Merge remote-tracking branch 'torvalds/master' into perf/core
[linux-2.6-microblaze.git] / kernel / events / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57
58 #include "internal.h"
59
60 #include <asm/irq_regs.h>
61
62 typedef int (*remote_function_f)(void *);
63
64 struct remote_function_call {
65         struct task_struct      *p;
66         remote_function_f       func;
67         void                    *info;
68         int                     ret;
69 };
70
71 static void remote_function(void *data)
72 {
73         struct remote_function_call *tfc = data;
74         struct task_struct *p = tfc->p;
75
76         if (p) {
77                 /* -EAGAIN */
78                 if (task_cpu(p) != smp_processor_id())
79                         return;
80
81                 /*
82                  * Now that we're on right CPU with IRQs disabled, we can test
83                  * if we hit the right task without races.
84                  */
85
86                 tfc->ret = -ESRCH; /* No such (running) process */
87                 if (p != current)
88                         return;
89         }
90
91         tfc->ret = tfc->func(tfc->info);
92 }
93
94 /**
95  * task_function_call - call a function on the cpu on which a task runs
96  * @p:          the task to evaluate
97  * @func:       the function to be called
98  * @info:       the function call argument
99  *
100  * Calls the function @func when the task is currently running. This might
101  * be on the current CPU, which just calls the function directly.  This will
102  * retry due to any failures in smp_call_function_single(), such as if the
103  * task_cpu() goes offline concurrently.
104  *
105  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
106  */
107 static int
108 task_function_call(struct task_struct *p, remote_function_f func, void *info)
109 {
110         struct remote_function_call data = {
111                 .p      = p,
112                 .func   = func,
113                 .info   = info,
114                 .ret    = -EAGAIN,
115         };
116         int ret;
117
118         for (;;) {
119                 ret = smp_call_function_single(task_cpu(p), remote_function,
120                                                &data, 1);
121                 if (!ret)
122                         ret = data.ret;
123
124                 if (ret != -EAGAIN)
125                         break;
126
127                 cond_resched();
128         }
129
130         return ret;
131 }
132
133 /**
134  * cpu_function_call - call a function on the cpu
135  * @func:       the function to be called
136  * @info:       the function call argument
137  *
138  * Calls the function @func on the remote cpu.
139  *
140  * returns: @func return value or -ENXIO when the cpu is offline
141  */
142 static int cpu_function_call(int cpu, remote_function_f func, void *info)
143 {
144         struct remote_function_call data = {
145                 .p      = NULL,
146                 .func   = func,
147                 .info   = info,
148                 .ret    = -ENXIO, /* No such CPU */
149         };
150
151         smp_call_function_single(cpu, remote_function, &data, 1);
152
153         return data.ret;
154 }
155
156 static inline struct perf_cpu_context *
157 __get_cpu_context(struct perf_event_context *ctx)
158 {
159         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
160 }
161
162 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
163                           struct perf_event_context *ctx)
164 {
165         raw_spin_lock(&cpuctx->ctx.lock);
166         if (ctx)
167                 raw_spin_lock(&ctx->lock);
168 }
169
170 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
171                             struct perf_event_context *ctx)
172 {
173         if (ctx)
174                 raw_spin_unlock(&ctx->lock);
175         raw_spin_unlock(&cpuctx->ctx.lock);
176 }
177
178 #define TASK_TOMBSTONE ((void *)-1L)
179
180 static bool is_kernel_event(struct perf_event *event)
181 {
182         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
183 }
184
185 /*
186  * On task ctx scheduling...
187  *
188  * When !ctx->nr_events a task context will not be scheduled. This means
189  * we can disable the scheduler hooks (for performance) without leaving
190  * pending task ctx state.
191  *
192  * This however results in two special cases:
193  *
194  *  - removing the last event from a task ctx; this is relatively straight
195  *    forward and is done in __perf_remove_from_context.
196  *
197  *  - adding the first event to a task ctx; this is tricky because we cannot
198  *    rely on ctx->is_active and therefore cannot use event_function_call().
199  *    See perf_install_in_context().
200  *
201  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
202  */
203
204 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
205                         struct perf_event_context *, void *);
206
207 struct event_function_struct {
208         struct perf_event *event;
209         event_f func;
210         void *data;
211 };
212
213 static int event_function(void *info)
214 {
215         struct event_function_struct *efs = info;
216         struct perf_event *event = efs->event;
217         struct perf_event_context *ctx = event->ctx;
218         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
219         struct perf_event_context *task_ctx = cpuctx->task_ctx;
220         int ret = 0;
221
222         lockdep_assert_irqs_disabled();
223
224         perf_ctx_lock(cpuctx, task_ctx);
225         /*
226          * Since we do the IPI call without holding ctx->lock things can have
227          * changed, double check we hit the task we set out to hit.
228          */
229         if (ctx->task) {
230                 if (ctx->task != current) {
231                         ret = -ESRCH;
232                         goto unlock;
233                 }
234
235                 /*
236                  * We only use event_function_call() on established contexts,
237                  * and event_function() is only ever called when active (or
238                  * rather, we'll have bailed in task_function_call() or the
239                  * above ctx->task != current test), therefore we must have
240                  * ctx->is_active here.
241                  */
242                 WARN_ON_ONCE(!ctx->is_active);
243                 /*
244                  * And since we have ctx->is_active, cpuctx->task_ctx must
245                  * match.
246                  */
247                 WARN_ON_ONCE(task_ctx != ctx);
248         } else {
249                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
250         }
251
252         efs->func(event, cpuctx, ctx, efs->data);
253 unlock:
254         perf_ctx_unlock(cpuctx, task_ctx);
255
256         return ret;
257 }
258
259 static void event_function_call(struct perf_event *event, event_f func, void *data)
260 {
261         struct perf_event_context *ctx = event->ctx;
262         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
263         struct event_function_struct efs = {
264                 .event = event,
265                 .func = func,
266                 .data = data,
267         };
268
269         if (!event->parent) {
270                 /*
271                  * If this is a !child event, we must hold ctx::mutex to
272                  * stabilize the event->ctx relation. See
273                  * perf_event_ctx_lock().
274                  */
275                 lockdep_assert_held(&ctx->mutex);
276         }
277
278         if (!task) {
279                 cpu_function_call(event->cpu, event_function, &efs);
280                 return;
281         }
282
283         if (task == TASK_TOMBSTONE)
284                 return;
285
286 again:
287         if (!task_function_call(task, event_function, &efs))
288                 return;
289
290         raw_spin_lock_irq(&ctx->lock);
291         /*
292          * Reload the task pointer, it might have been changed by
293          * a concurrent perf_event_context_sched_out().
294          */
295         task = ctx->task;
296         if (task == TASK_TOMBSTONE) {
297                 raw_spin_unlock_irq(&ctx->lock);
298                 return;
299         }
300         if (ctx->is_active) {
301                 raw_spin_unlock_irq(&ctx->lock);
302                 goto again;
303         }
304         func(event, NULL, ctx, data);
305         raw_spin_unlock_irq(&ctx->lock);
306 }
307
308 /*
309  * Similar to event_function_call() + event_function(), but hard assumes IRQs
310  * are already disabled and we're on the right CPU.
311  */
312 static void event_function_local(struct perf_event *event, event_f func, void *data)
313 {
314         struct perf_event_context *ctx = event->ctx;
315         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
316         struct task_struct *task = READ_ONCE(ctx->task);
317         struct perf_event_context *task_ctx = NULL;
318
319         lockdep_assert_irqs_disabled();
320
321         if (task) {
322                 if (task == TASK_TOMBSTONE)
323                         return;
324
325                 task_ctx = ctx;
326         }
327
328         perf_ctx_lock(cpuctx, task_ctx);
329
330         task = ctx->task;
331         if (task == TASK_TOMBSTONE)
332                 goto unlock;
333
334         if (task) {
335                 /*
336                  * We must be either inactive or active and the right task,
337                  * otherwise we're screwed, since we cannot IPI to somewhere
338                  * else.
339                  */
340                 if (ctx->is_active) {
341                         if (WARN_ON_ONCE(task != current))
342                                 goto unlock;
343
344                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
345                                 goto unlock;
346                 }
347         } else {
348                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
349         }
350
351         func(event, cpuctx, ctx, data);
352 unlock:
353         perf_ctx_unlock(cpuctx, task_ctx);
354 }
355
356 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
357                        PERF_FLAG_FD_OUTPUT  |\
358                        PERF_FLAG_PID_CGROUP |\
359                        PERF_FLAG_FD_CLOEXEC)
360
361 /*
362  * branch priv levels that need permission checks
363  */
364 #define PERF_SAMPLE_BRANCH_PERM_PLM \
365         (PERF_SAMPLE_BRANCH_KERNEL |\
366          PERF_SAMPLE_BRANCH_HV)
367
368 enum event_type_t {
369         EVENT_FLEXIBLE = 0x1,
370         EVENT_PINNED = 0x2,
371         EVENT_TIME = 0x4,
372         /* see ctx_resched() for details */
373         EVENT_CPU = 0x8,
374         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
375 };
376
377 /*
378  * perf_sched_events : >0 events exist
379  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
380  */
381
382 static void perf_sched_delayed(struct work_struct *work);
383 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
384 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
385 static DEFINE_MUTEX(perf_sched_mutex);
386 static atomic_t perf_sched_count;
387
388 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
389 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
390 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
391
392 static atomic_t nr_mmap_events __read_mostly;
393 static atomic_t nr_comm_events __read_mostly;
394 static atomic_t nr_namespaces_events __read_mostly;
395 static atomic_t nr_task_events __read_mostly;
396 static atomic_t nr_freq_events __read_mostly;
397 static atomic_t nr_switch_events __read_mostly;
398 static atomic_t nr_ksymbol_events __read_mostly;
399 static atomic_t nr_bpf_events __read_mostly;
400 static atomic_t nr_cgroup_events __read_mostly;
401 static atomic_t nr_text_poke_events __read_mostly;
402 static atomic_t nr_build_id_events __read_mostly;
403
404 static LIST_HEAD(pmus);
405 static DEFINE_MUTEX(pmus_lock);
406 static struct srcu_struct pmus_srcu;
407 static cpumask_var_t perf_online_mask;
408 static struct kmem_cache *perf_event_cache;
409
410 /*
411  * perf event paranoia level:
412  *  -1 - not paranoid at all
413  *   0 - disallow raw tracepoint access for unpriv
414  *   1 - disallow cpu events for unpriv
415  *   2 - disallow kernel profiling for unpriv
416  */
417 int sysctl_perf_event_paranoid __read_mostly = 2;
418
419 /* Minimum for 512 kiB + 1 user control page */
420 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
421
422 /*
423  * max perf event sample rate
424  */
425 #define DEFAULT_MAX_SAMPLE_RATE         100000
426 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
427 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
428
429 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
430
431 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
432 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
433
434 static int perf_sample_allowed_ns __read_mostly =
435         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
436
437 static void update_perf_cpu_limits(void)
438 {
439         u64 tmp = perf_sample_period_ns;
440
441         tmp *= sysctl_perf_cpu_time_max_percent;
442         tmp = div_u64(tmp, 100);
443         if (!tmp)
444                 tmp = 1;
445
446         WRITE_ONCE(perf_sample_allowed_ns, tmp);
447 }
448
449 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
450
451 int perf_proc_update_handler(struct ctl_table *table, int write,
452                 void *buffer, size_t *lenp, loff_t *ppos)
453 {
454         int ret;
455         int perf_cpu = sysctl_perf_cpu_time_max_percent;
456         /*
457          * If throttling is disabled don't allow the write:
458          */
459         if (write && (perf_cpu == 100 || perf_cpu == 0))
460                 return -EINVAL;
461
462         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
463         if (ret || !write)
464                 return ret;
465
466         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
467         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
468         update_perf_cpu_limits();
469
470         return 0;
471 }
472
473 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
474
475 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
476                 void *buffer, size_t *lenp, loff_t *ppos)
477 {
478         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
479
480         if (ret || !write)
481                 return ret;
482
483         if (sysctl_perf_cpu_time_max_percent == 100 ||
484             sysctl_perf_cpu_time_max_percent == 0) {
485                 printk(KERN_WARNING
486                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
487                 WRITE_ONCE(perf_sample_allowed_ns, 0);
488         } else {
489                 update_perf_cpu_limits();
490         }
491
492         return 0;
493 }
494
495 /*
496  * perf samples are done in some very critical code paths (NMIs).
497  * If they take too much CPU time, the system can lock up and not
498  * get any real work done.  This will drop the sample rate when
499  * we detect that events are taking too long.
500  */
501 #define NR_ACCUMULATED_SAMPLES 128
502 static DEFINE_PER_CPU(u64, running_sample_length);
503
504 static u64 __report_avg;
505 static u64 __report_allowed;
506
507 static void perf_duration_warn(struct irq_work *w)
508 {
509         printk_ratelimited(KERN_INFO
510                 "perf: interrupt took too long (%lld > %lld), lowering "
511                 "kernel.perf_event_max_sample_rate to %d\n",
512                 __report_avg, __report_allowed,
513                 sysctl_perf_event_sample_rate);
514 }
515
516 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
517
518 void perf_sample_event_took(u64 sample_len_ns)
519 {
520         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
521         u64 running_len;
522         u64 avg_len;
523         u32 max;
524
525         if (max_len == 0)
526                 return;
527
528         /* Decay the counter by 1 average sample. */
529         running_len = __this_cpu_read(running_sample_length);
530         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
531         running_len += sample_len_ns;
532         __this_cpu_write(running_sample_length, running_len);
533
534         /*
535          * Note: this will be biased artifically low until we have
536          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
537          * from having to maintain a count.
538          */
539         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
540         if (avg_len <= max_len)
541                 return;
542
543         __report_avg = avg_len;
544         __report_allowed = max_len;
545
546         /*
547          * Compute a throttle threshold 25% below the current duration.
548          */
549         avg_len += avg_len / 4;
550         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
551         if (avg_len < max)
552                 max /= (u32)avg_len;
553         else
554                 max = 1;
555
556         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
557         WRITE_ONCE(max_samples_per_tick, max);
558
559         sysctl_perf_event_sample_rate = max * HZ;
560         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
561
562         if (!irq_work_queue(&perf_duration_work)) {
563                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
564                              "kernel.perf_event_max_sample_rate to %d\n",
565                              __report_avg, __report_allowed,
566                              sysctl_perf_event_sample_rate);
567         }
568 }
569
570 static atomic64_t perf_event_id;
571
572 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
573                               enum event_type_t event_type);
574
575 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
576                              enum event_type_t event_type,
577                              struct task_struct *task);
578
579 static void update_context_time(struct perf_event_context *ctx);
580 static u64 perf_event_time(struct perf_event *event);
581
582 void __weak perf_event_print_debug(void)        { }
583
584 static inline u64 perf_clock(void)
585 {
586         return local_clock();
587 }
588
589 static inline u64 perf_event_clock(struct perf_event *event)
590 {
591         return event->clock();
592 }
593
594 /*
595  * State based event timekeeping...
596  *
597  * The basic idea is to use event->state to determine which (if any) time
598  * fields to increment with the current delta. This means we only need to
599  * update timestamps when we change state or when they are explicitly requested
600  * (read).
601  *
602  * Event groups make things a little more complicated, but not terribly so. The
603  * rules for a group are that if the group leader is OFF the entire group is
604  * OFF, irrespecive of what the group member states are. This results in
605  * __perf_effective_state().
606  *
607  * A futher ramification is that when a group leader flips between OFF and
608  * !OFF, we need to update all group member times.
609  *
610  *
611  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
612  * need to make sure the relevant context time is updated before we try and
613  * update our timestamps.
614  */
615
616 static __always_inline enum perf_event_state
617 __perf_effective_state(struct perf_event *event)
618 {
619         struct perf_event *leader = event->group_leader;
620
621         if (leader->state <= PERF_EVENT_STATE_OFF)
622                 return leader->state;
623
624         return event->state;
625 }
626
627 static __always_inline void
628 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
629 {
630         enum perf_event_state state = __perf_effective_state(event);
631         u64 delta = now - event->tstamp;
632
633         *enabled = event->total_time_enabled;
634         if (state >= PERF_EVENT_STATE_INACTIVE)
635                 *enabled += delta;
636
637         *running = event->total_time_running;
638         if (state >= PERF_EVENT_STATE_ACTIVE)
639                 *running += delta;
640 }
641
642 static void perf_event_update_time(struct perf_event *event)
643 {
644         u64 now = perf_event_time(event);
645
646         __perf_update_times(event, now, &event->total_time_enabled,
647                                         &event->total_time_running);
648         event->tstamp = now;
649 }
650
651 static void perf_event_update_sibling_time(struct perf_event *leader)
652 {
653         struct perf_event *sibling;
654
655         for_each_sibling_event(sibling, leader)
656                 perf_event_update_time(sibling);
657 }
658
659 static void
660 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
661 {
662         if (event->state == state)
663                 return;
664
665         perf_event_update_time(event);
666         /*
667          * If a group leader gets enabled/disabled all its siblings
668          * are affected too.
669          */
670         if ((event->state < 0) ^ (state < 0))
671                 perf_event_update_sibling_time(event);
672
673         WRITE_ONCE(event->state, state);
674 }
675
676 #ifdef CONFIG_CGROUP_PERF
677
678 static inline bool
679 perf_cgroup_match(struct perf_event *event)
680 {
681         struct perf_event_context *ctx = event->ctx;
682         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
683
684         /* @event doesn't care about cgroup */
685         if (!event->cgrp)
686                 return true;
687
688         /* wants specific cgroup scope but @cpuctx isn't associated with any */
689         if (!cpuctx->cgrp)
690                 return false;
691
692         /*
693          * Cgroup scoping is recursive.  An event enabled for a cgroup is
694          * also enabled for all its descendant cgroups.  If @cpuctx's
695          * cgroup is a descendant of @event's (the test covers identity
696          * case), it's a match.
697          */
698         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
699                                     event->cgrp->css.cgroup);
700 }
701
702 static inline void perf_detach_cgroup(struct perf_event *event)
703 {
704         css_put(&event->cgrp->css);
705         event->cgrp = NULL;
706 }
707
708 static inline int is_cgroup_event(struct perf_event *event)
709 {
710         return event->cgrp != NULL;
711 }
712
713 static inline u64 perf_cgroup_event_time(struct perf_event *event)
714 {
715         struct perf_cgroup_info *t;
716
717         t = per_cpu_ptr(event->cgrp->info, event->cpu);
718         return t->time;
719 }
720
721 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
722 {
723         struct perf_cgroup_info *info;
724         u64 now;
725
726         now = perf_clock();
727
728         info = this_cpu_ptr(cgrp->info);
729
730         info->time += now - info->timestamp;
731         info->timestamp = now;
732 }
733
734 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
735 {
736         struct perf_cgroup *cgrp = cpuctx->cgrp;
737         struct cgroup_subsys_state *css;
738
739         if (cgrp) {
740                 for (css = &cgrp->css; css; css = css->parent) {
741                         cgrp = container_of(css, struct perf_cgroup, css);
742                         __update_cgrp_time(cgrp);
743                 }
744         }
745 }
746
747 static inline void update_cgrp_time_from_event(struct perf_event *event)
748 {
749         struct perf_cgroup *cgrp;
750
751         /*
752          * ensure we access cgroup data only when needed and
753          * when we know the cgroup is pinned (css_get)
754          */
755         if (!is_cgroup_event(event))
756                 return;
757
758         cgrp = perf_cgroup_from_task(current, event->ctx);
759         /*
760          * Do not update time when cgroup is not active
761          */
762         if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
763                 __update_cgrp_time(event->cgrp);
764 }
765
766 static inline void
767 perf_cgroup_set_timestamp(struct task_struct *task,
768                           struct perf_event_context *ctx)
769 {
770         struct perf_cgroup *cgrp;
771         struct perf_cgroup_info *info;
772         struct cgroup_subsys_state *css;
773
774         /*
775          * ctx->lock held by caller
776          * ensure we do not access cgroup data
777          * unless we have the cgroup pinned (css_get)
778          */
779         if (!task || !ctx->nr_cgroups)
780                 return;
781
782         cgrp = perf_cgroup_from_task(task, ctx);
783
784         for (css = &cgrp->css; css; css = css->parent) {
785                 cgrp = container_of(css, struct perf_cgroup, css);
786                 info = this_cpu_ptr(cgrp->info);
787                 info->timestamp = ctx->timestamp;
788         }
789 }
790
791 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
792
793 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
794 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
795
796 /*
797  * reschedule events based on the cgroup constraint of task.
798  *
799  * mode SWOUT : schedule out everything
800  * mode SWIN : schedule in based on cgroup for next
801  */
802 static void perf_cgroup_switch(struct task_struct *task, int mode)
803 {
804         struct perf_cpu_context *cpuctx;
805         struct list_head *list;
806         unsigned long flags;
807
808         /*
809          * Disable interrupts and preemption to avoid this CPU's
810          * cgrp_cpuctx_entry to change under us.
811          */
812         local_irq_save(flags);
813
814         list = this_cpu_ptr(&cgrp_cpuctx_list);
815         list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
816                 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
817
818                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
819                 perf_pmu_disable(cpuctx->ctx.pmu);
820
821                 if (mode & PERF_CGROUP_SWOUT) {
822                         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
823                         /*
824                          * must not be done before ctxswout due
825                          * to event_filter_match() in event_sched_out()
826                          */
827                         cpuctx->cgrp = NULL;
828                 }
829
830                 if (mode & PERF_CGROUP_SWIN) {
831                         WARN_ON_ONCE(cpuctx->cgrp);
832                         /*
833                          * set cgrp before ctxsw in to allow
834                          * event_filter_match() to not have to pass
835                          * task around
836                          * we pass the cpuctx->ctx to perf_cgroup_from_task()
837                          * because cgorup events are only per-cpu
838                          */
839                         cpuctx->cgrp = perf_cgroup_from_task(task,
840                                                              &cpuctx->ctx);
841                         cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
842                 }
843                 perf_pmu_enable(cpuctx->ctx.pmu);
844                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
845         }
846
847         local_irq_restore(flags);
848 }
849
850 static inline void perf_cgroup_sched_out(struct task_struct *task,
851                                          struct task_struct *next)
852 {
853         struct perf_cgroup *cgrp1;
854         struct perf_cgroup *cgrp2 = NULL;
855
856         rcu_read_lock();
857         /*
858          * we come here when we know perf_cgroup_events > 0
859          * we do not need to pass the ctx here because we know
860          * we are holding the rcu lock
861          */
862         cgrp1 = perf_cgroup_from_task(task, NULL);
863         cgrp2 = perf_cgroup_from_task(next, NULL);
864
865         /*
866          * only schedule out current cgroup events if we know
867          * that we are switching to a different cgroup. Otherwise,
868          * do no touch the cgroup events.
869          */
870         if (cgrp1 != cgrp2)
871                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
872
873         rcu_read_unlock();
874 }
875
876 static inline void perf_cgroup_sched_in(struct task_struct *prev,
877                                         struct task_struct *task)
878 {
879         struct perf_cgroup *cgrp1;
880         struct perf_cgroup *cgrp2 = NULL;
881
882         rcu_read_lock();
883         /*
884          * we come here when we know perf_cgroup_events > 0
885          * we do not need to pass the ctx here because we know
886          * we are holding the rcu lock
887          */
888         cgrp1 = perf_cgroup_from_task(task, NULL);
889         cgrp2 = perf_cgroup_from_task(prev, NULL);
890
891         /*
892          * only need to schedule in cgroup events if we are changing
893          * cgroup during ctxsw. Cgroup events were not scheduled
894          * out of ctxsw out if that was not the case.
895          */
896         if (cgrp1 != cgrp2)
897                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
898
899         rcu_read_unlock();
900 }
901
902 static int perf_cgroup_ensure_storage(struct perf_event *event,
903                                 struct cgroup_subsys_state *css)
904 {
905         struct perf_cpu_context *cpuctx;
906         struct perf_event **storage;
907         int cpu, heap_size, ret = 0;
908
909         /*
910          * Allow storage to have sufficent space for an iterator for each
911          * possibly nested cgroup plus an iterator for events with no cgroup.
912          */
913         for (heap_size = 1; css; css = css->parent)
914                 heap_size++;
915
916         for_each_possible_cpu(cpu) {
917                 cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu);
918                 if (heap_size <= cpuctx->heap_size)
919                         continue;
920
921                 storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
922                                        GFP_KERNEL, cpu_to_node(cpu));
923                 if (!storage) {
924                         ret = -ENOMEM;
925                         break;
926                 }
927
928                 raw_spin_lock_irq(&cpuctx->ctx.lock);
929                 if (cpuctx->heap_size < heap_size) {
930                         swap(cpuctx->heap, storage);
931                         if (storage == cpuctx->heap_default)
932                                 storage = NULL;
933                         cpuctx->heap_size = heap_size;
934                 }
935                 raw_spin_unlock_irq(&cpuctx->ctx.lock);
936
937                 kfree(storage);
938         }
939
940         return ret;
941 }
942
943 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
944                                       struct perf_event_attr *attr,
945                                       struct perf_event *group_leader)
946 {
947         struct perf_cgroup *cgrp;
948         struct cgroup_subsys_state *css;
949         struct fd f = fdget(fd);
950         int ret = 0;
951
952         if (!f.file)
953                 return -EBADF;
954
955         css = css_tryget_online_from_dir(f.file->f_path.dentry,
956                                          &perf_event_cgrp_subsys);
957         if (IS_ERR(css)) {
958                 ret = PTR_ERR(css);
959                 goto out;
960         }
961
962         ret = perf_cgroup_ensure_storage(event, css);
963         if (ret)
964                 goto out;
965
966         cgrp = container_of(css, struct perf_cgroup, css);
967         event->cgrp = cgrp;
968
969         /*
970          * all events in a group must monitor
971          * the same cgroup because a task belongs
972          * to only one perf cgroup at a time
973          */
974         if (group_leader && group_leader->cgrp != cgrp) {
975                 perf_detach_cgroup(event);
976                 ret = -EINVAL;
977         }
978 out:
979         fdput(f);
980         return ret;
981 }
982
983 static inline void
984 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
985 {
986         struct perf_cgroup_info *t;
987         t = per_cpu_ptr(event->cgrp->info, event->cpu);
988         event->shadow_ctx_time = now - t->timestamp;
989 }
990
991 static inline void
992 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
993 {
994         struct perf_cpu_context *cpuctx;
995
996         if (!is_cgroup_event(event))
997                 return;
998
999         /*
1000          * Because cgroup events are always per-cpu events,
1001          * @ctx == &cpuctx->ctx.
1002          */
1003         cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1004
1005         /*
1006          * Since setting cpuctx->cgrp is conditional on the current @cgrp
1007          * matching the event's cgroup, we must do this for every new event,
1008          * because if the first would mismatch, the second would not try again
1009          * and we would leave cpuctx->cgrp unset.
1010          */
1011         if (ctx->is_active && !cpuctx->cgrp) {
1012                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
1013
1014                 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
1015                         cpuctx->cgrp = cgrp;
1016         }
1017
1018         if (ctx->nr_cgroups++)
1019                 return;
1020
1021         list_add(&cpuctx->cgrp_cpuctx_entry,
1022                         per_cpu_ptr(&cgrp_cpuctx_list, event->cpu));
1023 }
1024
1025 static inline void
1026 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1027 {
1028         struct perf_cpu_context *cpuctx;
1029
1030         if (!is_cgroup_event(event))
1031                 return;
1032
1033         /*
1034          * Because cgroup events are always per-cpu events,
1035          * @ctx == &cpuctx->ctx.
1036          */
1037         cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1038
1039         if (--ctx->nr_cgroups)
1040                 return;
1041
1042         if (ctx->is_active && cpuctx->cgrp)
1043                 cpuctx->cgrp = NULL;
1044
1045         list_del(&cpuctx->cgrp_cpuctx_entry);
1046 }
1047
1048 #else /* !CONFIG_CGROUP_PERF */
1049
1050 static inline bool
1051 perf_cgroup_match(struct perf_event *event)
1052 {
1053         return true;
1054 }
1055
1056 static inline void perf_detach_cgroup(struct perf_event *event)
1057 {}
1058
1059 static inline int is_cgroup_event(struct perf_event *event)
1060 {
1061         return 0;
1062 }
1063
1064 static inline void update_cgrp_time_from_event(struct perf_event *event)
1065 {
1066 }
1067
1068 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1069 {
1070 }
1071
1072 static inline void perf_cgroup_sched_out(struct task_struct *task,
1073                                          struct task_struct *next)
1074 {
1075 }
1076
1077 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1078                                         struct task_struct *task)
1079 {
1080 }
1081
1082 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1083                                       struct perf_event_attr *attr,
1084                                       struct perf_event *group_leader)
1085 {
1086         return -EINVAL;
1087 }
1088
1089 static inline void
1090 perf_cgroup_set_timestamp(struct task_struct *task,
1091                           struct perf_event_context *ctx)
1092 {
1093 }
1094
1095 static inline void
1096 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1097 {
1098 }
1099
1100 static inline void
1101 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1102 {
1103 }
1104
1105 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1106 {
1107         return 0;
1108 }
1109
1110 static inline void
1111 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1112 {
1113 }
1114
1115 static inline void
1116 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1117 {
1118 }
1119 #endif
1120
1121 /*
1122  * set default to be dependent on timer tick just
1123  * like original code
1124  */
1125 #define PERF_CPU_HRTIMER (1000 / HZ)
1126 /*
1127  * function must be called with interrupts disabled
1128  */
1129 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1130 {
1131         struct perf_cpu_context *cpuctx;
1132         bool rotations;
1133
1134         lockdep_assert_irqs_disabled();
1135
1136         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1137         rotations = perf_rotate_context(cpuctx);
1138
1139         raw_spin_lock(&cpuctx->hrtimer_lock);
1140         if (rotations)
1141                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1142         else
1143                 cpuctx->hrtimer_active = 0;
1144         raw_spin_unlock(&cpuctx->hrtimer_lock);
1145
1146         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1147 }
1148
1149 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1150 {
1151         struct hrtimer *timer = &cpuctx->hrtimer;
1152         struct pmu *pmu = cpuctx->ctx.pmu;
1153         u64 interval;
1154
1155         /* no multiplexing needed for SW PMU */
1156         if (pmu->task_ctx_nr == perf_sw_context)
1157                 return;
1158
1159         /*
1160          * check default is sane, if not set then force to
1161          * default interval (1/tick)
1162          */
1163         interval = pmu->hrtimer_interval_ms;
1164         if (interval < 1)
1165                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1166
1167         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1168
1169         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1170         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1171         timer->function = perf_mux_hrtimer_handler;
1172 }
1173
1174 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1175 {
1176         struct hrtimer *timer = &cpuctx->hrtimer;
1177         struct pmu *pmu = cpuctx->ctx.pmu;
1178         unsigned long flags;
1179
1180         /* not for SW PMU */
1181         if (pmu->task_ctx_nr == perf_sw_context)
1182                 return 0;
1183
1184         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1185         if (!cpuctx->hrtimer_active) {
1186                 cpuctx->hrtimer_active = 1;
1187                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1188                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1189         }
1190         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1191
1192         return 0;
1193 }
1194
1195 void perf_pmu_disable(struct pmu *pmu)
1196 {
1197         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1198         if (!(*count)++)
1199                 pmu->pmu_disable(pmu);
1200 }
1201
1202 void perf_pmu_enable(struct pmu *pmu)
1203 {
1204         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1205         if (!--(*count))
1206                 pmu->pmu_enable(pmu);
1207 }
1208
1209 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1210
1211 /*
1212  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1213  * perf_event_task_tick() are fully serialized because they're strictly cpu
1214  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1215  * disabled, while perf_event_task_tick is called from IRQ context.
1216  */
1217 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1218 {
1219         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1220
1221         lockdep_assert_irqs_disabled();
1222
1223         WARN_ON(!list_empty(&ctx->active_ctx_list));
1224
1225         list_add(&ctx->active_ctx_list, head);
1226 }
1227
1228 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1229 {
1230         lockdep_assert_irqs_disabled();
1231
1232         WARN_ON(list_empty(&ctx->active_ctx_list));
1233
1234         list_del_init(&ctx->active_ctx_list);
1235 }
1236
1237 static void get_ctx(struct perf_event_context *ctx)
1238 {
1239         refcount_inc(&ctx->refcount);
1240 }
1241
1242 static void *alloc_task_ctx_data(struct pmu *pmu)
1243 {
1244         if (pmu->task_ctx_cache)
1245                 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1246
1247         return NULL;
1248 }
1249
1250 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1251 {
1252         if (pmu->task_ctx_cache && task_ctx_data)
1253                 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1254 }
1255
1256 static void free_ctx(struct rcu_head *head)
1257 {
1258         struct perf_event_context *ctx;
1259
1260         ctx = container_of(head, struct perf_event_context, rcu_head);
1261         free_task_ctx_data(ctx->pmu, ctx->task_ctx_data);
1262         kfree(ctx);
1263 }
1264
1265 static void put_ctx(struct perf_event_context *ctx)
1266 {
1267         if (refcount_dec_and_test(&ctx->refcount)) {
1268                 if (ctx->parent_ctx)
1269                         put_ctx(ctx->parent_ctx);
1270                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1271                         put_task_struct(ctx->task);
1272                 call_rcu(&ctx->rcu_head, free_ctx);
1273         }
1274 }
1275
1276 /*
1277  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1278  * perf_pmu_migrate_context() we need some magic.
1279  *
1280  * Those places that change perf_event::ctx will hold both
1281  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1282  *
1283  * Lock ordering is by mutex address. There are two other sites where
1284  * perf_event_context::mutex nests and those are:
1285  *
1286  *  - perf_event_exit_task_context()    [ child , 0 ]
1287  *      perf_event_exit_event()
1288  *        put_event()                   [ parent, 1 ]
1289  *
1290  *  - perf_event_init_context()         [ parent, 0 ]
1291  *      inherit_task_group()
1292  *        inherit_group()
1293  *          inherit_event()
1294  *            perf_event_alloc()
1295  *              perf_init_event()
1296  *                perf_try_init_event() [ child , 1 ]
1297  *
1298  * While it appears there is an obvious deadlock here -- the parent and child
1299  * nesting levels are inverted between the two. This is in fact safe because
1300  * life-time rules separate them. That is an exiting task cannot fork, and a
1301  * spawning task cannot (yet) exit.
1302  *
1303  * But remember that these are parent<->child context relations, and
1304  * migration does not affect children, therefore these two orderings should not
1305  * interact.
1306  *
1307  * The change in perf_event::ctx does not affect children (as claimed above)
1308  * because the sys_perf_event_open() case will install a new event and break
1309  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1310  * concerned with cpuctx and that doesn't have children.
1311  *
1312  * The places that change perf_event::ctx will issue:
1313  *
1314  *   perf_remove_from_context();
1315  *   synchronize_rcu();
1316  *   perf_install_in_context();
1317  *
1318  * to affect the change. The remove_from_context() + synchronize_rcu() should
1319  * quiesce the event, after which we can install it in the new location. This
1320  * means that only external vectors (perf_fops, prctl) can perturb the event
1321  * while in transit. Therefore all such accessors should also acquire
1322  * perf_event_context::mutex to serialize against this.
1323  *
1324  * However; because event->ctx can change while we're waiting to acquire
1325  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1326  * function.
1327  *
1328  * Lock order:
1329  *    exec_update_lock
1330  *      task_struct::perf_event_mutex
1331  *        perf_event_context::mutex
1332  *          perf_event::child_mutex;
1333  *            perf_event_context::lock
1334  *          perf_event::mmap_mutex
1335  *          mmap_lock
1336  *            perf_addr_filters_head::lock
1337  *
1338  *    cpu_hotplug_lock
1339  *      pmus_lock
1340  *        cpuctx->mutex / perf_event_context::mutex
1341  */
1342 static struct perf_event_context *
1343 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1344 {
1345         struct perf_event_context *ctx;
1346
1347 again:
1348         rcu_read_lock();
1349         ctx = READ_ONCE(event->ctx);
1350         if (!refcount_inc_not_zero(&ctx->refcount)) {
1351                 rcu_read_unlock();
1352                 goto again;
1353         }
1354         rcu_read_unlock();
1355
1356         mutex_lock_nested(&ctx->mutex, nesting);
1357         if (event->ctx != ctx) {
1358                 mutex_unlock(&ctx->mutex);
1359                 put_ctx(ctx);
1360                 goto again;
1361         }
1362
1363         return ctx;
1364 }
1365
1366 static inline struct perf_event_context *
1367 perf_event_ctx_lock(struct perf_event *event)
1368 {
1369         return perf_event_ctx_lock_nested(event, 0);
1370 }
1371
1372 static void perf_event_ctx_unlock(struct perf_event *event,
1373                                   struct perf_event_context *ctx)
1374 {
1375         mutex_unlock(&ctx->mutex);
1376         put_ctx(ctx);
1377 }
1378
1379 /*
1380  * This must be done under the ctx->lock, such as to serialize against
1381  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1382  * calling scheduler related locks and ctx->lock nests inside those.
1383  */
1384 static __must_check struct perf_event_context *
1385 unclone_ctx(struct perf_event_context *ctx)
1386 {
1387         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1388
1389         lockdep_assert_held(&ctx->lock);
1390
1391         if (parent_ctx)
1392                 ctx->parent_ctx = NULL;
1393         ctx->generation++;
1394
1395         return parent_ctx;
1396 }
1397
1398 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1399                                 enum pid_type type)
1400 {
1401         u32 nr;
1402         /*
1403          * only top level events have the pid namespace they were created in
1404          */
1405         if (event->parent)
1406                 event = event->parent;
1407
1408         nr = __task_pid_nr_ns(p, type, event->ns);
1409         /* avoid -1 if it is idle thread or runs in another ns */
1410         if (!nr && !pid_alive(p))
1411                 nr = -1;
1412         return nr;
1413 }
1414
1415 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1416 {
1417         return perf_event_pid_type(event, p, PIDTYPE_TGID);
1418 }
1419
1420 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1421 {
1422         return perf_event_pid_type(event, p, PIDTYPE_PID);
1423 }
1424
1425 /*
1426  * If we inherit events we want to return the parent event id
1427  * to userspace.
1428  */
1429 static u64 primary_event_id(struct perf_event *event)
1430 {
1431         u64 id = event->id;
1432
1433         if (event->parent)
1434                 id = event->parent->id;
1435
1436         return id;
1437 }
1438
1439 /*
1440  * Get the perf_event_context for a task and lock it.
1441  *
1442  * This has to cope with the fact that until it is locked,
1443  * the context could get moved to another task.
1444  */
1445 static struct perf_event_context *
1446 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1447 {
1448         struct perf_event_context *ctx;
1449
1450 retry:
1451         /*
1452          * One of the few rules of preemptible RCU is that one cannot do
1453          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1454          * part of the read side critical section was irqs-enabled -- see
1455          * rcu_read_unlock_special().
1456          *
1457          * Since ctx->lock nests under rq->lock we must ensure the entire read
1458          * side critical section has interrupts disabled.
1459          */
1460         local_irq_save(*flags);
1461         rcu_read_lock();
1462         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1463         if (ctx) {
1464                 /*
1465                  * If this context is a clone of another, it might
1466                  * get swapped for another underneath us by
1467                  * perf_event_task_sched_out, though the
1468                  * rcu_read_lock() protects us from any context
1469                  * getting freed.  Lock the context and check if it
1470                  * got swapped before we could get the lock, and retry
1471                  * if so.  If we locked the right context, then it
1472                  * can't get swapped on us any more.
1473                  */
1474                 raw_spin_lock(&ctx->lock);
1475                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1476                         raw_spin_unlock(&ctx->lock);
1477                         rcu_read_unlock();
1478                         local_irq_restore(*flags);
1479                         goto retry;
1480                 }
1481
1482                 if (ctx->task == TASK_TOMBSTONE ||
1483                     !refcount_inc_not_zero(&ctx->refcount)) {
1484                         raw_spin_unlock(&ctx->lock);
1485                         ctx = NULL;
1486                 } else {
1487                         WARN_ON_ONCE(ctx->task != task);
1488                 }
1489         }
1490         rcu_read_unlock();
1491         if (!ctx)
1492                 local_irq_restore(*flags);
1493         return ctx;
1494 }
1495
1496 /*
1497  * Get the context for a task and increment its pin_count so it
1498  * can't get swapped to another task.  This also increments its
1499  * reference count so that the context can't get freed.
1500  */
1501 static struct perf_event_context *
1502 perf_pin_task_context(struct task_struct *task, int ctxn)
1503 {
1504         struct perf_event_context *ctx;
1505         unsigned long flags;
1506
1507         ctx = perf_lock_task_context(task, ctxn, &flags);
1508         if (ctx) {
1509                 ++ctx->pin_count;
1510                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1511         }
1512         return ctx;
1513 }
1514
1515 static void perf_unpin_context(struct perf_event_context *ctx)
1516 {
1517         unsigned long flags;
1518
1519         raw_spin_lock_irqsave(&ctx->lock, flags);
1520         --ctx->pin_count;
1521         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1522 }
1523
1524 /*
1525  * Update the record of the current time in a context.
1526  */
1527 static void update_context_time(struct perf_event_context *ctx)
1528 {
1529         u64 now = perf_clock();
1530
1531         ctx->time += now - ctx->timestamp;
1532         ctx->timestamp = now;
1533 }
1534
1535 static u64 perf_event_time(struct perf_event *event)
1536 {
1537         struct perf_event_context *ctx = event->ctx;
1538
1539         if (is_cgroup_event(event))
1540                 return perf_cgroup_event_time(event);
1541
1542         return ctx ? ctx->time : 0;
1543 }
1544
1545 static enum event_type_t get_event_type(struct perf_event *event)
1546 {
1547         struct perf_event_context *ctx = event->ctx;
1548         enum event_type_t event_type;
1549
1550         lockdep_assert_held(&ctx->lock);
1551
1552         /*
1553          * It's 'group type', really, because if our group leader is
1554          * pinned, so are we.
1555          */
1556         if (event->group_leader != event)
1557                 event = event->group_leader;
1558
1559         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1560         if (!ctx->task)
1561                 event_type |= EVENT_CPU;
1562
1563         return event_type;
1564 }
1565
1566 /*
1567  * Helper function to initialize event group nodes.
1568  */
1569 static void init_event_group(struct perf_event *event)
1570 {
1571         RB_CLEAR_NODE(&event->group_node);
1572         event->group_index = 0;
1573 }
1574
1575 /*
1576  * Extract pinned or flexible groups from the context
1577  * based on event attrs bits.
1578  */
1579 static struct perf_event_groups *
1580 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1581 {
1582         if (event->attr.pinned)
1583                 return &ctx->pinned_groups;
1584         else
1585                 return &ctx->flexible_groups;
1586 }
1587
1588 /*
1589  * Helper function to initializes perf_event_group trees.
1590  */
1591 static void perf_event_groups_init(struct perf_event_groups *groups)
1592 {
1593         groups->tree = RB_ROOT;
1594         groups->index = 0;
1595 }
1596
1597 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1598 {
1599         struct cgroup *cgroup = NULL;
1600
1601 #ifdef CONFIG_CGROUP_PERF
1602         if (event->cgrp)
1603                 cgroup = event->cgrp->css.cgroup;
1604 #endif
1605
1606         return cgroup;
1607 }
1608
1609 /*
1610  * Compare function for event groups;
1611  *
1612  * Implements complex key that first sorts by CPU and then by virtual index
1613  * which provides ordering when rotating groups for the same CPU.
1614  */
1615 static __always_inline int
1616 perf_event_groups_cmp(const int left_cpu, const struct cgroup *left_cgroup,
1617                       const u64 left_group_index, const struct perf_event *right)
1618 {
1619         if (left_cpu < right->cpu)
1620                 return -1;
1621         if (left_cpu > right->cpu)
1622                 return 1;
1623
1624 #ifdef CONFIG_CGROUP_PERF
1625         {
1626                 const struct cgroup *right_cgroup = event_cgroup(right);
1627
1628                 if (left_cgroup != right_cgroup) {
1629                         if (!left_cgroup) {
1630                                 /*
1631                                  * Left has no cgroup but right does, no
1632                                  * cgroups come first.
1633                                  */
1634                                 return -1;
1635                         }
1636                         if (!right_cgroup) {
1637                                 /*
1638                                  * Right has no cgroup but left does, no
1639                                  * cgroups come first.
1640                                  */
1641                                 return 1;
1642                         }
1643                         /* Two dissimilar cgroups, order by id. */
1644                         if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1645                                 return -1;
1646
1647                         return 1;
1648                 }
1649         }
1650 #endif
1651
1652         if (left_group_index < right->group_index)
1653                 return -1;
1654         if (left_group_index > right->group_index)
1655                 return 1;
1656
1657         return 0;
1658 }
1659
1660 #define __node_2_pe(node) \
1661         rb_entry((node), struct perf_event, group_node)
1662
1663 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1664 {
1665         struct perf_event *e = __node_2_pe(a);
1666         return perf_event_groups_cmp(e->cpu, event_cgroup(e), e->group_index,
1667                                      __node_2_pe(b)) < 0;
1668 }
1669
1670 struct __group_key {
1671         int cpu;
1672         struct cgroup *cgroup;
1673 };
1674
1675 static inline int __group_cmp(const void *key, const struct rb_node *node)
1676 {
1677         const struct __group_key *a = key;
1678         const struct perf_event *b = __node_2_pe(node);
1679
1680         /* partial/subtree match: @cpu, @cgroup; ignore: @group_index */
1681         return perf_event_groups_cmp(a->cpu, a->cgroup, b->group_index, b);
1682 }
1683
1684 /*
1685  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1686  * key (see perf_event_groups_less). This places it last inside the CPU
1687  * subtree.
1688  */
1689 static void
1690 perf_event_groups_insert(struct perf_event_groups *groups,
1691                          struct perf_event *event)
1692 {
1693         event->group_index = ++groups->index;
1694
1695         rb_add(&event->group_node, &groups->tree, __group_less);
1696 }
1697
1698 /*
1699  * Helper function to insert event into the pinned or flexible groups.
1700  */
1701 static void
1702 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1703 {
1704         struct perf_event_groups *groups;
1705
1706         groups = get_event_groups(event, ctx);
1707         perf_event_groups_insert(groups, event);
1708 }
1709
1710 /*
1711  * Delete a group from a tree.
1712  */
1713 static void
1714 perf_event_groups_delete(struct perf_event_groups *groups,
1715                          struct perf_event *event)
1716 {
1717         WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1718                      RB_EMPTY_ROOT(&groups->tree));
1719
1720         rb_erase(&event->group_node, &groups->tree);
1721         init_event_group(event);
1722 }
1723
1724 /*
1725  * Helper function to delete event from its groups.
1726  */
1727 static void
1728 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1729 {
1730         struct perf_event_groups *groups;
1731
1732         groups = get_event_groups(event, ctx);
1733         perf_event_groups_delete(groups, event);
1734 }
1735
1736 /*
1737  * Get the leftmost event in the cpu/cgroup subtree.
1738  */
1739 static struct perf_event *
1740 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1741                         struct cgroup *cgrp)
1742 {
1743         struct __group_key key = {
1744                 .cpu = cpu,
1745                 .cgroup = cgrp,
1746         };
1747         struct rb_node *node;
1748
1749         node = rb_find_first(&key, &groups->tree, __group_cmp);
1750         if (node)
1751                 return __node_2_pe(node);
1752
1753         return NULL;
1754 }
1755
1756 /*
1757  * Like rb_entry_next_safe() for the @cpu subtree.
1758  */
1759 static struct perf_event *
1760 perf_event_groups_next(struct perf_event *event)
1761 {
1762         struct __group_key key = {
1763                 .cpu = event->cpu,
1764                 .cgroup = event_cgroup(event),
1765         };
1766         struct rb_node *next;
1767
1768         next = rb_next_match(&key, &event->group_node, __group_cmp);
1769         if (next)
1770                 return __node_2_pe(next);
1771
1772         return NULL;
1773 }
1774
1775 /*
1776  * Iterate through the whole groups tree.
1777  */
1778 #define perf_event_groups_for_each(event, groups)                       \
1779         for (event = rb_entry_safe(rb_first(&((groups)->tree)),         \
1780                                 typeof(*event), group_node); event;     \
1781                 event = rb_entry_safe(rb_next(&event->group_node),      \
1782                                 typeof(*event), group_node))
1783
1784 /*
1785  * Add an event from the lists for its context.
1786  * Must be called with ctx->mutex and ctx->lock held.
1787  */
1788 static void
1789 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1790 {
1791         lockdep_assert_held(&ctx->lock);
1792
1793         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1794         event->attach_state |= PERF_ATTACH_CONTEXT;
1795
1796         event->tstamp = perf_event_time(event);
1797
1798         /*
1799          * If we're a stand alone event or group leader, we go to the context
1800          * list, group events are kept attached to the group so that
1801          * perf_group_detach can, at all times, locate all siblings.
1802          */
1803         if (event->group_leader == event) {
1804                 event->group_caps = event->event_caps;
1805                 add_event_to_groups(event, ctx);
1806         }
1807
1808         list_add_rcu(&event->event_entry, &ctx->event_list);
1809         ctx->nr_events++;
1810         if (event->attr.inherit_stat)
1811                 ctx->nr_stat++;
1812
1813         if (event->state > PERF_EVENT_STATE_OFF)
1814                 perf_cgroup_event_enable(event, ctx);
1815
1816         ctx->generation++;
1817 }
1818
1819 /*
1820  * Initialize event state based on the perf_event_attr::disabled.
1821  */
1822 static inline void perf_event__state_init(struct perf_event *event)
1823 {
1824         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1825                                               PERF_EVENT_STATE_INACTIVE;
1826 }
1827
1828 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1829 {
1830         int entry = sizeof(u64); /* value */
1831         int size = 0;
1832         int nr = 1;
1833
1834         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1835                 size += sizeof(u64);
1836
1837         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1838                 size += sizeof(u64);
1839
1840         if (event->attr.read_format & PERF_FORMAT_ID)
1841                 entry += sizeof(u64);
1842
1843         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1844                 nr += nr_siblings;
1845                 size += sizeof(u64);
1846         }
1847
1848         size += entry * nr;
1849         event->read_size = size;
1850 }
1851
1852 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1853 {
1854         struct perf_sample_data *data;
1855         u16 size = 0;
1856
1857         if (sample_type & PERF_SAMPLE_IP)
1858                 size += sizeof(data->ip);
1859
1860         if (sample_type & PERF_SAMPLE_ADDR)
1861                 size += sizeof(data->addr);
1862
1863         if (sample_type & PERF_SAMPLE_PERIOD)
1864                 size += sizeof(data->period);
1865
1866         if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1867                 size += sizeof(data->weight.full);
1868
1869         if (sample_type & PERF_SAMPLE_READ)
1870                 size += event->read_size;
1871
1872         if (sample_type & PERF_SAMPLE_DATA_SRC)
1873                 size += sizeof(data->data_src.val);
1874
1875         if (sample_type & PERF_SAMPLE_TRANSACTION)
1876                 size += sizeof(data->txn);
1877
1878         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1879                 size += sizeof(data->phys_addr);
1880
1881         if (sample_type & PERF_SAMPLE_CGROUP)
1882                 size += sizeof(data->cgroup);
1883
1884         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1885                 size += sizeof(data->data_page_size);
1886
1887         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1888                 size += sizeof(data->code_page_size);
1889
1890         event->header_size = size;
1891 }
1892
1893 /*
1894  * Called at perf_event creation and when events are attached/detached from a
1895  * group.
1896  */
1897 static void perf_event__header_size(struct perf_event *event)
1898 {
1899         __perf_event_read_size(event,
1900                                event->group_leader->nr_siblings);
1901         __perf_event_header_size(event, event->attr.sample_type);
1902 }
1903
1904 static void perf_event__id_header_size(struct perf_event *event)
1905 {
1906         struct perf_sample_data *data;
1907         u64 sample_type = event->attr.sample_type;
1908         u16 size = 0;
1909
1910         if (sample_type & PERF_SAMPLE_TID)
1911                 size += sizeof(data->tid_entry);
1912
1913         if (sample_type & PERF_SAMPLE_TIME)
1914                 size += sizeof(data->time);
1915
1916         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1917                 size += sizeof(data->id);
1918
1919         if (sample_type & PERF_SAMPLE_ID)
1920                 size += sizeof(data->id);
1921
1922         if (sample_type & PERF_SAMPLE_STREAM_ID)
1923                 size += sizeof(data->stream_id);
1924
1925         if (sample_type & PERF_SAMPLE_CPU)
1926                 size += sizeof(data->cpu_entry);
1927
1928         event->id_header_size = size;
1929 }
1930
1931 static bool perf_event_validate_size(struct perf_event *event)
1932 {
1933         /*
1934          * The values computed here will be over-written when we actually
1935          * attach the event.
1936          */
1937         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1938         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1939         perf_event__id_header_size(event);
1940
1941         /*
1942          * Sum the lot; should not exceed the 64k limit we have on records.
1943          * Conservative limit to allow for callchains and other variable fields.
1944          */
1945         if (event->read_size + event->header_size +
1946             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1947                 return false;
1948
1949         return true;
1950 }
1951
1952 static void perf_group_attach(struct perf_event *event)
1953 {
1954         struct perf_event *group_leader = event->group_leader, *pos;
1955
1956         lockdep_assert_held(&event->ctx->lock);
1957
1958         /*
1959          * We can have double attach due to group movement in perf_event_open.
1960          */
1961         if (event->attach_state & PERF_ATTACH_GROUP)
1962                 return;
1963
1964         event->attach_state |= PERF_ATTACH_GROUP;
1965
1966         if (group_leader == event)
1967                 return;
1968
1969         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1970
1971         group_leader->group_caps &= event->event_caps;
1972
1973         list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1974         group_leader->nr_siblings++;
1975
1976         perf_event__header_size(group_leader);
1977
1978         for_each_sibling_event(pos, group_leader)
1979                 perf_event__header_size(pos);
1980 }
1981
1982 /*
1983  * Remove an event from the lists for its context.
1984  * Must be called with ctx->mutex and ctx->lock held.
1985  */
1986 static void
1987 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1988 {
1989         WARN_ON_ONCE(event->ctx != ctx);
1990         lockdep_assert_held(&ctx->lock);
1991
1992         /*
1993          * We can have double detach due to exit/hot-unplug + close.
1994          */
1995         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1996                 return;
1997
1998         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1999
2000         ctx->nr_events--;
2001         if (event->attr.inherit_stat)
2002                 ctx->nr_stat--;
2003
2004         list_del_rcu(&event->event_entry);
2005
2006         if (event->group_leader == event)
2007                 del_event_from_groups(event, ctx);
2008
2009         /*
2010          * If event was in error state, then keep it
2011          * that way, otherwise bogus counts will be
2012          * returned on read(). The only way to get out
2013          * of error state is by explicit re-enabling
2014          * of the event
2015          */
2016         if (event->state > PERF_EVENT_STATE_OFF) {
2017                 perf_cgroup_event_disable(event, ctx);
2018                 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2019         }
2020
2021         ctx->generation++;
2022 }
2023
2024 static int
2025 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2026 {
2027         if (!has_aux(aux_event))
2028                 return 0;
2029
2030         if (!event->pmu->aux_output_match)
2031                 return 0;
2032
2033         return event->pmu->aux_output_match(aux_event);
2034 }
2035
2036 static void put_event(struct perf_event *event);
2037 static void event_sched_out(struct perf_event *event,
2038                             struct perf_cpu_context *cpuctx,
2039                             struct perf_event_context *ctx);
2040
2041 static void perf_put_aux_event(struct perf_event *event)
2042 {
2043         struct perf_event_context *ctx = event->ctx;
2044         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2045         struct perf_event *iter;
2046
2047         /*
2048          * If event uses aux_event tear down the link
2049          */
2050         if (event->aux_event) {
2051                 iter = event->aux_event;
2052                 event->aux_event = NULL;
2053                 put_event(iter);
2054                 return;
2055         }
2056
2057         /*
2058          * If the event is an aux_event, tear down all links to
2059          * it from other events.
2060          */
2061         for_each_sibling_event(iter, event->group_leader) {
2062                 if (iter->aux_event != event)
2063                         continue;
2064
2065                 iter->aux_event = NULL;
2066                 put_event(event);
2067
2068                 /*
2069                  * If it's ACTIVE, schedule it out and put it into ERROR
2070                  * state so that we don't try to schedule it again. Note
2071                  * that perf_event_enable() will clear the ERROR status.
2072                  */
2073                 event_sched_out(iter, cpuctx, ctx);
2074                 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2075         }
2076 }
2077
2078 static bool perf_need_aux_event(struct perf_event *event)
2079 {
2080         return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2081 }
2082
2083 static int perf_get_aux_event(struct perf_event *event,
2084                               struct perf_event *group_leader)
2085 {
2086         /*
2087          * Our group leader must be an aux event if we want to be
2088          * an aux_output. This way, the aux event will precede its
2089          * aux_output events in the group, and therefore will always
2090          * schedule first.
2091          */
2092         if (!group_leader)
2093                 return 0;
2094
2095         /*
2096          * aux_output and aux_sample_size are mutually exclusive.
2097          */
2098         if (event->attr.aux_output && event->attr.aux_sample_size)
2099                 return 0;
2100
2101         if (event->attr.aux_output &&
2102             !perf_aux_output_match(event, group_leader))
2103                 return 0;
2104
2105         if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2106                 return 0;
2107
2108         if (!atomic_long_inc_not_zero(&group_leader->refcount))
2109                 return 0;
2110
2111         /*
2112          * Link aux_outputs to their aux event; this is undone in
2113          * perf_group_detach() by perf_put_aux_event(). When the
2114          * group in torn down, the aux_output events loose their
2115          * link to the aux_event and can't schedule any more.
2116          */
2117         event->aux_event = group_leader;
2118
2119         return 1;
2120 }
2121
2122 static inline struct list_head *get_event_list(struct perf_event *event)
2123 {
2124         struct perf_event_context *ctx = event->ctx;
2125         return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active;
2126 }
2127
2128 /*
2129  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2130  * cannot exist on their own, schedule them out and move them into the ERROR
2131  * state. Also see _perf_event_enable(), it will not be able to recover
2132  * this ERROR state.
2133  */
2134 static inline void perf_remove_sibling_event(struct perf_event *event)
2135 {
2136         struct perf_event_context *ctx = event->ctx;
2137         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2138
2139         event_sched_out(event, cpuctx, ctx);
2140         perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2141 }
2142
2143 static void perf_group_detach(struct perf_event *event)
2144 {
2145         struct perf_event *leader = event->group_leader;
2146         struct perf_event *sibling, *tmp;
2147         struct perf_event_context *ctx = event->ctx;
2148
2149         lockdep_assert_held(&ctx->lock);
2150
2151         /*
2152          * We can have double detach due to exit/hot-unplug + close.
2153          */
2154         if (!(event->attach_state & PERF_ATTACH_GROUP))
2155                 return;
2156
2157         event->attach_state &= ~PERF_ATTACH_GROUP;
2158
2159         perf_put_aux_event(event);
2160
2161         /*
2162          * If this is a sibling, remove it from its group.
2163          */
2164         if (leader != event) {
2165                 list_del_init(&event->sibling_list);
2166                 event->group_leader->nr_siblings--;
2167                 goto out;
2168         }
2169
2170         /*
2171          * If this was a group event with sibling events then
2172          * upgrade the siblings to singleton events by adding them
2173          * to whatever list we are on.
2174          */
2175         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2176
2177                 if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2178                         perf_remove_sibling_event(sibling);
2179
2180                 sibling->group_leader = sibling;
2181                 list_del_init(&sibling->sibling_list);
2182
2183                 /* Inherit group flags from the previous leader */
2184                 sibling->group_caps = event->group_caps;
2185
2186                 if (!RB_EMPTY_NODE(&event->group_node)) {
2187                         add_event_to_groups(sibling, event->ctx);
2188
2189                         if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2190                                 list_add_tail(&sibling->active_list, get_event_list(sibling));
2191                 }
2192
2193                 WARN_ON_ONCE(sibling->ctx != event->ctx);
2194         }
2195
2196 out:
2197         for_each_sibling_event(tmp, leader)
2198                 perf_event__header_size(tmp);
2199
2200         perf_event__header_size(leader);
2201 }
2202
2203 static void sync_child_event(struct perf_event *child_event);
2204
2205 static void perf_child_detach(struct perf_event *event)
2206 {
2207         struct perf_event *parent_event = event->parent;
2208
2209         if (!(event->attach_state & PERF_ATTACH_CHILD))
2210                 return;
2211
2212         event->attach_state &= ~PERF_ATTACH_CHILD;
2213
2214         if (WARN_ON_ONCE(!parent_event))
2215                 return;
2216
2217         lockdep_assert_held(&parent_event->child_mutex);
2218
2219         sync_child_event(event);
2220         list_del_init(&event->child_list);
2221 }
2222
2223 static bool is_orphaned_event(struct perf_event *event)
2224 {
2225         return event->state == PERF_EVENT_STATE_DEAD;
2226 }
2227
2228 static inline int __pmu_filter_match(struct perf_event *event)
2229 {
2230         struct pmu *pmu = event->pmu;
2231         return pmu->filter_match ? pmu->filter_match(event) : 1;
2232 }
2233
2234 /*
2235  * Check whether we should attempt to schedule an event group based on
2236  * PMU-specific filtering. An event group can consist of HW and SW events,
2237  * potentially with a SW leader, so we must check all the filters, to
2238  * determine whether a group is schedulable:
2239  */
2240 static inline int pmu_filter_match(struct perf_event *event)
2241 {
2242         struct perf_event *sibling;
2243
2244         if (!__pmu_filter_match(event))
2245                 return 0;
2246
2247         for_each_sibling_event(sibling, event) {
2248                 if (!__pmu_filter_match(sibling))
2249                         return 0;
2250         }
2251
2252         return 1;
2253 }
2254
2255 static inline int
2256 event_filter_match(struct perf_event *event)
2257 {
2258         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2259                perf_cgroup_match(event) && pmu_filter_match(event);
2260 }
2261
2262 static void
2263 event_sched_out(struct perf_event *event,
2264                   struct perf_cpu_context *cpuctx,
2265                   struct perf_event_context *ctx)
2266 {
2267         enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2268
2269         WARN_ON_ONCE(event->ctx != ctx);
2270         lockdep_assert_held(&ctx->lock);
2271
2272         if (event->state != PERF_EVENT_STATE_ACTIVE)
2273                 return;
2274
2275         /*
2276          * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2277          * we can schedule events _OUT_ individually through things like
2278          * __perf_remove_from_context().
2279          */
2280         list_del_init(&event->active_list);
2281
2282         perf_pmu_disable(event->pmu);
2283
2284         event->pmu->del(event, 0);
2285         event->oncpu = -1;
2286
2287         if (READ_ONCE(event->pending_disable) >= 0) {
2288                 WRITE_ONCE(event->pending_disable, -1);
2289                 perf_cgroup_event_disable(event, ctx);
2290                 state = PERF_EVENT_STATE_OFF;
2291         }
2292         perf_event_set_state(event, state);
2293
2294         if (!is_software_event(event))
2295                 cpuctx->active_oncpu--;
2296         if (!--ctx->nr_active)
2297                 perf_event_ctx_deactivate(ctx);
2298         if (event->attr.freq && event->attr.sample_freq)
2299                 ctx->nr_freq--;
2300         if (event->attr.exclusive || !cpuctx->active_oncpu)
2301                 cpuctx->exclusive = 0;
2302
2303         perf_pmu_enable(event->pmu);
2304 }
2305
2306 static void
2307 group_sched_out(struct perf_event *group_event,
2308                 struct perf_cpu_context *cpuctx,
2309                 struct perf_event_context *ctx)
2310 {
2311         struct perf_event *event;
2312
2313         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2314                 return;
2315
2316         perf_pmu_disable(ctx->pmu);
2317
2318         event_sched_out(group_event, cpuctx, ctx);
2319
2320         /*
2321          * Schedule out siblings (if any):
2322          */
2323         for_each_sibling_event(event, group_event)
2324                 event_sched_out(event, cpuctx, ctx);
2325
2326         perf_pmu_enable(ctx->pmu);
2327 }
2328
2329 #define DETACH_GROUP    0x01UL
2330 #define DETACH_CHILD    0x02UL
2331
2332 /*
2333  * Cross CPU call to remove a performance event
2334  *
2335  * We disable the event on the hardware level first. After that we
2336  * remove it from the context list.
2337  */
2338 static void
2339 __perf_remove_from_context(struct perf_event *event,
2340                            struct perf_cpu_context *cpuctx,
2341                            struct perf_event_context *ctx,
2342                            void *info)
2343 {
2344         unsigned long flags = (unsigned long)info;
2345
2346         if (ctx->is_active & EVENT_TIME) {
2347                 update_context_time(ctx);
2348                 update_cgrp_time_from_cpuctx(cpuctx);
2349         }
2350
2351         event_sched_out(event, cpuctx, ctx);
2352         if (flags & DETACH_GROUP)
2353                 perf_group_detach(event);
2354         if (flags & DETACH_CHILD)
2355                 perf_child_detach(event);
2356         list_del_event(event, ctx);
2357
2358         if (!ctx->nr_events && ctx->is_active) {
2359                 ctx->is_active = 0;
2360                 ctx->rotate_necessary = 0;
2361                 if (ctx->task) {
2362                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2363                         cpuctx->task_ctx = NULL;
2364                 }
2365         }
2366 }
2367
2368 /*
2369  * Remove the event from a task's (or a CPU's) list of events.
2370  *
2371  * If event->ctx is a cloned context, callers must make sure that
2372  * every task struct that event->ctx->task could possibly point to
2373  * remains valid.  This is OK when called from perf_release since
2374  * that only calls us on the top-level context, which can't be a clone.
2375  * When called from perf_event_exit_task, it's OK because the
2376  * context has been detached from its task.
2377  */
2378 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2379 {
2380         struct perf_event_context *ctx = event->ctx;
2381
2382         lockdep_assert_held(&ctx->mutex);
2383
2384         /*
2385          * Because of perf_event_exit_task(), perf_remove_from_context() ought
2386          * to work in the face of TASK_TOMBSTONE, unlike every other
2387          * event_function_call() user.
2388          */
2389         raw_spin_lock_irq(&ctx->lock);
2390         if (!ctx->is_active) {
2391                 __perf_remove_from_context(event, __get_cpu_context(ctx),
2392                                            ctx, (void *)flags);
2393                 raw_spin_unlock_irq(&ctx->lock);
2394                 return;
2395         }
2396         raw_spin_unlock_irq(&ctx->lock);
2397
2398         event_function_call(event, __perf_remove_from_context, (void *)flags);
2399 }
2400
2401 /*
2402  * Cross CPU call to disable a performance event
2403  */
2404 static void __perf_event_disable(struct perf_event *event,
2405                                  struct perf_cpu_context *cpuctx,
2406                                  struct perf_event_context *ctx,
2407                                  void *info)
2408 {
2409         if (event->state < PERF_EVENT_STATE_INACTIVE)
2410                 return;
2411
2412         if (ctx->is_active & EVENT_TIME) {
2413                 update_context_time(ctx);
2414                 update_cgrp_time_from_event(event);
2415         }
2416
2417         if (event == event->group_leader)
2418                 group_sched_out(event, cpuctx, ctx);
2419         else
2420                 event_sched_out(event, cpuctx, ctx);
2421
2422         perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2423         perf_cgroup_event_disable(event, ctx);
2424 }
2425
2426 /*
2427  * Disable an event.
2428  *
2429  * If event->ctx is a cloned context, callers must make sure that
2430  * every task struct that event->ctx->task could possibly point to
2431  * remains valid.  This condition is satisfied when called through
2432  * perf_event_for_each_child or perf_event_for_each because they
2433  * hold the top-level event's child_mutex, so any descendant that
2434  * goes to exit will block in perf_event_exit_event().
2435  *
2436  * When called from perf_pending_event it's OK because event->ctx
2437  * is the current context on this CPU and preemption is disabled,
2438  * hence we can't get into perf_event_task_sched_out for this context.
2439  */
2440 static void _perf_event_disable(struct perf_event *event)
2441 {
2442         struct perf_event_context *ctx = event->ctx;
2443
2444         raw_spin_lock_irq(&ctx->lock);
2445         if (event->state <= PERF_EVENT_STATE_OFF) {
2446                 raw_spin_unlock_irq(&ctx->lock);
2447                 return;
2448         }
2449         raw_spin_unlock_irq(&ctx->lock);
2450
2451         event_function_call(event, __perf_event_disable, NULL);
2452 }
2453
2454 void perf_event_disable_local(struct perf_event *event)
2455 {
2456         event_function_local(event, __perf_event_disable, NULL);
2457 }
2458
2459 /*
2460  * Strictly speaking kernel users cannot create groups and therefore this
2461  * interface does not need the perf_event_ctx_lock() magic.
2462  */
2463 void perf_event_disable(struct perf_event *event)
2464 {
2465         struct perf_event_context *ctx;
2466
2467         ctx = perf_event_ctx_lock(event);
2468         _perf_event_disable(event);
2469         perf_event_ctx_unlock(event, ctx);
2470 }
2471 EXPORT_SYMBOL_GPL(perf_event_disable);
2472
2473 void perf_event_disable_inatomic(struct perf_event *event)
2474 {
2475         WRITE_ONCE(event->pending_disable, smp_processor_id());
2476         /* can fail, see perf_pending_event_disable() */
2477         irq_work_queue(&event->pending);
2478 }
2479
2480 static void perf_set_shadow_time(struct perf_event *event,
2481                                  struct perf_event_context *ctx)
2482 {
2483         /*
2484          * use the correct time source for the time snapshot
2485          *
2486          * We could get by without this by leveraging the
2487          * fact that to get to this function, the caller
2488          * has most likely already called update_context_time()
2489          * and update_cgrp_time_xx() and thus both timestamp
2490          * are identical (or very close). Given that tstamp is,
2491          * already adjusted for cgroup, we could say that:
2492          *    tstamp - ctx->timestamp
2493          * is equivalent to
2494          *    tstamp - cgrp->timestamp.
2495          *
2496          * Then, in perf_output_read(), the calculation would
2497          * work with no changes because:
2498          * - event is guaranteed scheduled in
2499          * - no scheduled out in between
2500          * - thus the timestamp would be the same
2501          *
2502          * But this is a bit hairy.
2503          *
2504          * So instead, we have an explicit cgroup call to remain
2505          * within the time source all along. We believe it
2506          * is cleaner and simpler to understand.
2507          */
2508         if (is_cgroup_event(event))
2509                 perf_cgroup_set_shadow_time(event, event->tstamp);
2510         else
2511                 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2512 }
2513
2514 #define MAX_INTERRUPTS (~0ULL)
2515
2516 static void perf_log_throttle(struct perf_event *event, int enable);
2517 static void perf_log_itrace_start(struct perf_event *event);
2518
2519 static int
2520 event_sched_in(struct perf_event *event,
2521                  struct perf_cpu_context *cpuctx,
2522                  struct perf_event_context *ctx)
2523 {
2524         int ret = 0;
2525
2526         WARN_ON_ONCE(event->ctx != ctx);
2527
2528         lockdep_assert_held(&ctx->lock);
2529
2530         if (event->state <= PERF_EVENT_STATE_OFF)
2531                 return 0;
2532
2533         WRITE_ONCE(event->oncpu, smp_processor_id());
2534         /*
2535          * Order event::oncpu write to happen before the ACTIVE state is
2536          * visible. This allows perf_event_{stop,read}() to observe the correct
2537          * ->oncpu if it sees ACTIVE.
2538          */
2539         smp_wmb();
2540         perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2541
2542         /*
2543          * Unthrottle events, since we scheduled we might have missed several
2544          * ticks already, also for a heavily scheduling task there is little
2545          * guarantee it'll get a tick in a timely manner.
2546          */
2547         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2548                 perf_log_throttle(event, 1);
2549                 event->hw.interrupts = 0;
2550         }
2551
2552         perf_pmu_disable(event->pmu);
2553
2554         perf_set_shadow_time(event, ctx);
2555
2556         perf_log_itrace_start(event);
2557
2558         if (event->pmu->add(event, PERF_EF_START)) {
2559                 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2560                 event->oncpu = -1;
2561                 ret = -EAGAIN;
2562                 goto out;
2563         }
2564
2565         if (!is_software_event(event))
2566                 cpuctx->active_oncpu++;
2567         if (!ctx->nr_active++)
2568                 perf_event_ctx_activate(ctx);
2569         if (event->attr.freq && event->attr.sample_freq)
2570                 ctx->nr_freq++;
2571
2572         if (event->attr.exclusive)
2573                 cpuctx->exclusive = 1;
2574
2575 out:
2576         perf_pmu_enable(event->pmu);
2577
2578         return ret;
2579 }
2580
2581 static int
2582 group_sched_in(struct perf_event *group_event,
2583                struct perf_cpu_context *cpuctx,
2584                struct perf_event_context *ctx)
2585 {
2586         struct perf_event *event, *partial_group = NULL;
2587         struct pmu *pmu = ctx->pmu;
2588
2589         if (group_event->state == PERF_EVENT_STATE_OFF)
2590                 return 0;
2591
2592         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2593
2594         if (event_sched_in(group_event, cpuctx, ctx))
2595                 goto error;
2596
2597         /*
2598          * Schedule in siblings as one group (if any):
2599          */
2600         for_each_sibling_event(event, group_event) {
2601                 if (event_sched_in(event, cpuctx, ctx)) {
2602                         partial_group = event;
2603                         goto group_error;
2604                 }
2605         }
2606
2607         if (!pmu->commit_txn(pmu))
2608                 return 0;
2609
2610 group_error:
2611         /*
2612          * Groups can be scheduled in as one unit only, so undo any
2613          * partial group before returning:
2614          * The events up to the failed event are scheduled out normally.
2615          */
2616         for_each_sibling_event(event, group_event) {
2617                 if (event == partial_group)
2618                         break;
2619
2620                 event_sched_out(event, cpuctx, ctx);
2621         }
2622         event_sched_out(group_event, cpuctx, ctx);
2623
2624 error:
2625         pmu->cancel_txn(pmu);
2626         return -EAGAIN;
2627 }
2628
2629 /*
2630  * Work out whether we can put this event group on the CPU now.
2631  */
2632 static int group_can_go_on(struct perf_event *event,
2633                            struct perf_cpu_context *cpuctx,
2634                            int can_add_hw)
2635 {
2636         /*
2637          * Groups consisting entirely of software events can always go on.
2638          */
2639         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2640                 return 1;
2641         /*
2642          * If an exclusive group is already on, no other hardware
2643          * events can go on.
2644          */
2645         if (cpuctx->exclusive)
2646                 return 0;
2647         /*
2648          * If this group is exclusive and there are already
2649          * events on the CPU, it can't go on.
2650          */
2651         if (event->attr.exclusive && !list_empty(get_event_list(event)))
2652                 return 0;
2653         /*
2654          * Otherwise, try to add it if all previous groups were able
2655          * to go on.
2656          */
2657         return can_add_hw;
2658 }
2659
2660 static void add_event_to_ctx(struct perf_event *event,
2661                                struct perf_event_context *ctx)
2662 {
2663         list_add_event(event, ctx);
2664         perf_group_attach(event);
2665 }
2666
2667 static void ctx_sched_out(struct perf_event_context *ctx,
2668                           struct perf_cpu_context *cpuctx,
2669                           enum event_type_t event_type);
2670 static void
2671 ctx_sched_in(struct perf_event_context *ctx,
2672              struct perf_cpu_context *cpuctx,
2673              enum event_type_t event_type,
2674              struct task_struct *task);
2675
2676 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2677                                struct perf_event_context *ctx,
2678                                enum event_type_t event_type)
2679 {
2680         if (!cpuctx->task_ctx)
2681                 return;
2682
2683         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2684                 return;
2685
2686         ctx_sched_out(ctx, cpuctx, event_type);
2687 }
2688
2689 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2690                                 struct perf_event_context *ctx,
2691                                 struct task_struct *task)
2692 {
2693         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2694         if (ctx)
2695                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2696         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2697         if (ctx)
2698                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2699 }
2700
2701 /*
2702  * We want to maintain the following priority of scheduling:
2703  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2704  *  - task pinned (EVENT_PINNED)
2705  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2706  *  - task flexible (EVENT_FLEXIBLE).
2707  *
2708  * In order to avoid unscheduling and scheduling back in everything every
2709  * time an event is added, only do it for the groups of equal priority and
2710  * below.
2711  *
2712  * This can be called after a batch operation on task events, in which case
2713  * event_type is a bit mask of the types of events involved. For CPU events,
2714  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2715  */
2716 static void ctx_resched(struct perf_cpu_context *cpuctx,
2717                         struct perf_event_context *task_ctx,
2718                         enum event_type_t event_type)
2719 {
2720         enum event_type_t ctx_event_type;
2721         bool cpu_event = !!(event_type & EVENT_CPU);
2722
2723         /*
2724          * If pinned groups are involved, flexible groups also need to be
2725          * scheduled out.
2726          */
2727         if (event_type & EVENT_PINNED)
2728                 event_type |= EVENT_FLEXIBLE;
2729
2730         ctx_event_type = event_type & EVENT_ALL;
2731
2732         perf_pmu_disable(cpuctx->ctx.pmu);
2733         if (task_ctx)
2734                 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2735
2736         /*
2737          * Decide which cpu ctx groups to schedule out based on the types
2738          * of events that caused rescheduling:
2739          *  - EVENT_CPU: schedule out corresponding groups;
2740          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2741          *  - otherwise, do nothing more.
2742          */
2743         if (cpu_event)
2744                 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2745         else if (ctx_event_type & EVENT_PINNED)
2746                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2747
2748         perf_event_sched_in(cpuctx, task_ctx, current);
2749         perf_pmu_enable(cpuctx->ctx.pmu);
2750 }
2751
2752 void perf_pmu_resched(struct pmu *pmu)
2753 {
2754         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2755         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2756
2757         perf_ctx_lock(cpuctx, task_ctx);
2758         ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2759         perf_ctx_unlock(cpuctx, task_ctx);
2760 }
2761
2762 /*
2763  * Cross CPU call to install and enable a performance event
2764  *
2765  * Very similar to remote_function() + event_function() but cannot assume that
2766  * things like ctx->is_active and cpuctx->task_ctx are set.
2767  */
2768 static int  __perf_install_in_context(void *info)
2769 {
2770         struct perf_event *event = info;
2771         struct perf_event_context *ctx = event->ctx;
2772         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2773         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2774         bool reprogram = true;
2775         int ret = 0;
2776
2777         raw_spin_lock(&cpuctx->ctx.lock);
2778         if (ctx->task) {
2779                 raw_spin_lock(&ctx->lock);
2780                 task_ctx = ctx;
2781
2782                 reprogram = (ctx->task == current);
2783
2784                 /*
2785                  * If the task is running, it must be running on this CPU,
2786                  * otherwise we cannot reprogram things.
2787                  *
2788                  * If its not running, we don't care, ctx->lock will
2789                  * serialize against it becoming runnable.
2790                  */
2791                 if (task_curr(ctx->task) && !reprogram) {
2792                         ret = -ESRCH;
2793                         goto unlock;
2794                 }
2795
2796                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2797         } else if (task_ctx) {
2798                 raw_spin_lock(&task_ctx->lock);
2799         }
2800
2801 #ifdef CONFIG_CGROUP_PERF
2802         if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2803                 /*
2804                  * If the current cgroup doesn't match the event's
2805                  * cgroup, we should not try to schedule it.
2806                  */
2807                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2808                 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2809                                         event->cgrp->css.cgroup);
2810         }
2811 #endif
2812
2813         if (reprogram) {
2814                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2815                 add_event_to_ctx(event, ctx);
2816                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2817         } else {
2818                 add_event_to_ctx(event, ctx);
2819         }
2820
2821 unlock:
2822         perf_ctx_unlock(cpuctx, task_ctx);
2823
2824         return ret;
2825 }
2826
2827 static bool exclusive_event_installable(struct perf_event *event,
2828                                         struct perf_event_context *ctx);
2829
2830 /*
2831  * Attach a performance event to a context.
2832  *
2833  * Very similar to event_function_call, see comment there.
2834  */
2835 static void
2836 perf_install_in_context(struct perf_event_context *ctx,
2837                         struct perf_event *event,
2838                         int cpu)
2839 {
2840         struct task_struct *task = READ_ONCE(ctx->task);
2841
2842         lockdep_assert_held(&ctx->mutex);
2843
2844         WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2845
2846         if (event->cpu != -1)
2847                 event->cpu = cpu;
2848
2849         /*
2850          * Ensures that if we can observe event->ctx, both the event and ctx
2851          * will be 'complete'. See perf_iterate_sb_cpu().
2852          */
2853         smp_store_release(&event->ctx, ctx);
2854
2855         /*
2856          * perf_event_attr::disabled events will not run and can be initialized
2857          * without IPI. Except when this is the first event for the context, in
2858          * that case we need the magic of the IPI to set ctx->is_active.
2859          *
2860          * The IOC_ENABLE that is sure to follow the creation of a disabled
2861          * event will issue the IPI and reprogram the hardware.
2862          */
2863         if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) {
2864                 raw_spin_lock_irq(&ctx->lock);
2865                 if (ctx->task == TASK_TOMBSTONE) {
2866                         raw_spin_unlock_irq(&ctx->lock);
2867                         return;
2868                 }
2869                 add_event_to_ctx(event, ctx);
2870                 raw_spin_unlock_irq(&ctx->lock);
2871                 return;
2872         }
2873
2874         if (!task) {
2875                 cpu_function_call(cpu, __perf_install_in_context, event);
2876                 return;
2877         }
2878
2879         /*
2880          * Should not happen, we validate the ctx is still alive before calling.
2881          */
2882         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2883                 return;
2884
2885         /*
2886          * Installing events is tricky because we cannot rely on ctx->is_active
2887          * to be set in case this is the nr_events 0 -> 1 transition.
2888          *
2889          * Instead we use task_curr(), which tells us if the task is running.
2890          * However, since we use task_curr() outside of rq::lock, we can race
2891          * against the actual state. This means the result can be wrong.
2892          *
2893          * If we get a false positive, we retry, this is harmless.
2894          *
2895          * If we get a false negative, things are complicated. If we are after
2896          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2897          * value must be correct. If we're before, it doesn't matter since
2898          * perf_event_context_sched_in() will program the counter.
2899          *
2900          * However, this hinges on the remote context switch having observed
2901          * our task->perf_event_ctxp[] store, such that it will in fact take
2902          * ctx::lock in perf_event_context_sched_in().
2903          *
2904          * We do this by task_function_call(), if the IPI fails to hit the task
2905          * we know any future context switch of task must see the
2906          * perf_event_ctpx[] store.
2907          */
2908
2909         /*
2910          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2911          * task_cpu() load, such that if the IPI then does not find the task
2912          * running, a future context switch of that task must observe the
2913          * store.
2914          */
2915         smp_mb();
2916 again:
2917         if (!task_function_call(task, __perf_install_in_context, event))
2918                 return;
2919
2920         raw_spin_lock_irq(&ctx->lock);
2921         task = ctx->task;
2922         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2923                 /*
2924                  * Cannot happen because we already checked above (which also
2925                  * cannot happen), and we hold ctx->mutex, which serializes us
2926                  * against perf_event_exit_task_context().
2927                  */
2928                 raw_spin_unlock_irq(&ctx->lock);
2929                 return;
2930         }
2931         /*
2932          * If the task is not running, ctx->lock will avoid it becoming so,
2933          * thus we can safely install the event.
2934          */
2935         if (task_curr(task)) {
2936                 raw_spin_unlock_irq(&ctx->lock);
2937                 goto again;
2938         }
2939         add_event_to_ctx(event, ctx);
2940         raw_spin_unlock_irq(&ctx->lock);
2941 }
2942
2943 /*
2944  * Cross CPU call to enable a performance event
2945  */
2946 static void __perf_event_enable(struct perf_event *event,
2947                                 struct perf_cpu_context *cpuctx,
2948                                 struct perf_event_context *ctx,
2949                                 void *info)
2950 {
2951         struct perf_event *leader = event->group_leader;
2952         struct perf_event_context *task_ctx;
2953
2954         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2955             event->state <= PERF_EVENT_STATE_ERROR)
2956                 return;
2957
2958         if (ctx->is_active)
2959                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2960
2961         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2962         perf_cgroup_event_enable(event, ctx);
2963
2964         if (!ctx->is_active)
2965                 return;
2966
2967         if (!event_filter_match(event)) {
2968                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2969                 return;
2970         }
2971
2972         /*
2973          * If the event is in a group and isn't the group leader,
2974          * then don't put it on unless the group is on.
2975          */
2976         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2977                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2978                 return;
2979         }
2980
2981         task_ctx = cpuctx->task_ctx;
2982         if (ctx->task)
2983                 WARN_ON_ONCE(task_ctx != ctx);
2984
2985         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2986 }
2987
2988 /*
2989  * Enable an event.
2990  *
2991  * If event->ctx is a cloned context, callers must make sure that
2992  * every task struct that event->ctx->task could possibly point to
2993  * remains valid.  This condition is satisfied when called through
2994  * perf_event_for_each_child or perf_event_for_each as described
2995  * for perf_event_disable.
2996  */
2997 static void _perf_event_enable(struct perf_event *event)
2998 {
2999         struct perf_event_context *ctx = event->ctx;
3000
3001         raw_spin_lock_irq(&ctx->lock);
3002         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3003             event->state <  PERF_EVENT_STATE_ERROR) {
3004 out:
3005                 raw_spin_unlock_irq(&ctx->lock);
3006                 return;
3007         }
3008
3009         /*
3010          * If the event is in error state, clear that first.
3011          *
3012          * That way, if we see the event in error state below, we know that it
3013          * has gone back into error state, as distinct from the task having
3014          * been scheduled away before the cross-call arrived.
3015          */
3016         if (event->state == PERF_EVENT_STATE_ERROR) {
3017                 /*
3018                  * Detached SIBLING events cannot leave ERROR state.
3019                  */
3020                 if (event->event_caps & PERF_EV_CAP_SIBLING &&
3021                     event->group_leader == event)
3022                         goto out;
3023
3024                 event->state = PERF_EVENT_STATE_OFF;
3025         }
3026         raw_spin_unlock_irq(&ctx->lock);
3027
3028         event_function_call(event, __perf_event_enable, NULL);
3029 }
3030
3031 /*
3032  * See perf_event_disable();
3033  */
3034 void perf_event_enable(struct perf_event *event)
3035 {
3036         struct perf_event_context *ctx;
3037
3038         ctx = perf_event_ctx_lock(event);
3039         _perf_event_enable(event);
3040         perf_event_ctx_unlock(event, ctx);
3041 }
3042 EXPORT_SYMBOL_GPL(perf_event_enable);
3043
3044 struct stop_event_data {
3045         struct perf_event       *event;
3046         unsigned int            restart;
3047 };
3048
3049 static int __perf_event_stop(void *info)
3050 {
3051         struct stop_event_data *sd = info;
3052         struct perf_event *event = sd->event;
3053
3054         /* if it's already INACTIVE, do nothing */
3055         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3056                 return 0;
3057
3058         /* matches smp_wmb() in event_sched_in() */
3059         smp_rmb();
3060
3061         /*
3062          * There is a window with interrupts enabled before we get here,
3063          * so we need to check again lest we try to stop another CPU's event.
3064          */
3065         if (READ_ONCE(event->oncpu) != smp_processor_id())
3066                 return -EAGAIN;
3067
3068         event->pmu->stop(event, PERF_EF_UPDATE);
3069
3070         /*
3071          * May race with the actual stop (through perf_pmu_output_stop()),
3072          * but it is only used for events with AUX ring buffer, and such
3073          * events will refuse to restart because of rb::aux_mmap_count==0,
3074          * see comments in perf_aux_output_begin().
3075          *
3076          * Since this is happening on an event-local CPU, no trace is lost
3077          * while restarting.
3078          */
3079         if (sd->restart)
3080                 event->pmu->start(event, 0);
3081
3082         return 0;
3083 }
3084
3085 static int perf_event_stop(struct perf_event *event, int restart)
3086 {
3087         struct stop_event_data sd = {
3088                 .event          = event,
3089                 .restart        = restart,
3090         };
3091         int ret = 0;
3092
3093         do {
3094                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3095                         return 0;
3096
3097                 /* matches smp_wmb() in event_sched_in() */
3098                 smp_rmb();
3099
3100                 /*
3101                  * We only want to restart ACTIVE events, so if the event goes
3102                  * inactive here (event->oncpu==-1), there's nothing more to do;
3103                  * fall through with ret==-ENXIO.
3104                  */
3105                 ret = cpu_function_call(READ_ONCE(event->oncpu),
3106                                         __perf_event_stop, &sd);
3107         } while (ret == -EAGAIN);
3108
3109         return ret;
3110 }
3111
3112 /*
3113  * In order to contain the amount of racy and tricky in the address filter
3114  * configuration management, it is a two part process:
3115  *
3116  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3117  *      we update the addresses of corresponding vmas in
3118  *      event::addr_filter_ranges array and bump the event::addr_filters_gen;
3119  * (p2) when an event is scheduled in (pmu::add), it calls
3120  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3121  *      if the generation has changed since the previous call.
3122  *
3123  * If (p1) happens while the event is active, we restart it to force (p2).
3124  *
3125  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3126  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3127  *     ioctl;
3128  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3129  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3130  *     for reading;
3131  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3132  *     of exec.
3133  */
3134 void perf_event_addr_filters_sync(struct perf_event *event)
3135 {
3136         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3137
3138         if (!has_addr_filter(event))
3139                 return;
3140
3141         raw_spin_lock(&ifh->lock);
3142         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3143                 event->pmu->addr_filters_sync(event);
3144                 event->hw.addr_filters_gen = event->addr_filters_gen;
3145         }
3146         raw_spin_unlock(&ifh->lock);
3147 }
3148 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3149
3150 static int _perf_event_refresh(struct perf_event *event, int refresh)
3151 {
3152         /*
3153          * not supported on inherited events
3154          */
3155         if (event->attr.inherit || !is_sampling_event(event))
3156                 return -EINVAL;
3157
3158         atomic_add(refresh, &event->event_limit);
3159         _perf_event_enable(event);
3160
3161         return 0;
3162 }
3163
3164 /*
3165  * See perf_event_disable()
3166  */
3167 int perf_event_refresh(struct perf_event *event, int refresh)
3168 {
3169         struct perf_event_context *ctx;
3170         int ret;
3171
3172         ctx = perf_event_ctx_lock(event);
3173         ret = _perf_event_refresh(event, refresh);
3174         perf_event_ctx_unlock(event, ctx);
3175
3176         return ret;
3177 }
3178 EXPORT_SYMBOL_GPL(perf_event_refresh);
3179
3180 static int perf_event_modify_breakpoint(struct perf_event *bp,
3181                                          struct perf_event_attr *attr)
3182 {
3183         int err;
3184
3185         _perf_event_disable(bp);
3186
3187         err = modify_user_hw_breakpoint_check(bp, attr, true);
3188
3189         if (!bp->attr.disabled)
3190                 _perf_event_enable(bp);
3191
3192         return err;
3193 }
3194
3195 static int perf_event_modify_attr(struct perf_event *event,
3196                                   struct perf_event_attr *attr)
3197 {
3198         int (*func)(struct perf_event *, struct perf_event_attr *);
3199         struct perf_event *child;
3200         int err;
3201
3202         if (event->attr.type != attr->type)
3203                 return -EINVAL;
3204
3205         switch (event->attr.type) {
3206         case PERF_TYPE_BREAKPOINT:
3207                 func = perf_event_modify_breakpoint;
3208                 break;
3209         default:
3210                 /* Place holder for future additions. */
3211                 return -EOPNOTSUPP;
3212         }
3213
3214         WARN_ON_ONCE(event->ctx->parent_ctx);
3215
3216         mutex_lock(&event->child_mutex);
3217         err = func(event, attr);
3218         if (err)
3219                 goto out;
3220         list_for_each_entry(child, &event->child_list, child_list) {
3221                 err = func(child, attr);
3222                 if (err)
3223                         goto out;
3224         }
3225 out:
3226         mutex_unlock(&event->child_mutex);
3227         return err;
3228 }
3229
3230 static void ctx_sched_out(struct perf_event_context *ctx,
3231                           struct perf_cpu_context *cpuctx,
3232                           enum event_type_t event_type)
3233 {
3234         struct perf_event *event, *tmp;
3235         int is_active = ctx->is_active;
3236
3237         lockdep_assert_held(&ctx->lock);
3238
3239         if (likely(!ctx->nr_events)) {
3240                 /*
3241                  * See __perf_remove_from_context().
3242                  */
3243                 WARN_ON_ONCE(ctx->is_active);
3244                 if (ctx->task)
3245                         WARN_ON_ONCE(cpuctx->task_ctx);
3246                 return;
3247         }
3248
3249         ctx->is_active &= ~event_type;
3250         if (!(ctx->is_active & EVENT_ALL))
3251                 ctx->is_active = 0;
3252
3253         if (ctx->task) {
3254                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3255                 if (!ctx->is_active)
3256                         cpuctx->task_ctx = NULL;
3257         }
3258
3259         /*
3260          * Always update time if it was set; not only when it changes.
3261          * Otherwise we can 'forget' to update time for any but the last
3262          * context we sched out. For example:
3263          *
3264          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3265          *   ctx_sched_out(.event_type = EVENT_PINNED)
3266          *
3267          * would only update time for the pinned events.
3268          */
3269         if (is_active & EVENT_TIME) {
3270                 /* update (and stop) ctx time */
3271                 update_context_time(ctx);
3272                 update_cgrp_time_from_cpuctx(cpuctx);
3273         }
3274
3275         is_active ^= ctx->is_active; /* changed bits */
3276
3277         if (!ctx->nr_active || !(is_active & EVENT_ALL))
3278                 return;
3279
3280         perf_pmu_disable(ctx->pmu);
3281         if (is_active & EVENT_PINNED) {
3282                 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3283                         group_sched_out(event, cpuctx, ctx);
3284         }
3285
3286         if (is_active & EVENT_FLEXIBLE) {
3287                 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3288                         group_sched_out(event, cpuctx, ctx);
3289
3290                 /*
3291                  * Since we cleared EVENT_FLEXIBLE, also clear
3292                  * rotate_necessary, is will be reset by
3293                  * ctx_flexible_sched_in() when needed.
3294                  */
3295                 ctx->rotate_necessary = 0;
3296         }
3297         perf_pmu_enable(ctx->pmu);
3298 }
3299
3300 /*
3301  * Test whether two contexts are equivalent, i.e. whether they have both been
3302  * cloned from the same version of the same context.
3303  *
3304  * Equivalence is measured using a generation number in the context that is
3305  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3306  * and list_del_event().
3307  */
3308 static int context_equiv(struct perf_event_context *ctx1,
3309                          struct perf_event_context *ctx2)
3310 {
3311         lockdep_assert_held(&ctx1->lock);
3312         lockdep_assert_held(&ctx2->lock);
3313
3314         /* Pinning disables the swap optimization */
3315         if (ctx1->pin_count || ctx2->pin_count)
3316                 return 0;
3317
3318         /* If ctx1 is the parent of ctx2 */
3319         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3320                 return 1;
3321
3322         /* If ctx2 is the parent of ctx1 */
3323         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3324                 return 1;
3325
3326         /*
3327          * If ctx1 and ctx2 have the same parent; we flatten the parent
3328          * hierarchy, see perf_event_init_context().
3329          */
3330         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3331                         ctx1->parent_gen == ctx2->parent_gen)
3332                 return 1;
3333
3334         /* Unmatched */
3335         return 0;
3336 }
3337
3338 static void __perf_event_sync_stat(struct perf_event *event,
3339                                      struct perf_event *next_event)
3340 {
3341         u64 value;
3342
3343         if (!event->attr.inherit_stat)
3344                 return;
3345
3346         /*
3347          * Update the event value, we cannot use perf_event_read()
3348          * because we're in the middle of a context switch and have IRQs
3349          * disabled, which upsets smp_call_function_single(), however
3350          * we know the event must be on the current CPU, therefore we
3351          * don't need to use it.
3352          */
3353         if (event->state == PERF_EVENT_STATE_ACTIVE)
3354                 event->pmu->read(event);
3355
3356         perf_event_update_time(event);
3357
3358         /*
3359          * In order to keep per-task stats reliable we need to flip the event
3360          * values when we flip the contexts.
3361          */
3362         value = local64_read(&next_event->count);
3363         value = local64_xchg(&event->count, value);
3364         local64_set(&next_event->count, value);
3365
3366         swap(event->total_time_enabled, next_event->total_time_enabled);
3367         swap(event->total_time_running, next_event->total_time_running);
3368
3369         /*
3370          * Since we swizzled the values, update the user visible data too.
3371          */
3372         perf_event_update_userpage(event);
3373         perf_event_update_userpage(next_event);
3374 }
3375
3376 static void perf_event_sync_stat(struct perf_event_context *ctx,
3377                                    struct perf_event_context *next_ctx)
3378 {
3379         struct perf_event *event, *next_event;
3380
3381         if (!ctx->nr_stat)
3382                 return;
3383
3384         update_context_time(ctx);
3385
3386         event = list_first_entry(&ctx->event_list,
3387                                    struct perf_event, event_entry);
3388
3389         next_event = list_first_entry(&next_ctx->event_list,
3390                                         struct perf_event, event_entry);
3391
3392         while (&event->event_entry != &ctx->event_list &&
3393                &next_event->event_entry != &next_ctx->event_list) {
3394
3395                 __perf_event_sync_stat(event, next_event);
3396
3397                 event = list_next_entry(event, event_entry);
3398                 next_event = list_next_entry(next_event, event_entry);
3399         }
3400 }
3401
3402 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3403                                          struct task_struct *next)
3404 {
3405         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3406         struct perf_event_context *next_ctx;
3407         struct perf_event_context *parent, *next_parent;
3408         struct perf_cpu_context *cpuctx;
3409         int do_switch = 1;
3410         struct pmu *pmu;
3411
3412         if (likely(!ctx))
3413                 return;
3414
3415         pmu = ctx->pmu;
3416         cpuctx = __get_cpu_context(ctx);
3417         if (!cpuctx->task_ctx)
3418                 return;
3419
3420         rcu_read_lock();
3421         next_ctx = next->perf_event_ctxp[ctxn];
3422         if (!next_ctx)
3423                 goto unlock;
3424
3425         parent = rcu_dereference(ctx->parent_ctx);
3426         next_parent = rcu_dereference(next_ctx->parent_ctx);
3427
3428         /* If neither context have a parent context; they cannot be clones. */
3429         if (!parent && !next_parent)
3430                 goto unlock;
3431
3432         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3433                 /*
3434                  * Looks like the two contexts are clones, so we might be
3435                  * able to optimize the context switch.  We lock both
3436                  * contexts and check that they are clones under the
3437                  * lock (including re-checking that neither has been
3438                  * uncloned in the meantime).  It doesn't matter which
3439                  * order we take the locks because no other cpu could
3440                  * be trying to lock both of these tasks.
3441                  */
3442                 raw_spin_lock(&ctx->lock);
3443                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3444                 if (context_equiv(ctx, next_ctx)) {
3445
3446                         WRITE_ONCE(ctx->task, next);
3447                         WRITE_ONCE(next_ctx->task, task);
3448
3449                         perf_pmu_disable(pmu);
3450
3451                         if (cpuctx->sched_cb_usage && pmu->sched_task)
3452                                 pmu->sched_task(ctx, false);
3453
3454                         /*
3455                          * PMU specific parts of task perf context can require
3456                          * additional synchronization. As an example of such
3457                          * synchronization see implementation details of Intel
3458                          * LBR call stack data profiling;
3459                          */
3460                         if (pmu->swap_task_ctx)
3461                                 pmu->swap_task_ctx(ctx, next_ctx);
3462                         else
3463                                 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3464
3465                         perf_pmu_enable(pmu);
3466
3467                         /*
3468                          * RCU_INIT_POINTER here is safe because we've not
3469                          * modified the ctx and the above modification of
3470                          * ctx->task and ctx->task_ctx_data are immaterial
3471                          * since those values are always verified under
3472                          * ctx->lock which we're now holding.
3473                          */
3474                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3475                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3476
3477                         do_switch = 0;
3478
3479                         perf_event_sync_stat(ctx, next_ctx);
3480                 }
3481                 raw_spin_unlock(&next_ctx->lock);
3482                 raw_spin_unlock(&ctx->lock);
3483         }
3484 unlock:
3485         rcu_read_unlock();
3486
3487         if (do_switch) {
3488                 raw_spin_lock(&ctx->lock);
3489                 perf_pmu_disable(pmu);
3490
3491                 if (cpuctx->sched_cb_usage && pmu->sched_task)
3492                         pmu->sched_task(ctx, false);
3493                 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3494
3495                 perf_pmu_enable(pmu);
3496                 raw_spin_unlock(&ctx->lock);
3497         }
3498 }
3499
3500 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3501
3502 void perf_sched_cb_dec(struct pmu *pmu)
3503 {
3504         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3505
3506         this_cpu_dec(perf_sched_cb_usages);
3507
3508         if (!--cpuctx->sched_cb_usage)
3509                 list_del(&cpuctx->sched_cb_entry);
3510 }
3511
3512
3513 void perf_sched_cb_inc(struct pmu *pmu)
3514 {
3515         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3516
3517         if (!cpuctx->sched_cb_usage++)
3518                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3519
3520         this_cpu_inc(perf_sched_cb_usages);
3521 }
3522
3523 /*
3524  * This function provides the context switch callback to the lower code
3525  * layer. It is invoked ONLY when the context switch callback is enabled.
3526  *
3527  * This callback is relevant even to per-cpu events; for example multi event
3528  * PEBS requires this to provide PID/TID information. This requires we flush
3529  * all queued PEBS records before we context switch to a new task.
3530  */
3531 static void __perf_pmu_sched_task(struct perf_cpu_context *cpuctx, bool sched_in)
3532 {
3533         struct pmu *pmu;
3534
3535         pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3536
3537         if (WARN_ON_ONCE(!pmu->sched_task))
3538                 return;
3539
3540         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3541         perf_pmu_disable(pmu);
3542
3543         pmu->sched_task(cpuctx->task_ctx, sched_in);
3544
3545         perf_pmu_enable(pmu);
3546         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3547 }
3548
3549 static void perf_pmu_sched_task(struct task_struct *prev,
3550                                 struct task_struct *next,
3551                                 bool sched_in)
3552 {
3553         struct perf_cpu_context *cpuctx;
3554
3555         if (prev == next)
3556                 return;
3557
3558         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3559                 /* will be handled in perf_event_context_sched_in/out */
3560                 if (cpuctx->task_ctx)
3561                         continue;
3562
3563                 __perf_pmu_sched_task(cpuctx, sched_in);
3564         }
3565 }
3566
3567 static void perf_event_switch(struct task_struct *task,
3568                               struct task_struct *next_prev, bool sched_in);
3569
3570 #define for_each_task_context_nr(ctxn)                                  \
3571         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3572
3573 /*
3574  * Called from scheduler to remove the events of the current task,
3575  * with interrupts disabled.
3576  *
3577  * We stop each event and update the event value in event->count.
3578  *
3579  * This does not protect us against NMI, but disable()
3580  * sets the disabled bit in the control field of event _before_
3581  * accessing the event control register. If a NMI hits, then it will
3582  * not restart the event.
3583  */
3584 void __perf_event_task_sched_out(struct task_struct *task,
3585                                  struct task_struct *next)
3586 {
3587         int ctxn;
3588
3589         if (__this_cpu_read(perf_sched_cb_usages))
3590                 perf_pmu_sched_task(task, next, false);
3591
3592         if (atomic_read(&nr_switch_events))
3593                 perf_event_switch(task, next, false);
3594
3595         for_each_task_context_nr(ctxn)
3596                 perf_event_context_sched_out(task, ctxn, next);
3597
3598         /*
3599          * if cgroup events exist on this CPU, then we need
3600          * to check if we have to switch out PMU state.
3601          * cgroup event are system-wide mode only
3602          */
3603         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3604                 perf_cgroup_sched_out(task, next);
3605 }
3606
3607 /*
3608  * Called with IRQs disabled
3609  */
3610 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3611                               enum event_type_t event_type)
3612 {
3613         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3614 }
3615
3616 static bool perf_less_group_idx(const void *l, const void *r)
3617 {
3618         const struct perf_event *le = *(const struct perf_event **)l;
3619         const struct perf_event *re = *(const struct perf_event **)r;
3620
3621         return le->group_index < re->group_index;
3622 }
3623
3624 static void swap_ptr(void *l, void *r)
3625 {
3626         void **lp = l, **rp = r;
3627
3628         swap(*lp, *rp);
3629 }
3630
3631 static const struct min_heap_callbacks perf_min_heap = {
3632         .elem_size = sizeof(struct perf_event *),
3633         .less = perf_less_group_idx,
3634         .swp = swap_ptr,
3635 };
3636
3637 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3638 {
3639         struct perf_event **itrs = heap->data;
3640
3641         if (event) {
3642                 itrs[heap->nr] = event;
3643                 heap->nr++;
3644         }
3645 }
3646
3647 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx,
3648                                 struct perf_event_groups *groups, int cpu,
3649                                 int (*func)(struct perf_event *, void *),
3650                                 void *data)
3651 {
3652 #ifdef CONFIG_CGROUP_PERF
3653         struct cgroup_subsys_state *css = NULL;
3654 #endif
3655         /* Space for per CPU and/or any CPU event iterators. */
3656         struct perf_event *itrs[2];
3657         struct min_heap event_heap;
3658         struct perf_event **evt;
3659         int ret;
3660
3661         if (cpuctx) {
3662                 event_heap = (struct min_heap){
3663                         .data = cpuctx->heap,
3664                         .nr = 0,
3665                         .size = cpuctx->heap_size,
3666                 };
3667
3668                 lockdep_assert_held(&cpuctx->ctx.lock);
3669
3670 #ifdef CONFIG_CGROUP_PERF
3671                 if (cpuctx->cgrp)
3672                         css = &cpuctx->cgrp->css;
3673 #endif
3674         } else {
3675                 event_heap = (struct min_heap){
3676                         .data = itrs,
3677                         .nr = 0,
3678                         .size = ARRAY_SIZE(itrs),
3679                 };
3680                 /* Events not within a CPU context may be on any CPU. */
3681                 __heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL));
3682         }
3683         evt = event_heap.data;
3684
3685         __heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL));
3686
3687 #ifdef CONFIG_CGROUP_PERF
3688         for (; css; css = css->parent)
3689                 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup));
3690 #endif
3691
3692         min_heapify_all(&event_heap, &perf_min_heap);
3693
3694         while (event_heap.nr) {
3695                 ret = func(*evt, data);
3696                 if (ret)
3697                         return ret;
3698
3699                 *evt = perf_event_groups_next(*evt);
3700                 if (*evt)
3701                         min_heapify(&event_heap, 0, &perf_min_heap);
3702                 else
3703                         min_heap_pop(&event_heap, &perf_min_heap);
3704         }
3705
3706         return 0;
3707 }
3708
3709 static int merge_sched_in(struct perf_event *event, void *data)
3710 {
3711         struct perf_event_context *ctx = event->ctx;
3712         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3713         int *can_add_hw = data;
3714
3715         if (event->state <= PERF_EVENT_STATE_OFF)
3716                 return 0;
3717
3718         if (!event_filter_match(event))
3719                 return 0;
3720
3721         if (group_can_go_on(event, cpuctx, *can_add_hw)) {
3722                 if (!group_sched_in(event, cpuctx, ctx))
3723                         list_add_tail(&event->active_list, get_event_list(event));
3724         }
3725
3726         if (event->state == PERF_EVENT_STATE_INACTIVE) {
3727                 if (event->attr.pinned) {
3728                         perf_cgroup_event_disable(event, ctx);
3729                         perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3730                 }
3731
3732                 *can_add_hw = 0;
3733                 ctx->rotate_necessary = 1;
3734                 perf_mux_hrtimer_restart(cpuctx);
3735         }
3736
3737         return 0;
3738 }
3739
3740 static void
3741 ctx_pinned_sched_in(struct perf_event_context *ctx,
3742                     struct perf_cpu_context *cpuctx)
3743 {
3744         int can_add_hw = 1;
3745
3746         if (ctx != &cpuctx->ctx)
3747                 cpuctx = NULL;
3748
3749         visit_groups_merge(cpuctx, &ctx->pinned_groups,
3750                            smp_processor_id(),
3751                            merge_sched_in, &can_add_hw);
3752 }
3753
3754 static void
3755 ctx_flexible_sched_in(struct perf_event_context *ctx,
3756                       struct perf_cpu_context *cpuctx)
3757 {
3758         int can_add_hw = 1;
3759
3760         if (ctx != &cpuctx->ctx)
3761                 cpuctx = NULL;
3762
3763         visit_groups_merge(cpuctx, &ctx->flexible_groups,
3764                            smp_processor_id(),
3765                            merge_sched_in, &can_add_hw);
3766 }
3767
3768 static void
3769 ctx_sched_in(struct perf_event_context *ctx,
3770              struct perf_cpu_context *cpuctx,
3771              enum event_type_t event_type,
3772              struct task_struct *task)
3773 {
3774         int is_active = ctx->is_active;
3775         u64 now;
3776
3777         lockdep_assert_held(&ctx->lock);
3778
3779         if (likely(!ctx->nr_events))
3780                 return;
3781
3782         ctx->is_active |= (event_type | EVENT_TIME);
3783         if (ctx->task) {
3784                 if (!is_active)
3785                         cpuctx->task_ctx = ctx;
3786                 else
3787                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3788         }
3789
3790         is_active ^= ctx->is_active; /* changed bits */
3791
3792         if (is_active & EVENT_TIME) {
3793                 /* start ctx time */
3794                 now = perf_clock();
3795                 ctx->timestamp = now;
3796                 perf_cgroup_set_timestamp(task, ctx);
3797         }
3798
3799         /*
3800          * First go through the list and put on any pinned groups
3801          * in order to give them the best chance of going on.
3802          */
3803         if (is_active & EVENT_PINNED)
3804                 ctx_pinned_sched_in(ctx, cpuctx);
3805
3806         /* Then walk through the lower prio flexible groups */
3807         if (is_active & EVENT_FLEXIBLE)
3808                 ctx_flexible_sched_in(ctx, cpuctx);
3809 }
3810
3811 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3812                              enum event_type_t event_type,
3813                              struct task_struct *task)
3814 {
3815         struct perf_event_context *ctx = &cpuctx->ctx;
3816
3817         ctx_sched_in(ctx, cpuctx, event_type, task);
3818 }
3819
3820 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3821                                         struct task_struct *task)
3822 {
3823         struct perf_cpu_context *cpuctx;
3824         struct pmu *pmu = ctx->pmu;
3825
3826         cpuctx = __get_cpu_context(ctx);
3827         if (cpuctx->task_ctx == ctx) {
3828                 if (cpuctx->sched_cb_usage)
3829                         __perf_pmu_sched_task(cpuctx, true);
3830                 return;
3831         }
3832
3833         perf_ctx_lock(cpuctx, ctx);
3834         /*
3835          * We must check ctx->nr_events while holding ctx->lock, such
3836          * that we serialize against perf_install_in_context().
3837          */
3838         if (!ctx->nr_events)
3839                 goto unlock;
3840
3841         perf_pmu_disable(pmu);
3842         /*
3843          * We want to keep the following priority order:
3844          * cpu pinned (that don't need to move), task pinned,
3845          * cpu flexible, task flexible.
3846          *
3847          * However, if task's ctx is not carrying any pinned
3848          * events, no need to flip the cpuctx's events around.
3849          */
3850         if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3851                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3852         perf_event_sched_in(cpuctx, ctx, task);
3853
3854         if (cpuctx->sched_cb_usage && pmu->sched_task)
3855                 pmu->sched_task(cpuctx->task_ctx, true);
3856
3857         perf_pmu_enable(pmu);
3858
3859 unlock:
3860         perf_ctx_unlock(cpuctx, ctx);
3861 }
3862
3863 /*
3864  * Called from scheduler to add the events of the current task
3865  * with interrupts disabled.
3866  *
3867  * We restore the event value and then enable it.
3868  *
3869  * This does not protect us against NMI, but enable()
3870  * sets the enabled bit in the control field of event _before_
3871  * accessing the event control register. If a NMI hits, then it will
3872  * keep the event running.
3873  */
3874 void __perf_event_task_sched_in(struct task_struct *prev,
3875                                 struct task_struct *task)
3876 {
3877         struct perf_event_context *ctx;
3878         int ctxn;
3879
3880         /*
3881          * If cgroup events exist on this CPU, then we need to check if we have
3882          * to switch in PMU state; cgroup event are system-wide mode only.
3883          *
3884          * Since cgroup events are CPU events, we must schedule these in before
3885          * we schedule in the task events.
3886          */
3887         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3888                 perf_cgroup_sched_in(prev, task);
3889
3890         for_each_task_context_nr(ctxn) {
3891                 ctx = task->perf_event_ctxp[ctxn];
3892                 if (likely(!ctx))
3893                         continue;
3894
3895                 perf_event_context_sched_in(ctx, task);
3896         }
3897
3898         if (atomic_read(&nr_switch_events))
3899                 perf_event_switch(task, prev, true);
3900
3901         if (__this_cpu_read(perf_sched_cb_usages))
3902                 perf_pmu_sched_task(prev, task, true);
3903 }
3904
3905 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3906 {
3907         u64 frequency = event->attr.sample_freq;
3908         u64 sec = NSEC_PER_SEC;
3909         u64 divisor, dividend;
3910
3911         int count_fls, nsec_fls, frequency_fls, sec_fls;
3912
3913         count_fls = fls64(count);
3914         nsec_fls = fls64(nsec);
3915         frequency_fls = fls64(frequency);
3916         sec_fls = 30;
3917
3918         /*
3919          * We got @count in @nsec, with a target of sample_freq HZ
3920          * the target period becomes:
3921          *
3922          *             @count * 10^9
3923          * period = -------------------
3924          *          @nsec * sample_freq
3925          *
3926          */
3927
3928         /*
3929          * Reduce accuracy by one bit such that @a and @b converge
3930          * to a similar magnitude.
3931          */
3932 #define REDUCE_FLS(a, b)                \
3933 do {                                    \
3934         if (a##_fls > b##_fls) {        \
3935                 a >>= 1;                \
3936                 a##_fls--;              \
3937         } else {                        \
3938                 b >>= 1;                \
3939                 b##_fls--;              \
3940         }                               \
3941 } while (0)
3942
3943         /*
3944          * Reduce accuracy until either term fits in a u64, then proceed with
3945          * the other, so that finally we can do a u64/u64 division.
3946          */
3947         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3948                 REDUCE_FLS(nsec, frequency);
3949                 REDUCE_FLS(sec, count);
3950         }
3951
3952         if (count_fls + sec_fls > 64) {
3953                 divisor = nsec * frequency;
3954
3955                 while (count_fls + sec_fls > 64) {
3956                         REDUCE_FLS(count, sec);
3957                         divisor >>= 1;
3958                 }
3959
3960                 dividend = count * sec;
3961         } else {
3962                 dividend = count * sec;
3963
3964                 while (nsec_fls + frequency_fls > 64) {
3965                         REDUCE_FLS(nsec, frequency);
3966                         dividend >>= 1;
3967                 }
3968
3969                 divisor = nsec * frequency;
3970         }
3971
3972         if (!divisor)
3973                 return dividend;
3974
3975         return div64_u64(dividend, divisor);
3976 }
3977
3978 static DEFINE_PER_CPU(int, perf_throttled_count);
3979 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3980
3981 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3982 {
3983         struct hw_perf_event *hwc = &event->hw;
3984         s64 period, sample_period;
3985         s64 delta;
3986
3987         period = perf_calculate_period(event, nsec, count);
3988
3989         delta = (s64)(period - hwc->sample_period);
3990         delta = (delta + 7) / 8; /* low pass filter */
3991
3992         sample_period = hwc->sample_period + delta;
3993
3994         if (!sample_period)
3995                 sample_period = 1;
3996
3997         hwc->sample_period = sample_period;
3998
3999         if (local64_read(&hwc->period_left) > 8*sample_period) {
4000                 if (disable)
4001                         event->pmu->stop(event, PERF_EF_UPDATE);
4002
4003                 local64_set(&hwc->period_left, 0);
4004
4005                 if (disable)
4006                         event->pmu->start(event, PERF_EF_RELOAD);
4007         }
4008 }
4009
4010 /*
4011  * combine freq adjustment with unthrottling to avoid two passes over the
4012  * events. At the same time, make sure, having freq events does not change
4013  * the rate of unthrottling as that would introduce bias.
4014  */
4015 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
4016                                            int needs_unthr)
4017 {
4018         struct perf_event *event;
4019         struct hw_perf_event *hwc;
4020         u64 now, period = TICK_NSEC;
4021         s64 delta;
4022
4023         /*
4024          * only need to iterate over all events iff:
4025          * - context have events in frequency mode (needs freq adjust)
4026          * - there are events to unthrottle on this cpu
4027          */
4028         if (!(ctx->nr_freq || needs_unthr))
4029                 return;
4030
4031         raw_spin_lock(&ctx->lock);
4032         perf_pmu_disable(ctx->pmu);
4033
4034         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4035                 if (event->state != PERF_EVENT_STATE_ACTIVE)
4036                         continue;
4037
4038                 if (!event_filter_match(event))
4039                         continue;
4040
4041                 perf_pmu_disable(event->pmu);
4042
4043                 hwc = &event->hw;
4044
4045                 if (hwc->interrupts == MAX_INTERRUPTS) {
4046                         hwc->interrupts = 0;
4047                         perf_log_throttle(event, 1);
4048                         event->pmu->start(event, 0);
4049                 }
4050
4051                 if (!event->attr.freq || !event->attr.sample_freq)
4052                         goto next;
4053
4054                 /*
4055                  * stop the event and update event->count
4056                  */
4057                 event->pmu->stop(event, PERF_EF_UPDATE);
4058
4059                 now = local64_read(&event->count);
4060                 delta = now - hwc->freq_count_stamp;
4061                 hwc->freq_count_stamp = now;
4062
4063                 /*
4064                  * restart the event
4065                  * reload only if value has changed
4066                  * we have stopped the event so tell that
4067                  * to perf_adjust_period() to avoid stopping it
4068                  * twice.
4069                  */
4070                 if (delta > 0)
4071                         perf_adjust_period(event, period, delta, false);
4072
4073                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4074         next:
4075                 perf_pmu_enable(event->pmu);
4076         }
4077
4078         perf_pmu_enable(ctx->pmu);
4079         raw_spin_unlock(&ctx->lock);
4080 }
4081
4082 /*
4083  * Move @event to the tail of the @ctx's elegible events.
4084  */
4085 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4086 {
4087         /*
4088          * Rotate the first entry last of non-pinned groups. Rotation might be
4089          * disabled by the inheritance code.
4090          */
4091         if (ctx->rotate_disable)
4092                 return;
4093
4094         perf_event_groups_delete(&ctx->flexible_groups, event);
4095         perf_event_groups_insert(&ctx->flexible_groups, event);
4096 }
4097
4098 /* pick an event from the flexible_groups to rotate */
4099 static inline struct perf_event *
4100 ctx_event_to_rotate(struct perf_event_context *ctx)
4101 {
4102         struct perf_event *event;
4103
4104         /* pick the first active flexible event */
4105         event = list_first_entry_or_null(&ctx->flexible_active,
4106                                          struct perf_event, active_list);
4107
4108         /* if no active flexible event, pick the first event */
4109         if (!event) {
4110                 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
4111                                       typeof(*event), group_node);
4112         }
4113
4114         /*
4115          * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4116          * finds there are unschedulable events, it will set it again.
4117          */
4118         ctx->rotate_necessary = 0;
4119
4120         return event;
4121 }
4122
4123 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
4124 {
4125         struct perf_event *cpu_event = NULL, *task_event = NULL;
4126         struct perf_event_context *task_ctx = NULL;
4127         int cpu_rotate, task_rotate;
4128
4129         /*
4130          * Since we run this from IRQ context, nobody can install new
4131          * events, thus the event count values are stable.
4132          */
4133
4134         cpu_rotate = cpuctx->ctx.rotate_necessary;
4135         task_ctx = cpuctx->task_ctx;
4136         task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
4137
4138         if (!(cpu_rotate || task_rotate))
4139                 return false;
4140
4141         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4142         perf_pmu_disable(cpuctx->ctx.pmu);
4143
4144         if (task_rotate)
4145                 task_event = ctx_event_to_rotate(task_ctx);
4146         if (cpu_rotate)
4147                 cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
4148
4149         /*
4150          * As per the order given at ctx_resched() first 'pop' task flexible
4151          * and then, if needed CPU flexible.
4152          */
4153         if (task_event || (task_ctx && cpu_event))
4154                 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
4155         if (cpu_event)
4156                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
4157
4158         if (task_event)
4159                 rotate_ctx(task_ctx, task_event);
4160         if (cpu_event)
4161                 rotate_ctx(&cpuctx->ctx, cpu_event);
4162
4163         perf_event_sched_in(cpuctx, task_ctx, current);
4164
4165         perf_pmu_enable(cpuctx->ctx.pmu);
4166         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4167
4168         return true;
4169 }
4170
4171 void perf_event_task_tick(void)
4172 {
4173         struct list_head *head = this_cpu_ptr(&active_ctx_list);
4174         struct perf_event_context *ctx, *tmp;
4175         int throttled;
4176
4177         lockdep_assert_irqs_disabled();
4178
4179         __this_cpu_inc(perf_throttled_seq);
4180         throttled = __this_cpu_xchg(perf_throttled_count, 0);
4181         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4182
4183         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
4184                 perf_adjust_freq_unthr_context(ctx, throttled);
4185 }
4186
4187 static int event_enable_on_exec(struct perf_event *event,
4188                                 struct perf_event_context *ctx)
4189 {
4190         if (!event->attr.enable_on_exec)
4191                 return 0;
4192
4193         event->attr.enable_on_exec = 0;
4194         if (event->state >= PERF_EVENT_STATE_INACTIVE)
4195                 return 0;
4196
4197         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4198
4199         return 1;
4200 }
4201
4202 /*
4203  * Enable all of a task's events that have been marked enable-on-exec.
4204  * This expects task == current.
4205  */
4206 static void perf_event_enable_on_exec(int ctxn)
4207 {
4208         struct perf_event_context *ctx, *clone_ctx = NULL;
4209         enum event_type_t event_type = 0;
4210         struct perf_cpu_context *cpuctx;
4211         struct perf_event *event;
4212         unsigned long flags;
4213         int enabled = 0;
4214
4215         local_irq_save(flags);
4216         ctx = current->perf_event_ctxp[ctxn];
4217         if (!ctx || !ctx->nr_events)
4218                 goto out;
4219
4220         cpuctx = __get_cpu_context(ctx);
4221         perf_ctx_lock(cpuctx, ctx);
4222         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
4223         list_for_each_entry(event, &ctx->event_list, event_entry) {
4224                 enabled |= event_enable_on_exec(event, ctx);
4225                 event_type |= get_event_type(event);
4226         }
4227
4228         /*
4229          * Unclone and reschedule this context if we enabled any event.
4230          */
4231         if (enabled) {
4232                 clone_ctx = unclone_ctx(ctx);
4233                 ctx_resched(cpuctx, ctx, event_type);
4234         } else {
4235                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
4236         }
4237         perf_ctx_unlock(cpuctx, ctx);
4238
4239 out:
4240         local_irq_restore(flags);
4241
4242         if (clone_ctx)
4243                 put_ctx(clone_ctx);
4244 }
4245
4246 static void perf_remove_from_owner(struct perf_event *event);
4247 static void perf_event_exit_event(struct perf_event *event,
4248                                   struct perf_event_context *ctx);
4249
4250 /*
4251  * Removes all events from the current task that have been marked
4252  * remove-on-exec, and feeds their values back to parent events.
4253  */
4254 static void perf_event_remove_on_exec(int ctxn)
4255 {
4256         struct perf_event_context *ctx, *clone_ctx = NULL;
4257         struct perf_event *event, *next;
4258         LIST_HEAD(free_list);
4259         unsigned long flags;
4260         bool modified = false;
4261
4262         ctx = perf_pin_task_context(current, ctxn);
4263         if (!ctx)
4264                 return;
4265
4266         mutex_lock(&ctx->mutex);
4267
4268         if (WARN_ON_ONCE(ctx->task != current))
4269                 goto unlock;
4270
4271         list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4272                 if (!event->attr.remove_on_exec)
4273                         continue;
4274
4275                 if (!is_kernel_event(event))
4276                         perf_remove_from_owner(event);
4277
4278                 modified = true;
4279
4280                 perf_event_exit_event(event, ctx);
4281         }
4282
4283         raw_spin_lock_irqsave(&ctx->lock, flags);
4284         if (modified)
4285                 clone_ctx = unclone_ctx(ctx);
4286         --ctx->pin_count;
4287         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4288
4289 unlock:
4290         mutex_unlock(&ctx->mutex);
4291
4292         put_ctx(ctx);
4293         if (clone_ctx)
4294                 put_ctx(clone_ctx);
4295 }
4296
4297 struct perf_read_data {
4298         struct perf_event *event;
4299         bool group;
4300         int ret;
4301 };
4302
4303 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4304 {
4305         u16 local_pkg, event_pkg;
4306
4307         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4308                 int local_cpu = smp_processor_id();
4309
4310                 event_pkg = topology_physical_package_id(event_cpu);
4311                 local_pkg = topology_physical_package_id(local_cpu);
4312
4313                 if (event_pkg == local_pkg)
4314                         return local_cpu;
4315         }
4316
4317         return event_cpu;
4318 }
4319
4320 /*
4321  * Cross CPU call to read the hardware event
4322  */
4323 static void __perf_event_read(void *info)
4324 {
4325         struct perf_read_data *data = info;
4326         struct perf_event *sub, *event = data->event;
4327         struct perf_event_context *ctx = event->ctx;
4328         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4329         struct pmu *pmu = event->pmu;
4330
4331         /*
4332          * If this is a task context, we need to check whether it is
4333          * the current task context of this cpu.  If not it has been
4334          * scheduled out before the smp call arrived.  In that case
4335          * event->count would have been updated to a recent sample
4336          * when the event was scheduled out.
4337          */
4338         if (ctx->task && cpuctx->task_ctx != ctx)
4339                 return;
4340
4341         raw_spin_lock(&ctx->lock);
4342         if (ctx->is_active & EVENT_TIME) {
4343                 update_context_time(ctx);
4344                 update_cgrp_time_from_event(event);
4345         }
4346
4347         perf_event_update_time(event);
4348         if (data->group)
4349                 perf_event_update_sibling_time(event);
4350
4351         if (event->state != PERF_EVENT_STATE_ACTIVE)
4352                 goto unlock;
4353
4354         if (!data->group) {
4355                 pmu->read(event);
4356                 data->ret = 0;
4357                 goto unlock;
4358         }
4359
4360         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4361
4362         pmu->read(event);
4363
4364         for_each_sibling_event(sub, event) {
4365                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4366                         /*
4367                          * Use sibling's PMU rather than @event's since
4368                          * sibling could be on different (eg: software) PMU.
4369                          */
4370                         sub->pmu->read(sub);
4371                 }
4372         }
4373
4374         data->ret = pmu->commit_txn(pmu);
4375
4376 unlock:
4377         raw_spin_unlock(&ctx->lock);
4378 }
4379
4380 static inline u64 perf_event_count(struct perf_event *event)
4381 {
4382         return local64_read(&event->count) + atomic64_read(&event->child_count);
4383 }
4384
4385 /*
4386  * NMI-safe method to read a local event, that is an event that
4387  * is:
4388  *   - either for the current task, or for this CPU
4389  *   - does not have inherit set, for inherited task events
4390  *     will not be local and we cannot read them atomically
4391  *   - must not have a pmu::count method
4392  */
4393 int perf_event_read_local(struct perf_event *event, u64 *value,
4394                           u64 *enabled, u64 *running)
4395 {
4396         unsigned long flags;
4397         int ret = 0;
4398
4399         /*
4400          * Disabling interrupts avoids all counter scheduling (context
4401          * switches, timer based rotation and IPIs).
4402          */
4403         local_irq_save(flags);
4404
4405         /*
4406          * It must not be an event with inherit set, we cannot read
4407          * all child counters from atomic context.
4408          */
4409         if (event->attr.inherit) {
4410                 ret = -EOPNOTSUPP;
4411                 goto out;
4412         }
4413
4414         /* If this is a per-task event, it must be for current */
4415         if ((event->attach_state & PERF_ATTACH_TASK) &&
4416             event->hw.target != current) {
4417                 ret = -EINVAL;
4418                 goto out;
4419         }
4420
4421         /* If this is a per-CPU event, it must be for this CPU */
4422         if (!(event->attach_state & PERF_ATTACH_TASK) &&
4423             event->cpu != smp_processor_id()) {
4424                 ret = -EINVAL;
4425                 goto out;
4426         }
4427
4428         /* If this is a pinned event it must be running on this CPU */
4429         if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4430                 ret = -EBUSY;
4431                 goto out;
4432         }
4433
4434         /*
4435          * If the event is currently on this CPU, its either a per-task event,
4436          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4437          * oncpu == -1).
4438          */
4439         if (event->oncpu == smp_processor_id())
4440                 event->pmu->read(event);
4441
4442         *value = local64_read(&event->count);
4443         if (enabled || running) {
4444                 u64 now = event->shadow_ctx_time + perf_clock();
4445                 u64 __enabled, __running;
4446
4447                 __perf_update_times(event, now, &__enabled, &__running);
4448                 if (enabled)
4449                         *enabled = __enabled;
4450                 if (running)
4451                         *running = __running;
4452         }
4453 out:
4454         local_irq_restore(flags);
4455
4456         return ret;
4457 }
4458
4459 static int perf_event_read(struct perf_event *event, bool group)
4460 {
4461         enum perf_event_state state = READ_ONCE(event->state);
4462         int event_cpu, ret = 0;
4463
4464         /*
4465          * If event is enabled and currently active on a CPU, update the
4466          * value in the event structure:
4467          */
4468 again:
4469         if (state == PERF_EVENT_STATE_ACTIVE) {
4470                 struct perf_read_data data;
4471
4472                 /*
4473                  * Orders the ->state and ->oncpu loads such that if we see
4474                  * ACTIVE we must also see the right ->oncpu.
4475                  *
4476                  * Matches the smp_wmb() from event_sched_in().
4477                  */
4478                 smp_rmb();
4479
4480                 event_cpu = READ_ONCE(event->oncpu);
4481                 if ((unsigned)event_cpu >= nr_cpu_ids)
4482                         return 0;
4483
4484                 data = (struct perf_read_data){
4485                         .event = event,
4486                         .group = group,
4487                         .ret = 0,
4488                 };
4489
4490                 preempt_disable();
4491                 event_cpu = __perf_event_read_cpu(event, event_cpu);
4492
4493                 /*
4494                  * Purposely ignore the smp_call_function_single() return
4495                  * value.
4496                  *
4497                  * If event_cpu isn't a valid CPU it means the event got
4498                  * scheduled out and that will have updated the event count.
4499                  *
4500                  * Therefore, either way, we'll have an up-to-date event count
4501                  * after this.
4502                  */
4503                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4504                 preempt_enable();
4505                 ret = data.ret;
4506
4507         } else if (state == PERF_EVENT_STATE_INACTIVE) {
4508                 struct perf_event_context *ctx = event->ctx;
4509                 unsigned long flags;
4510
4511                 raw_spin_lock_irqsave(&ctx->lock, flags);
4512                 state = event->state;
4513                 if (state != PERF_EVENT_STATE_INACTIVE) {
4514                         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4515                         goto again;
4516                 }
4517
4518                 /*
4519                  * May read while context is not active (e.g., thread is
4520                  * blocked), in that case we cannot update context time
4521                  */
4522                 if (ctx->is_active & EVENT_TIME) {
4523                         update_context_time(ctx);
4524                         update_cgrp_time_from_event(event);
4525                 }
4526
4527                 perf_event_update_time(event);
4528                 if (group)
4529                         perf_event_update_sibling_time(event);
4530                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4531         }
4532
4533         return ret;
4534 }
4535
4536 /*
4537  * Initialize the perf_event context in a task_struct:
4538  */
4539 static void __perf_event_init_context(struct perf_event_context *ctx)
4540 {
4541         raw_spin_lock_init(&ctx->lock);
4542         mutex_init(&ctx->mutex);
4543         INIT_LIST_HEAD(&ctx->active_ctx_list);
4544         perf_event_groups_init(&ctx->pinned_groups);
4545         perf_event_groups_init(&ctx->flexible_groups);
4546         INIT_LIST_HEAD(&ctx->event_list);
4547         INIT_LIST_HEAD(&ctx->pinned_active);
4548         INIT_LIST_HEAD(&ctx->flexible_active);
4549         refcount_set(&ctx->refcount, 1);
4550 }
4551
4552 static struct perf_event_context *
4553 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4554 {
4555         struct perf_event_context *ctx;
4556
4557         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4558         if (!ctx)
4559                 return NULL;
4560
4561         __perf_event_init_context(ctx);
4562         if (task)
4563                 ctx->task = get_task_struct(task);
4564         ctx->pmu = pmu;
4565
4566         return ctx;
4567 }
4568
4569 static struct task_struct *
4570 find_lively_task_by_vpid(pid_t vpid)
4571 {
4572         struct task_struct *task;
4573
4574         rcu_read_lock();
4575         if (!vpid)
4576                 task = current;
4577         else
4578                 task = find_task_by_vpid(vpid);
4579         if (task)
4580                 get_task_struct(task);
4581         rcu_read_unlock();
4582
4583         if (!task)
4584                 return ERR_PTR(-ESRCH);
4585
4586         return task;
4587 }
4588
4589 /*
4590  * Returns a matching context with refcount and pincount.
4591  */
4592 static struct perf_event_context *
4593 find_get_context(struct pmu *pmu, struct task_struct *task,
4594                 struct perf_event *event)
4595 {
4596         struct perf_event_context *ctx, *clone_ctx = NULL;
4597         struct perf_cpu_context *cpuctx;
4598         void *task_ctx_data = NULL;
4599         unsigned long flags;
4600         int ctxn, err;
4601         int cpu = event->cpu;
4602
4603         if (!task) {
4604                 /* Must be root to operate on a CPU event: */
4605                 err = perf_allow_cpu(&event->attr);
4606                 if (err)
4607                         return ERR_PTR(err);
4608
4609                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4610                 ctx = &cpuctx->ctx;
4611                 get_ctx(ctx);
4612                 raw_spin_lock_irqsave(&ctx->lock, flags);
4613                 ++ctx->pin_count;
4614                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4615
4616                 return ctx;
4617         }
4618
4619         err = -EINVAL;
4620         ctxn = pmu->task_ctx_nr;
4621         if (ctxn < 0)
4622                 goto errout;
4623
4624         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4625                 task_ctx_data = alloc_task_ctx_data(pmu);
4626                 if (!task_ctx_data) {
4627                         err = -ENOMEM;
4628                         goto errout;
4629                 }
4630         }
4631
4632 retry:
4633         ctx = perf_lock_task_context(task, ctxn, &flags);
4634         if (ctx) {
4635                 clone_ctx = unclone_ctx(ctx);
4636                 ++ctx->pin_count;
4637
4638                 if (task_ctx_data && !ctx->task_ctx_data) {
4639                         ctx->task_ctx_data = task_ctx_data;
4640                         task_ctx_data = NULL;
4641                 }
4642                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4643
4644                 if (clone_ctx)
4645                         put_ctx(clone_ctx);
4646         } else {
4647                 ctx = alloc_perf_context(pmu, task);
4648                 err = -ENOMEM;
4649                 if (!ctx)
4650                         goto errout;
4651
4652                 if (task_ctx_data) {
4653                         ctx->task_ctx_data = task_ctx_data;
4654                         task_ctx_data = NULL;
4655                 }
4656
4657                 err = 0;
4658                 mutex_lock(&task->perf_event_mutex);
4659                 /*
4660                  * If it has already passed perf_event_exit_task().
4661                  * we must see PF_EXITING, it takes this mutex too.
4662                  */
4663                 if (task->flags & PF_EXITING)
4664                         err = -ESRCH;
4665                 else if (task->perf_event_ctxp[ctxn])
4666                         err = -EAGAIN;
4667                 else {
4668                         get_ctx(ctx);
4669                         ++ctx->pin_count;
4670                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4671                 }
4672                 mutex_unlock(&task->perf_event_mutex);
4673
4674                 if (unlikely(err)) {
4675                         put_ctx(ctx);
4676
4677                         if (err == -EAGAIN)
4678                                 goto retry;
4679                         goto errout;
4680                 }
4681         }
4682
4683         free_task_ctx_data(pmu, task_ctx_data);
4684         return ctx;
4685
4686 errout:
4687         free_task_ctx_data(pmu, task_ctx_data);
4688         return ERR_PTR(err);
4689 }
4690
4691 static void perf_event_free_filter(struct perf_event *event);
4692 static void perf_event_free_bpf_prog(struct perf_event *event);
4693
4694 static void free_event_rcu(struct rcu_head *head)
4695 {
4696         struct perf_event *event;
4697
4698         event = container_of(head, struct perf_event, rcu_head);
4699         if (event->ns)
4700                 put_pid_ns(event->ns);
4701         perf_event_free_filter(event);
4702         kmem_cache_free(perf_event_cache, event);
4703 }
4704
4705 static void ring_buffer_attach(struct perf_event *event,
4706                                struct perf_buffer *rb);
4707
4708 static void detach_sb_event(struct perf_event *event)
4709 {
4710         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4711
4712         raw_spin_lock(&pel->lock);
4713         list_del_rcu(&event->sb_list);
4714         raw_spin_unlock(&pel->lock);
4715 }
4716
4717 static bool is_sb_event(struct perf_event *event)
4718 {
4719         struct perf_event_attr *attr = &event->attr;
4720
4721         if (event->parent)
4722                 return false;
4723
4724         if (event->attach_state & PERF_ATTACH_TASK)
4725                 return false;
4726
4727         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4728             attr->comm || attr->comm_exec ||
4729             attr->task || attr->ksymbol ||
4730             attr->context_switch || attr->text_poke ||
4731             attr->bpf_event)
4732                 return true;
4733         return false;
4734 }
4735
4736 static void unaccount_pmu_sb_event(struct perf_event *event)
4737 {
4738         if (is_sb_event(event))
4739                 detach_sb_event(event);
4740 }
4741
4742 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4743 {
4744         if (event->parent)
4745                 return;
4746
4747         if (is_cgroup_event(event))
4748                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4749 }
4750
4751 #ifdef CONFIG_NO_HZ_FULL
4752 static DEFINE_SPINLOCK(nr_freq_lock);
4753 #endif
4754
4755 static void unaccount_freq_event_nohz(void)
4756 {
4757 #ifdef CONFIG_NO_HZ_FULL
4758         spin_lock(&nr_freq_lock);
4759         if (atomic_dec_and_test(&nr_freq_events))
4760                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4761         spin_unlock(&nr_freq_lock);
4762 #endif
4763 }
4764
4765 static void unaccount_freq_event(void)
4766 {
4767         if (tick_nohz_full_enabled())
4768                 unaccount_freq_event_nohz();
4769         else
4770                 atomic_dec(&nr_freq_events);
4771 }
4772
4773 static void unaccount_event(struct perf_event *event)
4774 {
4775         bool dec = false;
4776
4777         if (event->parent)
4778                 return;
4779
4780         if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
4781                 dec = true;
4782         if (event->attr.mmap || event->attr.mmap_data)
4783                 atomic_dec(&nr_mmap_events);
4784         if (event->attr.build_id)
4785                 atomic_dec(&nr_build_id_events);
4786         if (event->attr.comm)
4787                 atomic_dec(&nr_comm_events);
4788         if (event->attr.namespaces)
4789                 atomic_dec(&nr_namespaces_events);
4790         if (event->attr.cgroup)
4791                 atomic_dec(&nr_cgroup_events);
4792         if (event->attr.task)
4793                 atomic_dec(&nr_task_events);
4794         if (event->attr.freq)
4795                 unaccount_freq_event();
4796         if (event->attr.context_switch) {
4797                 dec = true;
4798                 atomic_dec(&nr_switch_events);
4799         }
4800         if (is_cgroup_event(event))
4801                 dec = true;
4802         if (has_branch_stack(event))
4803                 dec = true;
4804         if (event->attr.ksymbol)
4805                 atomic_dec(&nr_ksymbol_events);
4806         if (event->attr.bpf_event)
4807                 atomic_dec(&nr_bpf_events);
4808         if (event->attr.text_poke)
4809                 atomic_dec(&nr_text_poke_events);
4810
4811         if (dec) {
4812                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4813                         schedule_delayed_work(&perf_sched_work, HZ);
4814         }
4815
4816         unaccount_event_cpu(event, event->cpu);
4817
4818         unaccount_pmu_sb_event(event);
4819 }
4820
4821 static void perf_sched_delayed(struct work_struct *work)
4822 {
4823         mutex_lock(&perf_sched_mutex);
4824         if (atomic_dec_and_test(&perf_sched_count))
4825                 static_branch_disable(&perf_sched_events);
4826         mutex_unlock(&perf_sched_mutex);
4827 }
4828
4829 /*
4830  * The following implement mutual exclusion of events on "exclusive" pmus
4831  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4832  * at a time, so we disallow creating events that might conflict, namely:
4833  *
4834  *  1) cpu-wide events in the presence of per-task events,
4835  *  2) per-task events in the presence of cpu-wide events,
4836  *  3) two matching events on the same context.
4837  *
4838  * The former two cases are handled in the allocation path (perf_event_alloc(),
4839  * _free_event()), the latter -- before the first perf_install_in_context().
4840  */
4841 static int exclusive_event_init(struct perf_event *event)
4842 {
4843         struct pmu *pmu = event->pmu;
4844
4845         if (!is_exclusive_pmu(pmu))
4846                 return 0;
4847
4848         /*
4849          * Prevent co-existence of per-task and cpu-wide events on the
4850          * same exclusive pmu.
4851          *
4852          * Negative pmu::exclusive_cnt means there are cpu-wide
4853          * events on this "exclusive" pmu, positive means there are
4854          * per-task events.
4855          *
4856          * Since this is called in perf_event_alloc() path, event::ctx
4857          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4858          * to mean "per-task event", because unlike other attach states it
4859          * never gets cleared.
4860          */
4861         if (event->attach_state & PERF_ATTACH_TASK) {
4862                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4863                         return -EBUSY;
4864         } else {
4865                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4866                         return -EBUSY;
4867         }
4868
4869         return 0;
4870 }
4871
4872 static void exclusive_event_destroy(struct perf_event *event)
4873 {
4874         struct pmu *pmu = event->pmu;
4875
4876         if (!is_exclusive_pmu(pmu))
4877                 return;
4878
4879         /* see comment in exclusive_event_init() */
4880         if (event->attach_state & PERF_ATTACH_TASK)
4881                 atomic_dec(&pmu->exclusive_cnt);
4882         else
4883                 atomic_inc(&pmu->exclusive_cnt);
4884 }
4885
4886 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4887 {
4888         if ((e1->pmu == e2->pmu) &&
4889             (e1->cpu == e2->cpu ||
4890              e1->cpu == -1 ||
4891              e2->cpu == -1))
4892                 return true;
4893         return false;
4894 }
4895
4896 static bool exclusive_event_installable(struct perf_event *event,
4897                                         struct perf_event_context *ctx)
4898 {
4899         struct perf_event *iter_event;
4900         struct pmu *pmu = event->pmu;
4901
4902         lockdep_assert_held(&ctx->mutex);
4903
4904         if (!is_exclusive_pmu(pmu))
4905                 return true;
4906
4907         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4908                 if (exclusive_event_match(iter_event, event))
4909                         return false;
4910         }
4911
4912         return true;
4913 }
4914
4915 static void perf_addr_filters_splice(struct perf_event *event,
4916                                        struct list_head *head);
4917
4918 static void _free_event(struct perf_event *event)
4919 {
4920         irq_work_sync(&event->pending);
4921
4922         unaccount_event(event);
4923
4924         security_perf_event_free(event);
4925
4926         if (event->rb) {
4927                 /*
4928                  * Can happen when we close an event with re-directed output.
4929                  *
4930                  * Since we have a 0 refcount, perf_mmap_close() will skip
4931                  * over us; possibly making our ring_buffer_put() the last.
4932                  */
4933                 mutex_lock(&event->mmap_mutex);
4934                 ring_buffer_attach(event, NULL);
4935                 mutex_unlock(&event->mmap_mutex);
4936         }
4937
4938         if (is_cgroup_event(event))
4939                 perf_detach_cgroup(event);
4940
4941         if (!event->parent) {
4942                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4943                         put_callchain_buffers();
4944         }
4945
4946         perf_event_free_bpf_prog(event);
4947         perf_addr_filters_splice(event, NULL);
4948         kfree(event->addr_filter_ranges);
4949
4950         if (event->destroy)
4951                 event->destroy(event);
4952
4953         /*
4954          * Must be after ->destroy(), due to uprobe_perf_close() using
4955          * hw.target.
4956          */
4957         if (event->hw.target)
4958                 put_task_struct(event->hw.target);
4959
4960         /*
4961          * perf_event_free_task() relies on put_ctx() being 'last', in particular
4962          * all task references must be cleaned up.
4963          */
4964         if (event->ctx)
4965                 put_ctx(event->ctx);
4966
4967         exclusive_event_destroy(event);
4968         module_put(event->pmu->module);
4969
4970         call_rcu(&event->rcu_head, free_event_rcu);
4971 }
4972
4973 /*
4974  * Used to free events which have a known refcount of 1, such as in error paths
4975  * where the event isn't exposed yet and inherited events.
4976  */
4977 static void free_event(struct perf_event *event)
4978 {
4979         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4980                                 "unexpected event refcount: %ld; ptr=%p\n",
4981                                 atomic_long_read(&event->refcount), event)) {
4982                 /* leak to avoid use-after-free */
4983                 return;
4984         }
4985
4986         _free_event(event);
4987 }
4988
4989 /*
4990  * Remove user event from the owner task.
4991  */
4992 static void perf_remove_from_owner(struct perf_event *event)
4993 {
4994         struct task_struct *owner;
4995
4996         rcu_read_lock();
4997         /*
4998          * Matches the smp_store_release() in perf_event_exit_task(). If we
4999          * observe !owner it means the list deletion is complete and we can
5000          * indeed free this event, otherwise we need to serialize on
5001          * owner->perf_event_mutex.
5002          */
5003         owner = READ_ONCE(event->owner);
5004         if (owner) {
5005                 /*
5006                  * Since delayed_put_task_struct() also drops the last
5007                  * task reference we can safely take a new reference
5008                  * while holding the rcu_read_lock().
5009                  */
5010                 get_task_struct(owner);
5011         }
5012         rcu_read_unlock();
5013
5014         if (owner) {
5015                 /*
5016                  * If we're here through perf_event_exit_task() we're already
5017                  * holding ctx->mutex which would be an inversion wrt. the
5018                  * normal lock order.
5019                  *
5020                  * However we can safely take this lock because its the child
5021                  * ctx->mutex.
5022                  */
5023                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5024
5025                 /*
5026                  * We have to re-check the event->owner field, if it is cleared
5027                  * we raced with perf_event_exit_task(), acquiring the mutex
5028                  * ensured they're done, and we can proceed with freeing the
5029                  * event.
5030                  */
5031                 if (event->owner) {
5032                         list_del_init(&event->owner_entry);
5033                         smp_store_release(&event->owner, NULL);
5034                 }
5035                 mutex_unlock(&owner->perf_event_mutex);
5036                 put_task_struct(owner);
5037         }
5038 }
5039
5040 static void put_event(struct perf_event *event)
5041 {
5042         if (!atomic_long_dec_and_test(&event->refcount))
5043                 return;
5044
5045         _free_event(event);
5046 }
5047
5048 /*
5049  * Kill an event dead; while event:refcount will preserve the event
5050  * object, it will not preserve its functionality. Once the last 'user'
5051  * gives up the object, we'll destroy the thing.
5052  */
5053 int perf_event_release_kernel(struct perf_event *event)
5054 {
5055         struct perf_event_context *ctx = event->ctx;
5056         struct perf_event *child, *tmp;
5057         LIST_HEAD(free_list);
5058
5059         /*
5060          * If we got here through err_file: fput(event_file); we will not have
5061          * attached to a context yet.
5062          */
5063         if (!ctx) {
5064                 WARN_ON_ONCE(event->attach_state &
5065                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5066                 goto no_ctx;
5067         }
5068
5069         if (!is_kernel_event(event))
5070                 perf_remove_from_owner(event);
5071
5072         ctx = perf_event_ctx_lock(event);
5073         WARN_ON_ONCE(ctx->parent_ctx);
5074         perf_remove_from_context(event, DETACH_GROUP);
5075
5076         raw_spin_lock_irq(&ctx->lock);
5077         /*
5078          * Mark this event as STATE_DEAD, there is no external reference to it
5079          * anymore.
5080          *
5081          * Anybody acquiring event->child_mutex after the below loop _must_
5082          * also see this, most importantly inherit_event() which will avoid
5083          * placing more children on the list.
5084          *
5085          * Thus this guarantees that we will in fact observe and kill _ALL_
5086          * child events.
5087          */
5088         event->state = PERF_EVENT_STATE_DEAD;
5089         raw_spin_unlock_irq(&ctx->lock);
5090
5091         perf_event_ctx_unlock(event, ctx);
5092
5093 again:
5094         mutex_lock(&event->child_mutex);
5095         list_for_each_entry(child, &event->child_list, child_list) {
5096
5097                 /*
5098                  * Cannot change, child events are not migrated, see the
5099                  * comment with perf_event_ctx_lock_nested().
5100                  */
5101                 ctx = READ_ONCE(child->ctx);
5102                 /*
5103                  * Since child_mutex nests inside ctx::mutex, we must jump
5104                  * through hoops. We start by grabbing a reference on the ctx.
5105                  *
5106                  * Since the event cannot get freed while we hold the
5107                  * child_mutex, the context must also exist and have a !0
5108                  * reference count.
5109                  */
5110                 get_ctx(ctx);
5111
5112                 /*
5113                  * Now that we have a ctx ref, we can drop child_mutex, and
5114                  * acquire ctx::mutex without fear of it going away. Then we
5115                  * can re-acquire child_mutex.
5116                  */
5117                 mutex_unlock(&event->child_mutex);
5118                 mutex_lock(&ctx->mutex);
5119                 mutex_lock(&event->child_mutex);
5120
5121                 /*
5122                  * Now that we hold ctx::mutex and child_mutex, revalidate our
5123                  * state, if child is still the first entry, it didn't get freed
5124                  * and we can continue doing so.
5125                  */
5126                 tmp = list_first_entry_or_null(&event->child_list,
5127                                                struct perf_event, child_list);
5128                 if (tmp == child) {
5129                         perf_remove_from_context(child, DETACH_GROUP);
5130                         list_move(&child->child_list, &free_list);
5131                         /*
5132                          * This matches the refcount bump in inherit_event();
5133                          * this can't be the last reference.
5134                          */
5135                         put_event(event);
5136                 }
5137
5138                 mutex_unlock(&event->child_mutex);
5139                 mutex_unlock(&ctx->mutex);
5140                 put_ctx(ctx);
5141                 goto again;
5142         }
5143         mutex_unlock(&event->child_mutex);
5144
5145         list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5146                 void *var = &child->ctx->refcount;
5147
5148                 list_del(&child->child_list);
5149                 free_event(child);
5150
5151                 /*
5152                  * Wake any perf_event_free_task() waiting for this event to be
5153                  * freed.
5154                  */
5155                 smp_mb(); /* pairs with wait_var_event() */
5156                 wake_up_var(var);
5157         }
5158
5159 no_ctx:
5160         put_event(event); /* Must be the 'last' reference */
5161         return 0;
5162 }
5163 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5164
5165 /*
5166  * Called when the last reference to the file is gone.
5167  */
5168 static int perf_release(struct inode *inode, struct file *file)
5169 {
5170         perf_event_release_kernel(file->private_data);
5171         return 0;
5172 }
5173
5174 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5175 {
5176         struct perf_event *child;
5177         u64 total = 0;
5178
5179         *enabled = 0;
5180         *running = 0;
5181
5182         mutex_lock(&event->child_mutex);
5183
5184         (void)perf_event_read(event, false);
5185         total += perf_event_count(event);
5186
5187         *enabled += event->total_time_enabled +
5188                         atomic64_read(&event->child_total_time_enabled);
5189         *running += event->total_time_running +
5190                         atomic64_read(&event->child_total_time_running);
5191
5192         list_for_each_entry(child, &event->child_list, child_list) {
5193                 (void)perf_event_read(child, false);
5194                 total += perf_event_count(child);
5195                 *enabled += child->total_time_enabled;
5196                 *running += child->total_time_running;
5197         }
5198         mutex_unlock(&event->child_mutex);
5199
5200         return total;
5201 }
5202
5203 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5204 {
5205         struct perf_event_context *ctx;
5206         u64 count;
5207
5208         ctx = perf_event_ctx_lock(event);
5209         count = __perf_event_read_value(event, enabled, running);
5210         perf_event_ctx_unlock(event, ctx);
5211
5212         return count;
5213 }
5214 EXPORT_SYMBOL_GPL(perf_event_read_value);
5215
5216 static int __perf_read_group_add(struct perf_event *leader,
5217                                         u64 read_format, u64 *values)
5218 {
5219         struct perf_event_context *ctx = leader->ctx;
5220         struct perf_event *sub;
5221         unsigned long flags;
5222         int n = 1; /* skip @nr */
5223         int ret;
5224
5225         ret = perf_event_read(leader, true);
5226         if (ret)
5227                 return ret;
5228
5229         raw_spin_lock_irqsave(&ctx->lock, flags);
5230
5231         /*
5232          * Since we co-schedule groups, {enabled,running} times of siblings
5233          * will be identical to those of the leader, so we only publish one
5234          * set.
5235          */
5236         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5237                 values[n++] += leader->total_time_enabled +
5238                         atomic64_read(&leader->child_total_time_enabled);
5239         }
5240
5241         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5242                 values[n++] += leader->total_time_running +
5243                         atomic64_read(&leader->child_total_time_running);
5244         }
5245
5246         /*
5247          * Write {count,id} tuples for every sibling.
5248          */
5249         values[n++] += perf_event_count(leader);
5250         if (read_format & PERF_FORMAT_ID)
5251                 values[n++] = primary_event_id(leader);
5252
5253         for_each_sibling_event(sub, leader) {
5254                 values[n++] += perf_event_count(sub);
5255                 if (read_format & PERF_FORMAT_ID)
5256                         values[n++] = primary_event_id(sub);
5257         }
5258
5259         raw_spin_unlock_irqrestore(&ctx->lock, flags);
5260         return 0;
5261 }
5262
5263 static int perf_read_group(struct perf_event *event,
5264                                    u64 read_format, char __user *buf)
5265 {
5266         struct perf_event *leader = event->group_leader, *child;
5267         struct perf_event_context *ctx = leader->ctx;
5268         int ret;
5269         u64 *values;
5270
5271         lockdep_assert_held(&ctx->mutex);
5272
5273         values = kzalloc(event->read_size, GFP_KERNEL);
5274         if (!values)
5275                 return -ENOMEM;
5276
5277         values[0] = 1 + leader->nr_siblings;
5278
5279         /*
5280          * By locking the child_mutex of the leader we effectively
5281          * lock the child list of all siblings.. XXX explain how.
5282          */
5283         mutex_lock(&leader->child_mutex);
5284
5285         ret = __perf_read_group_add(leader, read_format, values);
5286         if (ret)
5287                 goto unlock;
5288
5289         list_for_each_entry(child, &leader->child_list, child_list) {
5290                 ret = __perf_read_group_add(child, read_format, values);
5291                 if (ret)
5292                         goto unlock;
5293         }
5294
5295         mutex_unlock(&leader->child_mutex);
5296
5297         ret = event->read_size;
5298         if (copy_to_user(buf, values, event->read_size))
5299                 ret = -EFAULT;
5300         goto out;
5301
5302 unlock:
5303         mutex_unlock(&leader->child_mutex);
5304 out:
5305         kfree(values);
5306         return ret;
5307 }
5308
5309 static int perf_read_one(struct perf_event *event,
5310                                  u64 read_format, char __user *buf)
5311 {
5312         u64 enabled, running;
5313         u64 values[4];
5314         int n = 0;
5315
5316         values[n++] = __perf_event_read_value(event, &enabled, &running);
5317         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5318                 values[n++] = enabled;
5319         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5320                 values[n++] = running;
5321         if (read_format & PERF_FORMAT_ID)
5322                 values[n++] = primary_event_id(event);
5323
5324         if (copy_to_user(buf, values, n * sizeof(u64)))
5325                 return -EFAULT;
5326
5327         return n * sizeof(u64);
5328 }
5329
5330 static bool is_event_hup(struct perf_event *event)
5331 {
5332         bool no_children;
5333
5334         if (event->state > PERF_EVENT_STATE_EXIT)
5335                 return false;
5336
5337         mutex_lock(&event->child_mutex);
5338         no_children = list_empty(&event->child_list);
5339         mutex_unlock(&event->child_mutex);
5340         return no_children;
5341 }
5342
5343 /*
5344  * Read the performance event - simple non blocking version for now
5345  */
5346 static ssize_t
5347 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5348 {
5349         u64 read_format = event->attr.read_format;
5350         int ret;
5351
5352         /*
5353          * Return end-of-file for a read on an event that is in
5354          * error state (i.e. because it was pinned but it couldn't be
5355          * scheduled on to the CPU at some point).
5356          */
5357         if (event->state == PERF_EVENT_STATE_ERROR)
5358                 return 0;
5359
5360         if (count < event->read_size)
5361                 return -ENOSPC;
5362
5363         WARN_ON_ONCE(event->ctx->parent_ctx);
5364         if (read_format & PERF_FORMAT_GROUP)
5365                 ret = perf_read_group(event, read_format, buf);
5366         else
5367                 ret = perf_read_one(event, read_format, buf);
5368
5369         return ret;
5370 }
5371
5372 static ssize_t
5373 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5374 {
5375         struct perf_event *event = file->private_data;
5376         struct perf_event_context *ctx;
5377         int ret;
5378
5379         ret = security_perf_event_read(event);
5380         if (ret)
5381                 return ret;
5382
5383         ctx = perf_event_ctx_lock(event);
5384         ret = __perf_read(event, buf, count);
5385         perf_event_ctx_unlock(event, ctx);
5386
5387         return ret;
5388 }
5389
5390 static __poll_t perf_poll(struct file *file, poll_table *wait)
5391 {
5392         struct perf_event *event = file->private_data;
5393         struct perf_buffer *rb;
5394         __poll_t events = EPOLLHUP;
5395
5396         poll_wait(file, &event->waitq, wait);
5397
5398         if (is_event_hup(event))
5399                 return events;
5400
5401         /*
5402          * Pin the event->rb by taking event->mmap_mutex; otherwise
5403          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5404          */
5405         mutex_lock(&event->mmap_mutex);
5406         rb = event->rb;
5407         if (rb)
5408                 events = atomic_xchg(&rb->poll, 0);
5409         mutex_unlock(&event->mmap_mutex);
5410         return events;
5411 }
5412
5413 static void _perf_event_reset(struct perf_event *event)
5414 {
5415         (void)perf_event_read(event, false);
5416         local64_set(&event->count, 0);
5417         perf_event_update_userpage(event);
5418 }
5419
5420 /* Assume it's not an event with inherit set. */
5421 u64 perf_event_pause(struct perf_event *event, bool reset)
5422 {
5423         struct perf_event_context *ctx;
5424         u64 count;
5425
5426         ctx = perf_event_ctx_lock(event);
5427         WARN_ON_ONCE(event->attr.inherit);
5428         _perf_event_disable(event);
5429         count = local64_read(&event->count);
5430         if (reset)
5431                 local64_set(&event->count, 0);
5432         perf_event_ctx_unlock(event, ctx);
5433
5434         return count;
5435 }
5436 EXPORT_SYMBOL_GPL(perf_event_pause);
5437
5438 /*
5439  * Holding the top-level event's child_mutex means that any
5440  * descendant process that has inherited this event will block
5441  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5442  * task existence requirements of perf_event_enable/disable.
5443  */
5444 static void perf_event_for_each_child(struct perf_event *event,
5445                                         void (*func)(struct perf_event *))
5446 {
5447         struct perf_event *child;
5448
5449         WARN_ON_ONCE(event->ctx->parent_ctx);
5450
5451         mutex_lock(&event->child_mutex);
5452         func(event);
5453         list_for_each_entry(child, &event->child_list, child_list)
5454                 func(child);
5455         mutex_unlock(&event->child_mutex);
5456 }
5457
5458 static void perf_event_for_each(struct perf_event *event,
5459                                   void (*func)(struct perf_event *))
5460 {
5461         struct perf_event_context *ctx = event->ctx;
5462         struct perf_event *sibling;
5463
5464         lockdep_assert_held(&ctx->mutex);
5465
5466         event = event->group_leader;
5467
5468         perf_event_for_each_child(event, func);
5469         for_each_sibling_event(sibling, event)
5470                 perf_event_for_each_child(sibling, func);
5471 }
5472
5473 static void __perf_event_period(struct perf_event *event,
5474                                 struct perf_cpu_context *cpuctx,
5475                                 struct perf_event_context *ctx,
5476                                 void *info)
5477 {
5478         u64 value = *((u64 *)info);
5479         bool active;
5480
5481         if (event->attr.freq) {
5482                 event->attr.sample_freq = value;
5483         } else {
5484                 event->attr.sample_period = value;
5485                 event->hw.sample_period = value;
5486         }
5487
5488         active = (event->state == PERF_EVENT_STATE_ACTIVE);
5489         if (active) {
5490                 perf_pmu_disable(ctx->pmu);
5491                 /*
5492                  * We could be throttled; unthrottle now to avoid the tick
5493                  * trying to unthrottle while we already re-started the event.
5494                  */
5495                 if (event->hw.interrupts == MAX_INTERRUPTS) {
5496                         event->hw.interrupts = 0;
5497                         perf_log_throttle(event, 1);
5498                 }
5499                 event->pmu->stop(event, PERF_EF_UPDATE);
5500         }
5501
5502         local64_set(&event->hw.period_left, 0);
5503
5504         if (active) {
5505                 event->pmu->start(event, PERF_EF_RELOAD);
5506                 perf_pmu_enable(ctx->pmu);
5507         }
5508 }
5509
5510 static int perf_event_check_period(struct perf_event *event, u64 value)
5511 {
5512         return event->pmu->check_period(event, value);
5513 }
5514
5515 static int _perf_event_period(struct perf_event *event, u64 value)
5516 {
5517         if (!is_sampling_event(event))
5518                 return -EINVAL;
5519
5520         if (!value)
5521                 return -EINVAL;
5522
5523         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5524                 return -EINVAL;
5525
5526         if (perf_event_check_period(event, value))
5527                 return -EINVAL;
5528
5529         if (!event->attr.freq && (value & (1ULL << 63)))
5530                 return -EINVAL;
5531
5532         event_function_call(event, __perf_event_period, &value);
5533
5534         return 0;
5535 }
5536
5537 int perf_event_period(struct perf_event *event, u64 value)
5538 {
5539         struct perf_event_context *ctx;
5540         int ret;
5541
5542         ctx = perf_event_ctx_lock(event);
5543         ret = _perf_event_period(event, value);
5544         perf_event_ctx_unlock(event, ctx);
5545
5546         return ret;
5547 }
5548 EXPORT_SYMBOL_GPL(perf_event_period);
5549
5550 static const struct file_operations perf_fops;
5551
5552 static inline int perf_fget_light(int fd, struct fd *p)
5553 {
5554         struct fd f = fdget(fd);
5555         if (!f.file)
5556                 return -EBADF;
5557
5558         if (f.file->f_op != &perf_fops) {
5559                 fdput(f);
5560                 return -EBADF;
5561         }
5562         *p = f;
5563         return 0;
5564 }
5565
5566 static int perf_event_set_output(struct perf_event *event,
5567                                  struct perf_event *output_event);
5568 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5569 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5570 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5571                           struct perf_event_attr *attr);
5572
5573 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5574 {
5575         void (*func)(struct perf_event *);
5576         u32 flags = arg;
5577
5578         switch (cmd) {
5579         case PERF_EVENT_IOC_ENABLE:
5580                 func = _perf_event_enable;
5581                 break;
5582         case PERF_EVENT_IOC_DISABLE:
5583                 func = _perf_event_disable;
5584                 break;
5585         case PERF_EVENT_IOC_RESET:
5586                 func = _perf_event_reset;
5587                 break;
5588
5589         case PERF_EVENT_IOC_REFRESH:
5590                 return _perf_event_refresh(event, arg);
5591
5592         case PERF_EVENT_IOC_PERIOD:
5593         {
5594                 u64 value;
5595
5596                 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5597                         return -EFAULT;
5598
5599                 return _perf_event_period(event, value);
5600         }
5601         case PERF_EVENT_IOC_ID:
5602         {
5603                 u64 id = primary_event_id(event);
5604
5605                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5606                         return -EFAULT;
5607                 return 0;
5608         }
5609
5610         case PERF_EVENT_IOC_SET_OUTPUT:
5611         {
5612                 int ret;
5613                 if (arg != -1) {
5614                         struct perf_event *output_event;
5615                         struct fd output;
5616                         ret = perf_fget_light(arg, &output);
5617                         if (ret)
5618                                 return ret;
5619                         output_event = output.file->private_data;
5620                         ret = perf_event_set_output(event, output_event);
5621                         fdput(output);
5622                 } else {
5623                         ret = perf_event_set_output(event, NULL);
5624                 }
5625                 return ret;
5626         }
5627
5628         case PERF_EVENT_IOC_SET_FILTER:
5629                 return perf_event_set_filter(event, (void __user *)arg);
5630
5631         case PERF_EVENT_IOC_SET_BPF:
5632                 return perf_event_set_bpf_prog(event, arg);
5633
5634         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5635                 struct perf_buffer *rb;
5636
5637                 rcu_read_lock();
5638                 rb = rcu_dereference(event->rb);
5639                 if (!rb || !rb->nr_pages) {
5640                         rcu_read_unlock();
5641                         return -EINVAL;
5642                 }
5643                 rb_toggle_paused(rb, !!arg);
5644                 rcu_read_unlock();
5645                 return 0;
5646         }
5647
5648         case PERF_EVENT_IOC_QUERY_BPF:
5649                 return perf_event_query_prog_array(event, (void __user *)arg);
5650
5651         case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5652                 struct perf_event_attr new_attr;
5653                 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5654                                          &new_attr);
5655
5656                 if (err)
5657                         return err;
5658
5659                 return perf_event_modify_attr(event,  &new_attr);
5660         }
5661         default:
5662                 return -ENOTTY;
5663         }
5664
5665         if (flags & PERF_IOC_FLAG_GROUP)
5666                 perf_event_for_each(event, func);
5667         else
5668                 perf_event_for_each_child(event, func);
5669
5670         return 0;
5671 }
5672
5673 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5674 {
5675         struct perf_event *event = file->private_data;
5676         struct perf_event_context *ctx;
5677         long ret;
5678
5679         /* Treat ioctl like writes as it is likely a mutating operation. */
5680         ret = security_perf_event_write(event);
5681         if (ret)
5682                 return ret;
5683
5684         ctx = perf_event_ctx_lock(event);
5685         ret = _perf_ioctl(event, cmd, arg);
5686         perf_event_ctx_unlock(event, ctx);
5687
5688         return ret;
5689 }
5690
5691 #ifdef CONFIG_COMPAT
5692 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5693                                 unsigned long arg)
5694 {
5695         switch (_IOC_NR(cmd)) {
5696         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5697         case _IOC_NR(PERF_EVENT_IOC_ID):
5698         case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5699         case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5700                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5701                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5702                         cmd &= ~IOCSIZE_MASK;
5703                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5704                 }
5705                 break;
5706         }
5707         return perf_ioctl(file, cmd, arg);
5708 }
5709 #else
5710 # define perf_compat_ioctl NULL
5711 #endif
5712
5713 int perf_event_task_enable(void)
5714 {
5715         struct perf_event_context *ctx;
5716         struct perf_event *event;
5717
5718         mutex_lock(&current->perf_event_mutex);
5719         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5720                 ctx = perf_event_ctx_lock(event);
5721                 perf_event_for_each_child(event, _perf_event_enable);
5722                 perf_event_ctx_unlock(event, ctx);
5723         }
5724         mutex_unlock(&current->perf_event_mutex);
5725
5726         return 0;
5727 }
5728
5729 int perf_event_task_disable(void)
5730 {
5731         struct perf_event_context *ctx;
5732         struct perf_event *event;
5733
5734         mutex_lock(&current->perf_event_mutex);
5735         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5736                 ctx = perf_event_ctx_lock(event);
5737                 perf_event_for_each_child(event, _perf_event_disable);
5738                 perf_event_ctx_unlock(event, ctx);
5739         }
5740         mutex_unlock(&current->perf_event_mutex);
5741
5742         return 0;
5743 }
5744
5745 static int perf_event_index(struct perf_event *event)
5746 {
5747         if (event->hw.state & PERF_HES_STOPPED)
5748                 return 0;
5749
5750         if (event->state != PERF_EVENT_STATE_ACTIVE)
5751                 return 0;
5752
5753         return event->pmu->event_idx(event);
5754 }
5755
5756 static void calc_timer_values(struct perf_event *event,
5757                                 u64 *now,
5758                                 u64 *enabled,
5759                                 u64 *running)
5760 {
5761         u64 ctx_time;
5762
5763         *now = perf_clock();
5764         ctx_time = event->shadow_ctx_time + *now;
5765         __perf_update_times(event, ctx_time, enabled, running);
5766 }
5767
5768 static void perf_event_init_userpage(struct perf_event *event)
5769 {
5770         struct perf_event_mmap_page *userpg;
5771         struct perf_buffer *rb;
5772
5773         rcu_read_lock();
5774         rb = rcu_dereference(event->rb);
5775         if (!rb)
5776                 goto unlock;
5777
5778         userpg = rb->user_page;
5779
5780         /* Allow new userspace to detect that bit 0 is deprecated */
5781         userpg->cap_bit0_is_deprecated = 1;
5782         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5783         userpg->data_offset = PAGE_SIZE;
5784         userpg->data_size = perf_data_size(rb);
5785
5786 unlock:
5787         rcu_read_unlock();
5788 }
5789
5790 void __weak arch_perf_update_userpage(
5791         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5792 {
5793 }
5794
5795 /*
5796  * Callers need to ensure there can be no nesting of this function, otherwise
5797  * the seqlock logic goes bad. We can not serialize this because the arch
5798  * code calls this from NMI context.
5799  */
5800 void perf_event_update_userpage(struct perf_event *event)
5801 {
5802         struct perf_event_mmap_page *userpg;
5803         struct perf_buffer *rb;
5804         u64 enabled, running, now;
5805
5806         rcu_read_lock();
5807         rb = rcu_dereference(event->rb);
5808         if (!rb)
5809                 goto unlock;
5810
5811         /*
5812          * compute total_time_enabled, total_time_running
5813          * based on snapshot values taken when the event
5814          * was last scheduled in.
5815          *
5816          * we cannot simply called update_context_time()
5817          * because of locking issue as we can be called in
5818          * NMI context
5819          */
5820         calc_timer_values(event, &now, &enabled, &running);
5821
5822         userpg = rb->user_page;
5823         /*
5824          * Disable preemption to guarantee consistent time stamps are stored to
5825          * the user page.
5826          */
5827         preempt_disable();
5828         ++userpg->lock;
5829         barrier();
5830         userpg->index = perf_event_index(event);
5831         userpg->offset = perf_event_count(event);
5832         if (userpg->index)
5833                 userpg->offset -= local64_read(&event->hw.prev_count);
5834
5835         userpg->time_enabled = enabled +
5836                         atomic64_read(&event->child_total_time_enabled);
5837
5838         userpg->time_running = running +
5839                         atomic64_read(&event->child_total_time_running);
5840
5841         arch_perf_update_userpage(event, userpg, now);
5842
5843         barrier();
5844         ++userpg->lock;
5845         preempt_enable();
5846 unlock:
5847         rcu_read_unlock();
5848 }
5849 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5850
5851 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5852 {
5853         struct perf_event *event = vmf->vma->vm_file->private_data;
5854         struct perf_buffer *rb;
5855         vm_fault_t ret = VM_FAULT_SIGBUS;
5856
5857         if (vmf->flags & FAULT_FLAG_MKWRITE) {
5858                 if (vmf->pgoff == 0)
5859                         ret = 0;
5860                 return ret;
5861         }
5862
5863         rcu_read_lock();
5864         rb = rcu_dereference(event->rb);
5865         if (!rb)
5866                 goto unlock;
5867
5868         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5869                 goto unlock;
5870
5871         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5872         if (!vmf->page)
5873                 goto unlock;
5874
5875         get_page(vmf->page);
5876         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5877         vmf->page->index   = vmf->pgoff;
5878
5879         ret = 0;
5880 unlock:
5881         rcu_read_unlock();
5882
5883         return ret;
5884 }
5885
5886 static void ring_buffer_attach(struct perf_event *event,
5887                                struct perf_buffer *rb)
5888 {
5889         struct perf_buffer *old_rb = NULL;
5890         unsigned long flags;
5891
5892         if (event->rb) {
5893                 /*
5894                  * Should be impossible, we set this when removing
5895                  * event->rb_entry and wait/clear when adding event->rb_entry.
5896                  */
5897                 WARN_ON_ONCE(event->rcu_pending);
5898
5899                 old_rb = event->rb;
5900                 spin_lock_irqsave(&old_rb->event_lock, flags);
5901                 list_del_rcu(&event->rb_entry);
5902                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5903
5904                 event->rcu_batches = get_state_synchronize_rcu();
5905                 event->rcu_pending = 1;
5906         }
5907
5908         if (rb) {
5909                 if (event->rcu_pending) {
5910                         cond_synchronize_rcu(event->rcu_batches);
5911                         event->rcu_pending = 0;
5912                 }
5913
5914                 spin_lock_irqsave(&rb->event_lock, flags);
5915                 list_add_rcu(&event->rb_entry, &rb->event_list);
5916                 spin_unlock_irqrestore(&rb->event_lock, flags);
5917         }
5918
5919         /*
5920          * Avoid racing with perf_mmap_close(AUX): stop the event
5921          * before swizzling the event::rb pointer; if it's getting
5922          * unmapped, its aux_mmap_count will be 0 and it won't
5923          * restart. See the comment in __perf_pmu_output_stop().
5924          *
5925          * Data will inevitably be lost when set_output is done in
5926          * mid-air, but then again, whoever does it like this is
5927          * not in for the data anyway.
5928          */
5929         if (has_aux(event))
5930                 perf_event_stop(event, 0);
5931
5932         rcu_assign_pointer(event->rb, rb);
5933
5934         if (old_rb) {
5935                 ring_buffer_put(old_rb);
5936                 /*
5937                  * Since we detached before setting the new rb, so that we
5938                  * could attach the new rb, we could have missed a wakeup.
5939                  * Provide it now.
5940                  */
5941                 wake_up_all(&event->waitq);
5942         }
5943 }
5944
5945 static void ring_buffer_wakeup(struct perf_event *event)
5946 {
5947         struct perf_buffer *rb;
5948
5949         rcu_read_lock();
5950         rb = rcu_dereference(event->rb);
5951         if (rb) {
5952                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5953                         wake_up_all(&event->waitq);
5954         }
5955         rcu_read_unlock();
5956 }
5957
5958 struct perf_buffer *ring_buffer_get(struct perf_event *event)
5959 {
5960         struct perf_buffer *rb;
5961
5962         rcu_read_lock();
5963         rb = rcu_dereference(event->rb);
5964         if (rb) {
5965                 if (!refcount_inc_not_zero(&rb->refcount))
5966                         rb = NULL;
5967         }
5968         rcu_read_unlock();
5969
5970         return rb;
5971 }
5972
5973 void ring_buffer_put(struct perf_buffer *rb)
5974 {
5975         if (!refcount_dec_and_test(&rb->refcount))
5976                 return;
5977
5978         WARN_ON_ONCE(!list_empty(&rb->event_list));
5979
5980         call_rcu(&rb->rcu_head, rb_free_rcu);
5981 }
5982
5983 static void perf_mmap_open(struct vm_area_struct *vma)
5984 {
5985         struct perf_event *event = vma->vm_file->private_data;
5986
5987         atomic_inc(&event->mmap_count);
5988         atomic_inc(&event->rb->mmap_count);
5989
5990         if (vma->vm_pgoff)
5991                 atomic_inc(&event->rb->aux_mmap_count);
5992
5993         if (event->pmu->event_mapped)
5994                 event->pmu->event_mapped(event, vma->vm_mm);
5995 }
5996
5997 static void perf_pmu_output_stop(struct perf_event *event);
5998
5999 /*
6000  * A buffer can be mmap()ed multiple times; either directly through the same
6001  * event, or through other events by use of perf_event_set_output().
6002  *
6003  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6004  * the buffer here, where we still have a VM context. This means we need
6005  * to detach all events redirecting to us.
6006  */
6007 static void perf_mmap_close(struct vm_area_struct *vma)
6008 {
6009         struct perf_event *event = vma->vm_file->private_data;
6010         struct perf_buffer *rb = ring_buffer_get(event);
6011         struct user_struct *mmap_user = rb->mmap_user;
6012         int mmap_locked = rb->mmap_locked;
6013         unsigned long size = perf_data_size(rb);
6014         bool detach_rest = false;
6015
6016         if (event->pmu->event_unmapped)
6017                 event->pmu->event_unmapped(event, vma->vm_mm);
6018
6019         /*
6020          * rb->aux_mmap_count will always drop before rb->mmap_count and
6021          * event->mmap_count, so it is ok to use event->mmap_mutex to
6022          * serialize with perf_mmap here.
6023          */
6024         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6025             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
6026                 /*
6027                  * Stop all AUX events that are writing to this buffer,
6028                  * so that we can free its AUX pages and corresponding PMU
6029                  * data. Note that after rb::aux_mmap_count dropped to zero,
6030                  * they won't start any more (see perf_aux_output_begin()).
6031                  */
6032                 perf_pmu_output_stop(event);
6033
6034                 /* now it's safe to free the pages */
6035                 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6036                 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6037
6038                 /* this has to be the last one */
6039                 rb_free_aux(rb);
6040                 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6041
6042                 mutex_unlock(&event->mmap_mutex);
6043         }
6044
6045         if (atomic_dec_and_test(&rb->mmap_count))
6046                 detach_rest = true;
6047
6048         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6049                 goto out_put;
6050
6051         ring_buffer_attach(event, NULL);
6052         mutex_unlock(&event->mmap_mutex);
6053
6054         /* If there's still other mmap()s of this buffer, we're done. */
6055         if (!detach_rest)
6056                 goto out_put;
6057
6058         /*
6059          * No other mmap()s, detach from all other events that might redirect
6060          * into the now unreachable buffer. Somewhat complicated by the
6061          * fact that rb::event_lock otherwise nests inside mmap_mutex.
6062          */
6063 again:
6064         rcu_read_lock();
6065         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6066                 if (!atomic_long_inc_not_zero(&event->refcount)) {
6067                         /*
6068                          * This event is en-route to free_event() which will
6069                          * detach it and remove it from the list.
6070                          */
6071                         continue;
6072                 }
6073                 rcu_read_unlock();
6074
6075                 mutex_lock(&event->mmap_mutex);
6076                 /*
6077                  * Check we didn't race with perf_event_set_output() which can
6078                  * swizzle the rb from under us while we were waiting to
6079                  * acquire mmap_mutex.
6080                  *
6081                  * If we find a different rb; ignore this event, a next
6082                  * iteration will no longer find it on the list. We have to
6083                  * still restart the iteration to make sure we're not now
6084                  * iterating the wrong list.
6085                  */
6086                 if (event->rb == rb)
6087                         ring_buffer_attach(event, NULL);
6088
6089                 mutex_unlock(&event->mmap_mutex);
6090                 put_event(event);
6091
6092                 /*
6093                  * Restart the iteration; either we're on the wrong list or
6094                  * destroyed its integrity by doing a deletion.
6095                  */
6096                 goto again;
6097         }
6098         rcu_read_unlock();
6099
6100         /*
6101          * It could be there's still a few 0-ref events on the list; they'll
6102          * get cleaned up by free_event() -- they'll also still have their
6103          * ref on the rb and will free it whenever they are done with it.
6104          *
6105          * Aside from that, this buffer is 'fully' detached and unmapped,
6106          * undo the VM accounting.
6107          */
6108
6109         atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6110                         &mmap_user->locked_vm);
6111         atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6112         free_uid(mmap_user);
6113
6114 out_put:
6115         ring_buffer_put(rb); /* could be last */
6116 }
6117
6118 static const struct vm_operations_struct perf_mmap_vmops = {
6119         .open           = perf_mmap_open,
6120         .close          = perf_mmap_close, /* non mergeable */
6121         .fault          = perf_mmap_fault,
6122         .page_mkwrite   = perf_mmap_fault,
6123 };
6124
6125 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6126 {
6127         struct perf_event *event = file->private_data;
6128         unsigned long user_locked, user_lock_limit;
6129         struct user_struct *user = current_user();
6130         struct perf_buffer *rb = NULL;
6131         unsigned long locked, lock_limit;
6132         unsigned long vma_size;
6133         unsigned long nr_pages;
6134         long user_extra = 0, extra = 0;
6135         int ret = 0, flags = 0;
6136
6137         /*
6138          * Don't allow mmap() of inherited per-task counters. This would
6139          * create a performance issue due to all children writing to the
6140          * same rb.
6141          */
6142         if (event->cpu == -1 && event->attr.inherit)
6143                 return -EINVAL;
6144
6145         if (!(vma->vm_flags & VM_SHARED))
6146                 return -EINVAL;
6147
6148         ret = security_perf_event_read(event);
6149         if (ret)
6150                 return ret;
6151
6152         vma_size = vma->vm_end - vma->vm_start;
6153
6154         if (vma->vm_pgoff == 0) {
6155                 nr_pages = (vma_size / PAGE_SIZE) - 1;
6156         } else {
6157                 /*
6158                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6159                  * mapped, all subsequent mappings should have the same size
6160                  * and offset. Must be above the normal perf buffer.
6161                  */
6162                 u64 aux_offset, aux_size;
6163
6164                 if (!event->rb)
6165                         return -EINVAL;
6166
6167                 nr_pages = vma_size / PAGE_SIZE;
6168
6169                 mutex_lock(&event->mmap_mutex);
6170                 ret = -EINVAL;
6171
6172                 rb = event->rb;
6173                 if (!rb)
6174                         goto aux_unlock;
6175
6176                 aux_offset = READ_ONCE(rb->user_page->aux_offset);
6177                 aux_size = READ_ONCE(rb->user_page->aux_size);
6178
6179                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6180                         goto aux_unlock;
6181
6182                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6183                         goto aux_unlock;
6184
6185                 /* already mapped with a different offset */
6186                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6187                         goto aux_unlock;
6188
6189                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6190                         goto aux_unlock;
6191
6192                 /* already mapped with a different size */
6193                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6194                         goto aux_unlock;
6195
6196                 if (!is_power_of_2(nr_pages))
6197                         goto aux_unlock;
6198
6199                 if (!atomic_inc_not_zero(&rb->mmap_count))
6200                         goto aux_unlock;
6201
6202                 if (rb_has_aux(rb)) {
6203                         atomic_inc(&rb->aux_mmap_count);
6204                         ret = 0;
6205                         goto unlock;
6206                 }
6207
6208                 atomic_set(&rb->aux_mmap_count, 1);
6209                 user_extra = nr_pages;
6210
6211                 goto accounting;
6212         }
6213
6214         /*
6215          * If we have rb pages ensure they're a power-of-two number, so we
6216          * can do bitmasks instead of modulo.
6217          */
6218         if (nr_pages != 0 && !is_power_of_2(nr_pages))
6219                 return -EINVAL;
6220
6221         if (vma_size != PAGE_SIZE * (1 + nr_pages))
6222                 return -EINVAL;
6223
6224         WARN_ON_ONCE(event->ctx->parent_ctx);
6225 again:
6226         mutex_lock(&event->mmap_mutex);
6227         if (event->rb) {
6228                 if (event->rb->nr_pages != nr_pages) {
6229                         ret = -EINVAL;
6230                         goto unlock;
6231                 }
6232
6233                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6234                         /*
6235                          * Raced against perf_mmap_close() through
6236                          * perf_event_set_output(). Try again, hope for better
6237                          * luck.
6238                          */
6239                         mutex_unlock(&event->mmap_mutex);
6240                         goto again;
6241                 }
6242
6243                 goto unlock;
6244         }
6245
6246         user_extra = nr_pages + 1;
6247
6248 accounting:
6249         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6250
6251         /*
6252          * Increase the limit linearly with more CPUs:
6253          */
6254         user_lock_limit *= num_online_cpus();
6255
6256         user_locked = atomic_long_read(&user->locked_vm);
6257
6258         /*
6259          * sysctl_perf_event_mlock may have changed, so that
6260          *     user->locked_vm > user_lock_limit
6261          */
6262         if (user_locked > user_lock_limit)
6263                 user_locked = user_lock_limit;
6264         user_locked += user_extra;
6265
6266         if (user_locked > user_lock_limit) {
6267                 /*
6268                  * charge locked_vm until it hits user_lock_limit;
6269                  * charge the rest from pinned_vm
6270                  */
6271                 extra = user_locked - user_lock_limit;
6272                 user_extra -= extra;
6273         }
6274
6275         lock_limit = rlimit(RLIMIT_MEMLOCK);
6276         lock_limit >>= PAGE_SHIFT;
6277         locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6278
6279         if ((locked > lock_limit) && perf_is_paranoid() &&
6280                 !capable(CAP_IPC_LOCK)) {
6281                 ret = -EPERM;
6282                 goto unlock;
6283         }
6284
6285         WARN_ON(!rb && event->rb);
6286
6287         if (vma->vm_flags & VM_WRITE)
6288                 flags |= RING_BUFFER_WRITABLE;
6289
6290         if (!rb) {
6291                 rb = rb_alloc(nr_pages,
6292                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
6293                               event->cpu, flags);
6294
6295                 if (!rb) {
6296                         ret = -ENOMEM;
6297                         goto unlock;
6298                 }
6299
6300                 atomic_set(&rb->mmap_count, 1);
6301                 rb->mmap_user = get_current_user();
6302                 rb->mmap_locked = extra;
6303
6304                 ring_buffer_attach(event, rb);
6305
6306                 perf_event_init_userpage(event);
6307                 perf_event_update_userpage(event);
6308         } else {
6309                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6310                                    event->attr.aux_watermark, flags);
6311                 if (!ret)
6312                         rb->aux_mmap_locked = extra;
6313         }
6314
6315 unlock:
6316         if (!ret) {
6317                 atomic_long_add(user_extra, &user->locked_vm);
6318                 atomic64_add(extra, &vma->vm_mm->pinned_vm);
6319
6320                 atomic_inc(&event->mmap_count);
6321         } else if (rb) {
6322                 atomic_dec(&rb->mmap_count);
6323         }
6324 aux_unlock:
6325         mutex_unlock(&event->mmap_mutex);
6326
6327         /*
6328          * Since pinned accounting is per vm we cannot allow fork() to copy our
6329          * vma.
6330          */
6331         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
6332         vma->vm_ops = &perf_mmap_vmops;
6333
6334         if (event->pmu->event_mapped)
6335                 event->pmu->event_mapped(event, vma->vm_mm);
6336
6337         return ret;
6338 }
6339
6340 static int perf_fasync(int fd, struct file *filp, int on)
6341 {
6342         struct inode *inode = file_inode(filp);
6343         struct perf_event *event = filp->private_data;
6344         int retval;
6345
6346         inode_lock(inode);
6347         retval = fasync_helper(fd, filp, on, &event->fasync);
6348         inode_unlock(inode);
6349
6350         if (retval < 0)
6351                 return retval;
6352
6353         return 0;
6354 }
6355
6356 static const struct file_operations perf_fops = {
6357         .llseek                 = no_llseek,
6358         .release                = perf_release,
6359         .read                   = perf_read,
6360         .poll                   = perf_poll,
6361         .unlocked_ioctl         = perf_ioctl,
6362         .compat_ioctl           = perf_compat_ioctl,
6363         .mmap                   = perf_mmap,
6364         .fasync                 = perf_fasync,
6365 };
6366
6367 /*
6368  * Perf event wakeup
6369  *
6370  * If there's data, ensure we set the poll() state and publish everything
6371  * to user-space before waking everybody up.
6372  */
6373
6374 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6375 {
6376         /* only the parent has fasync state */
6377         if (event->parent)
6378                 event = event->parent;
6379         return &event->fasync;
6380 }
6381
6382 void perf_event_wakeup(struct perf_event *event)
6383 {
6384         ring_buffer_wakeup(event);
6385
6386         if (event->pending_kill) {
6387                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6388                 event->pending_kill = 0;
6389         }
6390 }
6391
6392 static void perf_sigtrap(struct perf_event *event)
6393 {
6394         /*
6395          * We'd expect this to only occur if the irq_work is delayed and either
6396          * ctx->task or current has changed in the meantime. This can be the
6397          * case on architectures that do not implement arch_irq_work_raise().
6398          */
6399         if (WARN_ON_ONCE(event->ctx->task != current))
6400                 return;
6401
6402         /*
6403          * perf_pending_event() can race with the task exiting.
6404          */
6405         if (current->flags & PF_EXITING)
6406                 return;
6407
6408         force_sig_perf((void __user *)event->pending_addr,
6409                        event->attr.type, event->attr.sig_data);
6410 }
6411
6412 static void perf_pending_event_disable(struct perf_event *event)
6413 {
6414         int cpu = READ_ONCE(event->pending_disable);
6415
6416         if (cpu < 0)
6417                 return;
6418
6419         if (cpu == smp_processor_id()) {
6420                 WRITE_ONCE(event->pending_disable, -1);
6421
6422                 if (event->attr.sigtrap) {
6423                         perf_sigtrap(event);
6424                         atomic_set_release(&event->event_limit, 1); /* rearm event */
6425                         return;
6426                 }
6427
6428                 perf_event_disable_local(event);
6429                 return;
6430         }
6431
6432         /*
6433          *  CPU-A                       CPU-B
6434          *
6435          *  perf_event_disable_inatomic()
6436          *    @pending_disable = CPU-A;
6437          *    irq_work_queue();
6438          *
6439          *  sched-out
6440          *    @pending_disable = -1;
6441          *
6442          *                              sched-in
6443          *                              perf_event_disable_inatomic()
6444          *                                @pending_disable = CPU-B;
6445          *                                irq_work_queue(); // FAILS
6446          *
6447          *  irq_work_run()
6448          *    perf_pending_event()
6449          *
6450          * But the event runs on CPU-B and wants disabling there.
6451          */
6452         irq_work_queue_on(&event->pending, cpu);
6453 }
6454
6455 static void perf_pending_event(struct irq_work *entry)
6456 {
6457         struct perf_event *event = container_of(entry, struct perf_event, pending);
6458         int rctx;
6459
6460         rctx = perf_swevent_get_recursion_context();
6461         /*
6462          * If we 'fail' here, that's OK, it means recursion is already disabled
6463          * and we won't recurse 'further'.
6464          */
6465
6466         perf_pending_event_disable(event);
6467
6468         if (event->pending_wakeup) {
6469                 event->pending_wakeup = 0;
6470                 perf_event_wakeup(event);
6471         }
6472
6473         if (rctx >= 0)
6474                 perf_swevent_put_recursion_context(rctx);
6475 }
6476
6477 /*
6478  * We assume there is only KVM supporting the callbacks.
6479  * Later on, we might change it to a list if there is
6480  * another virtualization implementation supporting the callbacks.
6481  */
6482 struct perf_guest_info_callbacks *perf_guest_cbs;
6483
6484 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6485 {
6486         perf_guest_cbs = cbs;
6487         return 0;
6488 }
6489 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6490
6491 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6492 {
6493         perf_guest_cbs = NULL;
6494         return 0;
6495 }
6496 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6497
6498 static void
6499 perf_output_sample_regs(struct perf_output_handle *handle,
6500                         struct pt_regs *regs, u64 mask)
6501 {
6502         int bit;
6503         DECLARE_BITMAP(_mask, 64);
6504
6505         bitmap_from_u64(_mask, mask);
6506         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6507                 u64 val;
6508
6509                 val = perf_reg_value(regs, bit);
6510                 perf_output_put(handle, val);
6511         }
6512 }
6513
6514 static void perf_sample_regs_user(struct perf_regs *regs_user,
6515                                   struct pt_regs *regs)
6516 {
6517         if (user_mode(regs)) {
6518                 regs_user->abi = perf_reg_abi(current);
6519                 regs_user->regs = regs;
6520         } else if (!(current->flags & PF_KTHREAD)) {
6521                 perf_get_regs_user(regs_user, regs);
6522         } else {
6523                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6524                 regs_user->regs = NULL;
6525         }
6526 }
6527
6528 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6529                                   struct pt_regs *regs)
6530 {
6531         regs_intr->regs = regs;
6532         regs_intr->abi  = perf_reg_abi(current);
6533 }
6534
6535
6536 /*
6537  * Get remaining task size from user stack pointer.
6538  *
6539  * It'd be better to take stack vma map and limit this more
6540  * precisely, but there's no way to get it safely under interrupt,
6541  * so using TASK_SIZE as limit.
6542  */
6543 static u64 perf_ustack_task_size(struct pt_regs *regs)
6544 {
6545         unsigned long addr = perf_user_stack_pointer(regs);
6546
6547         if (!addr || addr >= TASK_SIZE)
6548                 return 0;
6549
6550         return TASK_SIZE - addr;
6551 }
6552
6553 static u16
6554 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6555                         struct pt_regs *regs)
6556 {
6557         u64 task_size;
6558
6559         /* No regs, no stack pointer, no dump. */
6560         if (!regs)
6561                 return 0;
6562
6563         /*
6564          * Check if we fit in with the requested stack size into the:
6565          * - TASK_SIZE
6566          *   If we don't, we limit the size to the TASK_SIZE.
6567          *
6568          * - remaining sample size
6569          *   If we don't, we customize the stack size to
6570          *   fit in to the remaining sample size.
6571          */
6572
6573         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6574         stack_size = min(stack_size, (u16) task_size);
6575
6576         /* Current header size plus static size and dynamic size. */
6577         header_size += 2 * sizeof(u64);
6578
6579         /* Do we fit in with the current stack dump size? */
6580         if ((u16) (header_size + stack_size) < header_size) {
6581                 /*
6582                  * If we overflow the maximum size for the sample,
6583                  * we customize the stack dump size to fit in.
6584                  */
6585                 stack_size = USHRT_MAX - header_size - sizeof(u64);
6586                 stack_size = round_up(stack_size, sizeof(u64));
6587         }
6588
6589         return stack_size;
6590 }
6591
6592 static void
6593 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6594                           struct pt_regs *regs)
6595 {
6596         /* Case of a kernel thread, nothing to dump */
6597         if (!regs) {
6598                 u64 size = 0;
6599                 perf_output_put(handle, size);
6600         } else {
6601                 unsigned long sp;
6602                 unsigned int rem;
6603                 u64 dyn_size;
6604                 mm_segment_t fs;
6605
6606                 /*
6607                  * We dump:
6608                  * static size
6609                  *   - the size requested by user or the best one we can fit
6610                  *     in to the sample max size
6611                  * data
6612                  *   - user stack dump data
6613                  * dynamic size
6614                  *   - the actual dumped size
6615                  */
6616
6617                 /* Static size. */
6618                 perf_output_put(handle, dump_size);
6619
6620                 /* Data. */
6621                 sp = perf_user_stack_pointer(regs);
6622                 fs = force_uaccess_begin();
6623                 rem = __output_copy_user(handle, (void *) sp, dump_size);
6624                 force_uaccess_end(fs);
6625                 dyn_size = dump_size - rem;
6626
6627                 perf_output_skip(handle, rem);
6628
6629                 /* Dynamic size. */
6630                 perf_output_put(handle, dyn_size);
6631         }
6632 }
6633
6634 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6635                                           struct perf_sample_data *data,
6636                                           size_t size)
6637 {
6638         struct perf_event *sampler = event->aux_event;
6639         struct perf_buffer *rb;
6640
6641         data->aux_size = 0;
6642
6643         if (!sampler)
6644                 goto out;
6645
6646         if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6647                 goto out;
6648
6649         if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6650                 goto out;
6651
6652         rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6653         if (!rb)
6654                 goto out;
6655
6656         /*
6657          * If this is an NMI hit inside sampling code, don't take
6658          * the sample. See also perf_aux_sample_output().
6659          */
6660         if (READ_ONCE(rb->aux_in_sampling)) {
6661                 data->aux_size = 0;
6662         } else {
6663                 size = min_t(size_t, size, perf_aux_size(rb));
6664                 data->aux_size = ALIGN(size, sizeof(u64));
6665         }
6666         ring_buffer_put(rb);
6667
6668 out:
6669         return data->aux_size;
6670 }
6671
6672 long perf_pmu_snapshot_aux(struct perf_buffer *rb,
6673                            struct perf_event *event,
6674                            struct perf_output_handle *handle,
6675                            unsigned long size)
6676 {
6677         unsigned long flags;
6678         long ret;
6679
6680         /*
6681          * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6682          * paths. If we start calling them in NMI context, they may race with
6683          * the IRQ ones, that is, for example, re-starting an event that's just
6684          * been stopped, which is why we're using a separate callback that
6685          * doesn't change the event state.
6686          *
6687          * IRQs need to be disabled to prevent IPIs from racing with us.
6688          */
6689         local_irq_save(flags);
6690         /*
6691          * Guard against NMI hits inside the critical section;
6692          * see also perf_prepare_sample_aux().
6693          */
6694         WRITE_ONCE(rb->aux_in_sampling, 1);
6695         barrier();
6696
6697         ret = event->pmu->snapshot_aux(event, handle, size);
6698
6699         barrier();
6700         WRITE_ONCE(rb->aux_in_sampling, 0);
6701         local_irq_restore(flags);
6702
6703         return ret;
6704 }
6705
6706 static void perf_aux_sample_output(struct perf_event *event,
6707                                    struct perf_output_handle *handle,
6708                                    struct perf_sample_data *data)
6709 {
6710         struct perf_event *sampler = event->aux_event;
6711         struct perf_buffer *rb;
6712         unsigned long pad;
6713         long size;
6714
6715         if (WARN_ON_ONCE(!sampler || !data->aux_size))
6716                 return;
6717
6718         rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6719         if (!rb)
6720                 return;
6721
6722         size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
6723
6724         /*
6725          * An error here means that perf_output_copy() failed (returned a
6726          * non-zero surplus that it didn't copy), which in its current
6727          * enlightened implementation is not possible. If that changes, we'd
6728          * like to know.
6729          */
6730         if (WARN_ON_ONCE(size < 0))
6731                 goto out_put;
6732
6733         /*
6734          * The pad comes from ALIGN()ing data->aux_size up to u64 in
6735          * perf_prepare_sample_aux(), so should not be more than that.
6736          */
6737         pad = data->aux_size - size;
6738         if (WARN_ON_ONCE(pad >= sizeof(u64)))
6739                 pad = 8;
6740
6741         if (pad) {
6742                 u64 zero = 0;
6743                 perf_output_copy(handle, &zero, pad);
6744         }
6745
6746 out_put:
6747         ring_buffer_put(rb);
6748 }
6749
6750 static void __perf_event_header__init_id(struct perf_event_header *header,
6751                                          struct perf_sample_data *data,
6752                                          struct perf_event *event)
6753 {
6754         u64 sample_type = event->attr.sample_type;
6755
6756         data->type = sample_type;
6757         header->size += event->id_header_size;
6758
6759         if (sample_type & PERF_SAMPLE_TID) {
6760                 /* namespace issues */
6761                 data->tid_entry.pid = perf_event_pid(event, current);
6762                 data->tid_entry.tid = perf_event_tid(event, current);
6763         }
6764
6765         if (sample_type & PERF_SAMPLE_TIME)
6766                 data->time = perf_event_clock(event);
6767
6768         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6769                 data->id = primary_event_id(event);
6770
6771         if (sample_type & PERF_SAMPLE_STREAM_ID)
6772                 data->stream_id = event->id;
6773
6774         if (sample_type & PERF_SAMPLE_CPU) {
6775                 data->cpu_entry.cpu      = raw_smp_processor_id();
6776                 data->cpu_entry.reserved = 0;
6777         }
6778 }
6779
6780 void perf_event_header__init_id(struct perf_event_header *header,
6781                                 struct perf_sample_data *data,
6782                                 struct perf_event *event)
6783 {
6784         if (event->attr.sample_id_all)
6785                 __perf_event_header__init_id(header, data, event);
6786 }
6787
6788 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6789                                            struct perf_sample_data *data)
6790 {
6791         u64 sample_type = data->type;
6792
6793         if (sample_type & PERF_SAMPLE_TID)
6794                 perf_output_put(handle, data->tid_entry);
6795
6796         if (sample_type & PERF_SAMPLE_TIME)
6797                 perf_output_put(handle, data->time);
6798
6799         if (sample_type & PERF_SAMPLE_ID)
6800                 perf_output_put(handle, data->id);
6801
6802         if (sample_type & PERF_SAMPLE_STREAM_ID)
6803                 perf_output_put(handle, data->stream_id);
6804
6805         if (sample_type & PERF_SAMPLE_CPU)
6806                 perf_output_put(handle, data->cpu_entry);
6807
6808         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6809                 perf_output_put(handle, data->id);
6810 }
6811
6812 void perf_event__output_id_sample(struct perf_event *event,
6813                                   struct perf_output_handle *handle,
6814                                   struct perf_sample_data *sample)
6815 {
6816         if (event->attr.sample_id_all)
6817                 __perf_event__output_id_sample(handle, sample);
6818 }
6819
6820 static void perf_output_read_one(struct perf_output_handle *handle,
6821                                  struct perf_event *event,
6822                                  u64 enabled, u64 running)
6823 {
6824         u64 read_format = event->attr.read_format;
6825         u64 values[4];
6826         int n = 0;
6827
6828         values[n++] = perf_event_count(event);
6829         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6830                 values[n++] = enabled +
6831                         atomic64_read(&event->child_total_time_enabled);
6832         }
6833         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6834                 values[n++] = running +
6835                         atomic64_read(&event->child_total_time_running);
6836         }
6837         if (read_format & PERF_FORMAT_ID)
6838                 values[n++] = primary_event_id(event);
6839
6840         __output_copy(handle, values, n * sizeof(u64));
6841 }
6842
6843 static void perf_output_read_group(struct perf_output_handle *handle,
6844                             struct perf_event *event,
6845                             u64 enabled, u64 running)
6846 {
6847         struct perf_event *leader = event->group_leader, *sub;
6848         u64 read_format = event->attr.read_format;
6849         u64 values[5];
6850         int n = 0;
6851
6852         values[n++] = 1 + leader->nr_siblings;
6853
6854         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6855                 values[n++] = enabled;
6856
6857         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6858                 values[n++] = running;
6859
6860         if ((leader != event) &&
6861             (leader->state == PERF_EVENT_STATE_ACTIVE))
6862                 leader->pmu->read(leader);
6863
6864         values[n++] = perf_event_count(leader);
6865         if (read_format & PERF_FORMAT_ID)
6866                 values[n++] = primary_event_id(leader);
6867
6868         __output_copy(handle, values, n * sizeof(u64));
6869
6870         for_each_sibling_event(sub, leader) {
6871                 n = 0;
6872
6873                 if ((sub != event) &&
6874                     (sub->state == PERF_EVENT_STATE_ACTIVE))
6875                         sub->pmu->read(sub);
6876
6877                 values[n++] = perf_event_count(sub);
6878                 if (read_format & PERF_FORMAT_ID)
6879                         values[n++] = primary_event_id(sub);
6880
6881                 __output_copy(handle, values, n * sizeof(u64));
6882         }
6883 }
6884
6885 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6886                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
6887
6888 /*
6889  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6890  *
6891  * The problem is that its both hard and excessively expensive to iterate the
6892  * child list, not to mention that its impossible to IPI the children running
6893  * on another CPU, from interrupt/NMI context.
6894  */
6895 static void perf_output_read(struct perf_output_handle *handle,
6896                              struct perf_event *event)
6897 {
6898         u64 enabled = 0, running = 0, now;
6899         u64 read_format = event->attr.read_format;
6900
6901         /*
6902          * compute total_time_enabled, total_time_running
6903          * based on snapshot values taken when the event
6904          * was last scheduled in.
6905          *
6906          * we cannot simply called update_context_time()
6907          * because of locking issue as we are called in
6908          * NMI context
6909          */
6910         if (read_format & PERF_FORMAT_TOTAL_TIMES)
6911                 calc_timer_values(event, &now, &enabled, &running);
6912
6913         if (event->attr.read_format & PERF_FORMAT_GROUP)
6914                 perf_output_read_group(handle, event, enabled, running);
6915         else
6916                 perf_output_read_one(handle, event, enabled, running);
6917 }
6918
6919 static inline bool perf_sample_save_hw_index(struct perf_event *event)
6920 {
6921         return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
6922 }
6923
6924 void perf_output_sample(struct perf_output_handle *handle,
6925                         struct perf_event_header *header,
6926                         struct perf_sample_data *data,
6927                         struct perf_event *event)
6928 {
6929         u64 sample_type = data->type;
6930
6931         perf_output_put(handle, *header);
6932
6933         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6934                 perf_output_put(handle, data->id);
6935
6936         if (sample_type & PERF_SAMPLE_IP)
6937                 perf_output_put(handle, data->ip);
6938
6939         if (sample_type & PERF_SAMPLE_TID)
6940                 perf_output_put(handle, data->tid_entry);
6941
6942         if (sample_type & PERF_SAMPLE_TIME)
6943                 perf_output_put(handle, data->time);
6944
6945         if (sample_type & PERF_SAMPLE_ADDR)
6946                 perf_output_put(handle, data->addr);
6947
6948         if (sample_type & PERF_SAMPLE_ID)
6949                 perf_output_put(handle, data->id);
6950
6951         if (sample_type & PERF_SAMPLE_STREAM_ID)
6952                 perf_output_put(handle, data->stream_id);
6953
6954         if (sample_type & PERF_SAMPLE_CPU)
6955                 perf_output_put(handle, data->cpu_entry);
6956
6957         if (sample_type & PERF_SAMPLE_PERIOD)
6958                 perf_output_put(handle, data->period);
6959
6960         if (sample_type & PERF_SAMPLE_READ)
6961                 perf_output_read(handle, event);
6962
6963         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6964                 int size = 1;
6965
6966                 size += data->callchain->nr;
6967                 size *= sizeof(u64);
6968                 __output_copy(handle, data->callchain, size);
6969         }
6970
6971         if (sample_type & PERF_SAMPLE_RAW) {
6972                 struct perf_raw_record *raw = data->raw;
6973
6974                 if (raw) {
6975                         struct perf_raw_frag *frag = &raw->frag;
6976
6977                         perf_output_put(handle, raw->size);
6978                         do {
6979                                 if (frag->copy) {
6980                                         __output_custom(handle, frag->copy,
6981                                                         frag->data, frag->size);
6982                                 } else {
6983                                         __output_copy(handle, frag->data,
6984                                                       frag->size);
6985                                 }
6986                                 if (perf_raw_frag_last(frag))
6987                                         break;
6988                                 frag = frag->next;
6989                         } while (1);
6990                         if (frag->pad)
6991                                 __output_skip(handle, NULL, frag->pad);
6992                 } else {
6993                         struct {
6994                                 u32     size;
6995                                 u32     data;
6996                         } raw = {
6997                                 .size = sizeof(u32),
6998                                 .data = 0,
6999                         };
7000                         perf_output_put(handle, raw);
7001                 }
7002         }
7003
7004         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7005                 if (data->br_stack) {
7006                         size_t size;
7007
7008                         size = data->br_stack->nr
7009                              * sizeof(struct perf_branch_entry);
7010
7011                         perf_output_put(handle, data->br_stack->nr);
7012                         if (perf_sample_save_hw_index(event))
7013                                 perf_output_put(handle, data->br_stack->hw_idx);
7014                         perf_output_copy(handle, data->br_stack->entries, size);
7015                 } else {
7016                         /*
7017                          * we always store at least the value of nr
7018                          */
7019                         u64 nr = 0;
7020                         perf_output_put(handle, nr);
7021                 }
7022         }
7023
7024         if (sample_type & PERF_SAMPLE_REGS_USER) {
7025                 u64 abi = data->regs_user.abi;
7026
7027                 /*
7028                  * If there are no regs to dump, notice it through
7029                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7030                  */
7031                 perf_output_put(handle, abi);
7032
7033                 if (abi) {
7034                         u64 mask = event->attr.sample_regs_user;
7035                         perf_output_sample_regs(handle,
7036                                                 data->regs_user.regs,
7037                                                 mask);
7038                 }
7039         }
7040
7041         if (sample_type & PERF_SAMPLE_STACK_USER) {
7042                 perf_output_sample_ustack(handle,
7043                                           data->stack_user_size,
7044                                           data->regs_user.regs);
7045         }
7046
7047         if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7048                 perf_output_put(handle, data->weight.full);
7049
7050         if (sample_type & PERF_SAMPLE_DATA_SRC)
7051                 perf_output_put(handle, data->data_src.val);
7052
7053         if (sample_type & PERF_SAMPLE_TRANSACTION)
7054                 perf_output_put(handle, data->txn);
7055
7056         if (sample_type & PERF_SAMPLE_REGS_INTR) {
7057                 u64 abi = data->regs_intr.abi;
7058                 /*
7059                  * If there are no regs to dump, notice it through
7060                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7061                  */
7062                 perf_output_put(handle, abi);
7063
7064                 if (abi) {
7065                         u64 mask = event->attr.sample_regs_intr;
7066
7067                         perf_output_sample_regs(handle,
7068                                                 data->regs_intr.regs,
7069                                                 mask);
7070                 }
7071         }
7072
7073         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7074                 perf_output_put(handle, data->phys_addr);
7075
7076         if (sample_type & PERF_SAMPLE_CGROUP)
7077                 perf_output_put(handle, data->cgroup);
7078
7079         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7080                 perf_output_put(handle, data->data_page_size);
7081
7082         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7083                 perf_output_put(handle, data->code_page_size);
7084
7085         if (sample_type & PERF_SAMPLE_AUX) {
7086                 perf_output_put(handle, data->aux_size);
7087
7088                 if (data->aux_size)
7089                         perf_aux_sample_output(event, handle, data);
7090         }
7091
7092         if (!event->attr.watermark) {
7093                 int wakeup_events = event->attr.wakeup_events;
7094
7095                 if (wakeup_events) {
7096                         struct perf_buffer *rb = handle->rb;
7097                         int events = local_inc_return(&rb->events);
7098
7099                         if (events >= wakeup_events) {
7100                                 local_sub(wakeup_events, &rb->events);
7101                                 local_inc(&rb->wakeup);
7102                         }
7103                 }
7104         }
7105 }
7106
7107 static u64 perf_virt_to_phys(u64 virt)
7108 {
7109         u64 phys_addr = 0;
7110         struct page *p = NULL;
7111
7112         if (!virt)
7113                 return 0;
7114
7115         if (virt >= TASK_SIZE) {
7116                 /* If it's vmalloc()d memory, leave phys_addr as 0 */
7117                 if (virt_addr_valid((void *)(uintptr_t)virt) &&
7118                     !(virt >= VMALLOC_START && virt < VMALLOC_END))
7119                         phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7120         } else {
7121                 /*
7122                  * Walking the pages tables for user address.
7123                  * Interrupts are disabled, so it prevents any tear down
7124                  * of the page tables.
7125                  * Try IRQ-safe get_user_page_fast_only first.
7126                  * If failed, leave phys_addr as 0.
7127                  */
7128                 if (current->mm != NULL) {
7129                         pagefault_disable();
7130                         if (get_user_page_fast_only(virt, 0, &p))
7131                                 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7132                         pagefault_enable();
7133                 }
7134
7135                 if (p)
7136                         put_page(p);
7137         }
7138
7139         return phys_addr;
7140 }
7141
7142 /*
7143  * Return the pagetable size of a given virtual address.
7144  */
7145 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7146 {
7147         u64 size = 0;
7148
7149 #ifdef CONFIG_HAVE_FAST_GUP
7150         pgd_t *pgdp, pgd;
7151         p4d_t *p4dp, p4d;
7152         pud_t *pudp, pud;
7153         pmd_t *pmdp, pmd;
7154         pte_t *ptep, pte;
7155
7156         pgdp = pgd_offset(mm, addr);
7157         pgd = READ_ONCE(*pgdp);
7158         if (pgd_none(pgd))
7159                 return 0;
7160
7161         if (pgd_leaf(pgd))
7162                 return pgd_leaf_size(pgd);
7163
7164         p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7165         p4d = READ_ONCE(*p4dp);
7166         if (!p4d_present(p4d))
7167                 return 0;
7168
7169         if (p4d_leaf(p4d))
7170                 return p4d_leaf_size(p4d);
7171
7172         pudp = pud_offset_lockless(p4dp, p4d, addr);
7173         pud = READ_ONCE(*pudp);
7174         if (!pud_present(pud))
7175                 return 0;
7176
7177         if (pud_leaf(pud))
7178                 return pud_leaf_size(pud);
7179
7180         pmdp = pmd_offset_lockless(pudp, pud, addr);
7181         pmd = READ_ONCE(*pmdp);
7182         if (!pmd_present(pmd))
7183                 return 0;
7184
7185         if (pmd_leaf(pmd))
7186                 return pmd_leaf_size(pmd);
7187
7188         ptep = pte_offset_map(&pmd, addr);
7189         pte = ptep_get_lockless(ptep);
7190         if (pte_present(pte))
7191                 size = pte_leaf_size(pte);
7192         pte_unmap(ptep);
7193 #endif /* CONFIG_HAVE_FAST_GUP */
7194
7195         return size;
7196 }
7197
7198 static u64 perf_get_page_size(unsigned long addr)
7199 {
7200         struct mm_struct *mm;
7201         unsigned long flags;
7202         u64 size;
7203
7204         if (!addr)
7205                 return 0;
7206
7207         /*
7208          * Software page-table walkers must disable IRQs,
7209          * which prevents any tear down of the page tables.
7210          */
7211         local_irq_save(flags);
7212
7213         mm = current->mm;
7214         if (!mm) {
7215                 /*
7216                  * For kernel threads and the like, use init_mm so that
7217                  * we can find kernel memory.
7218                  */
7219                 mm = &init_mm;
7220         }
7221
7222         size = perf_get_pgtable_size(mm, addr);
7223
7224         local_irq_restore(flags);
7225
7226         return size;
7227 }
7228
7229 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7230
7231 struct perf_callchain_entry *
7232 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7233 {
7234         bool kernel = !event->attr.exclude_callchain_kernel;
7235         bool user   = !event->attr.exclude_callchain_user;
7236         /* Disallow cross-task user callchains. */
7237         bool crosstask = event->ctx->task && event->ctx->task != current;
7238         const u32 max_stack = event->attr.sample_max_stack;
7239         struct perf_callchain_entry *callchain;
7240
7241         if (!kernel && !user)
7242                 return &__empty_callchain;
7243
7244         callchain = get_perf_callchain(regs, 0, kernel, user,
7245                                        max_stack, crosstask, true);
7246         return callchain ?: &__empty_callchain;
7247 }
7248
7249 void perf_prepare_sample(struct perf_event_header *header,
7250                          struct perf_sample_data *data,
7251                          struct perf_event *event,
7252                          struct pt_regs *regs)
7253 {
7254         u64 sample_type = event->attr.sample_type;
7255
7256         header->type = PERF_RECORD_SAMPLE;
7257         header->size = sizeof(*header) + event->header_size;
7258
7259         header->misc = 0;
7260         header->misc |= perf_misc_flags(regs);
7261
7262         __perf_event_header__init_id(header, data, event);
7263
7264         if (sample_type & (PERF_SAMPLE_IP | PERF_SAMPLE_CODE_PAGE_SIZE))
7265                 data->ip = perf_instruction_pointer(regs);
7266
7267         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7268                 int size = 1;
7269
7270                 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
7271                         data->callchain = perf_callchain(event, regs);
7272
7273                 size += data->callchain->nr;
7274
7275                 header->size += size * sizeof(u64);
7276         }
7277
7278         if (sample_type & PERF_SAMPLE_RAW) {
7279                 struct perf_raw_record *raw = data->raw;
7280                 int size;
7281
7282                 if (raw) {
7283                         struct perf_raw_frag *frag = &raw->frag;
7284                         u32 sum = 0;
7285
7286                         do {
7287                                 sum += frag->size;
7288                                 if (perf_raw_frag_last(frag))
7289                                         break;
7290                                 frag = frag->next;
7291                         } while (1);
7292
7293                         size = round_up(sum + sizeof(u32), sizeof(u64));
7294                         raw->size = size - sizeof(u32);
7295                         frag->pad = raw->size - sum;
7296                 } else {
7297                         size = sizeof(u64);
7298                 }
7299
7300                 header->size += size;
7301         }
7302
7303         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7304                 int size = sizeof(u64); /* nr */
7305                 if (data->br_stack) {
7306                         if (perf_sample_save_hw_index(event))
7307                                 size += sizeof(u64);
7308
7309                         size += data->br_stack->nr
7310                               * sizeof(struct perf_branch_entry);
7311                 }
7312                 header->size += size;
7313         }
7314
7315         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
7316                 perf_sample_regs_user(&data->regs_user, regs);
7317
7318         if (sample_type & PERF_SAMPLE_REGS_USER) {
7319                 /* regs dump ABI info */
7320                 int size = sizeof(u64);
7321
7322                 if (data->regs_user.regs) {
7323                         u64 mask = event->attr.sample_regs_user;
7324                         size += hweight64(mask) * sizeof(u64);
7325                 }
7326
7327                 header->size += size;
7328         }
7329
7330         if (sample_type & PERF_SAMPLE_STACK_USER) {
7331                 /*
7332                  * Either we need PERF_SAMPLE_STACK_USER bit to be always
7333                  * processed as the last one or have additional check added
7334                  * in case new sample type is added, because we could eat
7335                  * up the rest of the sample size.
7336                  */
7337                 u16 stack_size = event->attr.sample_stack_user;
7338                 u16 size = sizeof(u64);
7339
7340                 stack_size = perf_sample_ustack_size(stack_size, header->size,
7341                                                      data->regs_user.regs);
7342
7343                 /*
7344                  * If there is something to dump, add space for the dump
7345                  * itself and for the field that tells the dynamic size,
7346                  * which is how many have been actually dumped.
7347                  */
7348                 if (stack_size)
7349                         size += sizeof(u64) + stack_size;
7350
7351                 data->stack_user_size = stack_size;
7352                 header->size += size;
7353         }
7354
7355         if (sample_type & PERF_SAMPLE_REGS_INTR) {
7356                 /* regs dump ABI info */
7357                 int size = sizeof(u64);
7358
7359                 perf_sample_regs_intr(&data->regs_intr, regs);
7360
7361                 if (data->regs_intr.regs) {
7362                         u64 mask = event->attr.sample_regs_intr;
7363
7364                         size += hweight64(mask) * sizeof(u64);
7365                 }
7366
7367                 header->size += size;
7368         }
7369
7370         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7371                 data->phys_addr = perf_virt_to_phys(data->addr);
7372
7373 #ifdef CONFIG_CGROUP_PERF
7374         if (sample_type & PERF_SAMPLE_CGROUP) {
7375                 struct cgroup *cgrp;
7376
7377                 /* protected by RCU */
7378                 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7379                 data->cgroup = cgroup_id(cgrp);
7380         }
7381 #endif
7382
7383         /*
7384          * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7385          * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7386          * but the value will not dump to the userspace.
7387          */
7388         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7389                 data->data_page_size = perf_get_page_size(data->addr);
7390
7391         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7392                 data->code_page_size = perf_get_page_size(data->ip);
7393
7394         if (sample_type & PERF_SAMPLE_AUX) {
7395                 u64 size;
7396
7397                 header->size += sizeof(u64); /* size */
7398
7399                 /*
7400                  * Given the 16bit nature of header::size, an AUX sample can
7401                  * easily overflow it, what with all the preceding sample bits.
7402                  * Make sure this doesn't happen by using up to U16_MAX bytes
7403                  * per sample in total (rounded down to 8 byte boundary).
7404                  */
7405                 size = min_t(size_t, U16_MAX - header->size,
7406                              event->attr.aux_sample_size);
7407                 size = rounddown(size, 8);
7408                 size = perf_prepare_sample_aux(event, data, size);
7409
7410                 WARN_ON_ONCE(size + header->size > U16_MAX);
7411                 header->size += size;
7412         }
7413         /*
7414          * If you're adding more sample types here, you likely need to do
7415          * something about the overflowing header::size, like repurpose the
7416          * lowest 3 bits of size, which should be always zero at the moment.
7417          * This raises a more important question, do we really need 512k sized
7418          * samples and why, so good argumentation is in order for whatever you
7419          * do here next.
7420          */
7421         WARN_ON_ONCE(header->size & 7);
7422 }
7423
7424 static __always_inline int
7425 __perf_event_output(struct perf_event *event,
7426                     struct perf_sample_data *data,
7427                     struct pt_regs *regs,
7428                     int (*output_begin)(struct perf_output_handle *,
7429                                         struct perf_sample_data *,
7430                                         struct perf_event *,
7431                                         unsigned int))
7432 {
7433         struct perf_output_handle handle;
7434         struct perf_event_header header;
7435         int err;
7436
7437         /* protect the callchain buffers */
7438         rcu_read_lock();
7439
7440         perf_prepare_sample(&header, data, event, regs);
7441
7442         err = output_begin(&handle, data, event, header.size);
7443         if (err)
7444                 goto exit;
7445
7446         perf_output_sample(&handle, &header, data, event);
7447
7448         perf_output_end(&handle);
7449
7450 exit:
7451         rcu_read_unlock();
7452         return err;
7453 }
7454
7455 void
7456 perf_event_output_forward(struct perf_event *event,
7457                          struct perf_sample_data *data,
7458                          struct pt_regs *regs)
7459 {
7460         __perf_event_output(event, data, regs, perf_output_begin_forward);
7461 }
7462
7463 void
7464 perf_event_output_backward(struct perf_event *event,
7465                            struct perf_sample_data *data,
7466                            struct pt_regs *regs)
7467 {
7468         __perf_event_output(event, data, regs, perf_output_begin_backward);
7469 }
7470
7471 int
7472 perf_event_output(struct perf_event *event,
7473                   struct perf_sample_data *data,
7474                   struct pt_regs *regs)
7475 {
7476         return __perf_event_output(event, data, regs, perf_output_begin);
7477 }
7478
7479 /*
7480  * read event_id
7481  */
7482
7483 struct perf_read_event {
7484         struct perf_event_header        header;
7485
7486         u32                             pid;
7487         u32                             tid;
7488 };
7489
7490 static void
7491 perf_event_read_event(struct perf_event *event,
7492                         struct task_struct *task)
7493 {
7494         struct perf_output_handle handle;
7495         struct perf_sample_data sample;
7496         struct perf_read_event read_event = {
7497                 .header = {
7498                         .type = PERF_RECORD_READ,
7499                         .misc = 0,
7500                         .size = sizeof(read_event) + event->read_size,
7501                 },
7502                 .pid = perf_event_pid(event, task),
7503                 .tid = perf_event_tid(event, task),
7504         };
7505         int ret;
7506
7507         perf_event_header__init_id(&read_event.header, &sample, event);
7508         ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7509         if (ret)
7510                 return;
7511
7512         perf_output_put(&handle, read_event);
7513         perf_output_read(&handle, event);
7514         perf_event__output_id_sample(event, &handle, &sample);
7515
7516         perf_output_end(&handle);
7517 }
7518
7519 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7520
7521 static void
7522 perf_iterate_ctx(struct perf_event_context *ctx,
7523                    perf_iterate_f output,
7524                    void *data, bool all)
7525 {
7526         struct perf_event *event;
7527
7528         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7529                 if (!all) {
7530                         if (event->state < PERF_EVENT_STATE_INACTIVE)
7531                                 continue;
7532                         if (!event_filter_match(event))
7533                                 continue;
7534                 }
7535
7536                 output(event, data);
7537         }
7538 }
7539
7540 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7541 {
7542         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7543         struct perf_event *event;
7544
7545         list_for_each_entry_rcu(event, &pel->list, sb_list) {
7546                 /*
7547                  * Skip events that are not fully formed yet; ensure that
7548                  * if we observe event->ctx, both event and ctx will be
7549                  * complete enough. See perf_install_in_context().
7550                  */
7551                 if (!smp_load_acquire(&event->ctx))
7552                         continue;
7553
7554                 if (event->state < PERF_EVENT_STATE_INACTIVE)
7555                         continue;
7556                 if (!event_filter_match(event))
7557                         continue;
7558                 output(event, data);
7559         }
7560 }
7561
7562 /*
7563  * Iterate all events that need to receive side-band events.
7564  *
7565  * For new callers; ensure that account_pmu_sb_event() includes
7566  * your event, otherwise it might not get delivered.
7567  */
7568 static void
7569 perf_iterate_sb(perf_iterate_f output, void *data,
7570                struct perf_event_context *task_ctx)
7571 {
7572         struct perf_event_context *ctx;
7573         int ctxn;
7574
7575         rcu_read_lock();
7576         preempt_disable();
7577
7578         /*
7579          * If we have task_ctx != NULL we only notify the task context itself.
7580          * The task_ctx is set only for EXIT events before releasing task
7581          * context.
7582          */
7583         if (task_ctx) {
7584                 perf_iterate_ctx(task_ctx, output, data, false);
7585                 goto done;
7586         }
7587
7588         perf_iterate_sb_cpu(output, data);
7589
7590         for_each_task_context_nr(ctxn) {
7591                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7592                 if (ctx)
7593                         perf_iterate_ctx(ctx, output, data, false);
7594         }
7595 done:
7596         preempt_enable();
7597         rcu_read_unlock();
7598 }
7599
7600 /*
7601  * Clear all file-based filters at exec, they'll have to be
7602  * re-instated when/if these objects are mmapped again.
7603  */
7604 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7605 {
7606         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7607         struct perf_addr_filter *filter;
7608         unsigned int restart = 0, count = 0;
7609         unsigned long flags;
7610
7611         if (!has_addr_filter(event))
7612                 return;
7613
7614         raw_spin_lock_irqsave(&ifh->lock, flags);
7615         list_for_each_entry(filter, &ifh->list, entry) {
7616                 if (filter->path.dentry) {
7617                         event->addr_filter_ranges[count].start = 0;
7618                         event->addr_filter_ranges[count].size = 0;
7619                         restart++;
7620                 }
7621
7622                 count++;
7623         }
7624
7625         if (restart)
7626                 event->addr_filters_gen++;
7627         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7628
7629         if (restart)
7630                 perf_event_stop(event, 1);
7631 }
7632
7633 void perf_event_exec(void)
7634 {
7635         struct perf_event_context *ctx;
7636         int ctxn;
7637
7638         for_each_task_context_nr(ctxn) {
7639                 perf_event_enable_on_exec(ctxn);
7640                 perf_event_remove_on_exec(ctxn);
7641
7642                 rcu_read_lock();
7643                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7644                 if (ctx) {
7645                         perf_iterate_ctx(ctx, perf_event_addr_filters_exec,
7646                                          NULL, true);
7647                 }
7648                 rcu_read_unlock();
7649         }
7650 }
7651
7652 struct remote_output {
7653         struct perf_buffer      *rb;
7654         int                     err;
7655 };
7656
7657 static void __perf_event_output_stop(struct perf_event *event, void *data)
7658 {
7659         struct perf_event *parent = event->parent;
7660         struct remote_output *ro = data;
7661         struct perf_buffer *rb = ro->rb;
7662         struct stop_event_data sd = {
7663                 .event  = event,
7664         };
7665
7666         if (!has_aux(event))
7667                 return;
7668
7669         if (!parent)
7670                 parent = event;
7671
7672         /*
7673          * In case of inheritance, it will be the parent that links to the
7674          * ring-buffer, but it will be the child that's actually using it.
7675          *
7676          * We are using event::rb to determine if the event should be stopped,
7677          * however this may race with ring_buffer_attach() (through set_output),
7678          * which will make us skip the event that actually needs to be stopped.
7679          * So ring_buffer_attach() has to stop an aux event before re-assigning
7680          * its rb pointer.
7681          */
7682         if (rcu_dereference(parent->rb) == rb)
7683                 ro->err = __perf_event_stop(&sd);
7684 }
7685
7686 static int __perf_pmu_output_stop(void *info)
7687 {
7688         struct perf_event *event = info;
7689         struct pmu *pmu = event->ctx->pmu;
7690         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7691         struct remote_output ro = {
7692                 .rb     = event->rb,
7693         };
7694
7695         rcu_read_lock();
7696         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
7697         if (cpuctx->task_ctx)
7698                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
7699                                    &ro, false);
7700         rcu_read_unlock();
7701
7702         return ro.err;
7703 }
7704
7705 static void perf_pmu_output_stop(struct perf_event *event)
7706 {
7707         struct perf_event *iter;
7708         int err, cpu;
7709
7710 restart:
7711         rcu_read_lock();
7712         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7713                 /*
7714                  * For per-CPU events, we need to make sure that neither they
7715                  * nor their children are running; for cpu==-1 events it's
7716                  * sufficient to stop the event itself if it's active, since
7717                  * it can't have children.
7718                  */
7719                 cpu = iter->cpu;
7720                 if (cpu == -1)
7721                         cpu = READ_ONCE(iter->oncpu);
7722
7723                 if (cpu == -1)
7724                         continue;
7725
7726                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7727                 if (err == -EAGAIN) {
7728                         rcu_read_unlock();
7729                         goto restart;
7730                 }
7731         }
7732         rcu_read_unlock();
7733 }
7734
7735 /*
7736  * task tracking -- fork/exit
7737  *
7738  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7739  */
7740
7741 struct perf_task_event {
7742         struct task_struct              *task;
7743         struct perf_event_context       *task_ctx;
7744
7745         struct {
7746                 struct perf_event_header        header;
7747
7748                 u32                             pid;
7749                 u32                             ppid;
7750                 u32                             tid;
7751                 u32                             ptid;
7752                 u64                             time;
7753         } event_id;
7754 };
7755
7756 static int perf_event_task_match(struct perf_event *event)
7757 {
7758         return event->attr.comm  || event->attr.mmap ||
7759                event->attr.mmap2 || event->attr.mmap_data ||
7760                event->attr.task;
7761 }
7762
7763 static void perf_event_task_output(struct perf_event *event,
7764                                    void *data)
7765 {
7766         struct perf_task_event *task_event = data;
7767         struct perf_output_handle handle;
7768         struct perf_sample_data sample;
7769         struct task_struct *task = task_event->task;
7770         int ret, size = task_event->event_id.header.size;
7771
7772         if (!perf_event_task_match(event))
7773                 return;
7774
7775         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7776
7777         ret = perf_output_begin(&handle, &sample, event,
7778                                 task_event->event_id.header.size);
7779         if (ret)
7780                 goto out;
7781
7782         task_event->event_id.pid = perf_event_pid(event, task);
7783         task_event->event_id.tid = perf_event_tid(event, task);
7784
7785         if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
7786                 task_event->event_id.ppid = perf_event_pid(event,
7787                                                         task->real_parent);
7788                 task_event->event_id.ptid = perf_event_pid(event,
7789                                                         task->real_parent);
7790         } else {  /* PERF_RECORD_FORK */
7791                 task_event->event_id.ppid = perf_event_pid(event, current);
7792                 task_event->event_id.ptid = perf_event_tid(event, current);
7793         }
7794
7795         task_event->event_id.time = perf_event_clock(event);
7796
7797         perf_output_put(&handle, task_event->event_id);
7798
7799         perf_event__output_id_sample(event, &handle, &sample);
7800
7801         perf_output_end(&handle);
7802 out:
7803         task_event->event_id.header.size = size;
7804 }
7805
7806 static void perf_event_task(struct task_struct *task,
7807                               struct perf_event_context *task_ctx,
7808                               int new)
7809 {
7810         struct perf_task_event task_event;
7811
7812         if (!atomic_read(&nr_comm_events) &&
7813             !atomic_read(&nr_mmap_events) &&
7814             !atomic_read(&nr_task_events))
7815                 return;
7816
7817         task_event = (struct perf_task_event){
7818                 .task     = task,
7819                 .task_ctx = task_ctx,
7820                 .event_id    = {
7821                         .header = {
7822                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7823                                 .misc = 0,
7824                                 .size = sizeof(task_event.event_id),
7825                         },
7826                         /* .pid  */
7827                         /* .ppid */
7828                         /* .tid  */
7829                         /* .ptid */
7830                         /* .time */
7831                 },
7832         };
7833
7834         perf_iterate_sb(perf_event_task_output,
7835                        &task_event,
7836                        task_ctx);
7837 }
7838
7839 void perf_event_fork(struct task_struct *task)
7840 {
7841         perf_event_task(task, NULL, 1);
7842         perf_event_namespaces(task);
7843 }
7844
7845 /*
7846  * comm tracking
7847  */
7848
7849 struct perf_comm_event {
7850         struct task_struct      *task;
7851         char                    *comm;
7852         int                     comm_size;
7853
7854         struct {
7855                 struct perf_event_header        header;
7856
7857                 u32                             pid;
7858                 u32                             tid;
7859         } event_id;
7860 };
7861
7862 static int perf_event_comm_match(struct perf_event *event)
7863 {
7864         return event->attr.comm;
7865 }
7866
7867 static void perf_event_comm_output(struct perf_event *event,
7868                                    void *data)
7869 {
7870         struct perf_comm_event *comm_event = data;
7871         struct perf_output_handle handle;
7872         struct perf_sample_data sample;
7873         int size = comm_event->event_id.header.size;
7874         int ret;
7875
7876         if (!perf_event_comm_match(event))
7877                 return;
7878
7879         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7880         ret = perf_output_begin(&handle, &sample, event,
7881                                 comm_event->event_id.header.size);
7882
7883         if (ret)
7884                 goto out;
7885
7886         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7887         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7888
7889         perf_output_put(&handle, comm_event->event_id);
7890         __output_copy(&handle, comm_event->comm,
7891                                    comm_event->comm_size);
7892
7893         perf_event__output_id_sample(event, &handle, &sample);
7894
7895         perf_output_end(&handle);
7896 out:
7897         comm_event->event_id.header.size = size;
7898 }
7899
7900 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7901 {
7902         char comm[TASK_COMM_LEN];
7903         unsigned int size;
7904
7905         memset(comm, 0, sizeof(comm));
7906         strlcpy(comm, comm_event->task->comm, sizeof(comm));
7907         size = ALIGN(strlen(comm)+1, sizeof(u64));
7908
7909         comm_event->comm = comm;
7910         comm_event->comm_size = size;
7911
7912         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7913
7914         perf_iterate_sb(perf_event_comm_output,
7915                        comm_event,
7916                        NULL);
7917 }
7918
7919 void perf_event_comm(struct task_struct *task, bool exec)
7920 {
7921         struct perf_comm_event comm_event;
7922
7923         if (!atomic_read(&nr_comm_events))
7924                 return;
7925
7926         comm_event = (struct perf_comm_event){
7927                 .task   = task,
7928                 /* .comm      */
7929                 /* .comm_size */
7930                 .event_id  = {
7931                         .header = {
7932                                 .type = PERF_RECORD_COMM,
7933                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7934                                 /* .size */
7935                         },
7936                         /* .pid */
7937                         /* .tid */
7938                 },
7939         };
7940
7941         perf_event_comm_event(&comm_event);
7942 }
7943
7944 /*
7945  * namespaces tracking
7946  */
7947
7948 struct perf_namespaces_event {
7949         struct task_struct              *task;
7950
7951         struct {
7952                 struct perf_event_header        header;
7953
7954                 u32                             pid;
7955                 u32                             tid;
7956                 u64                             nr_namespaces;
7957                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
7958         } event_id;
7959 };
7960
7961 static int perf_event_namespaces_match(struct perf_event *event)
7962 {
7963         return event->attr.namespaces;
7964 }
7965
7966 static void perf_event_namespaces_output(struct perf_event *event,
7967                                          void *data)
7968 {
7969         struct perf_namespaces_event *namespaces_event = data;
7970         struct perf_output_handle handle;
7971         struct perf_sample_data sample;
7972         u16 header_size = namespaces_event->event_id.header.size;
7973         int ret;
7974
7975         if (!perf_event_namespaces_match(event))
7976                 return;
7977
7978         perf_event_header__init_id(&namespaces_event->event_id.header,
7979                                    &sample, event);
7980         ret = perf_output_begin(&handle, &sample, event,
7981                                 namespaces_event->event_id.header.size);
7982         if (ret)
7983                 goto out;
7984
7985         namespaces_event->event_id.pid = perf_event_pid(event,
7986                                                         namespaces_event->task);
7987         namespaces_event->event_id.tid = perf_event_tid(event,
7988                                                         namespaces_event->task);
7989
7990         perf_output_put(&handle, namespaces_event->event_id);
7991
7992         perf_event__output_id_sample(event, &handle, &sample);
7993
7994         perf_output_end(&handle);
7995 out:
7996         namespaces_event->event_id.header.size = header_size;
7997 }
7998
7999 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8000                                    struct task_struct *task,
8001                                    const struct proc_ns_operations *ns_ops)
8002 {
8003         struct path ns_path;
8004         struct inode *ns_inode;
8005         int error;
8006
8007         error = ns_get_path(&ns_path, task, ns_ops);
8008         if (!error) {
8009                 ns_inode = ns_path.dentry->d_inode;
8010                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8011                 ns_link_info->ino = ns_inode->i_ino;
8012                 path_put(&ns_path);
8013         }
8014 }
8015
8016 void perf_event_namespaces(struct task_struct *task)
8017 {
8018         struct perf_namespaces_event namespaces_event;
8019         struct perf_ns_link_info *ns_link_info;
8020
8021         if (!atomic_read(&nr_namespaces_events))
8022                 return;
8023
8024         namespaces_event = (struct perf_namespaces_event){
8025                 .task   = task,
8026                 .event_id  = {
8027                         .header = {
8028                                 .type = PERF_RECORD_NAMESPACES,
8029                                 .misc = 0,
8030                                 .size = sizeof(namespaces_event.event_id),
8031                         },
8032                         /* .pid */
8033                         /* .tid */
8034                         .nr_namespaces = NR_NAMESPACES,
8035                         /* .link_info[NR_NAMESPACES] */
8036                 },
8037         };
8038
8039         ns_link_info = namespaces_event.event_id.link_info;
8040
8041         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8042                                task, &mntns_operations);
8043
8044 #ifdef CONFIG_USER_NS
8045         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8046                                task, &userns_operations);
8047 #endif
8048 #ifdef CONFIG_NET_NS
8049         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8050                                task, &netns_operations);
8051 #endif
8052 #ifdef CONFIG_UTS_NS
8053         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8054                                task, &utsns_operations);
8055 #endif
8056 #ifdef CONFIG_IPC_NS
8057         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8058                                task, &ipcns_operations);
8059 #endif
8060 #ifdef CONFIG_PID_NS
8061         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8062                                task, &pidns_operations);
8063 #endif
8064 #ifdef CONFIG_CGROUPS
8065         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8066                                task, &cgroupns_operations);
8067 #endif
8068
8069         perf_iterate_sb(perf_event_namespaces_output,
8070                         &namespaces_event,
8071                         NULL);
8072 }
8073
8074 /*
8075  * cgroup tracking
8076  */
8077 #ifdef CONFIG_CGROUP_PERF
8078
8079 struct perf_cgroup_event {
8080         char                            *path;
8081         int                             path_size;
8082         struct {
8083                 struct perf_event_header        header;
8084                 u64                             id;
8085                 char                            path[];
8086         } event_id;
8087 };
8088
8089 static int perf_event_cgroup_match(struct perf_event *event)
8090 {
8091         return event->attr.cgroup;
8092 }
8093
8094 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8095 {
8096         struct perf_cgroup_event *cgroup_event = data;
8097         struct perf_output_handle handle;
8098         struct perf_sample_data sample;
8099         u16 header_size = cgroup_event->event_id.header.size;
8100         int ret;
8101
8102         if (!perf_event_cgroup_match(event))
8103                 return;
8104
8105         perf_event_header__init_id(&cgroup_event->event_id.header,
8106                                    &sample, event);
8107         ret = perf_output_begin(&handle, &sample, event,
8108                                 cgroup_event->event_id.header.size);
8109         if (ret)
8110                 goto out;
8111
8112         perf_output_put(&handle, cgroup_event->event_id);
8113         __output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8114
8115         perf_event__output_id_sample(event, &handle, &sample);
8116
8117         perf_output_end(&handle);
8118 out:
8119         cgroup_event->event_id.header.size = header_size;
8120 }
8121
8122 static void perf_event_cgroup(struct cgroup *cgrp)
8123 {
8124         struct perf_cgroup_event cgroup_event;
8125         char path_enomem[16] = "//enomem";
8126         char *pathname;
8127         size_t size;
8128
8129         if (!atomic_read(&nr_cgroup_events))
8130                 return;
8131
8132         cgroup_event = (struct perf_cgroup_event){
8133                 .event_id  = {
8134                         .header = {
8135                                 .type = PERF_RECORD_CGROUP,
8136                                 .misc = 0,
8137                                 .size = sizeof(cgroup_event.event_id),
8138                         },
8139                         .id = cgroup_id(cgrp),
8140                 },
8141         };
8142
8143         pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8144         if (pathname == NULL) {
8145                 cgroup_event.path = path_enomem;
8146         } else {
8147                 /* just to be sure to have enough space for alignment */
8148                 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8149                 cgroup_event.path = pathname;
8150         }
8151
8152         /*
8153          * Since our buffer works in 8 byte units we need to align our string
8154          * size to a multiple of 8. However, we must guarantee the tail end is
8155          * zero'd out to avoid leaking random bits to userspace.
8156          */
8157         size = strlen(cgroup_event.path) + 1;
8158         while (!IS_ALIGNED(size, sizeof(u64)))
8159                 cgroup_event.path[size++] = '\0';
8160
8161         cgroup_event.event_id.header.size += size;
8162         cgroup_event.path_size = size;
8163
8164         perf_iterate_sb(perf_event_cgroup_output,
8165                         &cgroup_event,
8166                         NULL);
8167
8168         kfree(pathname);
8169 }
8170
8171 #endif
8172
8173 /*
8174  * mmap tracking
8175  */
8176
8177 struct perf_mmap_event {
8178         struct vm_area_struct   *vma;
8179
8180         const char              *file_name;
8181         int                     file_size;
8182         int                     maj, min;
8183         u64                     ino;
8184         u64                     ino_generation;
8185         u32                     prot, flags;
8186         u8                      build_id[BUILD_ID_SIZE_MAX];
8187         u32                     build_id_size;
8188
8189         struct {
8190                 struct perf_event_header        header;
8191
8192                 u32                             pid;
8193                 u32                             tid;
8194                 u64                             start;
8195                 u64                             len;
8196                 u64                             pgoff;
8197         } event_id;
8198 };
8199
8200 static int perf_event_mmap_match(struct perf_event *event,
8201                                  void *data)
8202 {
8203         struct perf_mmap_event *mmap_event = data;
8204         struct vm_area_struct *vma = mmap_event->vma;
8205         int executable = vma->vm_flags & VM_EXEC;
8206
8207         return (!executable && event->attr.mmap_data) ||
8208                (executable && (event->attr.mmap || event->attr.mmap2));
8209 }
8210
8211 static void perf_event_mmap_output(struct perf_event *event,
8212                                    void *data)
8213 {
8214         struct perf_mmap_event *mmap_event = data;
8215         struct perf_output_handle handle;
8216         struct perf_sample_data sample;
8217         int size = mmap_event->event_id.header.size;
8218         u32 type = mmap_event->event_id.header.type;
8219         bool use_build_id;
8220         int ret;
8221
8222         if (!perf_event_mmap_match(event, data))
8223                 return;
8224
8225         if (event->attr.mmap2) {
8226                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8227                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8228                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
8229                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8230                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8231                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8232                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8233         }
8234
8235         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8236         ret = perf_output_begin(&handle, &sample, event,
8237                                 mmap_event->event_id.header.size);
8238         if (ret)
8239                 goto out;
8240
8241         mmap_event->event_id.pid = perf_event_pid(event, current);
8242         mmap_event->event_id.tid = perf_event_tid(event, current);
8243
8244         use_build_id = event->attr.build_id && mmap_event->build_id_size;
8245
8246         if (event->attr.mmap2 && use_build_id)
8247                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8248
8249         perf_output_put(&handle, mmap_event->event_id);
8250
8251         if (event->attr.mmap2) {
8252                 if (use_build_id) {
8253                         u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8254
8255                         __output_copy(&handle, size, 4);
8256                         __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8257                 } else {
8258                         perf_output_put(&handle, mmap_event->maj);
8259                         perf_output_put(&handle, mmap_event->min);
8260                         perf_output_put(&handle, mmap_event->ino);
8261                         perf_output_put(&handle, mmap_event->ino_generation);
8262                 }
8263                 perf_output_put(&handle, mmap_event->prot);
8264                 perf_output_put(&handle, mmap_event->flags);
8265         }
8266
8267         __output_copy(&handle, mmap_event->file_name,
8268                                    mmap_event->file_size);
8269
8270         perf_event__output_id_sample(event, &handle, &sample);
8271
8272         perf_output_end(&handle);
8273 out:
8274         mmap_event->event_id.header.size = size;
8275         mmap_event->event_id.header.type = type;
8276 }
8277
8278 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8279 {
8280         struct vm_area_struct *vma = mmap_event->vma;
8281         struct file *file = vma->vm_file;
8282         int maj = 0, min = 0;
8283         u64 ino = 0, gen = 0;
8284         u32 prot = 0, flags = 0;
8285         unsigned int size;
8286         char tmp[16];
8287         char *buf = NULL;
8288         char *name;
8289
8290         if (vma->vm_flags & VM_READ)
8291                 prot |= PROT_READ;
8292         if (vma->vm_flags & VM_WRITE)
8293                 prot |= PROT_WRITE;
8294         if (vma->vm_flags & VM_EXEC)
8295                 prot |= PROT_EXEC;
8296
8297         if (vma->vm_flags & VM_MAYSHARE)
8298                 flags = MAP_SHARED;
8299         else
8300                 flags = MAP_PRIVATE;
8301
8302         if (vma->vm_flags & VM_DENYWRITE)
8303                 flags |= MAP_DENYWRITE;
8304         if (vma->vm_flags & VM_MAYEXEC)
8305                 flags |= MAP_EXECUTABLE;
8306         if (vma->vm_flags & VM_LOCKED)
8307                 flags |= MAP_LOCKED;
8308         if (is_vm_hugetlb_page(vma))
8309                 flags |= MAP_HUGETLB;
8310
8311         if (file) {
8312                 struct inode *inode;
8313                 dev_t dev;
8314
8315                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
8316                 if (!buf) {
8317                         name = "//enomem";
8318                         goto cpy_name;
8319                 }
8320                 /*
8321                  * d_path() works from the end of the rb backwards, so we
8322                  * need to add enough zero bytes after the string to handle
8323                  * the 64bit alignment we do later.
8324                  */
8325                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
8326                 if (IS_ERR(name)) {
8327                         name = "//toolong";
8328                         goto cpy_name;
8329                 }
8330                 inode = file_inode(vma->vm_file);
8331                 dev = inode->i_sb->s_dev;
8332                 ino = inode->i_ino;
8333                 gen = inode->i_generation;
8334                 maj = MAJOR(dev);
8335                 min = MINOR(dev);
8336
8337                 goto got_name;
8338         } else {
8339                 if (vma->vm_ops && vma->vm_ops->name) {
8340                         name = (char *) vma->vm_ops->name(vma);
8341                         if (name)
8342                                 goto cpy_name;
8343                 }
8344
8345                 name = (char *)arch_vma_name(vma);
8346                 if (name)
8347                         goto cpy_name;
8348
8349                 if (vma->vm_start <= vma->vm_mm->start_brk &&
8350                                 vma->vm_end >= vma->vm_mm->brk) {
8351                         name = "[heap]";
8352                         goto cpy_name;
8353                 }
8354                 if (vma->vm_start <= vma->vm_mm->start_stack &&
8355                                 vma->vm_end >= vma->vm_mm->start_stack) {
8356                         name = "[stack]";
8357                         goto cpy_name;
8358                 }
8359
8360                 name = "//anon";
8361                 goto cpy_name;
8362         }
8363
8364 cpy_name:
8365         strlcpy(tmp, name, sizeof(tmp));
8366         name = tmp;
8367 got_name:
8368         /*
8369          * Since our buffer works in 8 byte units we need to align our string
8370          * size to a multiple of 8. However, we must guarantee the tail end is
8371          * zero'd out to avoid leaking random bits to userspace.
8372          */
8373         size = strlen(name)+1;
8374         while (!IS_ALIGNED(size, sizeof(u64)))
8375                 name[size++] = '\0';
8376
8377         mmap_event->file_name = name;
8378         mmap_event->file_size = size;
8379         mmap_event->maj = maj;
8380         mmap_event->min = min;
8381         mmap_event->ino = ino;
8382         mmap_event->ino_generation = gen;
8383         mmap_event->prot = prot;
8384         mmap_event->flags = flags;
8385
8386         if (!(vma->vm_flags & VM_EXEC))
8387                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8388
8389         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8390
8391         if (atomic_read(&nr_build_id_events))
8392                 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8393
8394         perf_iterate_sb(perf_event_mmap_output,
8395                        mmap_event,
8396                        NULL);
8397
8398         kfree(buf);
8399 }
8400
8401 /*
8402  * Check whether inode and address range match filter criteria.
8403  */
8404 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8405                                      struct file *file, unsigned long offset,
8406                                      unsigned long size)
8407 {
8408         /* d_inode(NULL) won't be equal to any mapped user-space file */
8409         if (!filter->path.dentry)
8410                 return false;
8411
8412         if (d_inode(filter->path.dentry) != file_inode(file))
8413                 return false;
8414
8415         if (filter->offset > offset + size)
8416                 return false;
8417
8418         if (filter->offset + filter->size < offset)
8419                 return false;
8420
8421         return true;
8422 }
8423
8424 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8425                                         struct vm_area_struct *vma,
8426                                         struct perf_addr_filter_range *fr)
8427 {
8428         unsigned long vma_size = vma->vm_end - vma->vm_start;
8429         unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8430         struct file *file = vma->vm_file;
8431
8432         if (!perf_addr_filter_match(filter, file, off, vma_size))
8433                 return false;
8434
8435         if (filter->offset < off) {
8436                 fr->start = vma->vm_start;
8437                 fr->size = min(vma_size, filter->size - (off - filter->offset));
8438         } else {
8439                 fr->start = vma->vm_start + filter->offset - off;
8440                 fr->size = min(vma->vm_end - fr->start, filter->size);
8441         }
8442
8443         return true;
8444 }
8445
8446 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8447 {
8448         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8449         struct vm_area_struct *vma = data;
8450         struct perf_addr_filter *filter;
8451         unsigned int restart = 0, count = 0;
8452         unsigned long flags;
8453
8454         if (!has_addr_filter(event))
8455                 return;
8456
8457         if (!vma->vm_file)
8458                 return;
8459
8460         raw_spin_lock_irqsave(&ifh->lock, flags);
8461         list_for_each_entry(filter, &ifh->list, entry) {
8462                 if (perf_addr_filter_vma_adjust(filter, vma,
8463                                                 &event->addr_filter_ranges[count]))
8464                         restart++;
8465
8466                 count++;
8467         }
8468
8469         if (restart)
8470                 event->addr_filters_gen++;
8471         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8472
8473         if (restart)
8474                 perf_event_stop(event, 1);
8475 }
8476
8477 /*
8478  * Adjust all task's events' filters to the new vma
8479  */
8480 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8481 {
8482         struct perf_event_context *ctx;
8483         int ctxn;
8484
8485         /*
8486          * Data tracing isn't supported yet and as such there is no need
8487          * to keep track of anything that isn't related to executable code:
8488          */
8489         if (!(vma->vm_flags & VM_EXEC))
8490                 return;
8491
8492         rcu_read_lock();
8493         for_each_task_context_nr(ctxn) {
8494                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
8495                 if (!ctx)
8496                         continue;
8497
8498                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8499         }
8500         rcu_read_unlock();
8501 }
8502
8503 void perf_event_mmap(struct vm_area_struct *vma)
8504 {
8505         struct perf_mmap_event mmap_event;
8506
8507         if (!atomic_read(&nr_mmap_events))
8508                 return;
8509
8510         mmap_event = (struct perf_mmap_event){
8511                 .vma    = vma,
8512                 /* .file_name */
8513                 /* .file_size */
8514                 .event_id  = {
8515                         .header = {
8516                                 .type = PERF_RECORD_MMAP,
8517                                 .misc = PERF_RECORD_MISC_USER,
8518                                 /* .size */
8519                         },
8520                         /* .pid */
8521                         /* .tid */
8522                         .start  = vma->vm_start,
8523                         .len    = vma->vm_end - vma->vm_start,
8524                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8525                 },
8526                 /* .maj (attr_mmap2 only) */
8527                 /* .min (attr_mmap2 only) */
8528                 /* .ino (attr_mmap2 only) */
8529                 /* .ino_generation (attr_mmap2 only) */
8530                 /* .prot (attr_mmap2 only) */
8531                 /* .flags (attr_mmap2 only) */
8532         };
8533
8534         perf_addr_filters_adjust(vma);
8535         perf_event_mmap_event(&mmap_event);
8536 }
8537
8538 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8539                           unsigned long size, u64 flags)
8540 {
8541         struct perf_output_handle handle;
8542         struct perf_sample_data sample;
8543         struct perf_aux_event {
8544                 struct perf_event_header        header;
8545                 u64                             offset;
8546                 u64                             size;
8547                 u64                             flags;
8548         } rec = {
8549                 .header = {
8550                         .type = PERF_RECORD_AUX,
8551                         .misc = 0,
8552                         .size = sizeof(rec),
8553                 },
8554                 .offset         = head,
8555                 .size           = size,
8556                 .flags          = flags,
8557         };
8558         int ret;
8559
8560         perf_event_header__init_id(&rec.header, &sample, event);
8561         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8562
8563         if (ret)
8564                 return;
8565
8566         perf_output_put(&handle, rec);
8567         perf_event__output_id_sample(event, &handle, &sample);
8568
8569         perf_output_end(&handle);
8570 }
8571
8572 /*
8573  * Lost/dropped samples logging
8574  */
8575 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8576 {
8577         struct perf_output_handle handle;
8578         struct perf_sample_data sample;
8579         int ret;
8580
8581         struct {
8582                 struct perf_event_header        header;
8583                 u64                             lost;
8584         } lost_samples_event = {
8585                 .header = {
8586                         .type = PERF_RECORD_LOST_SAMPLES,
8587                         .misc = 0,
8588                         .size = sizeof(lost_samples_event),
8589                 },
8590                 .lost           = lost,
8591         };
8592
8593         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8594
8595         ret = perf_output_begin(&handle, &sample, event,
8596                                 lost_samples_event.header.size);
8597         if (ret)
8598                 return;
8599
8600         perf_output_put(&handle, lost_samples_event);
8601         perf_event__output_id_sample(event, &handle, &sample);
8602         perf_output_end(&handle);
8603 }
8604
8605 /*
8606  * context_switch tracking
8607  */
8608
8609 struct perf_switch_event {
8610         struct task_struct      *task;
8611         struct task_struct      *next_prev;
8612
8613         struct {
8614                 struct perf_event_header        header;
8615                 u32                             next_prev_pid;
8616                 u32                             next_prev_tid;
8617         } event_id;
8618 };
8619
8620 static int perf_event_switch_match(struct perf_event *event)
8621 {
8622         return event->attr.context_switch;
8623 }
8624
8625 static void perf_event_switch_output(struct perf_event *event, void *data)
8626 {
8627         struct perf_switch_event *se = data;
8628         struct perf_output_handle handle;
8629         struct perf_sample_data sample;
8630         int ret;
8631
8632         if (!perf_event_switch_match(event))
8633                 return;
8634
8635         /* Only CPU-wide events are allowed to see next/prev pid/tid */
8636         if (event->ctx->task) {
8637                 se->event_id.header.type = PERF_RECORD_SWITCH;
8638                 se->event_id.header.size = sizeof(se->event_id.header);
8639         } else {
8640                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8641                 se->event_id.header.size = sizeof(se->event_id);
8642                 se->event_id.next_prev_pid =
8643                                         perf_event_pid(event, se->next_prev);
8644                 se->event_id.next_prev_tid =
8645                                         perf_event_tid(event, se->next_prev);
8646         }
8647
8648         perf_event_header__init_id(&se->event_id.header, &sample, event);
8649
8650         ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
8651         if (ret)
8652                 return;
8653
8654         if (event->ctx->task)
8655                 perf_output_put(&handle, se->event_id.header);
8656         else
8657                 perf_output_put(&handle, se->event_id);
8658
8659         perf_event__output_id_sample(event, &handle, &sample);
8660
8661         perf_output_end(&handle);
8662 }
8663
8664 static void perf_event_switch(struct task_struct *task,
8665                               struct task_struct *next_prev, bool sched_in)
8666 {
8667         struct perf_switch_event switch_event;
8668
8669         /* N.B. caller checks nr_switch_events != 0 */
8670
8671         switch_event = (struct perf_switch_event){
8672                 .task           = task,
8673                 .next_prev      = next_prev,
8674                 .event_id       = {
8675                         .header = {
8676                                 /* .type */
8677                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
8678                                 /* .size */
8679                         },
8680                         /* .next_prev_pid */
8681                         /* .next_prev_tid */
8682                 },
8683         };
8684
8685         if (!sched_in && task->state == TASK_RUNNING)
8686                 switch_event.event_id.header.misc |=
8687                                 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
8688
8689         perf_iterate_sb(perf_event_switch_output,
8690                        &switch_event,
8691                        NULL);
8692 }
8693
8694 /*
8695  * IRQ throttle logging
8696  */
8697
8698 static void perf_log_throttle(struct perf_event *event, int enable)
8699 {
8700         struct perf_output_handle handle;
8701         struct perf_sample_data sample;
8702         int ret;
8703
8704         struct {
8705                 struct perf_event_header        header;
8706                 u64                             time;
8707                 u64                             id;
8708                 u64                             stream_id;
8709         } throttle_event = {
8710                 .header = {
8711                         .type = PERF_RECORD_THROTTLE,
8712                         .misc = 0,
8713                         .size = sizeof(throttle_event),
8714                 },
8715                 .time           = perf_event_clock(event),
8716                 .id             = primary_event_id(event),
8717                 .stream_id      = event->id,
8718         };
8719
8720         if (enable)
8721                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
8722
8723         perf_event_header__init_id(&throttle_event.header, &sample, event);
8724
8725         ret = perf_output_begin(&handle, &sample, event,
8726                                 throttle_event.header.size);
8727         if (ret)
8728                 return;
8729
8730         perf_output_put(&handle, throttle_event);
8731         perf_event__output_id_sample(event, &handle, &sample);
8732         perf_output_end(&handle);
8733 }
8734
8735 /*
8736  * ksymbol register/unregister tracking
8737  */
8738
8739 struct perf_ksymbol_event {
8740         const char      *name;
8741         int             name_len;
8742         struct {
8743                 struct perf_event_header        header;
8744                 u64                             addr;
8745                 u32                             len;
8746                 u16                             ksym_type;
8747                 u16                             flags;
8748         } event_id;
8749 };
8750
8751 static int perf_event_ksymbol_match(struct perf_event *event)
8752 {
8753         return event->attr.ksymbol;
8754 }
8755
8756 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
8757 {
8758         struct perf_ksymbol_event *ksymbol_event = data;
8759         struct perf_output_handle handle;
8760         struct perf_sample_data sample;
8761         int ret;
8762
8763         if (!perf_event_ksymbol_match(event))
8764                 return;
8765
8766         perf_event_header__init_id(&ksymbol_event->event_id.header,
8767                                    &sample, event);
8768         ret = perf_output_begin(&handle, &sample, event,
8769                                 ksymbol_event->event_id.header.size);
8770         if (ret)
8771                 return;
8772
8773         perf_output_put(&handle, ksymbol_event->event_id);
8774         __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
8775         perf_event__output_id_sample(event, &handle, &sample);
8776
8777         perf_output_end(&handle);
8778 }
8779
8780 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
8781                         const char *sym)
8782 {
8783         struct perf_ksymbol_event ksymbol_event;
8784         char name[KSYM_NAME_LEN];
8785         u16 flags = 0;
8786         int name_len;
8787
8788         if (!atomic_read(&nr_ksymbol_events))
8789                 return;
8790
8791         if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
8792             ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
8793                 goto err;
8794
8795         strlcpy(name, sym, KSYM_NAME_LEN);
8796         name_len = strlen(name) + 1;
8797         while (!IS_ALIGNED(name_len, sizeof(u64)))
8798                 name[name_len++] = '\0';
8799         BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
8800
8801         if (unregister)
8802                 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
8803
8804         ksymbol_event = (struct perf_ksymbol_event){
8805                 .name = name,
8806                 .name_len = name_len,
8807                 .event_id = {
8808                         .header = {
8809                                 .type = PERF_RECORD_KSYMBOL,
8810                                 .size = sizeof(ksymbol_event.event_id) +
8811                                         name_len,
8812                         },
8813                         .addr = addr,
8814                         .len = len,
8815                         .ksym_type = ksym_type,
8816                         .flags = flags,
8817                 },
8818         };
8819
8820         perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
8821         return;
8822 err:
8823         WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
8824 }
8825
8826 /*
8827  * bpf program load/unload tracking
8828  */
8829
8830 struct perf_bpf_event {
8831         struct bpf_prog *prog;
8832         struct {
8833                 struct perf_event_header        header;
8834                 u16                             type;
8835                 u16                             flags;
8836                 u32                             id;
8837                 u8                              tag[BPF_TAG_SIZE];
8838         } event_id;
8839 };
8840
8841 static int perf_event_bpf_match(struct perf_event *event)
8842 {
8843         return event->attr.bpf_event;
8844 }
8845
8846 static void perf_event_bpf_output(struct perf_event *event, void *data)
8847 {
8848         struct perf_bpf_event *bpf_event = data;
8849         struct perf_output_handle handle;
8850         struct perf_sample_data sample;
8851         int ret;
8852
8853         if (!perf_event_bpf_match(event))
8854                 return;
8855
8856         perf_event_header__init_id(&bpf_event->event_id.header,
8857                                    &sample, event);
8858         ret = perf_output_begin(&handle, data, event,
8859                                 bpf_event->event_id.header.size);
8860         if (ret)
8861                 return;
8862
8863         perf_output_put(&handle, bpf_event->event_id);
8864         perf_event__output_id_sample(event, &handle, &sample);
8865
8866         perf_output_end(&handle);
8867 }
8868
8869 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8870                                          enum perf_bpf_event_type type)
8871 {
8872         bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
8873         int i;
8874
8875         if (prog->aux->func_cnt == 0) {
8876                 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
8877                                    (u64)(unsigned long)prog->bpf_func,
8878                                    prog->jited_len, unregister,
8879                                    prog->aux->ksym.name);
8880         } else {
8881                 for (i = 0; i < prog->aux->func_cnt; i++) {
8882                         struct bpf_prog *subprog = prog->aux->func[i];
8883
8884                         perf_event_ksymbol(
8885                                 PERF_RECORD_KSYMBOL_TYPE_BPF,
8886                                 (u64)(unsigned long)subprog->bpf_func,
8887                                 subprog->jited_len, unregister,
8888                                 prog->aux->ksym.name);
8889                 }
8890         }
8891 }
8892
8893 void perf_event_bpf_event(struct bpf_prog *prog,
8894                           enum perf_bpf_event_type type,
8895                           u16 flags)
8896 {
8897         struct perf_bpf_event bpf_event;
8898
8899         if (type <= PERF_BPF_EVENT_UNKNOWN ||
8900             type >= PERF_BPF_EVENT_MAX)
8901                 return;
8902
8903         switch (type) {
8904         case PERF_BPF_EVENT_PROG_LOAD:
8905         case PERF_BPF_EVENT_PROG_UNLOAD:
8906                 if (atomic_read(&nr_ksymbol_events))
8907                         perf_event_bpf_emit_ksymbols(prog, type);
8908                 break;
8909         default:
8910                 break;
8911         }
8912
8913         if (!atomic_read(&nr_bpf_events))
8914                 return;
8915
8916         bpf_event = (struct perf_bpf_event){
8917                 .prog = prog,
8918                 .event_id = {
8919                         .header = {
8920                                 .type = PERF_RECORD_BPF_EVENT,
8921                                 .size = sizeof(bpf_event.event_id),
8922                         },
8923                         .type = type,
8924                         .flags = flags,
8925                         .id = prog->aux->id,
8926                 },
8927         };
8928
8929         BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8930
8931         memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8932         perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8933 }
8934
8935 struct perf_text_poke_event {
8936         const void              *old_bytes;
8937         const void              *new_bytes;
8938         size_t                  pad;
8939         u16                     old_len;
8940         u16                     new_len;
8941
8942         struct {
8943                 struct perf_event_header        header;
8944
8945                 u64                             addr;
8946         } event_id;
8947 };
8948
8949 static int perf_event_text_poke_match(struct perf_event *event)
8950 {
8951         return event->attr.text_poke;
8952 }
8953
8954 static void perf_event_text_poke_output(struct perf_event *event, void *data)
8955 {
8956         struct perf_text_poke_event *text_poke_event = data;
8957         struct perf_output_handle handle;
8958         struct perf_sample_data sample;
8959         u64 padding = 0;
8960         int ret;
8961
8962         if (!perf_event_text_poke_match(event))
8963                 return;
8964
8965         perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
8966
8967         ret = perf_output_begin(&handle, &sample, event,
8968                                 text_poke_event->event_id.header.size);
8969         if (ret)
8970                 return;
8971
8972         perf_output_put(&handle, text_poke_event->event_id);
8973         perf_output_put(&handle, text_poke_event->old_len);
8974         perf_output_put(&handle, text_poke_event->new_len);
8975
8976         __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
8977         __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
8978
8979         if (text_poke_event->pad)
8980                 __output_copy(&handle, &padding, text_poke_event->pad);
8981
8982         perf_event__output_id_sample(event, &handle, &sample);
8983
8984         perf_output_end(&handle);
8985 }
8986
8987 void perf_event_text_poke(const void *addr, const void *old_bytes,
8988                           size_t old_len, const void *new_bytes, size_t new_len)
8989 {
8990         struct perf_text_poke_event text_poke_event;
8991         size_t tot, pad;
8992
8993         if (!atomic_read(&nr_text_poke_events))
8994                 return;
8995
8996         tot  = sizeof(text_poke_event.old_len) + old_len;
8997         tot += sizeof(text_poke_event.new_len) + new_len;
8998         pad  = ALIGN(tot, sizeof(u64)) - tot;
8999
9000         text_poke_event = (struct perf_text_poke_event){
9001                 .old_bytes    = old_bytes,
9002                 .new_bytes    = new_bytes,
9003                 .pad          = pad,
9004                 .old_len      = old_len,
9005                 .new_len      = new_len,
9006                 .event_id  = {
9007                         .header = {
9008                                 .type = PERF_RECORD_TEXT_POKE,
9009                                 .misc = PERF_RECORD_MISC_KERNEL,
9010                                 .size = sizeof(text_poke_event.event_id) + tot + pad,
9011                         },
9012                         .addr = (unsigned long)addr,
9013                 },
9014         };
9015
9016         perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9017 }
9018
9019 void perf_event_itrace_started(struct perf_event *event)
9020 {
9021         event->attach_state |= PERF_ATTACH_ITRACE;
9022 }
9023
9024 static void perf_log_itrace_start(struct perf_event *event)
9025 {
9026         struct perf_output_handle handle;
9027         struct perf_sample_data sample;
9028         struct perf_aux_event {
9029                 struct perf_event_header        header;
9030                 u32                             pid;
9031                 u32                             tid;
9032         } rec;
9033         int ret;
9034
9035         if (event->parent)
9036                 event = event->parent;
9037
9038         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9039             event->attach_state & PERF_ATTACH_ITRACE)
9040                 return;
9041
9042         rec.header.type = PERF_RECORD_ITRACE_START;
9043         rec.header.misc = 0;
9044         rec.header.size = sizeof(rec);
9045         rec.pid = perf_event_pid(event, current);
9046         rec.tid = perf_event_tid(event, current);
9047
9048         perf_event_header__init_id(&rec.header, &sample, event);
9049         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9050
9051         if (ret)
9052                 return;
9053
9054         perf_output_put(&handle, rec);
9055         perf_event__output_id_sample(event, &handle, &sample);
9056
9057         perf_output_end(&handle);
9058 }
9059
9060 static int
9061 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9062 {
9063         struct hw_perf_event *hwc = &event->hw;
9064         int ret = 0;
9065         u64 seq;
9066
9067         seq = __this_cpu_read(perf_throttled_seq);
9068         if (seq != hwc->interrupts_seq) {
9069                 hwc->interrupts_seq = seq;
9070                 hwc->interrupts = 1;
9071         } else {
9072                 hwc->interrupts++;
9073                 if (unlikely(throttle
9074                              && hwc->interrupts >= max_samples_per_tick)) {
9075                         __this_cpu_inc(perf_throttled_count);
9076                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9077                         hwc->interrupts = MAX_INTERRUPTS;
9078                         perf_log_throttle(event, 0);
9079                         ret = 1;
9080                 }
9081         }
9082
9083         if (event->attr.freq) {
9084                 u64 now = perf_clock();
9085                 s64 delta = now - hwc->freq_time_stamp;
9086
9087                 hwc->freq_time_stamp = now;
9088
9089                 if (delta > 0 && delta < 2*TICK_NSEC)
9090                         perf_adjust_period(event, delta, hwc->last_period, true);
9091         }
9092
9093         return ret;
9094 }
9095
9096 int perf_event_account_interrupt(struct perf_event *event)
9097 {
9098         return __perf_event_account_interrupt(event, 1);
9099 }
9100
9101 /*
9102  * Generic event overflow handling, sampling.
9103  */
9104
9105 static int __perf_event_overflow(struct perf_event *event,
9106                                    int throttle, struct perf_sample_data *data,
9107                                    struct pt_regs *regs)
9108 {
9109         int events = atomic_read(&event->event_limit);
9110         int ret = 0;
9111
9112         /*
9113          * Non-sampling counters might still use the PMI to fold short
9114          * hardware counters, ignore those.
9115          */
9116         if (unlikely(!is_sampling_event(event)))
9117                 return 0;
9118
9119         ret = __perf_event_account_interrupt(event, throttle);
9120
9121         /*
9122          * XXX event_limit might not quite work as expected on inherited
9123          * events
9124          */
9125
9126         event->pending_kill = POLL_IN;
9127         if (events && atomic_dec_and_test(&event->event_limit)) {
9128                 ret = 1;
9129                 event->pending_kill = POLL_HUP;
9130                 event->pending_addr = data->addr;
9131
9132                 perf_event_disable_inatomic(event);
9133         }
9134
9135         READ_ONCE(event->overflow_handler)(event, data, regs);
9136
9137         if (*perf_event_fasync(event) && event->pending_kill) {
9138                 event->pending_wakeup = 1;
9139                 irq_work_queue(&event->pending);
9140         }
9141
9142         return ret;
9143 }
9144
9145 int perf_event_overflow(struct perf_event *event,
9146                           struct perf_sample_data *data,
9147                           struct pt_regs *regs)
9148 {
9149         return __perf_event_overflow(event, 1, data, regs);
9150 }
9151
9152 /*
9153  * Generic software event infrastructure
9154  */
9155
9156 struct swevent_htable {
9157         struct swevent_hlist            *swevent_hlist;
9158         struct mutex                    hlist_mutex;
9159         int                             hlist_refcount;
9160
9161         /* Recursion avoidance in each contexts */
9162         int                             recursion[PERF_NR_CONTEXTS];
9163 };
9164
9165 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9166
9167 /*
9168  * We directly increment event->count and keep a second value in
9169  * event->hw.period_left to count intervals. This period event
9170  * is kept in the range [-sample_period, 0] so that we can use the
9171  * sign as trigger.
9172  */
9173
9174 u64 perf_swevent_set_period(struct perf_event *event)
9175 {
9176         struct hw_perf_event *hwc = &event->hw;
9177         u64 period = hwc->last_period;
9178         u64 nr, offset;
9179         s64 old, val;
9180
9181         hwc->last_period = hwc->sample_period;
9182
9183 again:
9184         old = val = local64_read(&hwc->period_left);
9185         if (val < 0)
9186                 return 0;
9187
9188         nr = div64_u64(period + val, period);
9189         offset = nr * period;
9190         val -= offset;
9191         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
9192                 goto again;
9193
9194         return nr;
9195 }
9196
9197 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9198                                     struct perf_sample_data *data,
9199                                     struct pt_regs *regs)
9200 {
9201         struct hw_perf_event *hwc = &event->hw;
9202         int throttle = 0;
9203
9204         if (!overflow)
9205                 overflow = perf_swevent_set_period(event);
9206
9207         if (hwc->interrupts == MAX_INTERRUPTS)
9208                 return;
9209
9210         for (; overflow; overflow--) {
9211                 if (__perf_event_overflow(event, throttle,
9212                                             data, regs)) {
9213                         /*
9214                          * We inhibit the overflow from happening when
9215                          * hwc->interrupts == MAX_INTERRUPTS.
9216                          */
9217                         break;
9218                 }
9219                 throttle = 1;
9220         }
9221 }
9222
9223 static void perf_swevent_event(struct perf_event *event, u64 nr,
9224                                struct perf_sample_data *data,
9225                                struct pt_regs *regs)
9226 {
9227         struct hw_perf_event *hwc = &event->hw;
9228
9229         local64_add(nr, &event->count);
9230
9231         if (!regs)
9232                 return;
9233
9234         if (!is_sampling_event(event))
9235                 return;
9236
9237         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9238                 data->period = nr;
9239                 return perf_swevent_overflow(event, 1, data, regs);
9240         } else
9241                 data->period = event->hw.last_period;
9242
9243         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9244                 return perf_swevent_overflow(event, 1, data, regs);
9245
9246         if (local64_add_negative(nr, &hwc->period_left))
9247                 return;
9248
9249         perf_swevent_overflow(event, 0, data, regs);
9250 }
9251
9252 static int perf_exclude_event(struct perf_event *event,
9253                               struct pt_regs *regs)
9254 {
9255         if (event->hw.state & PERF_HES_STOPPED)
9256                 return 1;
9257
9258         if (regs) {
9259                 if (event->attr.exclude_user && user_mode(regs))
9260                         return 1;
9261
9262                 if (event->attr.exclude_kernel && !user_mode(regs))
9263                         return 1;
9264         }
9265
9266         return 0;
9267 }
9268
9269 static int perf_swevent_match(struct perf_event *event,
9270                                 enum perf_type_id type,
9271                                 u32 event_id,
9272                                 struct perf_sample_data *data,
9273                                 struct pt_regs *regs)
9274 {
9275         if (event->attr.type != type)
9276                 return 0;
9277
9278         if (event->attr.config != event_id)
9279                 return 0;
9280
9281         if (perf_exclude_event(event, regs))
9282                 return 0;
9283
9284         return 1;
9285 }
9286
9287 static inline u64 swevent_hash(u64 type, u32 event_id)
9288 {
9289         u64 val = event_id | (type << 32);
9290
9291         return hash_64(val, SWEVENT_HLIST_BITS);
9292 }
9293
9294 static inline struct hlist_head *
9295 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9296 {
9297         u64 hash = swevent_hash(type, event_id);
9298
9299         return &hlist->heads[hash];
9300 }
9301
9302 /* For the read side: events when they trigger */
9303 static inline struct hlist_head *
9304 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9305 {
9306         struct swevent_hlist *hlist;
9307
9308         hlist = rcu_dereference(swhash->swevent_hlist);
9309         if (!hlist)
9310                 return NULL;
9311
9312         return __find_swevent_head(hlist, type, event_id);
9313 }
9314
9315 /* For the event head insertion and removal in the hlist */
9316 static inline struct hlist_head *
9317 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9318 {
9319         struct swevent_hlist *hlist;
9320         u32 event_id = event->attr.config;
9321         u64 type = event->attr.type;
9322
9323         /*
9324          * Event scheduling is always serialized against hlist allocation
9325          * and release. Which makes the protected version suitable here.
9326          * The context lock guarantees that.
9327          */
9328         hlist = rcu_dereference_protected(swhash->swevent_hlist,
9329                                           lockdep_is_held(&event->ctx->lock));
9330         if (!hlist)
9331                 return NULL;
9332
9333         return __find_swevent_head(hlist, type, event_id);
9334 }
9335
9336 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9337                                     u64 nr,
9338                                     struct perf_sample_data *data,
9339                                     struct pt_regs *regs)
9340 {
9341         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9342         struct perf_event *event;
9343         struct hlist_head *head;
9344
9345         rcu_read_lock();
9346         head = find_swevent_head_rcu(swhash, type, event_id);
9347         if (!head)
9348                 goto end;
9349
9350         hlist_for_each_entry_rcu(event, head, hlist_entry) {
9351                 if (perf_swevent_match(event, type, event_id, data, regs))
9352                         perf_swevent_event(event, nr, data, regs);
9353         }
9354 end:
9355         rcu_read_unlock();
9356 }
9357
9358 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9359
9360 int perf_swevent_get_recursion_context(void)
9361 {
9362         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9363
9364         return get_recursion_context(swhash->recursion);
9365 }
9366 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9367
9368 void perf_swevent_put_recursion_context(int rctx)
9369 {
9370         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9371
9372         put_recursion_context(swhash->recursion, rctx);
9373 }
9374
9375 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9376 {
9377         struct perf_sample_data data;
9378
9379         if (WARN_ON_ONCE(!regs))
9380                 return;
9381
9382         perf_sample_data_init(&data, addr, 0);
9383         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9384 }
9385
9386 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9387 {
9388         int rctx;
9389
9390         preempt_disable_notrace();
9391         rctx = perf_swevent_get_recursion_context();
9392         if (unlikely(rctx < 0))
9393                 goto fail;
9394
9395         ___perf_sw_event(event_id, nr, regs, addr);
9396
9397         perf_swevent_put_recursion_context(rctx);
9398 fail:
9399         preempt_enable_notrace();
9400 }
9401
9402 static void perf_swevent_read(struct perf_event *event)
9403 {
9404 }
9405
9406 static int perf_swevent_add(struct perf_event *event, int flags)
9407 {
9408         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9409         struct hw_perf_event *hwc = &event->hw;
9410         struct hlist_head *head;
9411
9412         if (is_sampling_event(event)) {
9413                 hwc->last_period = hwc->sample_period;
9414                 perf_swevent_set_period(event);
9415         }
9416
9417         hwc->state = !(flags & PERF_EF_START);
9418
9419         head = find_swevent_head(swhash, event);
9420         if (WARN_ON_ONCE(!head))
9421                 return -EINVAL;
9422
9423         hlist_add_head_rcu(&event->hlist_entry, head);
9424         perf_event_update_userpage(event);
9425
9426         return 0;
9427 }
9428
9429 static void perf_swevent_del(struct perf_event *event, int flags)
9430 {
9431         hlist_del_rcu(&event->hlist_entry);
9432 }
9433
9434 static void perf_swevent_start(struct perf_event *event, int flags)
9435 {
9436         event->hw.state = 0;
9437 }
9438
9439 static void perf_swevent_stop(struct perf_event *event, int flags)
9440 {
9441         event->hw.state = PERF_HES_STOPPED;
9442 }
9443
9444 /* Deref the hlist from the update side */
9445 static inline struct swevent_hlist *
9446 swevent_hlist_deref(struct swevent_htable *swhash)
9447 {
9448         return rcu_dereference_protected(swhash->swevent_hlist,
9449                                          lockdep_is_held(&swhash->hlist_mutex));
9450 }
9451
9452 static void swevent_hlist_release(struct swevent_htable *swhash)
9453 {
9454         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9455
9456         if (!hlist)
9457                 return;
9458
9459         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9460         kfree_rcu(hlist, rcu_head);
9461 }
9462
9463 static void swevent_hlist_put_cpu(int cpu)
9464 {
9465         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9466
9467         mutex_lock(&swhash->hlist_mutex);
9468
9469         if (!--swhash->hlist_refcount)
9470                 swevent_hlist_release(swhash);
9471
9472         mutex_unlock(&swhash->hlist_mutex);
9473 }
9474
9475 static void swevent_hlist_put(void)
9476 {
9477         int cpu;
9478
9479         for_each_possible_cpu(cpu)
9480                 swevent_hlist_put_cpu(cpu);
9481 }
9482
9483 static int swevent_hlist_get_cpu(int cpu)
9484 {
9485         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9486         int err = 0;
9487
9488         mutex_lock(&swhash->hlist_mutex);
9489         if (!swevent_hlist_deref(swhash) &&
9490             cpumask_test_cpu(cpu, perf_online_mask)) {
9491                 struct swevent_hlist *hlist;
9492
9493                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9494                 if (!hlist) {
9495                         err = -ENOMEM;
9496                         goto exit;
9497                 }
9498                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
9499         }
9500         swhash->hlist_refcount++;
9501 exit:
9502         mutex_unlock(&swhash->hlist_mutex);
9503
9504         return err;
9505 }
9506
9507 static int swevent_hlist_get(void)
9508 {
9509         int err, cpu, failed_cpu;
9510
9511         mutex_lock(&pmus_lock);
9512         for_each_possible_cpu(cpu) {
9513                 err = swevent_hlist_get_cpu(cpu);
9514                 if (err) {
9515                         failed_cpu = cpu;
9516                         goto fail;
9517                 }
9518         }
9519         mutex_unlock(&pmus_lock);
9520         return 0;
9521 fail:
9522         for_each_possible_cpu(cpu) {
9523                 if (cpu == failed_cpu)
9524                         break;
9525                 swevent_hlist_put_cpu(cpu);
9526         }
9527         mutex_unlock(&pmus_lock);
9528         return err;
9529 }
9530
9531 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9532
9533 static void sw_perf_event_destroy(struct perf_event *event)
9534 {
9535         u64 event_id = event->attr.config;
9536
9537         WARN_ON(event->parent);
9538
9539         static_key_slow_dec(&perf_swevent_enabled[event_id]);
9540         swevent_hlist_put();
9541 }
9542
9543 static int perf_swevent_init(struct perf_event *event)
9544 {
9545         u64 event_id = event->attr.config;
9546
9547         if (event->attr.type != PERF_TYPE_SOFTWARE)
9548                 return -ENOENT;
9549
9550         /*
9551          * no branch sampling for software events
9552          */
9553         if (has_branch_stack(event))
9554                 return -EOPNOTSUPP;
9555
9556         switch (event_id) {
9557         case PERF_COUNT_SW_CPU_CLOCK:
9558         case PERF_COUNT_SW_TASK_CLOCK:
9559                 return -ENOENT;
9560
9561         default:
9562                 break;
9563         }
9564
9565         if (event_id >= PERF_COUNT_SW_MAX)
9566                 return -ENOENT;
9567
9568         if (!event->parent) {
9569                 int err;
9570
9571                 err = swevent_hlist_get();
9572                 if (err)
9573                         return err;
9574
9575                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
9576                 event->destroy = sw_perf_event_destroy;
9577         }
9578
9579         return 0;
9580 }
9581
9582 static struct pmu perf_swevent = {
9583         .task_ctx_nr    = perf_sw_context,
9584
9585         .capabilities   = PERF_PMU_CAP_NO_NMI,
9586
9587         .event_init     = perf_swevent_init,
9588         .add            = perf_swevent_add,
9589         .del            = perf_swevent_del,
9590         .start          = perf_swevent_start,
9591         .stop           = perf_swevent_stop,
9592         .read           = perf_swevent_read,
9593 };
9594
9595 #ifdef CONFIG_EVENT_TRACING
9596
9597 static int perf_tp_filter_match(struct perf_event *event,
9598                                 struct perf_sample_data *data)
9599 {
9600         void *record = data->raw->frag.data;
9601
9602         /* only top level events have filters set */
9603         if (event->parent)
9604                 event = event->parent;
9605
9606         if (likely(!event->filter) || filter_match_preds(event->filter, record))
9607                 return 1;
9608         return 0;
9609 }
9610
9611 static int perf_tp_event_match(struct perf_event *event,
9612                                 struct perf_sample_data *data,
9613                                 struct pt_regs *regs)
9614 {
9615         if (event->hw.state & PERF_HES_STOPPED)
9616                 return 0;
9617         /*
9618          * If exclude_kernel, only trace user-space tracepoints (uprobes)
9619          */
9620         if (event->attr.exclude_kernel && !user_mode(regs))
9621                 return 0;
9622
9623         if (!perf_tp_filter_match(event, data))
9624                 return 0;
9625
9626         return 1;
9627 }
9628
9629 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
9630                                struct trace_event_call *call, u64 count,
9631                                struct pt_regs *regs, struct hlist_head *head,
9632                                struct task_struct *task)
9633 {
9634         if (bpf_prog_array_valid(call)) {
9635                 *(struct pt_regs **)raw_data = regs;
9636                 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
9637                         perf_swevent_put_recursion_context(rctx);
9638                         return;
9639                 }
9640         }
9641         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
9642                       rctx, task);
9643 }
9644 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
9645
9646 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
9647                    struct pt_regs *regs, struct hlist_head *head, int rctx,
9648                    struct task_struct *task)
9649 {
9650         struct perf_sample_data data;
9651         struct perf_event *event;
9652
9653         struct perf_raw_record raw = {
9654                 .frag = {
9655                         .size = entry_size,
9656                         .data = record,
9657                 },
9658         };
9659
9660         perf_sample_data_init(&data, 0, 0);
9661         data.raw = &raw;
9662
9663         perf_trace_buf_update(record, event_type);
9664
9665         hlist_for_each_entry_rcu(event, head, hlist_entry) {
9666                 if (perf_tp_event_match(event, &data, regs))
9667                         perf_swevent_event(event, count, &data, regs);
9668         }
9669
9670         /*
9671          * If we got specified a target task, also iterate its context and
9672          * deliver this event there too.
9673          */
9674         if (task && task != current) {
9675                 struct perf_event_context *ctx;
9676                 struct trace_entry *entry = record;
9677
9678                 rcu_read_lock();
9679                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
9680                 if (!ctx)
9681                         goto unlock;
9682
9683                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
9684                         if (event->cpu != smp_processor_id())
9685                                 continue;
9686                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
9687                                 continue;
9688                         if (event->attr.config != entry->type)
9689                                 continue;
9690                         if (perf_tp_event_match(event, &data, regs))
9691                                 perf_swevent_event(event, count, &data, regs);
9692                 }
9693 unlock:
9694                 rcu_read_unlock();
9695         }
9696
9697         perf_swevent_put_recursion_context(rctx);
9698 }
9699 EXPORT_SYMBOL_GPL(perf_tp_event);
9700
9701 static void tp_perf_event_destroy(struct perf_event *event)
9702 {
9703         perf_trace_destroy(event);
9704 }
9705
9706 static int perf_tp_event_init(struct perf_event *event)
9707 {
9708         int err;
9709
9710         if (event->attr.type != PERF_TYPE_TRACEPOINT)
9711                 return -ENOENT;
9712
9713         /*
9714          * no branch sampling for tracepoint events
9715          */
9716         if (has_branch_stack(event))
9717                 return -EOPNOTSUPP;
9718
9719         err = perf_trace_init(event);
9720         if (err)
9721                 return err;
9722
9723         event->destroy = tp_perf_event_destroy;
9724
9725         return 0;
9726 }
9727
9728 static struct pmu perf_tracepoint = {
9729         .task_ctx_nr    = perf_sw_context,
9730
9731         .event_init     = perf_tp_event_init,
9732         .add            = perf_trace_add,
9733         .del            = perf_trace_del,
9734         .start          = perf_swevent_start,
9735         .stop           = perf_swevent_stop,
9736         .read           = perf_swevent_read,
9737 };
9738
9739 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
9740 /*
9741  * Flags in config, used by dynamic PMU kprobe and uprobe
9742  * The flags should match following PMU_FORMAT_ATTR().
9743  *
9744  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9745  *                               if not set, create kprobe/uprobe
9746  *
9747  * The following values specify a reference counter (or semaphore in the
9748  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9749  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9750  *
9751  * PERF_UPROBE_REF_CTR_OFFSET_BITS      # of bits in config as th offset
9752  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT     # of bits to shift left
9753  */
9754 enum perf_probe_config {
9755         PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
9756         PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
9757         PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
9758 };
9759
9760 PMU_FORMAT_ATTR(retprobe, "config:0");
9761 #endif
9762
9763 #ifdef CONFIG_KPROBE_EVENTS
9764 static struct attribute *kprobe_attrs[] = {
9765         &format_attr_retprobe.attr,
9766         NULL,
9767 };
9768
9769 static struct attribute_group kprobe_format_group = {
9770         .name = "format",
9771         .attrs = kprobe_attrs,
9772 };
9773
9774 static const struct attribute_group *kprobe_attr_groups[] = {
9775         &kprobe_format_group,
9776         NULL,
9777 };
9778
9779 static int perf_kprobe_event_init(struct perf_event *event);
9780 static struct pmu perf_kprobe = {
9781         .task_ctx_nr    = perf_sw_context,
9782         .event_init     = perf_kprobe_event_init,
9783         .add            = perf_trace_add,
9784         .del            = perf_trace_del,
9785         .start          = perf_swevent_start,
9786         .stop           = perf_swevent_stop,
9787         .read           = perf_swevent_read,
9788         .attr_groups    = kprobe_attr_groups,
9789 };
9790
9791 static int perf_kprobe_event_init(struct perf_event *event)
9792 {
9793         int err;
9794         bool is_retprobe;
9795
9796         if (event->attr.type != perf_kprobe.type)
9797                 return -ENOENT;
9798
9799         if (!perfmon_capable())
9800                 return -EACCES;
9801
9802         /*
9803          * no branch sampling for probe events
9804          */
9805         if (has_branch_stack(event))
9806                 return -EOPNOTSUPP;
9807
9808         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9809         err = perf_kprobe_init(event, is_retprobe);
9810         if (err)
9811                 return err;
9812
9813         event->destroy = perf_kprobe_destroy;
9814
9815         return 0;
9816 }
9817 #endif /* CONFIG_KPROBE_EVENTS */
9818
9819 #ifdef CONFIG_UPROBE_EVENTS
9820 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
9821
9822 static struct attribute *uprobe_attrs[] = {
9823         &format_attr_retprobe.attr,
9824         &format_attr_ref_ctr_offset.attr,
9825         NULL,
9826 };
9827
9828 static struct attribute_group uprobe_format_group = {
9829         .name = "format",
9830         .attrs = uprobe_attrs,
9831 };
9832
9833 static const struct attribute_group *uprobe_attr_groups[] = {
9834         &uprobe_format_group,
9835         NULL,
9836 };
9837
9838 static int perf_uprobe_event_init(struct perf_event *event);
9839 static struct pmu perf_uprobe = {
9840         .task_ctx_nr    = perf_sw_context,
9841         .event_init     = perf_uprobe_event_init,
9842         .add            = perf_trace_add,
9843         .del            = perf_trace_del,
9844         .start          = perf_swevent_start,
9845         .stop           = perf_swevent_stop,
9846         .read           = perf_swevent_read,
9847         .attr_groups    = uprobe_attr_groups,
9848 };
9849
9850 static int perf_uprobe_event_init(struct perf_event *event)
9851 {
9852         int err;
9853         unsigned long ref_ctr_offset;
9854         bool is_retprobe;
9855
9856         if (event->attr.type != perf_uprobe.type)
9857                 return -ENOENT;
9858
9859         if (!perfmon_capable())
9860                 return -EACCES;
9861
9862         /*
9863          * no branch sampling for probe events
9864          */
9865         if (has_branch_stack(event))
9866                 return -EOPNOTSUPP;
9867
9868         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9869         ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
9870         err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
9871         if (err)
9872                 return err;
9873
9874         event->destroy = perf_uprobe_destroy;
9875
9876         return 0;
9877 }
9878 #endif /* CONFIG_UPROBE_EVENTS */
9879
9880 static inline void perf_tp_register(void)
9881 {
9882         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
9883 #ifdef CONFIG_KPROBE_EVENTS
9884         perf_pmu_register(&perf_kprobe, "kprobe", -1);
9885 #endif
9886 #ifdef CONFIG_UPROBE_EVENTS
9887         perf_pmu_register(&perf_uprobe, "uprobe", -1);
9888 #endif
9889 }
9890
9891 static void perf_event_free_filter(struct perf_event *event)
9892 {
9893         ftrace_profile_free_filter(event);
9894 }
9895
9896 #ifdef CONFIG_BPF_SYSCALL
9897 static void bpf_overflow_handler(struct perf_event *event,
9898                                  struct perf_sample_data *data,
9899                                  struct pt_regs *regs)
9900 {
9901         struct bpf_perf_event_data_kern ctx = {
9902                 .data = data,
9903                 .event = event,
9904         };
9905         int ret = 0;
9906
9907         ctx.regs = perf_arch_bpf_user_pt_regs(regs);
9908         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9909                 goto out;
9910         rcu_read_lock();
9911         ret = BPF_PROG_RUN(event->prog, &ctx);
9912         rcu_read_unlock();
9913 out:
9914         __this_cpu_dec(bpf_prog_active);
9915         if (!ret)
9916                 return;
9917
9918         event->orig_overflow_handler(event, data, regs);
9919 }
9920
9921 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9922 {
9923         struct bpf_prog *prog;
9924
9925         if (event->overflow_handler_context)
9926                 /* hw breakpoint or kernel counter */
9927                 return -EINVAL;
9928
9929         if (event->prog)
9930                 return -EEXIST;
9931
9932         prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
9933         if (IS_ERR(prog))
9934                 return PTR_ERR(prog);
9935
9936         if (event->attr.precise_ip &&
9937             prog->call_get_stack &&
9938             (!(event->attr.sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY) ||
9939              event->attr.exclude_callchain_kernel ||
9940              event->attr.exclude_callchain_user)) {
9941                 /*
9942                  * On perf_event with precise_ip, calling bpf_get_stack()
9943                  * may trigger unwinder warnings and occasional crashes.
9944                  * bpf_get_[stack|stackid] works around this issue by using
9945                  * callchain attached to perf_sample_data. If the
9946                  * perf_event does not full (kernel and user) callchain
9947                  * attached to perf_sample_data, do not allow attaching BPF
9948                  * program that calls bpf_get_[stack|stackid].
9949                  */
9950                 bpf_prog_put(prog);
9951                 return -EPROTO;
9952         }
9953
9954         event->prog = prog;
9955         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
9956         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
9957         return 0;
9958 }
9959
9960 static void perf_event_free_bpf_handler(struct perf_event *event)
9961 {
9962         struct bpf_prog *prog = event->prog;
9963
9964         if (!prog)
9965                 return;
9966
9967         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
9968         event->prog = NULL;
9969         bpf_prog_put(prog);
9970 }
9971 #else
9972 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9973 {
9974         return -EOPNOTSUPP;
9975 }
9976 static void perf_event_free_bpf_handler(struct perf_event *event)
9977 {
9978 }
9979 #endif
9980
9981 /*
9982  * returns true if the event is a tracepoint, or a kprobe/upprobe created
9983  * with perf_event_open()
9984  */
9985 static inline bool perf_event_is_tracing(struct perf_event *event)
9986 {
9987         if (event->pmu == &perf_tracepoint)
9988                 return true;
9989 #ifdef CONFIG_KPROBE_EVENTS
9990         if (event->pmu == &perf_kprobe)
9991                 return true;
9992 #endif
9993 #ifdef CONFIG_UPROBE_EVENTS
9994         if (event->pmu == &perf_uprobe)
9995                 return true;
9996 #endif
9997         return false;
9998 }
9999
10000 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
10001 {
10002         bool is_kprobe, is_tracepoint, is_syscall_tp;
10003         struct bpf_prog *prog;
10004         int ret;
10005
10006         if (!perf_event_is_tracing(event))
10007                 return perf_event_set_bpf_handler(event, prog_fd);
10008
10009         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
10010         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10011         is_syscall_tp = is_syscall_trace_event(event->tp_event);
10012         if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
10013                 /* bpf programs can only be attached to u/kprobe or tracepoint */
10014                 return -EINVAL;
10015
10016         prog = bpf_prog_get(prog_fd);
10017         if (IS_ERR(prog))
10018                 return PTR_ERR(prog);
10019
10020         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
10021             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10022             (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
10023                 /* valid fd, but invalid bpf program type */
10024                 bpf_prog_put(prog);
10025                 return -EINVAL;
10026         }
10027
10028         /* Kprobe override only works for kprobes, not uprobes. */
10029         if (prog->kprobe_override &&
10030             !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
10031                 bpf_prog_put(prog);
10032                 return -EINVAL;
10033         }
10034
10035         if (is_tracepoint || is_syscall_tp) {
10036                 int off = trace_event_get_offsets(event->tp_event);
10037
10038                 if (prog->aux->max_ctx_offset > off) {
10039                         bpf_prog_put(prog);
10040                         return -EACCES;
10041                 }
10042         }
10043
10044         ret = perf_event_attach_bpf_prog(event, prog);
10045         if (ret)
10046                 bpf_prog_put(prog);
10047         return ret;
10048 }
10049
10050 static void perf_event_free_bpf_prog(struct perf_event *event)
10051 {
10052         if (!perf_event_is_tracing(event)) {
10053                 perf_event_free_bpf_handler(event);
10054                 return;
10055         }
10056         perf_event_detach_bpf_prog(event);
10057 }
10058
10059 #else
10060
10061 static inline void perf_tp_register(void)
10062 {
10063 }
10064
10065 static void perf_event_free_filter(struct perf_event *event)
10066 {
10067 }
10068
10069 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
10070 {
10071         return -ENOENT;
10072 }
10073
10074 static void perf_event_free_bpf_prog(struct perf_event *event)
10075 {
10076 }
10077 #endif /* CONFIG_EVENT_TRACING */
10078
10079 #ifdef CONFIG_HAVE_HW_BREAKPOINT
10080 void perf_bp_event(struct perf_event *bp, void *data)
10081 {
10082         struct perf_sample_data sample;
10083         struct pt_regs *regs = data;
10084
10085         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10086
10087         if (!bp->hw.state && !perf_exclude_event(bp, regs))
10088                 perf_swevent_event(bp, 1, &sample, regs);
10089 }
10090 #endif
10091
10092 /*
10093  * Allocate a new address filter
10094  */
10095 static struct perf_addr_filter *
10096 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10097 {
10098         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10099         struct perf_addr_filter *filter;
10100
10101         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10102         if (!filter)
10103                 return NULL;
10104
10105         INIT_LIST_HEAD(&filter->entry);
10106         list_add_tail(&filter->entry, filters);
10107
10108         return filter;
10109 }
10110
10111 static void free_filters_list(struct list_head *filters)
10112 {
10113         struct perf_addr_filter *filter, *iter;
10114
10115         list_for_each_entry_safe(filter, iter, filters, entry) {
10116                 path_put(&filter->path);
10117                 list_del(&filter->entry);
10118                 kfree(filter);
10119         }
10120 }
10121
10122 /*
10123  * Free existing address filters and optionally install new ones
10124  */
10125 static void perf_addr_filters_splice(struct perf_event *event,
10126                                      struct list_head *head)
10127 {
10128         unsigned long flags;
10129         LIST_HEAD(list);
10130
10131         if (!has_addr_filter(event))
10132                 return;
10133
10134         /* don't bother with children, they don't have their own filters */
10135         if (event->parent)
10136                 return;
10137
10138         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10139
10140         list_splice_init(&event->addr_filters.list, &list);
10141         if (head)
10142                 list_splice(head, &event->addr_filters.list);
10143
10144         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10145
10146         free_filters_list(&list);
10147 }
10148
10149 /*
10150  * Scan through mm's vmas and see if one of them matches the
10151  * @filter; if so, adjust filter's address range.
10152  * Called with mm::mmap_lock down for reading.
10153  */
10154 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10155                                    struct mm_struct *mm,
10156                                    struct perf_addr_filter_range *fr)
10157 {
10158         struct vm_area_struct *vma;
10159
10160         for (vma = mm->mmap; vma; vma = vma->vm_next) {
10161                 if (!vma->vm_file)
10162                         continue;
10163
10164                 if (perf_addr_filter_vma_adjust(filter, vma, fr))
10165                         return;
10166         }
10167 }
10168
10169 /*
10170  * Update event's address range filters based on the
10171  * task's existing mappings, if any.
10172  */
10173 static void perf_event_addr_filters_apply(struct perf_event *event)
10174 {
10175         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10176         struct task_struct *task = READ_ONCE(event->ctx->task);
10177         struct perf_addr_filter *filter;
10178         struct mm_struct *mm = NULL;
10179         unsigned int count = 0;
10180         unsigned long flags;
10181
10182         /*
10183          * We may observe TASK_TOMBSTONE, which means that the event tear-down
10184          * will stop on the parent's child_mutex that our caller is also holding
10185          */
10186         if (task == TASK_TOMBSTONE)
10187                 return;
10188
10189         if (ifh->nr_file_filters) {
10190                 mm = get_task_mm(event->ctx->task);
10191                 if (!mm)
10192                         goto restart;
10193
10194                 mmap_read_lock(mm);
10195         }
10196
10197         raw_spin_lock_irqsave(&ifh->lock, flags);
10198         list_for_each_entry(filter, &ifh->list, entry) {
10199                 if (filter->path.dentry) {
10200                         /*
10201                          * Adjust base offset if the filter is associated to a
10202                          * binary that needs to be mapped:
10203                          */
10204                         event->addr_filter_ranges[count].start = 0;
10205                         event->addr_filter_ranges[count].size = 0;
10206
10207                         perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10208                 } else {
10209                         event->addr_filter_ranges[count].start = filter->offset;
10210                         event->addr_filter_ranges[count].size  = filter->size;
10211                 }
10212
10213                 count++;
10214         }
10215
10216         event->addr_filters_gen++;
10217         raw_spin_unlock_irqrestore(&ifh->lock, flags);
10218
10219         if (ifh->nr_file_filters) {
10220                 mmap_read_unlock(mm);
10221
10222                 mmput(mm);
10223         }
10224
10225 restart:
10226         perf_event_stop(event, 1);
10227 }
10228
10229 /*
10230  * Address range filtering: limiting the data to certain
10231  * instruction address ranges. Filters are ioctl()ed to us from
10232  * userspace as ascii strings.
10233  *
10234  * Filter string format:
10235  *
10236  * ACTION RANGE_SPEC
10237  * where ACTION is one of the
10238  *  * "filter": limit the trace to this region
10239  *  * "start": start tracing from this address
10240  *  * "stop": stop tracing at this address/region;
10241  * RANGE_SPEC is
10242  *  * for kernel addresses: <start address>[/<size>]
10243  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
10244  *
10245  * if <size> is not specified or is zero, the range is treated as a single
10246  * address; not valid for ACTION=="filter".
10247  */
10248 enum {
10249         IF_ACT_NONE = -1,
10250         IF_ACT_FILTER,
10251         IF_ACT_START,
10252         IF_ACT_STOP,
10253         IF_SRC_FILE,
10254         IF_SRC_KERNEL,
10255         IF_SRC_FILEADDR,
10256         IF_SRC_KERNELADDR,
10257 };
10258
10259 enum {
10260         IF_STATE_ACTION = 0,
10261         IF_STATE_SOURCE,
10262         IF_STATE_END,
10263 };
10264
10265 static const match_table_t if_tokens = {
10266         { IF_ACT_FILTER,        "filter" },
10267         { IF_ACT_START,         "start" },
10268         { IF_ACT_STOP,          "stop" },
10269         { IF_SRC_FILE,          "%u/%u@%s" },
10270         { IF_SRC_KERNEL,        "%u/%u" },
10271         { IF_SRC_FILEADDR,      "%u@%s" },
10272         { IF_SRC_KERNELADDR,    "%u" },
10273         { IF_ACT_NONE,          NULL },
10274 };
10275
10276 /*
10277  * Address filter string parser
10278  */
10279 static int
10280 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10281                              struct list_head *filters)
10282 {
10283         struct perf_addr_filter *filter = NULL;
10284         char *start, *orig, *filename = NULL;
10285         substring_t args[MAX_OPT_ARGS];
10286         int state = IF_STATE_ACTION, token;
10287         unsigned int kernel = 0;
10288         int ret = -EINVAL;
10289
10290         orig = fstr = kstrdup(fstr, GFP_KERNEL);
10291         if (!fstr)
10292                 return -ENOMEM;
10293
10294         while ((start = strsep(&fstr, " ,\n")) != NULL) {
10295                 static const enum perf_addr_filter_action_t actions[] = {
10296                         [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
10297                         [IF_ACT_START]  = PERF_ADDR_FILTER_ACTION_START,
10298                         [IF_ACT_STOP]   = PERF_ADDR_FILTER_ACTION_STOP,
10299                 };
10300                 ret = -EINVAL;
10301
10302                 if (!*start)
10303                         continue;
10304
10305                 /* filter definition begins */
10306                 if (state == IF_STATE_ACTION) {
10307                         filter = perf_addr_filter_new(event, filters);
10308                         if (!filter)
10309                                 goto fail;
10310                 }
10311
10312                 token = match_token(start, if_tokens, args);
10313                 switch (token) {
10314                 case IF_ACT_FILTER:
10315                 case IF_ACT_START:
10316                 case IF_ACT_STOP:
10317                         if (state != IF_STATE_ACTION)
10318                                 goto fail;
10319
10320                         filter->action = actions[token];
10321                         state = IF_STATE_SOURCE;
10322                         break;
10323
10324                 case IF_SRC_KERNELADDR:
10325                 case IF_SRC_KERNEL:
10326                         kernel = 1;
10327                         fallthrough;
10328
10329                 case IF_SRC_FILEADDR:
10330                 case IF_SRC_FILE:
10331                         if (state != IF_STATE_SOURCE)
10332                                 goto fail;
10333
10334                         *args[0].to = 0;
10335                         ret = kstrtoul(args[0].from, 0, &filter->offset);
10336                         if (ret)
10337                                 goto fail;
10338
10339                         if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10340                                 *args[1].to = 0;
10341                                 ret = kstrtoul(args[1].from, 0, &filter->size);
10342                                 if (ret)
10343                                         goto fail;
10344                         }
10345
10346                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10347                                 int fpos = token == IF_SRC_FILE ? 2 : 1;
10348
10349                                 kfree(filename);
10350                                 filename = match_strdup(&args[fpos]);
10351                                 if (!filename) {
10352                                         ret = -ENOMEM;
10353                                         goto fail;
10354                                 }
10355                         }
10356
10357                         state = IF_STATE_END;
10358                         break;
10359
10360                 default:
10361                         goto fail;
10362                 }
10363
10364                 /*
10365                  * Filter definition is fully parsed, validate and install it.
10366                  * Make sure that it doesn't contradict itself or the event's
10367                  * attribute.
10368                  */
10369                 if (state == IF_STATE_END) {
10370                         ret = -EINVAL;
10371                         if (kernel && event->attr.exclude_kernel)
10372                                 goto fail;
10373
10374                         /*
10375                          * ACTION "filter" must have a non-zero length region
10376                          * specified.
10377                          */
10378                         if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10379                             !filter->size)
10380                                 goto fail;
10381
10382                         if (!kernel) {
10383                                 if (!filename)
10384                                         goto fail;
10385
10386                                 /*
10387                                  * For now, we only support file-based filters
10388                                  * in per-task events; doing so for CPU-wide
10389                                  * events requires additional context switching
10390                                  * trickery, since same object code will be
10391                                  * mapped at different virtual addresses in
10392                                  * different processes.
10393                                  */
10394                                 ret = -EOPNOTSUPP;
10395                                 if (!event->ctx->task)
10396                                         goto fail;
10397
10398                                 /* look up the path and grab its inode */
10399                                 ret = kern_path(filename, LOOKUP_FOLLOW,
10400                                                 &filter->path);
10401                                 if (ret)
10402                                         goto fail;
10403
10404                                 ret = -EINVAL;
10405                                 if (!filter->path.dentry ||
10406                                     !S_ISREG(d_inode(filter->path.dentry)
10407                                              ->i_mode))
10408                                         goto fail;
10409
10410                                 event->addr_filters.nr_file_filters++;
10411                         }
10412
10413                         /* ready to consume more filters */
10414                         state = IF_STATE_ACTION;
10415                         filter = NULL;
10416                 }
10417         }
10418
10419         if (state != IF_STATE_ACTION)
10420                 goto fail;
10421
10422         kfree(filename);
10423         kfree(orig);
10424
10425         return 0;
10426
10427 fail:
10428         kfree(filename);
10429         free_filters_list(filters);
10430         kfree(orig);
10431
10432         return ret;
10433 }
10434
10435 static int
10436 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10437 {
10438         LIST_HEAD(filters);
10439         int ret;
10440
10441         /*
10442          * Since this is called in perf_ioctl() path, we're already holding
10443          * ctx::mutex.
10444          */
10445         lockdep_assert_held(&event->ctx->mutex);
10446
10447         if (WARN_ON_ONCE(event->parent))
10448                 return -EINVAL;
10449
10450         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10451         if (ret)
10452                 goto fail_clear_files;
10453
10454         ret = event->pmu->addr_filters_validate(&filters);
10455         if (ret)
10456                 goto fail_free_filters;
10457
10458         /* remove existing filters, if any */
10459         perf_addr_filters_splice(event, &filters);
10460
10461         /* install new filters */
10462         perf_event_for_each_child(event, perf_event_addr_filters_apply);
10463
10464         return ret;
10465
10466 fail_free_filters:
10467         free_filters_list(&filters);
10468
10469 fail_clear_files:
10470         event->addr_filters.nr_file_filters = 0;
10471
10472         return ret;
10473 }
10474
10475 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10476 {
10477         int ret = -EINVAL;
10478         char *filter_str;
10479
10480         filter_str = strndup_user(arg, PAGE_SIZE);
10481         if (IS_ERR(filter_str))
10482                 return PTR_ERR(filter_str);
10483
10484 #ifdef CONFIG_EVENT_TRACING
10485         if (perf_event_is_tracing(event)) {
10486                 struct perf_event_context *ctx = event->ctx;
10487
10488                 /*
10489                  * Beware, here be dragons!!
10490                  *
10491                  * the tracepoint muck will deadlock against ctx->mutex, but
10492                  * the tracepoint stuff does not actually need it. So
10493                  * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10494                  * already have a reference on ctx.
10495                  *
10496                  * This can result in event getting moved to a different ctx,
10497                  * but that does not affect the tracepoint state.
10498                  */
10499                 mutex_unlock(&ctx->mutex);
10500                 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
10501                 mutex_lock(&ctx->mutex);
10502         } else
10503 #endif
10504         if (has_addr_filter(event))
10505                 ret = perf_event_set_addr_filter(event, filter_str);
10506
10507         kfree(filter_str);
10508         return ret;
10509 }
10510
10511 /*
10512  * hrtimer based swevent callback
10513  */
10514
10515 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
10516 {
10517         enum hrtimer_restart ret = HRTIMER_RESTART;
10518         struct perf_sample_data data;
10519         struct pt_regs *regs;
10520         struct perf_event *event;
10521         u64 period;
10522
10523         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
10524
10525         if (event->state != PERF_EVENT_STATE_ACTIVE)
10526                 return HRTIMER_NORESTART;
10527
10528         event->pmu->read(event);
10529
10530         perf_sample_data_init(&data, 0, event->hw.last_period);
10531         regs = get_irq_regs();
10532
10533         if (regs && !perf_exclude_event(event, regs)) {
10534                 if (!(event->attr.exclude_idle && is_idle_task(current)))
10535                         if (__perf_event_overflow(event, 1, &data, regs))
10536                                 ret = HRTIMER_NORESTART;
10537         }
10538
10539         period = max_t(u64, 10000, event->hw.sample_period);
10540         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
10541
10542         return ret;
10543 }
10544
10545 static void perf_swevent_start_hrtimer(struct perf_event *event)
10546 {
10547         struct hw_perf_event *hwc = &event->hw;
10548         s64 period;
10549
10550         if (!is_sampling_event(event))
10551                 return;
10552
10553         period = local64_read(&hwc->period_left);
10554         if (period) {
10555                 if (period < 0)
10556                         period = 10000;
10557
10558                 local64_set(&hwc->period_left, 0);
10559         } else {
10560                 period = max_t(u64, 10000, hwc->sample_period);
10561         }
10562         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
10563                       HRTIMER_MODE_REL_PINNED_HARD);
10564 }
10565
10566 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
10567 {
10568         struct hw_perf_event *hwc = &event->hw;
10569
10570         if (is_sampling_event(event)) {
10571                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
10572                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
10573
10574                 hrtimer_cancel(&hwc->hrtimer);
10575         }
10576 }
10577
10578 static void perf_swevent_init_hrtimer(struct perf_event *event)
10579 {
10580         struct hw_perf_event *hwc = &event->hw;
10581
10582         if (!is_sampling_event(event))
10583                 return;
10584
10585         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
10586         hwc->hrtimer.function = perf_swevent_hrtimer;
10587
10588         /*
10589          * Since hrtimers have a fixed rate, we can do a static freq->period
10590          * mapping and avoid the whole period adjust feedback stuff.
10591          */
10592         if (event->attr.freq) {
10593                 long freq = event->attr.sample_freq;
10594
10595                 event->attr.sample_period = NSEC_PER_SEC / freq;
10596                 hwc->sample_period = event->attr.sample_period;
10597                 local64_set(&hwc->period_left, hwc->sample_period);
10598                 hwc->last_period = hwc->sample_period;
10599                 event->attr.freq = 0;
10600         }
10601 }
10602
10603 /*
10604  * Software event: cpu wall time clock
10605  */
10606
10607 static void cpu_clock_event_update(struct perf_event *event)
10608 {
10609         s64 prev;
10610         u64 now;
10611
10612         now = local_clock();
10613         prev = local64_xchg(&event->hw.prev_count, now);
10614         local64_add(now - prev, &event->count);
10615 }
10616
10617 static void cpu_clock_event_start(struct perf_event *event, int flags)
10618 {
10619         local64_set(&event->hw.prev_count, local_clock());
10620         perf_swevent_start_hrtimer(event);
10621 }
10622
10623 static void cpu_clock_event_stop(struct perf_event *event, int flags)
10624 {
10625         perf_swevent_cancel_hrtimer(event);
10626         cpu_clock_event_update(event);
10627 }
10628
10629 static int cpu_clock_event_add(struct perf_event *event, int flags)
10630 {
10631         if (flags & PERF_EF_START)
10632                 cpu_clock_event_start(event, flags);
10633         perf_event_update_userpage(event);
10634
10635         return 0;
10636 }
10637
10638 static void cpu_clock_event_del(struct perf_event *event, int flags)
10639 {
10640         cpu_clock_event_stop(event, flags);
10641 }
10642
10643 static void cpu_clock_event_read(struct perf_event *event)
10644 {
10645         cpu_clock_event_update(event);
10646 }
10647
10648 static int cpu_clock_event_init(struct perf_event *event)
10649 {
10650         if (event->attr.type != PERF_TYPE_SOFTWARE)
10651                 return -ENOENT;
10652
10653         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
10654                 return -ENOENT;
10655
10656         /*
10657          * no branch sampling for software events
10658          */
10659         if (has_branch_stack(event))
10660                 return -EOPNOTSUPP;
10661
10662         perf_swevent_init_hrtimer(event);
10663
10664         return 0;
10665 }
10666
10667 static struct pmu perf_cpu_clock = {
10668         .task_ctx_nr    = perf_sw_context,
10669
10670         .capabilities   = PERF_PMU_CAP_NO_NMI,
10671
10672         .event_init     = cpu_clock_event_init,
10673         .add            = cpu_clock_event_add,
10674         .del            = cpu_clock_event_del,
10675         .start          = cpu_clock_event_start,
10676         .stop           = cpu_clock_event_stop,
10677         .read           = cpu_clock_event_read,
10678 };
10679
10680 /*
10681  * Software event: task time clock
10682  */
10683
10684 static void task_clock_event_update(struct perf_event *event, u64 now)
10685 {
10686         u64 prev;
10687         s64 delta;
10688
10689         prev = local64_xchg(&event->hw.prev_count, now);
10690         delta = now - prev;
10691         local64_add(delta, &event->count);
10692 }
10693
10694 static void task_clock_event_start(struct perf_event *event, int flags)
10695 {
10696         local64_set(&event->hw.prev_count, event->ctx->time);
10697         perf_swevent_start_hrtimer(event);
10698 }
10699
10700 static void task_clock_event_stop(struct perf_event *event, int flags)
10701 {
10702         perf_swevent_cancel_hrtimer(event);
10703         task_clock_event_update(event, event->ctx->time);
10704 }
10705
10706 static int task_clock_event_add(struct perf_event *event, int flags)
10707 {
10708         if (flags & PERF_EF_START)
10709                 task_clock_event_start(event, flags);
10710         perf_event_update_userpage(event);
10711
10712         return 0;
10713 }
10714
10715 static void task_clock_event_del(struct perf_event *event, int flags)
10716 {
10717         task_clock_event_stop(event, PERF_EF_UPDATE);
10718 }
10719
10720 static void task_clock_event_read(struct perf_event *event)
10721 {
10722         u64 now = perf_clock();
10723         u64 delta = now - event->ctx->timestamp;
10724         u64 time = event->ctx->time + delta;
10725
10726         task_clock_event_update(event, time);
10727 }
10728
10729 static int task_clock_event_init(struct perf_event *event)
10730 {
10731         if (event->attr.type != PERF_TYPE_SOFTWARE)
10732                 return -ENOENT;
10733
10734         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
10735                 return -ENOENT;
10736
10737         /*
10738          * no branch sampling for software events
10739          */
10740         if (has_branch_stack(event))
10741                 return -EOPNOTSUPP;
10742
10743         perf_swevent_init_hrtimer(event);
10744
10745         return 0;
10746 }
10747
10748 static struct pmu perf_task_clock = {
10749         .task_ctx_nr    = perf_sw_context,
10750
10751         .capabilities   = PERF_PMU_CAP_NO_NMI,
10752
10753         .event_init     = task_clock_event_init,
10754         .add            = task_clock_event_add,
10755         .del            = task_clock_event_del,
10756         .start          = task_clock_event_start,
10757         .stop           = task_clock_event_stop,
10758         .read           = task_clock_event_read,
10759 };
10760
10761 static void perf_pmu_nop_void(struct pmu *pmu)
10762 {
10763 }
10764
10765 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
10766 {
10767 }
10768
10769 static int perf_pmu_nop_int(struct pmu *pmu)
10770 {
10771         return 0;
10772 }
10773
10774 static int perf_event_nop_int(struct perf_event *event, u64 value)
10775 {
10776         return 0;
10777 }
10778
10779 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
10780
10781 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
10782 {
10783         __this_cpu_write(nop_txn_flags, flags);
10784
10785         if (flags & ~PERF_PMU_TXN_ADD)
10786                 return;
10787
10788         perf_pmu_disable(pmu);
10789 }
10790
10791 static int perf_pmu_commit_txn(struct pmu *pmu)
10792 {
10793         unsigned int flags = __this_cpu_read(nop_txn_flags);
10794
10795         __this_cpu_write(nop_txn_flags, 0);
10796
10797         if (flags & ~PERF_PMU_TXN_ADD)
10798                 return 0;
10799
10800         perf_pmu_enable(pmu);
10801         return 0;
10802 }
10803
10804 static void perf_pmu_cancel_txn(struct pmu *pmu)
10805 {
10806         unsigned int flags =  __this_cpu_read(nop_txn_flags);
10807
10808         __this_cpu_write(nop_txn_flags, 0);
10809
10810         if (flags & ~PERF_PMU_TXN_ADD)
10811                 return;
10812
10813         perf_pmu_enable(pmu);
10814 }
10815
10816 static int perf_event_idx_default(struct perf_event *event)
10817 {
10818         return 0;
10819 }
10820
10821 /*
10822  * Ensures all contexts with the same task_ctx_nr have the same
10823  * pmu_cpu_context too.
10824  */
10825 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
10826 {
10827         struct pmu *pmu;
10828
10829         if (ctxn < 0)
10830                 return NULL;
10831
10832         list_for_each_entry(pmu, &pmus, entry) {
10833                 if (pmu->task_ctx_nr == ctxn)
10834                         return pmu->pmu_cpu_context;
10835         }
10836
10837         return NULL;
10838 }
10839
10840 static void free_pmu_context(struct pmu *pmu)
10841 {
10842         /*
10843          * Static contexts such as perf_sw_context have a global lifetime
10844          * and may be shared between different PMUs. Avoid freeing them
10845          * when a single PMU is going away.
10846          */
10847         if (pmu->task_ctx_nr > perf_invalid_context)
10848                 return;
10849
10850         free_percpu(pmu->pmu_cpu_context);
10851 }
10852
10853 /*
10854  * Let userspace know that this PMU supports address range filtering:
10855  */
10856 static ssize_t nr_addr_filters_show(struct device *dev,
10857                                     struct device_attribute *attr,
10858                                     char *page)
10859 {
10860         struct pmu *pmu = dev_get_drvdata(dev);
10861
10862         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
10863 }
10864 DEVICE_ATTR_RO(nr_addr_filters);
10865
10866 static struct idr pmu_idr;
10867
10868 static ssize_t
10869 type_show(struct device *dev, struct device_attribute *attr, char *page)
10870 {
10871         struct pmu *pmu = dev_get_drvdata(dev);
10872
10873         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
10874 }
10875 static DEVICE_ATTR_RO(type);
10876
10877 static ssize_t
10878 perf_event_mux_interval_ms_show(struct device *dev,
10879                                 struct device_attribute *attr,
10880                                 char *page)
10881 {
10882         struct pmu *pmu = dev_get_drvdata(dev);
10883
10884         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
10885 }
10886
10887 static DEFINE_MUTEX(mux_interval_mutex);
10888
10889 static ssize_t
10890 perf_event_mux_interval_ms_store(struct device *dev,
10891                                  struct device_attribute *attr,
10892                                  const char *buf, size_t count)
10893 {
10894         struct pmu *pmu = dev_get_drvdata(dev);
10895         int timer, cpu, ret;
10896
10897         ret = kstrtoint(buf, 0, &timer);
10898         if (ret)
10899                 return ret;
10900
10901         if (timer < 1)
10902                 return -EINVAL;
10903
10904         /* same value, noting to do */
10905         if (timer == pmu->hrtimer_interval_ms)
10906                 return count;
10907
10908         mutex_lock(&mux_interval_mutex);
10909         pmu->hrtimer_interval_ms = timer;
10910
10911         /* update all cpuctx for this PMU */
10912         cpus_read_lock();
10913         for_each_online_cpu(cpu) {
10914                 struct perf_cpu_context *cpuctx;
10915                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10916                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
10917
10918                 cpu_function_call(cpu,
10919                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
10920         }
10921         cpus_read_unlock();
10922         mutex_unlock(&mux_interval_mutex);
10923
10924         return count;
10925 }
10926 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
10927
10928 static struct attribute *pmu_dev_attrs[] = {
10929         &dev_attr_type.attr,
10930         &dev_attr_perf_event_mux_interval_ms.attr,
10931         NULL,
10932 };
10933 ATTRIBUTE_GROUPS(pmu_dev);
10934
10935 static int pmu_bus_running;
10936 static struct bus_type pmu_bus = {
10937         .name           = "event_source",
10938         .dev_groups     = pmu_dev_groups,
10939 };
10940
10941 static void pmu_dev_release(struct device *dev)
10942 {
10943         kfree(dev);
10944 }
10945
10946 static int pmu_dev_alloc(struct pmu *pmu)
10947 {
10948         int ret = -ENOMEM;
10949
10950         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
10951         if (!pmu->dev)
10952                 goto out;
10953
10954         pmu->dev->groups = pmu->attr_groups;
10955         device_initialize(pmu->dev);
10956         ret = dev_set_name(pmu->dev, "%s", pmu->name);
10957         if (ret)
10958                 goto free_dev;
10959
10960         dev_set_drvdata(pmu->dev, pmu);
10961         pmu->dev->bus = &pmu_bus;
10962         pmu->dev->release = pmu_dev_release;
10963         ret = device_add(pmu->dev);
10964         if (ret)
10965                 goto free_dev;
10966
10967         /* For PMUs with address filters, throw in an extra attribute: */
10968         if (pmu->nr_addr_filters)
10969                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
10970
10971         if (ret)
10972                 goto del_dev;
10973
10974         if (pmu->attr_update)
10975                 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
10976
10977         if (ret)
10978                 goto del_dev;
10979
10980 out:
10981         return ret;
10982
10983 del_dev:
10984         device_del(pmu->dev);
10985
10986 free_dev:
10987         put_device(pmu->dev);
10988         goto out;
10989 }
10990
10991 static struct lock_class_key cpuctx_mutex;
10992 static struct lock_class_key cpuctx_lock;
10993
10994 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
10995 {
10996         int cpu, ret, max = PERF_TYPE_MAX;
10997
10998         mutex_lock(&pmus_lock);
10999         ret = -ENOMEM;
11000         pmu->pmu_disable_count = alloc_percpu(int);
11001         if (!pmu->pmu_disable_count)
11002                 goto unlock;
11003
11004         pmu->type = -1;
11005         if (!name)
11006                 goto skip_type;
11007         pmu->name = name;
11008
11009         if (type != PERF_TYPE_SOFTWARE) {
11010                 if (type >= 0)
11011                         max = type;
11012
11013                 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11014                 if (ret < 0)
11015                         goto free_pdc;
11016
11017                 WARN_ON(type >= 0 && ret != type);
11018
11019                 type = ret;
11020         }
11021         pmu->type = type;
11022
11023         if (pmu_bus_running) {
11024                 ret = pmu_dev_alloc(pmu);
11025                 if (ret)
11026                         goto free_idr;
11027         }
11028
11029 skip_type:
11030         if (pmu->task_ctx_nr == perf_hw_context) {
11031                 static int hw_context_taken = 0;
11032
11033                 /*
11034                  * Other than systems with heterogeneous CPUs, it never makes
11035                  * sense for two PMUs to share perf_hw_context. PMUs which are
11036                  * uncore must use perf_invalid_context.
11037                  */
11038                 if (WARN_ON_ONCE(hw_context_taken &&
11039                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
11040                         pmu->task_ctx_nr = perf_invalid_context;
11041
11042                 hw_context_taken = 1;
11043         }
11044
11045         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
11046         if (pmu->pmu_cpu_context)
11047                 goto got_cpu_context;
11048
11049         ret = -ENOMEM;
11050         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
11051         if (!pmu->pmu_cpu_context)
11052                 goto free_dev;
11053
11054         for_each_possible_cpu(cpu) {
11055                 struct perf_cpu_context *cpuctx;
11056
11057                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11058                 __perf_event_init_context(&cpuctx->ctx);
11059                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
11060                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
11061                 cpuctx->ctx.pmu = pmu;
11062                 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
11063
11064                 __perf_mux_hrtimer_init(cpuctx, cpu);
11065
11066                 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
11067                 cpuctx->heap = cpuctx->heap_default;
11068         }
11069
11070 got_cpu_context:
11071         if (!pmu->start_txn) {
11072                 if (pmu->pmu_enable) {
11073                         /*
11074                          * If we have pmu_enable/pmu_disable calls, install
11075                          * transaction stubs that use that to try and batch
11076                          * hardware accesses.
11077                          */
11078                         pmu->start_txn  = perf_pmu_start_txn;
11079                         pmu->commit_txn = perf_pmu_commit_txn;
11080                         pmu->cancel_txn = perf_pmu_cancel_txn;
11081                 } else {
11082                         pmu->start_txn  = perf_pmu_nop_txn;
11083                         pmu->commit_txn = perf_pmu_nop_int;
11084                         pmu->cancel_txn = perf_pmu_nop_void;
11085                 }
11086         }
11087
11088         if (!pmu->pmu_enable) {
11089                 pmu->pmu_enable  = perf_pmu_nop_void;
11090                 pmu->pmu_disable = perf_pmu_nop_void;
11091         }
11092
11093         if (!pmu->check_period)
11094                 pmu->check_period = perf_event_nop_int;
11095
11096         if (!pmu->event_idx)
11097                 pmu->event_idx = perf_event_idx_default;
11098
11099         /*
11100          * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
11101          * since these cannot be in the IDR. This way the linear search
11102          * is fast, provided a valid software event is provided.
11103          */
11104         if (type == PERF_TYPE_SOFTWARE || !name)
11105                 list_add_rcu(&pmu->entry, &pmus);
11106         else
11107                 list_add_tail_rcu(&pmu->entry, &pmus);
11108
11109         atomic_set(&pmu->exclusive_cnt, 0);
11110         ret = 0;
11111 unlock:
11112         mutex_unlock(&pmus_lock);
11113
11114         return ret;
11115
11116 free_dev:
11117         device_del(pmu->dev);
11118         put_device(pmu->dev);
11119
11120 free_idr:
11121         if (pmu->type != PERF_TYPE_SOFTWARE)
11122                 idr_remove(&pmu_idr, pmu->type);
11123
11124 free_pdc:
11125         free_percpu(pmu->pmu_disable_count);
11126         goto unlock;
11127 }
11128 EXPORT_SYMBOL_GPL(perf_pmu_register);
11129
11130 void perf_pmu_unregister(struct pmu *pmu)
11131 {
11132         mutex_lock(&pmus_lock);
11133         list_del_rcu(&pmu->entry);
11134
11135         /*
11136          * We dereference the pmu list under both SRCU and regular RCU, so
11137          * synchronize against both of those.
11138          */
11139         synchronize_srcu(&pmus_srcu);
11140         synchronize_rcu();
11141
11142         free_percpu(pmu->pmu_disable_count);
11143         if (pmu->type != PERF_TYPE_SOFTWARE)
11144                 idr_remove(&pmu_idr, pmu->type);
11145         if (pmu_bus_running) {
11146                 if (pmu->nr_addr_filters)
11147                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11148                 device_del(pmu->dev);
11149                 put_device(pmu->dev);
11150         }
11151         free_pmu_context(pmu);
11152         mutex_unlock(&pmus_lock);
11153 }
11154 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11155
11156 static inline bool has_extended_regs(struct perf_event *event)
11157 {
11158         return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11159                (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11160 }
11161
11162 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11163 {
11164         struct perf_event_context *ctx = NULL;
11165         int ret;
11166
11167         if (!try_module_get(pmu->module))
11168                 return -ENODEV;
11169
11170         /*
11171          * A number of pmu->event_init() methods iterate the sibling_list to,
11172          * for example, validate if the group fits on the PMU. Therefore,
11173          * if this is a sibling event, acquire the ctx->mutex to protect
11174          * the sibling_list.
11175          */
11176         if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11177                 /*
11178                  * This ctx->mutex can nest when we're called through
11179                  * inheritance. See the perf_event_ctx_lock_nested() comment.
11180                  */
11181                 ctx = perf_event_ctx_lock_nested(event->group_leader,
11182                                                  SINGLE_DEPTH_NESTING);
11183                 BUG_ON(!ctx);
11184         }
11185
11186         event->pmu = pmu;
11187         ret = pmu->event_init(event);
11188
11189         if (ctx)
11190                 perf_event_ctx_unlock(event->group_leader, ctx);
11191
11192         if (!ret) {
11193                 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11194                     has_extended_regs(event))
11195                         ret = -EOPNOTSUPP;
11196
11197                 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11198                     event_has_any_exclude_flag(event))
11199                         ret = -EINVAL;
11200
11201                 if (ret && event->destroy)
11202                         event->destroy(event);
11203         }
11204
11205         if (ret)
11206                 module_put(pmu->module);
11207
11208         return ret;
11209 }
11210
11211 static struct pmu *perf_init_event(struct perf_event *event)
11212 {
11213         bool extended_type = false;
11214         int idx, type, ret;
11215         struct pmu *pmu;
11216
11217         idx = srcu_read_lock(&pmus_srcu);
11218
11219         /* Try parent's PMU first: */
11220         if (event->parent && event->parent->pmu) {
11221                 pmu = event->parent->pmu;
11222                 ret = perf_try_init_event(pmu, event);
11223                 if (!ret)
11224                         goto unlock;
11225         }
11226
11227         /*
11228          * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11229          * are often aliases for PERF_TYPE_RAW.
11230          */
11231         type = event->attr.type;
11232         if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11233                 type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11234                 if (!type) {
11235                         type = PERF_TYPE_RAW;
11236                 } else {
11237                         extended_type = true;
11238                         event->attr.config &= PERF_HW_EVENT_MASK;
11239                 }
11240         }
11241
11242 again:
11243         rcu_read_lock();
11244         pmu = idr_find(&pmu_idr, type);
11245         rcu_read_unlock();
11246         if (pmu) {
11247                 if (event->attr.type != type && type != PERF_TYPE_RAW &&
11248                     !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11249                         goto fail;
11250
11251                 ret = perf_try_init_event(pmu, event);
11252                 if (ret == -ENOENT && event->attr.type != type && !extended_type) {
11253                         type = event->attr.type;
11254                         goto again;
11255                 }
11256
11257                 if (ret)
11258                         pmu = ERR_PTR(ret);
11259
11260                 goto unlock;
11261         }
11262
11263         list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11264                 ret = perf_try_init_event(pmu, event);
11265                 if (!ret)
11266                         goto unlock;
11267
11268                 if (ret != -ENOENT) {
11269                         pmu = ERR_PTR(ret);
11270                         goto unlock;
11271                 }
11272         }
11273 fail:
11274         pmu = ERR_PTR(-ENOENT);
11275 unlock:
11276         srcu_read_unlock(&pmus_srcu, idx);
11277
11278         return pmu;
11279 }
11280
11281 static void attach_sb_event(struct perf_event *event)
11282 {
11283         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11284
11285         raw_spin_lock(&pel->lock);
11286         list_add_rcu(&event->sb_list, &pel->list);
11287         raw_spin_unlock(&pel->lock);
11288 }
11289
11290 /*
11291  * We keep a list of all !task (and therefore per-cpu) events
11292  * that need to receive side-band records.
11293  *
11294  * This avoids having to scan all the various PMU per-cpu contexts
11295  * looking for them.
11296  */
11297 static void account_pmu_sb_event(struct perf_event *event)
11298 {
11299         if (is_sb_event(event))
11300                 attach_sb_event(event);
11301 }
11302
11303 static void account_event_cpu(struct perf_event *event, int cpu)
11304 {
11305         if (event->parent)
11306                 return;
11307
11308         if (is_cgroup_event(event))
11309                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
11310 }
11311
11312 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
11313 static void account_freq_event_nohz(void)
11314 {
11315 #ifdef CONFIG_NO_HZ_FULL
11316         /* Lock so we don't race with concurrent unaccount */
11317         spin_lock(&nr_freq_lock);
11318         if (atomic_inc_return(&nr_freq_events) == 1)
11319                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11320         spin_unlock(&nr_freq_lock);
11321 #endif
11322 }
11323
11324 static void account_freq_event(void)
11325 {
11326         if (tick_nohz_full_enabled())
11327                 account_freq_event_nohz();
11328         else
11329                 atomic_inc(&nr_freq_events);
11330 }
11331
11332
11333 static void account_event(struct perf_event *event)
11334 {
11335         bool inc = false;
11336
11337         if (event->parent)
11338                 return;
11339
11340         if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11341                 inc = true;
11342         if (event->attr.mmap || event->attr.mmap_data)
11343                 atomic_inc(&nr_mmap_events);
11344         if (event->attr.build_id)
11345                 atomic_inc(&nr_build_id_events);
11346         if (event->attr.comm)
11347                 atomic_inc(&nr_comm_events);
11348         if (event->attr.namespaces)
11349                 atomic_inc(&nr_namespaces_events);
11350         if (event->attr.cgroup)
11351                 atomic_inc(&nr_cgroup_events);
11352         if (event->attr.task)
11353                 atomic_inc(&nr_task_events);
11354         if (event->attr.freq)
11355                 account_freq_event();
11356         if (event->attr.context_switch) {
11357                 atomic_inc(&nr_switch_events);
11358                 inc = true;
11359         }
11360         if (has_branch_stack(event))
11361                 inc = true;
11362         if (is_cgroup_event(event))
11363                 inc = true;
11364         if (event->attr.ksymbol)
11365                 atomic_inc(&nr_ksymbol_events);
11366         if (event->attr.bpf_event)
11367                 atomic_inc(&nr_bpf_events);
11368         if (event->attr.text_poke)
11369                 atomic_inc(&nr_text_poke_events);
11370
11371         if (inc) {
11372                 /*
11373                  * We need the mutex here because static_branch_enable()
11374                  * must complete *before* the perf_sched_count increment
11375                  * becomes visible.
11376                  */
11377                 if (atomic_inc_not_zero(&perf_sched_count))
11378                         goto enabled;
11379
11380                 mutex_lock(&perf_sched_mutex);
11381                 if (!atomic_read(&perf_sched_count)) {
11382                         static_branch_enable(&perf_sched_events);
11383                         /*
11384                          * Guarantee that all CPUs observe they key change and
11385                          * call the perf scheduling hooks before proceeding to
11386                          * install events that need them.
11387                          */
11388                         synchronize_rcu();
11389                 }
11390                 /*
11391                  * Now that we have waited for the sync_sched(), allow further
11392                  * increments to by-pass the mutex.
11393                  */
11394                 atomic_inc(&perf_sched_count);
11395                 mutex_unlock(&perf_sched_mutex);
11396         }
11397 enabled:
11398
11399         account_event_cpu(event, event->cpu);
11400
11401         account_pmu_sb_event(event);
11402 }
11403
11404 /*
11405  * Allocate and initialize an event structure
11406  */
11407 static struct perf_event *
11408 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11409                  struct task_struct *task,
11410                  struct perf_event *group_leader,
11411                  struct perf_event *parent_event,
11412                  perf_overflow_handler_t overflow_handler,
11413                  void *context, int cgroup_fd)
11414 {
11415         struct pmu *pmu;
11416         struct perf_event *event;
11417         struct hw_perf_event *hwc;
11418         long err = -EINVAL;
11419         int node;
11420
11421         if ((unsigned)cpu >= nr_cpu_ids) {
11422                 if (!task || cpu != -1)
11423                         return ERR_PTR(-EINVAL);
11424         }
11425         if (attr->sigtrap && !task) {
11426                 /* Requires a task: avoid signalling random tasks. */
11427                 return ERR_PTR(-EINVAL);
11428         }
11429
11430         node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
11431         event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
11432                                       node);
11433         if (!event)
11434                 return ERR_PTR(-ENOMEM);
11435
11436         /*
11437          * Single events are their own group leaders, with an
11438          * empty sibling list:
11439          */
11440         if (!group_leader)
11441                 group_leader = event;
11442
11443         mutex_init(&event->child_mutex);
11444         INIT_LIST_HEAD(&event->child_list);
11445
11446         INIT_LIST_HEAD(&event->event_entry);
11447         INIT_LIST_HEAD(&event->sibling_list);
11448         INIT_LIST_HEAD(&event->active_list);
11449         init_event_group(event);
11450         INIT_LIST_HEAD(&event->rb_entry);
11451         INIT_LIST_HEAD(&event->active_entry);
11452         INIT_LIST_HEAD(&event->addr_filters.list);
11453         INIT_HLIST_NODE(&event->hlist_entry);
11454
11455
11456         init_waitqueue_head(&event->waitq);
11457         event->pending_disable = -1;
11458         init_irq_work(&event->pending, perf_pending_event);
11459
11460         mutex_init(&event->mmap_mutex);
11461         raw_spin_lock_init(&event->addr_filters.lock);
11462
11463         atomic_long_set(&event->refcount, 1);
11464         event->cpu              = cpu;
11465         event->attr             = *attr;
11466         event->group_leader     = group_leader;
11467         event->pmu              = NULL;
11468         event->oncpu            = -1;
11469
11470         event->parent           = parent_event;
11471
11472         event->ns               = get_pid_ns(task_active_pid_ns(current));
11473         event->id               = atomic64_inc_return(&perf_event_id);
11474
11475         event->state            = PERF_EVENT_STATE_INACTIVE;
11476
11477         if (event->attr.sigtrap)
11478                 atomic_set(&event->event_limit, 1);
11479
11480         if (task) {
11481                 event->attach_state = PERF_ATTACH_TASK;
11482                 /*
11483                  * XXX pmu::event_init needs to know what task to account to
11484                  * and we cannot use the ctx information because we need the
11485                  * pmu before we get a ctx.
11486                  */
11487                 event->hw.target = get_task_struct(task);
11488         }
11489
11490         event->clock = &local_clock;
11491         if (parent_event)
11492                 event->clock = parent_event->clock;
11493
11494         if (!overflow_handler && parent_event) {
11495                 overflow_handler = parent_event->overflow_handler;
11496                 context = parent_event->overflow_handler_context;
11497 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11498                 if (overflow_handler == bpf_overflow_handler) {
11499                         struct bpf_prog *prog = parent_event->prog;
11500
11501                         bpf_prog_inc(prog);
11502                         event->prog = prog;
11503                         event->orig_overflow_handler =
11504                                 parent_event->orig_overflow_handler;
11505                 }
11506 #endif
11507         }
11508
11509         if (overflow_handler) {
11510                 event->overflow_handler = overflow_handler;
11511                 event->overflow_handler_context = context;
11512         } else if (is_write_backward(event)){
11513                 event->overflow_handler = perf_event_output_backward;
11514                 event->overflow_handler_context = NULL;
11515         } else {
11516                 event->overflow_handler = perf_event_output_forward;
11517                 event->overflow_handler_context = NULL;
11518         }
11519
11520         perf_event__state_init(event);
11521
11522         pmu = NULL;
11523
11524         hwc = &event->hw;
11525         hwc->sample_period = attr->sample_period;
11526         if (attr->freq && attr->sample_freq)
11527                 hwc->sample_period = 1;
11528         hwc->last_period = hwc->sample_period;
11529
11530         local64_set(&hwc->period_left, hwc->sample_period);
11531
11532         /*
11533          * We currently do not support PERF_SAMPLE_READ on inherited events.
11534          * See perf_output_read().
11535          */
11536         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11537                 goto err_ns;
11538
11539         if (!has_branch_stack(event))
11540                 event->attr.branch_sample_type = 0;
11541
11542         pmu = perf_init_event(event);
11543         if (IS_ERR(pmu)) {
11544                 err = PTR_ERR(pmu);
11545                 goto err_ns;
11546         }
11547
11548         /*
11549          * Disallow uncore-cgroup events, they don't make sense as the cgroup will
11550          * be different on other CPUs in the uncore mask.
11551          */
11552         if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
11553                 err = -EINVAL;
11554                 goto err_pmu;
11555         }
11556
11557         if (event->attr.aux_output &&
11558             !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
11559                 err = -EOPNOTSUPP;
11560                 goto err_pmu;
11561         }
11562
11563         if (cgroup_fd != -1) {
11564                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
11565                 if (err)
11566                         goto err_pmu;
11567         }
11568
11569         err = exclusive_event_init(event);
11570         if (err)
11571                 goto err_pmu;
11572
11573         if (has_addr_filter(event)) {
11574                 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
11575                                                     sizeof(struct perf_addr_filter_range),
11576                                                     GFP_KERNEL);
11577                 if (!event->addr_filter_ranges) {
11578                         err = -ENOMEM;
11579                         goto err_per_task;
11580                 }
11581
11582                 /*
11583                  * Clone the parent's vma offsets: they are valid until exec()
11584                  * even if the mm is not shared with the parent.
11585                  */
11586                 if (event->parent) {
11587                         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11588
11589                         raw_spin_lock_irq(&ifh->lock);
11590                         memcpy(event->addr_filter_ranges,
11591                                event->parent->addr_filter_ranges,
11592                                pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
11593                         raw_spin_unlock_irq(&ifh->lock);
11594                 }
11595
11596                 /* force hw sync on the address filters */
11597                 event->addr_filters_gen = 1;
11598         }
11599
11600         if (!event->parent) {
11601                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
11602                         err = get_callchain_buffers(attr->sample_max_stack);
11603                         if (err)
11604                                 goto err_addr_filters;
11605                 }
11606         }
11607
11608         err = security_perf_event_alloc(event);
11609         if (err)
11610                 goto err_callchain_buffer;
11611
11612         /* symmetric to unaccount_event() in _free_event() */
11613         account_event(event);
11614
11615         return event;
11616
11617 err_callchain_buffer:
11618         if (!event->parent) {
11619                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
11620                         put_callchain_buffers();
11621         }
11622 err_addr_filters:
11623         kfree(event->addr_filter_ranges);
11624
11625 err_per_task:
11626         exclusive_event_destroy(event);
11627
11628 err_pmu:
11629         if (is_cgroup_event(event))
11630                 perf_detach_cgroup(event);
11631         if (event->destroy)
11632                 event->destroy(event);
11633         module_put(pmu->module);
11634 err_ns:
11635         if (event->ns)
11636                 put_pid_ns(event->ns);
11637         if (event->hw.target)
11638                 put_task_struct(event->hw.target);
11639         kmem_cache_free(perf_event_cache, event);
11640
11641         return ERR_PTR(err);
11642 }
11643
11644 static int perf_copy_attr(struct perf_event_attr __user *uattr,
11645                           struct perf_event_attr *attr)
11646 {
11647         u32 size;
11648         int ret;
11649
11650         /* Zero the full structure, so that a short copy will be nice. */
11651         memset(attr, 0, sizeof(*attr));
11652
11653         ret = get_user(size, &uattr->size);
11654         if (ret)
11655                 return ret;
11656
11657         /* ABI compatibility quirk: */
11658         if (!size)
11659                 size = PERF_ATTR_SIZE_VER0;
11660         if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
11661                 goto err_size;
11662
11663         ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
11664         if (ret) {
11665                 if (ret == -E2BIG)
11666                         goto err_size;
11667                 return ret;
11668         }
11669
11670         attr->size = size;
11671
11672         if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
11673                 return -EINVAL;
11674
11675         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
11676                 return -EINVAL;
11677
11678         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
11679                 return -EINVAL;
11680
11681         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
11682                 u64 mask = attr->branch_sample_type;
11683
11684                 /* only using defined bits */
11685                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
11686                         return -EINVAL;
11687
11688                 /* at least one branch bit must be set */
11689                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
11690                         return -EINVAL;
11691
11692                 /* propagate priv level, when not set for branch */
11693                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
11694
11695                         /* exclude_kernel checked on syscall entry */
11696                         if (!attr->exclude_kernel)
11697                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
11698
11699                         if (!attr->exclude_user)
11700                                 mask |= PERF_SAMPLE_BRANCH_USER;
11701
11702                         if (!attr->exclude_hv)
11703                                 mask |= PERF_SAMPLE_BRANCH_HV;
11704                         /*
11705                          * adjust user setting (for HW filter setup)
11706                          */
11707                         attr->branch_sample_type = mask;
11708                 }
11709                 /* privileged levels capture (kernel, hv): check permissions */
11710                 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
11711                         ret = perf_allow_kernel(attr);
11712                         if (ret)
11713                                 return ret;
11714                 }
11715         }
11716
11717         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
11718                 ret = perf_reg_validate(attr->sample_regs_user);
11719                 if (ret)
11720                         return ret;
11721         }
11722
11723         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
11724                 if (!arch_perf_have_user_stack_dump())
11725                         return -ENOSYS;
11726
11727                 /*
11728                  * We have __u32 type for the size, but so far
11729                  * we can only use __u16 as maximum due to the
11730                  * __u16 sample size limit.
11731                  */
11732                 if (attr->sample_stack_user >= USHRT_MAX)
11733                         return -EINVAL;
11734                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
11735                         return -EINVAL;
11736         }
11737
11738         if (!attr->sample_max_stack)
11739                 attr->sample_max_stack = sysctl_perf_event_max_stack;
11740
11741         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
11742                 ret = perf_reg_validate(attr->sample_regs_intr);
11743
11744 #ifndef CONFIG_CGROUP_PERF
11745         if (attr->sample_type & PERF_SAMPLE_CGROUP)
11746                 return -EINVAL;
11747 #endif
11748         if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
11749             (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
11750                 return -EINVAL;
11751
11752         if (!attr->inherit && attr->inherit_thread)
11753                 return -EINVAL;
11754
11755         if (attr->remove_on_exec && attr->enable_on_exec)
11756                 return -EINVAL;
11757
11758         if (attr->sigtrap && !attr->remove_on_exec)
11759                 return -EINVAL;
11760
11761 out:
11762         return ret;
11763
11764 err_size:
11765         put_user(sizeof(*attr), &uattr->size);
11766         ret = -E2BIG;
11767         goto out;
11768 }
11769
11770 static int
11771 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
11772 {
11773         struct perf_buffer *rb = NULL;
11774         int ret = -EINVAL;
11775
11776         if (!output_event)
11777                 goto set;
11778
11779         /* don't allow circular references */
11780         if (event == output_event)
11781                 goto out;
11782
11783         /*
11784          * Don't allow cross-cpu buffers
11785          */
11786         if (output_event->cpu != event->cpu)
11787                 goto out;
11788
11789         /*
11790          * If its not a per-cpu rb, it must be the same task.
11791          */
11792         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
11793                 goto out;
11794
11795         /*
11796          * Mixing clocks in the same buffer is trouble you don't need.
11797          */
11798         if (output_event->clock != event->clock)
11799                 goto out;
11800
11801         /*
11802          * Either writing ring buffer from beginning or from end.
11803          * Mixing is not allowed.
11804          */
11805         if (is_write_backward(output_event) != is_write_backward(event))
11806                 goto out;
11807
11808         /*
11809          * If both events generate aux data, they must be on the same PMU
11810          */
11811         if (has_aux(event) && has_aux(output_event) &&
11812             event->pmu != output_event->pmu)
11813                 goto out;
11814
11815 set:
11816         mutex_lock(&event->mmap_mutex);
11817         /* Can't redirect output if we've got an active mmap() */
11818         if (atomic_read(&event->mmap_count))
11819                 goto unlock;
11820
11821         if (output_event) {
11822                 /* get the rb we want to redirect to */
11823                 rb = ring_buffer_get(output_event);
11824                 if (!rb)
11825                         goto unlock;
11826         }
11827
11828         ring_buffer_attach(event, rb);
11829
11830         ret = 0;
11831 unlock:
11832         mutex_unlock(&event->mmap_mutex);
11833
11834 out:
11835         return ret;
11836 }
11837
11838 static void mutex_lock_double(struct mutex *a, struct mutex *b)
11839 {
11840         if (b < a)
11841                 swap(a, b);
11842
11843         mutex_lock(a);
11844         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
11845 }
11846
11847 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
11848 {
11849         bool nmi_safe = false;
11850
11851         switch (clk_id) {
11852         case CLOCK_MONOTONIC:
11853                 event->clock = &ktime_get_mono_fast_ns;
11854                 nmi_safe = true;
11855                 break;
11856
11857         case CLOCK_MONOTONIC_RAW:
11858                 event->clock = &ktime_get_raw_fast_ns;
11859                 nmi_safe = true;
11860                 break;
11861
11862         case CLOCK_REALTIME:
11863                 event->clock = &ktime_get_real_ns;
11864                 break;
11865
11866         case CLOCK_BOOTTIME:
11867                 event->clock = &ktime_get_boottime_ns;
11868                 break;
11869
11870         case CLOCK_TAI:
11871                 event->clock = &ktime_get_clocktai_ns;
11872                 break;
11873
11874         default:
11875                 return -EINVAL;
11876         }
11877
11878         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
11879                 return -EINVAL;
11880
11881         return 0;
11882 }
11883
11884 /*
11885  * Variation on perf_event_ctx_lock_nested(), except we take two context
11886  * mutexes.
11887  */
11888 static struct perf_event_context *
11889 __perf_event_ctx_lock_double(struct perf_event *group_leader,
11890                              struct perf_event_context *ctx)
11891 {
11892         struct perf_event_context *gctx;
11893
11894 again:
11895         rcu_read_lock();
11896         gctx = READ_ONCE(group_leader->ctx);
11897         if (!refcount_inc_not_zero(&gctx->refcount)) {
11898                 rcu_read_unlock();
11899                 goto again;
11900         }
11901         rcu_read_unlock();
11902
11903         mutex_lock_double(&gctx->mutex, &ctx->mutex);
11904
11905         if (group_leader->ctx != gctx) {
11906                 mutex_unlock(&ctx->mutex);
11907                 mutex_unlock(&gctx->mutex);
11908                 put_ctx(gctx);
11909                 goto again;
11910         }
11911
11912         return gctx;
11913 }
11914
11915 /**
11916  * sys_perf_event_open - open a performance event, associate it to a task/cpu
11917  *
11918  * @attr_uptr:  event_id type attributes for monitoring/sampling
11919  * @pid:                target pid
11920  * @cpu:                target cpu
11921  * @group_fd:           group leader event fd
11922  */
11923 SYSCALL_DEFINE5(perf_event_open,
11924                 struct perf_event_attr __user *, attr_uptr,
11925                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
11926 {
11927         struct perf_event *group_leader = NULL, *output_event = NULL;
11928         struct perf_event *event, *sibling;
11929         struct perf_event_attr attr;
11930         struct perf_event_context *ctx, *gctx;
11931         struct file *event_file = NULL;
11932         struct fd group = {NULL, 0};
11933         struct task_struct *task = NULL;
11934         struct pmu *pmu;
11935         int event_fd;
11936         int move_group = 0;
11937         int err;
11938         int f_flags = O_RDWR;
11939         int cgroup_fd = -1;
11940
11941         /* for future expandability... */
11942         if (flags & ~PERF_FLAG_ALL)
11943                 return -EINVAL;
11944
11945         /* Do we allow access to perf_event_open(2) ? */
11946         err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
11947         if (err)
11948                 return err;
11949
11950         err = perf_copy_attr(attr_uptr, &attr);
11951         if (err)
11952                 return err;
11953
11954         if (!attr.exclude_kernel) {
11955                 err = perf_allow_kernel(&attr);
11956                 if (err)
11957                         return err;
11958         }
11959
11960         if (attr.namespaces) {
11961                 if (!perfmon_capable())
11962                         return -EACCES;
11963         }
11964
11965         if (attr.freq) {
11966                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
11967                         return -EINVAL;
11968         } else {
11969                 if (attr.sample_period & (1ULL << 63))
11970                         return -EINVAL;
11971         }
11972
11973         /* Only privileged users can get physical addresses */
11974         if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
11975                 err = perf_allow_kernel(&attr);
11976                 if (err)
11977                         return err;
11978         }
11979
11980         /* REGS_INTR can leak data, lockdown must prevent this */
11981         if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
11982                 err = security_locked_down(LOCKDOWN_PERF);
11983                 if (err)
11984                         return err;
11985         }
11986
11987         /*
11988          * In cgroup mode, the pid argument is used to pass the fd
11989          * opened to the cgroup directory in cgroupfs. The cpu argument
11990          * designates the cpu on which to monitor threads from that
11991          * cgroup.
11992          */
11993         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
11994                 return -EINVAL;
11995
11996         if (flags & PERF_FLAG_FD_CLOEXEC)
11997                 f_flags |= O_CLOEXEC;
11998
11999         event_fd = get_unused_fd_flags(f_flags);
12000         if (event_fd < 0)
12001                 return event_fd;
12002
12003         if (group_fd != -1) {
12004                 err = perf_fget_light(group_fd, &group);
12005                 if (err)
12006                         goto err_fd;
12007                 group_leader = group.file->private_data;
12008                 if (flags & PERF_FLAG_FD_OUTPUT)
12009                         output_event = group_leader;
12010                 if (flags & PERF_FLAG_FD_NO_GROUP)
12011                         group_leader = NULL;
12012         }
12013
12014         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12015                 task = find_lively_task_by_vpid(pid);
12016                 if (IS_ERR(task)) {
12017                         err = PTR_ERR(task);
12018                         goto err_group_fd;
12019                 }
12020         }
12021
12022         if (task && group_leader &&
12023             group_leader->attr.inherit != attr.inherit) {
12024                 err = -EINVAL;
12025                 goto err_task;
12026         }
12027
12028         if (flags & PERF_FLAG_PID_CGROUP)
12029                 cgroup_fd = pid;
12030
12031         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12032                                  NULL, NULL, cgroup_fd);
12033         if (IS_ERR(event)) {
12034                 err = PTR_ERR(event);
12035                 goto err_task;
12036         }
12037
12038         if (is_sampling_event(event)) {
12039                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12040                         err = -EOPNOTSUPP;
12041                         goto err_alloc;
12042                 }
12043         }
12044
12045         /*
12046          * Special case software events and allow them to be part of
12047          * any hardware group.
12048          */
12049         pmu = event->pmu;
12050
12051         if (attr.use_clockid) {
12052                 err = perf_event_set_clock(event, attr.clockid);
12053                 if (err)
12054                         goto err_alloc;
12055         }
12056
12057         if (pmu->task_ctx_nr == perf_sw_context)
12058                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
12059
12060         if (group_leader) {
12061                 if (is_software_event(event) &&
12062                     !in_software_context(group_leader)) {
12063                         /*
12064                          * If the event is a sw event, but the group_leader
12065                          * is on hw context.
12066                          *
12067                          * Allow the addition of software events to hw
12068                          * groups, this is safe because software events
12069                          * never fail to schedule.
12070                          */
12071                         pmu = group_leader->ctx->pmu;
12072                 } else if (!is_software_event(event) &&
12073                            is_software_event(group_leader) &&
12074                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12075                         /*
12076                          * In case the group is a pure software group, and we
12077                          * try to add a hardware event, move the whole group to
12078                          * the hardware context.
12079                          */
12080                         move_group = 1;
12081                 }
12082         }
12083
12084         /*
12085          * Get the target context (task or percpu):
12086          */
12087         ctx = find_get_context(pmu, task, event);
12088         if (IS_ERR(ctx)) {
12089                 err = PTR_ERR(ctx);
12090                 goto err_alloc;
12091         }
12092
12093         /*
12094          * Look up the group leader (we will attach this event to it):
12095          */
12096         if (group_leader) {
12097                 err = -EINVAL;
12098
12099                 /*
12100                  * Do not allow a recursive hierarchy (this new sibling
12101                  * becoming part of another group-sibling):
12102                  */
12103                 if (group_leader->group_leader != group_leader)
12104                         goto err_context;
12105
12106                 /* All events in a group should have the same clock */
12107                 if (group_leader->clock != event->clock)
12108                         goto err_context;
12109
12110                 /*
12111                  * Make sure we're both events for the same CPU;
12112                  * grouping events for different CPUs is broken; since
12113                  * you can never concurrently schedule them anyhow.
12114                  */
12115                 if (group_leader->cpu != event->cpu)
12116                         goto err_context;
12117
12118                 /*
12119                  * Make sure we're both on the same task, or both
12120                  * per-CPU events.
12121                  */
12122                 if (group_leader->ctx->task != ctx->task)
12123                         goto err_context;
12124
12125                 /*
12126                  * Do not allow to attach to a group in a different task
12127                  * or CPU context. If we're moving SW events, we'll fix
12128                  * this up later, so allow that.
12129                  */
12130                 if (!move_group && group_leader->ctx != ctx)
12131                         goto err_context;
12132
12133                 /*
12134                  * Only a group leader can be exclusive or pinned
12135                  */
12136                 if (attr.exclusive || attr.pinned)
12137                         goto err_context;
12138         }
12139
12140         if (output_event) {
12141                 err = perf_event_set_output(event, output_event);
12142                 if (err)
12143                         goto err_context;
12144         }
12145
12146         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
12147                                         f_flags);
12148         if (IS_ERR(event_file)) {
12149                 err = PTR_ERR(event_file);
12150                 event_file = NULL;
12151                 goto err_context;
12152         }
12153
12154         if (task) {
12155                 err = down_read_interruptible(&task->signal->exec_update_lock);
12156                 if (err)
12157                         goto err_file;
12158
12159                 /*
12160                  * Preserve ptrace permission check for backwards compatibility.
12161                  *
12162                  * We must hold exec_update_lock across this and any potential
12163                  * perf_install_in_context() call for this new event to
12164                  * serialize against exec() altering our credentials (and the
12165                  * perf_event_exit_task() that could imply).
12166                  */
12167                 err = -EACCES;
12168                 if (!perfmon_capable() && !ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
12169                         goto err_cred;
12170         }
12171
12172         if (move_group) {
12173                 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
12174
12175                 if (gctx->task == TASK_TOMBSTONE) {
12176                         err = -ESRCH;
12177                         goto err_locked;
12178                 }
12179
12180                 /*
12181                  * Check if we raced against another sys_perf_event_open() call
12182                  * moving the software group underneath us.
12183                  */
12184                 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12185                         /*
12186                          * If someone moved the group out from under us, check
12187                          * if this new event wound up on the same ctx, if so
12188                          * its the regular !move_group case, otherwise fail.
12189                          */
12190                         if (gctx != ctx) {
12191                                 err = -EINVAL;
12192                                 goto err_locked;
12193                         } else {
12194                                 perf_event_ctx_unlock(group_leader, gctx);
12195                                 move_group = 0;
12196                         }
12197                 }
12198
12199                 /*
12200                  * Failure to create exclusive events returns -EBUSY.
12201                  */
12202                 err = -EBUSY;
12203                 if (!exclusive_event_installable(group_leader, ctx))
12204                         goto err_locked;
12205
12206                 for_each_sibling_event(sibling, group_leader) {
12207                         if (!exclusive_event_installable(sibling, ctx))
12208                                 goto err_locked;
12209                 }
12210         } else {
12211                 mutex_lock(&ctx->mutex);
12212         }
12213
12214         if (ctx->task == TASK_TOMBSTONE) {
12215                 err = -ESRCH;
12216                 goto err_locked;
12217         }
12218
12219         if (!perf_event_validate_size(event)) {
12220                 err = -E2BIG;
12221                 goto err_locked;
12222         }
12223
12224         if (!task) {
12225                 /*
12226                  * Check if the @cpu we're creating an event for is online.
12227                  *
12228                  * We use the perf_cpu_context::ctx::mutex to serialize against
12229                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12230                  */
12231                 struct perf_cpu_context *cpuctx =
12232                         container_of(ctx, struct perf_cpu_context, ctx);
12233
12234                 if (!cpuctx->online) {
12235                         err = -ENODEV;
12236                         goto err_locked;
12237                 }
12238         }
12239
12240         if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12241                 err = -EINVAL;
12242                 goto err_locked;
12243         }
12244
12245         /*
12246          * Must be under the same ctx::mutex as perf_install_in_context(),
12247          * because we need to serialize with concurrent event creation.
12248          */
12249         if (!exclusive_event_installable(event, ctx)) {
12250                 err = -EBUSY;
12251                 goto err_locked;
12252         }
12253
12254         WARN_ON_ONCE(ctx->parent_ctx);
12255
12256         /*
12257          * This is the point on no return; we cannot fail hereafter. This is
12258          * where we start modifying current state.
12259          */
12260
12261         if (move_group) {
12262                 /*
12263                  * See perf_event_ctx_lock() for comments on the details
12264                  * of swizzling perf_event::ctx.
12265                  */
12266                 perf_remove_from_context(group_leader, 0);
12267                 put_ctx(gctx);
12268
12269                 for_each_sibling_event(sibling, group_leader) {
12270                         perf_remove_from_context(sibling, 0);
12271                         put_ctx(gctx);
12272                 }
12273
12274                 /*
12275                  * Wait for everybody to stop referencing the events through
12276                  * the old lists, before installing it on new lists.
12277                  */
12278                 synchronize_rcu();
12279
12280                 /*
12281                  * Install the group siblings before the group leader.
12282                  *
12283                  * Because a group leader will try and install the entire group
12284                  * (through the sibling list, which is still in-tact), we can
12285                  * end up with siblings installed in the wrong context.
12286                  *
12287                  * By installing siblings first we NO-OP because they're not
12288                  * reachable through the group lists.
12289                  */
12290                 for_each_sibling_event(sibling, group_leader) {
12291                         perf_event__state_init(sibling);
12292                         perf_install_in_context(ctx, sibling, sibling->cpu);
12293                         get_ctx(ctx);
12294                 }
12295
12296                 /*
12297                  * Removing from the context ends up with disabled
12298                  * event. What we want here is event in the initial
12299                  * startup state, ready to be add into new context.
12300                  */
12301                 perf_event__state_init(group_leader);
12302                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
12303                 get_ctx(ctx);
12304         }
12305
12306         /*
12307          * Precalculate sample_data sizes; do while holding ctx::mutex such
12308          * that we're serialized against further additions and before
12309          * perf_install_in_context() which is the point the event is active and
12310          * can use these values.
12311          */
12312         perf_event__header_size(event);
12313         perf_event__id_header_size(event);
12314
12315         event->owner = current;
12316
12317         perf_install_in_context(ctx, event, event->cpu);
12318         perf_unpin_context(ctx);
12319
12320         if (move_group)
12321                 perf_event_ctx_unlock(group_leader, gctx);
12322         mutex_unlock(&ctx->mutex);
12323
12324         if (task) {
12325                 up_read(&task->signal->exec_update_lock);
12326                 put_task_struct(task);
12327         }
12328
12329         mutex_lock(&current->perf_event_mutex);
12330         list_add_tail(&event->owner_entry, &current->perf_event_list);
12331         mutex_unlock(&current->perf_event_mutex);
12332
12333         /*
12334          * Drop the reference on the group_event after placing the
12335          * new event on the sibling_list. This ensures destruction
12336          * of the group leader will find the pointer to itself in
12337          * perf_group_detach().
12338          */
12339         fdput(group);
12340         fd_install(event_fd, event_file);
12341         return event_fd;
12342
12343 err_locked:
12344         if (move_group)
12345                 perf_event_ctx_unlock(group_leader, gctx);
12346         mutex_unlock(&ctx->mutex);
12347 err_cred:
12348         if (task)
12349                 up_read(&task->signal->exec_update_lock);
12350 err_file:
12351         fput(event_file);
12352 err_context:
12353         perf_unpin_context(ctx);
12354         put_ctx(ctx);
12355 err_alloc:
12356         /*
12357          * If event_file is set, the fput() above will have called ->release()
12358          * and that will take care of freeing the event.
12359          */
12360         if (!event_file)
12361                 free_event(event);
12362 err_task:
12363         if (task)
12364                 put_task_struct(task);
12365 err_group_fd:
12366         fdput(group);
12367 err_fd:
12368         put_unused_fd(event_fd);
12369         return err;
12370 }
12371
12372 /**
12373  * perf_event_create_kernel_counter
12374  *
12375  * @attr: attributes of the counter to create
12376  * @cpu: cpu in which the counter is bound
12377  * @task: task to profile (NULL for percpu)
12378  */
12379 struct perf_event *
12380 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12381                                  struct task_struct *task,
12382                                  perf_overflow_handler_t overflow_handler,
12383                                  void *context)
12384 {
12385         struct perf_event_context *ctx;
12386         struct perf_event *event;
12387         int err;
12388
12389         /*
12390          * Grouping is not supported for kernel events, neither is 'AUX',
12391          * make sure the caller's intentions are adjusted.
12392          */
12393         if (attr->aux_output)
12394                 return ERR_PTR(-EINVAL);
12395
12396         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12397                                  overflow_handler, context, -1);
12398         if (IS_ERR(event)) {
12399                 err = PTR_ERR(event);
12400                 goto err;
12401         }
12402
12403         /* Mark owner so we could distinguish it from user events. */
12404         event->owner = TASK_TOMBSTONE;
12405
12406         /*
12407          * Get the target context (task or percpu):
12408          */
12409         ctx = find_get_context(event->pmu, task, event);
12410         if (IS_ERR(ctx)) {
12411                 err = PTR_ERR(ctx);
12412                 goto err_free;
12413         }
12414
12415         WARN_ON_ONCE(ctx->parent_ctx);
12416         mutex_lock(&ctx->mutex);
12417         if (ctx->task == TASK_TOMBSTONE) {
12418                 err = -ESRCH;
12419                 goto err_unlock;
12420         }
12421
12422         if (!task) {
12423                 /*
12424                  * Check if the @cpu we're creating an event for is online.
12425                  *
12426                  * We use the perf_cpu_context::ctx::mutex to serialize against
12427                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12428                  */
12429                 struct perf_cpu_context *cpuctx =
12430                         container_of(ctx, struct perf_cpu_context, ctx);
12431                 if (!cpuctx->online) {
12432                         err = -ENODEV;
12433                         goto err_unlock;
12434                 }
12435         }
12436
12437         if (!exclusive_event_installable(event, ctx)) {
12438                 err = -EBUSY;
12439                 goto err_unlock;
12440         }
12441
12442         perf_install_in_context(ctx, event, event->cpu);
12443         perf_unpin_context(ctx);
12444         mutex_unlock(&ctx->mutex);
12445
12446         return event;
12447
12448 err_unlock:
12449         mutex_unlock(&ctx->mutex);
12450         perf_unpin_context(ctx);
12451         put_ctx(ctx);
12452 err_free:
12453         free_event(event);
12454 err:
12455         return ERR_PTR(err);
12456 }
12457 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12458
12459 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12460 {
12461         struct perf_event_context *src_ctx;
12462         struct perf_event_context *dst_ctx;
12463         struct perf_event *event, *tmp;
12464         LIST_HEAD(events);
12465
12466         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
12467         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
12468
12469         /*
12470          * See perf_event_ctx_lock() for comments on the details
12471          * of swizzling perf_event::ctx.
12472          */
12473         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
12474         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
12475                                  event_entry) {
12476                 perf_remove_from_context(event, 0);
12477                 unaccount_event_cpu(event, src_cpu);
12478                 put_ctx(src_ctx);
12479                 list_add(&event->migrate_entry, &events);
12480         }
12481
12482         /*
12483          * Wait for the events to quiesce before re-instating them.
12484          */
12485         synchronize_rcu();
12486
12487         /*
12488          * Re-instate events in 2 passes.
12489          *
12490          * Skip over group leaders and only install siblings on this first
12491          * pass, siblings will not get enabled without a leader, however a
12492          * leader will enable its siblings, even if those are still on the old
12493          * context.
12494          */
12495         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12496                 if (event->group_leader == event)
12497                         continue;
12498
12499                 list_del(&event->migrate_entry);
12500                 if (event->state >= PERF_EVENT_STATE_OFF)
12501                         event->state = PERF_EVENT_STATE_INACTIVE;
12502                 account_event_cpu(event, dst_cpu);
12503                 perf_install_in_context(dst_ctx, event, dst_cpu);
12504                 get_ctx(dst_ctx);
12505         }
12506
12507         /*
12508          * Once all the siblings are setup properly, install the group leaders
12509          * to make it go.
12510          */
12511         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12512                 list_del(&event->migrate_entry);
12513                 if (event->state >= PERF_EVENT_STATE_OFF)
12514                         event->state = PERF_EVENT_STATE_INACTIVE;
12515                 account_event_cpu(event, dst_cpu);
12516                 perf_install_in_context(dst_ctx, event, dst_cpu);
12517                 get_ctx(dst_ctx);
12518         }
12519         mutex_unlock(&dst_ctx->mutex);
12520         mutex_unlock(&src_ctx->mutex);
12521 }
12522 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12523
12524 static void sync_child_event(struct perf_event *child_event)
12525 {
12526         struct perf_event *parent_event = child_event->parent;
12527         u64 child_val;
12528
12529         if (child_event->attr.inherit_stat) {
12530                 struct task_struct *task = child_event->ctx->task;
12531
12532                 if (task && task != TASK_TOMBSTONE)
12533                         perf_event_read_event(child_event, task);
12534         }
12535
12536         child_val = perf_event_count(child_event);
12537
12538         /*
12539          * Add back the child's count to the parent's count:
12540          */
12541         atomic64_add(child_val, &parent_event->child_count);
12542         atomic64_add(child_event->total_time_enabled,
12543                      &parent_event->child_total_time_enabled);
12544         atomic64_add(child_event->total_time_running,
12545                      &parent_event->child_total_time_running);
12546 }
12547
12548 static void
12549 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
12550 {
12551         struct perf_event *parent_event = event->parent;
12552         unsigned long detach_flags = 0;
12553
12554         if (parent_event) {
12555                 /*
12556                  * Do not destroy the 'original' grouping; because of the
12557                  * context switch optimization the original events could've
12558                  * ended up in a random child task.
12559                  *
12560                  * If we were to destroy the original group, all group related
12561                  * operations would cease to function properly after this
12562                  * random child dies.
12563                  *
12564                  * Do destroy all inherited groups, we don't care about those
12565                  * and being thorough is better.
12566                  */
12567                 detach_flags = DETACH_GROUP | DETACH_CHILD;
12568                 mutex_lock(&parent_event->child_mutex);
12569         }
12570
12571         perf_remove_from_context(event, detach_flags);
12572
12573         raw_spin_lock_irq(&ctx->lock);
12574         if (event->state > PERF_EVENT_STATE_EXIT)
12575                 perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
12576         raw_spin_unlock_irq(&ctx->lock);
12577
12578         /*
12579          * Child events can be freed.
12580          */
12581         if (parent_event) {
12582                 mutex_unlock(&parent_event->child_mutex);
12583                 /*
12584                  * Kick perf_poll() for is_event_hup();
12585                  */
12586                 perf_event_wakeup(parent_event);
12587                 free_event(event);
12588                 put_event(parent_event);
12589                 return;
12590         }
12591
12592         /*
12593          * Parent events are governed by their filedesc, retain them.
12594          */
12595         perf_event_wakeup(event);
12596 }
12597
12598 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
12599 {
12600         struct perf_event_context *child_ctx, *clone_ctx = NULL;
12601         struct perf_event *child_event, *next;
12602
12603         WARN_ON_ONCE(child != current);
12604
12605         child_ctx = perf_pin_task_context(child, ctxn);
12606         if (!child_ctx)
12607                 return;
12608
12609         /*
12610          * In order to reduce the amount of tricky in ctx tear-down, we hold
12611          * ctx::mutex over the entire thing. This serializes against almost
12612          * everything that wants to access the ctx.
12613          *
12614          * The exception is sys_perf_event_open() /
12615          * perf_event_create_kernel_count() which does find_get_context()
12616          * without ctx::mutex (it cannot because of the move_group double mutex
12617          * lock thing). See the comments in perf_install_in_context().
12618          */
12619         mutex_lock(&child_ctx->mutex);
12620
12621         /*
12622          * In a single ctx::lock section, de-schedule the events and detach the
12623          * context from the task such that we cannot ever get it scheduled back
12624          * in.
12625          */
12626         raw_spin_lock_irq(&child_ctx->lock);
12627         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
12628
12629         /*
12630          * Now that the context is inactive, destroy the task <-> ctx relation
12631          * and mark the context dead.
12632          */
12633         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
12634         put_ctx(child_ctx); /* cannot be last */
12635         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
12636         put_task_struct(current); /* cannot be last */
12637
12638         clone_ctx = unclone_ctx(child_ctx);
12639         raw_spin_unlock_irq(&child_ctx->lock);
12640
12641         if (clone_ctx)
12642                 put_ctx(clone_ctx);
12643
12644         /*
12645          * Report the task dead after unscheduling the events so that we
12646          * won't get any samples after PERF_RECORD_EXIT. We can however still
12647          * get a few PERF_RECORD_READ events.
12648          */
12649         perf_event_task(child, child_ctx, 0);
12650
12651         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
12652                 perf_event_exit_event(child_event, child_ctx);
12653
12654         mutex_unlock(&child_ctx->mutex);
12655
12656         put_ctx(child_ctx);
12657 }
12658
12659 /*
12660  * When a child task exits, feed back event values to parent events.
12661  *
12662  * Can be called with exec_update_lock held when called from
12663  * setup_new_exec().
12664  */
12665 void perf_event_exit_task(struct task_struct *child)
12666 {
12667         struct perf_event *event, *tmp;
12668         int ctxn;
12669
12670         mutex_lock(&child->perf_event_mutex);
12671         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
12672                                  owner_entry) {
12673                 list_del_init(&event->owner_entry);
12674
12675                 /*
12676                  * Ensure the list deletion is visible before we clear
12677                  * the owner, closes a race against perf_release() where
12678                  * we need to serialize on the owner->perf_event_mutex.
12679                  */
12680                 smp_store_release(&event->owner, NULL);
12681         }
12682         mutex_unlock(&child->perf_event_mutex);
12683
12684         for_each_task_context_nr(ctxn)
12685                 perf_event_exit_task_context(child, ctxn);
12686
12687         /*
12688          * The perf_event_exit_task_context calls perf_event_task
12689          * with child's task_ctx, which generates EXIT events for
12690          * child contexts and sets child->perf_event_ctxp[] to NULL.
12691          * At this point we need to send EXIT events to cpu contexts.
12692          */
12693         perf_event_task(child, NULL, 0);
12694 }
12695
12696 static void perf_free_event(struct perf_event *event,
12697                             struct perf_event_context *ctx)
12698 {
12699         struct perf_event *parent = event->parent;
12700
12701         if (WARN_ON_ONCE(!parent))
12702                 return;
12703
12704         mutex_lock(&parent->child_mutex);
12705         list_del_init(&event->child_list);
12706         mutex_unlock(&parent->child_mutex);
12707
12708         put_event(parent);
12709
12710         raw_spin_lock_irq(&ctx->lock);
12711         perf_group_detach(event);
12712         list_del_event(event, ctx);
12713         raw_spin_unlock_irq(&ctx->lock);
12714         free_event(event);
12715 }
12716
12717 /*
12718  * Free a context as created by inheritance by perf_event_init_task() below,
12719  * used by fork() in case of fail.
12720  *
12721  * Even though the task has never lived, the context and events have been
12722  * exposed through the child_list, so we must take care tearing it all down.
12723  */
12724 void perf_event_free_task(struct task_struct *task)
12725 {
12726         struct perf_event_context *ctx;
12727         struct perf_event *event, *tmp;
12728         int ctxn;
12729
12730         for_each_task_context_nr(ctxn) {
12731                 ctx = task->perf_event_ctxp[ctxn];
12732                 if (!ctx)
12733                         continue;
12734
12735                 mutex_lock(&ctx->mutex);
12736                 raw_spin_lock_irq(&ctx->lock);
12737                 /*
12738                  * Destroy the task <-> ctx relation and mark the context dead.
12739                  *
12740                  * This is important because even though the task hasn't been
12741                  * exposed yet the context has been (through child_list).
12742                  */
12743                 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
12744                 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
12745                 put_task_struct(task); /* cannot be last */
12746                 raw_spin_unlock_irq(&ctx->lock);
12747
12748                 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
12749                         perf_free_event(event, ctx);
12750
12751                 mutex_unlock(&ctx->mutex);
12752
12753                 /*
12754                  * perf_event_release_kernel() could've stolen some of our
12755                  * child events and still have them on its free_list. In that
12756                  * case we must wait for these events to have been freed (in
12757                  * particular all their references to this task must've been
12758                  * dropped).
12759                  *
12760                  * Without this copy_process() will unconditionally free this
12761                  * task (irrespective of its reference count) and
12762                  * _free_event()'s put_task_struct(event->hw.target) will be a
12763                  * use-after-free.
12764                  *
12765                  * Wait for all events to drop their context reference.
12766                  */
12767                 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
12768                 put_ctx(ctx); /* must be last */
12769         }
12770 }
12771
12772 void perf_event_delayed_put(struct task_struct *task)
12773 {
12774         int ctxn;
12775
12776         for_each_task_context_nr(ctxn)
12777                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
12778 }
12779
12780 struct file *perf_event_get(unsigned int fd)
12781 {
12782         struct file *file = fget(fd);
12783         if (!file)
12784                 return ERR_PTR(-EBADF);
12785
12786         if (file->f_op != &perf_fops) {
12787                 fput(file);
12788                 return ERR_PTR(-EBADF);
12789         }
12790
12791         return file;
12792 }
12793
12794 const struct perf_event *perf_get_event(struct file *file)
12795 {
12796         if (file->f_op != &perf_fops)
12797                 return ERR_PTR(-EINVAL);
12798
12799         return file->private_data;
12800 }
12801
12802 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
12803 {
12804         if (!event)
12805                 return ERR_PTR(-EINVAL);
12806
12807         return &event->attr;
12808 }
12809
12810 /*
12811  * Inherit an event from parent task to child task.
12812  *
12813  * Returns:
12814  *  - valid pointer on success
12815  *  - NULL for orphaned events
12816  *  - IS_ERR() on error
12817  */
12818 static struct perf_event *
12819 inherit_event(struct perf_event *parent_event,
12820               struct task_struct *parent,
12821               struct perf_event_context *parent_ctx,
12822               struct task_struct *child,
12823               struct perf_event *group_leader,
12824               struct perf_event_context *child_ctx)
12825 {
12826         enum perf_event_state parent_state = parent_event->state;
12827         struct perf_event *child_event;
12828         unsigned long flags;
12829
12830         /*
12831          * Instead of creating recursive hierarchies of events,
12832          * we link inherited events back to the original parent,
12833          * which has a filp for sure, which we use as the reference
12834          * count:
12835          */
12836         if (parent_event->parent)
12837                 parent_event = parent_event->parent;
12838
12839         child_event = perf_event_alloc(&parent_event->attr,
12840                                            parent_event->cpu,
12841                                            child,
12842                                            group_leader, parent_event,
12843                                            NULL, NULL, -1);
12844         if (IS_ERR(child_event))
12845                 return child_event;
12846
12847
12848         if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
12849             !child_ctx->task_ctx_data) {
12850                 struct pmu *pmu = child_event->pmu;
12851
12852                 child_ctx->task_ctx_data = alloc_task_ctx_data(pmu);
12853                 if (!child_ctx->task_ctx_data) {
12854                         free_event(child_event);
12855                         return ERR_PTR(-ENOMEM);
12856                 }
12857         }
12858
12859         /*
12860          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
12861          * must be under the same lock in order to serialize against
12862          * perf_event_release_kernel(), such that either we must observe
12863          * is_orphaned_event() or they will observe us on the child_list.
12864          */
12865         mutex_lock(&parent_event->child_mutex);
12866         if (is_orphaned_event(parent_event) ||
12867             !atomic_long_inc_not_zero(&parent_event->refcount)) {
12868                 mutex_unlock(&parent_event->child_mutex);
12869                 /* task_ctx_data is freed with child_ctx */
12870                 free_event(child_event);
12871                 return NULL;
12872         }
12873
12874         get_ctx(child_ctx);
12875
12876         /*
12877          * Make the child state follow the state of the parent event,
12878          * not its attr.disabled bit.  We hold the parent's mutex,
12879          * so we won't race with perf_event_{en, dis}able_family.
12880          */
12881         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
12882                 child_event->state = PERF_EVENT_STATE_INACTIVE;
12883         else
12884                 child_event->state = PERF_EVENT_STATE_OFF;
12885
12886         if (parent_event->attr.freq) {
12887                 u64 sample_period = parent_event->hw.sample_period;
12888                 struct hw_perf_event *hwc = &child_event->hw;
12889
12890                 hwc->sample_period = sample_period;
12891                 hwc->last_period   = sample_period;
12892
12893                 local64_set(&hwc->period_left, sample_period);
12894         }
12895
12896         child_event->ctx = child_ctx;
12897         child_event->overflow_handler = parent_event->overflow_handler;
12898         child_event->overflow_handler_context
12899                 = parent_event->overflow_handler_context;
12900
12901         /*
12902          * Precalculate sample_data sizes
12903          */
12904         perf_event__header_size(child_event);
12905         perf_event__id_header_size(child_event);
12906
12907         /*
12908          * Link it up in the child's context:
12909          */
12910         raw_spin_lock_irqsave(&child_ctx->lock, flags);
12911         add_event_to_ctx(child_event, child_ctx);
12912         child_event->attach_state |= PERF_ATTACH_CHILD;
12913         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
12914
12915         /*
12916          * Link this into the parent event's child list
12917          */
12918         list_add_tail(&child_event->child_list, &parent_event->child_list);
12919         mutex_unlock(&parent_event->child_mutex);
12920
12921         return child_event;
12922 }
12923
12924 /*
12925  * Inherits an event group.
12926  *
12927  * This will quietly suppress orphaned events; !inherit_event() is not an error.
12928  * This matches with perf_event_release_kernel() removing all child events.
12929  *
12930  * Returns:
12931  *  - 0 on success
12932  *  - <0 on error
12933  */
12934 static int inherit_group(struct perf_event *parent_event,
12935               struct task_struct *parent,
12936               struct perf_event_context *parent_ctx,
12937               struct task_struct *child,
12938               struct perf_event_context *child_ctx)
12939 {
12940         struct perf_event *leader;
12941         struct perf_event *sub;
12942         struct perf_event *child_ctr;
12943
12944         leader = inherit_event(parent_event, parent, parent_ctx,
12945                                  child, NULL, child_ctx);
12946         if (IS_ERR(leader))
12947                 return PTR_ERR(leader);
12948         /*
12949          * @leader can be NULL here because of is_orphaned_event(). In this
12950          * case inherit_event() will create individual events, similar to what
12951          * perf_group_detach() would do anyway.
12952          */
12953         for_each_sibling_event(sub, parent_event) {
12954                 child_ctr = inherit_event(sub, parent, parent_ctx,
12955                                             child, leader, child_ctx);
12956                 if (IS_ERR(child_ctr))
12957                         return PTR_ERR(child_ctr);
12958
12959                 if (sub->aux_event == parent_event && child_ctr &&
12960                     !perf_get_aux_event(child_ctr, leader))
12961                         return -EINVAL;
12962         }
12963         return 0;
12964 }
12965
12966 /*
12967  * Creates the child task context and tries to inherit the event-group.
12968  *
12969  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
12970  * inherited_all set when we 'fail' to inherit an orphaned event; this is
12971  * consistent with perf_event_release_kernel() removing all child events.
12972  *
12973  * Returns:
12974  *  - 0 on success
12975  *  - <0 on error
12976  */
12977 static int
12978 inherit_task_group(struct perf_event *event, struct task_struct *parent,
12979                    struct perf_event_context *parent_ctx,
12980                    struct task_struct *child, int ctxn,
12981                    u64 clone_flags, int *inherited_all)
12982 {
12983         int ret;
12984         struct perf_event_context *child_ctx;
12985
12986         if (!event->attr.inherit ||
12987             (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
12988             /* Do not inherit if sigtrap and signal handlers were cleared. */
12989             (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
12990                 *inherited_all = 0;
12991                 return 0;
12992         }
12993
12994         child_ctx = child->perf_event_ctxp[ctxn];
12995         if (!child_ctx) {
12996                 /*
12997                  * This is executed from the parent task context, so
12998                  * inherit events that have been marked for cloning.
12999                  * First allocate and initialize a context for the
13000                  * child.
13001                  */
13002                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
13003                 if (!child_ctx)
13004                         return -ENOMEM;
13005
13006                 child->perf_event_ctxp[ctxn] = child_ctx;
13007         }
13008
13009         ret = inherit_group(event, parent, parent_ctx,
13010                             child, child_ctx);
13011
13012         if (ret)
13013                 *inherited_all = 0;
13014
13015         return ret;
13016 }
13017
13018 /*
13019  * Initialize the perf_event context in task_struct
13020  */
13021 static int perf_event_init_context(struct task_struct *child, int ctxn,
13022                                    u64 clone_flags)
13023 {
13024         struct perf_event_context *child_ctx, *parent_ctx;
13025         struct perf_event_context *cloned_ctx;
13026         struct perf_event *event;
13027         struct task_struct *parent = current;
13028         int inherited_all = 1;
13029         unsigned long flags;
13030         int ret = 0;
13031
13032         if (likely(!parent->perf_event_ctxp[ctxn]))
13033                 return 0;
13034
13035         /*
13036          * If the parent's context is a clone, pin it so it won't get
13037          * swapped under us.
13038          */
13039         parent_ctx = perf_pin_task_context(parent, ctxn);
13040         if (!parent_ctx)
13041                 return 0;
13042
13043         /*
13044          * No need to check if parent_ctx != NULL here; since we saw
13045          * it non-NULL earlier, the only reason for it to become NULL
13046          * is if we exit, and since we're currently in the middle of
13047          * a fork we can't be exiting at the same time.
13048          */
13049
13050         /*
13051          * Lock the parent list. No need to lock the child - not PID
13052          * hashed yet and not running, so nobody can access it.
13053          */
13054         mutex_lock(&parent_ctx->mutex);
13055
13056         /*
13057          * We dont have to disable NMIs - we are only looking at
13058          * the list, not manipulating it:
13059          */
13060         perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13061                 ret = inherit_task_group(event, parent, parent_ctx,
13062                                          child, ctxn, clone_flags,
13063                                          &inherited_all);
13064                 if (ret)
13065                         goto out_unlock;
13066         }
13067
13068         /*
13069          * We can't hold ctx->lock when iterating the ->flexible_group list due
13070          * to allocations, but we need to prevent rotation because
13071          * rotate_ctx() will change the list from interrupt context.
13072          */
13073         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13074         parent_ctx->rotate_disable = 1;
13075         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13076
13077         perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13078                 ret = inherit_task_group(event, parent, parent_ctx,
13079                                          child, ctxn, clone_flags,
13080                                          &inherited_all);
13081                 if (ret)
13082                         goto out_unlock;
13083         }
13084
13085         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13086         parent_ctx->rotate_disable = 0;
13087
13088         child_ctx = child->perf_event_ctxp[ctxn];
13089
13090         if (child_ctx && inherited_all) {
13091                 /*
13092                  * Mark the child context as a clone of the parent
13093                  * context, or of whatever the parent is a clone of.
13094                  *
13095                  * Note that if the parent is a clone, the holding of
13096                  * parent_ctx->lock avoids it from being uncloned.
13097                  */
13098                 cloned_ctx = parent_ctx->parent_ctx;
13099                 if (cloned_ctx) {
13100                         child_ctx->parent_ctx = cloned_ctx;
13101                         child_ctx->parent_gen = parent_ctx->parent_gen;
13102                 } else {
13103                         child_ctx->parent_ctx = parent_ctx;
13104                         child_ctx->parent_gen = parent_ctx->generation;
13105                 }
13106                 get_ctx(child_ctx->parent_ctx);
13107         }
13108
13109         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13110 out_unlock:
13111         mutex_unlock(&parent_ctx->mutex);
13112
13113         perf_unpin_context(parent_ctx);
13114         put_ctx(parent_ctx);
13115
13116         return ret;
13117 }
13118
13119 /*
13120  * Initialize the perf_event context in task_struct
13121  */
13122 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13123 {
13124         int ctxn, ret;
13125
13126         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
13127         mutex_init(&child->perf_event_mutex);
13128         INIT_LIST_HEAD(&child->perf_event_list);
13129
13130         for_each_task_context_nr(ctxn) {
13131                 ret = perf_event_init_context(child, ctxn, clone_flags);
13132                 if (ret) {
13133                         perf_event_free_task(child);
13134                         return ret;
13135                 }
13136         }
13137
13138         return 0;
13139 }
13140
13141 static void __init perf_event_init_all_cpus(void)
13142 {
13143         struct swevent_htable *swhash;
13144         int cpu;
13145
13146         zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13147
13148         for_each_possible_cpu(cpu) {
13149                 swhash = &per_cpu(swevent_htable, cpu);
13150                 mutex_init(&swhash->hlist_mutex);
13151                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
13152
13153                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13154                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13155
13156 #ifdef CONFIG_CGROUP_PERF
13157                 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
13158 #endif
13159                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13160         }
13161 }
13162
13163 static void perf_swevent_init_cpu(unsigned int cpu)
13164 {
13165         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13166
13167         mutex_lock(&swhash->hlist_mutex);
13168         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13169                 struct swevent_hlist *hlist;
13170
13171                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13172                 WARN_ON(!hlist);
13173                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
13174         }
13175         mutex_unlock(&swhash->hlist_mutex);
13176 }
13177
13178 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
13179 static void __perf_event_exit_context(void *__info)
13180 {
13181         struct perf_event_context *ctx = __info;
13182         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
13183         struct perf_event *event;
13184
13185         raw_spin_lock(&ctx->lock);
13186         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
13187         list_for_each_entry(event, &ctx->event_list, event_entry)
13188                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13189         raw_spin_unlock(&ctx->lock);
13190 }
13191
13192 static void perf_event_exit_cpu_context(int cpu)
13193 {
13194         struct perf_cpu_context *cpuctx;
13195         struct perf_event_context *ctx;
13196         struct pmu *pmu;
13197
13198         mutex_lock(&pmus_lock);
13199         list_for_each_entry(pmu, &pmus, entry) {
13200                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13201                 ctx = &cpuctx->ctx;
13202
13203                 mutex_lock(&ctx->mutex);
13204                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13205                 cpuctx->online = 0;
13206                 mutex_unlock(&ctx->mutex);
13207         }
13208         cpumask_clear_cpu(cpu, perf_online_mask);
13209         mutex_unlock(&pmus_lock);
13210 }
13211 #else
13212
13213 static void perf_event_exit_cpu_context(int cpu) { }
13214
13215 #endif
13216
13217 int perf_event_init_cpu(unsigned int cpu)
13218 {
13219         struct perf_cpu_context *cpuctx;
13220         struct perf_event_context *ctx;
13221         struct pmu *pmu;
13222
13223         perf_swevent_init_cpu(cpu);
13224
13225         mutex_lock(&pmus_lock);
13226         cpumask_set_cpu(cpu, perf_online_mask);
13227         list_for_each_entry(pmu, &pmus, entry) {
13228                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13229                 ctx = &cpuctx->ctx;
13230
13231                 mutex_lock(&ctx->mutex);
13232                 cpuctx->online = 1;
13233                 mutex_unlock(&ctx->mutex);
13234         }
13235         mutex_unlock(&pmus_lock);
13236
13237         return 0;
13238 }
13239
13240 int perf_event_exit_cpu(unsigned int cpu)
13241 {
13242         perf_event_exit_cpu_context(cpu);
13243         return 0;
13244 }
13245
13246 static int
13247 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13248 {
13249         int cpu;
13250
13251         for_each_online_cpu(cpu)
13252                 perf_event_exit_cpu(cpu);
13253
13254         return NOTIFY_OK;
13255 }
13256
13257 /*
13258  * Run the perf reboot notifier at the very last possible moment so that
13259  * the generic watchdog code runs as long as possible.
13260  */
13261 static struct notifier_block perf_reboot_notifier = {
13262         .notifier_call = perf_reboot,
13263         .priority = INT_MIN,
13264 };
13265
13266 void __init perf_event_init(void)
13267 {
13268         int ret;
13269
13270         idr_init(&pmu_idr);
13271
13272         perf_event_init_all_cpus();
13273         init_srcu_struct(&pmus_srcu);
13274         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13275         perf_pmu_register(&perf_cpu_clock, NULL, -1);
13276         perf_pmu_register(&perf_task_clock, NULL, -1);
13277         perf_tp_register();
13278         perf_event_init_cpu(smp_processor_id());
13279         register_reboot_notifier(&perf_reboot_notifier);
13280
13281         ret = init_hw_breakpoint();
13282         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13283
13284         perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
13285
13286         /*
13287          * Build time assertion that we keep the data_head at the intended
13288          * location.  IOW, validation we got the __reserved[] size right.
13289          */
13290         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13291                      != 1024);
13292 }
13293
13294 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13295                               char *page)
13296 {
13297         struct perf_pmu_events_attr *pmu_attr =
13298                 container_of(attr, struct perf_pmu_events_attr, attr);
13299
13300         if (pmu_attr->event_str)
13301                 return sprintf(page, "%s\n", pmu_attr->event_str);
13302
13303         return 0;
13304 }
13305 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13306
13307 static int __init perf_event_sysfs_init(void)
13308 {
13309         struct pmu *pmu;
13310         int ret;
13311
13312         mutex_lock(&pmus_lock);
13313
13314         ret = bus_register(&pmu_bus);
13315         if (ret)
13316                 goto unlock;
13317
13318         list_for_each_entry(pmu, &pmus, entry) {
13319                 if (!pmu->name || pmu->type < 0)
13320                         continue;
13321
13322                 ret = pmu_dev_alloc(pmu);
13323                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13324         }
13325         pmu_bus_running = 1;
13326         ret = 0;
13327
13328 unlock:
13329         mutex_unlock(&pmus_lock);
13330
13331         return ret;
13332 }
13333 device_initcall(perf_event_sysfs_init);
13334
13335 #ifdef CONFIG_CGROUP_PERF
13336 static struct cgroup_subsys_state *
13337 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13338 {
13339         struct perf_cgroup *jc;
13340
13341         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13342         if (!jc)
13343                 return ERR_PTR(-ENOMEM);
13344
13345         jc->info = alloc_percpu(struct perf_cgroup_info);
13346         if (!jc->info) {
13347                 kfree(jc);
13348                 return ERR_PTR(-ENOMEM);
13349         }
13350
13351         return &jc->css;
13352 }
13353
13354 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13355 {
13356         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13357
13358         free_percpu(jc->info);
13359         kfree(jc);
13360 }
13361
13362 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13363 {
13364         perf_event_cgroup(css->cgroup);
13365         return 0;
13366 }
13367
13368 static int __perf_cgroup_move(void *info)
13369 {
13370         struct task_struct *task = info;
13371         rcu_read_lock();
13372         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
13373         rcu_read_unlock();
13374         return 0;
13375 }
13376
13377 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13378 {
13379         struct task_struct *task;
13380         struct cgroup_subsys_state *css;
13381
13382         cgroup_taskset_for_each(task, css, tset)
13383                 task_function_call(task, __perf_cgroup_move, task);
13384 }
13385
13386 struct cgroup_subsys perf_event_cgrp_subsys = {
13387         .css_alloc      = perf_cgroup_css_alloc,
13388         .css_free       = perf_cgroup_css_free,
13389         .css_online     = perf_cgroup_css_online,
13390         .attach         = perf_cgroup_attach,
13391         /*
13392          * Implicitly enable on dfl hierarchy so that perf events can
13393          * always be filtered by cgroup2 path as long as perf_event
13394          * controller is not mounted on a legacy hierarchy.
13395          */
13396         .implicit_on_dfl = true,
13397         .threaded       = true,
13398 };
13399 #endif /* CONFIG_CGROUP_PERF */