = pi_state;
1295 }
1296 /*
1297  * Lookup the task for the TID provided from user space and attach to
1298  * it after doing proper sanity checks.
1299  */
1300 static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
1301                               struct futex_pi_state **ps,
1302                               struct task_struct **exiting)
1303 {
1304         pid_t pid = uval & FUTEX_TID_MASK;
1305         struct task_struct *p;
1306
1307         /*
1308          * We are the first waiter - try to look up the real owner and attach
1309          * the new pi_state to it, but bail out when TID = 0 [1]
1310          *
1311          * The !pid check is paranoid. None of the call sites should end up
1312          * with pid == 0, but better safe than sorry. Let the caller retry
1313          */
1314         if (!pid)
1315                 return -EAGAIN;
1316         p = find_get_task_by_vpid(pid);
1317         if (!p)
1318                 return handle_exit_race(uaddr, uval, NULL);
1319
1320         if (unlikely(p->flags & PF_KTHREAD)) {
1321                 put_task_struct(p);
1322                 return -EPERM;
1323         }
1324
1325         /*
1326          * We need to look at the task state to figure out, whether the
1327          * task is exiting. To protect against the change of the task state
1328          * in futex_exit_release(), we do this protected by p->pi_lock:
1329          */
1330         raw_spin_lock_irq(&p->pi_lock);
1331         if (unlikely(p->futex_state != FUTEX_STATE_OK)) {
1332                 /*
1333                  * The task is on the way out. When the futex state is
1334                  * FUTEX_STATE_DEAD, we know that the task has finished
1335                  * the cleanup:
1336                  */
1337                 int ret = handle_exit_race(uaddr, uval, p);
1338
1339                 raw_spin_unlock_irq(&p->pi_lock);
1340                 /*
1341                  * If the owner task is between FUTEX_STATE_EXITING and
1342                  * FUTEX_STATE_DEAD then store the task pointer and keep
1343                  * the reference on the task struct. The calling code will
1344                  * drop all locks, wait for the task to reach
1345                  * FUTEX_STATE_DEAD and then drop the refcount. This is
1346                  * required to prevent a live lock when the current task
1347                  * preempted the exiting task between the two states.
1348                  */
1349                 if (ret == -EBUSY)
1350                         *exiting = p;
1351                 else
1352                         put_task_struct(p);
1353                 return ret;
1354         }
1355
1356         __attach_to_pi_owner(p, key, ps);
1357         raw_spin_unlock_irq(&p->pi_lock);
1358
1359         put_task_struct(p);
1360
1361         return 0;
1362 }
1363
1364 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1365 {
1366         int err;
1367         u32 curval;
1368
1369         if (unlikely(should_fail_futex(true)))
1370                 return -EFAULT;
1371
1372         err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1373         if (unlikely(err))
1374                 return err;
1375
1376         /* If user space value changed, let the caller retry */
1377         return curval != uval ? -EAGAIN : 0;
1378 }
1379
1380 /**
1381  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1382  * @uaddr:              the pi futex user address
1383  * @hb:                 the pi futex hash bucket
1384  * @key:                the futex key associated with uaddr and hb
1385  * @ps:                 the pi_state pointer where we store the result of the
1386  *                      lookup
1387  * @task:               the task to perform the atomic lock work for.  This will
1388  *                      be "current" except in the case of requeue pi.
1389  * @exiting:            Pointer to store the task pointer of the owner task
1390  *                      which is in the middle of exiting
1391  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1392  *
1393  * Return:
1394  *  -  0 - ready to wait;
1395  *  -  1 - acquired the lock;
1396  *  - <0 - error
1397  *
1398  * The hb->lock must be held by the caller.
1399  *
1400  * @exiting is only set when the return value is -EBUSY. If so, this holds
1401  * a refcount on the exiting task on return and the caller needs to drop it
1402  * after waiting for the exit to complete.
1403  */
1404 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1405                                 union futex_key *key,
1406                                 struct futex_pi_state **ps,
1407                                 struct task_struct *task,
1408                                 struct task_struct **exiting,
1409                                 int set_waiters)
1410 {
1411         u32 uval, newval, vpid = task_pid_vnr(task);
1412         struct futex_q *top_waiter;
1413         int ret;
1414
1415         /*
1416          * Read the user space value first so we can validate a few
1417          * things before proceeding further.
1418          */
1419         if (get_futex_value_locked(&uval, uaddr))
1420                 return -EFAULT;
1421
1422         if (unlikely(should_fail_futex(true)))
1423                 return -EFAULT;
1424
1425         /*
1426          * Detect deadlocks.
1427          */
1428         if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1429                 return -EDEADLK;
1430
1431         if ((unlikely(should_fail_futex(true))))
1432                 return -EDEADLK;
1433
1434         /*
1435          * Lookup existing state first. If it exists, try to attach to
1436          * its pi_state.
1437          */
1438         top_waiter = futex_top_waiter(hb, key);
1439         if (top_waiter)
1440                 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1441
1442         /*
1443          * No waiter and user TID is 0. We are here because the
1444          * waiters or the owner died bit is set or called from
1445          * requeue_cmp_pi or for whatever reason something took the
1446          * syscall.
1447          */
1448         if (!(uval & FUTEX_TID_MASK)) {
1449                 /*
1450                  * We take over the futex. No other waiters and the user space
1451                  * TID is 0. We preserve the owner died bit.
1452                  */
1453                 newval = uval & FUTEX_OWNER_DIED;
1454                 newval |= vpid;
1455
1456                 /* The futex requeue_pi code can enforce the waiters bit */
1457                 if (set_waiters)
1458                         newval |= FUTEX_WAITERS;
1459
1460                 ret = lock_pi_update_atomic(uaddr, uval, newval);
1461                 if (ret)
1462                         return ret;
1463
1464                 /*
1465                  * If the waiter bit was requested the caller also needs PI
1466                  * state attached to the new owner of the user space futex.
1467                  *
1468                  * @task is guaranteed to be alive and it cannot be exiting
1469                  * because it is either sleeping or waiting in
1470                  * futex_requeue_pi_wakeup_sync().
1471                  *
1472                  * No need to do the full attach_to_pi_owner() exercise
1473                  * because @task is known and valid.
1474                  */
1475                 if (set_waiters) {
1476                         raw_spin_lock_irq(&task->pi_lock);
1477                         __attach_to_pi_owner(task, key, ps);
1478                         raw_spin_unlock_irq(&task->pi_lock);
1479                 }
1480                 return 1;
1481         }
1482
1483         /*
1484          * First waiter. Set the waiters bit before attaching ourself to
1485          * the owner. If owner tries to unlock, it will be forced into
1486          * the kernel and blocked on hb->lock.
1487          */
1488         newval = uval | FUTEX_WAITERS;
1489         ret = lock_pi_update_atomic(uaddr, uval, newval);
1490         if (ret)
1491                 return ret;
1492         /*
1493          * If the update of the user space value succeeded, we try to
1494          * attach to the owner. If that fails, no harm done, we only
1495          * set the FUTEX_WAITERS bit in the user space variable.
1496          */
1497         return attach_to_pi_owner(uaddr, newval, key, ps, exiting);
1498 }
1499
1500 /**
1501  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1502  * @q:  The futex_q to unqueue
1503  *
1504  * The q->lock_ptr must not be NULL and must be held by the caller.
1505  */
1506 static void __unqueue_futex(struct futex_q *q)
1507 {
1508         struct futex_hash_bucket *hb;
1509
1510         if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
1511                 return;
1512         lockdep_assert_held(q->lock_ptr);
1513
1514         hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1515         plist_del(&q->list, &hb->chain);
1516         hb_waiters_dec(hb);
1517 }
1518
1519 /*
1520  * The hash bucket lock must be held when this is called.
1521  * Afterwards, the futex_q must not be accessed. Callers
1522  * must ensure to later call wake_up_q() for the actual
1523  * wakeups to occur.
1524  */
1525 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1526 {
1527         struct task_struct *p = q->task;
1528
1529         if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1530                 return;
1531
1532         get_task_struct(p);
1533         __unqueue_futex(q);
1534         /*
1535          * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1536          * is written, without taking any locks. This is possible in the event
1537          * of a spurious wakeup, for example. A memory barrier is required here
1538          * to prevent the following store to lock_ptr from getting ahead of the
1539          * plist_del in __unqueue_futex().
1540          */
1541         smp_store_release(&q->lock_ptr, NULL);
1542
1543         /*
1544          * Queue the task for later wakeup for after we've released
1545          * the hb->lock.
1546          */
1547         wake_q_add_safe(wake_q, p);
1548 }
1549
1550 /*
1551  * Caller must hold a reference on @pi_state.
1552  */
1553 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1554 {
1555         struct rt_mutex_waiter *top_waiter;
1556         struct task_struct *new_owner;
1557         bool postunlock = false;
1558         DEFINE_RT_WAKE_Q(wqh);
1559         u32 curval, newval;
1560         int ret = 0;
1561
1562         top_waiter = rt_mutex_top_waiter(&pi_state->pi_mutex);
1563         if (WARN_ON_ONCE(!top_waiter)) {
1564                 /*
1565                  * As per the comment in futex_unlock_pi() this should not happen.
1566                  *
1567                  * When this happens, give up our locks and try again, giving
1568                  * the futex_lock_pi() instance time to complete, either by
1569                  * waiting on the rtmutex or removing itself from the futex
1570                  * queue.
1571                  */
1572                 ret = -EAGAIN;
1573                 goto out_unlock;
1574         }
1575
1576         new_owner = top_waiter->task;
1577
1578         /*
1579          * We pass it to the next owner. The WAITERS bit is always kept
1580          * enabled while there is PI state around. We cleanup the owner
1581          * died bit, because we are the owner.
1582          */
1583         newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1584
1585         if (unlikely(should_fail_futex(true))) {
1586                 ret = -EFAULT;
1587                 goto out_unlock;
1588         }
1589
1590         ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1591         if (!ret && (curval != uval)) {
1592                 /*
1593                  * If a unconditional UNLOCK_PI operation (user space did not
1594                  * try the TID->0 transition) raced with a waiter setting the
1595                  * FUTEX_WAITERS flag between get_user() and locking the hash
1596                  * bucket lock, retry the operation.
1597                  */
1598                 if ((FUTEX_TID_MASK & curval) == uval)
1599                         ret = -EAGAIN;
1600                 else
1601                         ret = -EINVAL;
1602         }
1603
1604         if (!ret) {
1605                 /*
1606                  * This is a point of no return; once we modified the uval
1607                  * there is no going back and subsequent operations must
1608                  * not fail.
1609                  */
1610                 pi_state_update_owner(pi_state, new_owner);
1611                 postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wqh);
1612         }
1613
1614 out_unlock:
1615         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1616
1617         if (postunlock)
1618                 rt_mutex_postunlock(&wqh);
1619
1620         return ret;
1621 }
1622
1623 /*
1624  * Express the locking dependencies for lockdep:
1625  */
1626 static inline void
1627 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1628 {
1629         if (hb1 <= hb2) {
1630                 spin_lock(&hb1->lock);
1631                 if (hb1 < hb2)
1632                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1633         } else { /* hb1 > hb2 */
1634                 spin_lock(&hb2->lock);
1635                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1636         }
1637 }
1638
1639 static inline void
1640 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1641 {
1642         spin_unlock(&hb1->lock);
1643         if (hb1 != hb2)
1644                 spin_unlock(&hb2->lock);
1645 }
1646
1647 /*
1648  * Wake up waiters matching bitset queued on this futex (uaddr).
1649  */
1650 static int
1651 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1652 {
1653         struct futex_hash_bucket *hb;
1654         struct futex_q *this, *next;
1655         union futex_key key = FUTEX_KEY_INIT;
1656         int ret;
1657         DEFINE_WAKE_Q(wake_q);
1658
1659         if (!bitset)
1660                 return -EINVAL;
1661
1662         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ);
1663         if (unlikely(ret != 0))
1664                 return ret;
1665
1666         hb = hash_futex(&key);
1667
1668         /* Make sure we really have tasks to wakeup */
1669         if (!hb_waiters_pending(hb))
1670                 return ret;
1671
1672         spin_lock(&hb->lock);
1673
1674         plist_for_each_entry_safe(this, next, &hb->chain, list) {
1675                 if (match_futex (&this->key, &key)) {
1676                         if (this->pi_state || this->rt_waiter) {
1677                                 ret = -EINVAL;
1678                                 break;
1679                         }
1680
1681                         /* Check if one of the bits is set in both bitsets */
1682                         if (!(this->bitset & bitset))
1683                                 continue;
1684
1685                         mark_wake_futex(&wake_q, this);
1686                         if (++ret >= nr_wake)
1687                                 break;
1688                 }
1689         }
1690
1691         spin_unlock(&hb->lock);
1692         wake_up_q(&wake_q);
1693         return ret;
1694 }
1695
1696 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1697 {
1698         unsigned int op =         (encoded_op & 0x70000000) >> 28;
1699         unsigned int cmp =        (encoded_op & 0x0f000000) >> 24;
1700         int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1701         int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
1702         int oldval, ret;
1703
1704         if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1705                 if (oparg < 0 || oparg > 31) {
1706                         char comm[sizeof(current->comm)];
1707                         /*
1708                          * kill this print and return -EINVAL when userspace
1709                          * is sane again
1710                          */
1711                         pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1712                                         get_task_comm(comm, current), oparg);
1713                         oparg &= 31;
1714                 }
1715                 oparg = 1 << oparg;
1716         }
1717
1718         pagefault_disable();
1719         ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1720         pagefault_enable();
1721         if (ret)
1722                 return ret;
1723
1724         switch (cmp) {
1725         case FUTEX_OP_CMP_EQ:
1726                 return oldval == cmparg;
1727         case FUTEX_OP_CMP_NE:
1728                 return oldval != cmparg;
1729         case FUTEX_OP_CMP_LT:
1730                 return oldval < cmparg;
1731         case FUTEX_OP_CMP_GE:
1732                 return oldval >= cmparg;
1733         case FUTEX_OP_CMP_LE:
1734                 return oldval <= cmparg;
1735         case FUTEX_OP_CMP_GT:
1736                 return oldval > cmparg;
1737         default:
1738                 return -ENOSYS;
1739         }
1740 }
1741
1742 /*
1743  * Wake up all waiters hashed on the physical page that is mapped
1744  * to this virtual address:
1745  */
1746 static int
1747 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1748               int nr_wake, int nr_wake2, int op)
1749 {
1750         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1751         struct futex_hash_bucket *hb1, *hb2;
1752         struct futex_q *this, *next;
1753         int ret, op_ret;
1754         DEFINE_WAKE_Q(wake_q);
1755
1756 retry:
1757         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1758         if (unlikely(ret != 0))
1759                 return ret;
1760         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
1761         if (unlikely(ret != 0))
1762                 return ret;
1763
1764         hb1 = hash_futex(&key1);
1765         hb2 = hash_futex(&key2);
1766
1767 retry_private:
1768         double_lock_hb(hb1, hb2);
1769         op_ret = futex_atomic_op_inuser(op, uaddr2);
1770         if (unlikely(op_ret < 0)) {
1771                 double_unlock_hb(hb1, hb2);
1772
1773                 if (!IS_ENABLED(CONFIG_MMU) ||
1774                     unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
1775                         /*
1776                          * we don't get EFAULT from MMU faults if we don't have
1777                          * an MMU, but we might get them from range checking
1778                          */
1779                         ret = op_ret;
1780                         return ret;
1781                 }
1782
1783                 if (op_ret == -EFAULT) {
1784                         ret = fault_in_user_writeable(uaddr2);
1785                         if (ret)
1786                                 return ret;
1787                 }
1788
1789                 cond_resched();
1790                 if (!(flags & FLAGS_SHARED))
1791                         goto retry_private;
1792                 goto retry;
1793         }
1794
1795         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1796                 if (match_futex (&this->key, &key1)) {
1797                         if (this->pi_state || this->rt_waiter) {
1798                                 ret = -EINVAL;
1799                                 goto out_unlock;
1800                         }
1801                         mark_wake_futex(&wake_q, this);
1802                         if (++ret >= nr_wake)
1803                                 break;
1804                 }
1805         }
1806
1807         if (op_ret > 0) {
1808                 op_ret = 0;
1809                 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1810                         if (match_futex (&this->key, &key2)) {
1811                                 if (this->pi_state || this->rt_waiter) {
1812                                         ret = -EINVAL;
1813                                         goto out_unlock;
1814                                 }
1815                                 mark_wake_futex(&wake_q, this);
1816                                 if (++op_ret >= nr_wake2)
1817                                         break;
1818                         }
1819                 }
1820                 ret += op_ret;
1821         }
1822
1823 out_unlock:
1824         double_unlock_hb(hb1, hb2);
1825         wake_up_q(&wake_q);
1826         return ret;
1827 }
1828
1829 /**
1830  * requeue_futex() - Requeue a futex_q from one hb to another
1831  * @q:          the futex_q to requeue
1832  * @hb1:        the source hash_bucket
1833  * @hb2:        the target hash_bucket
1834  * @key2:       the new key for the requeued futex_q
1835  */
1836 static inline
1837 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1838                    struct futex_hash_bucket *hb2, union futex_key *key2)
1839 {
1840
1841         /*
1842          * If key1 and key2 hash to the same bucket, no need to
1843          * requeue.
1844          */
1845         if (likely(&hb1->chain != &hb2->chain)) {
1846                 plist_del(&q->list, &hb1->chain);
1847                 hb_waiters_dec(hb1);
1848                 hb_waiters_inc(hb2);
1849                 plist_add(&q->list, &hb2->chain);
1850                 q->lock_ptr = &hb2->lock;
1851         }
1852         q->key = *key2;
1853 }
1854
1855 static inline bool futex_requeue_pi_prepare(struct futex_q *q,
1856                                             struct futex_pi_state *pi_state)
1857 {
1858         int old, new;
1859
1860         /*
1861          * Set state to Q_REQUEUE_PI_IN_PROGRESS unless an early wakeup has
1862          * already set Q_REQUEUE_PI_IGNORE to signal that requeue should
1863          * ignore the waiter.
1864          */
1865         old = atomic_read_acquire(&q->requeue_state);
1866         do {
1867                 if (old == Q_REQUEUE_PI_IGNORE)
1868                         return false;
1869
1870                 /*
1871                  * futex_proxy_trylock_atomic() might have set it to
1872                  * IN_PROGRESS and a interleaved early wake to WAIT.
1873                  *
1874                  * It was considered to have an extra state for that
1875                  * trylock, but that would just add more conditionals
1876                  * all over the place for a dubious value.
1877                  */
1878                 if (old != Q_REQUEUE_PI_NONE)
1879                         break;
1880
1881                 new = Q_REQUEUE_PI_IN_PROGRESS;
1882         } while (!atomic_try_cmpxchg(&q->requeue_state, &old, new));
1883
1884         q->pi_state = pi_state;
1885         return true;
1886 }
1887
1888 static inline void futex_requeue_pi_complete(struct futex_q *q, int locked)
1889 {
1890         int old, new;
1891
1892         old = atomic_read_acquire(&q->requeue_state);
1893         do {
1894                 if (old == Q_REQUEUE_PI_IGNORE)
1895                         return;
1896
1897                 if (locked >= 0) {
1898                         /* Requeue succeeded. Set DONE or LOCKED */
1899                         WARN_ON_ONCE(old != Q_REQUEUE_PI_IN_PROGRESS &&
1900                                      old != Q_REQUEUE_PI_WAIT);
1901                         new = Q_REQUEUE_PI_DONE + locked;
1902                 } else if (old == Q_REQUEUE_PI_IN_PROGRESS) {
1903                         /* Deadlock, no early wakeup interleave */
1904                         new = Q_REQUEUE_PI_NONE;
1905                 } else {
1906                         /* Deadlock, early wakeup interleave. */
1907                         WARN_ON_ONCE(old != Q_REQUEUE_PI_WAIT);
1908                         new = Q_REQUEUE_PI_IGNORE;
1909                 }
1910         } while (!atomic_try_cmpxchg(&q->requeue_state, &old, new));
1911
1912 #ifdef CONFIG_PREEMPT_RT
1913         /* If the waiter interleaved with the requeue let it know */
1914         if (unlikely(old == Q_REQUEUE_PI_WAIT))
1915                 rcuwait_wake_up(&q->requeue_wait);
1916 #endif
1917 }
1918
1919 static inline int futex_requeue_pi_wakeup_sync(struct futex_q *q)
1920 {
1921         int old, new;
1922
1923         old = atomic_read_acquire(&q->requeue_state);
1924         do {
1925                 /* Is requeue done already? */
1926                 if (old >= Q_REQUEUE_PI_DONE)
1927                         return old;
1928
1929                 /*
1930                  * If not done, then tell the requeue code to either ignore
1931                  * the waiter or to wake it up once the requeue is done.
1932                  */
1933                 new = Q_REQUEUE_PI_WAIT;
1934                 if (old == Q_REQUEUE_PI_NONE)
1935                         new = Q_REQUEUE_PI_IGNORE;
1936         } while (!atomic_try_cmpxchg(&q->requeue_state, &old, new));
1937
1938         /* If the requeue was in progress, wait for it to complete */
1939         if (old == Q_REQUEUE_PI_IN_PROGRESS) {
1940 #ifdef CONFIG_PREEMPT_RT
1941                 rcuwait_wait_event(&q->requeue_wait,
1942                                    atomic_read(&q->requeue_state) != Q_REQUEUE_PI_WAIT,
1943                                    TASK_UNINTERRUPTIBLE);
1944 #else
1945                 (void)atomic_cond_read_relaxed(&q->requeue_state, VAL != Q_REQUEUE_PI_WAIT);
1946 #endif
1947         }
1948
1949         /*
1950          * Requeue is now either prohibited or complete. Reread state
1951          * because during the wait above it might have changed. Nothing
1952          * will modify q->requeue_state after this point.
1953          */
1954         return atomic_read(&q->requeue_state);
1955 }
1956
1957 /**
1958  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1959  * @q:          the futex_q
1960  * @key:        the key of the requeue target futex
1961  * @hb:         the hash_bucket of the requeue target futex
1962  *
1963  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1964  * target futex if it is uncontended or via a lock steal.
1965  *
1966  * 1) Set @q::key to the requeue target futex key so the waiter can detect
1967  *    the wakeup on the right futex.
1968  *
1969  * 2) Dequeue @q from the hash bucket.
1970  *
1971  * 3) Set @q::rt_waiter to NULL so the woken up task can detect atomic lock
1972  *    acquisition.
1973  *
1974  * 4) Set the q->lock_ptr to the requeue target hb->lock for the case that
1975  *    the waiter has to fixup the pi state.
1976  *
1977  * 5) Complete the requeue state so the waiter can make progress. After
1978  *    this point the waiter task can return from the syscall immediately in
1979  *    case that the pi state does not have to be fixed up.
1980  *
1981  * 6) Wake the waiter task.
1982  *
1983  * Must be called with both q->lock_ptr and hb->lock held.
1984  */
1985 static inline
1986 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1987                            struct futex_hash_bucket *hb)
1988 {
1989         q->key = *key;
1990
1991         __unqueue_futex(q);
1992
1993         WARN_ON(!q->rt_waiter);
1994         q->rt_waiter = NULL;
1995
1996         q->lock_ptr = &hb->lock;
1997
1998         /* Signal locked state to the waiter */
1999         futex_requeue_pi_complete(q, 1);
2000         wake_up_state(q->task, TASK_NORMAL);
2001 }
2002
2003 /**
2004  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
2005  * @pifutex:            the user address of the to futex
2006  * @hb1:                the from futex hash bucket, must be locked by the caller
2007  * @hb2:                the to futex hash bucket, must be locked by the caller
2008  * @key1:               the from futex key
2009  * @key2:               the to futex key
2010  * @ps:                 address to store the pi_state pointer
2011  * @exiting:            Pointer to store the task pointer of the owner task
2012  *                      which is in the middle of exiting
2013  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
2014  *
2015  * Try and get the lock on behalf of the top waiter if we can do it atomically.
2016  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
2017  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
2018  * hb1 and hb2 must be held by the caller.
2019  *
2020  * @exiting is only set when the return value is -EBUSY. If so, this holds
2021  * a refcount on the exiting task on return and the caller needs to drop it
2022  * after waiting for the exit to complete.
2023  *
2024  * Return:
2025  *  -  0 - failed to acquire the lock atomically;
2026  *  - >0 - acquired the lock, return value is vpid of the top_waiter
2027  *  - <0 - error
2028  */
2029 static int
2030 futex_proxy_trylock_atomic(u32 __user *pifutex, struct futex_hash_bucket *hb1,
2031                            struct futex_hash_bucket *hb2, union futex_key *key1,
2032                            union futex_key *key2, struct futex_pi_state **ps,
2033                            struct task_struct **exiting, int set_waiters)
2034 {
2035         struct futex_q *top_waiter = NULL;
2036         u32 curval;
2037         int ret;
2038
2039         if (get_futex_value_locked(&curval, pifutex))
2040                 return -EFAULT;
2041
2042         if (unlikely(should_fail_futex(true)))
2043                 return -EFAULT;
2044
2045         /*
2046          * Find the top_waiter and determine if there are additional waiters.
2047          * If the caller intends to requeue more than 1 waiter to pifutex,
2048          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
2049          * as we have means to handle the possible fault.  If not, don't set
2050          * the bit unnecessarily as it will force the subsequent unlock to enter
2051          * the kernel.
2052          */
2053         top_waiter = futex_top_waiter(hb1, key1);
2054
2055         /* There are no waiters, nothing for us to do. */
2056         if (!top_waiter)
2057                 return 0;
2058
2059         /*
2060          * Ensure that this is a waiter sitting in futex_wait_requeue_pi()
2061          * and waiting on the 'waitqueue' futex which is always !PI.
2062          */
2063         if (!top_waiter->rt_waiter || top_waiter->pi_state)
2064                 return -EINVAL;
2065
2066         /* Ensure we requeue to the expected futex. */
2067         if (!match_futex(top_waiter->requeue_pi_key, key2))
2068                 return -EINVAL;
2069
2070         /* Ensure that this does not race against an early wakeup */
2071         if (!futex_requeue_pi_prepare(top_waiter, NULL))
2072                 return -EAGAIN;
2073
2074         /*
2075          * Try to take the lock for top_waiter and set the FUTEX_WAITERS bit
2076          * in the contended case or if @set_waiters is true.
2077          *
2078          * In the contended case PI state is attached to the lock owner. If
2079          * the user space lock can be acquired then PI state is attached to
2080          * the new owner (@top_waiter->task) when @set_waiters is true.
2081          */
2082         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
2083                                    exiting, set_waiters);
2084         if (ret == 1) {
2085                 /*
2086                  * Lock was acquired in user space and PI state was
2087                  * attached to @top_waiter->task. That means state is fully
2088                  * consistent and the waiter can return to user space
2089                  * immediately after the wakeup.
2090                  */
2091                 requeue_pi_wake_futex(top_waiter, key2, hb2);
2092         } else if (ret < 0) {
2093                 /* Rewind top_waiter::requeue_state */
2094                 futex_requeue_pi_complete(top_waiter, ret);
2095         } else {
2096                 /*
2097                  * futex_lock_pi_atomic() did not acquire the user space
2098                  * futex, but managed to establish the proxy lock and pi
2099                  * state. top_waiter::requeue_state cannot be fixed up here
2100                  * because the waiter is not enqueued on the rtmutex
2101                  * yet. This is handled at the callsite depending on the
2102                  * result of rt_mutex_start_proxy_lock() which is
2103                  * guaranteed to be reached with this function returning 0.
2104                  */
2105         }
2106         return ret;
2107 }
2108
2109 /**
2110  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
2111  * @uaddr1:     source futex user address
2112  * @flags:      futex flags (FLAGS_SHARED, etc.)
2113  * @uaddr2:     target futex user address
2114  * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
2115  * @nr_requeue: number of waiters to requeue (0-INT_MAX)
2116  * @cmpval:     @uaddr1 expected value (or %NULL)
2117  * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
2118  *              pi futex (pi to pi requeue is not supported)
2119  *
2120  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
2121  * uaddr2 atomically on behalf of the top waiter.
2122  *
2123  * Return:
2124  *  - >=0 - on success, the number of tasks requeued or woken;
2125  *  -  <0 - on error
2126  */
2127 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
2128                          u32 __user *uaddr2, int nr_wake, int nr_requeue,
2129                          u32 *cmpval, int requeue_pi)
2130 {
2131         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
2132         int task_count = 0, ret;
2133         struct futex_pi_state *pi_state = NULL;
2134         struct futex_hash_bucket *hb1, *hb2;
2135         struct futex_q *this, *next;
2136         DEFINE_WAKE_Q(wake_q);
2137
2138         if (nr_wake < 0 || nr_requeue < 0)
2139                 return -EINVAL;
2140
2141         /*
2142          * When PI not supported: return -ENOSYS if requeue_pi is true,
2143          * consequently the compiler knows requeue_pi is always false past
2144          * this point which will optimize away all the conditional code
2145          * further down.
2146          */
2147         if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
2148                 return -ENOSYS;
2149
2150         if (requeue_pi) {
2151                 /*
2152                  * Requeue PI only works on two distinct uaddrs. This
2153                  * check is only valid for private futexes. See below.
2154                  */
2155                 if (uaddr1 == uaddr2)
2156                         return -EINVAL;
2157
2158                 /*
2159                  * futex_requeue() allows the caller to define the number
2160                  * of waiters to wake up via the @nr_wake argument. With
2161                  * REQUEUE_PI, waking up more than one waiter is creating
2162                  * more problems than it solves. Waking up a waiter makes
2163                  * only sense if the PI futex @uaddr2 is uncontended as
2164                  * this allows the requeue code to acquire the futex
2165                  * @uaddr2 before waking the waiter. The waiter can then
2166                  * return to user space without further action. A secondary
2167                  * wakeup would just make the futex_wait_requeue_pi()
2168                  * handling more complex, because that code would have to
2169                  * look up pi_state and do more or less all the handling
2170                  * which the requeue code has to do for the to be requeued
2171                  * waiters. So restrict the number of waiters to wake to
2172                  * one, and only wake it up when the PI futex is
2173                  * uncontended. Otherwise requeue it and let the unlock of
2174                  * the PI futex handle the wakeup.
2175                  *
2176                  * All REQUEUE_PI users, e.g. pthread_cond_signal() and
2177                  * pthread_cond_broadcast() must use nr_wake=1.
2178                  */
2179                 if (nr_wake != 1)
2180                         return -EINVAL;
2181
2182                 /*
2183                  * requeue_pi requires a pi_state, try to allocate it now
2184                  * without any locks in case it fails.
2185                  */
2186                 if (refill_pi_state_cache())
2187                         return -ENOMEM;
2188         }
2189
2190 retry:
2191         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
2192         if (unlikely(ret != 0))
2193                 return ret;
2194         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
2195                             requeue_pi ? FUTEX_WRITE : FUTEX_READ);
2196         if (unlikely(ret != 0))
2197                 return ret;
2198
2199         /*
2200          * The check above which compares uaddrs is not sufficient for
2201          * shared futexes. We need to compare the keys:
2202          */
2203         if (requeue_pi && match_futex(&key1, &key2))
2204                 return -EINVAL;
2205
2206         hb1 = hash_futex(&key1);
2207         hb2 = hash_futex(&key2);
2208
2209 retry_private:
2210         hb_waiters_inc(hb2);
2211         double_lock_hb(hb1, hb2);
2212
2213         if (likely(cmpval != NULL)) {
2214                 u32 curval;
2215
2216                 ret = get_futex_value_locked(&curval, uaddr1);
2217
2218                 if (unlikely(ret)) {
2219                         double_unlock_hb(hb1, hb2);
2220                         hb_waiters_dec(hb2);
2221
2222                         ret = get_user(curval, uaddr1);
2223                         if (ret)
2224                                 return ret;
2225
2226                         if (!(flags & FLAGS_SHARED))
2227                                 goto retry_private;
2228
2229                         goto retry;
2230                 }
2231                 if (curval != *cmpval) {
2232                         ret = -EAGAIN;
2233                         goto out_unlock;
2234                 }
2235         }
2236
2237         if (requeue_pi) {
2238                 struct task_struct *exiting = NULL;
2239
2240                 /*
2241                  * Attempt to acquire uaddr2 and wake the top waiter. If we
2242                  * intend to requeue waiters, force setting the FUTEX_WAITERS
2243                  * bit.  We force this here where we are able to easily handle
2244                  * faults rather in the requeue loop below.
2245                  *
2246                  * Updates topwaiter::requeue_state if a top waiter exists.
2247                  */
2248                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
2249                                                  &key2, &pi_state,
2250                                                  &exiting, nr_requeue);
2251
2252                 /*
2253                  * At this point the top_waiter has either taken uaddr2 or
2254                  * is waiting on it. In both cases pi_state has been
2255                  * established and an initial refcount on it. In case of an
2256                  * error there's nothing.
2257                  *
2258                  * The top waiter's requeue_state is up to date:
2259                  *
2260                  *  - If the lock was acquired atomically (ret == 1), then
2261                  *    the state is Q_REQUEUE_PI_LOCKED.
2262                  *
2263                  *    The top waiter has been dequeued and woken up and can
2264                  *    return to user space immediately. The kernel/user
2265                  *    space state is consistent. In case that there must be
2266                  *    more waiters requeued the WAITERS bit in the user
2267                  *    space futex is set so the top waiter task has to go
2268                  *    into the syscall slowpath to unlock the futex. This
2269                  *    will block until this requeue operation has been
2270                  *    completed and the hash bucket locks have been
2271                  *    dropped.
2272                  *
2273                  *  - If the trylock failed with an error (ret < 0) then
2274                  *    the state is either Q_REQUEUE_PI_NONE, i.e. "nothing
2275                  *    happened", or Q_REQUEUE_PI_IGNORE when there was an
2276                  *    interleaved early wakeup.
2277                  *
2278                  *  - If the trylock did not succeed (ret == 0) then the
2279                  *    state is either Q_REQUEUE_PI_IN_PROGRESS or
2280                  *    Q_REQUEUE_PI_WAIT if an early wakeup interleaved.
2281                  *    This will be cleaned up in the loop below, which
2282                  *    cannot fail because futex_proxy_trylock_atomic() did
2283                  *    the same sanity checks for requeue_pi as the loop
2284                  *    below does.
2285                  */
2286                 switch (ret) {
2287                 case 0:
2288                         /* We hold a reference on the pi state. */
2289                         break;
2290
2291                 case 1:
2292                         /*
2293                          * futex_proxy_trylock_atomic() acquired the user space
2294                          * futex. Adjust task_count.
2295                          */
2296                         task_count++;
2297                         ret = 0;
2298                         break;
2299
2300                 /*
2301                  * If the above failed, then pi_state is NULL and
2302                  * waiter::requeue_state is correct.
2303                  */
2304                 case -EFAULT:
2305                         double_unlock_hb(hb1, hb2);
2306                         hb_waiters_dec(hb2);
2307                         ret = fault_in_user_writeable(uaddr2);
2308                         if (!ret)
2309                                 goto retry;
2310                         return ret;
2311                 case -EBUSY:
2312                 case -EAGAIN:
2313                         /*
2314                          * Two reasons for this:
2315                          * - EBUSY: Owner is exiting and we just wait for the
2316                          *   exit to complete.
2317                          * - EAGAIN: The user space value changed.
2318                          */
2319                         double_unlock_hb(hb1, hb2);
2320                         hb_waiters_dec(hb2);
2321                         /*
2322                          * Handle the case where the owner is in the middle of
2323                          * exiting. Wait for the exit to complete otherwise
2324                          * this task might loop forever, aka. live lock.
2325                          */
2326                         wait_for_owner_exiting(ret, exiting);
2327                         cond_resched();
2328                         goto retry;
2329                 default:
2330                         goto out_unlock;
2331                 }
2332         }
2333
2334         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2335                 if (task_count - nr_wake >= nr_requeue)
2336                         break;
2337
2338                 if (!match_futex(&this->key, &key1))
2339                         continue;
2340
2341                 /*
2342                  * FUTEX_WAIT_REQUEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2343                  * be paired with each other and no other futex ops.
2344                  *
2345                  * We should never be requeueing a futex_q with a pi_state,
2346                  * which is awaiting a futex_unlock_pi().
2347                  */
2348                 if ((requeue_pi && !this->rt_waiter) ||
2349                     (!requeue_pi && this->rt_waiter) ||
2350                     this->pi_state) {
2351                         ret = -EINVAL;
2352                         break;
2353                 }
2354
2355                 /* Plain futexes just wake or requeue and are done */
2356                 if (!requeue_pi) {
2357                         if (++task_count <= nr_wake)
2358                                 mark_wake_futex(&wake_q, this);
2359                         else
2360                                 requeue_futex(this, hb1, hb2, &key2);
2361                         continue;
2362                 }
2363
2364                 /* Ensure we requeue to the expected futex for requeue_pi. */
2365                 if (!match_futex(this->requeue_pi_key, &key2)) {
2366                         ret = -EINVAL;
2367                         break;
2368                 }
2369
2370                 /*
2371                  * Requeue nr_requeue waiters and possibly one more in the case
2372                  * of requeue_pi if we couldn't acquire the lock atomically.
2373                  *
2374                  * Prepare the waiter to take the rt_mutex. Take a refcount
2375                  * on the pi_state and store the pointer in the futex_q
2376                  * object of the waiter.
2377                  */
2378                 get_pi_state(pi_state);
2379
2380                 /* Don't requeue when the waiter is already on the way out. */
2381                 if (!futex_requeue_pi_prepare(this, pi_state)) {
2382                         /*
2383                          * Early woken waiter signaled that it is on the
2384                          * way out. Drop the pi_state reference and try the
2385                          * next waiter. @this->pi_state is still NULL.
2386                          */
2387                         put_pi_state(pi_state);
2388                         continue;
2389                 }
2390
2391                 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2392                                                 this->rt_waiter,
2393                                                 this->task);
2394
2395                 if (ret == 1) {
2396                         /*
2397                          * We got the lock. We do neither drop the refcount
2398                          * on pi_state nor clear this->pi_state because the
2399                          * waiter needs the pi_state for cleaning up the
2400                          * user space value. It will drop the refcount
2401                          * after doing so. this::requeue_state is updated
2402                          * in the wakeup as well.
2403                          */
2404                         requeue_pi_wake_futex(this, &key2, hb2);
2405                         task_count++;
2406                 } else if (!ret) {
2407                         /* Waiter is queued, move it to hb2 */
2408                         requeue_futex(this, hb1, hb2, &key2);
2409                         futex_requeue_pi_complete(this, 0);
2410                         task_count++;
2411                 } else {
2412                         /*
2413                          * rt_mutex_start_proxy_lock() detected a potential
2414                          * deadlock when we tried to queue that waiter.
2415                          * Drop the pi_state reference which we took above
2416                          * and remove the pointer to the state from the
2417                          * waiters futex_q object.
2418                          */
2419                         this->pi_state = NULL;
2420                         put_pi_state(pi_state);
2421                         futex_requeue_pi_complete(this, ret);
2422                         /*
2423                          * We stop queueing more waiters and let user space
2424                          * deal with the mess.
2425                          */
2426                         break;
2427                 }
2428         }
2429
2430         /*
2431          * We took an extra initial reference to the pi_state in
2432          * futex_proxy_trylock_atomic(). We need to drop it here again.
2433          */
2434         put_pi_state(pi_state);
2435
2436 out_unlock:
2437         double_unlock_hb(hb1, hb2);
2438         wake_up_q(&wake_q);
2439         hb_waiters_dec(hb2);
2440         return ret ? ret : task_count;
2441 }
2442
2443 /* The key must be already stored in q->key. */
2444 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2445         __acquires(&hb->lock)
2446 {
2447         struct futex_hash_bucket *hb;
2448
2449         hb = hash_futex(&q->key);
2450
2451         /*
2452          * Increment the counter before taking the lock so that
2453          * a potential waker won't miss a to-be-slept task that is
2454          * waiting for the spinlock. This is safe as all queue_lock()
2455          * users end up calling queue_me(). Similarly, for housekeeping,
2456          * decrement the counter at queue_unlock() when some error has
2457          * occurred and we don't end up adding the task to the list.
2458          */
2459         hb_waiters_inc(hb); /* implies smp_mb(); (A) */
2460
2461         q->lock_ptr = &hb->lock;
2462
2463         spin_lock(&hb->lock);
2464         return hb;
2465 }
2466
2467 static inline void
2468 queue_unlock(struct futex_hash_bucket *hb)
2469         __releases(&hb->lock)
2470 {
2471         spin_unlock(&hb->lock);
2472         hb_waiters_dec(hb);
2473 }
2474
2475 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2476 {
2477         int prio;
2478
2479         /*
2480          * The priority used to register this element is
2481          * - either the real thread-priority for the real-time threads
2482          * (i.e. threads with a priority lower than MAX_RT_PRIO)
2483          * - or MAX_RT_PRIO for non-RT threads.
2484          * Thus, all RT-threads are woken first in priority order, and
2485          * the others are woken last, in FIFO order.
2486          */
2487         prio = min(current->normal_prio, MAX_RT_PRIO);
2488
2489         plist_node_init(&q->list, prio);
2490         plist_add(&q->list, &hb->chain);
2491         q->task = current;
2492 }
2493
2494 /**
2495  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2496  * @q:  The futex_q to enqueue
2497  * @hb: The destination hash bucket
2498  *
2499  * The hb->lock must be held by the caller, and is released here. A call to
2500  * queue_me() is typically paired with exactly one call to unqueue_me().  The
2501  * exceptions involve the PI related operations, which may use unqueue_me_pi()
2502  * or nothing if the unqueue is done as part of the wake process and the unqueue
2503  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2504  * an example).
2505  */
2506 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2507         __releases(&hb->lock)
2508 {
2509         __queue_me(q, hb);
2510         spin_unlock(&hb->lock);
2511 }
2512
2513 /**
2514  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2515  * @q:  The futex_q to unqueue
2516  *
2517  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2518  * be paired with exactly one earlier call to queue_me().
2519  *
2520  * Return:
2521  *  - 1 - if the futex_q was still queued (and we removed unqueued it);
2522  *  - 0 - if the futex_q was already removed by the waking thread
2523  */
2524 static int unqueue_me(struct futex_q *q)
2525 {
2526         spinlock_t *lock_ptr;
2527         int ret = 0;
2528
2529         /* In the common case we don't take the spinlock, which is nice. */
2530 retry:
2531         /*
2532          * q->lock_ptr can change between this read and the following spin_lock.
2533          * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2534          * optimizing lock_ptr out of the logic below.
2535          */
2536         lock_ptr = READ_ONCE(q->lock_ptr);
2537         if (lock_ptr != NULL) {
2538                 spin_lock(lock_ptr);
2539                 /*
2540                  * q->lock_ptr can change between reading it and
2541                  * spin_lock(), causing us to take the wrong lock.  This
2542                  * corrects the race condition.
2543                  *
2544                  * Reasoning goes like this: if we have the wrong lock,
2545                  * q->lock_ptr must have changed (maybe several times)
2546                  * between reading it and the spin_lock().  It can
2547                  * change again after the spin_lock() but only if it was
2548                  * already changed before the spin_lock().  It cannot,
2549                  * however, change back to the original value.  Therefore
2550                  * we can detect whether we acquired the correct lock.
2551                  */
2552                 if (unlikely(lock_ptr != q->lock_ptr)) {
2553                         spin_unlock(lock_ptr);
2554                         goto retry;
2555                 }
2556                 __unqueue_futex(q);
2557
2558                 BUG_ON(q->pi_state);
2559
2560                 spin_unlock(lock_ptr);
2561                 ret = 1;
2562         }
2563
2564         return ret;
2565 }
2566
2567 /*
2568  * PI futexes can not be requeued and must remove themselves from the
2569  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held.
2570  */
2571 static void unqueue_me_pi(struct futex_q *q)
2572 {
2573         __unqueue_futex(q);
2574
2575         BUG_ON(!q->pi_state);
2576         put_pi_state(q->pi_state);
2577         q->pi_state = NULL;
2578 }
2579
2580 static int __fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2581                                   struct task_struct *argowner)
2582 {
2583         struct futex_pi_state *pi_state = q->pi_state;
2584         struct task_struct *oldowner, *newowner;
2585         u32 uval, curval, newval, newtid;
2586         int err = 0;
2587
2588         oldowner = pi_state->owner;
2589
2590         /*
2591          * We are here because either:
2592          *
2593          *  - we stole the lock and pi_state->owner needs updating to reflect
2594          *    that (@argowner == current),
2595          *
2596          * or:
2597          *
2598          *  - someone stole our lock and we need to fix things to point to the
2599          *    new owner (@argowner == NULL).
2600          *
2601          * Either way, we have to replace the TID in the user space variable.
2602          * This must be atomic as we have to preserve the owner died bit here.
2603          *
2604          * Note: We write the user space value _before_ changing the pi_state
2605          * because we can fault here. Imagine swapped out pages or a fork
2606          * that marked all the anonymous memory readonly for cow.
2607          *
2608          * Modifying pi_state _before_ the user space value would leave the
2609          * pi_state in an inconsistent state when we fault here, because we
2610          * need to drop the locks to handle the fault. This might be observed
2611          * in the PID checks when attaching to PI state .
2612          */
2613 retry:
2614         if (!argowner) {
2615                 if (oldowner != current) {
2616                         /*
2617                          * We raced against a concurrent self; things are
2618                          * already fixed up. Nothing to do.
2619                          */
2620                         return 0;
2621                 }
2622
2623                 if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2624                         /* We got the lock. pi_state is correct. Tell caller. */
2625                         return 1;
2626                 }
2627
2628                 /*
2629                  * The trylock just failed, so either there is an owner or
2630                  * there is a higher priority waiter than this one.
2631                  */
2632                 newowner = rt_mutex_owner(&pi_state->pi_mutex);
2633                 /*
2634                  * If the higher priority waiter has not yet taken over the
2635                  * rtmutex then newowner is NULL. We can't return here with
2636                  * that state because it's inconsistent vs. the user space
2637                  * state. So drop the locks and try again. It's a valid
2638                  * situation and not any different from the other retry
2639                  * conditions.
2640                  */
2641                 if (unlikely(!newowner)) {
2642                         err = -EAGAIN;
2643                         goto handle_err;
2644                 }
2645         } else {
2646                 WARN_ON_ONCE(argowner != current);
2647                 if (oldowner == current) {
2648                         /*
2649                          * We raced against a concurrent self; things are
2650                          * already fixed up. Nothing to do.
2651                          */
2652                         return 1;
2653                 }
2654                 newowner = argowner;
2655         }
2656
2657         newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2658         /* Owner died? */
2659         if (!pi_state->owner)
2660                 newtid |= FUTEX_OWNER_DIED;
2661
2662         err = get_futex_value_locked(&uval, uaddr);
2663         if (err)
2664                 goto handle_err;
2665
2666         for (;;) {
2667                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2668
2669                 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
2670                 if (err)
2671                         goto handle_err;
2672
2673                 if (curval == uval)
2674                         break;
2675                 uval = curval;
2676         }
2677
2678         /*
2679          * We fixed up user space. Now we need to fix the pi_state
2680          * itself.
2681          */
2682         pi_state_update_owner(pi_state, newowner);
2683
2684         return argowner == current;
2685
2686         /*
2687          * In order to reschedule or handle a page fault, we need to drop the
2688          * locks here. In the case of a fault, this gives the other task
2689          * (either the highest priority waiter itself or the task which stole
2690          * the rtmutex) the chance to try the fixup of the pi_state. So once we
2691          * are back from handling the fault we need to check the pi_state after
2692          * reacquiring the locks and before trying to do another fixup. When
2693          * the fixup has been done already we simply return.
2694          *
2695          * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2696          * drop hb->lock since the caller owns the hb -> futex_q relation.
2697          * Dropping the pi_mutex->wait_lock requires the state revalidate.
2698          */
2699 handle_err:
2700         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2701         spin_unlock(q->lock_ptr);
2702
2703         switch (err) {
2704         case -EFAULT:
2705                 err = fault_in_user_writeable(uaddr);
2706                 break;
2707
2708         case -EAGAIN:
2709                 cond_resched();
2710                 err = 0;
2711                 break;
2712
2713         default:
2714                 WARN_ON_ONCE(1);
2715                 break;
2716         }
2717
2718         spin_lock(q->lock_ptr);
2719         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2720
2721         /*
2722          * Check if someone else fixed it for us:
2723          */
2724         if (pi_state->owner != oldowner)
2725                 return argowner == current;
2726
2727         /* Retry if err was -EAGAIN or the fault in succeeded */
2728         if (!err)
2729                 goto retry;
2730
2731         /*
2732          * fault_in_user_writeable() failed so user state is immutable. At
2733          * best we can make the kernel state consistent but user state will
2734          * be most likely hosed and any subsequent unlock operation will be
2735          * rejected due to PI futex rule [10].
2736          *
2737          * Ensure that the rtmutex owner is also the pi_state owner despite
2738          * the user space value claiming something different. There is no
2739          * point in unlocking the rtmutex if current is the owner as it
2740          * would need to wait until the next waiter has taken the rtmutex
2741          * to guarantee consistent state. Keep it simple. Userspace asked
2742          * for this wreckaged state.
2743          *
2744          * The rtmutex has an owner - either current or some other
2745          * task. See the EAGAIN loop above.
2746          */
2747         pi_state_update_owner(pi_state, rt_mutex_owner(&pi_state->pi_mutex));
2748
2749         return err;
2750 }
2751
2752 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2753                                 struct task_struct *argowner)
2754 {
2755         struct futex_pi_state *pi_state = q->pi_state;
2756         int ret;
2757
2758         lockdep_assert_held(q->lock_ptr);
2759
2760         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2761         ret = __fixup_pi_state_owner(uaddr, q, argowner);
2762         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2763         return ret;
2764 }
2765
2766 static long futex_wait_restart(struct restart_block *restart);
2767
2768 /**
2769  * fixup_owner() - Post lock pi_state and corner case management
2770  * @uaddr:      user address of the futex
2771  * @q:          futex_q (contains pi_state and access to the rt_mutex)
2772  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
2773  *
2774  * After attempting to lock an rt_mutex, this function is called to cleanup
2775  * the pi_state owner as well as handle race conditions that may allow us to
2776  * acquire the lock. Must be called with the hb lock held.
2777  *
2778  * Return:
2779  *  -  1 - success, lock taken;
2780  *  -  0 - success, lock not taken;
2781  *  - <0 - on error (-EFAULT)
2782  */
2783 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2784 {
2785         if (locked) {
2786                 /*
2787                  * Got the lock. We might not be the anticipated owner if we
2788                  * did a lock-steal - fix up the PI-state in that case:
2789                  *
2790                  * Speculative pi_state->owner read (we don't hold wait_lock);
2791                  * since we own the lock pi_state->owner == current is the
2792                  * stable state, anything else needs more attention.
2793                  */
2794                 if (q->pi_state->owner != current)
2795                         return fixup_pi_state_owner(uaddr, q, current);
2796                 return 1;
2797         }
2798
2799         /*
2800          * If we didn't get the lock; check if anybody stole it from us. In
2801          * that case, we need to fix up the uval to point to them instead of
2802          * us, otherwise bad things happen. [10]
2803          *
2804          * Another speculative read; pi_state->owner == current is unstable
2805          * but needs our attention.
2806          */
2807         if (q->pi_state->owner == current)
2808                 return fixup_pi_state_owner(uaddr, q, NULL);
2809
2810         /*
2811          * Paranoia check. If we did not take the lock, then we should not be
2812          * the owner of the rt_mutex. Warn and establish consistent state.
2813          */
2814         if (WARN_ON_ONCE(rt_mutex_owner(&q->pi_state->pi_mutex) == current))
2815                 return fixup_pi_state_owner(uaddr, q, current);
2816
2817         return 0;
2818 }
2819
2820 /**
2821  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2822  * @hb:         the futex hash bucket, must be locked by the caller
2823  * @q:          the futex_q to queue up on
2824  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
2825  */
2826 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2827                                 struct hrtimer_sleeper *timeout)
2828 {
2829         /*
2830          * The task state is guaranteed to be set before another task can
2831          * wake it. set_current_state() is implemented using smp_store_mb() and
2832          * queue_me() calls spin_unlock() upon completion, both serializing
2833          * access to the hash list and forcing another memory barrier.
2834          */
2835         set_current_state(TASK_INTERRUPTIBLE);
2836         queue_me(q, hb);
2837
2838         /* Arm the timer */
2839         if (timeout)
2840                 hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS);
2841
2842         /*
2843          * If we have been removed from the hash list, then another task
2844          * has tried to wake us, and we can skip the call to schedule().
2845          */
2846         if (likely(!plist_node_empty(&q->list))) {
2847                 /*
2848                  * If the timer has already expired, current will already be
2849                  * flagged for rescheduling. Only call schedule if there
2850                  * is no timeout, or if it has yet to expire.
2851                  */
2852                 if (!timeout || timeout->task)
2853                         freezable_schedule();
2854         }
2855         __set_current_state(TASK_RUNNING);
2856 }
2857
2858 /**
2859  * futex_wait_setup() - Prepare to wait on a futex
2860  * @uaddr:      the futex userspace address
2861  * @val:        the expected value
2862  * @flags:      futex flags (FLAGS_SHARED, etc.)
2863  * @q:          the associated futex_q
2864  * @hb:         storage for hash_bucket pointer to be returned to caller
2865  *
2866  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2867  * compare it with the expected value.  Handle atomic faults internally.
2868  * Return with the hb lock held on success, and unlocked on failure.
2869  *
2870  * Return:
2871  *  -  0 - uaddr contains val and hb has been locked;
2872  *  - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2873  */
2874 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2875                            struct futex_q *q, struct futex_hash_bucket **hb)
2876 {
2877         u32 uval;
2878         int ret;
2879
2880         /*
2881          * Access the page AFTER the hash-bucket is locked.
2882          * Order is important:
2883          *
2884          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2885          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2886          *
2887          * The basic logical guarantee of a futex is that it blocks ONLY
2888          * if cond(var) is known to be true at the time of blocking, for
2889          * any cond.  If we locked the hash-bucket after testing *uaddr, that
2890          * would open a race condition where we could block indefinitely with
2891          * cond(var) false, which would violate the guarantee.
2892          *
2893          * On the other hand, we insert q and release the hash-bucket only
2894          * after testing *uaddr.  This guarantees that futex_wait() will NOT
2895          * absorb a wakeup if *uaddr does not match the desired values
2896          * while the syscall executes.
2897          */
2898 retry:
2899         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ);
2900         if (unlikely(ret != 0))
2901                 return ret;
2902
2903 retry_private:
2904         *hb = queue_lock(q);
2905
2906         ret = get_futex_value_locked(&uval, uaddr);
2907
2908         if (ret) {
2909                 queue_unlock(*hb);
2910
2911                 ret = get_user(uval, uaddr);
2912                 if (ret)
2913                         return ret;
2914
2915                 if (!(flags & FLAGS_SHARED))
2916                         goto retry_private;
2917
2918                 goto retry;
2919         }
2920
2921         if (uval != val) {
2922                 queue_unlock(*hb);
2923                 ret = -EWOULDBLOCK;
2924         }
2925
2926         return ret;
2927 }
2928
2929 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2930                       ktime_t *abs_time, u32 bitset)
2931 {
2932         struct hrtimer_sleeper timeout, *to;
2933         struct restart_block *restart;
2934         struct futex_hash_bucket *hb;
2935         struct futex_q q = futex_q_init;
2936         int ret;
2937
2938         if (!bitset)
2939                 return -EINVAL;
2940         q.bitset = bitset;
2941
2942         to = futex_setup_timer(abs_time, &timeout, flags,
2943                                current->timer_slack_ns);
2944 retry:
2945         /*
2946          * Prepare to wait on uaddr. On success, it holds hb->lock and q
2947          * is initialized.
2948          */
2949         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2950         if (ret)
2951                 goto out;
2952
2953         /* queue_me and wait for wakeup, timeout, or a signal. */
2954         futex_wait_queue_me(hb, &q, to);
2955
2956         /* If we were woken (and unqueued), we succeeded, whatever. */
2957         ret = 0;
2958         if (!unqueue_me(&q))
2959                 goto out;
2960         ret = -ETIMEDOUT;
2961         if (to && !to->task)
2962                 goto out;
2963
2964         /*
2965          * We expect signal_pending(current), but we might be the
2966          * victim of a spurious wakeup as well.
2967          */
2968         if (!signal_pending(current))
2969                 goto retry;
2970
2971         ret = -ERESTARTSYS;
2972         if (!abs_time)
2973                 goto out;
2974
2975         restart = &current->restart_block;
2976         restart->futex.uaddr = uaddr;
2977         restart->futex.val = val;
2978         restart->futex.time = *abs_time;
2979         restart->futex.bitset = bitset;
2980         restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2981
2982         ret = set_restart_fn(restart, futex_wait_restart);
2983
2984 out:
2985         if (to) {
2986                 hrtimer_cancel(&to->timer);
2987                 destroy_hrtimer_on_stack(&to->timer);
2988         }
2989         return ret;
2990 }
2991
2992
2993 static long futex_wait_restart(struct restart_block *restart)
2994 {
2995         u32 __user *uaddr = restart->futex.uaddr;
2996         ktime_t t, *tp = NULL;
2997
2998         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2999                 t = restart->futex.time;
3000                 tp = &t;
3001         }
3002         restart->fn = do_no_restart_syscall;
3003
3004         return (long)futex_wait(uaddr, restart->futex.flags,
3005                                 restart->futex.val, tp, restart->futex.bitset);
3006 }
3007
3008
3009 /*
3010  * Userspace tried a 0 -> TID atomic transition of the futex value
3011  * and failed. The kernel side here does the whole locking operation:
3012  * if there are waiters then it will block as a consequence of relying
3013  * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
3014  * a 0 value of the futex too.).
3015  *
3016  * Also serves as futex trylock_pi()'ing, and due semantics.
3017  */
3018 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
3019                          ktime_t *time, int trylock)
3020 {
3021         struct hrtimer_sleeper timeout, *to;
3022         struct task_struct *exiting = NULL;
3023         struct rt_mutex_waiter rt_waiter;
3024         struct futex_hash_bucket *hb;
3025         struct futex_q q = futex_q_init;
3026         int res, ret;
3027
3028         if (!IS_ENABLED(CONFIG_FUTEX_PI))
3029                 return -ENOSYS;
3030
3031         if (refill_pi_state_cache())
3032                 return -ENOMEM;
3033
3034         to = futex_setup_timer(time, &timeout, flags, 0);
3035
3036 retry:
3037         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, FUTEX_WRITE);
3038         if (unlikely(ret != 0))
3039                 goto out;
3040
3041 retry_private:
3042         hb = queue_lock(&q);
3043
3044         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current,
3045                                    &exiting, 0);
3046         if (unlikely(ret)) {
3047                 /*
3048                  * Atomic work succeeded and we got the lock,
3049                  * or failed. Either way, we do _not_ block.
3050                  */
3051                 switch (ret) {
3052                 case 1:
3053                         /* We got the lock. */
3054                         ret = 0;
3055                         goto out_unlock_put_key;
3056                 case -EFAULT:
3057                         goto uaddr_faulted;
3058                 case -EBUSY:
3059                 case -EAGAIN:
3060                         /*
3061                          * Two reasons for this:
3062                          * - EBUSY: Task is exiting and we just wait for the
3063                          *   exit to complete.
3064                          * - EAGAIN: The user space value changed.
3065                          */
3066                         queue_unlock(hb);
3067                         /*
3068                          * Handle the case where the owner is in the middle of
3069                          * exiting. Wait for the exit to complete otherwise
3070                          * this task might loop forever, aka. live lock.
3071                          */
3072                         wait_for_owner_exiting(ret, exiting);
3073                         cond_resched();
3074                         goto retry;
3075                 default:
3076                         goto out_unlock_put_key;
3077                 }
3078         }
3079
3080         WARN_ON(!q.pi_state);
3081
3082         /*
3083          * Only actually queue now that the atomic ops are done:
3084          */
3085         __queue_me(&q, hb);
3086
3087         if (trylock) {
3088                 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
3089                 /* Fixup the trylock return value: */
3090                 ret = ret ? 0 : -EWOULDBLOCK;
3091                 goto no_block;
3092         }
3093
3094         rt_mutex_init_waiter(&rt_waiter);
3095
3096         /*
3097          * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
3098          * hold it while doing rt_mutex_start_proxy(), because then it will
3099          * include hb->lock in the blocking chain, even through we'll not in
3100          * fact hold it while blocking. This will lead it to report -EDEADLK
3101          * and BUG when futex_unlock_pi() interleaves with this.
3102          *
3103          * Therefore acquire wait_lock while holding hb->lock, but drop the
3104          * latter before calling __rt_mutex_start_proxy_lock(). This
3105          * interleaves with futex_unlock_pi() -- which does a similar lock
3106          * handoff -- such that the latter can observe the futex_q::pi_state
3107          * before __rt_mutex_start_proxy_lock() is done.
3108          */
3109         raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
3110         spin_unlock(q.lock_ptr);
3111         /*
3112          * __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter
3113          * such that futex_unlock_pi() is guaranteed to observe the waiter when
3114          * it sees the futex_q::pi_state.
3115          */
3116         ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
3117         raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
3118
3119         if (ret) {
3120                 if (ret == 1)
3121                         ret = 0;
3122                 goto cleanup;
3123         }
3124
3125         if (unlikely(to))
3126                 hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS);
3127
3128         ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
3129
3130 cleanup:
3131         spin_lock(q.lock_ptr);
3132         /*
3133          * If we failed to acquire the lock (deadlock/signal/timeout), we must
3134          * first acquire the hb->lock before removing the lock from the
3135          * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait
3136          * lists consistent.
3137          *
3138          * In particular; it is important that futex_unlock_pi() can not
3139          * observe this inconsistency.
3140          */
3141         if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
3142                 ret = 0;
3143
3144 no_block:
3145         /*
3146          * Fixup the pi_state owner and possibly acquire the lock if we
3147          * haven't already.
3148          */
3149         res = fixup_owner(uaddr, &q, !ret);
3150         /*
3151          * If fixup_owner() returned an error, propagate that.  If it acquired
3152          * the lock, clear our -ETIMEDOUT or -EINTR.
3153          */
3154         if (res)
3155                 ret = (res < 0) ? res : 0;
3156
3157         unqueue_me_pi(&q);
3158         spin_unlock(q.lock_ptr);
3159         goto out;
3160
3161 out_unlock_put_key:
3162         queue_unlock(hb);
3163
3164 out:
3165         if (to) {
3166                 hrtimer_cancel(&to->timer);
3167                 destroy_hrtimer_on_stack(&to->timer);
3168         }
3169         return ret != -EINTR ? ret : -ERESTARTNOINTR;
3170
3171 uaddr_faulted:
3172         queue_unlock(hb);
3173
3174         ret = fault_in_user_writeable(uaddr);
3175         if (ret)
3176                 goto out;
3177
3178         if (!(flags & FLAGS_SHARED))
3179                 goto retry_private;
3180
3181         goto retry;
3182 }
3183
3184 /*
3185  * Userspace attempted a TID -> 0 atomic transition, and failed.
3186  * This is the in-kernel slowpath: we look up the PI state (if any),
3187  * and do the rt-mutex unlock.
3188  */
3189 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
3190 {
3191         u32 curval, uval, vpid = task_pid_vnr(current);
3192         union futex_key key = FUTEX_KEY_INIT;
3193         struct futex_hash_bucket *hb;
3194         struct futex_q *top_waiter;
3195         int ret;
3196
3197         if (!IS_ENABLED(CONFIG_FUTEX_PI))
3198                 return -ENOSYS;
3199
3200 retry:
3201         if (get_user(uval, uaddr))
3202                 return -EFAULT;
3203         /*
3204          * We release only a lock we actually own:
3205          */
3206         if ((uval & FUTEX_TID_MASK) != vpid)
3207                 return -EPERM;
3208
3209         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_WRITE);
3210         if (ret)
3211                 return ret;
3212
3213         hb = hash_futex(&key);
3214         spin_lock(&hb->lock);
3215
3216         /*
3217          * Check waiters first. We do not trust user space values at
3218          * all and we at least want to know if user space fiddled
3219          * with the futex value instead of blindly unlocking.
3220          */
3221         top_waiter = futex_top_waiter(hb, &key);
3222         if (top_waiter) {
3223                 struct futex_pi_state *pi_state = top_waiter->pi_state;
3224
3225                 ret = -EINVAL;
3226                 if (!pi_state)
3227                         goto out_unlock;
3228
3229                 /*
3230                  * If current does not own the pi_state then the futex is
3231                  * inconsistent and user space fiddled with the futex value.
3232                  */
3233                 if (pi_state->owner != current)
3234                         goto out_unlock;
3235
3236                 get_pi_state(pi_state);
3237                 /*
3238                  * By taking wait_lock while still holding hb->lock, we ensure
3239                  * there is no point where we hold neither; and therefore
3240                  * wake_futex_pi() must observe a state consistent with what we
3241                  * observed.
3242                  *
3243                  * In particular; this forces __rt_mutex_start_proxy() to
3244                  * complete such that we're guaranteed to observe the
3245                  * rt_waiter. Also see the WARN in wake_futex_pi().
3246                  */
3247                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
3248                 spin_unlock(&hb->lock);
3249
3250                 /* drops pi_state->pi_mutex.wait_lock */
3251                 ret = wake_futex_pi(uaddr, uval, pi_state);
3252
3253                 put_pi_state(pi_state);
3254
3255                 /*
3256                  * Success, we're done! No tricky corner cases.
3257                  */
3258                 if (!ret)
3259                         return ret;
3260                 /*
3261                  * The atomic access to the futex value generated a
3262                  * pagefault, so retry the user-access and the wakeup:
3263                  */
3264                 if (ret == -EFAULT)
3265                         goto pi_faulted;
3266                 /*
3267                  * A unconditional UNLOCK_PI op raced against a waiter
3268                  * setting the FUTEX_WAITERS bit. Try again.
3269                  */
3270                 if (ret == -EAGAIN)
3271                         goto pi_retry;
3272                 /*
3273                  * wake_futex_pi has detected invalid state. Tell user
3274                  * space.
3275                  */
3276                 return ret;
3277         }
3278
3279         /*
3280          * We have no kernel internal state, i.e. no waiters in the
3281          * kernel. Waiters which are about to queue themselves are stuck
3282          * on hb->lock. So we can safely ignore them. We do neither
3283          * preserve the WAITERS bit not the OWNER_DIED one. We are the
3284          * owner.
3285          */
3286         if ((ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))) {
3287                 spin_unlock(&hb->lock);
3288                 switch (ret) {
3289                 case -EFAULT:
3290                         goto pi_faulted;
3291
3292                 case -EAGAIN:
3293                         goto pi_retry;
3294
3295                 default:
3296                         WARN_ON_ONCE(1);
3297                         return ret;
3298                 }
3299         }
3300
3301         /*
3302          * If uval has changed, let user space handle it.
3303          */
3304         ret = (curval == uval) ? 0 : -EAGAIN;
3305
3306 out_unlock:
3307         spin_unlock(&hb->lock);
3308         return ret;
3309
3310 pi_retry:
3311         cond_resched();
3312         goto retry;
3313
3314 pi_faulted:
3315
3316         ret = fault_in_user_writeable(uaddr);
3317         if (!ret)
3318                 goto retry;
3319
3320         return ret;
3321 }
3322
3323 /**
3324  * handle_early_requeue_pi_wakeup() - Handle early wakeup on the initial futex
3325  * @hb:         the hash_bucket futex_q was original enqueued on
3326  * @q:          the futex_q woken while waiting to be requeued
3327  * @timeout:    the timeout associated with the wait (NULL if none)
3328  *
3329  * Determine the cause for the early wakeup.
3330  *
3331  * Return:
3332  *  -EWOULDBLOCK or -ETIMEDOUT or -ERESTARTNOINTR
3333  */
3334 static inline
3335 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3336                                    struct futex_q *q,
3337                                    struct hrtimer_sleeper *timeout)
3338 {
3339         int ret;
3340
3341         /*
3342          * With the hb lock held, we avoid races while we process the wakeup.
3343          * We only need to hold hb (and not hb2) to ensure atomicity as the
3344          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3345          * It can't be requeued from uaddr2 to something else since we don't
3346          * support a PI aware source futex for requeue.
3347          */
3348         WARN_ON_ONCE(&hb->lock != q->lock_ptr);
3349
3350         /*
3351          * We were woken prior to requeue by a timeout or a signal.
3352          * Unqueue the futex_q and determine which it was.
3353          */
3354         plist_del(&q->list, &hb->chain);
3355         hb_waiters_dec(hb);
3356
3357         /* Handle spurious wakeups gracefully */
3358         ret = -EWOULDBLOCK;
3359         if (timeout && !timeout->task)
3360                 ret = -ETIMEDOUT;
3361         else if (signal_pending(current))
3362                 ret = -ERESTARTNOINTR;
3363         return ret;
3364 }
3365
3366 /**
3367  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3368  * @uaddr:      the futex we initially wait on (non-pi)
3369  * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3370  *              the same type, no requeueing from private to shared, etc.
3371  * @val:        the expected value of uaddr
3372  * @abs_time:   absolute timeout
3373  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
3374  * @uaddr2:     the pi futex we will take prior to returning to user-space
3375  *
3376  * The caller will wait on uaddr and will be requeued by futex_requeue() to
3377  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
3378  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3379  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
3380  * without one, the pi logic would not know which task to boost/deboost, if
3381  * there was a need to.
3382  *
3383  * We call schedule in futex_wait_queue_me() when we enqueue and return there
3384  * via the following--
3385  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3386  * 2) wakeup on uaddr2 after a requeue
3387  * 3) signal
3388  * 4) timeout
3389  *
3390  * If 3, cleanup and return -ERESTARTNOINTR.
3391  *
3392  * If 2, we may then block on trying to take the rt_mutex and return via:
3393  * 5) successful lock
3394  * 6) signal
3395  * 7) timeout
3396  * 8) other lock acquisition failure
3397  *
3398  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3399  *
3400  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3401  *
3402  * Return:
3403  *  -  0 - On success;
3404  *  - <0 - On error
3405  */
3406 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3407                                  u32 val, ktime_t *abs_time, u32 bitset,
3408                                  u32 __user *uaddr2)
3409 {
3410         struct hrtimer_sleeper timeout, *to;
3411         struct rt_mutex_waiter rt_waiter;
3412         struct futex_hash_bucket *hb;
3413         union futex_key key2 = FUTEX_KEY_INIT;
3414         struct futex_q q = futex_q_init;
3415         struct rt_mutex_base *pi_mutex;
3416         int res, ret;
3417
3418         if (!IS_ENABLED(CONFIG_FUTEX_PI))
3419                 return -ENOSYS;
3420
3421         if (uaddr == uaddr2)
3422                 return -EINVAL;
3423
3424         if (!bitset)
3425                 return -EINVAL;
3426
3427         to = futex_setup_timer(abs_time, &timeout, flags,
3428                                current->timer_slack_ns);
3429
3430         /*
3431          * The waiter is allocated on our stack, manipulated by the requeue
3432          * code while we sleep on uaddr.
3433          */
3434         rt_mutex_init_waiter(&rt_waiter);
3435
3436         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
3437         if (unlikely(ret != 0))
3438                 goto out;
3439
3440         q.bitset = bitset;
3441         q.rt_waiter = &rt_waiter;
3442         q.requeue_pi_key = &key2;
3443
3444         /*
3445          * Prepare to wait on uaddr. On success, it holds hb->lock and q
3446          * is initialized.
3447          */
3448         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3449         if (ret)
3450                 goto out;
3451
3452         /*
3453          * The check above which compares uaddrs is not sufficient for
3454          * shared futexes. We need to compare the keys:
3455          */
3456         if (match_futex(&q.key, &key2)) {
3457                 queue_unlock(hb);
3458                 ret = -EINVAL;
3459                 goto out;
3460         }
3461
3462         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
3463         futex_wait_queue_me(hb, &q, to);
3464
3465         switch (futex_requeue_pi_wakeup_sync(&q)) {
3466         case Q_REQUEUE_PI_IGNORE:
3467                 /* The waiter is still on uaddr1 */
3468                 spin_lock(&hb->lock);
3469                 ret = handle_early_requeue_pi_wakeup(hb, &q, to);
3470                 spin_unlock(&hb->lock);
3471                 break;
3472
3473         case Q_REQUEUE_PI_LOCKED:
3474                 /* The requeue acquired the lock */
3475                 if (q.pi_state && (q.pi_state->owner != current)) {
3476                         spin_lock(q.lock_ptr);
3477                         ret = fixup_owner(uaddr2, &q, true);
3478                         /*
3479                          * Drop the reference to the pi state which the
3480                          * requeue_pi() code acquired for us.
3481                          */
3482                         put_pi_state(q.pi_state);
3483                         spin_unlock(q.lock_ptr);
3484                         /*
3485                          * Adjust the return value. It's either -EFAULT or
3486                          * success (1) but the caller expects 0 for success.
3487                          */
3488                         ret = ret < 0 ? ret : 0;
3489                 }
3490                 break;
3491
3492         case Q_REQUEUE_PI_DONE:
3493                 /* Requeue completed. Current is 'pi_blocked_on' the rtmutex */
3494                 pi_mutex = &q.pi_state->pi_mutex;
3495                 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3496
3497                 /* Current is not longer pi_blocked_on */
3498                 spin_lock(q.lock_ptr);
3499                 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3500                         ret = 0;
3501
3502                 debug_rt_mutex_free_waiter(&rt_waiter);
3503                 /*
3504                  * Fixup the pi_state owner and possibly acquire the lock if we
3505                  * haven't already.
3506                  */
3507                 res = fixup_owner(uaddr2, &q, !ret);
3508                 /*
3509                  * If fixup_owner() returned an error, propagate that.  If it
3510                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
3511                  */
3512                 if (res)
3513                         ret = (res < 0) ? res : 0;
3514
3515                 unqueue_me_pi(&q);
3516                 spin_unlock(q.lock_ptr);
3517
3518                 if (ret == -EINTR) {
3519                         /*
3520                          * We've already been requeued, but cannot restart
3521                          * by calling futex_lock_pi() directly. We could
3522                          * restart this syscall, but it would detect that
3523                          * the user space "val" changed and return
3524                          * -EWOULDBLOCK.  Save the overhead of the restart
3525                          * and return -EWOULDBLOCK directly.
3526                          */
3527                         ret = -EWOULDBLOCK;
3528                 }
3529                 break;
3530         default:
3531                 BUG();
3532         }
3533
3534 out:
3535         if (to) {
3536                 hrtimer_cancel(&to->timer);
3537                 destroy_hrtimer_on_stack(&to->timer);
3538         }
3539         return ret;
3540 }
3541
3542 /*
3543  * Support for robust futexes: the kernel cleans up held futexes at
3544  * thread exit time.
3545  *
3546  * Implementation: user-space maintains a per-thread list of locks it
3547  * is holding. Upon do_exit(), the kernel carefully walks this list,
3548  * and marks all locks that are owned by this thread with the
3549  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3550  * always manipulated with the lock held, so the list is private and
3551  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3552  * field, to allow the kernel to clean up if the thread dies after
3553  * acquiring the lock, but just before it could have added itself to
3554  * the list. There can only be one such pending lock.
3555  */
3556
3557 /**
3558  * sys_set_robust_list() - Set the robust-futex list head of a task
3559  * @head:       pointer to the list-head
3560  * @len:        length of the list-head, as userspace expects
3561  */
3562 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3563                 size_t, len)
3564 {
3565         if (!futex_cmpxchg_enabled)
3566                 return -ENOSYS;
3567         /*
3568          * The kernel knows only one size for now:
3569          */
3570         if (unlikely(len != sizeof(*head)))
3571                 return -EINVAL;
3572
3573         current->robust_list = head;
3574
3575         return 0;
3576 }
3577
3578 /**
3579  * sys_get_robust_list() - Get the robust-futex list head of a task
3580  * @pid:        pid of the process [zero for current task]
3581  * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
3582  * @len_ptr:    pointer to a length field, the kernel fills in the header size
3583  */
3584 SYSCALL_DEFINE3(get_robust_list, int, pid,
3585                 struct robust_list_head __user * __user *, head_ptr,
3586                 size_t __user *, len_ptr)
3587 {
3588         struct robust_list_head __user *head;
3589         unsigned long ret;
3590         struct task_struct *p;
3591
3592         if (!futex_cmpxchg_enabled)
3593                 return -ENOSYS;
3594
3595         rcu_read_lock();
3596
3597         ret = -ESRCH;
3598         if (!pid)
3599                 p = current;
3600         else {
3601                 p = find_task_by_vpid(pid);
3602                 if (!p)
3603                         goto err_unlock;
3604         }
3605
3606         ret = -EPERM;
3607         if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3608                 goto err_unlock;
3609
3610         head = p->robust_list;
3611         rcu_read_unlock();
3612
3613         if (put_user(sizeof(*head), len_ptr))
3614                 return -EFAULT;
3615         return put_user(head, head_ptr);
3616
3617 err_unlock:
3618         rcu_read_unlock();
3619
3620         return ret;
3621 }
3622
3623 /* Constants for the pending_op argument of handle_futex_death */
3624 #define HANDLE_DEATH_PENDING    true
3625 #define HANDLE_DEATH_LIST       false
3626
3627 /*
3628  * Process a futex-list entry, check whether it's owned by the
3629  * dying task, and do notification if so:
3630  */
3631 static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr,
3632                               bool pi, bool pending_op)
3633 {
3634         u32 uval, nval, mval;
3635         int err;
3636
3637         /* Futex address must be 32bit aligned */
3638         if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
3639                 return -1;
3640
3641 retry:
3642         if (get_user(uval, uaddr))
3643                 return -1;
3644
3645         /*
3646          * Special case for regular (non PI) futexes. The unlock path in
3647          * user space has two race scenarios:
3648          *
3649          * 1. The unlock path releases the user space futex value and
3650          *    before it can execute the futex() syscall to wake up
3651          *    waiters it is killed.
3652          *
3653          * 2. A woken up waiter is killed before it can acquire the
3654          *    futex in user space.
3655          *
3656          * In both cases the TID validation below prevents a wakeup of
3657          * potential waiters which can cause these waiters to block
3658          * forever.
3659          *
3660          * In both cases the following conditions are met:
3661          *
3662          *      1) task->robust_list->list_op_pending != NULL
3663          *         @pending_op == true
3664          *      2) User space futex value == 0
3665          *      3) Regular futex: @pi == false
3666          *
3667          * If these conditions are met, it is safe to attempt waking up a
3668          * potential waiter without touching the user space futex value and
3669          * trying to set the OWNER_DIED bit. The user space futex value is
3670          * uncontended and the rest of the user space mutex state is
3671          * consistent, so a woken waiter will just take over the
3672          * uncontended futex. Setting the OWNER_DIED bit would create
3673          * inconsistent state and malfunction of the user space owner died
3674          * handling.
3675          */
3676         if (pending_op && !pi && !uval) {
3677                 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3678                 return 0;
3679         }
3680
3681         if ((uval & FUTEX_TID_MASK) != task_pid_vnr(curr))
3682                 return 0;
3683
3684         /*
3685          * Ok, this dying thread is truly holding a futex
3686          * of interest. Set the OWNER_DIED bit atomically
3687          * via cmpxchg, and if the value had FUTEX_WAITERS
3688          * set, wake up a waiter (if any). (We have to do a
3689          * futex_wake() even if OWNER_DIED is already set -
3690          * to handle the rare but possible case of recursive
3691          * thread-death.) The rest of the cleanup is done in
3692          * userspace.
3693          */
3694         mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3695
3696         /*
3697          * We are not holding a lock here, but we want to have
3698          * the pagefault_disable/enable() protection because
3699          * we want to handle the fault gracefully. If the
3700          * access fails we try to fault in the futex with R/W
3701          * verification via get_user_pages. get_user() above
3702          * does not guarantee R/W access. If that fails we
3703          * give up and leave the futex locked.
3704          */
3705         if ((err = cmpxchg_futex_value_locked(&nval, uaddr, uval, mval))) {
3706                 switch (err) {
3707                 case -EFAULT:
3708                         if (fault_in_user_writeable(uaddr))
3709                                 return -1;
3710                         goto retry;
3711
3712                 case -EAGAIN:
3713                         cond_resched();
3714                         goto retry;
3715
3716                 default:
3717                         WARN_ON_ONCE(1);
3718                         return err;
3719                 }
3720         }
3721
3722         if (nval != uval)
3723                 goto retry;
3724
3725         /*
3726          * Wake robust non-PI futexes here. The wakeup of
3727          * PI futexes happens in exit_pi_state():
3728          */
3729         if (!pi && (uval & FUTEX_WAITERS))
3730                 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3731
3732         return 0;
3733 }
3734
3735 /*
3736  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3737  */
3738 static inline int fetch_robust_entry(struct robust_list __user **entry,
3739                                      struct robust_list __user * __user *head,
3740                                      unsigned int *pi)
3741 {
3742         unsigned long uentry;
3743
3744         if (get_user(uentry, (unsigned long __user *)head))
3745                 return -EFAULT;
3746
3747         *entry = (void __user *)(uentry & ~1UL);
3748         *pi = uentry & 1;
3749
3750         return 0;
3751 }
3752
3753 /*
3754  * Walk curr->robust_list (very carefully, it's a userspace list!)
3755  * and mark any locks found there dead, and notify any waiters.
3756  *
3757  * We silently return on any sign of list-walking problem.
3758  */
3759 static void exit_robust_list(struct task_struct *curr)
3760 {
3761         struct robust_list_head __user *head = curr->robust_list;
3762         struct robust_list __user *entry, *next_entry, *pending;
3763         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3764         unsigned int next_pi;
3765         unsigned long futex_offset;
3766         int rc;
3767
3768         if (!futex_cmpxchg_enabled)
3769                 return;
3770
3771         /*
3772          * Fetch the list head (which was registered earlier, via
3773          * sys_set_robust_list()):
3774          */
3775         if (fetch_robust_entry(&entry, &head->list.next, &pi))
3776                 return;
3777         /*
3778          * Fetch the relative futex offset:
3779          */
3780         if (get_user(futex_offset, &head->futex_offset))
3781                 return;
3782         /*
3783          * Fetch any possibly pending lock-add first, and handle it
3784          * if it exists:
3785          */
3786         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3787                 return;
3788
3789         next_entry = NULL;      /* avoid warning with gcc */
3790         while (entry != &head->list) {
3791                 /*
3792                  * Fetch the next entry in the list before calling
3793                  * handle_futex_death:
3794                  */
3795                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3796                 /*
3797                  * A pending lock might already be on the list, so
3798                  * don't process it twice:
3799                  */
3800                 if (entry != pending) {
3801                         if (handle_futex_death((void __user *)entry + futex_offset,
3802                                                 curr, pi, HANDLE_DEATH_LIST))
3803                                 return;
3804                 }
3805                 if (rc)
3806                         return;
3807                 entry = next_entry;
3808                 pi = next_pi;
3809                 /*
3810                  * Avoid excessively long or circular lists:
3811                  */
3812                 if (!--limit)
3813                         break;
3814
3815                 cond_resched();
3816         }
3817
3818         if (pending) {
3819                 handle_futex_death((void __user *)pending + futex_offset,
3820                                    curr, pip, HANDLE_DEATH_PENDING);
3821         }
3822 }
3823
3824 static void futex_cleanup(struct task_struct *tsk)
3825 {
3826         if (unlikely(tsk->robust_list)) {
3827                 exit_robust_list(tsk);
3828                 tsk->robust_list = NULL;
3829         }
3830
3831 #ifdef CONFIG_COMPAT
3832         if (unlikely(tsk->compat_robust_list)) {
3833                 compat_exit_robust_list(tsk);
3834                 tsk->compat_robust_list = NULL;
3835         }
3836 #endif
3837
3838         if (unlikely(!list_empty(&tsk->pi_state_list)))
3839                 exit_pi_state_list(tsk);
3840 }
3841
3842 /**
3843  * futex_exit_recursive - Set the tasks futex state to FUTEX_STATE_DEAD
3844  * @tsk:        task to set the state on
3845  *
3846  * Set the futex exit state of the task lockless. The futex waiter code
3847  * observes that state when a task is exiting and loops until the task has
3848  * actually finished the futex cleanup. The worst case for this is that the
3849  * waiter runs through the wait loop until the state becomes visible.
3850  *
3851  * This is called from the recursive fault handling path in do_exit().
3852  *
3853  * This is best effort. Either the futex exit code has run already or
3854  * not. If the OWNER_DIED bit has been set on the futex then the waiter can
3855  * take it over. If not, the problem is pushed back to user space. If the
3856  * futex exit code did not run yet, then an already queued waiter might
3857  * block forever, but there is nothing which can be done about that.
3858  */
3859 void futex_exit_recursive(struct task_struct *tsk)
3860 {
3861         /* If the state is FUTEX_STATE_EXITING then futex_exit_mutex is held */
3862         if (tsk->futex_state == FUTEX_STATE_EXITING)
3863                 mutex_unlock(&tsk->futex_exit_mutex);
3864         tsk->futex_state = FUTEX_STATE_DEAD;
3865 }
3866
3867 static void futex_cleanup_begin(struct task_struct *tsk)
3868 {
3869         /*
3870          * Prevent various race issues against a concurrent incoming waiter
3871          * including live locks by forcing the waiter to block on
3872          * tsk->futex_exit_mutex when it observes FUTEX_STATE_EXITING in
3873          * attach_to_pi_owner().
3874          */
3875         mutex_lock(&tsk->futex_exit_mutex);
3876
3877         /*
3878          * Switch the state to FUTEX_STATE_EXITING under tsk->pi_lock.
3879          *
3880          * This ensures that all subsequent checks of tsk->futex_state in
3881          * attach_to_pi_owner() must observe FUTEX_STATE_EXITING with
3882          * tsk->pi_lock held.
3883          *
3884          * It guarantees also that a pi_state which was queued right before
3885          * the state change under tsk->pi_lock by a concurrent waiter must
3886          * be observed in exit_pi_state_list().
3887          */
3888         raw_spin_lock_irq(&tsk->pi_lock);
3889         tsk->futex_state = FUTEX_STATE_EXITING;
3890         raw_spin_unlock_irq(&tsk->pi_lock);
3891 }
3892
3893 static void futex_cleanup_end(struct task_struct *tsk, int state)
3894 {
3895         /*
3896          * Lockless store. The only side effect is that an observer might
3897          * take another loop until it becomes visible.
3898          */
3899         tsk->futex_state = state;
3900         /*
3901          * Drop the exit protection. This unblocks waiters which observed
3902          * FUTEX_STATE_EXITING to reevaluate the state.
3903          */
3904         mutex_unlock(&tsk->futex_exit_mutex);
3905 }
3906
3907 void futex_exec_release(struct task_struct *tsk)
3908 {
3909         /*
3910          * The state handling is done for consistency, but in the case of
3911          * exec() there is no way to prevent further damage as the PID stays
3912          * the same. But for the unlikely and arguably buggy case that a
3913          * futex is held on exec(), this provides at least as much state
3914          * consistency protection which is possible.
3915          */
3916         futex_cleanup_begin(tsk);
3917         futex_cleanup(tsk);
3918         /*
3919          * Reset the state to FUTEX_STATE_OK. The task is alive and about
3920          * exec a new binary.
3921          */
3922         futex_cleanup_end(tsk, FUTEX_STATE_OK);
3923 }
3924
3925 void futex_exit_release(struct task_struct *tsk)
3926 {
3927         futex_cleanup_begin(tsk);
3928         futex_cleanup(tsk);
3929         futex_cleanup_end(tsk, FUTEX_STATE_DEAD);
3930 }
3931
3932 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3933                 u32 __user *uaddr2, u32 val2, u32 val3)
3934 {
3935         int cmd = op & FUTEX_CMD_MASK;
3936         unsigned int flags = 0;
3937
3938         if (!(op & FUTEX_PRIVATE_FLAG))
3939                 flags |= FLAGS_SHARED;
3940
3941         if (op & FUTEX_CLOCK_REALTIME) {
3942                 flags |= FLAGS_CLOCKRT;
3943                 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI &&
3944                     cmd != FUTEX_LOCK_PI2)
3945                         return -ENOSYS;
3946         }
3947
3948         switch (cmd) {
3949         case FUTEX_LOCK_PI:
3950         case FUTEX_LOCK_PI2:
3951         case FUTEX_UNLOCK_PI:
3952         case FUTEX_TRYLOCK_PI:
3953         case FUTEX_WAIT_REQUEUE_PI:
3954         case FUTEX_CMP_REQUEUE_PI:
3955                 if (!futex_cmpxchg_enabled)
3956                         return -ENOSYS;
3957         }
3958
3959         switch (cmd) {
3960         case FUTEX_WAIT:
3961                 val3 = FUTEX_BITSET_MATCH_ANY;
3962                 fallthrough;
3963         case FUTEX_WAIT_BITSET:
3964                 return futex_wait(uaddr, flags, val, timeout, val3);
3965         case FUTEX_WAKE:
3966                 val3 = FUTEX_BITSET_MATCH_ANY;
3967                 fallthrough;
3968         case FUTEX_WAKE_BITSET:
3969                 return futex_wake(uaddr, flags, val, val3);
3970         case FUTEX_REQUEUE:
3971                 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3972         case FUTEX_CMP_REQUEUE:
3973                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3974         case FUTEX_WAKE_OP:
3975                 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3976         case FUTEX_LOCK_PI:
3977                 flags |= FLAGS_CLOCKRT;
3978                 fallthrough;
3979         case FUTEX_LOCK_PI2:
3980                 return futex_lock_pi(uaddr, flags, timeout, 0);
3981         case FUTEX_UNLOCK_PI:
3982                 return futex_unlock_pi(uaddr, flags);
3983         case FUTEX_TRYLOCK_PI:
3984                 return futex_lock_pi(uaddr, flags, NULL, 1);
3985         case FUTEX_WAIT_REQUEUE_PI:
3986                 val3 = FUTEX_BITSET_MATCH_ANY;
3987                 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3988                                              uaddr2);
3989         case FUTEX_CMP_REQUEUE_PI:
3990                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3991         }
3992         return -ENOSYS;
3993 }
3994
3995 static __always_inline bool futex_cmd_has_timeout(u32 cmd)
3996 {
3997         switch (cmd) {
3998         case FUTEX_WAIT:
3999         case FUTEX_LOCK_PI:
4000         case FUTEX_LOCK_PI2:
4001         case FUTEX_WAIT_BITSET:
4002         case FUTEX_WAIT_REQUEUE_PI:
4003                 return true;
4004         }
4005         return false;
4006 }
4007
4008 static __always_inline int
4009 futex_init_timeout(u32 cmd, u32 op, struct timespec64 *ts, ktime_t *t)
4010 {
4011         if (!timespec64_valid(ts))
4012                 return -EINVAL;
4013
4014         *t = timespec64_to_ktime(*ts);
4015         if (cmd == FUTEX_WAIT)
4016                 *t = ktime_add_safe(ktime_get(), *t);
4017         else if (cmd != FUTEX_LOCK_PI && !(op & FUTEX_CLOCK_REALTIME))
4018                 *t = timens_ktime_to_host(CLOCK_MONOTONIC, *t);
4019         return 0;
4020 }
4021
4022 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
4023                 const struct __kernel_timespec __user *, utime,
4024                 u32 __user *, uaddr2, u32, val3)
4025 {
4026         int ret, cmd = op & FUTEX_CMD_MASK;
4027         ktime_t t, *tp = NULL;
4028         struct timespec64 ts;
4029
4030         if (utime && futex_cmd_has_timeout(cmd)) {
4031                 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
4032                         return -EFAULT;
4033                 if (get_timespec64(&ts, utime))
4034                         return -EFAULT;
4035                 ret = futex_init_timeout(cmd, op, &ts, &t);
4036                 if (ret)
4037                         return ret;
4038                 tp = &t;
4039         }
4040
4041         return do_futex(uaddr, op, val, tp, uaddr2, (unsigned long)utime, val3);
4042 }
4043
4044 #ifdef CONFIG_COMPAT
4045 /*
4046  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
4047  */
4048 static inline int
4049 compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
4050                    compat_uptr_t __user *head, unsigned int *pi)
4051 {
4052         if (get_user(*uentry, head))
4053                 return -EFAULT;
4054
4055         *entry = compat_ptr((*uentry) & ~1);
4056         *pi = (unsigned int)(*uentry) & 1;
4057
4058         return 0;
4059 }
4060
4061 static void __user *futex_uaddr(struct robust_list __user *entry,
4062                                 compat_long_t futex_offset)
4063 {
4064         compat_uptr_t base = ptr_to_compat(entry);
4065         void __user *uaddr = compat_ptr(base + futex_offset);
4066
4067         return uaddr;
4068 }
4069
4070 /*
4071  * Walk curr->robust_list (very carefully, it's a userspace list!)
4072  * and mark any locks found there dead, and notify any waiters.
4073  *
4074  * We silently return on any sign of list-walking problem.
4075  */
4076 static void compat_exit_robust_list(struct task_struct *curr)
4077 {
4078         struct compat_robust_list_head __user *head = curr->compat_robust_list;
4079         struct robust_list __user *entry, *next_entry, *pending;
4080         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
4081         unsigned int next_pi;
4082         compat_uptr_t uentry, next_uentry, upending;
4083         compat_long_t futex_offset;
4084         int rc;
4085
4086         if (!futex_cmpxchg_enabled)
4087                 return;
4088
4089         /*
4090          * Fetch the list head (which was registered earlier, via
4091          * sys_set_robust_list()):
4092          */
4093         if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
4094                 return;
4095         /*
4096          * Fetch the relative futex offset:
4097          */
4098         if (get_user(futex_offset, &head->futex_offset))
4099                 return;
4100         /*
4101          * Fetch any possibly pending lock-add first, and handle it
4102          * if it exists:
4103          */
4104         if (compat_fetch_robust_entry(&upending, &pending,
4105                                &head->list_op_pending, &pip))
4106                 return;
4107
4108         next_entry = NULL;      /* avoid warning with gcc */
4109         while (entry != (struct robust_list __user *) &head->list) {
4110                 /*
4111                  * Fetch the next entry in the list before calling
4112                  * handle_futex_death:
4113                  */
4114                 rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
4115                         (compat_uptr_t __user *)&entry->next, &next_pi);
4116                 /*
4117                  * A pending lock might already be on the list, so
4118                  * dont process it twice:
4119                  */
4120                 if (entry != pending) {
4121                         void __user *uaddr = futex_uaddr(entry, futex_offset);
4122
4123                         if (handle_futex_death(uaddr, curr, pi,
4124                                                HANDLE_DEATH_LIST))
4125                                 return;
4126                 }
4127                 if (rc)
4128                         return;
4129                 uentry = next_uentry;
4130                 entry = next_entry;
4131                 pi = next_pi;
4132                 /*
4133                  * Avoid excessively long or circular lists:
4134                  */
4135                 if (!--limit)
4136                         break;
4137
4138                 cond_resched();
4139         }
4140         if (pending) {
4141                 void __user *uaddr = futex_uaddr(pending, futex_offset);
4142
4143                 handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING);
4144         }
4145 }
4146
4147 COMPAT_SYSCALL_DEFINE2(set_robust_list,
4148                 struct compat_robust_list_head __user *, head,
4149                 compat_size_t, len)
4150 {
4151         if (!futex_cmpxchg_enabled)
4152                 return -ENOSYS;
4153
4154         if (unlikely(len != sizeof(*head)))
4155                 return -EINVAL;
4156
4157         current->compat_robust_list = head;
4158
4159         return 0;
4160 }
4161
4162 COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
4163                         compat_uptr_t __user *, head_ptr,
4164                         compat_size_t __user *, len_ptr)
4165 {
4166         struct compat_robust_list_head __user *head;
4167         unsigned long ret;
4168         struct task_struct *p;
4169
4170         if (!futex_cmpxchg_enabled)
4171                 return -ENOSYS;
4172
4173         rcu_read_lock();
4174
4175         ret = -ESRCH;
4176         if (!pid)
4177                 p = current;
4178         else {
4179                 p = find_task_by_vpid(pid);
4180                 if (!p)
4181                         goto err_unlock;
4182         }
4183
4184         ret = -EPERM;
4185         if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
4186                 goto err_unlock;
4187
4188         head = p->compat_robust_list;
4189         rcu_read_unlock();
4190
4191         if (put_user(sizeof(*head), len_ptr))
4192                 return -EFAULT;
4193         return put_user(ptr_to_compat(head), head_ptr);
4194
4195 err_unlock:
4196         rcu_read_unlock();
4197
4198         return ret;
4199 }
4200 #endif /* CONFIG_COMPAT */
4201
4202 #ifdef CONFIG_COMPAT_32BIT_TIME
4203 SYSCALL_DEFINE6(futex_time32, u32 __user *, uaddr, int, op, u32, val,
4204                 const struct old_timespec32 __user *, utime, u32 __user *, uaddr2,
4205                 u32, val3)
4206 {
4207         int ret, cmd = op & FUTEX_CMD_MASK;
4208         ktime_t t, *tp = NULL;
4209         struct timespec64 ts;
4210
4211         if (utime && futex_cmd_has_timeout(cmd)) {
4212                 if (get_old_timespec32(&ts, utime))
4213                         return -EFAULT;
4214                 ret = futex_init_timeout(cmd, op, &ts, &t);
4215                 if (ret)
4216                         return ret;
4217                 tp = &t;
4218         }
4219
4220         return do_futex(uaddr, op, val, tp, uaddr2, (unsigned long)utime, val3);
4221 }
4222 #endif /* CONFIG_COMPAT_32BIT_TIME */
4223
4224 static void __init futex_detect_cmpxchg(void)
4225 {
4226 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
4227         u32 curval;
4228
4229         /*
4230          * This will fail and we want it. Some arch implementations do
4231          * runtime detection of the futex_atomic_cmpxchg_inatomic()
4232          * functionality. We want to know that before we call in any
4233          * of the complex code paths. Also we want to prevent
4234          * registration of robust lists in that case. NULL is
4235          * guaranteed to fault and we get -EFAULT on functional
4236          * implementation, the non-functional ones will return
4237          * -ENOSYS.
4238          */
4239         if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
4240                 futex_cmpxchg_enabled = 1;
4241 #endif
4242 }
4243
4244 static int __init futex_init(void)
4245 {
4246         unsigned int futex_shift;
4247         unsigned long i;
4248
4249 #if CONFIG_BASE_SMALL
4250         futex_hashsize = 16;
4251 #else
4252         futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
4253 #endif
4254
4255         futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
4256                                                futex_hashsize, 0,
4257                                                futex_hashsize < 256 ? HASH_SMALL : 0,
4258                                                &futex_shift, NULL,
4259                                                futex_hashsize, futex_hashsize);
4260         futex_hashsize = 1UL << futex_shift;
4261
4262         futex_detect_cmpxchg();
4263
4264         for (i = 0; i < futex_hashsize; i++) {
4265                 atomic_set(&futex_queues[i].waiters, 0);
4266                 plist_head_init(&futex_queues[i].chain);
4267                 spin_lock_init(&futex_queues[i].lock);
4268         }
4269
4270         return 0;
4271 }
4272 core_initcall(futex_init);