Merge tag 'denywrite-for-5.15' of git://github.com/davidhildenbrand/linux
[linux-2.6-microblaze.git] / kernel / events / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57
58 #include "internal.h"
59
60 #include <asm/irq_regs.h>
61
62 typedef int (*remote_function_f)(void *);
63
64 struct remote_function_call {
65         struct task_struct      *p;
66         remote_function_f       func;
67         void                    *info;
68         int                     ret;
69 };
70
71 static void remote_function(void *data)
72 {
73         struct remote_function_call *tfc = data;
74         struct task_struct *p = tfc->p;
75
76         if (p) {
77                 /* -EAGAIN */
78                 if (task_cpu(p) != smp_processor_id())
79                         return;
80
81                 /*
82                  * Now that we're on right CPU with IRQs disabled, we can test
83                  * if we hit the right task without races.
84                  */
85
86                 tfc->ret = -ESRCH; /* No such (running) process */
87                 if (p != current)
88                         return;
89         }
90
91         tfc->ret = tfc->func(tfc->info);
92 }
93
94 /**
95  * task_function_call - call a function on the cpu on which a task runs
96  * @p:          the task to evaluate
97  * @func:       the function to be called
98  * @info:       the function call argument
99  *
100  * Calls the function @func when the task is currently running. This might
101  * be on the current CPU, which just calls the function directly.  This will
102  * retry due to any failures in smp_call_function_single(), such as if the
103  * task_cpu() goes offline concurrently.
104  *
105  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
106  */
107 static int
108 task_function_call(struct task_struct *p, remote_function_f func, void *info)
109 {
110         struct remote_function_call data = {
111                 .p      = p,
112                 .func   = func,
113                 .info   = info,
114                 .ret    = -EAGAIN,
115         };
116         int ret;
117
118         for (;;) {
119                 ret = smp_call_function_single(task_cpu(p), remote_function,
120                                                &data, 1);
121                 if (!ret)
122                         ret = data.ret;
123
124                 if (ret != -EAGAIN)
125                         break;
126
127                 cond_resched();
128         }
129
130         return ret;
131 }
132
133 /**
134  * cpu_function_call - call a function on the cpu
135  * @cpu:        target cpu to queue this function
136  * @func:       the function to be called
137  * @info:       the function call argument
138  *
139  * Calls the function @func on the remote cpu.
140  *
141  * returns: @func return value or -ENXIO when the cpu is offline
142  */
143 static int cpu_function_call(int cpu, remote_function_f func, void *info)
144 {
145         struct remote_function_call data = {
146                 .p      = NULL,
147                 .func   = func,
148                 .info   = info,
149                 .ret    = -ENXIO, /* No such CPU */
150         };
151
152         smp_call_function_single(cpu, remote_function, &data, 1);
153
154         return data.ret;
155 }
156
157 static inline struct perf_cpu_context *
158 __get_cpu_context(struct perf_event_context *ctx)
159 {
160         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
161 }
162
163 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
164                           struct perf_event_context *ctx)
165 {
166         raw_spin_lock(&cpuctx->ctx.lock);
167         if (ctx)
168                 raw_spin_lock(&ctx->lock);
169 }
170
171 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
172                             struct perf_event_context *ctx)
173 {
174         if (ctx)
175                 raw_spin_unlock(&ctx->lock);
176         raw_spin_unlock(&cpuctx->ctx.lock);
177 }
178
179 #define TASK_TOMBSTONE ((void *)-1L)
180
181 static bool is_kernel_event(struct perf_event *event)
182 {
183         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
184 }
185
186 /*
187  * On task ctx scheduling...
188  *
189  * When !ctx->nr_events a task context will not be scheduled. This means
190  * we can disable the scheduler hooks (for performance) without leaving
191  * pending task ctx state.
192  *
193  * This however results in two special cases:
194  *
195  *  - removing the last event from a task ctx; this is relatively straight
196  *    forward and is done in __perf_remove_from_context.
197  *
198  *  - adding the first event to a task ctx; this is tricky because we cannot
199  *    rely on ctx->is_active and therefore cannot use event_function_call().
200  *    See perf_install_in_context().
201  *
202  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
203  */
204
205 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
206                         struct perf_event_context *, void *);
207
208 struct event_function_struct {
209         struct perf_event *event;
210         event_f func;
211         void *data;
212 };
213
214 static int event_function(void *info)
215 {
216         struct event_function_struct *efs = info;
217         struct perf_event *event = efs->event;
218         struct perf_event_context *ctx = event->ctx;
219         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
220         struct perf_event_context *task_ctx = cpuctx->task_ctx;
221         int ret = 0;
222
223         lockdep_assert_irqs_disabled();
224
225         perf_ctx_lock(cpuctx, task_ctx);
226         /*
227          * Since we do the IPI call without holding ctx->lock things can have
228          * changed, double check we hit the task we set out to hit.
229          */
230         if (ctx->task) {
231                 if (ctx->task != current) {
232                         ret = -ESRCH;
233                         goto unlock;
234                 }
235
236                 /*
237                  * We only use event_function_call() on established contexts,
238                  * and event_function() is only ever called when active (or
239                  * rather, we'll have bailed in task_function_call() or the
240                  * above ctx->task != current test), therefore we must have
241                  * ctx->is_active here.
242                  */
243                 WARN_ON_ONCE(!ctx->is_active);
244                 /*
245                  * And since we have ctx->is_active, cpuctx->task_ctx must
246                  * match.
247                  */
248                 WARN_ON_ONCE(task_ctx != ctx);
249         } else {
250                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
251         }
252
253         efs->func(event, cpuctx, ctx, efs->data);
254 unlock:
255         perf_ctx_unlock(cpuctx, task_ctx);
256
257         return ret;
258 }
259
260 static void event_function_call(struct perf_event *event, event_f func, void *data)
261 {
262         struct perf_event_context *ctx = event->ctx;
263         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
264         struct event_function_struct efs = {
265                 .event = event,
266                 .func = func,
267                 .data = data,
268         };
269
270         if (!event->parent) {
271                 /*
272                  * If this is a !child event, we must hold ctx::mutex to
273                  * stabilize the event->ctx relation. See
274                  * perf_event_ctx_lock().
275                  */
276                 lockdep_assert_held(&ctx->mutex);
277         }
278
279         if (!task) {
280                 cpu_function_call(event->cpu, event_function, &efs);
281                 return;
282         }
283
284         if (task == TASK_TOMBSTONE)
285                 return;
286
287 again:
288         if (!task_function_call(task, event_function, &efs))
289                 return;
290
291         raw_spin_lock_irq(&ctx->lock);
292         /*
293          * Reload the task pointer, it might have been changed by
294          * a concurrent perf_event_context_sched_out().
295          */
296         task = ctx->task;
297         if (task == TASK_TOMBSTONE) {
298                 raw_spin_unlock_irq(&ctx->lock);
299                 return;
300         }
301         if (ctx->is_active) {
302                 raw_spin_unlock_irq(&ctx->lock);
303                 goto again;
304         }
305         func(event, NULL, ctx, data);
306         raw_spin_unlock_irq(&ctx->lock);
307 }
308
309 /*
310  * Similar to event_function_call() + event_function(), but hard assumes IRQs
311  * are already disabled and we're on the right CPU.
312  */
313 static void event_function_local(struct perf_event *event, event_f func, void *data)
314 {
315         struct perf_event_context *ctx = event->ctx;
316         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
317         struct task_struct *task = READ_ONCE(ctx->task);
318         struct perf_event_context *task_ctx = NULL;
319
320         lockdep_assert_irqs_disabled();
321
322         if (task) {
323                 if (task == TASK_TOMBSTONE)
324                         return;
325
326                 task_ctx = ctx;
327         }
328
329         perf_ctx_lock(cpuctx, task_ctx);
330
331         task = ctx->task;
332         if (task == TASK_TOMBSTONE)
333                 goto unlock;
334
335         if (task) {
336                 /*
337                  * We must be either inactive or active and the right task,
338                  * otherwise we're screwed, since we cannot IPI to somewhere
339                  * else.
340                  */
341                 if (ctx->is_active) {
342                         if (WARN_ON_ONCE(task != current))
343                                 goto unlock;
344
345                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
346                                 goto unlock;
347                 }
348         } else {
349                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
350         }
351
352         func(event, cpuctx, ctx, data);
353 unlock:
354         perf_ctx_unlock(cpuctx, task_ctx);
355 }
356
357 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
358                        PERF_FLAG_FD_OUTPUT  |\
359                        PERF_FLAG_PID_CGROUP |\
360                        PERF_FLAG_FD_CLOEXEC)
361
362 /*
363  * branch priv levels that need permission checks
364  */
365 #define PERF_SAMPLE_BRANCH_PERM_PLM \
366         (PERF_SAMPLE_BRANCH_KERNEL |\
367          PERF_SAMPLE_BRANCH_HV)
368
369 enum event_type_t {
370         EVENT_FLEXIBLE = 0x1,
371         EVENT_PINNED = 0x2,
372         EVENT_TIME = 0x4,
373         /* see ctx_resched() for details */
374         EVENT_CPU = 0x8,
375         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
376 };
377
378 /*
379  * perf_sched_events : >0 events exist
380  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
381  */
382
383 static void perf_sched_delayed(struct work_struct *work);
384 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
385 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
386 static DEFINE_MUTEX(perf_sched_mutex);
387 static atomic_t perf_sched_count;
388
389 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
390 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
391 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
392
393 static atomic_t nr_mmap_events __read_mostly;
394 static atomic_t nr_comm_events __read_mostly;
395 static atomic_t nr_namespaces_events __read_mostly;
396 static atomic_t nr_task_events __read_mostly;
397 static atomic_t nr_freq_events __read_mostly;
398 static atomic_t nr_switch_events __read_mostly;
399 static atomic_t nr_ksymbol_events __read_mostly;
400 static atomic_t nr_bpf_events __read_mostly;
401 static atomic_t nr_cgroup_events __read_mostly;
402 static atomic_t nr_text_poke_events __read_mostly;
403 static atomic_t nr_build_id_events __read_mostly;
404
405 static LIST_HEAD(pmus);
406 static DEFINE_MUTEX(pmus_lock);
407 static struct srcu_struct pmus_srcu;
408 static cpumask_var_t perf_online_mask;
409 static struct kmem_cache *perf_event_cache;
410
411 /*
412  * perf event paranoia level:
413  *  -1 - not paranoid at all
414  *   0 - disallow raw tracepoint access for unpriv
415  *   1 - disallow cpu events for unpriv
416  *   2 - disallow kernel profiling for unpriv
417  */
418 int sysctl_perf_event_paranoid __read_mostly = 2;
419
420 /* Minimum for 512 kiB + 1 user control page */
421 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
422
423 /*
424  * max perf event sample rate
425  */
426 #define DEFAULT_MAX_SAMPLE_RATE         100000
427 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
428 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
429
430 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
431
432 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
433 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
434
435 static int perf_sample_allowed_ns __read_mostly =
436         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
437
438 static void update_perf_cpu_limits(void)
439 {
440         u64 tmp = perf_sample_period_ns;
441
442         tmp *= sysctl_perf_cpu_time_max_percent;
443         tmp = div_u64(tmp, 100);
444         if (!tmp)
445                 tmp = 1;
446
447         WRITE_ONCE(perf_sample_allowed_ns, tmp);
448 }
449
450 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
451
452 int perf_proc_update_handler(struct ctl_table *table, int write,
453                 void *buffer, size_t *lenp, loff_t *ppos)
454 {
455         int ret;
456         int perf_cpu = sysctl_perf_cpu_time_max_percent;
457         /*
458          * If throttling is disabled don't allow the write:
459          */
460         if (write && (perf_cpu == 100 || perf_cpu == 0))
461                 return -EINVAL;
462
463         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
464         if (ret || !write)
465                 return ret;
466
467         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
468         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
469         update_perf_cpu_limits();
470
471         return 0;
472 }
473
474 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
475
476 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
477                 void *buffer, size_t *lenp, loff_t *ppos)
478 {
479         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
480
481         if (ret || !write)
482                 return ret;
483
484         if (sysctl_perf_cpu_time_max_percent == 100 ||
485             sysctl_perf_cpu_time_max_percent == 0) {
486                 printk(KERN_WARNING
487                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
488                 WRITE_ONCE(perf_sample_allowed_ns, 0);
489         } else {
490                 update_perf_cpu_limits();
491         }
492
493         return 0;
494 }
495
496 /*
497  * perf samples are done in some very critical code paths (NMIs).
498  * If they take too much CPU time, the system can lock up and not
499  * get any real work done.  This will drop the sample rate when
500  * we detect that events are taking too long.
501  */
502 #define NR_ACCUMULATED_SAMPLES 128
503 static DEFINE_PER_CPU(u64, running_sample_length);
504
505 static u64 __report_avg;
506 static u64 __report_allowed;
507
508 static void perf_duration_warn(struct irq_work *w)
509 {
510         printk_ratelimited(KERN_INFO
511                 "perf: interrupt took too long (%lld > %lld), lowering "
512                 "kernel.perf_event_max_sample_rate to %d\n",
513                 __report_avg, __report_allowed,
514                 sysctl_perf_event_sample_rate);
515 }
516
517 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
518
519 void perf_sample_event_took(u64 sample_len_ns)
520 {
521         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
522         u64 running_len;
523         u64 avg_len;
524         u32 max;
525
526         if (max_len == 0)
527                 return;
528
529         /* Decay the counter by 1 average sample. */
530         running_len = __this_cpu_read(running_sample_length);
531         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
532         running_len += sample_len_ns;
533         __this_cpu_write(running_sample_length, running_len);
534
535         /*
536          * Note: this will be biased artifically low until we have
537          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
538          * from having to maintain a count.
539          */
540         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
541         if (avg_len <= max_len)
542                 return;
543
544         __report_avg = avg_len;
545         __report_allowed = max_len;
546
547         /*
548          * Compute a throttle threshold 25% below the current duration.
549          */
550         avg_len += avg_len / 4;
551         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
552         if (avg_len < max)
553                 max /= (u32)avg_len;
554         else
555                 max = 1;
556
557         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
558         WRITE_ONCE(max_samples_per_tick, max);
559
560         sysctl_perf_event_sample_rate = max * HZ;
561         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
562
563         if (!irq_work_queue(&perf_duration_work)) {
564                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
565                              "kernel.perf_event_max_sample_rate to %d\n",
566                              __report_avg, __report_allowed,
567                              sysctl_perf_event_sample_rate);
568         }
569 }
570
571 static atomic64_t perf_event_id;
572
573 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
574                               enum event_type_t event_type);
575
576 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
577                              enum event_type_t event_type,
578                              struct task_struct *task);
579
580 static void update_context_time(struct perf_event_context *ctx);
581 static u64 perf_event_time(struct perf_event *event);
582
583 void __weak perf_event_print_debug(void)        { }
584
585 static inline u64 perf_clock(void)
586 {
587         return local_clock();
588 }
589
590 static inline u64 perf_event_clock(struct perf_event *event)
591 {
592         return event->clock();
593 }
594
595 /*
596  * State based event timekeeping...
597  *
598  * The basic idea is to use event->state to determine which (if any) time
599  * fields to increment with the current delta. This means we only need to
600  * update timestamps when we change state or when they are explicitly requested
601  * (read).
602  *
603  * Event groups make things a little more complicated, but not terribly so. The
604  * rules for a group are that if the group leader is OFF the entire group is
605  * OFF, irrespecive of what the group member states are. This results in
606  * __perf_effective_state().
607  *
608  * A futher ramification is that when a group leader flips between OFF and
609  * !OFF, we need to update all group member times.
610  *
611  *
612  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
613  * need to make sure the relevant context time is updated before we try and
614  * update our timestamps.
615  */
616
617 static __always_inline enum perf_event_state
618 __perf_effective_state(struct perf_event *event)
619 {
620         struct perf_event *leader = event->group_leader;
621
622         if (leader->state <= PERF_EVENT_STATE_OFF)
623                 return leader->state;
624
625         return event->state;
626 }
627
628 static __always_inline void
629 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
630 {
631         enum perf_event_state state = __perf_effective_state(event);
632         u64 delta = now - event->tstamp;
633
634         *enabled = event->total_time_enabled;
635         if (state >= PERF_EVENT_STATE_INACTIVE)
636                 *enabled += delta;
637
638         *running = event->total_time_running;
639         if (state >= PERF_EVENT_STATE_ACTIVE)
640                 *running += delta;
641 }
642
643 static void perf_event_update_time(struct perf_event *event)
644 {
645         u64 now = perf_event_time(event);
646
647         __perf_update_times(event, now, &event->total_time_enabled,
648                                         &event->total_time_running);
649         event->tstamp = now;
650 }
651
652 static void perf_event_update_sibling_time(struct perf_event *leader)
653 {
654         struct perf_event *sibling;
655
656         for_each_sibling_event(sibling, leader)
657                 perf_event_update_time(sibling);
658 }
659
660 static void
661 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
662 {
663         if (event->state == state)
664                 return;
665
666         perf_event_update_time(event);
667         /*
668          * If a group leader gets enabled/disabled all its siblings
669          * are affected too.
670          */
671         if ((event->state < 0) ^ (state < 0))
672                 perf_event_update_sibling_time(event);
673
674         WRITE_ONCE(event->state, state);
675 }
676
677 #ifdef CONFIG_CGROUP_PERF
678
679 static inline bool
680 perf_cgroup_match(struct perf_event *event)
681 {
682         struct perf_event_context *ctx = event->ctx;
683         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
684
685         /* @event doesn't care about cgroup */
686         if (!event->cgrp)
687                 return true;
688
689         /* wants specific cgroup scope but @cpuctx isn't associated with any */
690         if (!cpuctx->cgrp)
691                 return false;
692
693         /*
694          * Cgroup scoping is recursive.  An event enabled for a cgroup is
695          * also enabled for all its descendant cgroups.  If @cpuctx's
696          * cgroup is a descendant of @event's (the test covers identity
697          * case), it's a match.
698          */
699         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
700                                     event->cgrp->css.cgroup);
701 }
702
703 static inline void perf_detach_cgroup(struct perf_event *event)
704 {
705         css_put(&event->cgrp->css);
706         event->cgrp = NULL;
707 }
708
709 static inline int is_cgroup_event(struct perf_event *event)
710 {
711         return event->cgrp != NULL;
712 }
713
714 static inline u64 perf_cgroup_event_time(struct perf_event *event)
715 {
716         struct perf_cgroup_info *t;
717
718         t = per_cpu_ptr(event->cgrp->info, event->cpu);
719         return t->time;
720 }
721
722 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
723 {
724         struct perf_cgroup_info *info;
725         u64 now;
726
727         now = perf_clock();
728
729         info = this_cpu_ptr(cgrp->info);
730
731         info->time += now - info->timestamp;
732         info->timestamp = now;
733 }
734
735 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
736 {
737         struct perf_cgroup *cgrp = cpuctx->cgrp;
738         struct cgroup_subsys_state *css;
739
740         if (cgrp) {
741                 for (css = &cgrp->css; css; css = css->parent) {
742                         cgrp = container_of(css, struct perf_cgroup, css);
743                         __update_cgrp_time(cgrp);
744                 }
745         }
746 }
747
748 static inline void update_cgrp_time_from_event(struct perf_event *event)
749 {
750         struct perf_cgroup *cgrp;
751
752         /*
753          * ensure we access cgroup data only when needed and
754          * when we know the cgroup is pinned (css_get)
755          */
756         if (!is_cgroup_event(event))
757                 return;
758
759         cgrp = perf_cgroup_from_task(current, event->ctx);
760         /*
761          * Do not update time when cgroup is not active
762          */
763         if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
764                 __update_cgrp_time(event->cgrp);
765 }
766
767 static inline void
768 perf_cgroup_set_timestamp(struct task_struct *task,
769                           struct perf_event_context *ctx)
770 {
771         struct perf_cgroup *cgrp;
772         struct perf_cgroup_info *info;
773         struct cgroup_subsys_state *css;
774
775         /*
776          * ctx->lock held by caller
777          * ensure we do not access cgroup data
778          * unless we have the cgroup pinned (css_get)
779          */
780         if (!task || !ctx->nr_cgroups)
781                 return;
782
783         cgrp = perf_cgroup_from_task(task, ctx);
784
785         for (css = &cgrp->css; css; css = css->parent) {
786                 cgrp = container_of(css, struct perf_cgroup, css);
787                 info = this_cpu_ptr(cgrp->info);
788                 info->timestamp = ctx->timestamp;
789         }
790 }
791
792 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
793
794 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
795 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
796
797 /*
798  * reschedule events based on the cgroup constraint of task.
799  *
800  * mode SWOUT : schedule out everything
801  * mode SWIN : schedule in based on cgroup for next
802  */
803 static void perf_cgroup_switch(struct task_struct *task, int mode)
804 {
805         struct perf_cpu_context *cpuctx;
806         struct list_head *list;
807         unsigned long flags;
808
809         /*
810          * Disable interrupts and preemption to avoid this CPU's
811          * cgrp_cpuctx_entry to change under us.
812          */
813         local_irq_save(flags);
814
815         list = this_cpu_ptr(&cgrp_cpuctx_list);
816         list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
817                 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
818
819                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
820                 perf_pmu_disable(cpuctx->ctx.pmu);
821
822                 if (mode & PERF_CGROUP_SWOUT) {
823                         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
824                         /*
825                          * must not be done before ctxswout due
826                          * to event_filter_match() in event_sched_out()
827                          */
828                         cpuctx->cgrp = NULL;
829                 }
830
831                 if (mode & PERF_CGROUP_SWIN) {
832                         WARN_ON_ONCE(cpuctx->cgrp);
833                         /*
834                          * set cgrp before ctxsw in to allow
835                          * event_filter_match() to not have to pass
836                          * task around
837                          * we pass the cpuctx->ctx to perf_cgroup_from_task()
838                          * because cgorup events are only per-cpu
839                          */
840                         cpuctx->cgrp = perf_cgroup_from_task(task,
841                                                              &cpuctx->ctx);
842                         cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
843                 }
844                 perf_pmu_enable(cpuctx->ctx.pmu);
845                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
846         }
847
848         local_irq_restore(flags);
849 }
850
851 static inline void perf_cgroup_sched_out(struct task_struct *task,
852                                          struct task_struct *next)
853 {
854         struct perf_cgroup *cgrp1;
855         struct perf_cgroup *cgrp2 = NULL;
856
857         rcu_read_lock();
858         /*
859          * we come here when we know perf_cgroup_events > 0
860          * we do not need to pass the ctx here because we know
861          * we are holding the rcu lock
862          */
863         cgrp1 = perf_cgroup_from_task(task, NULL);
864         cgrp2 = perf_cgroup_from_task(next, NULL);
865
866         /*
867          * only schedule out current cgroup events if we know
868          * that we are switching to a different cgroup. Otherwise,
869          * do no touch the cgroup events.
870          */
871         if (cgrp1 != cgrp2)
872                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
873
874         rcu_read_unlock();
875 }
876
877 static inline void perf_cgroup_sched_in(struct task_struct *prev,
878                                         struct task_struct *task)
879 {
880         struct perf_cgroup *cgrp1;
881         struct perf_cgroup *cgrp2 = NULL;
882
883         rcu_read_lock();
884         /*
885          * we come here when we know perf_cgroup_events > 0
886          * we do not need to pass the ctx here because we know
887          * we are holding the rcu lock
888          */
889         cgrp1 = perf_cgroup_from_task(task, NULL);
890         cgrp2 = perf_cgroup_from_task(prev, NULL);
891
892         /*
893          * only need to schedule in cgroup events if we are changing
894          * cgroup during ctxsw. Cgroup events were not scheduled
895          * out of ctxsw out if that was not the case.
896          */
897         if (cgrp1 != cgrp2)
898                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
899
900         rcu_read_unlock();
901 }
902
903 static int perf_cgroup_ensure_storage(struct perf_event *event,
904                                 struct cgroup_subsys_state *css)
905 {
906         struct perf_cpu_context *cpuctx;
907         struct perf_event **storage;
908         int cpu, heap_size, ret = 0;
909
910         /*
911          * Allow storage to have sufficent space for an iterator for each
912          * possibly nested cgroup plus an iterator for events with no cgroup.
913          */
914         for (heap_size = 1; css; css = css->parent)
915                 heap_size++;
916
917         for_each_possible_cpu(cpu) {
918                 cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu);
919                 if (heap_size <= cpuctx->heap_size)
920                         continue;
921
922                 storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
923                                        GFP_KERNEL, cpu_to_node(cpu));
924                 if (!storage) {
925                         ret = -ENOMEM;
926                         break;
927                 }
928
929                 raw_spin_lock_irq(&cpuctx->ctx.lock);
930                 if (cpuctx->heap_size < heap_size) {
931                         swap(cpuctx->heap, storage);
932                         if (storage == cpuctx->heap_default)
933                                 storage = NULL;
934                         cpuctx->heap_size = heap_size;
935                 }
936                 raw_spin_unlock_irq(&cpuctx->ctx.lock);
937
938                 kfree(storage);
939         }
940
941         return ret;
942 }
943
944 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
945                                       struct perf_event_attr *attr,
946                                       struct perf_event *group_leader)
947 {
948         struct perf_cgroup *cgrp;
949         struct cgroup_subsys_state *css;
950         struct fd f = fdget(fd);
951         int ret = 0;
952
953         if (!f.file)
954                 return -EBADF;
955
956         css = css_tryget_online_from_dir(f.file->f_path.dentry,
957                                          &perf_event_cgrp_subsys);
958         if (IS_ERR(css)) {
959                 ret = PTR_ERR(css);
960                 goto out;
961         }
962
963         ret = perf_cgroup_ensure_storage(event, css);
964         if (ret)
965                 goto out;
966
967         cgrp = container_of(css, struct perf_cgroup, css);
968         event->cgrp = cgrp;
969
970         /*
971          * all events in a group must monitor
972          * the same cgroup because a task belongs
973          * to only one perf cgroup at a time
974          */
975         if (group_leader && group_leader->cgrp != cgrp) {
976                 perf_detach_cgroup(event);
977                 ret = -EINVAL;
978         }
979 out:
980         fdput(f);
981         return ret;
982 }
983
984 static inline void
985 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
986 {
987         struct perf_cgroup_info *t;
988         t = per_cpu_ptr(event->cgrp->info, event->cpu);
989         event->shadow_ctx_time = now - t->timestamp;
990 }
991
992 static inline void
993 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
994 {
995         struct perf_cpu_context *cpuctx;
996
997         if (!is_cgroup_event(event))
998                 return;
999
1000         /*
1001          * Because cgroup events are always per-cpu events,
1002          * @ctx == &cpuctx->ctx.
1003          */
1004         cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1005
1006         /*
1007          * Since setting cpuctx->cgrp is conditional on the current @cgrp
1008          * matching the event's cgroup, we must do this for every new event,
1009          * because if the first would mismatch, the second would not try again
1010          * and we would leave cpuctx->cgrp unset.
1011          */
1012         if (ctx->is_active && !cpuctx->cgrp) {
1013                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
1014
1015                 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
1016                         cpuctx->cgrp = cgrp;
1017         }
1018
1019         if (ctx->nr_cgroups++)
1020                 return;
1021
1022         list_add(&cpuctx->cgrp_cpuctx_entry,
1023                         per_cpu_ptr(&cgrp_cpuctx_list, event->cpu));
1024 }
1025
1026 static inline void
1027 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1028 {
1029         struct perf_cpu_context *cpuctx;
1030
1031         if (!is_cgroup_event(event))
1032                 return;
1033
1034         /*
1035          * Because cgroup events are always per-cpu events,
1036          * @ctx == &cpuctx->ctx.
1037          */
1038         cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1039
1040         if (--ctx->nr_cgroups)
1041                 return;
1042
1043         if (ctx->is_active && cpuctx->cgrp)
1044                 cpuctx->cgrp = NULL;
1045
1046         list_del(&cpuctx->cgrp_cpuctx_entry);
1047 }
1048
1049 #else /* !CONFIG_CGROUP_PERF */
1050
1051 static inline bool
1052 perf_cgroup_match(struct perf_event *event)
1053 {
1054         return true;
1055 }
1056
1057 static inline void perf_detach_cgroup(struct perf_event *event)
1058 {}
1059
1060 static inline int is_cgroup_event(struct perf_event *event)
1061 {
1062         return 0;
1063 }
1064
1065 static inline void update_cgrp_time_from_event(struct perf_event *event)
1066 {
1067 }
1068
1069 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1070 {
1071 }
1072
1073 static inline void perf_cgroup_sched_out(struct task_struct *task,
1074                                          struct task_struct *next)
1075 {
1076 }
1077
1078 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1079                                         struct task_struct *task)
1080 {
1081 }
1082
1083 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1084                                       struct perf_event_attr *attr,
1085                                       struct perf_event *group_leader)
1086 {
1087         return -EINVAL;
1088 }
1089
1090 static inline void
1091 perf_cgroup_set_timestamp(struct task_struct *task,
1092                           struct perf_event_context *ctx)
1093 {
1094 }
1095
1096 static inline void
1097 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1098 {
1099 }
1100
1101 static inline void
1102 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1103 {
1104 }
1105
1106 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1107 {
1108         return 0;
1109 }
1110
1111 static inline void
1112 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1113 {
1114 }
1115
1116 static inline void
1117 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1118 {
1119 }
1120 #endif
1121
1122 /*
1123  * set default to be dependent on timer tick just
1124  * like original code
1125  */
1126 #define PERF_CPU_HRTIMER (1000 / HZ)
1127 /*
1128  * function must be called with interrupts disabled
1129  */
1130 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1131 {
1132         struct perf_cpu_context *cpuctx;
1133         bool rotations;
1134
1135         lockdep_assert_irqs_disabled();
1136
1137         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1138         rotations = perf_rotate_context(cpuctx);
1139
1140         raw_spin_lock(&cpuctx->hrtimer_lock);
1141         if (rotations)
1142                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1143         else
1144                 cpuctx->hrtimer_active = 0;
1145         raw_spin_unlock(&cpuctx->hrtimer_lock);
1146
1147         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1148 }
1149
1150 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1151 {
1152         struct hrtimer *timer = &cpuctx->hrtimer;
1153         struct pmu *pmu = cpuctx->ctx.pmu;
1154         u64 interval;
1155
1156         /* no multiplexing needed for SW PMU */
1157         if (pmu->task_ctx_nr == perf_sw_context)
1158                 return;
1159
1160         /*
1161          * check default is sane, if not set then force to
1162          * default interval (1/tick)
1163          */
1164         interval = pmu->hrtimer_interval_ms;
1165         if (interval < 1)
1166                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1167
1168         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1169
1170         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1171         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1172         timer->function = perf_mux_hrtimer_handler;
1173 }
1174
1175 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1176 {
1177         struct hrtimer *timer = &cpuctx->hrtimer;
1178         struct pmu *pmu = cpuctx->ctx.pmu;
1179         unsigned long flags;
1180
1181         /* not for SW PMU */
1182         if (pmu->task_ctx_nr == perf_sw_context)
1183                 return 0;
1184
1185         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1186         if (!cpuctx->hrtimer_active) {
1187                 cpuctx->hrtimer_active = 1;
1188                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1189                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1190         }
1191         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1192
1193         return 0;
1194 }
1195
1196 void perf_pmu_disable(struct pmu *pmu)
1197 {
1198         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1199         if (!(*count)++)
1200                 pmu->pmu_disable(pmu);
1201 }
1202
1203 void perf_pmu_enable(struct pmu *pmu)
1204 {
1205         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1206         if (!--(*count))
1207                 pmu->pmu_enable(pmu);
1208 }
1209
1210 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1211
1212 /*
1213  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1214  * perf_event_task_tick() are fully serialized because they're strictly cpu
1215  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1216  * disabled, while perf_event_task_tick is called from IRQ context.
1217  */
1218 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1219 {
1220         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1221
1222         lockdep_assert_irqs_disabled();
1223
1224         WARN_ON(!list_empty(&ctx->active_ctx_list));
1225
1226         list_add(&ctx->active_ctx_list, head);
1227 }
1228
1229 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1230 {
1231         lockdep_assert_irqs_disabled();
1232
1233         WARN_ON(list_empty(&ctx->active_ctx_list));
1234
1235         list_del_init(&ctx->active_ctx_list);
1236 }
1237
1238 static void get_ctx(struct perf_event_context *ctx)
1239 {
1240         refcount_inc(&ctx->refcount);
1241 }
1242
1243 static void *alloc_task_ctx_data(struct pmu *pmu)
1244 {
1245         if (pmu->task_ctx_cache)
1246                 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1247
1248         return NULL;
1249 }
1250
1251 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1252 {
1253         if (pmu->task_ctx_cache && task_ctx_data)
1254                 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1255 }
1256
1257 static void free_ctx(struct rcu_head *head)
1258 {
1259         struct perf_event_context *ctx;
1260
1261         ctx = container_of(head, struct perf_event_context, rcu_head);
1262         free_task_ctx_data(ctx->pmu, ctx->task_ctx_data);
1263         kfree(ctx);
1264 }
1265
1266 static void put_ctx(struct perf_event_context *ctx)
1267 {
1268         if (refcount_dec_and_test(&ctx->refcount)) {
1269                 if (ctx->parent_ctx)
1270                         put_ctx(ctx->parent_ctx);
1271                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1272                         put_task_struct(ctx->task);
1273                 call_rcu(&ctx->rcu_head, free_ctx);
1274         }
1275 }
1276
1277 /*
1278  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1279  * perf_pmu_migrate_context() we need some magic.
1280  *
1281  * Those places that change perf_event::ctx will hold both
1282  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1283  *
1284  * Lock ordering is by mutex address. There are two other sites where
1285  * perf_event_context::mutex nests and those are:
1286  *
1287  *  - perf_event_exit_task_context()    [ child , 0 ]
1288  *      perf_event_exit_event()
1289  *        put_event()                   [ parent, 1 ]
1290  *
1291  *  - perf_event_init_context()         [ parent, 0 ]
1292  *      inherit_task_group()
1293  *        inherit_group()
1294  *          inherit_event()
1295  *            perf_event_alloc()
1296  *              perf_init_event()
1297  *                perf_try_init_event() [ child , 1 ]
1298  *
1299  * While it appears there is an obvious deadlock here -- the parent and child
1300  * nesting levels are inverted between the two. This is in fact safe because
1301  * life-time rules separate them. That is an exiting task cannot fork, and a
1302  * spawning task cannot (yet) exit.
1303  *
1304  * But remember that these are parent<->child context relations, and
1305  * migration does not affect children, therefore these two orderings should not
1306  * interact.
1307  *
1308  * The change in perf_event::ctx does not affect children (as claimed above)
1309  * because the sys_perf_event_open() case will install a new event and break
1310  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1311  * concerned with cpuctx and that doesn't have children.
1312  *
1313  * The places that change perf_event::ctx will issue:
1314  *
1315  *   perf_remove_from_context();
1316  *   synchronize_rcu();
1317  *   perf_install_in_context();
1318  *
1319  * to affect the change. The remove_from_context() + synchronize_rcu() should
1320  * quiesce the event, after which we can install it in the new location. This
1321  * means that only external vectors (perf_fops, prctl) can perturb the event
1322  * while in transit. Therefore all such accessors should also acquire
1323  * perf_event_context::mutex to serialize against this.
1324  *
1325  * However; because event->ctx can change while we're waiting to acquire
1326  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1327  * function.
1328  *
1329  * Lock order:
1330  *    exec_update_lock
1331  *      task_struct::perf_event_mutex
1332  *        perf_event_context::mutex
1333  *          perf_event::child_mutex;
1334  *            perf_event_context::lock
1335  *          perf_event::mmap_mutex
1336  *          mmap_lock
1337  *            perf_addr_filters_head::lock
1338  *
1339  *    cpu_hotplug_lock
1340  *      pmus_lock
1341  *        cpuctx->mutex / perf_event_context::mutex
1342  */
1343 static struct perf_event_context *
1344 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1345 {
1346         struct perf_event_context *ctx;
1347
1348 again:
1349         rcu_read_lock();
1350         ctx = READ_ONCE(event->ctx);
1351         if (!refcount_inc_not_zero(&ctx->refcount)) {
1352                 rcu_read_unlock();
1353                 goto again;
1354         }
1355         rcu_read_unlock();
1356
1357         mutex_lock_nested(&ctx->mutex, nesting);
1358         if (event->ctx != ctx) {
1359                 mutex_unlock(&ctx->mutex);
1360                 put_ctx(ctx);
1361                 goto again;
1362         }
1363
1364         return ctx;
1365 }
1366
1367 static inline struct perf_event_context *
1368 perf_event_ctx_lock(struct perf_event *event)
1369 {
1370         return perf_event_ctx_lock_nested(event, 0);
1371 }
1372
1373 static void perf_event_ctx_unlock(struct perf_event *event,
1374                                   struct perf_event_context *ctx)
1375 {
1376         mutex_unlock(&ctx->mutex);
1377         put_ctx(ctx);
1378 }
1379
1380 /*
1381  * This must be done under the ctx->lock, such as to serialize against
1382  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1383  * calling scheduler related locks and ctx->lock nests inside those.
1384  */
1385 static __must_check struct perf_event_context *
1386 unclone_ctx(struct perf_event_context *ctx)
1387 {
1388         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1389
1390         lockdep_assert_held(&ctx->lock);
1391
1392         if (parent_ctx)
1393                 ctx->parent_ctx = NULL;
1394         ctx->generation++;
1395
1396         return parent_ctx;
1397 }
1398
1399 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1400                                 enum pid_type type)
1401 {
1402         u32 nr;
1403         /*
1404          * only top level events have the pid namespace they were created in
1405          */
1406         if (event->parent)
1407                 event = event->parent;
1408
1409         nr = __task_pid_nr_ns(p, type, event->ns);
1410         /* avoid -1 if it is idle thread or runs in another ns */
1411         if (!nr && !pid_alive(p))
1412                 nr = -1;
1413         return nr;
1414 }
1415
1416 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1417 {
1418         return perf_event_pid_type(event, p, PIDTYPE_TGID);
1419 }
1420
1421 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1422 {
1423         return perf_event_pid_type(event, p, PIDTYPE_PID);
1424 }
1425
1426 /*
1427  * If we inherit events we want to return the parent event id
1428  * to userspace.
1429  */
1430 static u64 primary_event_id(struct perf_event *event)
1431 {
1432         u64 id = event->id;
1433
1434         if (event->parent)
1435                 id = event->parent->id;
1436
1437         return id;
1438 }
1439
1440 /*
1441  * Get the perf_event_context for a task and lock it.
1442  *
1443  * This has to cope with the fact that until it is locked,
1444  * the context could get moved to another task.
1445  */
1446 static struct perf_event_context *
1447 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1448 {
1449         struct perf_event_context *ctx;
1450
1451 retry:
1452         /*
1453          * One of the few rules of preemptible RCU is that one cannot do
1454          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1455          * part of the read side critical section was irqs-enabled -- see
1456          * rcu_read_unlock_special().
1457          *
1458          * Since ctx->lock nests under rq->lock we must ensure the entire read
1459          * side critical section has interrupts disabled.
1460          */
1461         local_irq_save(*flags);
1462         rcu_read_lock();
1463         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1464         if (ctx) {
1465                 /*
1466                  * If this context is a clone of another, it might
1467                  * get swapped for another underneath us by
1468                  * perf_event_task_sched_out, though the
1469                  * rcu_read_lock() protects us from any context
1470                  * getting freed.  Lock the context and check if it
1471                  * got swapped before we could get the lock, and retry
1472                  * if so.  If we locked the right context, then it
1473                  * can't get swapped on us any more.
1474                  */
1475                 raw_spin_lock(&ctx->lock);
1476                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1477                         raw_spin_unlock(&ctx->lock);
1478                         rcu_read_unlock();
1479                         local_irq_restore(*flags);
1480                         goto retry;
1481                 }
1482
1483                 if (ctx->task == TASK_TOMBSTONE ||
1484                     !refcount_inc_not_zero(&ctx->refcount)) {
1485                         raw_spin_unlock(&ctx->lock);
1486                         ctx = NULL;
1487                 } else {
1488                         WARN_ON_ONCE(ctx->task != task);
1489                 }
1490         }
1491         rcu_read_unlock();
1492         if (!ctx)
1493                 local_irq_restore(*flags);
1494         return ctx;
1495 }
1496
1497 /*
1498  * Get the context for a task and increment its pin_count so it
1499  * can't get swapped to another task.  This also increments its
1500  * reference count so that the context can't get freed.
1501  */
1502 static struct perf_event_context *
1503 perf_pin_task_context(struct task_struct *task, int ctxn)
1504 {
1505         struct perf_event_context *ctx;
1506         unsigned long flags;
1507
1508         ctx = perf_lock_task_context(task, ctxn, &flags);
1509         if (ctx) {
1510                 ++ctx->pin_count;
1511                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1512         }
1513         return ctx;
1514 }
1515
1516 static void perf_unpin_context(struct perf_event_context *ctx)
1517 {
1518         unsigned long flags;
1519
1520         raw_spin_lock_irqsave(&ctx->lock, flags);
1521         --ctx->pin_count;
1522         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1523 }
1524
1525 /*
1526  * Update the record of the current time in a context.
1527  */
1528 static void update_context_time(struct perf_event_context *ctx)
1529 {
1530         u64 now = perf_clock();
1531
1532         ctx->time += now - ctx->timestamp;
1533         ctx->timestamp = now;
1534 }
1535
1536 static u64 perf_event_time(struct perf_event *event)
1537 {
1538         struct perf_event_context *ctx = event->ctx;
1539
1540         if (is_cgroup_event(event))
1541                 return perf_cgroup_event_time(event);
1542
1543         return ctx ? ctx->time : 0;
1544 }
1545
1546 static enum event_type_t get_event_type(struct perf_event *event)
1547 {
1548         struct perf_event_context *ctx = event->ctx;
1549         enum event_type_t event_type;
1550
1551         lockdep_assert_held(&ctx->lock);
1552
1553         /*
1554          * It's 'group type', really, because if our group leader is
1555          * pinned, so are we.
1556          */
1557         if (event->group_leader != event)
1558                 event = event->group_leader;
1559
1560         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1561         if (!ctx->task)
1562                 event_type |= EVENT_CPU;
1563
1564         return event_type;
1565 }
1566
1567 /*
1568  * Helper function to initialize event group nodes.
1569  */
1570 static void init_event_group(struct perf_event *event)
1571 {
1572         RB_CLEAR_NODE(&event->group_node);
1573         event->group_index = 0;
1574 }
1575
1576 /*
1577  * Extract pinned or flexible groups from the context
1578  * based on event attrs bits.
1579  */
1580 static struct perf_event_groups *
1581 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1582 {
1583         if (event->attr.pinned)
1584                 return &ctx->pinned_groups;
1585         else
1586                 return &ctx->flexible_groups;
1587 }
1588
1589 /*
1590  * Helper function to initializes perf_event_group trees.
1591  */
1592 static void perf_event_groups_init(struct perf_event_groups *groups)
1593 {
1594         groups->tree = RB_ROOT;
1595         groups->index = 0;
1596 }
1597
1598 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1599 {
1600         struct cgroup *cgroup = NULL;
1601
1602 #ifdef CONFIG_CGROUP_PERF
1603         if (event->cgrp)
1604                 cgroup = event->cgrp->css.cgroup;
1605 #endif
1606
1607         return cgroup;
1608 }
1609
1610 /*
1611  * Compare function for event groups;
1612  *
1613  * Implements complex key that first sorts by CPU and then by virtual index
1614  * which provides ordering when rotating groups for the same CPU.
1615  */
1616 static __always_inline int
1617 perf_event_groups_cmp(const int left_cpu, const struct cgroup *left_cgroup,
1618                       const u64 left_group_index, const struct perf_event *right)
1619 {
1620         if (left_cpu < right->cpu)
1621                 return -1;
1622         if (left_cpu > right->cpu)
1623                 return 1;
1624
1625 #ifdef CONFIG_CGROUP_PERF
1626         {
1627                 const struct cgroup *right_cgroup = event_cgroup(right);
1628
1629                 if (left_cgroup != right_cgroup) {
1630                         if (!left_cgroup) {
1631                                 /*
1632                                  * Left has no cgroup but right does, no
1633                                  * cgroups come first.
1634                                  */
1635                                 return -1;
1636                         }
1637                         if (!right_cgroup) {
1638                                 /*
1639                                  * Right has no cgroup but left does, no
1640                                  * cgroups come first.
1641                                  */
1642                                 return 1;
1643                         }
1644                         /* Two dissimilar cgroups, order by id. */
1645                         if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1646                                 return -1;
1647
1648                         return 1;
1649                 }
1650         }
1651 #endif
1652
1653         if (left_group_index < right->group_index)
1654                 return -1;
1655         if (left_group_index > right->group_index)
1656                 return 1;
1657
1658         return 0;
1659 }
1660
1661 #define __node_2_pe(node) \
1662         rb_entry((node), struct perf_event, group_node)
1663
1664 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1665 {
1666         struct perf_event *e = __node_2_pe(a);
1667         return perf_event_groups_cmp(e->cpu, event_cgroup(e), e->group_index,
1668                                      __node_2_pe(b)) < 0;
1669 }
1670
1671 struct __group_key {
1672         int cpu;
1673         struct cgroup *cgroup;
1674 };
1675
1676 static inline int __group_cmp(const void *key, const struct rb_node *node)
1677 {
1678         const struct __group_key *a = key;
1679         const struct perf_event *b = __node_2_pe(node);
1680
1681         /* partial/subtree match: @cpu, @cgroup; ignore: @group_index */
1682         return perf_event_groups_cmp(a->cpu, a->cgroup, b->group_index, b);
1683 }
1684
1685 /*
1686  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1687  * key (see perf_event_groups_less). This places it last inside the CPU
1688  * subtree.
1689  */
1690 static void
1691 perf_event_groups_insert(struct perf_event_groups *groups,
1692                          struct perf_event *event)
1693 {
1694         event->group_index = ++groups->index;
1695
1696         rb_add(&event->group_node, &groups->tree, __group_less);
1697 }
1698
1699 /*
1700  * Helper function to insert event into the pinned or flexible groups.
1701  */
1702 static void
1703 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1704 {
1705         struct perf_event_groups *groups;
1706
1707         groups = get_event_groups(event, ctx);
1708         perf_event_groups_insert(groups, event);
1709 }
1710
1711 /*
1712  * Delete a group from a tree.
1713  */
1714 static void
1715 perf_event_groups_delete(struct perf_event_groups *groups,
1716                          struct perf_event *event)
1717 {
1718         WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1719                      RB_EMPTY_ROOT(&groups->tree));
1720
1721         rb_erase(&event->group_node, &groups->tree);
1722         init_event_group(event);
1723 }
1724
1725 /*
1726  * Helper function to delete event from its groups.
1727  */
1728 static void
1729 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1730 {
1731         struct perf_event_groups *groups;
1732
1733         groups = get_event_groups(event, ctx);
1734         perf_event_groups_delete(groups, event);
1735 }
1736
1737 /*
1738  * Get the leftmost event in the cpu/cgroup subtree.
1739  */
1740 static struct perf_event *
1741 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1742                         struct cgroup *cgrp)
1743 {
1744         struct __group_key key = {
1745                 .cpu = cpu,
1746                 .cgroup = cgrp,
1747         };
1748         struct rb_node *node;
1749
1750         node = rb_find_first(&key, &groups->tree, __group_cmp);
1751         if (node)
1752                 return __node_2_pe(node);
1753
1754         return NULL;
1755 }
1756
1757 /*
1758  * Like rb_entry_next_safe() for the @cpu subtree.
1759  */
1760 static struct perf_event *
1761 perf_event_groups_next(struct perf_event *event)
1762 {
1763         struct __group_key key = {
1764                 .cpu = event->cpu,
1765                 .cgroup = event_cgroup(event),
1766         };
1767         struct rb_node *next;
1768
1769         next = rb_next_match(&key, &event->group_node, __group_cmp);
1770         if (next)
1771                 return __node_2_pe(next);
1772
1773         return NULL;
1774 }
1775
1776 /*
1777  * Iterate through the whole groups tree.
1778  */
1779 #define perf_event_groups_for_each(event, groups)                       \
1780         for (event = rb_entry_safe(rb_first(&((groups)->tree)),         \
1781                                 typeof(*event), group_node); event;     \
1782                 event = rb_entry_safe(rb_next(&event->group_node),      \
1783                                 typeof(*event), group_node))
1784
1785 /*
1786  * Add an event from the lists for its context.
1787  * Must be called with ctx->mutex and ctx->lock held.
1788  */
1789 static void
1790 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1791 {
1792         lockdep_assert_held(&ctx->lock);
1793
1794         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1795         event->attach_state |= PERF_ATTACH_CONTEXT;
1796
1797         event->tstamp = perf_event_time(event);
1798
1799         /*
1800          * If we're a stand alone event or group leader, we go to the context
1801          * list, group events are kept attached to the group so that
1802          * perf_group_detach can, at all times, locate all siblings.
1803          */
1804         if (event->group_leader == event) {
1805                 event->group_caps = event->event_caps;
1806                 add_event_to_groups(event, ctx);
1807         }
1808
1809         list_add_rcu(&event->event_entry, &ctx->event_list);
1810         ctx->nr_events++;
1811         if (event->attr.inherit_stat)
1812                 ctx->nr_stat++;
1813
1814         if (event->state > PERF_EVENT_STATE_OFF)
1815                 perf_cgroup_event_enable(event, ctx);
1816
1817         ctx->generation++;
1818 }
1819
1820 /*
1821  * Initialize event state based on the perf_event_attr::disabled.
1822  */
1823 static inline void perf_event__state_init(struct perf_event *event)
1824 {
1825         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1826                                               PERF_EVENT_STATE_INACTIVE;
1827 }
1828
1829 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1830 {
1831         int entry = sizeof(u64); /* value */
1832         int size = 0;
1833         int nr = 1;
1834
1835         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1836                 size += sizeof(u64);
1837
1838         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1839                 size += sizeof(u64);
1840
1841         if (event->attr.read_format & PERF_FORMAT_ID)
1842                 entry += sizeof(u64);
1843
1844         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1845                 nr += nr_siblings;
1846                 size += sizeof(u64);
1847         }
1848
1849         size += entry * nr;
1850         event->read_size = size;
1851 }
1852
1853 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1854 {
1855         struct perf_sample_data *data;
1856         u16 size = 0;
1857
1858         if (sample_type & PERF_SAMPLE_IP)
1859                 size += sizeof(data->ip);
1860
1861         if (sample_type & PERF_SAMPLE_ADDR)
1862                 size += sizeof(data->addr);
1863
1864         if (sample_type & PERF_SAMPLE_PERIOD)
1865                 size += sizeof(data->period);
1866
1867         if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1868                 size += sizeof(data->weight.full);
1869
1870         if (sample_type & PERF_SAMPLE_READ)
1871                 size += event->read_size;
1872
1873         if (sample_type & PERF_SAMPLE_DATA_SRC)
1874                 size += sizeof(data->data_src.val);
1875
1876         if (sample_type & PERF_SAMPLE_TRANSACTION)
1877                 size += sizeof(data->txn);
1878
1879         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1880                 size += sizeof(data->phys_addr);
1881
1882         if (sample_type & PERF_SAMPLE_CGROUP)
1883                 size += sizeof(data->cgroup);
1884
1885         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1886                 size += sizeof(data->data_page_size);
1887
1888         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1889                 size += sizeof(data->code_page_size);
1890
1891         event->header_size = size;
1892 }
1893
1894 /*
1895  * Called at perf_event creation and when events are attached/detached from a
1896  * group.
1897  */
1898 static void perf_event__header_size(struct perf_event *event)
1899 {
1900         __perf_event_read_size(event,
1901                                event->group_leader->nr_siblings);
1902         __perf_event_header_size(event, event->attr.sample_type);
1903 }
1904
1905 static void perf_event__id_header_size(struct perf_event *event)
1906 {
1907         struct perf_sample_data *data;
1908         u64 sample_type = event->attr.sample_type;
1909         u16 size = 0;
1910
1911         if (sample_type & PERF_SAMPLE_TID)
1912                 size += sizeof(data->tid_entry);
1913
1914         if (sample_type & PERF_SAMPLE_TIME)
1915                 size += sizeof(data->time);
1916
1917         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1918                 size += sizeof(data->id);
1919
1920         if (sample_type & PERF_SAMPLE_ID)
1921                 size += sizeof(data->id);
1922
1923         if (sample_type & PERF_SAMPLE_STREAM_ID)
1924                 size += sizeof(data->stream_id);
1925
1926         if (sample_type & PERF_SAMPLE_CPU)
1927                 size += sizeof(data->cpu_entry);
1928
1929         event->id_header_size = size;
1930 }
1931
1932 static bool perf_event_validate_size(struct perf_event *event)
1933 {
1934         /*
1935          * The values computed here will be over-written when we actually
1936          * attach the event.
1937          */
1938         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1939         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1940         perf_event__id_header_size(event);
1941
1942         /*
1943          * Sum the lot; should not exceed the 64k limit we have on records.
1944          * Conservative limit to allow for callchains and other variable fields.
1945          */
1946         if (event->read_size + event->header_size +
1947             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1948                 return false;
1949
1950         return true;
1951 }
1952
1953 static void perf_group_attach(struct perf_event *event)
1954 {
1955         struct perf_event *group_leader = event->group_leader, *pos;
1956
1957         lockdep_assert_held(&event->ctx->lock);
1958
1959         /*
1960          * We can have double attach due to group movement in perf_event_open.
1961          */
1962         if (event->attach_state & PERF_ATTACH_GROUP)
1963                 return;
1964
1965         event->attach_state |= PERF_ATTACH_GROUP;
1966
1967         if (group_leader == event)
1968                 return;
1969
1970         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1971
1972         group_leader->group_caps &= event->event_caps;
1973
1974         list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1975         group_leader->nr_siblings++;
1976
1977         perf_event__header_size(group_leader);
1978
1979         for_each_sibling_event(pos, group_leader)
1980                 perf_event__header_size(pos);
1981 }
1982
1983 /*
1984  * Remove an event from the lists for its context.
1985  * Must be called with ctx->mutex and ctx->lock held.
1986  */
1987 static void
1988 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1989 {
1990         WARN_ON_ONCE(event->ctx != ctx);
1991         lockdep_assert_held(&ctx->lock);
1992
1993         /*
1994          * We can have double detach due to exit/hot-unplug + close.
1995          */
1996         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1997                 return;
1998
1999         event->attach_state &= ~PERF_ATTACH_CONTEXT;
2000
2001         ctx->nr_events--;
2002         if (event->attr.inherit_stat)
2003                 ctx->nr_stat--;
2004
2005         list_del_rcu(&event->event_entry);
2006
2007         if (event->group_leader == event)
2008                 del_event_from_groups(event, ctx);
2009
2010         /*
2011          * If event was in error state, then keep it
2012          * that way, otherwise bogus counts will be
2013          * returned on read(). The only way to get out
2014          * of error state is by explicit re-enabling
2015          * of the event
2016          */
2017         if (event->state > PERF_EVENT_STATE_OFF) {
2018                 perf_cgroup_event_disable(event, ctx);
2019                 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2020         }
2021
2022         ctx->generation++;
2023 }
2024
2025 static int
2026 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2027 {
2028         if (!has_aux(aux_event))
2029                 return 0;
2030
2031         if (!event->pmu->aux_output_match)
2032                 return 0;
2033
2034         return event->pmu->aux_output_match(aux_event);
2035 }
2036
2037 static void put_event(struct perf_event *event);
2038 static void event_sched_out(struct perf_event *event,
2039                             struct perf_cpu_context *cpuctx,
2040                             struct perf_event_context *ctx);
2041
2042 static void perf_put_aux_event(struct perf_event *event)
2043 {
2044         struct perf_event_context *ctx = event->ctx;
2045         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2046         struct perf_event *iter;
2047
2048         /*
2049          * If event uses aux_event tear down the link
2050          */
2051         if (event->aux_event) {
2052                 iter = event->aux_event;
2053                 event->aux_event = NULL;
2054                 put_event(iter);
2055                 return;
2056         }
2057
2058         /*
2059          * If the event is an aux_event, tear down all links to
2060          * it from other events.
2061          */
2062         for_each_sibling_event(iter, event->group_leader) {
2063                 if (iter->aux_event != event)
2064                         continue;
2065
2066                 iter->aux_event = NULL;
2067                 put_event(event);
2068
2069                 /*
2070                  * If it's ACTIVE, schedule it out and put it into ERROR
2071                  * state so that we don't try to schedule it again. Note
2072                  * that perf_event_enable() will clear the ERROR status.
2073                  */
2074                 event_sched_out(iter, cpuctx, ctx);
2075                 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2076         }
2077 }
2078
2079 static bool perf_need_aux_event(struct perf_event *event)
2080 {
2081         return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2082 }
2083
2084 static int perf_get_aux_event(struct perf_event *event,
2085                               struct perf_event *group_leader)
2086 {
2087         /*
2088          * Our group leader must be an aux event if we want to be
2089          * an aux_output. This way, the aux event will precede its
2090          * aux_output events in the group, and therefore will always
2091          * schedule first.
2092          */
2093         if (!group_leader)
2094                 return 0;
2095
2096         /*
2097          * aux_output and aux_sample_size are mutually exclusive.
2098          */
2099         if (event->attr.aux_output && event->attr.aux_sample_size)
2100                 return 0;
2101
2102         if (event->attr.aux_output &&
2103             !perf_aux_output_match(event, group_leader))
2104                 return 0;
2105
2106         if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2107                 return 0;
2108
2109         if (!atomic_long_inc_not_zero(&group_leader->refcount))
2110                 return 0;
2111
2112         /*
2113          * Link aux_outputs to their aux event; this is undone in
2114          * perf_group_detach() by perf_put_aux_event(). When the
2115          * group in torn down, the aux_output events loose their
2116          * link to the aux_event and can't schedule any more.
2117          */
2118         event->aux_event = group_leader;
2119
2120         return 1;
2121 }
2122
2123 static inline struct list_head *get_event_list(struct perf_event *event)
2124 {
2125         struct perf_event_context *ctx = event->ctx;
2126         return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active;
2127 }
2128
2129 /*
2130  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2131  * cannot exist on their own, schedule them out and move them into the ERROR
2132  * state. Also see _perf_event_enable(), it will not be able to recover
2133  * this ERROR state.
2134  */
2135 static inline void perf_remove_sibling_event(struct perf_event *event)
2136 {
2137         struct perf_event_context *ctx = event->ctx;
2138         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2139
2140         event_sched_out(event, cpuctx, ctx);
2141         perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2142 }
2143
2144 static void perf_group_detach(struct perf_event *event)
2145 {
2146         struct perf_event *leader = event->group_leader;
2147         struct perf_event *sibling, *tmp;
2148         struct perf_event_context *ctx = event->ctx;
2149
2150         lockdep_assert_held(&ctx->lock);
2151
2152         /*
2153          * We can have double detach due to exit/hot-unplug + close.
2154          */
2155         if (!(event->attach_state & PERF_ATTACH_GROUP))
2156                 return;
2157
2158         event->attach_state &= ~PERF_ATTACH_GROUP;
2159
2160         perf_put_aux_event(event);
2161
2162         /*
2163          * If this is a sibling, remove it from its group.
2164          */
2165         if (leader != event) {
2166                 list_del_init(&event->sibling_list);
2167                 event->group_leader->nr_siblings--;
2168                 goto out;
2169         }
2170
2171         /*
2172          * If this was a group event with sibling events then
2173          * upgrade the siblings to singleton events by adding them
2174          * to whatever list we are on.
2175          */
2176         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2177
2178                 if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2179                         perf_remove_sibling_event(sibling);
2180
2181                 sibling->group_leader = sibling;
2182                 list_del_init(&sibling->sibling_list);
2183
2184                 /* Inherit group flags from the previous leader */
2185                 sibling->group_caps = event->group_caps;
2186
2187                 if (!RB_EMPTY_NODE(&event->group_node)) {
2188                         add_event_to_groups(sibling, event->ctx);
2189
2190                         if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2191                                 list_add_tail(&sibling->active_list, get_event_list(sibling));
2192                 }
2193
2194                 WARN_ON_ONCE(sibling->ctx != event->ctx);
2195         }
2196
2197 out:
2198         for_each_sibling_event(tmp, leader)
2199                 perf_event__header_size(tmp);
2200
2201         perf_event__header_size(leader);
2202 }
2203
2204 static void sync_child_event(struct perf_event *child_event);
2205
2206 static void perf_child_detach(struct perf_event *event)
2207 {
2208         struct perf_event *parent_event = event->parent;
2209
2210         if (!(event->attach_state & PERF_ATTACH_CHILD))
2211                 return;
2212
2213         event->attach_state &= ~PERF_ATTACH_CHILD;
2214
2215         if (WARN_ON_ONCE(!parent_event))
2216                 return;
2217
2218         lockdep_assert_held(&parent_event->child_mutex);
2219
2220         sync_child_event(event);
2221         list_del_init(&event->child_list);
2222 }
2223
2224 static bool is_orphaned_event(struct perf_event *event)
2225 {
2226         return event->state == PERF_EVENT_STATE_DEAD;
2227 }
2228
2229 static inline int __pmu_filter_match(struct perf_event *event)
2230 {
2231         struct pmu *pmu = event->pmu;
2232         return pmu->filter_match ? pmu->filter_match(event) : 1;
2233 }
2234
2235 /*
2236  * Check whether we should attempt to schedule an event group based on
2237  * PMU-specific filtering. An event group can consist of HW and SW events,
2238  * potentially with a SW leader, so we must check all the filters, to
2239  * determine whether a group is schedulable:
2240  */
2241 static inline int pmu_filter_match(struct perf_event *event)
2242 {
2243         struct perf_event *sibling;
2244
2245         if (!__pmu_filter_match(event))
2246                 return 0;
2247
2248         for_each_sibling_event(sibling, event) {
2249                 if (!__pmu_filter_match(sibling))
2250                         return 0;
2251         }
2252
2253         return 1;
2254 }
2255
2256 static inline int
2257 event_filter_match(struct perf_event *event)
2258 {
2259         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2260                perf_cgroup_match(event) && pmu_filter_match(event);
2261 }
2262
2263 static void
2264 event_sched_out(struct perf_event *event,
2265                   struct perf_cpu_context *cpuctx,
2266                   struct perf_event_context *ctx)
2267 {
2268         enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2269
2270         WARN_ON_ONCE(event->ctx != ctx);
2271         lockdep_assert_held(&ctx->lock);
2272
2273         if (event->state != PERF_EVENT_STATE_ACTIVE)
2274                 return;
2275
2276         /*
2277          * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2278          * we can schedule events _OUT_ individually through things like
2279          * __perf_remove_from_context().
2280          */
2281         list_del_init(&event->active_list);
2282
2283         perf_pmu_disable(event->pmu);
2284
2285         event->pmu->del(event, 0);
2286         event->oncpu = -1;
2287
2288         if (READ_ONCE(event->pending_disable) >= 0) {
2289                 WRITE_ONCE(event->pending_disable, -1);
2290                 perf_cgroup_event_disable(event, ctx);
2291                 state = PERF_EVENT_STATE_OFF;
2292         }
2293         perf_event_set_state(event, state);
2294
2295         if (!is_software_event(event))
2296                 cpuctx->active_oncpu--;
2297         if (!--ctx->nr_active)
2298                 perf_event_ctx_deactivate(ctx);
2299         if (event->attr.freq && event->attr.sample_freq)
2300                 ctx->nr_freq--;
2301         if (event->attr.exclusive || !cpuctx->active_oncpu)
2302                 cpuctx->exclusive = 0;
2303
2304         perf_pmu_enable(event->pmu);
2305 }
2306
2307 static void
2308 group_sched_out(struct perf_event *group_event,
2309                 struct perf_cpu_context *cpuctx,
2310                 struct perf_event_context *ctx)
2311 {
2312         struct perf_event *event;
2313
2314         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2315                 return;
2316
2317         perf_pmu_disable(ctx->pmu);
2318
2319         event_sched_out(group_event, cpuctx, ctx);
2320
2321         /*
2322          * Schedule out siblings (if any):
2323          */
2324         for_each_sibling_event(event, group_event)
2325                 event_sched_out(event, cpuctx, ctx);
2326
2327         perf_pmu_enable(ctx->pmu);
2328 }
2329
2330 #define DETACH_GROUP    0x01UL
2331 #define DETACH_CHILD    0x02UL
2332
2333 /*
2334  * Cross CPU call to remove a performance event
2335  *
2336  * We disable the event on the hardware level first. After that we
2337  * remove it from the context list.
2338  */
2339 static void
2340 __perf_remove_from_context(struct perf_event *event,
2341                            struct perf_cpu_context *cpuctx,
2342                            struct perf_event_context *ctx,
2343                            void *info)
2344 {
2345         unsigned long flags = (unsigned long)info;
2346
2347         if (ctx->is_active & EVENT_TIME) {
2348                 update_context_time(ctx);
2349                 update_cgrp_time_from_cpuctx(cpuctx);
2350         }
2351
2352         event_sched_out(event, cpuctx, ctx);
2353         if (flags & DETACH_GROUP)
2354                 perf_group_detach(event);
2355         if (flags & DETACH_CHILD)
2356                 perf_child_detach(event);
2357         list_del_event(event, ctx);
2358
2359         if (!ctx->nr_events && ctx->is_active) {
2360                 ctx->is_active = 0;
2361                 ctx->rotate_necessary = 0;
2362                 if (ctx->task) {
2363                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2364                         cpuctx->task_ctx = NULL;
2365                 }
2366         }
2367 }
2368
2369 /*
2370  * Remove the event from a task's (or a CPU's) list of events.
2371  *
2372  * If event->ctx is a cloned context, callers must make sure that
2373  * every task struct that event->ctx->task could possibly point to
2374  * remains valid.  This is OK when called from perf_release since
2375  * that only calls us on the top-level context, which can't be a clone.
2376  * When called from perf_event_exit_task, it's OK because the
2377  * context has been detached from its task.
2378  */
2379 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2380 {
2381         struct perf_event_context *ctx = event->ctx;
2382
2383         lockdep_assert_held(&ctx->mutex);
2384
2385         /*
2386          * Because of perf_event_exit_task(), perf_remove_from_context() ought
2387          * to work in the face of TASK_TOMBSTONE, unlike every other
2388          * event_function_call() user.
2389          */
2390         raw_spin_lock_irq(&ctx->lock);
2391         if (!ctx->is_active) {
2392                 __perf_remove_from_context(event, __get_cpu_context(ctx),
2393                                            ctx, (void *)flags);
2394                 raw_spin_unlock_irq(&ctx->lock);
2395                 return;
2396         }
2397         raw_spin_unlock_irq(&ctx->lock);
2398
2399         event_function_call(event, __perf_remove_from_context, (void *)flags);
2400 }
2401
2402 /*
2403  * Cross CPU call to disable a performance event
2404  */
2405 static void __perf_event_disable(struct perf_event *event,
2406                                  struct perf_cpu_context *cpuctx,
2407                                  struct perf_event_context *ctx,
2408                                  void *info)
2409 {
2410         if (event->state < PERF_EVENT_STATE_INACTIVE)
2411                 return;
2412
2413         if (ctx->is_active & EVENT_TIME) {
2414                 update_context_time(ctx);
2415                 update_cgrp_time_from_event(event);
2416         }
2417
2418         if (event == event->group_leader)
2419                 group_sched_out(event, cpuctx, ctx);
2420         else
2421                 event_sched_out(event, cpuctx, ctx);
2422
2423         perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2424         perf_cgroup_event_disable(event, ctx);
2425 }
2426
2427 /*
2428  * Disable an event.
2429  *
2430  * If event->ctx is a cloned context, callers must make sure that
2431  * every task struct that event->ctx->task could possibly point to
2432  * remains valid.  This condition is satisfied when called through
2433  * perf_event_for_each_child or perf_event_for_each because they
2434  * hold the top-level event's child_mutex, so any descendant that
2435  * goes to exit will block in perf_event_exit_event().
2436  *
2437  * When called from perf_pending_event it's OK because event->ctx
2438  * is the current context on this CPU and preemption is disabled,
2439  * hence we can't get into perf_event_task_sched_out for this context.
2440  */
2441 static void _perf_event_disable(struct perf_event *event)
2442 {
2443         struct perf_event_context *ctx = event->ctx;
2444
2445         raw_spin_lock_irq(&ctx->lock);
2446         if (event->state <= PERF_EVENT_STATE_OFF) {
2447                 raw_spin_unlock_irq(&ctx->lock);
2448                 return;
2449         }
2450         raw_spin_unlock_irq(&ctx->lock);
2451
2452         event_function_call(event, __perf_event_disable, NULL);
2453 }
2454
2455 void perf_event_disable_local(struct perf_event *event)
2456 {
2457         event_function_local(event, __perf_event_disable, NULL);
2458 }
2459
2460 /*
2461  * Strictly speaking kernel users cannot create groups and therefore this
2462  * interface does not need the perf_event_ctx_lock() magic.
2463  */
2464 void perf_event_disable(struct perf_event *event)
2465 {
2466         struct perf_event_context *ctx;
2467
2468         ctx = perf_event_ctx_lock(event);
2469         _perf_event_disable(event);
2470         perf_event_ctx_unlock(event, ctx);
2471 }
2472 EXPORT_SYMBOL_GPL(perf_event_disable);
2473
2474 void perf_event_disable_inatomic(struct perf_event *event)
2475 {
2476         WRITE_ONCE(event->pending_disable, smp_processor_id());
2477         /* can fail, see perf_pending_event_disable() */
2478         irq_work_queue(&event->pending);
2479 }
2480
2481 static void perf_set_shadow_time(struct perf_event *event,
2482                                  struct perf_event_context *ctx)
2483 {
2484         /*
2485          * use the correct time source for the time snapshot
2486          *
2487          * We could get by without this by leveraging the
2488          * fact that to get to this function, the caller
2489          * has most likely already called update_context_time()
2490          * and update_cgrp_time_xx() and thus both timestamp
2491          * are identical (or very close). Given that tstamp is,
2492          * already adjusted for cgroup, we could say that:
2493          *    tstamp - ctx->timestamp
2494          * is equivalent to
2495          *    tstamp - cgrp->timestamp.
2496          *
2497          * Then, in perf_output_read(), the calculation would
2498          * work with no changes because:
2499          * - event is guaranteed scheduled in
2500          * - no scheduled out in between
2501          * - thus the timestamp would be the same
2502          *
2503          * But this is a bit hairy.
2504          *
2505          * So instead, we have an explicit cgroup call to remain
2506          * within the time source all along. We believe it
2507          * is cleaner and simpler to understand.
2508          */
2509         if (is_cgroup_event(event))
2510                 perf_cgroup_set_shadow_time(event, event->tstamp);
2511         else
2512                 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2513 }
2514
2515 #define MAX_INTERRUPTS (~0ULL)
2516
2517 static void perf_log_throttle(struct perf_event *event, int enable);
2518 static void perf_log_itrace_start(struct perf_event *event);
2519
2520 static int
2521 event_sched_in(struct perf_event *event,
2522                  struct perf_cpu_context *cpuctx,
2523                  struct perf_event_context *ctx)
2524 {
2525         int ret = 0;
2526
2527         WARN_ON_ONCE(event->ctx != ctx);
2528
2529         lockdep_assert_held(&ctx->lock);
2530
2531         if (event->state <= PERF_EVENT_STATE_OFF)
2532                 return 0;
2533
2534         WRITE_ONCE(event->oncpu, smp_processor_id());
2535         /*
2536          * Order event::oncpu write to happen before the ACTIVE state is
2537          * visible. This allows perf_event_{stop,read}() to observe the correct
2538          * ->oncpu if it sees ACTIVE.
2539          */
2540         smp_wmb();
2541         perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2542
2543         /*
2544          * Unthrottle events, since we scheduled we might have missed several
2545          * ticks already, also for a heavily scheduling task there is little
2546          * guarantee it'll get a tick in a timely manner.
2547          */
2548         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2549                 perf_log_throttle(event, 1);
2550                 event->hw.interrupts = 0;
2551         }
2552
2553         perf_pmu_disable(event->pmu);
2554
2555         perf_set_shadow_time(event, ctx);
2556
2557         perf_log_itrace_start(event);
2558
2559         if (event->pmu->add(event, PERF_EF_START)) {
2560                 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2561                 event->oncpu = -1;
2562                 ret = -EAGAIN;
2563                 goto out;
2564         }
2565
2566         if (!is_software_event(event))
2567                 cpuctx->active_oncpu++;
2568         if (!ctx->nr_active++)
2569                 perf_event_ctx_activate(ctx);
2570         if (event->attr.freq && event->attr.sample_freq)
2571                 ctx->nr_freq++;
2572
2573         if (event->attr.exclusive)
2574                 cpuctx->exclusive = 1;
2575
2576 out:
2577         perf_pmu_enable(event->pmu);
2578
2579         return ret;
2580 }
2581
2582 static int
2583 group_sched_in(struct perf_event *group_event,
2584                struct perf_cpu_context *cpuctx,
2585                struct perf_event_context *ctx)
2586 {
2587         struct perf_event *event, *partial_group = NULL;
2588         struct pmu *pmu = ctx->pmu;
2589
2590         if (group_event->state == PERF_EVENT_STATE_OFF)
2591                 return 0;
2592
2593         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2594
2595         if (event_sched_in(group_event, cpuctx, ctx))
2596                 goto error;
2597
2598         /*
2599          * Schedule in siblings as one group (if any):
2600          */
2601         for_each_sibling_event(event, group_event) {
2602                 if (event_sched_in(event, cpuctx, ctx)) {
2603                         partial_group = event;
2604                         goto group_error;
2605                 }
2606         }
2607
2608         if (!pmu->commit_txn(pmu))
2609                 return 0;
2610
2611 group_error:
2612         /*
2613          * Groups can be scheduled in as one unit only, so undo any
2614          * partial group before returning:
2615          * The events up to the failed event are scheduled out normally.
2616          */
2617         for_each_sibling_event(event, group_event) {
2618                 if (event == partial_group)
2619                         break;
2620
2621                 event_sched_out(event, cpuctx, ctx);
2622         }
2623         event_sched_out(group_event, cpuctx, ctx);
2624
2625 error:
2626         pmu->cancel_txn(pmu);
2627         return -EAGAIN;
2628 }
2629
2630 /*
2631  * Work out whether we can put this event group on the CPU now.
2632  */
2633 static int group_can_go_on(struct perf_event *event,
2634                            struct perf_cpu_context *cpuctx,
2635                            int can_add_hw)
2636 {
2637         /*
2638          * Groups consisting entirely of software events can always go on.
2639          */
2640         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2641                 return 1;
2642         /*
2643          * If an exclusive group is already on, no other hardware
2644          * events can go on.
2645          */
2646         if (cpuctx->exclusive)
2647                 return 0;
2648         /*
2649          * If this group is exclusive and there are already
2650          * events on the CPU, it can't go on.
2651          */
2652         if (event->attr.exclusive && !list_empty(get_event_list(event)))
2653                 return 0;
2654         /*
2655          * Otherwise, try to add it if all previous groups were able
2656          * to go on.
2657          */
2658         return can_add_hw;
2659 }
2660
2661 static void add_event_to_ctx(struct perf_event *event,
2662                                struct perf_event_context *ctx)
2663 {
2664         list_add_event(event, ctx);
2665         perf_group_attach(event);
2666 }
2667
2668 static void ctx_sched_out(struct perf_event_context *ctx,
2669                           struct perf_cpu_context *cpuctx,
2670                           enum event_type_t event_type);
2671 static void
2672 ctx_sched_in(struct perf_event_context *ctx,
2673              struct perf_cpu_context *cpuctx,
2674              enum event_type_t event_type,
2675              struct task_struct *task);
2676
2677 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2678                                struct perf_event_context *ctx,
2679                                enum event_type_t event_type)
2680 {
2681         if (!cpuctx->task_ctx)
2682                 return;
2683
2684         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2685                 return;
2686
2687         ctx_sched_out(ctx, cpuctx, event_type);
2688 }
2689
2690 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2691                                 struct perf_event_context *ctx,
2692                                 struct task_struct *task)
2693 {
2694         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2695         if (ctx)
2696                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2697         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2698         if (ctx)
2699                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2700 }
2701
2702 /*
2703  * We want to maintain the following priority of scheduling:
2704  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2705  *  - task pinned (EVENT_PINNED)
2706  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2707  *  - task flexible (EVENT_FLEXIBLE).
2708  *
2709  * In order to avoid unscheduling and scheduling back in everything every
2710  * time an event is added, only do it for the groups of equal priority and
2711  * below.
2712  *
2713  * This can be called after a batch operation on task events, in which case
2714  * event_type is a bit mask of the types of events involved. For CPU events,
2715  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2716  */
2717 static void ctx_resched(struct perf_cpu_context *cpuctx,
2718                         struct perf_event_context *task_ctx,
2719                         enum event_type_t event_type)
2720 {
2721         enum event_type_t ctx_event_type;
2722         bool cpu_event = !!(event_type & EVENT_CPU);
2723
2724         /*
2725          * If pinned groups are involved, flexible groups also need to be
2726          * scheduled out.
2727          */
2728         if (event_type & EVENT_PINNED)
2729                 event_type |= EVENT_FLEXIBLE;
2730
2731         ctx_event_type = event_type & EVENT_ALL;
2732
2733         perf_pmu_disable(cpuctx->ctx.pmu);
2734         if (task_ctx)
2735                 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2736
2737         /*
2738          * Decide which cpu ctx groups to schedule out based on the types
2739          * of events that caused rescheduling:
2740          *  - EVENT_CPU: schedule out corresponding groups;
2741          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2742          *  - otherwise, do nothing more.
2743          */
2744         if (cpu_event)
2745                 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2746         else if (ctx_event_type & EVENT_PINNED)
2747                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2748
2749         perf_event_sched_in(cpuctx, task_ctx, current);
2750         perf_pmu_enable(cpuctx->ctx.pmu);
2751 }
2752
2753 void perf_pmu_resched(struct pmu *pmu)
2754 {
2755         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2756         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2757
2758         perf_ctx_lock(cpuctx, task_ctx);
2759         ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2760         perf_ctx_unlock(cpuctx, task_ctx);
2761 }
2762
2763 /*
2764  * Cross CPU call to install and enable a performance event
2765  *
2766  * Very similar to remote_function() + event_function() but cannot assume that
2767  * things like ctx->is_active and cpuctx->task_ctx are set.
2768  */
2769 static int  __perf_install_in_context(void *info)
2770 {
2771         struct perf_event *event = info;
2772         struct perf_event_context *ctx = event->ctx;
2773         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2774         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2775         bool reprogram = true;
2776         int ret = 0;
2777
2778         raw_spin_lock(&cpuctx->ctx.lock);
2779         if (ctx->task) {
2780                 raw_spin_lock(&ctx->lock);
2781                 task_ctx = ctx;
2782
2783                 reprogram = (ctx->task == current);
2784
2785                 /*
2786                  * If the task is running, it must be running on this CPU,
2787                  * otherwise we cannot reprogram things.
2788                  *
2789                  * If its not running, we don't care, ctx->lock will
2790                  * serialize against it becoming runnable.
2791                  */
2792                 if (task_curr(ctx->task) && !reprogram) {
2793                         ret = -ESRCH;
2794                         goto unlock;
2795                 }
2796
2797                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2798         } else if (task_ctx) {
2799                 raw_spin_lock(&task_ctx->lock);
2800         }
2801
2802 #ifdef CONFIG_CGROUP_PERF
2803         if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2804                 /*
2805                  * If the current cgroup doesn't match the event's
2806                  * cgroup, we should not try to schedule it.
2807                  */
2808                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2809                 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2810                                         event->cgrp->css.cgroup);
2811         }
2812 #endif
2813
2814         if (reprogram) {
2815                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2816                 add_event_to_ctx(event, ctx);
2817                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2818         } else {
2819                 add_event_to_ctx(event, ctx);
2820         }
2821
2822 unlock:
2823         perf_ctx_unlock(cpuctx, task_ctx);
2824
2825         return ret;
2826 }
2827
2828 static bool exclusive_event_installable(struct perf_event *event,
2829                                         struct perf_event_context *ctx);
2830
2831 /*
2832  * Attach a performance event to a context.
2833  *
2834  * Very similar to event_function_call, see comment there.
2835  */
2836 static void
2837 perf_install_in_context(struct perf_event_context *ctx,
2838                         struct perf_event *event,
2839                         int cpu)
2840 {
2841         struct task_struct *task = READ_ONCE(ctx->task);
2842
2843         lockdep_assert_held(&ctx->mutex);
2844
2845         WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2846
2847         if (event->cpu != -1)
2848                 event->cpu = cpu;
2849
2850         /*
2851          * Ensures that if we can observe event->ctx, both the event and ctx
2852          * will be 'complete'. See perf_iterate_sb_cpu().
2853          */
2854         smp_store_release(&event->ctx, ctx);
2855
2856         /*
2857          * perf_event_attr::disabled events will not run and can be initialized
2858          * without IPI. Except when this is the first event for the context, in
2859          * that case we need the magic of the IPI to set ctx->is_active.
2860          *
2861          * The IOC_ENABLE that is sure to follow the creation of a disabled
2862          * event will issue the IPI and reprogram the hardware.
2863          */
2864         if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) {
2865                 raw_spin_lock_irq(&ctx->lock);
2866                 if (ctx->task == TASK_TOMBSTONE) {
2867                         raw_spin_unlock_irq(&ctx->lock);
2868                         return;
2869                 }
2870                 add_event_to_ctx(event, ctx);
2871                 raw_spin_unlock_irq(&ctx->lock);
2872                 return;
2873         }
2874
2875         if (!task) {
2876                 cpu_function_call(cpu, __perf_install_in_context, event);
2877                 return;
2878         }
2879
2880         /*
2881          * Should not happen, we validate the ctx is still alive before calling.
2882          */
2883         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2884                 return;
2885
2886         /*
2887          * Installing events is tricky because we cannot rely on ctx->is_active
2888          * to be set in case this is the nr_events 0 -> 1 transition.
2889          *
2890          * Instead we use task_curr(), which tells us if the task is running.
2891          * However, since we use task_curr() outside of rq::lock, we can race
2892          * against the actual state. This means the result can be wrong.
2893          *
2894          * If we get a false positive, we retry, this is harmless.
2895          *
2896          * If we get a false negative, things are complicated. If we are after
2897          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2898          * value must be correct. If we're before, it doesn't matter since
2899          * perf_event_context_sched_in() will program the counter.
2900          *
2901          * However, this hinges on the remote context switch having observed
2902          * our task->perf_event_ctxp[] store, such that it will in fact take
2903          * ctx::lock in perf_event_context_sched_in().
2904          *
2905          * We do this by task_function_call(), if the IPI fails to hit the task
2906          * we know any future context switch of task must see the
2907          * perf_event_ctpx[] store.
2908          */
2909
2910         /*
2911          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2912          * task_cpu() load, such that if the IPI then does not find the task
2913          * running, a future context switch of that task must observe the
2914          * store.
2915          */
2916         smp_mb();
2917 again:
2918         if (!task_function_call(task, __perf_install_in_context, event))
2919                 return;
2920
2921         raw_spin_lock_irq(&ctx->lock);
2922         task = ctx->task;
2923         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2924                 /*
2925                  * Cannot happen because we already checked above (which also
2926                  * cannot happen), and we hold ctx->mutex, which serializes us
2927                  * against perf_event_exit_task_context().
2928                  */
2929                 raw_spin_unlock_irq(&ctx->lock);
2930                 return;
2931         }
2932         /*
2933          * If the task is not running, ctx->lock will avoid it becoming so,
2934          * thus we can safely install the event.
2935          */
2936         if (task_curr(task)) {
2937                 raw_spin_unlock_irq(&ctx->lock);
2938                 goto again;
2939         }
2940         add_event_to_ctx(event, ctx);
2941         raw_spin_unlock_irq(&ctx->lock);
2942 }
2943
2944 /*
2945  * Cross CPU call to enable a performance event
2946  */
2947 static void __perf_event_enable(struct perf_event *event,
2948                                 struct perf_cpu_context *cpuctx,
2949                                 struct perf_event_context *ctx,
2950                                 void *info)
2951 {
2952         struct perf_event *leader = event->group_leader;
2953         struct perf_event_context *task_ctx;
2954
2955         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2956             event->state <= PERF_EVENT_STATE_ERROR)
2957                 return;
2958
2959         if (ctx->is_active)
2960                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2961
2962         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2963         perf_cgroup_event_enable(event, ctx);
2964
2965         if (!ctx->is_active)
2966                 return;
2967
2968         if (!event_filter_match(event)) {
2969                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2970                 return;
2971         }
2972
2973         /*
2974          * If the event is in a group and isn't the group leader,
2975          * then don't put it on unless the group is on.
2976          */
2977         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2978                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2979                 return;
2980         }
2981
2982         task_ctx = cpuctx->task_ctx;
2983         if (ctx->task)
2984                 WARN_ON_ONCE(task_ctx != ctx);
2985
2986         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2987 }
2988
2989 /*
2990  * Enable an event.
2991  *
2992  * If event->ctx is a cloned context, callers must make sure that
2993  * every task struct that event->ctx->task could possibly point to
2994  * remains valid.  This condition is satisfied when called through
2995  * perf_event_for_each_child or perf_event_for_each as described
2996  * for perf_event_disable.
2997  */
2998 static void _perf_event_enable(struct perf_event *event)
2999 {
3000         struct perf_event_context *ctx = event->ctx;
3001
3002         raw_spin_lock_irq(&ctx->lock);
3003         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3004             event->state <  PERF_EVENT_STATE_ERROR) {
3005 out:
3006                 raw_spin_unlock_irq(&ctx->lock);
3007                 return;
3008         }
3009
3010         /*
3011          * If the event is in error state, clear that first.
3012          *
3013          * That way, if we see the event in error state below, we know that it
3014          * has gone back into error state, as distinct from the task having
3015          * been scheduled away before the cross-call arrived.
3016          */
3017         if (event->state == PERF_EVENT_STATE_ERROR) {
3018                 /*
3019                  * Detached SIBLING events cannot leave ERROR state.
3020                  */
3021                 if (event->event_caps & PERF_EV_CAP_SIBLING &&
3022                     event->group_leader == event)
3023                         goto out;
3024
3025                 event->state = PERF_EVENT_STATE_OFF;
3026         }
3027         raw_spin_unlock_irq(&ctx->lock);
3028
3029         event_function_call(event, __perf_event_enable, NULL);
3030 }
3031
3032 /*
3033  * See perf_event_disable();
3034  */
3035 void perf_event_enable(struct perf_event *event)
3036 {
3037         struct perf_event_context *ctx;
3038
3039         ctx = perf_event_ctx_lock(event);
3040         _perf_event_enable(event);
3041         perf_event_ctx_unlock(event, ctx);
3042 }
3043 EXPORT_SYMBOL_GPL(perf_event_enable);
3044
3045 struct stop_event_data {
3046         struct perf_event       *event;
3047         unsigned int            restart;
3048 };
3049
3050 static int __perf_event_stop(void *info)
3051 {
3052         struct stop_event_data *sd = info;
3053         struct perf_event *event = sd->event;
3054
3055         /* if it's already INACTIVE, do nothing */
3056         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3057                 return 0;
3058
3059         /* matches smp_wmb() in event_sched_in() */
3060         smp_rmb();
3061
3062         /*
3063          * There is a window with interrupts enabled before we get here,
3064          * so we need to check again lest we try to stop another CPU's event.
3065          */
3066         if (READ_ONCE(event->oncpu) != smp_processor_id())
3067                 return -EAGAIN;
3068
3069         event->pmu->stop(event, PERF_EF_UPDATE);
3070
3071         /*
3072          * May race with the actual stop (through perf_pmu_output_stop()),
3073          * but it is only used for events with AUX ring buffer, and such
3074          * events will refuse to restart because of rb::aux_mmap_count==0,
3075          * see comments in perf_aux_output_begin().
3076          *
3077          * Since this is happening on an event-local CPU, no trace is lost
3078          * while restarting.
3079          */
3080         if (sd->restart)
3081                 event->pmu->start(event, 0);
3082
3083         return 0;
3084 }
3085
3086 static int perf_event_stop(struct perf_event *event, int restart)
3087 {
3088         struct stop_event_data sd = {
3089                 .event          = event,
3090                 .restart        = restart,
3091         };
3092         int ret = 0;
3093
3094         do {
3095                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3096                         return 0;
3097
3098                 /* matches smp_wmb() in event_sched_in() */
3099                 smp_rmb();
3100
3101                 /*
3102                  * We only want to restart ACTIVE events, so if the event goes
3103                  * inactive here (event->oncpu==-1), there's nothing more to do;
3104                  * fall through with ret==-ENXIO.
3105                  */
3106                 ret = cpu_function_call(READ_ONCE(event->oncpu),
3107                                         __perf_event_stop, &sd);
3108         } while (ret == -EAGAIN);
3109
3110         return ret;
3111 }
3112
3113 /*
3114  * In order to contain the amount of racy and tricky in the address filter
3115  * configuration management, it is a two part process:
3116  *
3117  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3118  *      we update the addresses of corresponding vmas in
3119  *      event::addr_filter_ranges array and bump the event::addr_filters_gen;
3120  * (p2) when an event is scheduled in (pmu::add), it calls
3121  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3122  *      if the generation has changed since the previous call.
3123  *
3124  * If (p1) happens while the event is active, we restart it to force (p2).
3125  *
3126  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3127  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3128  *     ioctl;
3129  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3130  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3131  *     for reading;
3132  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3133  *     of exec.
3134  */
3135 void perf_event_addr_filters_sync(struct perf_event *event)
3136 {
3137         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3138
3139         if (!has_addr_filter(event))
3140                 return;
3141
3142         raw_spin_lock(&ifh->lock);
3143         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3144                 event->pmu->addr_filters_sync(event);
3145                 event->hw.addr_filters_gen = event->addr_filters_gen;
3146         }
3147         raw_spin_unlock(&ifh->lock);
3148 }
3149 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3150
3151 static int _perf_event_refresh(struct perf_event *event, int refresh)
3152 {
3153         /*
3154          * not supported on inherited events
3155          */
3156         if (event->attr.inherit || !is_sampling_event(event))
3157                 return -EINVAL;
3158
3159         atomic_add(refresh, &event->event_limit);
3160         _perf_event_enable(event);
3161
3162         return 0;
3163 }
3164
3165 /*
3166  * See perf_event_disable()
3167  */
3168 int perf_event_refresh(struct perf_event *event, int refresh)
3169 {
3170         struct perf_event_context *ctx;
3171         int ret;
3172
3173         ctx = perf_event_ctx_lock(event);
3174         ret = _perf_event_refresh(event, refresh);
3175         perf_event_ctx_unlock(event, ctx);
3176
3177         return ret;
3178 }
3179 EXPORT_SYMBOL_GPL(perf_event_refresh);
3180
3181 static int perf_event_modify_breakpoint(struct perf_event *bp,
3182                                          struct perf_event_attr *attr)
3183 {
3184         int err;
3185
3186         _perf_event_disable(bp);
3187
3188         err = modify_user_hw_breakpoint_check(bp, attr, true);
3189
3190         if (!bp->attr.disabled)
3191                 _perf_event_enable(bp);
3192
3193         return err;
3194 }
3195
3196 static int perf_event_modify_attr(struct perf_event *event,
3197                                   struct perf_event_attr *attr)
3198 {
3199         int (*func)(struct perf_event *, struct perf_event_attr *);
3200         struct perf_event *child;
3201         int err;
3202
3203         if (event->attr.type != attr->type)
3204                 return -EINVAL;
3205
3206         switch (event->attr.type) {
3207         case PERF_TYPE_BREAKPOINT:
3208                 func = perf_event_modify_breakpoint;
3209                 break;
3210         default:
3211                 /* Place holder for future additions. */
3212                 return -EOPNOTSUPP;
3213         }
3214
3215         WARN_ON_ONCE(event->ctx->parent_ctx);
3216
3217         mutex_lock(&event->child_mutex);
3218         err = func(event, attr);
3219         if (err)
3220                 goto out;
3221         list_for_each_entry(child, &event->child_list, child_list) {
3222                 err = func(child, attr);
3223                 if (err)
3224                         goto out;
3225         }
3226 out:
3227         mutex_unlock(&event->child_mutex);
3228         return err;
3229 }
3230
3231 static void ctx_sched_out(struct perf_event_context *ctx,
3232                           struct perf_cpu_context *cpuctx,
3233                           enum event_type_t event_type)
3234 {
3235         struct perf_event *event, *tmp;
3236         int is_active = ctx->is_active;
3237
3238         lockdep_assert_held(&ctx->lock);
3239
3240         if (likely(!ctx->nr_events)) {
3241                 /*
3242                  * See __perf_remove_from_context().
3243                  */
3244                 WARN_ON_ONCE(ctx->is_active);
3245                 if (ctx->task)
3246                         WARN_ON_ONCE(cpuctx->task_ctx);
3247                 return;
3248         }
3249
3250         ctx->is_active &= ~event_type;
3251         if (!(ctx->is_active & EVENT_ALL))
3252                 ctx->is_active = 0;
3253
3254         if (ctx->task) {
3255                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3256                 if (!ctx->is_active)
3257                         cpuctx->task_ctx = NULL;
3258         }
3259
3260         /*
3261          * Always update time if it was set; not only when it changes.
3262          * Otherwise we can 'forget' to update time for any but the last
3263          * context we sched out. For example:
3264          *
3265          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3266          *   ctx_sched_out(.event_type = EVENT_PINNED)
3267          *
3268          * would only update time for the pinned events.
3269          */
3270         if (is_active & EVENT_TIME) {
3271                 /* update (and stop) ctx time */
3272                 update_context_time(ctx);
3273                 update_cgrp_time_from_cpuctx(cpuctx);
3274         }
3275
3276         is_active ^= ctx->is_active; /* changed bits */
3277
3278         if (!ctx->nr_active || !(is_active & EVENT_ALL))
3279                 return;
3280
3281         perf_pmu_disable(ctx->pmu);
3282         if (is_active & EVENT_PINNED) {
3283                 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3284                         group_sched_out(event, cpuctx, ctx);
3285         }
3286
3287         if (is_active & EVENT_FLEXIBLE) {
3288                 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3289                         group_sched_out(event, cpuctx, ctx);
3290
3291                 /*
3292                  * Since we cleared EVENT_FLEXIBLE, also clear
3293                  * rotate_necessary, is will be reset by
3294                  * ctx_flexible_sched_in() when needed.
3295                  */
3296                 ctx->rotate_necessary = 0;
3297         }
3298         perf_pmu_enable(ctx->pmu);
3299 }
3300
3301 /*
3302  * Test whether two contexts are equivalent, i.e. whether they have both been
3303  * cloned from the same version of the same context.
3304  *
3305  * Equivalence is measured using a generation number in the context that is
3306  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3307  * and list_del_event().
3308  */
3309 static int context_equiv(struct perf_event_context *ctx1,
3310                          struct perf_event_context *ctx2)
3311 {
3312         lockdep_assert_held(&ctx1->lock);
3313         lockdep_assert_held(&ctx2->lock);
3314
3315         /* Pinning disables the swap optimization */
3316         if (ctx1->pin_count || ctx2->pin_count)
3317                 return 0;
3318
3319         /* If ctx1 is the parent of ctx2 */
3320         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3321                 return 1;
3322
3323         /* If ctx2 is the parent of ctx1 */
3324         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3325                 return 1;
3326
3327         /*
3328          * If ctx1 and ctx2 have the same parent; we flatten the parent
3329          * hierarchy, see perf_event_init_context().
3330          */
3331         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3332                         ctx1->parent_gen == ctx2->parent_gen)
3333                 return 1;
3334
3335         /* Unmatched */
3336         return 0;
3337 }
3338
3339 static void __perf_event_sync_stat(struct perf_event *event,
3340                                      struct perf_event *next_event)
3341 {
3342         u64 value;
3343
3344         if (!event->attr.inherit_stat)
3345                 return;
3346
3347         /*
3348          * Update the event value, we cannot use perf_event_read()
3349          * because we're in the middle of a context switch and have IRQs
3350          * disabled, which upsets smp_call_function_single(), however
3351          * we know the event must be on the current CPU, therefore we
3352          * don't need to use it.
3353          */
3354         if (event->state == PERF_EVENT_STATE_ACTIVE)
3355                 event->pmu->read(event);
3356
3357         perf_event_update_time(event);
3358
3359         /*
3360          * In order to keep per-task stats reliable we need to flip the event
3361          * values when we flip the contexts.
3362          */
3363         value = local64_read(&next_event->count);
3364         value = local64_xchg(&event->count, value);
3365         local64_set(&next_event->count, value);
3366
3367         swap(event->total_time_enabled, next_event->total_time_enabled);
3368         swap(event->total_time_running, next_event->total_time_running);
3369
3370         /*
3371          * Since we swizzled the values, update the user visible data too.
3372          */
3373         perf_event_update_userpage(event);
3374         perf_event_update_userpage(next_event);
3375 }
3376
3377 static void perf_event_sync_stat(struct perf_event_context *ctx,
3378                                    struct perf_event_context *next_ctx)
3379 {
3380         struct perf_event *event, *next_event;
3381
3382         if (!ctx->nr_stat)
3383                 return;
3384
3385         update_context_time(ctx);
3386
3387         event = list_first_entry(&ctx->event_list,
3388                                    struct perf_event, event_entry);
3389
3390         next_event = list_first_entry(&next_ctx->event_list,
3391                                         struct perf_event, event_entry);
3392
3393         while (&event->event_entry != &ctx->event_list &&
3394                &next_event->event_entry != &next_ctx->event_list) {
3395
3396                 __perf_event_sync_stat(event, next_event);
3397
3398                 event = list_next_entry(event, event_entry);
3399                 next_event = list_next_entry(next_event, event_entry);
3400         }
3401 }
3402
3403 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3404                                          struct task_struct *next)
3405 {
3406         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3407         struct perf_event_context *next_ctx;
3408         struct perf_event_context *parent, *next_parent;
3409         struct perf_cpu_context *cpuctx;
3410         int do_switch = 1;
3411         struct pmu *pmu;
3412
3413         if (likely(!ctx))
3414                 return;
3415
3416         pmu = ctx->pmu;
3417         cpuctx = __get_cpu_context(ctx);
3418         if (!cpuctx->task_ctx)
3419                 return;
3420
3421         rcu_read_lock();
3422         next_ctx = next->perf_event_ctxp[ctxn];
3423         if (!next_ctx)
3424                 goto unlock;
3425
3426         parent = rcu_dereference(ctx->parent_ctx);
3427         next_parent = rcu_dereference(next_ctx->parent_ctx);
3428
3429         /* If neither context have a parent context; they cannot be clones. */
3430         if (!parent && !next_parent)
3431                 goto unlock;
3432
3433         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3434                 /*
3435                  * Looks like the two contexts are clones, so we might be
3436                  * able to optimize the context switch.  We lock both
3437                  * contexts and check that they are clones under the
3438                  * lock (including re-checking that neither has been
3439                  * uncloned in the meantime).  It doesn't matter which
3440                  * order we take the locks because no other cpu could
3441                  * be trying to lock both of these tasks.
3442                  */
3443                 raw_spin_lock(&ctx->lock);
3444                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3445                 if (context_equiv(ctx, next_ctx)) {
3446
3447                         WRITE_ONCE(ctx->task, next);
3448                         WRITE_ONCE(next_ctx->task, task);
3449
3450                         perf_pmu_disable(pmu);
3451
3452                         if (cpuctx->sched_cb_usage && pmu->sched_task)
3453                                 pmu->sched_task(ctx, false);
3454
3455                         /*
3456                          * PMU specific parts of task perf context can require
3457                          * additional synchronization. As an example of such
3458                          * synchronization see implementation details of Intel
3459                          * LBR call stack data profiling;
3460                          */
3461                         if (pmu->swap_task_ctx)
3462                                 pmu->swap_task_ctx(ctx, next_ctx);
3463                         else
3464                                 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3465
3466                         perf_pmu_enable(pmu);
3467
3468                         /*
3469                          * RCU_INIT_POINTER here is safe because we've not
3470                          * modified the ctx and the above modification of
3471                          * ctx->task and ctx->task_ctx_data are immaterial
3472                          * since those values are always verified under
3473                          * ctx->lock which we're now holding.
3474                          */
3475                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3476                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3477
3478                         do_switch = 0;
3479
3480                         perf_event_sync_stat(ctx, next_ctx);
3481                 }
3482                 raw_spin_unlock(&next_ctx->lock);
3483                 raw_spin_unlock(&ctx->lock);
3484         }
3485 unlock:
3486         rcu_read_unlock();
3487
3488         if (do_switch) {
3489                 raw_spin_lock(&ctx->lock);
3490                 perf_pmu_disable(pmu);
3491
3492                 if (cpuctx->sched_cb_usage && pmu->sched_task)
3493                         pmu->sched_task(ctx, false);
3494                 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3495
3496                 perf_pmu_enable(pmu);
3497                 raw_spin_unlock(&ctx->lock);
3498         }
3499 }
3500
3501 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3502
3503 void perf_sched_cb_dec(struct pmu *pmu)
3504 {
3505         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3506
3507         this_cpu_dec(perf_sched_cb_usages);
3508
3509         if (!--cpuctx->sched_cb_usage)
3510                 list_del(&cpuctx->sched_cb_entry);
3511 }
3512
3513
3514 void perf_sched_cb_inc(struct pmu *pmu)
3515 {
3516         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3517
3518         if (!cpuctx->sched_cb_usage++)
3519                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3520
3521         this_cpu_inc(perf_sched_cb_usages);
3522 }
3523
3524 /*
3525  * This function provides the context switch callback to the lower code
3526  * layer. It is invoked ONLY when the context switch callback is enabled.
3527  *
3528  * This callback is relevant even to per-cpu events; for example multi event
3529  * PEBS requires this to provide PID/TID information. This requires we flush
3530  * all queued PEBS records before we context switch to a new task.
3531  */
3532 static void __perf_pmu_sched_task(struct perf_cpu_context *cpuctx, bool sched_in)
3533 {
3534         struct pmu *pmu;
3535
3536         pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3537
3538         if (WARN_ON_ONCE(!pmu->sched_task))
3539                 return;
3540
3541         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3542         perf_pmu_disable(pmu);
3543
3544         pmu->sched_task(cpuctx->task_ctx, sched_in);
3545
3546         perf_pmu_enable(pmu);
3547         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3548 }
3549
3550 static void perf_pmu_sched_task(struct task_struct *prev,
3551                                 struct task_struct *next,
3552                                 bool sched_in)
3553 {
3554         struct perf_cpu_context *cpuctx;
3555
3556         if (prev == next)
3557                 return;
3558
3559         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3560                 /* will be handled in perf_event_context_sched_in/out */
3561                 if (cpuctx->task_ctx)
3562                         continue;
3563
3564                 __perf_pmu_sched_task(cpuctx, sched_in);
3565         }
3566 }
3567
3568 static void perf_event_switch(struct task_struct *task,
3569                               struct task_struct *next_prev, bool sched_in);
3570
3571 #define for_each_task_context_nr(ctxn)                                  \
3572         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3573
3574 /*
3575  * Called from scheduler to remove the events of the current task,
3576  * with interrupts disabled.
3577  *
3578  * We stop each event and update the event value in event->count.
3579  *
3580  * This does not protect us against NMI, but disable()
3581  * sets the disabled bit in the control field of event _before_
3582  * accessing the event control register. If a NMI hits, then it will
3583  * not restart the event.
3584  */
3585 void __perf_event_task_sched_out(struct task_struct *task,
3586                                  struct task_struct *next)
3587 {
3588         int ctxn;
3589
3590         if (__this_cpu_read(perf_sched_cb_usages))
3591                 perf_pmu_sched_task(task, next, false);
3592
3593         if (atomic_read(&nr_switch_events))
3594                 perf_event_switch(task, next, false);
3595
3596         for_each_task_context_nr(ctxn)
3597                 perf_event_context_sched_out(task, ctxn, next);
3598
3599         /*
3600          * if cgroup events exist on this CPU, then we need
3601          * to check if we have to switch out PMU state.
3602          * cgroup event are system-wide mode only
3603          */
3604         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3605                 perf_cgroup_sched_out(task, next);
3606 }
3607
3608 /*
3609  * Called with IRQs disabled
3610  */
3611 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3612                               enum event_type_t event_type)
3613 {
3614         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3615 }
3616
3617 static bool perf_less_group_idx(const void *l, const void *r)
3618 {
3619         const struct perf_event *le = *(const struct perf_event **)l;
3620         const struct perf_event *re = *(const struct perf_event **)r;
3621
3622         return le->group_index < re->group_index;
3623 }
3624
3625 static void swap_ptr(void *l, void *r)
3626 {
3627         void **lp = l, **rp = r;
3628
3629         swap(*lp, *rp);
3630 }
3631
3632 static const struct min_heap_callbacks perf_min_heap = {
3633         .elem_size = sizeof(struct perf_event *),
3634         .less = perf_less_group_idx,
3635         .swp = swap_ptr,
3636 };
3637
3638 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3639 {
3640         struct perf_event **itrs = heap->data;
3641
3642         if (event) {
3643                 itrs[heap->nr] = event;
3644                 heap->nr++;
3645         }
3646 }
3647
3648 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx,
3649                                 struct perf_event_groups *groups, int cpu,
3650                                 int (*func)(struct perf_event *, void *),
3651                                 void *data)
3652 {
3653 #ifdef CONFIG_CGROUP_PERF
3654         struct cgroup_subsys_state *css = NULL;
3655 #endif
3656         /* Space for per CPU and/or any CPU event iterators. */
3657         struct perf_event *itrs[2];
3658         struct min_heap event_heap;
3659         struct perf_event **evt;
3660         int ret;
3661
3662         if (cpuctx) {
3663                 event_heap = (struct min_heap){
3664                         .data = cpuctx->heap,
3665                         .nr = 0,
3666                         .size = cpuctx->heap_size,
3667                 };
3668
3669                 lockdep_assert_held(&cpuctx->ctx.lock);
3670
3671 #ifdef CONFIG_CGROUP_PERF
3672                 if (cpuctx->cgrp)
3673                         css = &cpuctx->cgrp->css;
3674 #endif
3675         } else {
3676                 event_heap = (struct min_heap){
3677                         .data = itrs,
3678                         .nr = 0,
3679                         .size = ARRAY_SIZE(itrs),
3680                 };
3681                 /* Events not within a CPU context may be on any CPU. */
3682                 __heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL));
3683         }
3684         evt = event_heap.data;
3685
3686         __heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL));
3687
3688 #ifdef CONFIG_CGROUP_PERF
3689         for (; css; css = css->parent)
3690                 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup));
3691 #endif
3692
3693         min_heapify_all(&event_heap, &perf_min_heap);
3694
3695         while (event_heap.nr) {
3696                 ret = func(*evt, data);
3697                 if (ret)
3698                         return ret;
3699
3700                 *evt = perf_event_groups_next(*evt);
3701                 if (*evt)
3702                         min_heapify(&event_heap, 0, &perf_min_heap);
3703                 else
3704                         min_heap_pop(&event_heap, &perf_min_heap);
3705         }
3706
3707         return 0;
3708 }
3709
3710 static int merge_sched_in(struct perf_event *event, void *data)
3711 {
3712         struct perf_event_context *ctx = event->ctx;
3713         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3714         int *can_add_hw = data;
3715
3716         if (event->state <= PERF_EVENT_STATE_OFF)
3717                 return 0;
3718
3719         if (!event_filter_match(event))
3720                 return 0;
3721
3722         if (group_can_go_on(event, cpuctx, *can_add_hw)) {
3723                 if (!group_sched_in(event, cpuctx, ctx))
3724                         list_add_tail(&event->active_list, get_event_list(event));
3725         }
3726
3727         if (event->state == PERF_EVENT_STATE_INACTIVE) {
3728                 if (event->attr.pinned) {
3729                         perf_cgroup_event_disable(event, ctx);
3730                         perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3731                 }
3732
3733                 *can_add_hw = 0;
3734                 ctx->rotate_necessary = 1;
3735                 perf_mux_hrtimer_restart(cpuctx);
3736         }
3737
3738         return 0;
3739 }
3740
3741 static void
3742 ctx_pinned_sched_in(struct perf_event_context *ctx,
3743                     struct perf_cpu_context *cpuctx)
3744 {
3745         int can_add_hw = 1;
3746
3747         if (ctx != &cpuctx->ctx)
3748                 cpuctx = NULL;
3749
3750         visit_groups_merge(cpuctx, &ctx->pinned_groups,
3751                            smp_processor_id(),
3752                            merge_sched_in, &can_add_hw);
3753 }
3754
3755 static void
3756 ctx_flexible_sched_in(struct perf_event_context *ctx,
3757                       struct perf_cpu_context *cpuctx)
3758 {
3759         int can_add_hw = 1;
3760
3761         if (ctx != &cpuctx->ctx)
3762                 cpuctx = NULL;
3763
3764         visit_groups_merge(cpuctx, &ctx->flexible_groups,
3765                            smp_processor_id(),
3766                            merge_sched_in, &can_add_hw);
3767 }
3768
3769 static void
3770 ctx_sched_in(struct perf_event_context *ctx,
3771              struct perf_cpu_context *cpuctx,
3772              enum event_type_t event_type,
3773              struct task_struct *task)
3774 {
3775         int is_active = ctx->is_active;
3776         u64 now;
3777
3778         lockdep_assert_held(&ctx->lock);
3779
3780         if (likely(!ctx->nr_events))
3781                 return;
3782
3783         ctx->is_active |= (event_type | EVENT_TIME);
3784         if (ctx->task) {
3785                 if (!is_active)
3786                         cpuctx->task_ctx = ctx;
3787                 else
3788                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3789         }
3790
3791         is_active ^= ctx->is_active; /* changed bits */
3792
3793         if (is_active & EVENT_TIME) {
3794                 /* start ctx time */
3795                 now = perf_clock();
3796                 ctx->timestamp = now;
3797                 perf_cgroup_set_timestamp(task, ctx);
3798         }
3799
3800         /*
3801          * First go through the list and put on any pinned groups
3802          * in order to give them the best chance of going on.
3803          */
3804         if (is_active & EVENT_PINNED)
3805                 ctx_pinned_sched_in(ctx, cpuctx);
3806
3807         /* Then walk through the lower prio flexible groups */
3808         if (is_active & EVENT_FLEXIBLE)
3809                 ctx_flexible_sched_in(ctx, cpuctx);
3810 }
3811
3812 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3813                              enum event_type_t event_type,
3814                              struct task_struct *task)
3815 {
3816         struct perf_event_context *ctx = &cpuctx->ctx;
3817
3818         ctx_sched_in(ctx, cpuctx, event_type, task);
3819 }
3820
3821 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3822                                         struct task_struct *task)
3823 {
3824         struct perf_cpu_context *cpuctx;
3825         struct pmu *pmu;
3826
3827         cpuctx = __get_cpu_context(ctx);
3828
3829         /*
3830          * HACK: for HETEROGENEOUS the task context might have switched to a
3831          * different PMU, force (re)set the context,
3832          */
3833         pmu = ctx->pmu = cpuctx->ctx.pmu;
3834
3835         if (cpuctx->task_ctx == ctx) {
3836                 if (cpuctx->sched_cb_usage)
3837                         __perf_pmu_sched_task(cpuctx, true);
3838                 return;
3839         }
3840
3841         perf_ctx_lock(cpuctx, ctx);
3842         /*
3843          * We must check ctx->nr_events while holding ctx->lock, such
3844          * that we serialize against perf_install_in_context().
3845          */
3846         if (!ctx->nr_events)
3847                 goto unlock;
3848
3849         perf_pmu_disable(pmu);
3850         /*
3851          * We want to keep the following priority order:
3852          * cpu pinned (that don't need to move), task pinned,
3853          * cpu flexible, task flexible.
3854          *
3855          * However, if task's ctx is not carrying any pinned
3856          * events, no need to flip the cpuctx's events around.
3857          */
3858         if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3859                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3860         perf_event_sched_in(cpuctx, ctx, task);
3861
3862         if (cpuctx->sched_cb_usage && pmu->sched_task)
3863                 pmu->sched_task(cpuctx->task_ctx, true);
3864
3865         perf_pmu_enable(pmu);
3866
3867 unlock:
3868         perf_ctx_unlock(cpuctx, ctx);
3869 }
3870
3871 /*
3872  * Called from scheduler to add the events of the current task
3873  * with interrupts disabled.
3874  *
3875  * We restore the event value and then enable it.
3876  *
3877  * This does not protect us against NMI, but enable()
3878  * sets the enabled bit in the control field of event _before_
3879  * accessing the event control register. If a NMI hits, then it will
3880  * keep the event running.
3881  */
3882 void __perf_event_task_sched_in(struct task_struct *prev,
3883                                 struct task_struct *task)
3884 {
3885         struct perf_event_context *ctx;
3886         int ctxn;
3887
3888         /*
3889          * If cgroup events exist on this CPU, then we need to check if we have
3890          * to switch in PMU state; cgroup event are system-wide mode only.
3891          *
3892          * Since cgroup events are CPU events, we must schedule these in before
3893          * we schedule in the task events.
3894          */
3895         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3896                 perf_cgroup_sched_in(prev, task);
3897
3898         for_each_task_context_nr(ctxn) {
3899                 ctx = task->perf_event_ctxp[ctxn];
3900                 if (likely(!ctx))
3901                         continue;
3902
3903                 perf_event_context_sched_in(ctx, task);
3904         }
3905
3906         if (atomic_read(&nr_switch_events))
3907                 perf_event_switch(task, prev, true);
3908
3909         if (__this_cpu_read(perf_sched_cb_usages))
3910                 perf_pmu_sched_task(prev, task, true);
3911 }
3912
3913 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3914 {
3915         u64 frequency = event->attr.sample_freq;
3916         u64 sec = NSEC_PER_SEC;
3917         u64 divisor, dividend;
3918
3919         int count_fls, nsec_fls, frequency_fls, sec_fls;
3920
3921         count_fls = fls64(count);
3922         nsec_fls = fls64(nsec);
3923         frequency_fls = fls64(frequency);
3924         sec_fls = 30;
3925
3926         /*
3927          * We got @count in @nsec, with a target of sample_freq HZ
3928          * the target period becomes:
3929          *
3930          *             @count * 10^9
3931          * period = -------------------
3932          *          @nsec * sample_freq
3933          *
3934          */
3935
3936         /*
3937          * Reduce accuracy by one bit such that @a and @b converge
3938          * to a similar magnitude.
3939          */
3940 #define REDUCE_FLS(a, b)                \
3941 do {                                    \
3942         if (a##_fls > b##_fls) {        \
3943                 a >>= 1;                \
3944                 a##_fls--;              \
3945         } else {                        \
3946                 b >>= 1;                \
3947                 b##_fls--;              \
3948         }                               \
3949 } while (0)
3950
3951         /*
3952          * Reduce accuracy until either term fits in a u64, then proceed with
3953          * the other, so that finally we can do a u64/u64 division.
3954          */
3955         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3956                 REDUCE_FLS(nsec, frequency);
3957                 REDUCE_FLS(sec, count);
3958         }
3959
3960         if (count_fls + sec_fls > 64) {
3961                 divisor = nsec * frequency;
3962
3963                 while (count_fls + sec_fls > 64) {
3964                         REDUCE_FLS(count, sec);
3965                         divisor >>= 1;
3966                 }
3967
3968                 dividend = count * sec;
3969         } else {
3970                 dividend = count * sec;
3971
3972                 while (nsec_fls + frequency_fls > 64) {
3973                         REDUCE_FLS(nsec, frequency);
3974                         dividend >>= 1;
3975                 }
3976
3977                 divisor = nsec * frequency;
3978         }
3979
3980         if (!divisor)
3981                 return dividend;
3982
3983         return div64_u64(dividend, divisor);
3984 }
3985
3986 static DEFINE_PER_CPU(int, perf_throttled_count);
3987 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3988
3989 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3990 {
3991         struct hw_perf_event *hwc = &event->hw;
3992         s64 period, sample_period;
3993         s64 delta;
3994
3995         period = perf_calculate_period(event, nsec, count);
3996
3997         delta = (s64)(period - hwc->sample_period);
3998         delta = (delta + 7) / 8; /* low pass filter */
3999
4000         sample_period = hwc->sample_period + delta;
4001
4002         if (!sample_period)
4003                 sample_period = 1;
4004
4005         hwc->sample_period = sample_period;
4006
4007         if (local64_read(&hwc->period_left) > 8*sample_period) {
4008                 if (disable)
4009                         event->pmu->stop(event, PERF_EF_UPDATE);
4010
4011                 local64_set(&hwc->period_left, 0);
4012
4013                 if (disable)
4014                         event->pmu->start(event, PERF_EF_RELOAD);
4015         }
4016 }
4017
4018 /*
4019  * combine freq adjustment with unthrottling to avoid two passes over the
4020  * events. At the same time, make sure, having freq events does not change
4021  * the rate of unthrottling as that would introduce bias.
4022  */
4023 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
4024                                            int needs_unthr)
4025 {
4026         struct perf_event *event;
4027         struct hw_perf_event *hwc;
4028         u64 now, period = TICK_NSEC;
4029         s64 delta;
4030
4031         /*
4032          * only need to iterate over all events iff:
4033          * - context have events in frequency mode (needs freq adjust)
4034          * - there are events to unthrottle on this cpu
4035          */
4036         if (!(ctx->nr_freq || needs_unthr))
4037                 return;
4038
4039         raw_spin_lock(&ctx->lock);
4040         perf_pmu_disable(ctx->pmu);
4041
4042         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4043                 if (event->state != PERF_EVENT_STATE_ACTIVE)
4044                         continue;
4045
4046                 if (!event_filter_match(event))
4047                         continue;
4048
4049                 perf_pmu_disable(event->pmu);
4050
4051                 hwc = &event->hw;
4052
4053                 if (hwc->interrupts == MAX_INTERRUPTS) {
4054                         hwc->interrupts = 0;
4055                         perf_log_throttle(event, 1);
4056                         event->pmu->start(event, 0);
4057                 }
4058
4059                 if (!event->attr.freq || !event->attr.sample_freq)
4060                         goto next;
4061
4062                 /*
4063                  * stop the event and update event->count
4064                  */
4065                 event->pmu->stop(event, PERF_EF_UPDATE);
4066
4067                 now = local64_read(&event->count);
4068                 delta = now - hwc->freq_count_stamp;
4069                 hwc->freq_count_stamp = now;
4070
4071                 /*
4072                  * restart the event
4073                  * reload only if value has changed
4074                  * we have stopped the event so tell that
4075                  * to perf_adjust_period() to avoid stopping it
4076                  * twice.
4077                  */
4078                 if (delta > 0)
4079                         perf_adjust_period(event, period, delta, false);
4080
4081                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4082         next:
4083                 perf_pmu_enable(event->pmu);
4084         }
4085
4086         perf_pmu_enable(ctx->pmu);
4087         raw_spin_unlock(&ctx->lock);
4088 }
4089
4090 /*
4091  * Move @event to the tail of the @ctx's elegible events.
4092  */
4093 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4094 {
4095         /*
4096          * Rotate the first entry last of non-pinned groups. Rotation might be
4097          * disabled by the inheritance code.
4098          */
4099         if (ctx->rotate_disable)
4100                 return;
4101
4102         perf_event_groups_delete(&ctx->flexible_groups, event);
4103         perf_event_groups_insert(&ctx->flexible_groups, event);
4104 }
4105
4106 /* pick an event from the flexible_groups to rotate */
4107 static inline struct perf_event *
4108 ctx_event_to_rotate(struct perf_event_context *ctx)
4109 {
4110         struct perf_event *event;
4111
4112         /* pick the first active flexible event */
4113         event = list_first_entry_or_null(&ctx->flexible_active,
4114                                          struct perf_event, active_list);
4115
4116         /* if no active flexible event, pick the first event */
4117         if (!event) {
4118                 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
4119                                       typeof(*event), group_node);
4120         }
4121
4122         /*
4123          * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4124          * finds there are unschedulable events, it will set it again.
4125          */
4126         ctx->rotate_necessary = 0;
4127
4128         return event;
4129 }
4130
4131 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
4132 {
4133         struct perf_event *cpu_event = NULL, *task_event = NULL;
4134         struct perf_event_context *task_ctx = NULL;
4135         int cpu_rotate, task_rotate;
4136
4137         /*
4138          * Since we run this from IRQ context, nobody can install new
4139          * events, thus the event count values are stable.
4140          */
4141
4142         cpu_rotate = cpuctx->ctx.rotate_necessary;
4143         task_ctx = cpuctx->task_ctx;
4144         task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
4145
4146         if (!(cpu_rotate || task_rotate))
4147                 return false;
4148
4149         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4150         perf_pmu_disable(cpuctx->ctx.pmu);
4151
4152         if (task_rotate)
4153                 task_event = ctx_event_to_rotate(task_ctx);
4154         if (cpu_rotate)
4155                 cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
4156
4157         /*
4158          * As per the order given at ctx_resched() first 'pop' task flexible
4159          * and then, if needed CPU flexible.
4160          */
4161         if (task_event || (task_ctx && cpu_event))
4162                 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
4163         if (cpu_event)
4164                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
4165
4166         if (task_event)
4167                 rotate_ctx(task_ctx, task_event);
4168         if (cpu_event)
4169                 rotate_ctx(&cpuctx->ctx, cpu_event);
4170
4171         perf_event_sched_in(cpuctx, task_ctx, current);
4172
4173         perf_pmu_enable(cpuctx->ctx.pmu);
4174         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4175
4176         return true;
4177 }
4178
4179 void perf_event_task_tick(void)
4180 {
4181         struct list_head *head = this_cpu_ptr(&active_ctx_list);
4182         struct perf_event_context *ctx, *tmp;
4183         int throttled;
4184
4185         lockdep_assert_irqs_disabled();
4186
4187         __this_cpu_inc(perf_throttled_seq);
4188         throttled = __this_cpu_xchg(perf_throttled_count, 0);
4189         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4190
4191         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
4192                 perf_adjust_freq_unthr_context(ctx, throttled);
4193 }
4194
4195 static int event_enable_on_exec(struct perf_event *event,
4196                                 struct perf_event_context *ctx)
4197 {
4198         if (!event->attr.enable_on_exec)
4199                 return 0;
4200
4201         event->attr.enable_on_exec = 0;
4202         if (event->state >= PERF_EVENT_STATE_INACTIVE)
4203                 return 0;
4204
4205         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4206
4207         return 1;
4208 }
4209
4210 /*
4211  * Enable all of a task's events that have been marked enable-on-exec.
4212  * This expects task == current.
4213  */
4214 static void perf_event_enable_on_exec(int ctxn)
4215 {
4216         struct perf_event_context *ctx, *clone_ctx = NULL;
4217         enum event_type_t event_type = 0;
4218         struct perf_cpu_context *cpuctx;
4219         struct perf_event *event;
4220         unsigned long flags;
4221         int enabled = 0;
4222
4223         local_irq_save(flags);
4224         ctx = current->perf_event_ctxp[ctxn];
4225         if (!ctx || !ctx->nr_events)
4226                 goto out;
4227
4228         cpuctx = __get_cpu_context(ctx);
4229         perf_ctx_lock(cpuctx, ctx);
4230         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
4231         list_for_each_entry(event, &ctx->event_list, event_entry) {
4232                 enabled |= event_enable_on_exec(event, ctx);
4233                 event_type |= get_event_type(event);
4234         }
4235
4236         /*
4237          * Unclone and reschedule this context if we enabled any event.
4238          */
4239         if (enabled) {
4240                 clone_ctx = unclone_ctx(ctx);
4241                 ctx_resched(cpuctx, ctx, event_type);
4242         } else {
4243                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
4244         }
4245         perf_ctx_unlock(cpuctx, ctx);
4246
4247 out:
4248         local_irq_restore(flags);
4249
4250         if (clone_ctx)
4251                 put_ctx(clone_ctx);
4252 }
4253
4254 static void perf_remove_from_owner(struct perf_event *event);
4255 static void perf_event_exit_event(struct perf_event *event,
4256                                   struct perf_event_context *ctx);
4257
4258 /*
4259  * Removes all events from the current task that have been marked
4260  * remove-on-exec, and feeds their values back to parent events.
4261  */
4262 static void perf_event_remove_on_exec(int ctxn)
4263 {
4264         struct perf_event_context *ctx, *clone_ctx = NULL;
4265         struct perf_event *event, *next;
4266         LIST_HEAD(free_list);
4267         unsigned long flags;
4268         bool modified = false;
4269
4270         ctx = perf_pin_task_context(current, ctxn);
4271         if (!ctx)
4272                 return;
4273
4274         mutex_lock(&ctx->mutex);
4275
4276         if (WARN_ON_ONCE(ctx->task != current))
4277                 goto unlock;
4278
4279         list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4280                 if (!event->attr.remove_on_exec)
4281                         continue;
4282
4283                 if (!is_kernel_event(event))
4284                         perf_remove_from_owner(event);
4285
4286                 modified = true;
4287
4288                 perf_event_exit_event(event, ctx);
4289         }
4290
4291         raw_spin_lock_irqsave(&ctx->lock, flags);
4292         if (modified)
4293                 clone_ctx = unclone_ctx(ctx);
4294         --ctx->pin_count;
4295         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4296
4297 unlock:
4298         mutex_unlock(&ctx->mutex);
4299
4300         put_ctx(ctx);
4301         if (clone_ctx)
4302                 put_ctx(clone_ctx);
4303 }
4304
4305 struct perf_read_data {
4306         struct perf_event *event;
4307         bool group;
4308         int ret;
4309 };
4310
4311 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4312 {
4313         u16 local_pkg, event_pkg;
4314
4315         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4316                 int local_cpu = smp_processor_id();
4317
4318                 event_pkg = topology_physical_package_id(event_cpu);
4319                 local_pkg = topology_physical_package_id(local_cpu);
4320
4321                 if (event_pkg == local_pkg)
4322                         return local_cpu;
4323         }
4324
4325         return event_cpu;
4326 }
4327
4328 /*
4329  * Cross CPU call to read the hardware event
4330  */
4331 static void __perf_event_read(void *info)
4332 {
4333         struct perf_read_data *data = info;
4334         struct perf_event *sub, *event = data->event;
4335         struct perf_event_context *ctx = event->ctx;
4336         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4337         struct pmu *pmu = event->pmu;
4338
4339         /*
4340          * If this is a task context, we need to check whether it is
4341          * the current task context of this cpu.  If not it has been
4342          * scheduled out before the smp call arrived.  In that case
4343          * event->count would have been updated to a recent sample
4344          * when the event was scheduled out.
4345          */
4346         if (ctx->task && cpuctx->task_ctx != ctx)
4347                 return;
4348
4349         raw_spin_lock(&ctx->lock);
4350         if (ctx->is_active & EVENT_TIME) {
4351                 update_context_time(ctx);
4352                 update_cgrp_time_from_event(event);
4353         }
4354
4355         perf_event_update_time(event);
4356         if (data->group)
4357                 perf_event_update_sibling_time(event);
4358
4359         if (event->state != PERF_EVENT_STATE_ACTIVE)
4360                 goto unlock;
4361
4362         if (!data->group) {
4363                 pmu->read(event);
4364                 data->ret = 0;
4365                 goto unlock;
4366         }
4367
4368         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4369
4370         pmu->read(event);
4371
4372         for_each_sibling_event(sub, event) {
4373                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4374                         /*
4375                          * Use sibling's PMU rather than @event's since
4376                          * sibling could be on different (eg: software) PMU.
4377                          */
4378                         sub->pmu->read(sub);
4379                 }
4380         }
4381
4382         data->ret = pmu->commit_txn(pmu);
4383
4384 unlock:
4385         raw_spin_unlock(&ctx->lock);
4386 }
4387
4388 static inline u64 perf_event_count(struct perf_event *event)
4389 {
4390         return local64_read(&event->count) + atomic64_read(&event->child_count);
4391 }
4392
4393 /*
4394  * NMI-safe method to read a local event, that is an event that
4395  * is:
4396  *   - either for the current task, or for this CPU
4397  *   - does not have inherit set, for inherited task events
4398  *     will not be local and we cannot read them atomically
4399  *   - must not have a pmu::count method
4400  */
4401 int perf_event_read_local(struct perf_event *event, u64 *value,
4402                           u64 *enabled, u64 *running)
4403 {
4404         unsigned long flags;
4405         int ret = 0;
4406
4407         /*
4408          * Disabling interrupts avoids all counter scheduling (context
4409          * switches, timer based rotation and IPIs).
4410          */
4411         local_irq_save(flags);
4412
4413         /*
4414          * It must not be an event with inherit set, we cannot read
4415          * all child counters from atomic context.
4416          */
4417         if (event->attr.inherit) {
4418                 ret = -EOPNOTSUPP;
4419                 goto out;
4420         }
4421
4422         /* If this is a per-task event, it must be for current */
4423         if ((event->attach_state & PERF_ATTACH_TASK) &&
4424             event->hw.target != current) {
4425                 ret = -EINVAL;
4426                 goto out;
4427         }
4428
4429         /* If this is a per-CPU event, it must be for this CPU */
4430         if (!(event->attach_state & PERF_ATTACH_TASK) &&
4431             event->cpu != smp_processor_id()) {
4432                 ret = -EINVAL;
4433                 goto out;
4434         }
4435
4436         /* If this is a pinned event it must be running on this CPU */
4437         if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4438                 ret = -EBUSY;
4439                 goto out;
4440         }
4441
4442         /*
4443          * If the event is currently on this CPU, its either a per-task event,
4444          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4445          * oncpu == -1).
4446          */
4447         if (event->oncpu == smp_processor_id())
4448                 event->pmu->read(event);
4449
4450         *value = local64_read(&event->count);
4451         if (enabled || running) {
4452                 u64 now = event->shadow_ctx_time + perf_clock();
4453                 u64 __enabled, __running;
4454
4455                 __perf_update_times(event, now, &__enabled, &__running);
4456                 if (enabled)
4457                         *enabled = __enabled;
4458                 if (running)
4459                         *running = __running;
4460         }
4461 out:
4462         local_irq_restore(flags);
4463
4464         return ret;
4465 }
4466
4467 static int perf_event_read(struct perf_event *event, bool group)
4468 {
4469         enum perf_event_state state = READ_ONCE(event->state);
4470         int event_cpu, ret = 0;
4471
4472         /*
4473          * If event is enabled and currently active on a CPU, update the
4474          * value in the event structure:
4475          */
4476 again:
4477         if (state == PERF_EVENT_STATE_ACTIVE) {
4478                 struct perf_read_data data;
4479
4480                 /*
4481                  * Orders the ->state and ->oncpu loads such that if we see
4482                  * ACTIVE we must also see the right ->oncpu.
4483                  *
4484                  * Matches the smp_wmb() from event_sched_in().
4485                  */
4486                 smp_rmb();
4487
4488                 event_cpu = READ_ONCE(event->oncpu);
4489                 if ((unsigned)event_cpu >= nr_cpu_ids)
4490                         return 0;
4491
4492                 data = (struct perf_read_data){
4493                         .event = event,
4494                         .group = group,
4495                         .ret = 0,
4496                 };
4497
4498                 preempt_disable();
4499                 event_cpu = __perf_event_read_cpu(event, event_cpu);
4500
4501                 /*
4502                  * Purposely ignore the smp_call_function_single() return
4503                  * value.
4504                  *
4505                  * If event_cpu isn't a valid CPU it means the event got
4506                  * scheduled out and that will have updated the event count.
4507                  *
4508                  * Therefore, either way, we'll have an up-to-date event count
4509                  * after this.
4510                  */
4511                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4512                 preempt_enable();
4513                 ret = data.ret;
4514
4515         } else if (state == PERF_EVENT_STATE_INACTIVE) {
4516                 struct perf_event_context *ctx = event->ctx;
4517                 unsigned long flags;
4518
4519                 raw_spin_lock_irqsave(&ctx->lock, flags);
4520                 state = event->state;
4521                 if (state != PERF_EVENT_STATE_INACTIVE) {
4522                         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4523                         goto again;
4524                 }
4525
4526                 /*
4527                  * May read while context is not active (e.g., thread is
4528                  * blocked), in that case we cannot update context time
4529                  */
4530                 if (ctx->is_active & EVENT_TIME) {
4531                         update_context_time(ctx);
4532                         update_cgrp_time_from_event(event);
4533                 }
4534
4535                 perf_event_update_time(event);
4536                 if (group)
4537                         perf_event_update_sibling_time(event);
4538                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4539         }
4540
4541         return ret;
4542 }
4543
4544 /*
4545  * Initialize the perf_event context in a task_struct:
4546  */
4547 static void __perf_event_init_context(struct perf_event_context *ctx)
4548 {
4549         raw_spin_lock_init(&ctx->lock);
4550         mutex_init(&ctx->mutex);
4551         INIT_LIST_HEAD(&ctx->active_ctx_list);
4552         perf_event_groups_init(&ctx->pinned_groups);
4553         perf_event_groups_init(&ctx->flexible_groups);
4554         INIT_LIST_HEAD(&ctx->event_list);
4555         INIT_LIST_HEAD(&ctx->pinned_active);
4556         INIT_LIST_HEAD(&ctx->flexible_active);
4557         refcount_set(&ctx->refcount, 1);
4558 }
4559
4560 static struct perf_event_context *
4561 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4562 {
4563         struct perf_event_context *ctx;
4564
4565         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4566         if (!ctx)
4567                 return NULL;
4568
4569         __perf_event_init_context(ctx);
4570         if (task)
4571                 ctx->task = get_task_struct(task);
4572         ctx->pmu = pmu;
4573
4574         return ctx;
4575 }
4576
4577 static struct task_struct *
4578 find_lively_task_by_vpid(pid_t vpid)
4579 {
4580         struct task_struct *task;
4581
4582         rcu_read_lock();
4583         if (!vpid)
4584                 task = current;
4585         else
4586                 task = find_task_by_vpid(vpid);
4587         if (task)
4588                 get_task_struct(task);
4589         rcu_read_unlock();
4590
4591         if (!task)
4592                 return ERR_PTR(-ESRCH);
4593
4594         return task;
4595 }
4596
4597 /*
4598  * Returns a matching context with refcount and pincount.
4599  */
4600 static struct perf_event_context *
4601 find_get_context(struct pmu *pmu, struct task_struct *task,
4602                 struct perf_event *event)
4603 {
4604         struct perf_event_context *ctx, *clone_ctx = NULL;
4605         struct perf_cpu_context *cpuctx;
4606         void *task_ctx_data = NULL;
4607         unsigned long flags;
4608         int ctxn, err;
4609         int cpu = event->cpu;
4610
4611         if (!task) {
4612                 /* Must be root to operate on a CPU event: */
4613                 err = perf_allow_cpu(&event->attr);
4614                 if (err)
4615                         return ERR_PTR(err);
4616
4617                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4618                 ctx = &cpuctx->ctx;
4619                 get_ctx(ctx);
4620                 raw_spin_lock_irqsave(&ctx->lock, flags);
4621                 ++ctx->pin_count;
4622                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4623
4624                 return ctx;
4625         }
4626
4627         err = -EINVAL;
4628         ctxn = pmu->task_ctx_nr;
4629         if (ctxn < 0)
4630                 goto errout;
4631
4632         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4633                 task_ctx_data = alloc_task_ctx_data(pmu);
4634                 if (!task_ctx_data) {
4635                         err = -ENOMEM;
4636                         goto errout;
4637                 }
4638         }
4639
4640 retry:
4641         ctx = perf_lock_task_context(task, ctxn, &flags);
4642         if (ctx) {
4643                 clone_ctx = unclone_ctx(ctx);
4644                 ++ctx->pin_count;
4645
4646                 if (task_ctx_data && !ctx->task_ctx_data) {
4647                         ctx->task_ctx_data = task_ctx_data;
4648                         task_ctx_data = NULL;
4649                 }
4650                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4651
4652                 if (clone_ctx)
4653                         put_ctx(clone_ctx);
4654         } else {
4655                 ctx = alloc_perf_context(pmu, task);
4656                 err = -ENOMEM;
4657                 if (!ctx)
4658                         goto errout;
4659
4660                 if (task_ctx_data) {
4661                         ctx->task_ctx_data = task_ctx_data;
4662                         task_ctx_data = NULL;
4663                 }
4664
4665                 err = 0;
4666                 mutex_lock(&task->perf_event_mutex);
4667                 /*
4668                  * If it has already passed perf_event_exit_task().
4669                  * we must see PF_EXITING, it takes this mutex too.
4670                  */
4671                 if (task->flags & PF_EXITING)
4672                         err = -ESRCH;
4673                 else if (task->perf_event_ctxp[ctxn])
4674                         err = -EAGAIN;
4675                 else {
4676                         get_ctx(ctx);
4677                         ++ctx->pin_count;
4678                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4679                 }
4680                 mutex_unlock(&task->perf_event_mutex);
4681
4682                 if (unlikely(err)) {
4683                         put_ctx(ctx);
4684
4685                         if (err == -EAGAIN)
4686                                 goto retry;
4687                         goto errout;
4688                 }
4689         }
4690
4691         free_task_ctx_data(pmu, task_ctx_data);
4692         return ctx;
4693
4694 errout:
4695         free_task_ctx_data(pmu, task_ctx_data);
4696         return ERR_PTR(err);
4697 }
4698
4699 static void perf_event_free_filter(struct perf_event *event);
4700
4701 static void free_event_rcu(struct rcu_head *head)
4702 {
4703         struct perf_event *event;
4704
4705         event = container_of(head, struct perf_event, rcu_head);
4706         if (event->ns)
4707                 put_pid_ns(event->ns);
4708         perf_event_free_filter(event);
4709         kmem_cache_free(perf_event_cache, event);
4710 }
4711
4712 static void ring_buffer_attach(struct perf_event *event,
4713                                struct perf_buffer *rb);
4714
4715 static void detach_sb_event(struct perf_event *event)
4716 {
4717         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4718
4719         raw_spin_lock(&pel->lock);
4720         list_del_rcu(&event->sb_list);
4721         raw_spin_unlock(&pel->lock);
4722 }
4723
4724 static bool is_sb_event(struct perf_event *event)
4725 {
4726         struct perf_event_attr *attr = &event->attr;
4727
4728         if (event->parent)
4729                 return false;
4730
4731         if (event->attach_state & PERF_ATTACH_TASK)
4732                 return false;
4733
4734         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4735             attr->comm || attr->comm_exec ||
4736             attr->task || attr->ksymbol ||
4737             attr->context_switch || attr->text_poke ||
4738             attr->bpf_event)
4739                 return true;
4740         return false;
4741 }
4742
4743 static void unaccount_pmu_sb_event(struct perf_event *event)
4744 {
4745         if (is_sb_event(event))
4746                 detach_sb_event(event);
4747 }
4748
4749 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4750 {
4751         if (event->parent)
4752                 return;
4753
4754         if (is_cgroup_event(event))
4755                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4756 }
4757
4758 #ifdef CONFIG_NO_HZ_FULL
4759 static DEFINE_SPINLOCK(nr_freq_lock);
4760 #endif
4761
4762 static void unaccount_freq_event_nohz(void)
4763 {
4764 #ifdef CONFIG_NO_HZ_FULL
4765         spin_lock(&nr_freq_lock);
4766         if (atomic_dec_and_test(&nr_freq_events))
4767                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4768         spin_unlock(&nr_freq_lock);
4769 #endif
4770 }
4771
4772 static void unaccount_freq_event(void)
4773 {
4774         if (tick_nohz_full_enabled())
4775                 unaccount_freq_event_nohz();
4776         else
4777                 atomic_dec(&nr_freq_events);
4778 }
4779
4780 static void unaccount_event(struct perf_event *event)
4781 {
4782         bool dec = false;
4783
4784         if (event->parent)
4785                 return;
4786
4787         if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
4788                 dec = true;
4789         if (event->attr.mmap || event->attr.mmap_data)
4790                 atomic_dec(&nr_mmap_events);
4791         if (event->attr.build_id)
4792                 atomic_dec(&nr_build_id_events);
4793         if (event->attr.comm)
4794                 atomic_dec(&nr_comm_events);
4795         if (event->attr.namespaces)
4796                 atomic_dec(&nr_namespaces_events);
4797         if (event->attr.cgroup)
4798                 atomic_dec(&nr_cgroup_events);
4799         if (event->attr.task)
4800                 atomic_dec(&nr_task_events);
4801         if (event->attr.freq)
4802                 unaccount_freq_event();
4803         if (event->attr.context_switch) {
4804                 dec = true;
4805                 atomic_dec(&nr_switch_events);
4806         }
4807         if (is_cgroup_event(event))
4808                 dec = true;
4809         if (has_branch_stack(event))
4810                 dec = true;
4811         if (event->attr.ksymbol)
4812                 atomic_dec(&nr_ksymbol_events);
4813         if (event->attr.bpf_event)
4814                 atomic_dec(&nr_bpf_events);
4815         if (event->attr.text_poke)
4816                 atomic_dec(&nr_text_poke_events);
4817
4818         if (dec) {
4819                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4820                         schedule_delayed_work(&perf_sched_work, HZ);
4821         }
4822
4823         unaccount_event_cpu(event, event->cpu);
4824
4825         unaccount_pmu_sb_event(event);
4826 }
4827
4828 static void perf_sched_delayed(struct work_struct *work)
4829 {
4830         mutex_lock(&perf_sched_mutex);
4831         if (atomic_dec_and_test(&perf_sched_count))
4832                 static_branch_disable(&perf_sched_events);
4833         mutex_unlock(&perf_sched_mutex);
4834 }
4835
4836 /*
4837  * The following implement mutual exclusion of events on "exclusive" pmus
4838  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4839  * at a time, so we disallow creating events that might conflict, namely:
4840  *
4841  *  1) cpu-wide events in the presence of per-task events,
4842  *  2) per-task events in the presence of cpu-wide events,
4843  *  3) two matching events on the same context.
4844  *
4845  * The former two cases are handled in the allocation path (perf_event_alloc(),
4846  * _free_event()), the latter -- before the first perf_install_in_context().
4847  */
4848 static int exclusive_event_init(struct perf_event *event)
4849 {
4850         struct pmu *pmu = event->pmu;
4851
4852         if (!is_exclusive_pmu(pmu))
4853                 return 0;
4854
4855         /*
4856          * Prevent co-existence of per-task and cpu-wide events on the
4857          * same exclusive pmu.
4858          *
4859          * Negative pmu::exclusive_cnt means there are cpu-wide
4860          * events on this "exclusive" pmu, positive means there are
4861          * per-task events.
4862          *
4863          * Since this is called in perf_event_alloc() path, event::ctx
4864          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4865          * to mean "per-task event", because unlike other attach states it
4866          * never gets cleared.
4867          */
4868         if (event->attach_state & PERF_ATTACH_TASK) {
4869                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4870                         return -EBUSY;
4871         } else {
4872                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4873                         return -EBUSY;
4874         }
4875
4876         return 0;
4877 }
4878
4879 static void exclusive_event_destroy(struct perf_event *event)
4880 {
4881         struct pmu *pmu = event->pmu;
4882
4883         if (!is_exclusive_pmu(pmu))
4884                 return;
4885
4886         /* see comment in exclusive_event_init() */
4887         if (event->attach_state & PERF_ATTACH_TASK)
4888                 atomic_dec(&pmu->exclusive_cnt);
4889         else
4890                 atomic_inc(&pmu->exclusive_cnt);
4891 }
4892
4893 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4894 {
4895         if ((e1->pmu == e2->pmu) &&
4896             (e1->cpu == e2->cpu ||
4897              e1->cpu == -1 ||
4898              e2->cpu == -1))
4899                 return true;
4900         return false;
4901 }
4902
4903 static bool exclusive_event_installable(struct perf_event *event,
4904                                         struct perf_event_context *ctx)
4905 {
4906         struct perf_event *iter_event;
4907         struct pmu *pmu = event->pmu;
4908
4909         lockdep_assert_held(&ctx->mutex);
4910
4911         if (!is_exclusive_pmu(pmu))
4912                 return true;
4913
4914         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4915                 if (exclusive_event_match(iter_event, event))
4916                         return false;
4917         }
4918
4919         return true;
4920 }
4921
4922 static void perf_addr_filters_splice(struct perf_event *event,
4923                                        struct list_head *head);
4924
4925 static void _free_event(struct perf_event *event)
4926 {
4927         irq_work_sync(&event->pending);
4928
4929         unaccount_event(event);
4930
4931         security_perf_event_free(event);
4932
4933         if (event->rb) {
4934                 /*
4935                  * Can happen when we close an event with re-directed output.
4936                  *
4937                  * Since we have a 0 refcount, perf_mmap_close() will skip
4938                  * over us; possibly making our ring_buffer_put() the last.
4939                  */
4940                 mutex_lock(&event->mmap_mutex);
4941                 ring_buffer_attach(event, NULL);
4942                 mutex_unlock(&event->mmap_mutex);
4943         }
4944
4945         if (is_cgroup_event(event))
4946                 perf_detach_cgroup(event);
4947
4948         if (!event->parent) {
4949                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4950                         put_callchain_buffers();
4951         }
4952
4953         perf_event_free_bpf_prog(event);
4954         perf_addr_filters_splice(event, NULL);
4955         kfree(event->addr_filter_ranges);
4956
4957         if (event->destroy)
4958                 event->destroy(event);
4959
4960         /*
4961          * Must be after ->destroy(), due to uprobe_perf_close() using
4962          * hw.target.
4963          */
4964         if (event->hw.target)
4965                 put_task_struct(event->hw.target);
4966
4967         /*
4968          * perf_event_free_task() relies on put_ctx() being 'last', in particular
4969          * all task references must be cleaned up.
4970          */
4971         if (event->ctx)
4972                 put_ctx(event->ctx);
4973
4974         exclusive_event_destroy(event);
4975         module_put(event->pmu->module);
4976
4977         call_rcu(&event->rcu_head, free_event_rcu);
4978 }
4979
4980 /*
4981  * Used to free events which have a known refcount of 1, such as in error paths
4982  * where the event isn't exposed yet and inherited events.
4983  */
4984 static void free_event(struct perf_event *event)
4985 {
4986         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4987                                 "unexpected event refcount: %ld; ptr=%p\n",
4988                                 atomic_long_read(&event->refcount), event)) {
4989                 /* leak to avoid use-after-free */
4990                 return;
4991         }
4992
4993         _free_event(event);
4994 }
4995
4996 /*
4997  * Remove user event from the owner task.
4998  */
4999 static void perf_remove_from_owner(struct perf_event *event)
5000 {
5001         struct task_struct *owner;
5002
5003         rcu_read_lock();
5004         /*
5005          * Matches the smp_store_release() in perf_event_exit_task(). If we
5006          * observe !owner it means the list deletion is complete and we can
5007          * indeed free this event, otherwise we need to serialize on
5008          * owner->perf_event_mutex.
5009          */
5010         owner = READ_ONCE(event->owner);
5011         if (owner) {
5012                 /*
5013                  * Since delayed_put_task_struct() also drops the last
5014                  * task reference we can safely take a new reference
5015                  * while holding the rcu_read_lock().
5016                  */
5017                 get_task_struct(owner);
5018         }
5019         rcu_read_unlock();
5020
5021         if (owner) {
5022                 /*
5023                  * If we're here through perf_event_exit_task() we're already
5024                  * holding ctx->mutex which would be an inversion wrt. the
5025                  * normal lock order.
5026                  *
5027                  * However we can safely take this lock because its the child
5028                  * ctx->mutex.
5029                  */
5030                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5031
5032                 /*
5033                  * We have to re-check the event->owner field, if it is cleared
5034                  * we raced with perf_event_exit_task(), acquiring the mutex
5035                  * ensured they're done, and we can proceed with freeing the
5036                  * event.
5037                  */
5038                 if (event->owner) {
5039                         list_del_init(&event->owner_entry);
5040                         smp_store_release(&event->owner, NULL);
5041                 }
5042                 mutex_unlock(&owner->perf_event_mutex);
5043                 put_task_struct(owner);
5044         }
5045 }
5046
5047 static void put_event(struct perf_event *event)
5048 {
5049         if (!atomic_long_dec_and_test(&event->refcount))
5050                 return;
5051
5052         _free_event(event);
5053 }
5054
5055 /*
5056  * Kill an event dead; while event:refcount will preserve the event
5057  * object, it will not preserve its functionality. Once the last 'user'
5058  * gives up the object, we'll destroy the thing.
5059  */
5060 int perf_event_release_kernel(struct perf_event *event)
5061 {
5062         struct perf_event_context *ctx = event->ctx;
5063         struct perf_event *child, *tmp;
5064         LIST_HEAD(free_list);
5065
5066         /*
5067          * If we got here through err_file: fput(event_file); we will not have
5068          * attached to a context yet.
5069          */
5070         if (!ctx) {
5071                 WARN_ON_ONCE(event->attach_state &
5072                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5073                 goto no_ctx;
5074         }
5075
5076         if (!is_kernel_event(event))
5077                 perf_remove_from_owner(event);
5078
5079         ctx = perf_event_ctx_lock(event);
5080         WARN_ON_ONCE(ctx->parent_ctx);
5081         perf_remove_from_context(event, DETACH_GROUP);
5082
5083         raw_spin_lock_irq(&ctx->lock);
5084         /*
5085          * Mark this event as STATE_DEAD, there is no external reference to it
5086          * anymore.
5087          *
5088          * Anybody acquiring event->child_mutex after the below loop _must_
5089          * also see this, most importantly inherit_event() which will avoid
5090          * placing more children on the list.
5091          *
5092          * Thus this guarantees that we will in fact observe and kill _ALL_
5093          * child events.
5094          */
5095         event->state = PERF_EVENT_STATE_DEAD;
5096         raw_spin_unlock_irq(&ctx->lock);
5097
5098         perf_event_ctx_unlock(event, ctx);
5099
5100 again:
5101         mutex_lock(&event->child_mutex);
5102         list_for_each_entry(child, &event->child_list, child_list) {
5103
5104                 /*
5105                  * Cannot change, child events are not migrated, see the
5106                  * comment with perf_event_ctx_lock_nested().
5107                  */
5108                 ctx = READ_ONCE(child->ctx);
5109                 /*
5110                  * Since child_mutex nests inside ctx::mutex, we must jump
5111                  * through hoops. We start by grabbing a reference on the ctx.
5112                  *
5113                  * Since the event cannot get freed while we hold the
5114                  * child_mutex, the context must also exist and have a !0
5115                  * reference count.
5116                  */
5117                 get_ctx(ctx);
5118
5119                 /*
5120                  * Now that we have a ctx ref, we can drop child_mutex, and
5121                  * acquire ctx::mutex without fear of it going away. Then we
5122                  * can re-acquire child_mutex.
5123                  */
5124                 mutex_unlock(&event->child_mutex);
5125                 mutex_lock(&ctx->mutex);
5126                 mutex_lock(&event->child_mutex);
5127
5128                 /*
5129                  * Now that we hold ctx::mutex and child_mutex, revalidate our
5130                  * state, if child is still the first entry, it didn't get freed
5131                  * and we can continue doing so.
5132                  */
5133                 tmp = list_first_entry_or_null(&event->child_list,
5134                                                struct perf_event, child_list);
5135                 if (tmp == child) {
5136                         perf_remove_from_context(child, DETACH_GROUP);
5137                         list_move(&child->child_list, &free_list);
5138                         /*
5139                          * This matches the refcount bump in inherit_event();
5140                          * this can't be the last reference.
5141                          */
5142                         put_event(event);
5143                 }
5144
5145                 mutex_unlock(&event->child_mutex);
5146                 mutex_unlock(&ctx->mutex);
5147                 put_ctx(ctx);
5148                 goto again;
5149         }
5150         mutex_unlock(&event->child_mutex);
5151
5152         list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5153                 void *var = &child->ctx->refcount;
5154
5155                 list_del(&child->child_list);
5156                 free_event(child);
5157
5158                 /*
5159                  * Wake any perf_event_free_task() waiting for this event to be
5160                  * freed.
5161                  */
5162                 smp_mb(); /* pairs with wait_var_event() */
5163                 wake_up_var(var);
5164         }
5165
5166 no_ctx:
5167         put_event(event); /* Must be the 'last' reference */
5168         return 0;
5169 }
5170 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5171
5172 /*
5173  * Called when the last reference to the file is gone.
5174  */
5175 static int perf_release(struct inode *inode, struct file *file)
5176 {
5177         perf_event_release_kernel(file->private_data);
5178         return 0;
5179 }
5180
5181 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5182 {
5183         struct perf_event *child;
5184         u64 total = 0;
5185
5186         *enabled = 0;
5187         *running = 0;
5188
5189         mutex_lock(&event->child_mutex);
5190
5191         (void)perf_event_read(event, false);
5192         total += perf_event_count(event);
5193
5194         *enabled += event->total_time_enabled +
5195                         atomic64_read(&event->child_total_time_enabled);
5196         *running += event->total_time_running +
5197                         atomic64_read(&event->child_total_time_running);
5198
5199         list_for_each_entry(child, &event->child_list, child_list) {
5200                 (void)perf_event_read(child, false);
5201                 total += perf_event_count(child);
5202                 *enabled += child->total_time_enabled;
5203                 *running += child->total_time_running;
5204         }
5205         mutex_unlock(&event->child_mutex);
5206
5207         return total;
5208 }
5209
5210 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5211 {
5212         struct perf_event_context *ctx;
5213         u64 count;
5214
5215         ctx = perf_event_ctx_lock(event);
5216         count = __perf_event_read_value(event, enabled, running);
5217         perf_event_ctx_unlock(event, ctx);
5218
5219         return count;
5220 }
5221 EXPORT_SYMBOL_GPL(perf_event_read_value);
5222
5223 static int __perf_read_group_add(struct perf_event *leader,
5224                                         u64 read_format, u64 *values)
5225 {
5226         struct perf_event_context *ctx = leader->ctx;
5227         struct perf_event *sub;
5228         unsigned long flags;
5229         int n = 1; /* skip @nr */
5230         int ret;
5231
5232         ret = perf_event_read(leader, true);
5233         if (ret)
5234                 return ret;
5235
5236         raw_spin_lock_irqsave(&ctx->lock, flags);
5237
5238         /*
5239          * Since we co-schedule groups, {enabled,running} times of siblings
5240          * will be identical to those of the leader, so we only publish one
5241          * set.
5242          */
5243         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5244                 values[n++] += leader->total_time_enabled +
5245                         atomic64_read(&leader->child_total_time_enabled);
5246         }
5247
5248         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5249                 values[n++] += leader->total_time_running +
5250                         atomic64_read(&leader->child_total_time_running);
5251         }
5252
5253         /*
5254          * Write {count,id} tuples for every sibling.
5255          */
5256         values[n++] += perf_event_count(leader);
5257         if (read_format & PERF_FORMAT_ID)
5258                 values[n++] = primary_event_id(leader);
5259
5260         for_each_sibling_event(sub, leader) {
5261                 values[n++] += perf_event_count(sub);
5262                 if (read_format & PERF_FORMAT_ID)
5263                         values[n++] = primary_event_id(sub);
5264         }
5265
5266         raw_spin_unlock_irqrestore(&ctx->lock, flags);
5267         return 0;
5268 }
5269
5270 static int perf_read_group(struct perf_event *event,
5271                                    u64 read_format, char __user *buf)
5272 {
5273         struct perf_event *leader = event->group_leader, *child;
5274         struct perf_event_context *ctx = leader->ctx;
5275         int ret;
5276         u64 *values;
5277
5278         lockdep_assert_held(&ctx->mutex);
5279
5280         values = kzalloc(event->read_size, GFP_KERNEL);
5281         if (!values)
5282                 return -ENOMEM;
5283
5284         values[0] = 1 + leader->nr_siblings;
5285
5286         /*
5287          * By locking the child_mutex of the leader we effectively
5288          * lock the child list of all siblings.. XXX explain how.
5289          */
5290         mutex_lock(&leader->child_mutex);
5291
5292         ret = __perf_read_group_add(leader, read_format, values);
5293         if (ret)
5294                 goto unlock;
5295
5296         list_for_each_entry(child, &leader->child_list, child_list) {
5297                 ret = __perf_read_group_add(child, read_format, values);
5298                 if (ret)
5299                         goto unlock;
5300         }
5301
5302         mutex_unlock(&leader->child_mutex);
5303
5304         ret = event->read_size;
5305         if (copy_to_user(buf, values, event->read_size))
5306                 ret = -EFAULT;
5307         goto out;
5308
5309 unlock:
5310         mutex_unlock(&leader->child_mutex);
5311 out:
5312         kfree(values);
5313         return ret;
5314 }
5315
5316 static int perf_read_one(struct perf_event *event,
5317                                  u64 read_format, char __user *buf)
5318 {
5319         u64 enabled, running;
5320         u64 values[4];
5321         int n = 0;
5322
5323         values[n++] = __perf_event_read_value(event, &enabled, &running);
5324         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5325                 values[n++] = enabled;
5326         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5327                 values[n++] = running;
5328         if (read_format & PERF_FORMAT_ID)
5329                 values[n++] = primary_event_id(event);
5330
5331         if (copy_to_user(buf, values, n * sizeof(u64)))
5332                 return -EFAULT;
5333
5334         return n * sizeof(u64);
5335 }
5336
5337 static bool is_event_hup(struct perf_event *event)
5338 {
5339         bool no_children;
5340
5341         if (event->state > PERF_EVENT_STATE_EXIT)
5342                 return false;
5343
5344         mutex_lock(&event->child_mutex);
5345         no_children = list_empty(&event->child_list);
5346         mutex_unlock(&event->child_mutex);
5347         return no_children;
5348 }
5349
5350 /*
5351  * Read the performance event - simple non blocking version for now
5352  */
5353 static ssize_t
5354 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5355 {
5356         u64 read_format = event->attr.read_format;
5357         int ret;
5358
5359         /*
5360          * Return end-of-file for a read on an event that is in
5361          * error state (i.e. because it was pinned but it couldn't be
5362          * scheduled on to the CPU at some point).
5363          */
5364         if (event->state == PERF_EVENT_STATE_ERROR)
5365                 return 0;
5366
5367         if (count < event->read_size)
5368                 return -ENOSPC;
5369
5370         WARN_ON_ONCE(event->ctx->parent_ctx);
5371         if (read_format & PERF_FORMAT_GROUP)
5372                 ret = perf_read_group(event, read_format, buf);
5373         else
5374                 ret = perf_read_one(event, read_format, buf);
5375
5376         return ret;
5377 }
5378
5379 static ssize_t
5380 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5381 {
5382         struct perf_event *event = file->private_data;
5383         struct perf_event_context *ctx;
5384         int ret;
5385
5386         ret = security_perf_event_read(event);
5387         if (ret)
5388                 return ret;
5389
5390         ctx = perf_event_ctx_lock(event);
5391         ret = __perf_read(event, buf, count);
5392         perf_event_ctx_unlock(event, ctx);
5393
5394         return ret;
5395 }
5396
5397 static __poll_t perf_poll(struct file *file, poll_table *wait)
5398 {
5399         struct perf_event *event = file->private_data;
5400         struct perf_buffer *rb;
5401         __poll_t events = EPOLLHUP;
5402
5403         poll_wait(file, &event->waitq, wait);
5404
5405         if (is_event_hup(event))
5406                 return events;
5407
5408         /*
5409          * Pin the event->rb by taking event->mmap_mutex; otherwise
5410          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5411          */
5412         mutex_lock(&event->mmap_mutex);
5413         rb = event->rb;
5414         if (rb)
5415                 events = atomic_xchg(&rb->poll, 0);
5416         mutex_unlock(&event->mmap_mutex);
5417         return events;
5418 }
5419
5420 static void _perf_event_reset(struct perf_event *event)
5421 {
5422         (void)perf_event_read(event, false);
5423         local64_set(&event->count, 0);
5424         perf_event_update_userpage(event);
5425 }
5426
5427 /* Assume it's not an event with inherit set. */
5428 u64 perf_event_pause(struct perf_event *event, bool reset)
5429 {
5430         struct perf_event_context *ctx;
5431         u64 count;
5432
5433         ctx = perf_event_ctx_lock(event);
5434         WARN_ON_ONCE(event->attr.inherit);
5435         _perf_event_disable(event);
5436         count = local64_read(&event->count);
5437         if (reset)
5438                 local64_set(&event->count, 0);
5439         perf_event_ctx_unlock(event, ctx);
5440
5441         return count;
5442 }
5443 EXPORT_SYMBOL_GPL(perf_event_pause);
5444
5445 /*
5446  * Holding the top-level event's child_mutex means that any
5447  * descendant process that has inherited this event will block
5448  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5449  * task existence requirements of perf_event_enable/disable.
5450  */
5451 static void perf_event_for_each_child(struct perf_event *event,
5452                                         void (*func)(struct perf_event *))
5453 {
5454         struct perf_event *child;
5455
5456         WARN_ON_ONCE(event->ctx->parent_ctx);
5457
5458         mutex_lock(&event->child_mutex);
5459         func(event);
5460         list_for_each_entry(child, &event->child_list, child_list)
5461                 func(child);
5462         mutex_unlock(&event->child_mutex);
5463 }
5464
5465 static void perf_event_for_each(struct perf_event *event,
5466                                   void (*func)(struct perf_event *))
5467 {
5468         struct perf_event_context *ctx = event->ctx;
5469         struct perf_event *sibling;
5470
5471         lockdep_assert_held(&ctx->mutex);
5472
5473         event = event->group_leader;
5474
5475         perf_event_for_each_child(event, func);
5476         for_each_sibling_event(sibling, event)
5477                 perf_event_for_each_child(sibling, func);
5478 }
5479
5480 static void __perf_event_period(struct perf_event *event,
5481                                 struct perf_cpu_context *cpuctx,
5482                                 struct perf_event_context *ctx,
5483                                 void *info)
5484 {
5485         u64 value = *((u64 *)info);
5486         bool active;
5487
5488         if (event->attr.freq) {
5489                 event->attr.sample_freq = value;
5490         } else {
5491                 event->attr.sample_period = value;
5492                 event->hw.sample_period = value;
5493         }
5494
5495         active = (event->state == PERF_EVENT_STATE_ACTIVE);
5496         if (active) {
5497                 perf_pmu_disable(ctx->pmu);
5498                 /*
5499                  * We could be throttled; unthrottle now to avoid the tick
5500                  * trying to unthrottle while we already re-started the event.
5501                  */
5502                 if (event->hw.interrupts == MAX_INTERRUPTS) {
5503                         event->hw.interrupts = 0;
5504                         perf_log_throttle(event, 1);
5505                 }
5506                 event->pmu->stop(event, PERF_EF_UPDATE);
5507         }
5508
5509         local64_set(&event->hw.period_left, 0);
5510
5511         if (active) {
5512                 event->pmu->start(event, PERF_EF_RELOAD);
5513                 perf_pmu_enable(ctx->pmu);
5514         }
5515 }
5516
5517 static int perf_event_check_period(struct perf_event *event, u64 value)
5518 {
5519         return event->pmu->check_period(event, value);
5520 }
5521
5522 static int _perf_event_period(struct perf_event *event, u64 value)
5523 {
5524         if (!is_sampling_event(event))
5525                 return -EINVAL;
5526
5527         if (!value)
5528                 return -EINVAL;
5529
5530         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5531                 return -EINVAL;
5532
5533         if (perf_event_check_period(event, value))
5534                 return -EINVAL;
5535
5536         if (!event->attr.freq && (value & (1ULL << 63)))
5537                 return -EINVAL;
5538
5539         event_function_call(event, __perf_event_period, &value);
5540
5541         return 0;
5542 }
5543
5544 int perf_event_period(struct perf_event *event, u64 value)
5545 {
5546         struct perf_event_context *ctx;
5547         int ret;
5548
5549         ctx = perf_event_ctx_lock(event);
5550         ret = _perf_event_period(event, value);
5551         perf_event_ctx_unlock(event, ctx);
5552
5553         return ret;
5554 }
5555 EXPORT_SYMBOL_GPL(perf_event_period);
5556
5557 static const struct file_operations perf_fops;
5558
5559 static inline int perf_fget_light(int fd, struct fd *p)
5560 {
5561         struct fd f = fdget(fd);
5562         if (!f.file)
5563                 return -EBADF;
5564
5565         if (f.file->f_op != &perf_fops) {
5566                 fdput(f);
5567                 return -EBADF;
5568         }
5569         *p = f;
5570         return 0;
5571 }
5572
5573 static int perf_event_set_output(struct perf_event *event,
5574                                  struct perf_event *output_event);
5575 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5576 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5577                           struct perf_event_attr *attr);
5578
5579 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5580 {
5581         void (*func)(struct perf_event *);
5582         u32 flags = arg;
5583
5584         switch (cmd) {
5585         case PERF_EVENT_IOC_ENABLE:
5586                 func = _perf_event_enable;
5587                 break;
5588         case PERF_EVENT_IOC_DISABLE:
5589                 func = _perf_event_disable;
5590                 break;
5591         case PERF_EVENT_IOC_RESET:
5592                 func = _perf_event_reset;
5593                 break;
5594
5595         case PERF_EVENT_IOC_REFRESH:
5596                 return _perf_event_refresh(event, arg);
5597
5598         case PERF_EVENT_IOC_PERIOD:
5599         {
5600                 u64 value;
5601
5602                 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5603                         return -EFAULT;
5604
5605                 return _perf_event_period(event, value);
5606         }
5607         case PERF_EVENT_IOC_ID:
5608         {
5609                 u64 id = primary_event_id(event);
5610
5611                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5612                         return -EFAULT;
5613                 return 0;
5614         }
5615
5616         case PERF_EVENT_IOC_SET_OUTPUT:
5617         {
5618                 int ret;
5619                 if (arg != -1) {
5620                         struct perf_event *output_event;
5621                         struct fd output;
5622                         ret = perf_fget_light(arg, &output);
5623                         if (ret)
5624                                 return ret;
5625                         output_event = output.file->private_data;
5626                         ret = perf_event_set_output(event, output_event);
5627                         fdput(output);
5628                 } else {
5629                         ret = perf_event_set_output(event, NULL);
5630                 }
5631                 return ret;
5632         }
5633
5634         case PERF_EVENT_IOC_SET_FILTER:
5635                 return perf_event_set_filter(event, (void __user *)arg);
5636
5637         case PERF_EVENT_IOC_SET_BPF:
5638         {
5639                 struct bpf_prog *prog;
5640                 int err;
5641
5642                 prog = bpf_prog_get(arg);
5643                 if (IS_ERR(prog))
5644                         return PTR_ERR(prog);
5645
5646                 err = perf_event_set_bpf_prog(event, prog, 0);
5647                 if (err) {
5648                         bpf_prog_put(prog);
5649                         return err;
5650                 }
5651
5652                 return 0;
5653         }
5654
5655         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5656                 struct perf_buffer *rb;
5657
5658                 rcu_read_lock();
5659                 rb = rcu_dereference(event->rb);
5660                 if (!rb || !rb->nr_pages) {
5661                         rcu_read_unlock();
5662                         return -EINVAL;
5663                 }
5664                 rb_toggle_paused(rb, !!arg);
5665                 rcu_read_unlock();
5666                 return 0;
5667         }
5668
5669         case PERF_EVENT_IOC_QUERY_BPF:
5670                 return perf_event_query_prog_array(event, (void __user *)arg);
5671
5672         case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5673                 struct perf_event_attr new_attr;
5674                 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5675                                          &new_attr);
5676
5677                 if (err)
5678                         return err;
5679
5680                 return perf_event_modify_attr(event,  &new_attr);
5681         }
5682         default:
5683                 return -ENOTTY;
5684         }
5685
5686         if (flags & PERF_IOC_FLAG_GROUP)
5687                 perf_event_for_each(event, func);
5688         else
5689                 perf_event_for_each_child(event, func);
5690
5691         return 0;
5692 }
5693
5694 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5695 {
5696         struct perf_event *event = file->private_data;
5697         struct perf_event_context *ctx;
5698         long ret;
5699
5700         /* Treat ioctl like writes as it is likely a mutating operation. */
5701         ret = security_perf_event_write(event);
5702         if (ret)
5703                 return ret;
5704
5705         ctx = perf_event_ctx_lock(event);
5706         ret = _perf_ioctl(event, cmd, arg);
5707         perf_event_ctx_unlock(event, ctx);
5708
5709         return ret;
5710 }
5711
5712 #ifdef CONFIG_COMPAT
5713 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5714                                 unsigned long arg)
5715 {
5716         switch (_IOC_NR(cmd)) {
5717         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5718         case _IOC_NR(PERF_EVENT_IOC_ID):
5719         case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5720         case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5721                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5722                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5723                         cmd &= ~IOCSIZE_MASK;
5724                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5725                 }
5726                 break;
5727         }
5728         return perf_ioctl(file, cmd, arg);
5729 }
5730 #else
5731 # define perf_compat_ioctl NULL
5732 #endif
5733
5734 int perf_event_task_enable(void)
5735 {
5736         struct perf_event_context *ctx;
5737         struct perf_event *event;
5738
5739         mutex_lock(&current->perf_event_mutex);
5740         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5741                 ctx = perf_event_ctx_lock(event);
5742                 perf_event_for_each_child(event, _perf_event_enable);
5743                 perf_event_ctx_unlock(event, ctx);
5744         }
5745         mutex_unlock(&current->perf_event_mutex);
5746
5747         return 0;
5748 }
5749
5750 int perf_event_task_disable(void)
5751 {
5752         struct perf_event_context *ctx;
5753         struct perf_event *event;
5754
5755         mutex_lock(&current->perf_event_mutex);
5756         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5757                 ctx = perf_event_ctx_lock(event);
5758                 perf_event_for_each_child(event, _perf_event_disable);
5759                 perf_event_ctx_unlock(event, ctx);
5760         }
5761         mutex_unlock(&current->perf_event_mutex);
5762
5763         return 0;
5764 }
5765
5766 static int perf_event_index(struct perf_event *event)
5767 {
5768         if (event->hw.state & PERF_HES_STOPPED)
5769                 return 0;
5770
5771         if (event->state != PERF_EVENT_STATE_ACTIVE)
5772                 return 0;
5773
5774         return event->pmu->event_idx(event);
5775 }
5776
5777 static void calc_timer_values(struct perf_event *event,
5778                                 u64 *now,
5779                                 u64 *enabled,
5780                                 u64 *running)
5781 {
5782         u64 ctx_time;
5783
5784         *now = perf_clock();
5785         ctx_time = event->shadow_ctx_time + *now;
5786         __perf_update_times(event, ctx_time, enabled, running);
5787 }
5788
5789 static void perf_event_init_userpage(struct perf_event *event)
5790 {
5791         struct perf_event_mmap_page *userpg;
5792         struct perf_buffer *rb;
5793
5794         rcu_read_lock();
5795         rb = rcu_dereference(event->rb);
5796         if (!rb)
5797                 goto unlock;
5798
5799         userpg = rb->user_page;
5800
5801         /* Allow new userspace to detect that bit 0 is deprecated */
5802         userpg->cap_bit0_is_deprecated = 1;
5803         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5804         userpg->data_offset = PAGE_SIZE;
5805         userpg->data_size = perf_data_size(rb);
5806
5807 unlock:
5808         rcu_read_unlock();
5809 }
5810
5811 void __weak arch_perf_update_userpage(
5812         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5813 {
5814 }
5815
5816 /*
5817  * Callers need to ensure there can be no nesting of this function, otherwise
5818  * the seqlock logic goes bad. We can not serialize this because the arch
5819  * code calls this from NMI context.
5820  */
5821 void perf_event_update_userpage(struct perf_event *event)
5822 {
5823         struct perf_event_mmap_page *userpg;
5824         struct perf_buffer *rb;
5825         u64 enabled, running, now;
5826
5827         rcu_read_lock();
5828         rb = rcu_dereference(event->rb);
5829         if (!rb)
5830                 goto unlock;
5831
5832         /*
5833          * compute total_time_enabled, total_time_running
5834          * based on snapshot values taken when the event
5835          * was last scheduled in.
5836          *
5837          * we cannot simply called update_context_time()
5838          * because of locking issue as we can be called in
5839          * NMI context
5840          */
5841         calc_timer_values(event, &now, &enabled, &running);
5842
5843         userpg = rb->user_page;
5844         /*
5845          * Disable preemption to guarantee consistent time stamps are stored to
5846          * the user page.
5847          */
5848         preempt_disable();
5849         ++userpg->lock;
5850         barrier();
5851         userpg->index = perf_event_index(event);
5852         userpg->offset = perf_event_count(event);
5853         if (userpg->index)
5854                 userpg->offset -= local64_read(&event->hw.prev_count);
5855
5856         userpg->time_enabled = enabled +
5857                         atomic64_read(&event->child_total_time_enabled);
5858
5859         userpg->time_running = running +
5860                         atomic64_read(&event->child_total_time_running);
5861
5862         arch_perf_update_userpage(event, userpg, now);
5863
5864         barrier();
5865         ++userpg->lock;
5866         preempt_enable();
5867 unlock:
5868         rcu_read_unlock();
5869 }
5870 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5871
5872 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5873 {
5874         struct perf_event *event = vmf->vma->vm_file->private_data;
5875         struct perf_buffer *rb;
5876         vm_fault_t ret = VM_FAULT_SIGBUS;
5877
5878         if (vmf->flags & FAULT_FLAG_MKWRITE) {
5879                 if (vmf->pgoff == 0)
5880                         ret = 0;
5881                 return ret;
5882         }
5883
5884         rcu_read_lock();
5885         rb = rcu_dereference(event->rb);
5886         if (!rb)
5887                 goto unlock;
5888
5889         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5890                 goto unlock;
5891
5892         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5893         if (!vmf->page)
5894                 goto unlock;
5895
5896         get_page(vmf->page);
5897         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5898         vmf->page->index   = vmf->pgoff;
5899
5900         ret = 0;
5901 unlock:
5902         rcu_read_unlock();
5903
5904         return ret;
5905 }
5906
5907 static void ring_buffer_attach(struct perf_event *event,
5908                                struct perf_buffer *rb)
5909 {
5910         struct perf_buffer *old_rb = NULL;
5911         unsigned long flags;
5912
5913         if (event->rb) {
5914                 /*
5915                  * Should be impossible, we set this when removing
5916                  * event->rb_entry and wait/clear when adding event->rb_entry.
5917                  */
5918                 WARN_ON_ONCE(event->rcu_pending);
5919
5920                 old_rb = event->rb;
5921                 spin_lock_irqsave(&old_rb->event_lock, flags);
5922                 list_del_rcu(&event->rb_entry);
5923                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5924
5925                 event->rcu_batches = get_state_synchronize_rcu();
5926                 event->rcu_pending = 1;
5927         }
5928
5929         if (rb) {
5930                 if (event->rcu_pending) {
5931                         cond_synchronize_rcu(event->rcu_batches);
5932                         event->rcu_pending = 0;
5933                 }
5934
5935                 spin_lock_irqsave(&rb->event_lock, flags);
5936                 list_add_rcu(&event->rb_entry, &rb->event_list);
5937                 spin_unlock_irqrestore(&rb->event_lock, flags);
5938         }
5939
5940         /*
5941          * Avoid racing with perf_mmap_close(AUX): stop the event
5942          * before swizzling the event::rb pointer; if it's getting
5943          * unmapped, its aux_mmap_count will be 0 and it won't
5944          * restart. See the comment in __perf_pmu_output_stop().
5945          *
5946          * Data will inevitably be lost when set_output is done in
5947          * mid-air, but then again, whoever does it like this is
5948          * not in for the data anyway.
5949          */
5950         if (has_aux(event))
5951                 perf_event_stop(event, 0);
5952
5953         rcu_assign_pointer(event->rb, rb);
5954
5955         if (old_rb) {
5956                 ring_buffer_put(old_rb);
5957                 /*
5958                  * Since we detached before setting the new rb, so that we
5959                  * could attach the new rb, we could have missed a wakeup.
5960                  * Provide it now.
5961                  */
5962                 wake_up_all(&event->waitq);
5963         }
5964 }
5965
5966 static void ring_buffer_wakeup(struct perf_event *event)
5967 {
5968         struct perf_buffer *rb;
5969
5970         rcu_read_lock();
5971         rb = rcu_dereference(event->rb);
5972         if (rb) {
5973                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5974                         wake_up_all(&event->waitq);
5975         }
5976         rcu_read_unlock();
5977 }
5978
5979 struct perf_buffer *ring_buffer_get(struct perf_event *event)
5980 {
5981         struct perf_buffer *rb;
5982
5983         rcu_read_lock();
5984         rb = rcu_dereference(event->rb);
5985         if (rb) {
5986                 if (!refcount_inc_not_zero(&rb->refcount))
5987                         rb = NULL;
5988         }
5989         rcu_read_unlock();
5990
5991         return rb;
5992 }
5993
5994 void ring_buffer_put(struct perf_buffer *rb)
5995 {
5996         if (!refcount_dec_and_test(&rb->refcount))
5997                 return;
5998
5999         WARN_ON_ONCE(!list_empty(&rb->event_list));
6000
6001         call_rcu(&rb->rcu_head, rb_free_rcu);
6002 }
6003
6004 static void perf_mmap_open(struct vm_area_struct *vma)
6005 {
6006         struct perf_event *event = vma->vm_file->private_data;
6007
6008         atomic_inc(&event->mmap_count);
6009         atomic_inc(&event->rb->mmap_count);
6010
6011         if (vma->vm_pgoff)
6012                 atomic_inc(&event->rb->aux_mmap_count);
6013
6014         if (event->pmu->event_mapped)
6015                 event->pmu->event_mapped(event, vma->vm_mm);
6016 }
6017
6018 static void perf_pmu_output_stop(struct perf_event *event);
6019
6020 /*
6021  * A buffer can be mmap()ed multiple times; either directly through the same
6022  * event, or through other events by use of perf_event_set_output().
6023  *
6024  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6025  * the buffer here, where we still have a VM context. This means we need
6026  * to detach all events redirecting to us.
6027  */
6028 static void perf_mmap_close(struct vm_area_struct *vma)
6029 {
6030         struct perf_event *event = vma->vm_file->private_data;
6031         struct perf_buffer *rb = ring_buffer_get(event);
6032         struct user_struct *mmap_user = rb->mmap_user;
6033         int mmap_locked = rb->mmap_locked;
6034         unsigned long size = perf_data_size(rb);
6035         bool detach_rest = false;
6036
6037         if (event->pmu->event_unmapped)
6038                 event->pmu->event_unmapped(event, vma->vm_mm);
6039
6040         /*
6041          * rb->aux_mmap_count will always drop before rb->mmap_count and
6042          * event->mmap_count, so it is ok to use event->mmap_mutex to
6043          * serialize with perf_mmap here.
6044          */
6045         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6046             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
6047                 /*
6048                  * Stop all AUX events that are writing to this buffer,
6049                  * so that we can free its AUX pages and corresponding PMU
6050                  * data. Note that after rb::aux_mmap_count dropped to zero,
6051                  * they won't start any more (see perf_aux_output_begin()).
6052                  */
6053                 perf_pmu_output_stop(event);
6054
6055                 /* now it's safe to free the pages */
6056                 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6057                 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6058
6059                 /* this has to be the last one */
6060                 rb_free_aux(rb);
6061                 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6062
6063                 mutex_unlock(&event->mmap_mutex);
6064         }
6065
6066         if (atomic_dec_and_test(&rb->mmap_count))
6067                 detach_rest = true;
6068
6069         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6070                 goto out_put;
6071
6072         ring_buffer_attach(event, NULL);
6073         mutex_unlock(&event->mmap_mutex);
6074
6075         /* If there's still other mmap()s of this buffer, we're done. */
6076         if (!detach_rest)
6077                 goto out_put;
6078
6079         /*
6080          * No other mmap()s, detach from all other events that might redirect
6081          * into the now unreachable buffer. Somewhat complicated by the
6082          * fact that rb::event_lock otherwise nests inside mmap_mutex.
6083          */
6084 again:
6085         rcu_read_lock();
6086         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6087                 if (!atomic_long_inc_not_zero(&event->refcount)) {
6088                         /*
6089                          * This event is en-route to free_event() which will
6090                          * detach it and remove it from the list.
6091                          */
6092                         continue;
6093                 }
6094                 rcu_read_unlock();
6095
6096                 mutex_lock(&event->mmap_mutex);
6097                 /*
6098                  * Check we didn't race with perf_event_set_output() which can
6099                  * swizzle the rb from under us while we were waiting to
6100                  * acquire mmap_mutex.
6101                  *
6102                  * If we find a different rb; ignore this event, a next
6103                  * iteration will no longer find it on the list. We have to
6104                  * still restart the iteration to make sure we're not now
6105                  * iterating the wrong list.
6106                  */
6107                 if (event->rb == rb)
6108                         ring_buffer_attach(event, NULL);
6109
6110                 mutex_unlock(&event->mmap_mutex);
6111                 put_event(event);
6112
6113                 /*
6114                  * Restart the iteration; either we're on the wrong list or
6115                  * destroyed its integrity by doing a deletion.
6116                  */
6117                 goto again;
6118         }
6119         rcu_read_unlock();
6120
6121         /*
6122          * It could be there's still a few 0-ref events on the list; they'll
6123          * get cleaned up by free_event() -- they'll also still have their
6124          * ref on the rb and will free it whenever they are done with it.
6125          *
6126          * Aside from that, this buffer is 'fully' detached and unmapped,
6127          * undo the VM accounting.
6128          */
6129
6130         atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6131                         &mmap_user->locked_vm);
6132         atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6133         free_uid(mmap_user);
6134
6135 out_put:
6136         ring_buffer_put(rb); /* could be last */
6137 }
6138
6139 static const struct vm_operations_struct perf_mmap_vmops = {
6140         .open           = perf_mmap_open,
6141         .close          = perf_mmap_close, /* non mergeable */
6142         .fault          = perf_mmap_fault,
6143         .page_mkwrite   = perf_mmap_fault,
6144 };
6145
6146 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6147 {
6148         struct perf_event *event = file->private_data;
6149         unsigned long user_locked, user_lock_limit;
6150         struct user_struct *user = current_user();
6151         struct perf_buffer *rb = NULL;
6152         unsigned long locked, lock_limit;
6153         unsigned long vma_size;
6154         unsigned long nr_pages;
6155         long user_extra = 0, extra = 0;
6156         int ret = 0, flags = 0;
6157
6158         /*
6159          * Don't allow mmap() of inherited per-task counters. This would
6160          * create a performance issue due to all children writing to the
6161          * same rb.
6162          */
6163         if (event->cpu == -1 && event->attr.inherit)
6164                 return -EINVAL;
6165
6166         if (!(vma->vm_flags & VM_SHARED))
6167                 return -EINVAL;
6168
6169         ret = security_perf_event_read(event);
6170         if (ret)
6171                 return ret;
6172
6173         vma_size = vma->vm_end - vma->vm_start;
6174
6175         if (vma->vm_pgoff == 0) {
6176                 nr_pages = (vma_size / PAGE_SIZE) - 1;
6177         } else {
6178                 /*
6179                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6180                  * mapped, all subsequent mappings should have the same size
6181                  * and offset. Must be above the normal perf buffer.
6182                  */
6183                 u64 aux_offset, aux_size;
6184
6185                 if (!event->rb)
6186                         return -EINVAL;
6187
6188                 nr_pages = vma_size / PAGE_SIZE;
6189
6190                 mutex_lock(&event->mmap_mutex);
6191                 ret = -EINVAL;
6192
6193                 rb = event->rb;
6194                 if (!rb)
6195                         goto aux_unlock;
6196
6197                 aux_offset = READ_ONCE(rb->user_page->aux_offset);
6198                 aux_size = READ_ONCE(rb->user_page->aux_size);
6199
6200                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6201                         goto aux_unlock;
6202
6203                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6204                         goto aux_unlock;
6205
6206                 /* already mapped with a different offset */
6207                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6208                         goto aux_unlock;
6209
6210                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6211                         goto aux_unlock;
6212
6213                 /* already mapped with a different size */
6214                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6215                         goto aux_unlock;
6216
6217                 if (!is_power_of_2(nr_pages))
6218                         goto aux_unlock;
6219
6220                 if (!atomic_inc_not_zero(&rb->mmap_count))
6221                         goto aux_unlock;
6222
6223                 if (rb_has_aux(rb)) {
6224                         atomic_inc(&rb->aux_mmap_count);
6225                         ret = 0;
6226                         goto unlock;
6227                 }
6228
6229                 atomic_set(&rb->aux_mmap_count, 1);
6230                 user_extra = nr_pages;
6231
6232                 goto accounting;
6233         }
6234
6235         /*
6236          * If we have rb pages ensure they're a power-of-two number, so we
6237          * can do bitmasks instead of modulo.
6238          */
6239         if (nr_pages != 0 && !is_power_of_2(nr_pages))
6240                 return -EINVAL;
6241
6242         if (vma_size != PAGE_SIZE * (1 + nr_pages))
6243                 return -EINVAL;
6244
6245         WARN_ON_ONCE(event->ctx->parent_ctx);
6246 again:
6247         mutex_lock(&event->mmap_mutex);
6248         if (event->rb) {
6249                 if (event->rb->nr_pages != nr_pages) {
6250                         ret = -EINVAL;
6251                         goto unlock;
6252                 }
6253
6254                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6255                         /*
6256                          * Raced against perf_mmap_close() through
6257                          * perf_event_set_output(). Try again, hope for better
6258                          * luck.
6259                          */
6260                         mutex_unlock(&event->mmap_mutex);
6261                         goto again;
6262                 }
6263
6264                 goto unlock;
6265         }
6266
6267         user_extra = nr_pages + 1;
6268
6269 accounting:
6270         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6271
6272         /*
6273          * Increase the limit linearly with more CPUs:
6274          */
6275         user_lock_limit *= num_online_cpus();
6276
6277         user_locked = atomic_long_read(&user->locked_vm);
6278
6279         /*
6280          * sysctl_perf_event_mlock may have changed, so that
6281          *     user->locked_vm > user_lock_limit
6282          */
6283         if (user_locked > user_lock_limit)
6284                 user_locked = user_lock_limit;
6285         user_locked += user_extra;
6286
6287         if (user_locked > user_lock_limit) {
6288                 /*
6289                  * charge locked_vm until it hits user_lock_limit;
6290                  * charge the rest from pinned_vm
6291                  */
6292                 extra = user_locked - user_lock_limit;
6293                 user_extra -= extra;
6294         }
6295
6296         lock_limit = rlimit(RLIMIT_MEMLOCK);
6297         lock_limit >>= PAGE_SHIFT;
6298         locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6299
6300         if ((locked > lock_limit) && perf_is_paranoid() &&
6301                 !capable(CAP_IPC_LOCK)) {
6302                 ret = -EPERM;
6303                 goto unlock;
6304         }
6305
6306         WARN_ON(!rb && event->rb);
6307
6308         if (vma->vm_flags & VM_WRITE)
6309                 flags |= RING_BUFFER_WRITABLE;
6310
6311         if (!rb) {
6312                 rb = rb_alloc(nr_pages,
6313                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
6314                               event->cpu, flags);
6315
6316                 if (!rb) {
6317                         ret = -ENOMEM;
6318                         goto unlock;
6319                 }
6320
6321                 atomic_set(&rb->mmap_count, 1);
6322                 rb->mmap_user = get_current_user();
6323                 rb->mmap_locked = extra;
6324
6325                 ring_buffer_attach(event, rb);
6326
6327                 perf_event_init_userpage(event);
6328                 perf_event_update_userpage(event);
6329         } else {
6330                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6331                                    event->attr.aux_watermark, flags);
6332                 if (!ret)
6333                         rb->aux_mmap_locked = extra;
6334         }
6335
6336 unlock:
6337         if (!ret) {
6338                 atomic_long_add(user_extra, &user->locked_vm);
6339                 atomic64_add(extra, &vma->vm_mm->pinned_vm);
6340
6341                 atomic_inc(&event->mmap_count);
6342         } else if (rb) {
6343                 atomic_dec(&rb->mmap_count);
6344         }
6345 aux_unlock:
6346         mutex_unlock(&event->mmap_mutex);
6347
6348         /*
6349          * Since pinned accounting is per vm we cannot allow fork() to copy our
6350          * vma.
6351          */
6352         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
6353         vma->vm_ops = &perf_mmap_vmops;
6354
6355         if (event->pmu->event_mapped)
6356                 event->pmu->event_mapped(event, vma->vm_mm);
6357
6358         return ret;
6359 }
6360
6361 static int perf_fasync(int fd, struct file *filp, int on)
6362 {
6363         struct inode *inode = file_inode(filp);
6364         struct perf_event *event = filp->private_data;
6365         int retval;
6366
6367         inode_lock(inode);
6368         retval = fasync_helper(fd, filp, on, &event->fasync);
6369         inode_unlock(inode);
6370
6371         if (retval < 0)
6372                 return retval;
6373
6374         return 0;
6375 }
6376
6377 static const struct file_operations perf_fops = {
6378         .llseek                 = no_llseek,
6379         .release                = perf_release,
6380         .read                   = perf_read,
6381         .poll                   = perf_poll,
6382         .unlocked_ioctl         = perf_ioctl,
6383         .compat_ioctl           = perf_compat_ioctl,
6384         .mmap                   = perf_mmap,
6385         .fasync                 = perf_fasync,
6386 };
6387
6388 /*
6389  * Perf event wakeup
6390  *
6391  * If there's data, ensure we set the poll() state and publish everything
6392  * to user-space before waking everybody up.
6393  */
6394
6395 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6396 {
6397         /* only the parent has fasync state */
6398         if (event->parent)
6399                 event = event->parent;
6400         return &event->fasync;
6401 }
6402
6403 void perf_event_wakeup(struct perf_event *event)
6404 {
6405         ring_buffer_wakeup(event);
6406
6407         if (event->pending_kill) {
6408                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6409                 event->pending_kill = 0;
6410         }
6411 }
6412
6413 static void perf_sigtrap(struct perf_event *event)
6414 {
6415         /*
6416          * We'd expect this to only occur if the irq_work is delayed and either
6417          * ctx->task or current has changed in the meantime. This can be the
6418          * case on architectures that do not implement arch_irq_work_raise().
6419          */
6420         if (WARN_ON_ONCE(event->ctx->task != current))
6421                 return;
6422
6423         /*
6424          * perf_pending_event() can race with the task exiting.
6425          */
6426         if (current->flags & PF_EXITING)
6427                 return;
6428
6429         force_sig_perf((void __user *)event->pending_addr,
6430                        event->attr.type, event->attr.sig_data);
6431 }
6432
6433 static void perf_pending_event_disable(struct perf_event *event)
6434 {
6435         int cpu = READ_ONCE(event->pending_disable);
6436
6437         if (cpu < 0)
6438                 return;
6439
6440         if (cpu == smp_processor_id()) {
6441                 WRITE_ONCE(event->pending_disable, -1);
6442
6443                 if (event->attr.sigtrap) {
6444                         perf_sigtrap(event);
6445                         atomic_set_release(&event->event_limit, 1); /* rearm event */
6446                         return;
6447                 }
6448
6449                 perf_event_disable_local(event);
6450                 return;
6451         }
6452
6453         /*
6454          *  CPU-A                       CPU-B
6455          *
6456          *  perf_event_disable_inatomic()
6457          *    @pending_disable = CPU-A;
6458          *    irq_work_queue();
6459          *
6460          *  sched-out
6461          *    @pending_disable = -1;
6462          *
6463          *                              sched-in
6464          *                              perf_event_disable_inatomic()
6465          *                                @pending_disable = CPU-B;
6466          *                                irq_work_queue(); // FAILS
6467          *
6468          *  irq_work_run()
6469          *    perf_pending_event()
6470          *
6471          * But the event runs on CPU-B and wants disabling there.
6472          */
6473         irq_work_queue_on(&event->pending, cpu);
6474 }
6475
6476 static void perf_pending_event(struct irq_work *entry)
6477 {
6478         struct perf_event *event = container_of(entry, struct perf_event, pending);
6479         int rctx;
6480
6481         rctx = perf_swevent_get_recursion_context();
6482         /*
6483          * If we 'fail' here, that's OK, it means recursion is already disabled
6484          * and we won't recurse 'further'.
6485          */
6486
6487         perf_pending_event_disable(event);
6488
6489         if (event->pending_wakeup) {
6490                 event->pending_wakeup = 0;
6491                 perf_event_wakeup(event);
6492         }
6493
6494         if (rctx >= 0)
6495                 perf_swevent_put_recursion_context(rctx);
6496 }
6497
6498 /*
6499  * We assume there is only KVM supporting the callbacks.
6500  * Later on, we might change it to a list if there is
6501  * another virtualization implementation supporting the callbacks.
6502  */
6503 struct perf_guest_info_callbacks *perf_guest_cbs;
6504
6505 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6506 {
6507         perf_guest_cbs = cbs;
6508         return 0;
6509 }
6510 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6511
6512 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6513 {
6514         perf_guest_cbs = NULL;
6515         return 0;
6516 }
6517 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6518
6519 static void
6520 perf_output_sample_regs(struct perf_output_handle *handle,
6521                         struct pt_regs *regs, u64 mask)
6522 {
6523         int bit;
6524         DECLARE_BITMAP(_mask, 64);
6525
6526         bitmap_from_u64(_mask, mask);
6527         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6528                 u64 val;
6529
6530                 val = perf_reg_value(regs, bit);
6531                 perf_output_put(handle, val);
6532         }
6533 }
6534
6535 static void perf_sample_regs_user(struct perf_regs *regs_user,
6536                                   struct pt_regs *regs)
6537 {
6538         if (user_mode(regs)) {
6539                 regs_user->abi = perf_reg_abi(current);
6540                 regs_user->regs = regs;
6541         } else if (!(current->flags & PF_KTHREAD)) {
6542                 perf_get_regs_user(regs_user, regs);
6543         } else {
6544                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6545                 regs_user->regs = NULL;
6546         }
6547 }
6548
6549 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6550                                   struct pt_regs *regs)
6551 {
6552         regs_intr->regs = regs;
6553         regs_intr->abi  = perf_reg_abi(current);
6554 }
6555
6556
6557 /*
6558  * Get remaining task size from user stack pointer.
6559  *
6560  * It'd be better to take stack vma map and limit this more
6561  * precisely, but there's no way to get it safely under interrupt,
6562  * so using TASK_SIZE as limit.
6563  */
6564 static u64 perf_ustack_task_size(struct pt_regs *regs)
6565 {
6566         unsigned long addr = perf_user_stack_pointer(regs);
6567
6568         if (!addr || addr >= TASK_SIZE)
6569                 return 0;
6570
6571         return TASK_SIZE - addr;
6572 }
6573
6574 static u16
6575 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6576                         struct pt_regs *regs)
6577 {
6578         u64 task_size;
6579
6580         /* No regs, no stack pointer, no dump. */
6581         if (!regs)
6582                 return 0;
6583
6584         /*
6585          * Check if we fit in with the requested stack size into the:
6586          * - TASK_SIZE
6587          *   If we don't, we limit the size to the TASK_SIZE.
6588          *
6589          * - remaining sample size
6590          *   If we don't, we customize the stack size to
6591          *   fit in to the remaining sample size.
6592          */
6593
6594         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6595         stack_size = min(stack_size, (u16) task_size);
6596
6597         /* Current header size plus static size and dynamic size. */
6598         header_size += 2 * sizeof(u64);
6599
6600         /* Do we fit in with the current stack dump size? */
6601         if ((u16) (header_size + stack_size) < header_size) {
6602                 /*
6603                  * If we overflow the maximum size for the sample,
6604                  * we customize the stack dump size to fit in.
6605                  */
6606                 stack_size = USHRT_MAX - header_size - sizeof(u64);
6607                 stack_size = round_up(stack_size, sizeof(u64));
6608         }
6609
6610         return stack_size;
6611 }
6612
6613 static void
6614 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6615                           struct pt_regs *regs)
6616 {
6617         /* Case of a kernel thread, nothing to dump */
6618         if (!regs) {
6619                 u64 size = 0;
6620                 perf_output_put(handle, size);
6621         } else {
6622                 unsigned long sp;
6623                 unsigned int rem;
6624                 u64 dyn_size;
6625                 mm_segment_t fs;
6626
6627                 /*
6628                  * We dump:
6629                  * static size
6630                  *   - the size requested by user or the best one we can fit
6631                  *     in to the sample max size
6632                  * data
6633                  *   - user stack dump data
6634                  * dynamic size
6635                  *   - the actual dumped size
6636                  */
6637
6638                 /* Static size. */
6639                 perf_output_put(handle, dump_size);
6640
6641                 /* Data. */
6642                 sp = perf_user_stack_pointer(regs);
6643                 fs = force_uaccess_begin();
6644                 rem = __output_copy_user(handle, (void *) sp, dump_size);
6645                 force_uaccess_end(fs);
6646                 dyn_size = dump_size - rem;
6647
6648                 perf_output_skip(handle, rem);
6649
6650                 /* Dynamic size. */
6651                 perf_output_put(handle, dyn_size);
6652         }
6653 }
6654
6655 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6656                                           struct perf_sample_data *data,
6657                                           size_t size)
6658 {
6659         struct perf_event *sampler = event->aux_event;
6660         struct perf_buffer *rb;
6661
6662         data->aux_size = 0;
6663
6664         if (!sampler)
6665                 goto out;
6666
6667         if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6668                 goto out;
6669
6670         if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6671                 goto out;
6672
6673         rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6674         if (!rb)
6675                 goto out;
6676
6677         /*
6678          * If this is an NMI hit inside sampling code, don't take
6679          * the sample. See also perf_aux_sample_output().
6680          */
6681         if (READ_ONCE(rb->aux_in_sampling)) {
6682                 data->aux_size = 0;
6683         } else {
6684                 size = min_t(size_t, size, perf_aux_size(rb));
6685                 data->aux_size = ALIGN(size, sizeof(u64));
6686         }
6687         ring_buffer_put(rb);
6688
6689 out:
6690         return data->aux_size;
6691 }
6692
6693 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
6694                                  struct perf_event *event,
6695                                  struct perf_output_handle *handle,
6696                                  unsigned long size)
6697 {
6698         unsigned long flags;
6699         long ret;
6700
6701         /*
6702          * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6703          * paths. If we start calling them in NMI context, they may race with
6704          * the IRQ ones, that is, for example, re-starting an event that's just
6705          * been stopped, which is why we're using a separate callback that
6706          * doesn't change the event state.
6707          *
6708          * IRQs need to be disabled to prevent IPIs from racing with us.
6709          */
6710         local_irq_save(flags);
6711         /*
6712          * Guard against NMI hits inside the critical section;
6713          * see also perf_prepare_sample_aux().
6714          */
6715         WRITE_ONCE(rb->aux_in_sampling, 1);
6716         barrier();
6717
6718         ret = event->pmu->snapshot_aux(event, handle, size);
6719
6720         barrier();
6721         WRITE_ONCE(rb->aux_in_sampling, 0);
6722         local_irq_restore(flags);
6723
6724         return ret;
6725 }
6726
6727 static void perf_aux_sample_output(struct perf_event *event,
6728                                    struct perf_output_handle *handle,
6729                                    struct perf_sample_data *data)
6730 {
6731         struct perf_event *sampler = event->aux_event;
6732         struct perf_buffer *rb;
6733         unsigned long pad;
6734         long size;
6735
6736         if (WARN_ON_ONCE(!sampler || !data->aux_size))
6737                 return;
6738
6739         rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6740         if (!rb)
6741                 return;
6742
6743         size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
6744
6745         /*
6746          * An error here means that perf_output_copy() failed (returned a
6747          * non-zero surplus that it didn't copy), which in its current
6748          * enlightened implementation is not possible. If that changes, we'd
6749          * like to know.
6750          */
6751         if (WARN_ON_ONCE(size < 0))
6752                 goto out_put;
6753
6754         /*
6755          * The pad comes from ALIGN()ing data->aux_size up to u64 in
6756          * perf_prepare_sample_aux(), so should not be more than that.
6757          */
6758         pad = data->aux_size - size;
6759         if (WARN_ON_ONCE(pad >= sizeof(u64)))
6760                 pad = 8;
6761
6762         if (pad) {
6763                 u64 zero = 0;
6764                 perf_output_copy(handle, &zero, pad);
6765         }
6766
6767 out_put:
6768         ring_buffer_put(rb);
6769 }
6770
6771 static void __perf_event_header__init_id(struct perf_event_header *header,
6772                                          struct perf_sample_data *data,
6773                                          struct perf_event *event)
6774 {
6775         u64 sample_type = event->attr.sample_type;
6776
6777         data->type = sample_type;
6778         header->size += event->id_header_size;
6779
6780         if (sample_type & PERF_SAMPLE_TID) {
6781                 /* namespace issues */
6782                 data->tid_entry.pid = perf_event_pid(event, current);
6783                 data->tid_entry.tid = perf_event_tid(event, current);
6784         }
6785
6786         if (sample_type & PERF_SAMPLE_TIME)
6787                 data->time = perf_event_clock(event);
6788
6789         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6790                 data->id = primary_event_id(event);
6791
6792         if (sample_type & PERF_SAMPLE_STREAM_ID)
6793                 data->stream_id = event->id;
6794
6795         if (sample_type & PERF_SAMPLE_CPU) {
6796                 data->cpu_entry.cpu      = raw_smp_processor_id();
6797                 data->cpu_entry.reserved = 0;
6798         }
6799 }
6800
6801 void perf_event_header__init_id(struct perf_event_header *header,
6802                                 struct perf_sample_data *data,
6803                                 struct perf_event *event)
6804 {
6805         if (event->attr.sample_id_all)
6806                 __perf_event_header__init_id(header, data, event);
6807 }
6808
6809 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6810                                            struct perf_sample_data *data)
6811 {
6812         u64 sample_type = data->type;
6813
6814         if (sample_type & PERF_SAMPLE_TID)
6815                 perf_output_put(handle, data->tid_entry);
6816
6817         if (sample_type & PERF_SAMPLE_TIME)
6818                 perf_output_put(handle, data->time);
6819
6820         if (sample_type & PERF_SAMPLE_ID)
6821                 perf_output_put(handle, data->id);
6822
6823         if (sample_type & PERF_SAMPLE_STREAM_ID)
6824                 perf_output_put(handle, data->stream_id);
6825
6826         if (sample_type & PERF_SAMPLE_CPU)
6827                 perf_output_put(handle, data->cpu_entry);
6828
6829         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6830                 perf_output_put(handle, data->id);
6831 }
6832
6833 void perf_event__output_id_sample(struct perf_event *event,
6834                                   struct perf_output_handle *handle,
6835                                   struct perf_sample_data *sample)
6836 {
6837         if (event->attr.sample_id_all)
6838                 __perf_event__output_id_sample(handle, sample);
6839 }
6840
6841 static void perf_output_read_one(struct perf_output_handle *handle,
6842                                  struct perf_event *event,
6843                                  u64 enabled, u64 running)
6844 {
6845         u64 read_format = event->attr.read_format;
6846         u64 values[4];
6847         int n = 0;
6848
6849         values[n++] = perf_event_count(event);
6850         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6851                 values[n++] = enabled +
6852                         atomic64_read(&event->child_total_time_enabled);
6853         }
6854         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6855                 values[n++] = running +
6856                         atomic64_read(&event->child_total_time_running);
6857         }
6858         if (read_format & PERF_FORMAT_ID)
6859                 values[n++] = primary_event_id(event);
6860
6861         __output_copy(handle, values, n * sizeof(u64));
6862 }
6863
6864 static void perf_output_read_group(struct perf_output_handle *handle,
6865                             struct perf_event *event,
6866                             u64 enabled, u64 running)
6867 {
6868         struct perf_event *leader = event->group_leader, *sub;
6869         u64 read_format = event->attr.read_format;
6870         u64 values[5];
6871         int n = 0;
6872
6873         values[n++] = 1 + leader->nr_siblings;
6874
6875         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6876                 values[n++] = enabled;
6877
6878         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6879                 values[n++] = running;
6880
6881         if ((leader != event) &&
6882             (leader->state == PERF_EVENT_STATE_ACTIVE))
6883                 leader->pmu->read(leader);
6884
6885         values[n++] = perf_event_count(leader);
6886         if (read_format & PERF_FORMAT_ID)
6887                 values[n++] = primary_event_id(leader);
6888
6889         __output_copy(handle, values, n * sizeof(u64));
6890
6891         for_each_sibling_event(sub, leader) {
6892                 n = 0;
6893
6894                 if ((sub != event) &&
6895                     (sub->state == PERF_EVENT_STATE_ACTIVE))
6896                         sub->pmu->read(sub);
6897
6898                 values[n++] = perf_event_count(sub);
6899                 if (read_format & PERF_FORMAT_ID)
6900                         values[n++] = primary_event_id(sub);
6901
6902                 __output_copy(handle, values, n * sizeof(u64));
6903         }
6904 }
6905
6906 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6907                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
6908
6909 /*
6910  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6911  *
6912  * The problem is that its both hard and excessively expensive to iterate the
6913  * child list, not to mention that its impossible to IPI the children running
6914  * on another CPU, from interrupt/NMI context.
6915  */
6916 static void perf_output_read(struct perf_output_handle *handle,
6917                              struct perf_event *event)
6918 {
6919         u64 enabled = 0, running = 0, now;
6920         u64 read_format = event->attr.read_format;
6921
6922         /*
6923          * compute total_time_enabled, total_time_running
6924          * based on snapshot values taken when the event
6925          * was last scheduled in.
6926          *
6927          * we cannot simply called update_context_time()
6928          * because of locking issue as we are called in
6929          * NMI context
6930          */
6931         if (read_format & PERF_FORMAT_TOTAL_TIMES)
6932                 calc_timer_values(event, &now, &enabled, &running);
6933
6934         if (event->attr.read_format & PERF_FORMAT_GROUP)
6935                 perf_output_read_group(handle, event, enabled, running);
6936         else
6937                 perf_output_read_one(handle, event, enabled, running);
6938 }
6939
6940 static inline bool perf_sample_save_hw_index(struct perf_event *event)
6941 {
6942         return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
6943 }
6944
6945 void perf_output_sample(struct perf_output_handle *handle,
6946                         struct perf_event_header *header,
6947                         struct perf_sample_data *data,
6948                         struct perf_event *event)
6949 {
6950         u64 sample_type = data->type;
6951
6952         perf_output_put(handle, *header);
6953
6954         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6955                 perf_output_put(handle, data->id);
6956
6957         if (sample_type & PERF_SAMPLE_IP)
6958                 perf_output_put(handle, data->ip);
6959
6960         if (sample_type & PERF_SAMPLE_TID)
6961                 perf_output_put(handle, data->tid_entry);
6962
6963         if (sample_type & PERF_SAMPLE_TIME)
6964                 perf_output_put(handle, data->time);
6965
6966         if (sample_type & PERF_SAMPLE_ADDR)
6967                 perf_output_put(handle, data->addr);
6968
6969         if (sample_type & PERF_SAMPLE_ID)
6970                 perf_output_put(handle, data->id);
6971
6972         if (sample_type & PERF_SAMPLE_STREAM_ID)
6973                 perf_output_put(handle, data->stream_id);
6974
6975         if (sample_type & PERF_SAMPLE_CPU)
6976                 perf_output_put(handle, data->cpu_entry);
6977
6978         if (sample_type & PERF_SAMPLE_PERIOD)
6979                 perf_output_put(handle, data->period);
6980
6981         if (sample_type & PERF_SAMPLE_READ)
6982                 perf_output_read(handle, event);
6983
6984         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6985                 int size = 1;
6986
6987                 size += data->callchain->nr;
6988                 size *= sizeof(u64);
6989                 __output_copy(handle, data->callchain, size);
6990         }
6991
6992         if (sample_type & PERF_SAMPLE_RAW) {
6993                 struct perf_raw_record *raw = data->raw;
6994
6995                 if (raw) {
6996                         struct perf_raw_frag *frag = &raw->frag;
6997
6998                         perf_output_put(handle, raw->size);
6999                         do {
7000                                 if (frag->copy) {
7001                                         __output_custom(handle, frag->copy,
7002                                                         frag->data, frag->size);
7003                                 } else {
7004                                         __output_copy(handle, frag->data,
7005                                                       frag->size);
7006                                 }
7007                                 if (perf_raw_frag_last(frag))
7008                                         break;
7009                                 frag = frag->next;
7010                         } while (1);
7011                         if (frag->pad)
7012                                 __output_skip(handle, NULL, frag->pad);
7013                 } else {
7014                         struct {
7015                                 u32     size;
7016                                 u32     data;
7017                         } raw = {
7018                                 .size = sizeof(u32),
7019                                 .data = 0,
7020                         };
7021                         perf_output_put(handle, raw);
7022                 }
7023         }
7024
7025         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7026                 if (data->br_stack) {
7027                         size_t size;
7028
7029                         size = data->br_stack->nr
7030                              * sizeof(struct perf_branch_entry);
7031
7032                         perf_output_put(handle, data->br_stack->nr);
7033                         if (perf_sample_save_hw_index(event))
7034                                 perf_output_put(handle, data->br_stack->hw_idx);
7035                         perf_output_copy(handle, data->br_stack->entries, size);
7036                 } else {
7037                         /*
7038                          * we always store at least the value of nr
7039                          */
7040                         u64 nr = 0;
7041                         perf_output_put(handle, nr);
7042                 }
7043         }
7044
7045         if (sample_type & PERF_SAMPLE_REGS_USER) {
7046                 u64 abi = data->regs_user.abi;
7047
7048                 /*
7049                  * If there are no regs to dump, notice it through
7050                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7051                  */
7052                 perf_output_put(handle, abi);
7053
7054                 if (abi) {
7055                         u64 mask = event->attr.sample_regs_user;
7056                         perf_output_sample_regs(handle,
7057                                                 data->regs_user.regs,
7058                                                 mask);
7059                 }
7060         }
7061
7062         if (sample_type & PERF_SAMPLE_STACK_USER) {
7063                 perf_output_sample_ustack(handle,
7064                                           data->stack_user_size,
7065                                           data->regs_user.regs);
7066         }
7067
7068         if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7069                 perf_output_put(handle, data->weight.full);
7070
7071         if (sample_type & PERF_SAMPLE_DATA_SRC)
7072                 perf_output_put(handle, data->data_src.val);
7073
7074         if (sample_type & PERF_SAMPLE_TRANSACTION)
7075                 perf_output_put(handle, data->txn);
7076
7077         if (sample_type & PERF_SAMPLE_REGS_INTR) {
7078                 u64 abi = data->regs_intr.abi;
7079                 /*
7080                  * If there are no regs to dump, notice it through
7081                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7082                  */
7083                 perf_output_put(handle, abi);
7084
7085                 if (abi) {
7086                         u64 mask = event->attr.sample_regs_intr;
7087
7088                         perf_output_sample_regs(handle,
7089                                                 data->regs_intr.regs,
7090                                                 mask);
7091                 }
7092         }
7093
7094         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7095                 perf_output_put(handle, data->phys_addr);
7096
7097         if (sample_type & PERF_SAMPLE_CGROUP)
7098                 perf_output_put(handle, data->cgroup);
7099
7100         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7101                 perf_output_put(handle, data->data_page_size);
7102
7103         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7104                 perf_output_put(handle, data->code_page_size);
7105
7106         if (sample_type & PERF_SAMPLE_AUX) {
7107                 perf_output_put(handle, data->aux_size);
7108
7109                 if (data->aux_size)
7110                         perf_aux_sample_output(event, handle, data);
7111         }
7112
7113         if (!event->attr.watermark) {
7114                 int wakeup_events = event->attr.wakeup_events;
7115
7116                 if (wakeup_events) {
7117                         struct perf_buffer *rb = handle->rb;
7118                         int events = local_inc_return(&rb->events);
7119
7120                         if (events >= wakeup_events) {
7121                                 local_sub(wakeup_events, &rb->events);
7122                                 local_inc(&rb->wakeup);
7123                         }
7124                 }
7125         }
7126 }
7127
7128 static u64 perf_virt_to_phys(u64 virt)
7129 {
7130         u64 phys_addr = 0;
7131         struct page *p = NULL;
7132
7133         if (!virt)
7134                 return 0;
7135
7136         if (virt >= TASK_SIZE) {
7137                 /* If it's vmalloc()d memory, leave phys_addr as 0 */
7138                 if (virt_addr_valid((void *)(uintptr_t)virt) &&
7139                     !(virt >= VMALLOC_START && virt < VMALLOC_END))
7140                         phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7141         } else {
7142                 /*
7143                  * Walking the pages tables for user address.
7144                  * Interrupts are disabled, so it prevents any tear down
7145                  * of the page tables.
7146                  * Try IRQ-safe get_user_page_fast_only first.
7147                  * If failed, leave phys_addr as 0.
7148                  */
7149                 if (current->mm != NULL) {
7150                         pagefault_disable();
7151                         if (get_user_page_fast_only(virt, 0, &p))
7152                                 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7153                         pagefault_enable();
7154                 }
7155
7156                 if (p)
7157                         put_page(p);
7158         }
7159
7160         return phys_addr;
7161 }
7162
7163 /*
7164  * Return the pagetable size of a given virtual address.
7165  */
7166 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7167 {
7168         u64 size = 0;
7169
7170 #ifdef CONFIG_HAVE_FAST_GUP
7171         pgd_t *pgdp, pgd;
7172         p4d_t *p4dp, p4d;
7173         pud_t *pudp, pud;
7174         pmd_t *pmdp, pmd;
7175         pte_t *ptep, pte;
7176
7177         pgdp = pgd_offset(mm, addr);
7178         pgd = READ_ONCE(*pgdp);
7179         if (pgd_none(pgd))
7180                 return 0;
7181
7182         if (pgd_leaf(pgd))
7183                 return pgd_leaf_size(pgd);
7184
7185         p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7186         p4d = READ_ONCE(*p4dp);
7187         if (!p4d_present(p4d))
7188                 return 0;
7189
7190         if (p4d_leaf(p4d))
7191                 return p4d_leaf_size(p4d);
7192
7193         pudp = pud_offset_lockless(p4dp, p4d, addr);
7194         pud = READ_ONCE(*pudp);
7195         if (!pud_present(pud))
7196                 return 0;
7197
7198         if (pud_leaf(pud))
7199                 return pud_leaf_size(pud);
7200
7201         pmdp = pmd_offset_lockless(pudp, pud, addr);
7202         pmd = READ_ONCE(*pmdp);
7203         if (!pmd_present(pmd))
7204                 return 0;
7205
7206         if (pmd_leaf(pmd))
7207                 return pmd_leaf_size(pmd);
7208
7209         ptep = pte_offset_map(&pmd, addr);
7210         pte = ptep_get_lockless(ptep);
7211         if (pte_present(pte))
7212                 size = pte_leaf_size(pte);
7213         pte_unmap(ptep);
7214 #endif /* CONFIG_HAVE_FAST_GUP */
7215
7216         return size;
7217 }
7218
7219 static u64 perf_get_page_size(unsigned long addr)
7220 {
7221         struct mm_struct *mm;
7222         unsigned long flags;
7223         u64 size;
7224
7225         if (!addr)
7226                 return 0;
7227
7228         /*
7229          * Software page-table walkers must disable IRQs,
7230          * which prevents any tear down of the page tables.
7231          */
7232         local_irq_save(flags);
7233
7234         mm = current->mm;
7235         if (!mm) {
7236                 /*
7237                  * For kernel threads and the like, use init_mm so that
7238                  * we can find kernel memory.
7239                  */
7240                 mm = &init_mm;
7241         }
7242
7243         size = perf_get_pgtable_size(mm, addr);
7244
7245         local_irq_restore(flags);
7246
7247         return size;
7248 }
7249
7250 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7251
7252 struct perf_callchain_entry *
7253 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7254 {
7255         bool kernel = !event->attr.exclude_callchain_kernel;
7256         bool user   = !event->attr.exclude_callchain_user;
7257         /* Disallow cross-task user callchains. */
7258         bool crosstask = event->ctx->task && event->ctx->task != current;
7259         const u32 max_stack = event->attr.sample_max_stack;
7260         struct perf_callchain_entry *callchain;
7261
7262         if (!kernel && !user)
7263                 return &__empty_callchain;
7264
7265         callchain = get_perf_callchain(regs, 0, kernel, user,
7266                                        max_stack, crosstask, true);
7267         return callchain ?: &__empty_callchain;
7268 }
7269
7270 void perf_prepare_sample(struct perf_event_header *header,
7271                          struct perf_sample_data *data,
7272                          struct perf_event *event,
7273                          struct pt_regs *regs)
7274 {
7275         u64 sample_type = event->attr.sample_type;
7276
7277         header->type = PERF_RECORD_SAMPLE;
7278         header->size = sizeof(*header) + event->header_size;
7279
7280         header->misc = 0;
7281         header->misc |= perf_misc_flags(regs);
7282
7283         __perf_event_header__init_id(header, data, event);
7284
7285         if (sample_type & (PERF_SAMPLE_IP | PERF_SAMPLE_CODE_PAGE_SIZE))
7286                 data->ip = perf_instruction_pointer(regs);
7287
7288         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7289                 int size = 1;
7290
7291                 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
7292                         data->callchain = perf_callchain(event, regs);
7293
7294                 size += data->callchain->nr;
7295
7296                 header->size += size * sizeof(u64);
7297         }
7298
7299         if (sample_type & PERF_SAMPLE_RAW) {
7300                 struct perf_raw_record *raw = data->raw;
7301                 int size;
7302
7303                 if (raw) {
7304                         struct perf_raw_frag *frag = &raw->frag;
7305                         u32 sum = 0;
7306
7307                         do {
7308                                 sum += frag->size;
7309                                 if (perf_raw_frag_last(frag))
7310                                         break;
7311                                 frag = frag->next;
7312                         } while (1);
7313
7314                         size = round_up(sum + sizeof(u32), sizeof(u64));
7315                         raw->size = size - sizeof(u32);
7316                         frag->pad = raw->size - sum;
7317                 } else {
7318                         size = sizeof(u64);
7319                 }
7320
7321                 header->size += size;
7322         }
7323
7324         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7325                 int size = sizeof(u64); /* nr */
7326                 if (data->br_stack) {
7327                         if (perf_sample_save_hw_index(event))
7328                                 size += sizeof(u64);
7329
7330                         size += data->br_stack->nr
7331                               * sizeof(struct perf_branch_entry);
7332                 }
7333                 header->size += size;
7334         }
7335
7336         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
7337                 perf_sample_regs_user(&data->regs_user, regs);
7338
7339         if (sample_type & PERF_SAMPLE_REGS_USER) {
7340                 /* regs dump ABI info */
7341                 int size = sizeof(u64);
7342
7343                 if (data->regs_user.regs) {
7344                         u64 mask = event->attr.sample_regs_user;
7345                         size += hweight64(mask) * sizeof(u64);
7346                 }
7347
7348                 header->size += size;
7349         }
7350
7351         if (sample_type & PERF_SAMPLE_STACK_USER) {
7352                 /*
7353                  * Either we need PERF_SAMPLE_STACK_USER bit to be always
7354                  * processed as the last one or have additional check added
7355                  * in case new sample type is added, because we could eat
7356                  * up the rest of the sample size.
7357                  */
7358                 u16 stack_size = event->attr.sample_stack_user;
7359                 u16 size = sizeof(u64);
7360
7361                 stack_size = perf_sample_ustack_size(stack_size, header->size,
7362                                                      data->regs_user.regs);
7363
7364                 /*
7365                  * If there is something to dump, add space for the dump
7366                  * itself and for the field that tells the dynamic size,
7367                  * which is how many have been actually dumped.
7368                  */
7369                 if (stack_size)
7370                         size += sizeof(u64) + stack_size;
7371
7372                 data->stack_user_size = stack_size;
7373                 header->size += size;
7374         }
7375
7376         if (sample_type & PERF_SAMPLE_REGS_INTR) {
7377                 /* regs dump ABI info */
7378                 int size = sizeof(u64);
7379
7380                 perf_sample_regs_intr(&data->regs_intr, regs);
7381
7382                 if (data->regs_intr.regs) {
7383                         u64 mask = event->attr.sample_regs_intr;
7384
7385                         size += hweight64(mask) * sizeof(u64);
7386                 }
7387
7388                 header->size += size;
7389         }
7390
7391         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7392                 data->phys_addr = perf_virt_to_phys(data->addr);
7393
7394 #ifdef CONFIG_CGROUP_PERF
7395         if (sample_type & PERF_SAMPLE_CGROUP) {
7396                 struct cgroup *cgrp;
7397
7398                 /* protected by RCU */
7399                 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7400                 data->cgroup = cgroup_id(cgrp);
7401         }
7402 #endif
7403
7404         /*
7405          * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7406          * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7407          * but the value will not dump to the userspace.
7408          */
7409         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7410                 data->data_page_size = perf_get_page_size(data->addr);
7411
7412         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7413                 data->code_page_size = perf_get_page_size(data->ip);
7414
7415         if (sample_type & PERF_SAMPLE_AUX) {
7416                 u64 size;
7417
7418                 header->size += sizeof(u64); /* size */
7419
7420                 /*
7421                  * Given the 16bit nature of header::size, an AUX sample can
7422                  * easily overflow it, what with all the preceding sample bits.
7423                  * Make sure this doesn't happen by using up to U16_MAX bytes
7424                  * per sample in total (rounded down to 8 byte boundary).
7425                  */
7426                 size = min_t(size_t, U16_MAX - header->size,
7427                              event->attr.aux_sample_size);
7428                 size = rounddown(size, 8);
7429                 size = perf_prepare_sample_aux(event, data, size);
7430
7431                 WARN_ON_ONCE(size + header->size > U16_MAX);
7432                 header->size += size;
7433         }
7434         /*
7435          * If you're adding more sample types here, you likely need to do
7436          * something about the overflowing header::size, like repurpose the
7437          * lowest 3 bits of size, which should be always zero at the moment.
7438          * This raises a more important question, do we really need 512k sized
7439          * samples and why, so good argumentation is in order for whatever you
7440          * do here next.
7441          */
7442         WARN_ON_ONCE(header->size & 7);
7443 }
7444
7445 static __always_inline int
7446 __perf_event_output(struct perf_event *event,
7447                     struct perf_sample_data *data,
7448                     struct pt_regs *regs,
7449                     int (*output_begin)(struct perf_output_handle *,
7450                                         struct perf_sample_data *,
7451                                         struct perf_event *,
7452                                         unsigned int))
7453 {
7454         struct perf_output_handle handle;
7455         struct perf_event_header header;
7456         int err;
7457
7458         /* protect the callchain buffers */
7459         rcu_read_lock();
7460
7461         perf_prepare_sample(&header, data, event, regs);
7462
7463         err = output_begin(&handle, data, event, header.size);
7464         if (err)
7465                 goto exit;
7466
7467         perf_output_sample(&handle, &header, data, event);
7468
7469         perf_output_end(&handle);
7470
7471 exit:
7472         rcu_read_unlock();
7473         return err;
7474 }
7475
7476 void
7477 perf_event_output_forward(struct perf_event *event,
7478                          struct perf_sample_data *data,
7479                          struct pt_regs *regs)
7480 {
7481         __perf_event_output(event, data, regs, perf_output_begin_forward);
7482 }
7483
7484 void
7485 perf_event_output_backward(struct perf_event *event,
7486                            struct perf_sample_data *data,
7487                            struct pt_regs *regs)
7488 {
7489         __perf_event_output(event, data, regs, perf_output_begin_backward);
7490 }
7491
7492 int
7493 perf_event_output(struct perf_event *event,
7494                   struct perf_sample_data *data,
7495                   struct pt_regs *regs)
7496 {
7497         return __perf_event_output(event, data, regs, perf_output_begin);
7498 }
7499
7500 /*
7501  * read event_id
7502  */
7503
7504 struct perf_read_event {
7505         struct perf_event_header        header;
7506
7507         u32                             pid;
7508         u32                             tid;
7509 };
7510
7511 static void
7512 perf_event_read_event(struct perf_event *event,
7513                         struct task_struct *task)
7514 {
7515         struct perf_output_handle handle;
7516         struct perf_sample_data sample;
7517         struct perf_read_event read_event = {
7518                 .header = {
7519                         .type = PERF_RECORD_READ,
7520                         .misc = 0,
7521                         .size = sizeof(read_event) + event->read_size,
7522                 },
7523                 .pid = perf_event_pid(event, task),
7524                 .tid = perf_event_tid(event, task),
7525         };
7526         int ret;
7527
7528         perf_event_header__init_id(&read_event.header, &sample, event);
7529         ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7530         if (ret)
7531                 return;
7532
7533         perf_output_put(&handle, read_event);
7534         perf_output_read(&handle, event);
7535         perf_event__output_id_sample(event, &handle, &sample);
7536
7537         perf_output_end(&handle);
7538 }
7539
7540 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7541
7542 static void
7543 perf_iterate_ctx(struct perf_event_context *ctx,
7544                    perf_iterate_f output,
7545                    void *data, bool all)
7546 {
7547         struct perf_event *event;
7548
7549         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7550                 if (!all) {
7551                         if (event->state < PERF_EVENT_STATE_INACTIVE)
7552                                 continue;
7553                         if (!event_filter_match(event))
7554                                 continue;
7555                 }
7556
7557                 output(event, data);
7558         }
7559 }
7560
7561 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7562 {
7563         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7564         struct perf_event *event;
7565
7566         list_for_each_entry_rcu(event, &pel->list, sb_list) {
7567                 /*
7568                  * Skip events that are not fully formed yet; ensure that
7569                  * if we observe event->ctx, both event and ctx will be
7570                  * complete enough. See perf_install_in_context().
7571                  */
7572                 if (!smp_load_acquire(&event->ctx))
7573                         continue;
7574
7575                 if (event->state < PERF_EVENT_STATE_INACTIVE)
7576                         continue;
7577                 if (!event_filter_match(event))
7578                         continue;
7579                 output(event, data);
7580         }
7581 }
7582
7583 /*
7584  * Iterate all events that need to receive side-band events.
7585  *
7586  * For new callers; ensure that account_pmu_sb_event() includes
7587  * your event, otherwise it might not get delivered.
7588  */
7589 static void
7590 perf_iterate_sb(perf_iterate_f output, void *data,
7591                struct perf_event_context *task_ctx)
7592 {
7593         struct perf_event_context *ctx;
7594         int ctxn;
7595
7596         rcu_read_lock();
7597         preempt_disable();
7598
7599         /*
7600          * If we have task_ctx != NULL we only notify the task context itself.
7601          * The task_ctx is set only for EXIT events before releasing task
7602          * context.
7603          */
7604         if (task_ctx) {
7605                 perf_iterate_ctx(task_ctx, output, data, false);
7606                 goto done;
7607         }
7608
7609         perf_iterate_sb_cpu(output, data);
7610
7611         for_each_task_context_nr(ctxn) {
7612                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7613                 if (ctx)
7614                         perf_iterate_ctx(ctx, output, data, false);
7615         }
7616 done:
7617         preempt_enable();
7618         rcu_read_unlock();
7619 }
7620
7621 /*
7622  * Clear all file-based filters at exec, they'll have to be
7623  * re-instated when/if these objects are mmapped again.
7624  */
7625 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7626 {
7627         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7628         struct perf_addr_filter *filter;
7629         unsigned int restart = 0, count = 0;
7630         unsigned long flags;
7631
7632         if (!has_addr_filter(event))
7633                 return;
7634
7635         raw_spin_lock_irqsave(&ifh->lock, flags);
7636         list_for_each_entry(filter, &ifh->list, entry) {
7637                 if (filter->path.dentry) {
7638                         event->addr_filter_ranges[count].start = 0;
7639                         event->addr_filter_ranges[count].size = 0;
7640                         restart++;
7641                 }
7642
7643                 count++;
7644         }
7645
7646         if (restart)
7647                 event->addr_filters_gen++;
7648         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7649
7650         if (restart)
7651                 perf_event_stop(event, 1);
7652 }
7653
7654 void perf_event_exec(void)
7655 {
7656         struct perf_event_context *ctx;
7657         int ctxn;
7658
7659         for_each_task_context_nr(ctxn) {
7660                 perf_event_enable_on_exec(ctxn);
7661                 perf_event_remove_on_exec(ctxn);
7662
7663                 rcu_read_lock();
7664                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7665                 if (ctx) {
7666                         perf_iterate_ctx(ctx, perf_event_addr_filters_exec,
7667                                          NULL, true);
7668                 }
7669                 rcu_read_unlock();
7670         }
7671 }
7672
7673 struct remote_output {
7674         struct perf_buffer      *rb;
7675         int                     err;
7676 };
7677
7678 static void __perf_event_output_stop(struct perf_event *event, void *data)
7679 {
7680         struct perf_event *parent = event->parent;
7681         struct remote_output *ro = data;
7682         struct perf_buffer *rb = ro->rb;
7683         struct stop_event_data sd = {
7684                 .event  = event,
7685         };
7686
7687         if (!has_aux(event))
7688                 return;
7689
7690         if (!parent)
7691                 parent = event;
7692
7693         /*
7694          * In case of inheritance, it will be the parent that links to the
7695          * ring-buffer, but it will be the child that's actually using it.
7696          *
7697          * We are using event::rb to determine if the event should be stopped,
7698          * however this may race with ring_buffer_attach() (through set_output),
7699          * which will make us skip the event that actually needs to be stopped.
7700          * So ring_buffer_attach() has to stop an aux event before re-assigning
7701          * its rb pointer.
7702          */
7703         if (rcu_dereference(parent->rb) == rb)
7704                 ro->err = __perf_event_stop(&sd);
7705 }
7706
7707 static int __perf_pmu_output_stop(void *info)
7708 {
7709         struct perf_event *event = info;
7710         struct pmu *pmu = event->ctx->pmu;
7711         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7712         struct remote_output ro = {
7713                 .rb     = event->rb,
7714         };
7715
7716         rcu_read_lock();
7717         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
7718         if (cpuctx->task_ctx)
7719                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
7720                                    &ro, false);
7721         rcu_read_unlock();
7722
7723         return ro.err;
7724 }
7725
7726 static void perf_pmu_output_stop(struct perf_event *event)
7727 {
7728         struct perf_event *iter;
7729         int err, cpu;
7730
7731 restart:
7732         rcu_read_lock();
7733         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7734                 /*
7735                  * For per-CPU events, we need to make sure that neither they
7736                  * nor their children are running; for cpu==-1 events it's
7737                  * sufficient to stop the event itself if it's active, since
7738                  * it can't have children.
7739                  */
7740                 cpu = iter->cpu;
7741                 if (cpu == -1)
7742                         cpu = READ_ONCE(iter->oncpu);
7743
7744                 if (cpu == -1)
7745                         continue;
7746
7747                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7748                 if (err == -EAGAIN) {
7749                         rcu_read_unlock();
7750                         goto restart;
7751                 }
7752         }
7753         rcu_read_unlock();
7754 }
7755
7756 /*
7757  * task tracking -- fork/exit
7758  *
7759  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7760  */
7761
7762 struct perf_task_event {
7763         struct task_struct              *task;
7764         struct perf_event_context       *task_ctx;
7765
7766         struct {
7767                 struct perf_event_header        header;
7768
7769                 u32                             pid;
7770                 u32                             ppid;
7771                 u32                             tid;
7772                 u32                             ptid;
7773                 u64                             time;
7774         } event_id;
7775 };
7776
7777 static int perf_event_task_match(struct perf_event *event)
7778 {
7779         return event->attr.comm  || event->attr.mmap ||
7780                event->attr.mmap2 || event->attr.mmap_data ||
7781                event->attr.task;
7782 }
7783
7784 static void perf_event_task_output(struct perf_event *event,
7785                                    void *data)
7786 {
7787         struct perf_task_event *task_event = data;
7788         struct perf_output_handle handle;
7789         struct perf_sample_data sample;
7790         struct task_struct *task = task_event->task;
7791         int ret, size = task_event->event_id.header.size;
7792
7793         if (!perf_event_task_match(event))
7794                 return;
7795
7796         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7797
7798         ret = perf_output_begin(&handle, &sample, event,
7799                                 task_event->event_id.header.size);
7800         if (ret)
7801                 goto out;
7802
7803         task_event->event_id.pid = perf_event_pid(event, task);
7804         task_event->event_id.tid = perf_event_tid(event, task);
7805
7806         if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
7807                 task_event->event_id.ppid = perf_event_pid(event,
7808                                                         task->real_parent);
7809                 task_event->event_id.ptid = perf_event_pid(event,
7810                                                         task->real_parent);
7811         } else {  /* PERF_RECORD_FORK */
7812                 task_event->event_id.ppid = perf_event_pid(event, current);
7813                 task_event->event_id.ptid = perf_event_tid(event, current);
7814         }
7815
7816         task_event->event_id.time = perf_event_clock(event);
7817
7818         perf_output_put(&handle, task_event->event_id);
7819
7820         perf_event__output_id_sample(event, &handle, &sample);
7821
7822         perf_output_end(&handle);
7823 out:
7824         task_event->event_id.header.size = size;
7825 }
7826
7827 static void perf_event_task(struct task_struct *task,
7828                               struct perf_event_context *task_ctx,
7829                               int new)
7830 {
7831         struct perf_task_event task_event;
7832
7833         if (!atomic_read(&nr_comm_events) &&
7834             !atomic_read(&nr_mmap_events) &&
7835             !atomic_read(&nr_task_events))
7836                 return;
7837
7838         task_event = (struct perf_task_event){
7839                 .task     = task,
7840                 .task_ctx = task_ctx,
7841                 .event_id    = {
7842                         .header = {
7843                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7844                                 .misc = 0,
7845                                 .size = sizeof(task_event.event_id),
7846                         },
7847                         /* .pid  */
7848                         /* .ppid */
7849                         /* .tid  */
7850                         /* .ptid */
7851                         /* .time */
7852                 },
7853         };
7854
7855         perf_iterate_sb(perf_event_task_output,
7856                        &task_event,
7857                        task_ctx);
7858 }
7859
7860 void perf_event_fork(struct task_struct *task)
7861 {
7862         perf_event_task(task, NULL, 1);
7863         perf_event_namespaces(task);
7864 }
7865
7866 /*
7867  * comm tracking
7868  */
7869
7870 struct perf_comm_event {
7871         struct task_struct      *task;
7872         char                    *comm;
7873         int                     comm_size;
7874
7875         struct {
7876                 struct perf_event_header        header;
7877
7878                 u32                             pid;
7879                 u32                             tid;
7880         } event_id;
7881 };
7882
7883 static int perf_event_comm_match(struct perf_event *event)
7884 {
7885         return event->attr.comm;
7886 }
7887
7888 static void perf_event_comm_output(struct perf_event *event,
7889                                    void *data)
7890 {
7891         struct perf_comm_event *comm_event = data;
7892         struct perf_output_handle handle;
7893         struct perf_sample_data sample;
7894         int size = comm_event->event_id.header.size;
7895         int ret;
7896
7897         if (!perf_event_comm_match(event))
7898                 return;
7899
7900         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7901         ret = perf_output_begin(&handle, &sample, event,
7902                                 comm_event->event_id.header.size);
7903
7904         if (ret)
7905                 goto out;
7906
7907         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7908         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7909
7910         perf_output_put(&handle, comm_event->event_id);
7911         __output_copy(&handle, comm_event->comm,
7912                                    comm_event->comm_size);
7913
7914         perf_event__output_id_sample(event, &handle, &sample);
7915
7916         perf_output_end(&handle);
7917 out:
7918         comm_event->event_id.header.size = size;
7919 }
7920
7921 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7922 {
7923         char comm[TASK_COMM_LEN];
7924         unsigned int size;
7925
7926         memset(comm, 0, sizeof(comm));
7927         strlcpy(comm, comm_event->task->comm, sizeof(comm));
7928         size = ALIGN(strlen(comm)+1, sizeof(u64));
7929
7930         comm_event->comm = comm;
7931         comm_event->comm_size = size;
7932
7933         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7934
7935         perf_iterate_sb(perf_event_comm_output,
7936                        comm_event,
7937                        NULL);
7938 }
7939
7940 void perf_event_comm(struct task_struct *task, bool exec)
7941 {
7942         struct perf_comm_event comm_event;
7943
7944         if (!atomic_read(&nr_comm_events))
7945                 return;
7946
7947         comm_event = (struct perf_comm_event){
7948                 .task   = task,
7949                 /* .comm      */
7950                 /* .comm_size */
7951                 .event_id  = {
7952                         .header = {
7953                                 .type = PERF_RECORD_COMM,
7954                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7955                                 /* .size */
7956                         },
7957                         /* .pid */
7958                         /* .tid */
7959                 },
7960         };
7961
7962         perf_event_comm_event(&comm_event);
7963 }
7964
7965 /*
7966  * namespaces tracking
7967  */
7968
7969 struct perf_namespaces_event {
7970         struct task_struct              *task;
7971
7972         struct {
7973                 struct perf_event_header        header;
7974
7975                 u32                             pid;
7976                 u32                             tid;
7977                 u64                             nr_namespaces;
7978                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
7979         } event_id;
7980 };
7981
7982 static int perf_event_namespaces_match(struct perf_event *event)
7983 {
7984         return event->attr.namespaces;
7985 }
7986
7987 static void perf_event_namespaces_output(struct perf_event *event,
7988                                          void *data)
7989 {
7990         struct perf_namespaces_event *namespaces_event = data;
7991         struct perf_output_handle handle;
7992         struct perf_sample_data sample;
7993         u16 header_size = namespaces_event->event_id.header.size;
7994         int ret;
7995
7996         if (!perf_event_namespaces_match(event))
7997                 return;
7998
7999         perf_event_header__init_id(&namespaces_event->event_id.header,
8000                                    &sample, event);
8001         ret = perf_output_begin(&handle, &sample, event,
8002                                 namespaces_event->event_id.header.size);
8003         if (ret)
8004                 goto out;
8005
8006         namespaces_event->event_id.pid = perf_event_pid(event,
8007                                                         namespaces_event->task);
8008         namespaces_event->event_id.tid = perf_event_tid(event,
8009                                                         namespaces_event->task);
8010
8011         perf_output_put(&handle, namespaces_event->event_id);
8012
8013         perf_event__output_id_sample(event, &handle, &sample);
8014
8015         perf_output_end(&handle);
8016 out:
8017         namespaces_event->event_id.header.size = header_size;
8018 }
8019
8020 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8021                                    struct task_struct *task,
8022                                    const struct proc_ns_operations *ns_ops)
8023 {
8024         struct path ns_path;
8025         struct inode *ns_inode;
8026         int error;
8027
8028         error = ns_get_path(&ns_path, task, ns_ops);
8029         if (!error) {
8030                 ns_inode = ns_path.dentry->d_inode;
8031                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8032                 ns_link_info->ino = ns_inode->i_ino;
8033                 path_put(&ns_path);
8034         }
8035 }
8036
8037 void perf_event_namespaces(struct task_struct *task)
8038 {
8039         struct perf_namespaces_event namespaces_event;
8040         struct perf_ns_link_info *ns_link_info;
8041
8042         if (!atomic_read(&nr_namespaces_events))
8043                 return;
8044
8045         namespaces_event = (struct perf_namespaces_event){
8046                 .task   = task,
8047                 .event_id  = {
8048                         .header = {
8049                                 .type = PERF_RECORD_NAMESPACES,
8050                                 .misc = 0,
8051                                 .size = sizeof(namespaces_event.event_id),
8052                         },
8053                         /* .pid */
8054                         /* .tid */
8055                         .nr_namespaces = NR_NAMESPACES,
8056                         /* .link_info[NR_NAMESPACES] */
8057                 },
8058         };
8059
8060         ns_link_info = namespaces_event.event_id.link_info;
8061
8062         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8063                                task, &mntns_operations);
8064
8065 #ifdef CONFIG_USER_NS
8066         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8067                                task, &userns_operations);
8068 #endif
8069 #ifdef CONFIG_NET_NS
8070         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8071                                task, &netns_operations);
8072 #endif
8073 #ifdef CONFIG_UTS_NS
8074         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8075                                task, &utsns_operations);
8076 #endif
8077 #ifdef CONFIG_IPC_NS
8078         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8079                                task, &ipcns_operations);
8080 #endif
8081 #ifdef CONFIG_PID_NS
8082         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8083                                task, &pidns_operations);
8084 #endif
8085 #ifdef CONFIG_CGROUPS
8086         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8087                                task, &cgroupns_operations);
8088 #endif
8089
8090         perf_iterate_sb(perf_event_namespaces_output,
8091                         &namespaces_event,
8092                         NULL);
8093 }
8094
8095 /*
8096  * cgroup tracking
8097  */
8098 #ifdef CONFIG_CGROUP_PERF
8099
8100 struct perf_cgroup_event {
8101         char                            *path;
8102         int                             path_size;
8103         struct {
8104                 struct perf_event_header        header;
8105                 u64                             id;
8106                 char                            path[];
8107         } event_id;
8108 };
8109
8110 static int perf_event_cgroup_match(struct perf_event *event)
8111 {
8112         return event->attr.cgroup;
8113 }
8114
8115 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8116 {
8117         struct perf_cgroup_event *cgroup_event = data;
8118         struct perf_output_handle handle;
8119         struct perf_sample_data sample;
8120         u16 header_size = cgroup_event->event_id.header.size;
8121         int ret;
8122
8123         if (!perf_event_cgroup_match(event))
8124                 return;
8125
8126         perf_event_header__init_id(&cgroup_event->event_id.header,
8127                                    &sample, event);
8128         ret = perf_output_begin(&handle, &sample, event,
8129                                 cgroup_event->event_id.header.size);
8130         if (ret)
8131                 goto out;
8132
8133         perf_output_put(&handle, cgroup_event->event_id);
8134         __output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8135
8136         perf_event__output_id_sample(event, &handle, &sample);
8137
8138         perf_output_end(&handle);
8139 out:
8140         cgroup_event->event_id.header.size = header_size;
8141 }
8142
8143 static void perf_event_cgroup(struct cgroup *cgrp)
8144 {
8145         struct perf_cgroup_event cgroup_event;
8146         char path_enomem[16] = "//enomem";
8147         char *pathname;
8148         size_t size;
8149
8150         if (!atomic_read(&nr_cgroup_events))
8151                 return;
8152
8153         cgroup_event = (struct perf_cgroup_event){
8154                 .event_id  = {
8155                         .header = {
8156                                 .type = PERF_RECORD_CGROUP,
8157                                 .misc = 0,
8158                                 .size = sizeof(cgroup_event.event_id),
8159                         },
8160                         .id = cgroup_id(cgrp),
8161                 },
8162         };
8163
8164         pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8165         if (pathname == NULL) {
8166                 cgroup_event.path = path_enomem;
8167         } else {
8168                 /* just to be sure to have enough space for alignment */
8169                 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8170                 cgroup_event.path = pathname;
8171         }
8172
8173         /*
8174          * Since our buffer works in 8 byte units we need to align our string
8175          * size to a multiple of 8. However, we must guarantee the tail end is
8176          * zero'd out to avoid leaking random bits to userspace.
8177          */
8178         size = strlen(cgroup_event.path) + 1;
8179         while (!IS_ALIGNED(size, sizeof(u64)))
8180                 cgroup_event.path[size++] = '\0';
8181
8182         cgroup_event.event_id.header.size += size;
8183         cgroup_event.path_size = size;
8184
8185         perf_iterate_sb(perf_event_cgroup_output,
8186                         &cgroup_event,
8187                         NULL);
8188
8189         kfree(pathname);
8190 }
8191
8192 #endif
8193
8194 /*
8195  * mmap tracking
8196  */
8197
8198 struct perf_mmap_event {
8199         struct vm_area_struct   *vma;
8200
8201         const char              *file_name;
8202         int                     file_size;
8203         int                     maj, min;
8204         u64                     ino;
8205         u64                     ino_generation;
8206         u32                     prot, flags;
8207         u8                      build_id[BUILD_ID_SIZE_MAX];
8208         u32                     build_id_size;
8209
8210         struct {
8211                 struct perf_event_header        header;
8212
8213                 u32                             pid;
8214                 u32                             tid;
8215                 u64                             start;
8216                 u64                             len;
8217                 u64                             pgoff;
8218         } event_id;
8219 };
8220
8221 static int perf_event_mmap_match(struct perf_event *event,
8222                                  void *data)
8223 {
8224         struct perf_mmap_event *mmap_event = data;
8225         struct vm_area_struct *vma = mmap_event->vma;
8226         int executable = vma->vm_flags & VM_EXEC;
8227
8228         return (!executable && event->attr.mmap_data) ||
8229                (executable && (event->attr.mmap || event->attr.mmap2));
8230 }
8231
8232 static void perf_event_mmap_output(struct perf_event *event,
8233                                    void *data)
8234 {
8235         struct perf_mmap_event *mmap_event = data;
8236         struct perf_output_handle handle;
8237         struct perf_sample_data sample;
8238         int size = mmap_event->event_id.header.size;
8239         u32 type = mmap_event->event_id.header.type;
8240         bool use_build_id;
8241         int ret;
8242
8243         if (!perf_event_mmap_match(event, data))
8244                 return;
8245
8246         if (event->attr.mmap2) {
8247                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8248                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8249                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
8250                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8251                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8252                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8253                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8254         }
8255
8256         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8257         ret = perf_output_begin(&handle, &sample, event,
8258                                 mmap_event->event_id.header.size);
8259         if (ret)
8260                 goto out;
8261
8262         mmap_event->event_id.pid = perf_event_pid(event, current);
8263         mmap_event->event_id.tid = perf_event_tid(event, current);
8264
8265         use_build_id = event->attr.build_id && mmap_event->build_id_size;
8266
8267         if (event->attr.mmap2 && use_build_id)
8268                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8269
8270         perf_output_put(&handle, mmap_event->event_id);
8271
8272         if (event->attr.mmap2) {
8273                 if (use_build_id) {
8274                         u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8275
8276                         __output_copy(&handle, size, 4);
8277                         __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8278                 } else {
8279                         perf_output_put(&handle, mmap_event->maj);
8280                         perf_output_put(&handle, mmap_event->min);
8281                         perf_output_put(&handle, mmap_event->ino);
8282                         perf_output_put(&handle, mmap_event->ino_generation);
8283                 }
8284                 perf_output_put(&handle, mmap_event->prot);
8285                 perf_output_put(&handle, mmap_event->flags);
8286         }
8287
8288         __output_copy(&handle, mmap_event->file_name,
8289                                    mmap_event->file_size);
8290
8291         perf_event__output_id_sample(event, &handle, &sample);
8292
8293         perf_output_end(&handle);
8294 out:
8295         mmap_event->event_id.header.size = size;
8296         mmap_event->event_id.header.type = type;
8297 }
8298
8299 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8300 {
8301         struct vm_area_struct *vma = mmap_event->vma;
8302         struct file *file = vma->vm_file;
8303         int maj = 0, min = 0;
8304         u64 ino = 0, gen = 0;
8305         u32 prot = 0, flags = 0;
8306         unsigned int size;
8307         char tmp[16];
8308         char *buf = NULL;
8309         char *name;
8310
8311         if (vma->vm_flags & VM_READ)
8312                 prot |= PROT_READ;
8313         if (vma->vm_flags & VM_WRITE)
8314                 prot |= PROT_WRITE;
8315         if (vma->vm_flags & VM_EXEC)
8316                 prot |= PROT_EXEC;
8317
8318         if (vma->vm_flags & VM_MAYSHARE)
8319                 flags = MAP_SHARED;
8320         else
8321                 flags = MAP_PRIVATE;
8322
8323         if (vma->vm_flags & VM_LOCKED)
8324                 flags |= MAP_LOCKED;
8325         if (is_vm_hugetlb_page(vma))
8326                 flags |= MAP_HUGETLB;
8327
8328         if (file) {
8329                 struct inode *inode;
8330                 dev_t dev;
8331
8332                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
8333                 if (!buf) {
8334                         name = "//enomem";
8335                         goto cpy_name;
8336                 }
8337                 /*
8338                  * d_path() works from the end of the rb backwards, so we
8339                  * need to add enough zero bytes after the string to handle
8340                  * the 64bit alignment we do later.
8341                  */
8342                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
8343                 if (IS_ERR(name)) {
8344                         name = "//toolong";
8345                         goto cpy_name;
8346                 }
8347                 inode = file_inode(vma->vm_file);
8348                 dev = inode->i_sb->s_dev;
8349                 ino = inode->i_ino;
8350                 gen = inode->i_generation;
8351                 maj = MAJOR(dev);
8352                 min = MINOR(dev);
8353
8354                 goto got_name;
8355         } else {
8356                 if (vma->vm_ops && vma->vm_ops->name) {
8357                         name = (char *) vma->vm_ops->name(vma);
8358                         if (name)
8359                                 goto cpy_name;
8360                 }
8361
8362                 name = (char *)arch_vma_name(vma);
8363                 if (name)
8364                         goto cpy_name;
8365
8366                 if (vma->vm_start <= vma->vm_mm->start_brk &&
8367                                 vma->vm_end >= vma->vm_mm->brk) {
8368                         name = "[heap]";
8369                         goto cpy_name;
8370                 }
8371                 if (vma->vm_start <= vma->vm_mm->start_stack &&
8372                                 vma->vm_end >= vma->vm_mm->start_stack) {
8373                         name = "[stack]";
8374                         goto cpy_name;
8375                 }
8376
8377                 name = "//anon";
8378                 goto cpy_name;
8379         }
8380
8381 cpy_name:
8382         strlcpy(tmp, name, sizeof(tmp));
8383         name = tmp;
8384 got_name:
8385         /*
8386          * Since our buffer works in 8 byte units we need to align our string
8387          * size to a multiple of 8. However, we must guarantee the tail end is
8388          * zero'd out to avoid leaking random bits to userspace.
8389          */
8390         size = strlen(name)+1;
8391         while (!IS_ALIGNED(size, sizeof(u64)))
8392                 name[size++] = '\0';
8393
8394         mmap_event->file_name = name;
8395         mmap_event->file_size = size;
8396         mmap_event->maj = maj;
8397         mmap_event->min = min;
8398         mmap_event->ino = ino;
8399         mmap_event->ino_generation = gen;
8400         mmap_event->prot = prot;
8401         mmap_event->flags = flags;
8402
8403         if (!(vma->vm_flags & VM_EXEC))
8404                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8405
8406         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8407
8408         if (atomic_read(&nr_build_id_events))
8409                 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8410
8411         perf_iterate_sb(perf_event_mmap_output,
8412                        mmap_event,
8413                        NULL);
8414
8415         kfree(buf);
8416 }
8417
8418 /*
8419  * Check whether inode and address range match filter criteria.
8420  */
8421 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8422                                      struct file *file, unsigned long offset,
8423                                      unsigned long size)
8424 {
8425         /* d_inode(NULL) won't be equal to any mapped user-space file */
8426         if (!filter->path.dentry)
8427                 return false;
8428
8429         if (d_inode(filter->path.dentry) != file_inode(file))
8430                 return false;
8431
8432         if (filter->offset > offset + size)
8433                 return false;
8434
8435         if (filter->offset + filter->size < offset)
8436                 return false;
8437
8438         return true;
8439 }
8440
8441 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8442                                         struct vm_area_struct *vma,
8443                                         struct perf_addr_filter_range *fr)
8444 {
8445         unsigned long vma_size = vma->vm_end - vma->vm_start;
8446         unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8447         struct file *file = vma->vm_file;
8448
8449         if (!perf_addr_filter_match(filter, file, off, vma_size))
8450                 return false;
8451
8452         if (filter->offset < off) {
8453                 fr->start = vma->vm_start;
8454                 fr->size = min(vma_size, filter->size - (off - filter->offset));
8455         } else {
8456                 fr->start = vma->vm_start + filter->offset - off;
8457                 fr->size = min(vma->vm_end - fr->start, filter->size);
8458         }
8459
8460         return true;
8461 }
8462
8463 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8464 {
8465         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8466         struct vm_area_struct *vma = data;
8467         struct perf_addr_filter *filter;
8468         unsigned int restart = 0, count = 0;
8469         unsigned long flags;
8470
8471         if (!has_addr_filter(event))
8472                 return;
8473
8474         if (!vma->vm_file)
8475                 return;
8476
8477         raw_spin_lock_irqsave(&ifh->lock, flags);
8478         list_for_each_entry(filter, &ifh->list, entry) {
8479                 if (perf_addr_filter_vma_adjust(filter, vma,
8480                                                 &event->addr_filter_ranges[count]))
8481                         restart++;
8482
8483                 count++;
8484         }
8485
8486         if (restart)
8487                 event->addr_filters_gen++;
8488         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8489
8490         if (restart)
8491                 perf_event_stop(event, 1);
8492 }
8493
8494 /*
8495  * Adjust all task's events' filters to the new vma
8496  */
8497 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8498 {
8499         struct perf_event_context *ctx;
8500         int ctxn;
8501
8502         /*
8503          * Data tracing isn't supported yet and as such there is no need
8504          * to keep track of anything that isn't related to executable code:
8505          */
8506         if (!(vma->vm_flags & VM_EXEC))
8507                 return;
8508
8509         rcu_read_lock();
8510         for_each_task_context_nr(ctxn) {
8511                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
8512                 if (!ctx)
8513                         continue;
8514
8515                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8516         }
8517         rcu_read_unlock();
8518 }
8519
8520 void perf_event_mmap(struct vm_area_struct *vma)
8521 {
8522         struct perf_mmap_event mmap_event;
8523
8524         if (!atomic_read(&nr_mmap_events))
8525                 return;
8526
8527         mmap_event = (struct perf_mmap_event){
8528                 .vma    = vma,
8529                 /* .file_name */
8530                 /* .file_size */
8531                 .event_id  = {
8532                         .header = {
8533                                 .type = PERF_RECORD_MMAP,
8534                                 .misc = PERF_RECORD_MISC_USER,
8535                                 /* .size */
8536                         },
8537                         /* .pid */
8538                         /* .tid */
8539                         .start  = vma->vm_start,
8540                         .len    = vma->vm_end - vma->vm_start,
8541                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8542                 },
8543                 /* .maj (attr_mmap2 only) */
8544                 /* .min (attr_mmap2 only) */
8545                 /* .ino (attr_mmap2 only) */
8546                 /* .ino_generation (attr_mmap2 only) */
8547                 /* .prot (attr_mmap2 only) */
8548                 /* .flags (attr_mmap2 only) */
8549         };
8550
8551         perf_addr_filters_adjust(vma);
8552         perf_event_mmap_event(&mmap_event);
8553 }
8554
8555 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8556                           unsigned long size, u64 flags)
8557 {
8558         struct perf_output_handle handle;
8559         struct perf_sample_data sample;
8560         struct perf_aux_event {
8561                 struct perf_event_header        header;
8562                 u64                             offset;
8563                 u64                             size;
8564                 u64                             flags;
8565         } rec = {
8566                 .header = {
8567                         .type = PERF_RECORD_AUX,
8568                         .misc = 0,
8569                         .size = sizeof(rec),
8570                 },
8571                 .offset         = head,
8572                 .size           = size,
8573                 .flags          = flags,
8574         };
8575         int ret;
8576
8577         perf_event_header__init_id(&rec.header, &sample, event);
8578         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8579
8580         if (ret)
8581                 return;
8582
8583         perf_output_put(&handle, rec);
8584         perf_event__output_id_sample(event, &handle, &sample);
8585
8586         perf_output_end(&handle);
8587 }
8588
8589 /*
8590  * Lost/dropped samples logging
8591  */
8592 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8593 {
8594         struct perf_output_handle handle;
8595         struct perf_sample_data sample;
8596         int ret;
8597
8598         struct {
8599                 struct perf_event_header        header;
8600                 u64                             lost;
8601         } lost_samples_event = {
8602                 .header = {
8603                         .type = PERF_RECORD_LOST_SAMPLES,
8604                         .misc = 0,
8605                         .size = sizeof(lost_samples_event),
8606                 },
8607                 .lost           = lost,
8608         };
8609
8610         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8611
8612         ret = perf_output_begin(&handle, &sample, event,
8613                                 lost_samples_event.header.size);
8614         if (ret)
8615                 return;
8616
8617         perf_output_put(&handle, lost_samples_event);
8618         perf_event__output_id_sample(event, &handle, &sample);
8619         perf_output_end(&handle);
8620 }
8621
8622 /*
8623  * context_switch tracking
8624  */
8625
8626 struct perf_switch_event {
8627         struct task_struct      *task;
8628         struct task_struct      *next_prev;
8629
8630         struct {
8631                 struct perf_event_header        header;
8632                 u32                             next_prev_pid;
8633                 u32                             next_prev_tid;
8634         } event_id;
8635 };
8636
8637 static int perf_event_switch_match(struct perf_event *event)
8638 {
8639         return event->attr.context_switch;
8640 }
8641
8642 static void perf_event_switch_output(struct perf_event *event, void *data)
8643 {
8644         struct perf_switch_event *se = data;
8645         struct perf_output_handle handle;
8646         struct perf_sample_data sample;
8647         int ret;
8648
8649         if (!perf_event_switch_match(event))
8650                 return;
8651
8652         /* Only CPU-wide events are allowed to see next/prev pid/tid */
8653         if (event->ctx->task) {
8654                 se->event_id.header.type = PERF_RECORD_SWITCH;
8655                 se->event_id.header.size = sizeof(se->event_id.header);
8656         } else {
8657                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8658                 se->event_id.header.size = sizeof(se->event_id);
8659                 se->event_id.next_prev_pid =
8660                                         perf_event_pid(event, se->next_prev);
8661                 se->event_id.next_prev_tid =
8662                                         perf_event_tid(event, se->next_prev);
8663         }
8664
8665         perf_event_header__init_id(&se->event_id.header, &sample, event);
8666
8667         ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
8668         if (ret)
8669                 return;
8670
8671         if (event->ctx->task)
8672                 perf_output_put(&handle, se->event_id.header);
8673         else
8674                 perf_output_put(&handle, se->event_id);
8675
8676         perf_event__output_id_sample(event, &handle, &sample);
8677
8678         perf_output_end(&handle);
8679 }
8680
8681 static void perf_event_switch(struct task_struct *task,
8682                               struct task_struct *next_prev, bool sched_in)
8683 {
8684         struct perf_switch_event switch_event;
8685
8686         /* N.B. caller checks nr_switch_events != 0 */
8687
8688         switch_event = (struct perf_switch_event){
8689                 .task           = task,
8690                 .next_prev      = next_prev,
8691                 .event_id       = {
8692                         .header = {
8693                                 /* .type */
8694                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
8695                                 /* .size */
8696                         },
8697                         /* .next_prev_pid */
8698                         /* .next_prev_tid */
8699                 },
8700         };
8701
8702         if (!sched_in && task->on_rq) {
8703                 switch_event.event_id.header.misc |=
8704                                 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
8705         }
8706
8707         perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
8708 }
8709
8710 /*
8711  * IRQ throttle logging
8712  */
8713
8714 static void perf_log_throttle(struct perf_event *event, int enable)
8715 {
8716         struct perf_output_handle handle;
8717         struct perf_sample_data sample;
8718         int ret;
8719
8720         struct {
8721                 struct perf_event_header        header;
8722                 u64                             time;
8723                 u64                             id;
8724                 u64                             stream_id;
8725         } throttle_event = {
8726                 .header = {
8727                         .type = PERF_RECORD_THROTTLE,
8728                         .misc = 0,
8729                         .size = sizeof(throttle_event),
8730                 },
8731                 .time           = perf_event_clock(event),
8732                 .id             = primary_event_id(event),
8733                 .stream_id      = event->id,
8734         };
8735
8736         if (enable)
8737                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
8738
8739         perf_event_header__init_id(&throttle_event.header, &sample, event);
8740
8741         ret = perf_output_begin(&handle, &sample, event,
8742                                 throttle_event.header.size);
8743         if (ret)
8744                 return;
8745
8746         perf_output_put(&handle, throttle_event);
8747         perf_event__output_id_sample(event, &handle, &sample);
8748         perf_output_end(&handle);
8749 }
8750
8751 /*
8752  * ksymbol register/unregister tracking
8753  */
8754
8755 struct perf_ksymbol_event {
8756         const char      *name;
8757         int             name_len;
8758         struct {
8759                 struct perf_event_header        header;
8760                 u64                             addr;
8761                 u32                             len;
8762                 u16                             ksym_type;
8763                 u16                             flags;
8764         } event_id;
8765 };
8766
8767 static int perf_event_ksymbol_match(struct perf_event *event)
8768 {
8769         return event->attr.ksymbol;
8770 }
8771
8772 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
8773 {
8774         struct perf_ksymbol_event *ksymbol_event = data;
8775         struct perf_output_handle handle;
8776         struct perf_sample_data sample;
8777         int ret;
8778
8779         if (!perf_event_ksymbol_match(event))
8780                 return;
8781
8782         perf_event_header__init_id(&ksymbol_event->event_id.header,
8783                                    &sample, event);
8784         ret = perf_output_begin(&handle, &sample, event,
8785                                 ksymbol_event->event_id.header.size);
8786         if (ret)
8787                 return;
8788
8789         perf_output_put(&handle, ksymbol_event->event_id);
8790         __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
8791         perf_event__output_id_sample(event, &handle, &sample);
8792
8793         perf_output_end(&handle);
8794 }
8795
8796 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
8797                         const char *sym)
8798 {
8799         struct perf_ksymbol_event ksymbol_event;
8800         char name[KSYM_NAME_LEN];
8801         u16 flags = 0;
8802         int name_len;
8803
8804         if (!atomic_read(&nr_ksymbol_events))
8805                 return;
8806
8807         if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
8808             ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
8809                 goto err;
8810
8811         strlcpy(name, sym, KSYM_NAME_LEN);
8812         name_len = strlen(name) + 1;
8813         while (!IS_ALIGNED(name_len, sizeof(u64)))
8814                 name[name_len++] = '\0';
8815         BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
8816
8817         if (unregister)
8818                 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
8819
8820         ksymbol_event = (struct perf_ksymbol_event){
8821                 .name = name,
8822                 .name_len = name_len,
8823                 .event_id = {
8824                         .header = {
8825                                 .type = PERF_RECORD_KSYMBOL,
8826                                 .size = sizeof(ksymbol_event.event_id) +
8827                                         name_len,
8828                         },
8829                         .addr = addr,
8830                         .len = len,
8831                         .ksym_type = ksym_type,
8832                         .flags = flags,
8833                 },
8834         };
8835
8836         perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
8837         return;
8838 err:
8839         WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
8840 }
8841
8842 /*
8843  * bpf program load/unload tracking
8844  */
8845
8846 struct perf_bpf_event {
8847         struct bpf_prog *prog;
8848         struct {
8849                 struct perf_event_header        header;
8850                 u16                             type;
8851                 u16                             flags;
8852                 u32                             id;
8853                 u8                              tag[BPF_TAG_SIZE];
8854         } event_id;
8855 };
8856
8857 static int perf_event_bpf_match(struct perf_event *event)
8858 {
8859         return event->attr.bpf_event;
8860 }
8861
8862 static void perf_event_bpf_output(struct perf_event *event, void *data)
8863 {
8864         struct perf_bpf_event *bpf_event = data;
8865         struct perf_output_handle handle;
8866         struct perf_sample_data sample;
8867         int ret;
8868
8869         if (!perf_event_bpf_match(event))
8870                 return;
8871
8872         perf_event_header__init_id(&bpf_event->event_id.header,
8873                                    &sample, event);
8874         ret = perf_output_begin(&handle, data, event,
8875                                 bpf_event->event_id.header.size);
8876         if (ret)
8877                 return;
8878
8879         perf_output_put(&handle, bpf_event->event_id);
8880         perf_event__output_id_sample(event, &handle, &sample);
8881
8882         perf_output_end(&handle);
8883 }
8884
8885 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8886                                          enum perf_bpf_event_type type)
8887 {
8888         bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
8889         int i;
8890
8891         if (prog->aux->func_cnt == 0) {
8892                 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
8893                                    (u64)(unsigned long)prog->bpf_func,
8894                                    prog->jited_len, unregister,
8895                                    prog->aux->ksym.name);
8896         } else {
8897                 for (i = 0; i < prog->aux->func_cnt; i++) {
8898                         struct bpf_prog *subprog = prog->aux->func[i];
8899
8900                         perf_event_ksymbol(
8901                                 PERF_RECORD_KSYMBOL_TYPE_BPF,
8902                                 (u64)(unsigned long)subprog->bpf_func,
8903                                 subprog->jited_len, unregister,
8904                                 prog->aux->ksym.name);
8905                 }
8906         }
8907 }
8908
8909 void perf_event_bpf_event(struct bpf_prog *prog,
8910                           enum perf_bpf_event_type type,
8911                           u16 flags)
8912 {
8913         struct perf_bpf_event bpf_event;
8914
8915         if (type <= PERF_BPF_EVENT_UNKNOWN ||
8916             type >= PERF_BPF_EVENT_MAX)
8917                 return;
8918
8919         switch (type) {
8920         case PERF_BPF_EVENT_PROG_LOAD:
8921         case PERF_BPF_EVENT_PROG_UNLOAD:
8922                 if (atomic_read(&nr_ksymbol_events))
8923                         perf_event_bpf_emit_ksymbols(prog, type);
8924                 break;
8925         default:
8926                 break;
8927         }
8928
8929         if (!atomic_read(&nr_bpf_events))
8930                 return;
8931
8932         bpf_event = (struct perf_bpf_event){
8933                 .prog = prog,
8934                 .event_id = {
8935                         .header = {
8936                                 .type = PERF_RECORD_BPF_EVENT,
8937                                 .size = sizeof(bpf_event.event_id),
8938                         },
8939                         .type = type,
8940                         .flags = flags,
8941                         .id = prog->aux->id,
8942                 },
8943         };
8944
8945         BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8946
8947         memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8948         perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8949 }
8950
8951 struct perf_text_poke_event {
8952         const void              *old_bytes;
8953         const void              *new_bytes;
8954         size_t                  pad;
8955         u16                     old_len;
8956         u16                     new_len;
8957
8958         struct {
8959                 struct perf_event_header        header;
8960
8961                 u64                             addr;
8962         } event_id;
8963 };
8964
8965 static int perf_event_text_poke_match(struct perf_event *event)
8966 {
8967         return event->attr.text_poke;
8968 }
8969
8970 static void perf_event_text_poke_output(struct perf_event *event, void *data)
8971 {
8972         struct perf_text_poke_event *text_poke_event = data;
8973         struct perf_output_handle handle;
8974         struct perf_sample_data sample;
8975         u64 padding = 0;
8976         int ret;
8977
8978         if (!perf_event_text_poke_match(event))
8979                 return;
8980
8981         perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
8982
8983         ret = perf_output_begin(&handle, &sample, event,
8984                                 text_poke_event->event_id.header.size);
8985         if (ret)
8986                 return;
8987
8988         perf_output_put(&handle, text_poke_event->event_id);
8989         perf_output_put(&handle, text_poke_event->old_len);
8990         perf_output_put(&handle, text_poke_event->new_len);
8991
8992         __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
8993         __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
8994
8995         if (text_poke_event->pad)
8996                 __output_copy(&handle, &padding, text_poke_event->pad);
8997
8998         perf_event__output_id_sample(event, &handle, &sample);
8999
9000         perf_output_end(&handle);
9001 }
9002
9003 void perf_event_text_poke(const void *addr, const void *old_bytes,
9004                           size_t old_len, const void *new_bytes, size_t new_len)
9005 {
9006         struct perf_text_poke_event text_poke_event;
9007         size_t tot, pad;
9008
9009         if (!atomic_read(&nr_text_poke_events))
9010                 return;
9011
9012         tot  = sizeof(text_poke_event.old_len) + old_len;
9013         tot += sizeof(text_poke_event.new_len) + new_len;
9014         pad  = ALIGN(tot, sizeof(u64)) - tot;
9015
9016         text_poke_event = (struct perf_text_poke_event){
9017                 .old_bytes    = old_bytes,
9018                 .new_bytes    = new_bytes,
9019                 .pad          = pad,
9020                 .old_len      = old_len,
9021                 .new_len      = new_len,
9022                 .event_id  = {
9023                         .header = {
9024                                 .type = PERF_RECORD_TEXT_POKE,
9025                                 .misc = PERF_RECORD_MISC_KERNEL,
9026                                 .size = sizeof(text_poke_event.event_id) + tot + pad,
9027                         },
9028                         .addr = (unsigned long)addr,
9029                 },
9030         };
9031
9032         perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9033 }
9034
9035 void perf_event_itrace_started(struct perf_event *event)
9036 {
9037         event->attach_state |= PERF_ATTACH_ITRACE;
9038 }
9039
9040 static void perf_log_itrace_start(struct perf_event *event)
9041 {
9042         struct perf_output_handle handle;
9043         struct perf_sample_data sample;
9044         struct perf_aux_event {
9045                 struct perf_event_header        header;
9046                 u32                             pid;
9047                 u32                             tid;
9048         } rec;
9049         int ret;
9050
9051         if (event->parent)
9052                 event = event->parent;
9053
9054         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9055             event->attach_state & PERF_ATTACH_ITRACE)
9056                 return;
9057
9058         rec.header.type = PERF_RECORD_ITRACE_START;
9059         rec.header.misc = 0;
9060         rec.header.size = sizeof(rec);
9061         rec.pid = perf_event_pid(event, current);
9062         rec.tid = perf_event_tid(event, current);
9063
9064         perf_event_header__init_id(&rec.header, &sample, event);
9065         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9066
9067         if (ret)
9068                 return;
9069
9070         perf_output_put(&handle, rec);
9071         perf_event__output_id_sample(event, &handle, &sample);
9072
9073         perf_output_end(&handle);
9074 }
9075
9076 static int
9077 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9078 {
9079         struct hw_perf_event *hwc = &event->hw;
9080         int ret = 0;
9081         u64 seq;
9082
9083         seq = __this_cpu_read(perf_throttled_seq);
9084         if (seq != hwc->interrupts_seq) {
9085                 hwc->interrupts_seq = seq;
9086                 hwc->interrupts = 1;
9087         } else {
9088                 hwc->interrupts++;
9089                 if (unlikely(throttle
9090                              && hwc->interrupts >= max_samples_per_tick)) {
9091                         __this_cpu_inc(perf_throttled_count);
9092                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9093                         hwc->interrupts = MAX_INTERRUPTS;
9094                         perf_log_throttle(event, 0);
9095                         ret = 1;
9096                 }
9097         }
9098
9099         if (event->attr.freq) {
9100                 u64 now = perf_clock();
9101                 s64 delta = now - hwc->freq_time_stamp;
9102
9103                 hwc->freq_time_stamp = now;
9104
9105                 if (delta > 0 && delta < 2*TICK_NSEC)
9106                         perf_adjust_period(event, delta, hwc->last_period, true);
9107         }
9108
9109         return ret;
9110 }
9111
9112 int perf_event_account_interrupt(struct perf_event *event)
9113 {
9114         return __perf_event_account_interrupt(event, 1);
9115 }
9116
9117 /*
9118  * Generic event overflow handling, sampling.
9119  */
9120
9121 static int __perf_event_overflow(struct perf_event *event,
9122                                    int throttle, struct perf_sample_data *data,
9123                                    struct pt_regs *regs)
9124 {
9125         int events = atomic_read(&event->event_limit);
9126         int ret = 0;
9127
9128         /*
9129          * Non-sampling counters might still use the PMI to fold short
9130          * hardware counters, ignore those.
9131          */
9132         if (unlikely(!is_sampling_event(event)))
9133                 return 0;
9134
9135         ret = __perf_event_account_interrupt(event, throttle);
9136
9137         /*
9138          * XXX event_limit might not quite work as expected on inherited
9139          * events
9140          */
9141
9142         event->pending_kill = POLL_IN;
9143         if (events && atomic_dec_and_test(&event->event_limit)) {
9144                 ret = 1;
9145                 event->pending_kill = POLL_HUP;
9146                 event->pending_addr = data->addr;
9147
9148                 perf_event_disable_inatomic(event);
9149         }
9150
9151         READ_ONCE(event->overflow_handler)(event, data, regs);
9152
9153         if (*perf_event_fasync(event) && event->pending_kill) {
9154                 event->pending_wakeup = 1;
9155                 irq_work_queue(&event->pending);
9156         }
9157
9158         return ret;
9159 }
9160
9161 int perf_event_overflow(struct perf_event *event,
9162                           struct perf_sample_data *data,
9163                           struct pt_regs *regs)
9164 {
9165         return __perf_event_overflow(event, 1, data, regs);
9166 }
9167
9168 /*
9169  * Generic software event infrastructure
9170  */
9171
9172 struct swevent_htable {
9173         struct swevent_hlist            *swevent_hlist;
9174         struct mutex                    hlist_mutex;
9175         int                             hlist_refcount;
9176
9177         /* Recursion avoidance in each contexts */
9178         int                             recursion[PERF_NR_CONTEXTS];
9179 };
9180
9181 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9182
9183 /*
9184  * We directly increment event->count and keep a second value in
9185  * event->hw.period_left to count intervals. This period event
9186  * is kept in the range [-sample_period, 0] so that we can use the
9187  * sign as trigger.
9188  */
9189
9190 u64 perf_swevent_set_period(struct perf_event *event)
9191 {
9192         struct hw_perf_event *hwc = &event->hw;
9193         u64 period = hwc->last_period;
9194         u64 nr, offset;
9195         s64 old, val;
9196
9197         hwc->last_period = hwc->sample_period;
9198
9199 again:
9200         old = val = local64_read(&hwc->period_left);
9201         if (val < 0)
9202                 return 0;
9203
9204         nr = div64_u64(period + val, period);
9205         offset = nr * period;
9206         val -= offset;
9207         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
9208                 goto again;
9209
9210         return nr;
9211 }
9212
9213 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9214                                     struct perf_sample_data *data,
9215                                     struct pt_regs *regs)
9216 {
9217         struct hw_perf_event *hwc = &event->hw;
9218         int throttle = 0;
9219
9220         if (!overflow)
9221                 overflow = perf_swevent_set_period(event);
9222
9223         if (hwc->interrupts == MAX_INTERRUPTS)
9224                 return;
9225
9226         for (; overflow; overflow--) {
9227                 if (__perf_event_overflow(event, throttle,
9228                                             data, regs)) {
9229                         /*
9230                          * We inhibit the overflow from happening when
9231                          * hwc->interrupts == MAX_INTERRUPTS.
9232                          */
9233                         break;
9234                 }
9235                 throttle = 1;
9236         }
9237 }
9238
9239 static void perf_swevent_event(struct perf_event *event, u64 nr,
9240                                struct perf_sample_data *data,
9241                                struct pt_regs *regs)
9242 {
9243         struct hw_perf_event *hwc = &event->hw;
9244
9245         local64_add(nr, &event->count);
9246
9247         if (!regs)
9248                 return;
9249
9250         if (!is_sampling_event(event))
9251                 return;
9252
9253         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9254                 data->period = nr;
9255                 return perf_swevent_overflow(event, 1, data, regs);
9256         } else
9257                 data->period = event->hw.last_period;
9258
9259         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9260                 return perf_swevent_overflow(event, 1, data, regs);
9261
9262         if (local64_add_negative(nr, &hwc->period_left))
9263                 return;
9264
9265         perf_swevent_overflow(event, 0, data, regs);
9266 }
9267
9268 static int perf_exclude_event(struct perf_event *event,
9269                               struct pt_regs *regs)
9270 {
9271         if (event->hw.state & PERF_HES_STOPPED)
9272                 return 1;
9273
9274         if (regs) {
9275                 if (event->attr.exclude_user && user_mode(regs))
9276                         return 1;
9277
9278                 if (event->attr.exclude_kernel && !user_mode(regs))
9279                         return 1;
9280         }
9281
9282         return 0;
9283 }
9284
9285 static int perf_swevent_match(struct perf_event *event,
9286                                 enum perf_type_id type,
9287                                 u32 event_id,
9288                                 struct perf_sample_data *data,
9289                                 struct pt_regs *regs)
9290 {
9291         if (event->attr.type != type)
9292                 return 0;
9293
9294         if (event->attr.config != event_id)
9295                 return 0;
9296
9297         if (perf_exclude_event(event, regs))
9298                 return 0;
9299
9300         return 1;
9301 }
9302
9303 static inline u64 swevent_hash(u64 type, u32 event_id)
9304 {
9305         u64 val = event_id | (type << 32);
9306
9307         return hash_64(val, SWEVENT_HLIST_BITS);
9308 }
9309
9310 static inline struct hlist_head *
9311 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9312 {
9313         u64 hash = swevent_hash(type, event_id);
9314
9315         return &hlist->heads[hash];
9316 }
9317
9318 /* For the read side: events when they trigger */
9319 static inline struct hlist_head *
9320 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9321 {
9322         struct swevent_hlist *hlist;
9323
9324         hlist = rcu_dereference(swhash->swevent_hlist);
9325         if (!hlist)
9326                 return NULL;
9327
9328         return __find_swevent_head(hlist, type, event_id);
9329 }
9330
9331 /* For the event head insertion and removal in the hlist */
9332 static inline struct hlist_head *
9333 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9334 {
9335         struct swevent_hlist *hlist;
9336         u32 event_id = event->attr.config;
9337         u64 type = event->attr.type;
9338
9339         /*
9340          * Event scheduling is always serialized against hlist allocation
9341          * and release. Which makes the protected version suitable here.
9342          * The context lock guarantees that.
9343          */
9344         hlist = rcu_dereference_protected(swhash->swevent_hlist,
9345                                           lockdep_is_held(&event->ctx->lock));
9346         if (!hlist)
9347                 return NULL;
9348
9349         return __find_swevent_head(hlist, type, event_id);
9350 }
9351
9352 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9353                                     u64 nr,
9354                                     struct perf_sample_data *data,
9355                                     struct pt_regs *regs)
9356 {
9357         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9358         struct perf_event *event;
9359         struct hlist_head *head;
9360
9361         rcu_read_lock();
9362         head = find_swevent_head_rcu(swhash, type, event_id);
9363         if (!head)
9364                 goto end;
9365
9366         hlist_for_each_entry_rcu(event, head, hlist_entry) {
9367                 if (perf_swevent_match(event, type, event_id, data, regs))
9368                         perf_swevent_event(event, nr, data, regs);
9369         }
9370 end:
9371         rcu_read_unlock();
9372 }
9373
9374 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9375
9376 int perf_swevent_get_recursion_context(void)
9377 {
9378         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9379
9380         return get_recursion_context(swhash->recursion);
9381 }
9382 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9383
9384 void perf_swevent_put_recursion_context(int rctx)
9385 {
9386         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9387
9388         put_recursion_context(swhash->recursion, rctx);
9389 }
9390
9391 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9392 {
9393         struct perf_sample_data data;
9394
9395         if (WARN_ON_ONCE(!regs))
9396                 return;
9397
9398         perf_sample_data_init(&data, addr, 0);
9399         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9400 }
9401
9402 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9403 {
9404         int rctx;
9405
9406         preempt_disable_notrace();
9407         rctx = perf_swevent_get_recursion_context();
9408         if (unlikely(rctx < 0))
9409                 goto fail;
9410
9411         ___perf_sw_event(event_id, nr, regs, addr);
9412
9413         perf_swevent_put_recursion_context(rctx);
9414 fail:
9415         preempt_enable_notrace();
9416 }
9417
9418 static void perf_swevent_read(struct perf_event *event)
9419 {
9420 }
9421
9422 static int perf_swevent_add(struct perf_event *event, int flags)
9423 {
9424         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9425         struct hw_perf_event *hwc = &event->hw;
9426         struct hlist_head *head;
9427
9428         if (is_sampling_event(event)) {
9429                 hwc->last_period = hwc->sample_period;
9430                 perf_swevent_set_period(event);
9431         }
9432
9433         hwc->state = !(flags & PERF_EF_START);
9434
9435         head = find_swevent_head(swhash, event);
9436         if (WARN_ON_ONCE(!head))
9437                 return -EINVAL;
9438
9439         hlist_add_head_rcu(&event->hlist_entry, head);
9440         perf_event_update_userpage(event);
9441
9442         return 0;
9443 }
9444
9445 static void perf_swevent_del(struct perf_event *event, int flags)
9446 {
9447         hlist_del_rcu(&event->hlist_entry);
9448 }
9449
9450 static void perf_swevent_start(struct perf_event *event, int flags)
9451 {
9452         event->hw.state = 0;
9453 }
9454
9455 static void perf_swevent_stop(struct perf_event *event, int flags)
9456 {
9457         event->hw.state = PERF_HES_STOPPED;
9458 }
9459
9460 /* Deref the hlist from the update side */
9461 static inline struct swevent_hlist *
9462 swevent_hlist_deref(struct swevent_htable *swhash)
9463 {
9464         return rcu_dereference_protected(swhash->swevent_hlist,
9465                                          lockdep_is_held(&swhash->hlist_mutex));
9466 }
9467
9468 static void swevent_hlist_release(struct swevent_htable *swhash)
9469 {
9470         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9471
9472         if (!hlist)
9473                 return;
9474
9475         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9476         kfree_rcu(hlist, rcu_head);
9477 }
9478
9479 static void swevent_hlist_put_cpu(int cpu)
9480 {
9481         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9482
9483         mutex_lock(&swhash->hlist_mutex);
9484
9485         if (!--swhash->hlist_refcount)
9486                 swevent_hlist_release(swhash);
9487
9488         mutex_unlock(&swhash->hlist_mutex);
9489 }
9490
9491 static void swevent_hlist_put(void)
9492 {
9493         int cpu;
9494
9495         for_each_possible_cpu(cpu)
9496                 swevent_hlist_put_cpu(cpu);
9497 }
9498
9499 static int swevent_hlist_get_cpu(int cpu)
9500 {
9501         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9502         int err = 0;
9503
9504         mutex_lock(&swhash->hlist_mutex);
9505         if (!swevent_hlist_deref(swhash) &&
9506             cpumask_test_cpu(cpu, perf_online_mask)) {
9507                 struct swevent_hlist *hlist;
9508
9509                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9510                 if (!hlist) {
9511                         err = -ENOMEM;
9512                         goto exit;
9513                 }
9514                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
9515         }
9516         swhash->hlist_refcount++;
9517 exit:
9518         mutex_unlock(&swhash->hlist_mutex);
9519
9520         return err;
9521 }
9522
9523 static int swevent_hlist_get(void)
9524 {
9525         int err, cpu, failed_cpu;
9526
9527         mutex_lock(&pmus_lock);
9528         for_each_possible_cpu(cpu) {
9529                 err = swevent_hlist_get_cpu(cpu);
9530                 if (err) {
9531                         failed_cpu = cpu;
9532                         goto fail;
9533                 }
9534         }
9535         mutex_unlock(&pmus_lock);
9536         return 0;
9537 fail:
9538         for_each_possible_cpu(cpu) {
9539                 if (cpu == failed_cpu)
9540                         break;
9541                 swevent_hlist_put_cpu(cpu);
9542         }
9543         mutex_unlock(&pmus_lock);
9544         return err;
9545 }
9546
9547 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9548
9549 static void sw_perf_event_destroy(struct perf_event *event)
9550 {
9551         u64 event_id = event->attr.config;
9552
9553         WARN_ON(event->parent);
9554
9555         static_key_slow_dec(&perf_swevent_enabled[event_id]);
9556         swevent_hlist_put();
9557 }
9558
9559 static int perf_swevent_init(struct perf_event *event)
9560 {
9561         u64 event_id = event->attr.config;
9562
9563         if (event->attr.type != PERF_TYPE_SOFTWARE)
9564                 return -ENOENT;
9565
9566         /*
9567          * no branch sampling for software events
9568          */
9569         if (has_branch_stack(event))
9570                 return -EOPNOTSUPP;
9571
9572         switch (event_id) {
9573         case PERF_COUNT_SW_CPU_CLOCK:
9574         case PERF_COUNT_SW_TASK_CLOCK:
9575                 return -ENOENT;
9576
9577         default:
9578                 break;
9579         }
9580
9581         if (event_id >= PERF_COUNT_SW_MAX)
9582                 return -ENOENT;
9583
9584         if (!event->parent) {
9585                 int err;
9586
9587                 err = swevent_hlist_get();
9588                 if (err)
9589                         return err;
9590
9591                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
9592                 event->destroy = sw_perf_event_destroy;
9593         }
9594
9595         return 0;
9596 }
9597
9598 static struct pmu perf_swevent = {
9599         .task_ctx_nr    = perf_sw_context,
9600
9601         .capabilities   = PERF_PMU_CAP_NO_NMI,
9602
9603         .event_init     = perf_swevent_init,
9604         .add            = perf_swevent_add,
9605         .del            = perf_swevent_del,
9606         .start          = perf_swevent_start,
9607         .stop           = perf_swevent_stop,
9608         .read           = perf_swevent_read,
9609 };
9610
9611 #ifdef CONFIG_EVENT_TRACING
9612
9613 static int perf_tp_filter_match(struct perf_event *event,
9614                                 struct perf_sample_data *data)
9615 {
9616         void *record = data->raw->frag.data;
9617
9618         /* only top level events have filters set */
9619         if (event->parent)
9620                 event = event->parent;
9621
9622         if (likely(!event->filter) || filter_match_preds(event->filter, record))
9623                 return 1;
9624         return 0;
9625 }
9626
9627 static int perf_tp_event_match(struct perf_event *event,
9628                                 struct perf_sample_data *data,
9629                                 struct pt_regs *regs)
9630 {
9631         if (event->hw.state & PERF_HES_STOPPED)
9632                 return 0;
9633         /*
9634          * If exclude_kernel, only trace user-space tracepoints (uprobes)
9635          */
9636         if (event->attr.exclude_kernel && !user_mode(regs))
9637                 return 0;
9638
9639         if (!perf_tp_filter_match(event, data))
9640                 return 0;
9641
9642         return 1;
9643 }
9644
9645 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
9646                                struct trace_event_call *call, u64 count,
9647                                struct pt_regs *regs, struct hlist_head *head,
9648                                struct task_struct *task)
9649 {
9650         if (bpf_prog_array_valid(call)) {
9651                 *(struct pt_regs **)raw_data = regs;
9652                 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
9653                         perf_swevent_put_recursion_context(rctx);
9654                         return;
9655                 }
9656         }
9657         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
9658                       rctx, task);
9659 }
9660 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
9661
9662 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
9663                    struct pt_regs *regs, struct hlist_head *head, int rctx,
9664                    struct task_struct *task)
9665 {
9666         struct perf_sample_data data;
9667         struct perf_event *event;
9668
9669         struct perf_raw_record raw = {
9670                 .frag = {
9671                         .size = entry_size,
9672                         .data = record,
9673                 },
9674         };
9675
9676         perf_sample_data_init(&data, 0, 0);
9677         data.raw = &raw;
9678
9679         perf_trace_buf_update(record, event_type);
9680
9681         hlist_for_each_entry_rcu(event, head, hlist_entry) {
9682                 if (perf_tp_event_match(event, &data, regs))
9683                         perf_swevent_event(event, count, &data, regs);
9684         }
9685
9686         /*
9687          * If we got specified a target task, also iterate its context and
9688          * deliver this event there too.
9689          */
9690         if (task && task != current) {
9691                 struct perf_event_context *ctx;
9692                 struct trace_entry *entry = record;
9693
9694                 rcu_read_lock();
9695                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
9696                 if (!ctx)
9697                         goto unlock;
9698
9699                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
9700                         if (event->cpu != smp_processor_id())
9701                                 continue;
9702                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
9703                                 continue;
9704                         if (event->attr.config != entry->type)
9705                                 continue;
9706                         if (perf_tp_event_match(event, &data, regs))
9707                                 perf_swevent_event(event, count, &data, regs);
9708                 }
9709 unlock:
9710                 rcu_read_unlock();
9711         }
9712
9713         perf_swevent_put_recursion_context(rctx);
9714 }
9715 EXPORT_SYMBOL_GPL(perf_tp_event);
9716
9717 static void tp_perf_event_destroy(struct perf_event *event)
9718 {
9719         perf_trace_destroy(event);
9720 }
9721
9722 static int perf_tp_event_init(struct perf_event *event)
9723 {
9724         int err;
9725
9726         if (event->attr.type != PERF_TYPE_TRACEPOINT)
9727                 return -ENOENT;
9728
9729         /*
9730          * no branch sampling for tracepoint events
9731          */
9732         if (has_branch_stack(event))
9733                 return -EOPNOTSUPP;
9734
9735         err = perf_trace_init(event);
9736         if (err)
9737                 return err;
9738
9739         event->destroy = tp_perf_event_destroy;
9740
9741         return 0;
9742 }
9743
9744 static struct pmu perf_tracepoint = {
9745         .task_ctx_nr    = perf_sw_context,
9746
9747         .event_init     = perf_tp_event_init,
9748         .add            = perf_trace_add,
9749         .del            = perf_trace_del,
9750         .start          = perf_swevent_start,
9751         .stop           = perf_swevent_stop,
9752         .read           = perf_swevent_read,
9753 };
9754
9755 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
9756 /*
9757  * Flags in config, used by dynamic PMU kprobe and uprobe
9758  * The flags should match following PMU_FORMAT_ATTR().
9759  *
9760  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9761  *                               if not set, create kprobe/uprobe
9762  *
9763  * The following values specify a reference counter (or semaphore in the
9764  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9765  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9766  *
9767  * PERF_UPROBE_REF_CTR_OFFSET_BITS      # of bits in config as th offset
9768  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT     # of bits to shift left
9769  */
9770 enum perf_probe_config {
9771         PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
9772         PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
9773         PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
9774 };
9775
9776 PMU_FORMAT_ATTR(retprobe, "config:0");
9777 #endif
9778
9779 #ifdef CONFIG_KPROBE_EVENTS
9780 static struct attribute *kprobe_attrs[] = {
9781         &format_attr_retprobe.attr,
9782         NULL,
9783 };
9784
9785 static struct attribute_group kprobe_format_group = {
9786         .name = "format",
9787         .attrs = kprobe_attrs,
9788 };
9789
9790 static const struct attribute_group *kprobe_attr_groups[] = {
9791         &kprobe_format_group,
9792         NULL,
9793 };
9794
9795 static int perf_kprobe_event_init(struct perf_event *event);
9796 static struct pmu perf_kprobe = {
9797         .task_ctx_nr    = perf_sw_context,
9798         .event_init     = perf_kprobe_event_init,
9799         .add            = perf_trace_add,
9800         .del            = perf_trace_del,
9801         .start          = perf_swevent_start,
9802         .stop           = perf_swevent_stop,
9803         .read           = perf_swevent_read,
9804         .attr_groups    = kprobe_attr_groups,
9805 };
9806
9807 static int perf_kprobe_event_init(struct perf_event *event)
9808 {
9809         int err;
9810         bool is_retprobe;
9811
9812         if (event->attr.type != perf_kprobe.type)
9813                 return -ENOENT;
9814
9815         if (!perfmon_capable())
9816                 return -EACCES;
9817
9818         /*
9819          * no branch sampling for probe events
9820          */
9821         if (has_branch_stack(event))
9822                 return -EOPNOTSUPP;
9823
9824         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9825         err = perf_kprobe_init(event, is_retprobe);
9826         if (err)
9827                 return err;
9828
9829         event->destroy = perf_kprobe_destroy;
9830
9831         return 0;
9832 }
9833 #endif /* CONFIG_KPROBE_EVENTS */
9834
9835 #ifdef CONFIG_UPROBE_EVENTS
9836 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
9837
9838 static struct attribute *uprobe_attrs[] = {
9839         &format_attr_retprobe.attr,
9840         &format_attr_ref_ctr_offset.attr,
9841         NULL,
9842 };
9843
9844 static struct attribute_group uprobe_format_group = {
9845         .name = "format",
9846         .attrs = uprobe_attrs,
9847 };
9848
9849 static const struct attribute_group *uprobe_attr_groups[] = {
9850         &uprobe_format_group,
9851         NULL,
9852 };
9853
9854 static int perf_uprobe_event_init(struct perf_event *event);
9855 static struct pmu perf_uprobe = {
9856         .task_ctx_nr    = perf_sw_context,
9857         .event_init     = perf_uprobe_event_init,
9858         .add            = perf_trace_add,
9859         .del            = perf_trace_del,
9860         .start          = perf_swevent_start,
9861         .stop           = perf_swevent_stop,
9862         .read           = perf_swevent_read,
9863         .attr_groups    = uprobe_attr_groups,
9864 };
9865
9866 static int perf_uprobe_event_init(struct perf_event *event)
9867 {
9868         int err;
9869         unsigned long ref_ctr_offset;
9870         bool is_retprobe;
9871
9872         if (event->attr.type != perf_uprobe.type)
9873                 return -ENOENT;
9874
9875         if (!perfmon_capable())
9876                 return -EACCES;
9877
9878         /*
9879          * no branch sampling for probe events
9880          */
9881         if (has_branch_stack(event))
9882                 return -EOPNOTSUPP;
9883
9884         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9885         ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
9886         err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
9887         if (err)
9888                 return err;
9889
9890         event->destroy = perf_uprobe_destroy;
9891
9892         return 0;
9893 }
9894 #endif /* CONFIG_UPROBE_EVENTS */
9895
9896 static inline void perf_tp_register(void)
9897 {
9898         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
9899 #ifdef CONFIG_KPROBE_EVENTS
9900         perf_pmu_register(&perf_kprobe, "kprobe", -1);
9901 #endif
9902 #ifdef CONFIG_UPROBE_EVENTS
9903         perf_pmu_register(&perf_uprobe, "uprobe", -1);
9904 #endif
9905 }
9906
9907 static void perf_event_free_filter(struct perf_event *event)
9908 {
9909         ftrace_profile_free_filter(event);
9910 }
9911
9912 #ifdef CONFIG_BPF_SYSCALL
9913 static void bpf_overflow_handler(struct perf_event *event,
9914                                  struct perf_sample_data *data,
9915                                  struct pt_regs *regs)
9916 {
9917         struct bpf_perf_event_data_kern ctx = {
9918                 .data = data,
9919                 .event = event,
9920         };
9921         struct bpf_prog *prog;
9922         int ret = 0;
9923
9924         ctx.regs = perf_arch_bpf_user_pt_regs(regs);
9925         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9926                 goto out;
9927         rcu_read_lock();
9928         prog = READ_ONCE(event->prog);
9929         if (prog)
9930                 ret = bpf_prog_run(prog, &ctx);
9931         rcu_read_unlock();
9932 out:
9933         __this_cpu_dec(bpf_prog_active);
9934         if (!ret)
9935                 return;
9936
9937         event->orig_overflow_handler(event, data, regs);
9938 }
9939
9940 static int perf_event_set_bpf_handler(struct perf_event *event,
9941                                       struct bpf_prog *prog,
9942                                       u64 bpf_cookie)
9943 {
9944         if (event->overflow_handler_context)
9945                 /* hw breakpoint or kernel counter */
9946                 return -EINVAL;
9947
9948         if (event->prog)
9949                 return -EEXIST;
9950
9951         if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
9952                 return -EINVAL;
9953
9954         if (event->attr.precise_ip &&
9955             prog->call_get_stack &&
9956             (!(event->attr.sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY) ||
9957              event->attr.exclude_callchain_kernel ||
9958              event->attr.exclude_callchain_user)) {
9959                 /*
9960                  * On perf_event with precise_ip, calling bpf_get_stack()
9961                  * may trigger unwinder warnings and occasional crashes.
9962                  * bpf_get_[stack|stackid] works around this issue by using
9963                  * callchain attached to perf_sample_data. If the
9964                  * perf_event does not full (kernel and user) callchain
9965                  * attached to perf_sample_data, do not allow attaching BPF
9966                  * program that calls bpf_get_[stack|stackid].
9967                  */
9968                 return -EPROTO;
9969         }
9970
9971         event->prog = prog;
9972         event->bpf_cookie = bpf_cookie;
9973         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
9974         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
9975         return 0;
9976 }
9977
9978 static void perf_event_free_bpf_handler(struct perf_event *event)
9979 {
9980         struct bpf_prog *prog = event->prog;
9981
9982         if (!prog)
9983                 return;
9984
9985         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
9986         event->prog = NULL;
9987         bpf_prog_put(prog);
9988 }
9989 #else
9990 static int perf_event_set_bpf_handler(struct perf_event *event,
9991                                       struct bpf_prog *prog,
9992                                       u64 bpf_cookie)
9993 {
9994         return -EOPNOTSUPP;
9995 }
9996 static void perf_event_free_bpf_handler(struct perf_event *event)
9997 {
9998 }
9999 #endif
10000
10001 /*
10002  * returns true if the event is a tracepoint, or a kprobe/upprobe created
10003  * with perf_event_open()
10004  */
10005 static inline bool perf_event_is_tracing(struct perf_event *event)
10006 {
10007         if (event->pmu == &perf_tracepoint)
10008                 return true;
10009 #ifdef CONFIG_KPROBE_EVENTS
10010         if (event->pmu == &perf_kprobe)
10011                 return true;
10012 #endif
10013 #ifdef CONFIG_UPROBE_EVENTS
10014         if (event->pmu == &perf_uprobe)
10015                 return true;
10016 #endif
10017         return false;
10018 }
10019
10020 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10021                             u64 bpf_cookie)
10022 {
10023         bool is_kprobe, is_tracepoint, is_syscall_tp;
10024
10025         if (!perf_event_is_tracing(event))
10026                 return perf_event_set_bpf_handler(event, prog, bpf_cookie);
10027
10028         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
10029         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10030         is_syscall_tp = is_syscall_trace_event(event->tp_event);
10031         if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
10032                 /* bpf programs can only be attached to u/kprobe or tracepoint */
10033                 return -EINVAL;
10034
10035         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
10036             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10037             (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
10038                 return -EINVAL;
10039
10040         /* Kprobe override only works for kprobes, not uprobes. */
10041         if (prog->kprobe_override &&
10042             !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE))
10043                 return -EINVAL;
10044
10045         if (is_tracepoint || is_syscall_tp) {
10046                 int off = trace_event_get_offsets(event->tp_event);
10047
10048                 if (prog->aux->max_ctx_offset > off)
10049                         return -EACCES;
10050         }
10051
10052         return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
10053 }
10054
10055 void perf_event_free_bpf_prog(struct perf_event *event)
10056 {
10057         if (!perf_event_is_tracing(event)) {
10058                 perf_event_free_bpf_handler(event);
10059                 return;
10060         }
10061         perf_event_detach_bpf_prog(event);
10062 }
10063
10064 #else
10065
10066 static inline void perf_tp_register(void)
10067 {
10068 }
10069
10070 static void perf_event_free_filter(struct perf_event *event)
10071 {
10072 }
10073
10074 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10075                             u64 bpf_cookie)
10076 {
10077         return -ENOENT;
10078 }
10079
10080 void perf_event_free_bpf_prog(struct perf_event *event)
10081 {
10082 }
10083 #endif /* CONFIG_EVENT_TRACING */
10084
10085 #ifdef CONFIG_HAVE_HW_BREAKPOINT
10086 void perf_bp_event(struct perf_event *bp, void *data)
10087 {
10088         struct perf_sample_data sample;
10089         struct pt_regs *regs = data;
10090
10091         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10092
10093         if (!bp->hw.state && !perf_exclude_event(bp, regs))
10094                 perf_swevent_event(bp, 1, &sample, regs);
10095 }
10096 #endif
10097
10098 /*
10099  * Allocate a new address filter
10100  */
10101 static struct perf_addr_filter *
10102 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10103 {
10104         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10105         struct perf_addr_filter *filter;
10106
10107         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10108         if (!filter)
10109                 return NULL;
10110
10111         INIT_LIST_HEAD(&filter->entry);
10112         list_add_tail(&filter->entry, filters);
10113
10114         return filter;
10115 }
10116
10117 static void free_filters_list(struct list_head *filters)
10118 {
10119         struct perf_addr_filter *filter, *iter;
10120
10121         list_for_each_entry_safe(filter, iter, filters, entry) {
10122                 path_put(&filter->path);
10123                 list_del(&filter->entry);
10124                 kfree(filter);
10125         }
10126 }
10127
10128 /*
10129  * Free existing address filters and optionally install new ones
10130  */
10131 static void perf_addr_filters_splice(struct perf_event *event,
10132                                      struct list_head *head)
10133 {
10134         unsigned long flags;
10135         LIST_HEAD(list);
10136
10137         if (!has_addr_filter(event))
10138                 return;
10139
10140         /* don't bother with children, they don't have their own filters */
10141         if (event->parent)
10142                 return;
10143
10144         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10145
10146         list_splice_init(&event->addr_filters.list, &list);
10147         if (head)
10148                 list_splice(head, &event->addr_filters.list);
10149
10150         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10151
10152         free_filters_list(&list);
10153 }
10154
10155 /*
10156  * Scan through mm's vmas and see if one of them matches the
10157  * @filter; if so, adjust filter's address range.
10158  * Called with mm::mmap_lock down for reading.
10159  */
10160 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10161                                    struct mm_struct *mm,
10162                                    struct perf_addr_filter_range *fr)
10163 {
10164         struct vm_area_struct *vma;
10165
10166         for (vma = mm->mmap; vma; vma = vma->vm_next) {
10167                 if (!vma->vm_file)
10168                         continue;
10169
10170                 if (perf_addr_filter_vma_adjust(filter, vma, fr))
10171                         return;
10172         }
10173 }
10174
10175 /*
10176  * Update event's address range filters based on the
10177  * task's existing mappings, if any.
10178  */
10179 static void perf_event_addr_filters_apply(struct perf_event *event)
10180 {
10181         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10182         struct task_struct *task = READ_ONCE(event->ctx->task);
10183         struct perf_addr_filter *filter;
10184         struct mm_struct *mm = NULL;
10185         unsigned int count = 0;
10186         unsigned long flags;
10187
10188         /*
10189          * We may observe TASK_TOMBSTONE, which means that the event tear-down
10190          * will stop on the parent's child_mutex that our caller is also holding
10191          */
10192         if (task == TASK_TOMBSTONE)
10193                 return;
10194
10195         if (ifh->nr_file_filters) {
10196                 mm = get_task_mm(event->ctx->task);
10197                 if (!mm)
10198                         goto restart;
10199
10200                 mmap_read_lock(mm);
10201         }
10202
10203         raw_spin_lock_irqsave(&ifh->lock, flags);
10204         list_for_each_entry(filter, &ifh->list, entry) {
10205                 if (filter->path.dentry) {
10206                         /*
10207                          * Adjust base offset if the filter is associated to a
10208                          * binary that needs to be mapped:
10209                          */
10210                         event->addr_filter_ranges[count].start = 0;
10211                         event->addr_filter_ranges[count].size = 0;
10212
10213                         perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10214                 } else {
10215                         event->addr_filter_ranges[count].start = filter->offset;
10216                         event->addr_filter_ranges[count].size  = filter->size;
10217                 }
10218
10219                 count++;
10220         }
10221
10222         event->addr_filters_gen++;
10223         raw_spin_unlock_irqrestore(&ifh->lock, flags);
10224
10225         if (ifh->nr_file_filters) {
10226                 mmap_read_unlock(mm);
10227
10228                 mmput(mm);
10229         }
10230
10231 restart:
10232         perf_event_stop(event, 1);
10233 }
10234
10235 /*
10236  * Address range filtering: limiting the data to certain
10237  * instruction address ranges. Filters are ioctl()ed to us from
10238  * userspace as ascii strings.
10239  *
10240  * Filter string format:
10241  *
10242  * ACTION RANGE_SPEC
10243  * where ACTION is one of the
10244  *  * "filter": limit the trace to this region
10245  *  * "start": start tracing from this address
10246  *  * "stop": stop tracing at this address/region;
10247  * RANGE_SPEC is
10248  *  * for kernel addresses: <start address>[/<size>]
10249  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
10250  *
10251  * if <size> is not specified or is zero, the range is treated as a single
10252  * address; not valid for ACTION=="filter".
10253  */
10254 enum {
10255         IF_ACT_NONE = -1,
10256         IF_ACT_FILTER,
10257         IF_ACT_START,
10258         IF_ACT_STOP,
10259         IF_SRC_FILE,
10260         IF_SRC_KERNEL,
10261         IF_SRC_FILEADDR,
10262         IF_SRC_KERNELADDR,
10263 };
10264
10265 enum {
10266         IF_STATE_ACTION = 0,
10267         IF_STATE_SOURCE,
10268         IF_STATE_END,
10269 };
10270
10271 static const match_table_t if_tokens = {
10272         { IF_ACT_FILTER,        "filter" },
10273         { IF_ACT_START,         "start" },
10274         { IF_ACT_STOP,          "stop" },
10275         { IF_SRC_FILE,          "%u/%u@%s" },
10276         { IF_SRC_KERNEL,        "%u/%u" },
10277         { IF_SRC_FILEADDR,      "%u@%s" },
10278         { IF_SRC_KERNELADDR,    "%u" },
10279         { IF_ACT_NONE,          NULL },
10280 };
10281
10282 /*
10283  * Address filter string parser
10284  */
10285 static int
10286 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10287                              struct list_head *filters)
10288 {
10289         struct perf_addr_filter *filter = NULL;
10290         char *start, *orig, *filename = NULL;
10291         substring_t args[MAX_OPT_ARGS];
10292         int state = IF_STATE_ACTION, token;
10293         unsigned int kernel = 0;
10294         int ret = -EINVAL;
10295
10296         orig = fstr = kstrdup(fstr, GFP_KERNEL);
10297         if (!fstr)
10298                 return -ENOMEM;
10299
10300         while ((start = strsep(&fstr, " ,\n")) != NULL) {
10301                 static const enum perf_addr_filter_action_t actions[] = {
10302                         [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
10303                         [IF_ACT_START]  = PERF_ADDR_FILTER_ACTION_START,
10304                         [IF_ACT_STOP]   = PERF_ADDR_FILTER_ACTION_STOP,
10305                 };
10306                 ret = -EINVAL;
10307
10308                 if (!*start)
10309                         continue;
10310
10311                 /* filter definition begins */
10312                 if (state == IF_STATE_ACTION) {
10313                         filter = perf_addr_filter_new(event, filters);
10314                         if (!filter)
10315                                 goto fail;
10316                 }
10317
10318                 token = match_token(start, if_tokens, args);
10319                 switch (token) {
10320                 case IF_ACT_FILTER:
10321                 case IF_ACT_START:
10322                 case IF_ACT_STOP:
10323                         if (state != IF_STATE_ACTION)
10324                                 goto fail;
10325
10326                         filter->action = actions[token];
10327                         state = IF_STATE_SOURCE;
10328                         break;
10329
10330                 case IF_SRC_KERNELADDR:
10331                 case IF_SRC_KERNEL:
10332                         kernel = 1;
10333                         fallthrough;
10334
10335                 case IF_SRC_FILEADDR:
10336                 case IF_SRC_FILE:
10337                         if (state != IF_STATE_SOURCE)
10338                                 goto fail;
10339
10340                         *args[0].to = 0;
10341                         ret = kstrtoul(args[0].from, 0, &filter->offset);
10342                         if (ret)
10343                                 goto fail;
10344
10345                         if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10346                                 *args[1].to = 0;
10347                                 ret = kstrtoul(args[1].from, 0, &filter->size);
10348                                 if (ret)
10349                                         goto fail;
10350                         }
10351
10352                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10353                                 int fpos = token == IF_SRC_FILE ? 2 : 1;
10354
10355                                 kfree(filename);
10356                                 filename = match_strdup(&args[fpos]);
10357                                 if (!filename) {
10358                                         ret = -ENOMEM;
10359                                         goto fail;
10360                                 }
10361                         }
10362
10363                         state = IF_STATE_END;
10364                         break;
10365
10366                 default:
10367                         goto fail;
10368                 }
10369
10370                 /*
10371                  * Filter definition is fully parsed, validate and install it.
10372                  * Make sure that it doesn't contradict itself or the event's
10373                  * attribute.
10374                  */
10375                 if (state == IF_STATE_END) {
10376                         ret = -EINVAL;
10377                         if (kernel && event->attr.exclude_kernel)
10378                                 goto fail;
10379
10380                         /*
10381                          * ACTION "filter" must have a non-zero length region
10382                          * specified.
10383                          */
10384                         if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10385                             !filter->size)
10386                                 goto fail;
10387
10388                         if (!kernel) {
10389                                 if (!filename)
10390                                         goto fail;
10391
10392                                 /*
10393                                  * For now, we only support file-based filters
10394                                  * in per-task events; doing so for CPU-wide
10395                                  * events requires additional context switching
10396                                  * trickery, since same object code will be
10397                                  * mapped at different virtual addresses in
10398                                  * different processes.
10399                                  */
10400                                 ret = -EOPNOTSUPP;
10401                                 if (!event->ctx->task)
10402                                         goto fail;
10403
10404                                 /* look up the path and grab its inode */
10405                                 ret = kern_path(filename, LOOKUP_FOLLOW,
10406                                                 &filter->path);
10407                                 if (ret)
10408                                         goto fail;
10409
10410                                 ret = -EINVAL;
10411                                 if (!filter->path.dentry ||
10412                                     !S_ISREG(d_inode(filter->path.dentry)
10413                                              ->i_mode))
10414                                         goto fail;
10415
10416                                 event->addr_filters.nr_file_filters++;
10417                         }
10418
10419                         /* ready to consume more filters */
10420                         state = IF_STATE_ACTION;
10421                         filter = NULL;
10422                 }
10423         }
10424
10425         if (state != IF_STATE_ACTION)
10426                 goto fail;
10427
10428         kfree(filename);
10429         kfree(orig);
10430
10431         return 0;
10432
10433 fail:
10434         kfree(filename);
10435         free_filters_list(filters);
10436         kfree(orig);
10437
10438         return ret;
10439 }
10440
10441 static int
10442 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10443 {
10444         LIST_HEAD(filters);
10445         int ret;
10446
10447         /*
10448          * Since this is called in perf_ioctl() path, we're already holding
10449          * ctx::mutex.
10450          */
10451         lockdep_assert_held(&event->ctx->mutex);
10452
10453         if (WARN_ON_ONCE(event->parent))
10454                 return -EINVAL;
10455
10456         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10457         if (ret)
10458                 goto fail_clear_files;
10459
10460         ret = event->pmu->addr_filters_validate(&filters);
10461         if (ret)
10462                 goto fail_free_filters;
10463
10464         /* remove existing filters, if any */
10465         perf_addr_filters_splice(event, &filters);
10466
10467         /* install new filters */
10468         perf_event_for_each_child(event, perf_event_addr_filters_apply);
10469
10470         return ret;
10471
10472 fail_free_filters:
10473         free_filters_list(&filters);
10474
10475 fail_clear_files:
10476         event->addr_filters.nr_file_filters = 0;
10477
10478         return ret;
10479 }
10480
10481 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10482 {
10483         int ret = -EINVAL;
10484         char *filter_str;
10485
10486         filter_str = strndup_user(arg, PAGE_SIZE);
10487         if (IS_ERR(filter_str))
10488                 return PTR_ERR(filter_str);
10489
10490 #ifdef CONFIG_EVENT_TRACING
10491         if (perf_event_is_tracing(event)) {
10492                 struct perf_event_context *ctx = event->ctx;
10493
10494                 /*
10495                  * Beware, here be dragons!!
10496                  *
10497                  * the tracepoint muck will deadlock against ctx->mutex, but
10498                  * the tracepoint stuff does not actually need it. So
10499                  * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10500                  * already have a reference on ctx.
10501                  *
10502                  * This can result in event getting moved to a different ctx,
10503                  * but that does not affect the tracepoint state.
10504                  */
10505                 mutex_unlock(&ctx->mutex);
10506                 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
10507                 mutex_lock(&ctx->mutex);
10508         } else
10509 #endif
10510         if (has_addr_filter(event))
10511                 ret = perf_event_set_addr_filter(event, filter_str);
10512
10513         kfree(filter_str);
10514         return ret;
10515 }
10516
10517 /*
10518  * hrtimer based swevent callback
10519  */
10520
10521 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
10522 {
10523         enum hrtimer_restart ret = HRTIMER_RESTART;
10524         struct perf_sample_data data;
10525         struct pt_regs *regs;
10526         struct perf_event *event;
10527         u64 period;
10528
10529         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
10530
10531         if (event->state != PERF_EVENT_STATE_ACTIVE)
10532                 return HRTIMER_NORESTART;
10533
10534         event->pmu->read(event);
10535
10536         perf_sample_data_init(&data, 0, event->hw.last_period);
10537         regs = get_irq_regs();
10538
10539         if (regs && !perf_exclude_event(event, regs)) {
10540                 if (!(event->attr.exclude_idle && is_idle_task(current)))
10541                         if (__perf_event_overflow(event, 1, &data, regs))
10542                                 ret = HRTIMER_NORESTART;
10543         }
10544
10545         period = max_t(u64, 10000, event->hw.sample_period);
10546         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
10547
10548         return ret;
10549 }
10550
10551 static void perf_swevent_start_hrtimer(struct perf_event *event)
10552 {
10553         struct hw_perf_event *hwc = &event->hw;
10554         s64 period;
10555
10556         if (!is_sampling_event(event))
10557                 return;
10558
10559         period = local64_read(&hwc->period_left);
10560         if (period) {
10561                 if (period < 0)
10562                         period = 10000;
10563
10564                 local64_set(&hwc->period_left, 0);
10565         } else {
10566                 period = max_t(u64, 10000, hwc->sample_period);
10567         }
10568         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
10569                       HRTIMER_MODE_REL_PINNED_HARD);
10570 }
10571
10572 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
10573 {
10574         struct hw_perf_event *hwc = &event->hw;
10575
10576         if (is_sampling_event(event)) {
10577                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
10578                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
10579
10580                 hrtimer_cancel(&hwc->hrtimer);
10581         }
10582 }
10583
10584 static void perf_swevent_init_hrtimer(struct perf_event *event)
10585 {
10586         struct hw_perf_event *hwc = &event->hw;
10587
10588         if (!is_sampling_event(event))
10589                 return;
10590
10591         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
10592         hwc->hrtimer.function = perf_swevent_hrtimer;
10593
10594         /*
10595          * Since hrtimers have a fixed rate, we can do a static freq->period
10596          * mapping and avoid the whole period adjust feedback stuff.
10597          */
10598         if (event->attr.freq) {
10599                 long freq = event->attr.sample_freq;
10600
10601                 event->attr.sample_period = NSEC_PER_SEC / freq;
10602                 hwc->sample_period = event->attr.sample_period;
10603                 local64_set(&hwc->period_left, hwc->sample_period);
10604                 hwc->last_period = hwc->sample_period;
10605                 event->attr.freq = 0;
10606         }
10607 }
10608
10609 /*
10610  * Software event: cpu wall time clock
10611  */
10612
10613 static void cpu_clock_event_update(struct perf_event *event)
10614 {
10615         s64 prev;
10616         u64 now;
10617
10618         now = local_clock();
10619         prev = local64_xchg(&event->hw.prev_count, now);
10620         local64_add(now - prev, &event->count);
10621 }
10622
10623 static void cpu_clock_event_start(struct perf_event *event, int flags)
10624 {
10625         local64_set(&event->hw.prev_count, local_clock());
10626         perf_swevent_start_hrtimer(event);
10627 }
10628
10629 static void cpu_clock_event_stop(struct perf_event *event, int flags)
10630 {
10631         perf_swevent_cancel_hrtimer(event);
10632         cpu_clock_event_update(event);
10633 }
10634
10635 static int cpu_clock_event_add(struct perf_event *event, int flags)
10636 {
10637         if (flags & PERF_EF_START)
10638                 cpu_clock_event_start(event, flags);
10639         perf_event_update_userpage(event);
10640
10641         return 0;
10642 }
10643
10644 static void cpu_clock_event_del(struct perf_event *event, int flags)
10645 {
10646         cpu_clock_event_stop(event, flags);
10647 }
10648
10649 static void cpu_clock_event_read(struct perf_event *event)
10650 {
10651         cpu_clock_event_update(event);
10652 }
10653
10654 static int cpu_clock_event_init(struct perf_event *event)
10655 {
10656         if (event->attr.type != PERF_TYPE_SOFTWARE)
10657                 return -ENOENT;
10658
10659         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
10660                 return -ENOENT;
10661
10662         /*
10663          * no branch sampling for software events
10664          */
10665         if (has_branch_stack(event))
10666                 return -EOPNOTSUPP;
10667
10668         perf_swevent_init_hrtimer(event);
10669
10670         return 0;
10671 }
10672
10673 static struct pmu perf_cpu_clock = {
10674         .task_ctx_nr    = perf_sw_context,
10675
10676         .capabilities   = PERF_PMU_CAP_NO_NMI,
10677
10678         .event_init     = cpu_clock_event_init,
10679         .add            = cpu_clock_event_add,
10680         .del            = cpu_clock_event_del,
10681         .start          = cpu_clock_event_start,
10682         .stop           = cpu_clock_event_stop,
10683         .read           = cpu_clock_event_read,
10684 };
10685
10686 /*
10687  * Software event: task time clock
10688  */
10689
10690 static void task_clock_event_update(struct perf_event *event, u64 now)
10691 {
10692         u64 prev;
10693         s64 delta;
10694
10695         prev = local64_xchg(&event->hw.prev_count, now);
10696         delta = now - prev;
10697         local64_add(delta, &event->count);
10698 }
10699
10700 static void task_clock_event_start(struct perf_event *event, int flags)
10701 {
10702         local64_set(&event->hw.prev_count, event->ctx->time);
10703         perf_swevent_start_hrtimer(event);
10704 }
10705
10706 static void task_clock_event_stop(struct perf_event *event, int flags)
10707 {
10708         perf_swevent_cancel_hrtimer(event);
10709         task_clock_event_update(event, event->ctx->time);
10710 }
10711
10712 static int task_clock_event_add(struct perf_event *event, int flags)
10713 {
10714         if (flags & PERF_EF_START)
10715                 task_clock_event_start(event, flags);
10716         perf_event_update_userpage(event);
10717
10718         return 0;
10719 }
10720
10721 static void task_clock_event_del(struct perf_event *event, int flags)
10722 {
10723         task_clock_event_stop(event, PERF_EF_UPDATE);
10724 }
10725
10726 static void task_clock_event_read(struct perf_event *event)
10727 {
10728         u64 now = perf_clock();
10729         u64 delta = now - event->ctx->timestamp;
10730         u64 time = event->ctx->time + delta;
10731
10732         task_clock_event_update(event, time);
10733 }
10734
10735 static int task_clock_event_init(struct perf_event *event)
10736 {
10737         if (event->attr.type != PERF_TYPE_SOFTWARE)
10738                 return -ENOENT;
10739
10740         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
10741                 return -ENOENT;
10742
10743         /*
10744          * no branch sampling for software events
10745          */
10746         if (has_branch_stack(event))
10747                 return -EOPNOTSUPP;
10748
10749         perf_swevent_init_hrtimer(event);
10750
10751         return 0;
10752 }
10753
10754 static struct pmu perf_task_clock = {
10755         .task_ctx_nr    = perf_sw_context,
10756
10757         .capabilities   = PERF_PMU_CAP_NO_NMI,
10758
10759         .event_init     = task_clock_event_init,
10760         .add            = task_clock_event_add,
10761         .del            = task_clock_event_del,
10762         .start          = task_clock_event_start,
10763         .stop           = task_clock_event_stop,
10764         .read           = task_clock_event_read,
10765 };
10766
10767 static void perf_pmu_nop_void(struct pmu *pmu)
10768 {
10769 }
10770
10771 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
10772 {
10773 }
10774
10775 static int perf_pmu_nop_int(struct pmu *pmu)
10776 {
10777         return 0;
10778 }
10779
10780 static int perf_event_nop_int(struct perf_event *event, u64 value)
10781 {
10782         return 0;
10783 }
10784
10785 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
10786
10787 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
10788 {
10789         __this_cpu_write(nop_txn_flags, flags);
10790
10791         if (flags & ~PERF_PMU_TXN_ADD)
10792                 return;
10793
10794         perf_pmu_disable(pmu);
10795 }
10796
10797 static int perf_pmu_commit_txn(struct pmu *pmu)
10798 {
10799         unsigned int flags = __this_cpu_read(nop_txn_flags);
10800
10801         __this_cpu_write(nop_txn_flags, 0);
10802
10803         if (flags & ~PERF_PMU_TXN_ADD)
10804                 return 0;
10805
10806         perf_pmu_enable(pmu);
10807         return 0;
10808 }
10809
10810 static void perf_pmu_cancel_txn(struct pmu *pmu)
10811 {
10812         unsigned int flags =  __this_cpu_read(nop_txn_flags);
10813
10814         __this_cpu_write(nop_txn_flags, 0);
10815
10816         if (flags & ~PERF_PMU_TXN_ADD)
10817                 return;
10818
10819         perf_pmu_enable(pmu);
10820 }
10821
10822 static int perf_event_idx_default(struct perf_event *event)
10823 {
10824         return 0;
10825 }
10826
10827 /*
10828  * Ensures all contexts with the same task_ctx_nr have the same
10829  * pmu_cpu_context too.
10830  */
10831 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
10832 {
10833         struct pmu *pmu;
10834
10835         if (ctxn < 0)
10836                 return NULL;
10837
10838         list_for_each_entry(pmu, &pmus, entry) {
10839                 if (pmu->task_ctx_nr == ctxn)
10840                         return pmu->pmu_cpu_context;
10841         }
10842
10843         return NULL;
10844 }
10845
10846 static void free_pmu_context(struct pmu *pmu)
10847 {
10848         /*
10849          * Static contexts such as perf_sw_context have a global lifetime
10850          * and may be shared between different PMUs. Avoid freeing them
10851          * when a single PMU is going away.
10852          */
10853         if (pmu->task_ctx_nr > perf_invalid_context)
10854                 return;
10855
10856         free_percpu(pmu->pmu_cpu_context);
10857 }
10858
10859 /*
10860  * Let userspace know that this PMU supports address range filtering:
10861  */
10862 static ssize_t nr_addr_filters_show(struct device *dev,
10863                                     struct device_attribute *attr,
10864                                     char *page)
10865 {
10866         struct pmu *pmu = dev_get_drvdata(dev);
10867
10868         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
10869 }
10870 DEVICE_ATTR_RO(nr_addr_filters);
10871
10872 static struct idr pmu_idr;
10873
10874 static ssize_t
10875 type_show(struct device *dev, struct device_attribute *attr, char *page)
10876 {
10877         struct pmu *pmu = dev_get_drvdata(dev);
10878
10879         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
10880 }
10881 static DEVICE_ATTR_RO(type);
10882
10883 static ssize_t
10884 perf_event_mux_interval_ms_show(struct device *dev,
10885                                 struct device_attribute *attr,
10886                                 char *page)
10887 {
10888         struct pmu *pmu = dev_get_drvdata(dev);
10889
10890         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
10891 }
10892
10893 static DEFINE_MUTEX(mux_interval_mutex);
10894
10895 static ssize_t
10896 perf_event_mux_interval_ms_store(struct device *dev,
10897                                  struct device_attribute *attr,
10898                                  const char *buf, size_t count)
10899 {
10900         struct pmu *pmu = dev_get_drvdata(dev);
10901         int timer, cpu, ret;
10902
10903         ret = kstrtoint(buf, 0, &timer);
10904         if (ret)
10905                 return ret;
10906
10907         if (timer < 1)
10908                 return -EINVAL;
10909
10910         /* same value, noting to do */
10911         if (timer == pmu->hrtimer_interval_ms)
10912                 return count;
10913
10914         mutex_lock(&mux_interval_mutex);
10915         pmu->hrtimer_interval_ms = timer;
10916
10917         /* update all cpuctx for this PMU */
10918         cpus_read_lock();
10919         for_each_online_cpu(cpu) {
10920                 struct perf_cpu_context *cpuctx;
10921                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10922                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
10923
10924                 cpu_function_call(cpu,
10925                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
10926         }
10927         cpus_read_unlock();
10928         mutex_unlock(&mux_interval_mutex);
10929
10930         return count;
10931 }
10932 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
10933
10934 static struct attribute *pmu_dev_attrs[] = {
10935         &dev_attr_type.attr,
10936         &dev_attr_perf_event_mux_interval_ms.attr,
10937         NULL,
10938 };
10939 ATTRIBUTE_GROUPS(pmu_dev);
10940
10941 static int pmu_bus_running;
10942 static struct bus_type pmu_bus = {
10943         .name           = "event_source",
10944         .dev_groups     = pmu_dev_groups,
10945 };
10946
10947 static void pmu_dev_release(struct device *dev)
10948 {
10949         kfree(dev);
10950 }
10951
10952 static int pmu_dev_alloc(struct pmu *pmu)
10953 {
10954         int ret = -ENOMEM;
10955
10956         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
10957         if (!pmu->dev)
10958                 goto out;
10959
10960         pmu->dev->groups = pmu->attr_groups;
10961         device_initialize(pmu->dev);
10962         ret = dev_set_name(pmu->dev, "%s", pmu->name);
10963         if (ret)
10964                 goto free_dev;
10965
10966         dev_set_drvdata(pmu->dev, pmu);
10967         pmu->dev->bus = &pmu_bus;
10968         pmu->dev->release = pmu_dev_release;
10969         ret = device_add(pmu->dev);
10970         if (ret)
10971                 goto free_dev;
10972
10973         /* For PMUs with address filters, throw in an extra attribute: */
10974         if (pmu->nr_addr_filters)
10975                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
10976
10977         if (ret)
10978                 goto del_dev;
10979
10980         if (pmu->attr_update)
10981                 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
10982
10983         if (ret)
10984                 goto del_dev;
10985
10986 out:
10987         return ret;
10988
10989 del_dev:
10990         device_del(pmu->dev);
10991
10992 free_dev:
10993         put_device(pmu->dev);
10994         goto out;
10995 }
10996
10997 static struct lock_class_key cpuctx_mutex;
10998 static struct lock_class_key cpuctx_lock;
10999
11000 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11001 {
11002         int cpu, ret, max = PERF_TYPE_MAX;
11003
11004         mutex_lock(&pmus_lock);
11005         ret = -ENOMEM;
11006         pmu->pmu_disable_count = alloc_percpu(int);
11007         if (!pmu->pmu_disable_count)
11008                 goto unlock;
11009
11010         pmu->type = -1;
11011         if (!name)
11012                 goto skip_type;
11013         pmu->name = name;
11014
11015         if (type != PERF_TYPE_SOFTWARE) {
11016                 if (type >= 0)
11017                         max = type;
11018
11019                 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11020                 if (ret < 0)
11021                         goto free_pdc;
11022
11023                 WARN_ON(type >= 0 && ret != type);
11024
11025                 type = ret;
11026         }
11027         pmu->type = type;
11028
11029         if (pmu_bus_running) {
11030                 ret = pmu_dev_alloc(pmu);
11031                 if (ret)
11032                         goto free_idr;
11033         }
11034
11035 skip_type:
11036         if (pmu->task_ctx_nr == perf_hw_context) {
11037                 static int hw_context_taken = 0;
11038
11039                 /*
11040                  * Other than systems with heterogeneous CPUs, it never makes
11041                  * sense for two PMUs to share perf_hw_context. PMUs which are
11042                  * uncore must use perf_invalid_context.
11043                  */
11044                 if (WARN_ON_ONCE(hw_context_taken &&
11045                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
11046                         pmu->task_ctx_nr = perf_invalid_context;
11047
11048                 hw_context_taken = 1;
11049         }
11050
11051         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
11052         if (pmu->pmu_cpu_context)
11053                 goto got_cpu_context;
11054
11055         ret = -ENOMEM;
11056         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
11057         if (!pmu->pmu_cpu_context)
11058                 goto free_dev;
11059
11060         for_each_possible_cpu(cpu) {
11061                 struct perf_cpu_context *cpuctx;
11062
11063                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11064                 __perf_event_init_context(&cpuctx->ctx);
11065                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
11066                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
11067                 cpuctx->ctx.pmu = pmu;
11068                 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
11069
11070                 __perf_mux_hrtimer_init(cpuctx, cpu);
11071
11072                 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
11073                 cpuctx->heap = cpuctx->heap_default;
11074         }
11075
11076 got_cpu_context:
11077         if (!pmu->start_txn) {
11078                 if (pmu->pmu_enable) {
11079                         /*
11080                          * If we have pmu_enable/pmu_disable calls, install
11081                          * transaction stubs that use that to try and batch
11082                          * hardware accesses.
11083                          */
11084                         pmu->start_txn  = perf_pmu_start_txn;
11085                         pmu->commit_txn = perf_pmu_commit_txn;
11086                         pmu->cancel_txn = perf_pmu_cancel_txn;
11087                 } else {
11088                         pmu->start_txn  = perf_pmu_nop_txn;
11089                         pmu->commit_txn = perf_pmu_nop_int;
11090                         pmu->cancel_txn = perf_pmu_nop_void;
11091                 }
11092         }
11093
11094         if (!pmu->pmu_enable) {
11095                 pmu->pmu_enable  = perf_pmu_nop_void;
11096                 pmu->pmu_disable = perf_pmu_nop_void;
11097         }
11098
11099         if (!pmu->check_period)
11100                 pmu->check_period = perf_event_nop_int;
11101
11102         if (!pmu->event_idx)
11103                 pmu->event_idx = perf_event_idx_default;
11104
11105         /*
11106          * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
11107          * since these cannot be in the IDR. This way the linear search
11108          * is fast, provided a valid software event is provided.
11109          */
11110         if (type == PERF_TYPE_SOFTWARE || !name)
11111                 list_add_rcu(&pmu->entry, &pmus);
11112         else
11113                 list_add_tail_rcu(&pmu->entry, &pmus);
11114
11115         atomic_set(&pmu->exclusive_cnt, 0);
11116         ret = 0;
11117 unlock:
11118         mutex_unlock(&pmus_lock);
11119
11120         return ret;
11121
11122 free_dev:
11123         device_del(pmu->dev);
11124         put_device(pmu->dev);
11125
11126 free_idr:
11127         if (pmu->type != PERF_TYPE_SOFTWARE)
11128                 idr_remove(&pmu_idr, pmu->type);
11129
11130 free_pdc:
11131         free_percpu(pmu->pmu_disable_count);
11132         goto unlock;
11133 }
11134 EXPORT_SYMBOL_GPL(perf_pmu_register);
11135
11136 void perf_pmu_unregister(struct pmu *pmu)
11137 {
11138         mutex_lock(&pmus_lock);
11139         list_del_rcu(&pmu->entry);
11140
11141         /*
11142          * We dereference the pmu list under both SRCU and regular RCU, so
11143          * synchronize against both of those.
11144          */
11145         synchronize_srcu(&pmus_srcu);
11146         synchronize_rcu();
11147
11148         free_percpu(pmu->pmu_disable_count);
11149         if (pmu->type != PERF_TYPE_SOFTWARE)
11150                 idr_remove(&pmu_idr, pmu->type);
11151         if (pmu_bus_running) {
11152                 if (pmu->nr_addr_filters)
11153                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11154                 device_del(pmu->dev);
11155                 put_device(pmu->dev);
11156         }
11157         free_pmu_context(pmu);
11158         mutex_unlock(&pmus_lock);
11159 }
11160 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11161
11162 static inline bool has_extended_regs(struct perf_event *event)
11163 {
11164         return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11165                (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11166 }
11167
11168 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11169 {
11170         struct perf_event_context *ctx = NULL;
11171         int ret;
11172
11173         if (!try_module_get(pmu->module))
11174                 return -ENODEV;
11175
11176         /*
11177          * A number of pmu->event_init() methods iterate the sibling_list to,
11178          * for example, validate if the group fits on the PMU. Therefore,
11179          * if this is a sibling event, acquire the ctx->mutex to protect
11180          * the sibling_list.
11181          */
11182         if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11183                 /*
11184                  * This ctx->mutex can nest when we're called through
11185                  * inheritance. See the perf_event_ctx_lock_nested() comment.
11186                  */
11187                 ctx = perf_event_ctx_lock_nested(event->group_leader,
11188                                                  SINGLE_DEPTH_NESTING);
11189                 BUG_ON(!ctx);
11190         }
11191
11192         event->pmu = pmu;
11193         ret = pmu->event_init(event);
11194
11195         if (ctx)
11196                 perf_event_ctx_unlock(event->group_leader, ctx);
11197
11198         if (!ret) {
11199                 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11200                     has_extended_regs(event))
11201                         ret = -EOPNOTSUPP;
11202
11203                 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11204                     event_has_any_exclude_flag(event))
11205                         ret = -EINVAL;
11206
11207                 if (ret && event->destroy)
11208                         event->destroy(event);
11209         }
11210
11211         if (ret)
11212                 module_put(pmu->module);
11213
11214         return ret;
11215 }
11216
11217 static struct pmu *perf_init_event(struct perf_event *event)
11218 {
11219         bool extended_type = false;
11220         int idx, type, ret;
11221         struct pmu *pmu;
11222
11223         idx = srcu_read_lock(&pmus_srcu);
11224
11225         /* Try parent's PMU first: */
11226         if (event->parent && event->parent->pmu) {
11227                 pmu = event->parent->pmu;
11228                 ret = perf_try_init_event(pmu, event);
11229                 if (!ret)
11230                         goto unlock;
11231         }
11232
11233         /*
11234          * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11235          * are often aliases for PERF_TYPE_RAW.
11236          */
11237         type = event->attr.type;
11238         if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11239                 type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11240                 if (!type) {
11241                         type = PERF_TYPE_RAW;
11242                 } else {
11243                         extended_type = true;
11244                         event->attr.config &= PERF_HW_EVENT_MASK;
11245                 }
11246         }
11247
11248 again:
11249         rcu_read_lock();
11250         pmu = idr_find(&pmu_idr, type);
11251         rcu_read_unlock();
11252         if (pmu) {
11253                 if (event->attr.type != type && type != PERF_TYPE_RAW &&
11254                     !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11255                         goto fail;
11256
11257                 ret = perf_try_init_event(pmu, event);
11258                 if (ret == -ENOENT && event->attr.type != type && !extended_type) {
11259                         type = event->attr.type;
11260                         goto again;
11261                 }
11262
11263                 if (ret)
11264                         pmu = ERR_PTR(ret);
11265
11266                 goto unlock;
11267         }
11268
11269         list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11270                 ret = perf_try_init_event(pmu, event);
11271                 if (!ret)
11272                         goto unlock;
11273
11274                 if (ret != -ENOENT) {
11275                         pmu = ERR_PTR(ret);
11276                         goto unlock;
11277                 }
11278         }
11279 fail:
11280         pmu = ERR_PTR(-ENOENT);
11281 unlock:
11282         srcu_read_unlock(&pmus_srcu, idx);
11283
11284         return pmu;
11285 }
11286
11287 static void attach_sb_event(struct perf_event *event)
11288 {
11289         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11290
11291         raw_spin_lock(&pel->lock);
11292         list_add_rcu(&event->sb_list, &pel->list);
11293         raw_spin_unlock(&pel->lock);
11294 }
11295
11296 /*
11297  * We keep a list of all !task (and therefore per-cpu) events
11298  * that need to receive side-band records.
11299  *
11300  * This avoids having to scan all the various PMU per-cpu contexts
11301  * looking for them.
11302  */
11303 static void account_pmu_sb_event(struct perf_event *event)
11304 {
11305         if (is_sb_event(event))
11306                 attach_sb_event(event);
11307 }
11308
11309 static void account_event_cpu(struct perf_event *event, int cpu)
11310 {
11311         if (event->parent)
11312                 return;
11313
11314         if (is_cgroup_event(event))
11315                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
11316 }
11317
11318 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
11319 static void account_freq_event_nohz(void)
11320 {
11321 #ifdef CONFIG_NO_HZ_FULL
11322         /* Lock so we don't race with concurrent unaccount */
11323         spin_lock(&nr_freq_lock);
11324         if (atomic_inc_return(&nr_freq_events) == 1)
11325                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11326         spin_unlock(&nr_freq_lock);
11327 #endif
11328 }
11329
11330 static void account_freq_event(void)
11331 {
11332         if (tick_nohz_full_enabled())
11333                 account_freq_event_nohz();
11334         else
11335                 atomic_inc(&nr_freq_events);
11336 }
11337
11338
11339 static void account_event(struct perf_event *event)
11340 {
11341         bool inc = false;
11342
11343         if (event->parent)
11344                 return;
11345
11346         if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11347                 inc = true;
11348         if (event->attr.mmap || event->attr.mmap_data)
11349                 atomic_inc(&nr_mmap_events);
11350         if (event->attr.build_id)
11351                 atomic_inc(&nr_build_id_events);
11352         if (event->attr.comm)
11353                 atomic_inc(&nr_comm_events);
11354         if (event->attr.namespaces)
11355                 atomic_inc(&nr_namespaces_events);
11356         if (event->attr.cgroup)
11357                 atomic_inc(&nr_cgroup_events);
11358         if (event->attr.task)
11359                 atomic_inc(&nr_task_events);
11360         if (event->attr.freq)
11361                 account_freq_event();
11362         if (event->attr.context_switch) {
11363                 atomic_inc(&nr_switch_events);
11364                 inc = true;
11365         }
11366         if (has_branch_stack(event))
11367                 inc = true;
11368         if (is_cgroup_event(event))
11369                 inc = true;
11370         if (event->attr.ksymbol)
11371                 atomic_inc(&nr_ksymbol_events);
11372         if (event->attr.bpf_event)
11373                 atomic_inc(&nr_bpf_events);
11374         if (event->attr.text_poke)
11375                 atomic_inc(&nr_text_poke_events);
11376
11377         if (inc) {
11378                 /*
11379                  * We need the mutex here because static_branch_enable()
11380                  * must complete *before* the perf_sched_count increment
11381                  * becomes visible.
11382                  */
11383                 if (atomic_inc_not_zero(&perf_sched_count))
11384                         goto enabled;
11385
11386                 mutex_lock(&perf_sched_mutex);
11387                 if (!atomic_read(&perf_sched_count)) {
11388                         static_branch_enable(&perf_sched_events);
11389                         /*
11390                          * Guarantee that all CPUs observe they key change and
11391                          * call the perf scheduling hooks before proceeding to
11392                          * install events that need them.
11393                          */
11394                         synchronize_rcu();
11395                 }
11396                 /*
11397                  * Now that we have waited for the sync_sched(), allow further
11398                  * increments to by-pass the mutex.
11399                  */
11400                 atomic_inc(&perf_sched_count);
11401                 mutex_unlock(&perf_sched_mutex);
11402         }
11403 enabled:
11404
11405         account_event_cpu(event, event->cpu);
11406
11407         account_pmu_sb_event(event);
11408 }
11409
11410 /*
11411  * Allocate and initialize an event structure
11412  */
11413 static struct perf_event *
11414 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11415                  struct task_struct *task,
11416                  struct perf_event *group_leader,
11417                  struct perf_event *parent_event,
11418                  perf_overflow_handler_t overflow_handler,
11419                  void *context, int cgroup_fd)
11420 {
11421         struct pmu *pmu;
11422         struct perf_event *event;
11423         struct hw_perf_event *hwc;
11424         long err = -EINVAL;
11425         int node;
11426
11427         if ((unsigned)cpu >= nr_cpu_ids) {
11428                 if (!task || cpu != -1)
11429                         return ERR_PTR(-EINVAL);
11430         }
11431         if (attr->sigtrap && !task) {
11432                 /* Requires a task: avoid signalling random tasks. */
11433                 return ERR_PTR(-EINVAL);
11434         }
11435
11436         node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
11437         event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
11438                                       node);
11439         if (!event)
11440                 return ERR_PTR(-ENOMEM);
11441
11442         /*
11443          * Single events are their own group leaders, with an
11444          * empty sibling list:
11445          */
11446         if (!group_leader)
11447                 group_leader = event;
11448
11449         mutex_init(&event->child_mutex);
11450         INIT_LIST_HEAD(&event->child_list);
11451
11452         INIT_LIST_HEAD(&event->event_entry);
11453         INIT_LIST_HEAD(&event->sibling_list);
11454         INIT_LIST_HEAD(&event->active_list);
11455         init_event_group(event);
11456         INIT_LIST_HEAD(&event->rb_entry);
11457         INIT_LIST_HEAD(&event->active_entry);
11458         INIT_LIST_HEAD(&event->addr_filters.list);
11459         INIT_HLIST_NODE(&event->hlist_entry);
11460
11461
11462         init_waitqueue_head(&event->waitq);
11463         event->pending_disable = -1;
11464         init_irq_work(&event->pending, perf_pending_event);
11465
11466         mutex_init(&event->mmap_mutex);
11467         raw_spin_lock_init(&event->addr_filters.lock);
11468
11469         atomic_long_set(&event->refcount, 1);
11470         event->cpu              = cpu;
11471         event->attr             = *attr;
11472         event->group_leader     = group_leader;
11473         event->pmu              = NULL;
11474         event->oncpu            = -1;
11475
11476         event->parent           = parent_event;
11477
11478         event->ns               = get_pid_ns(task_active_pid_ns(current));
11479         event->id               = atomic64_inc_return(&perf_event_id);
11480
11481         event->state            = PERF_EVENT_STATE_INACTIVE;
11482
11483         if (event->attr.sigtrap)
11484                 atomic_set(&event->event_limit, 1);
11485
11486         if (task) {
11487                 event->attach_state = PERF_ATTACH_TASK;
11488                 /*
11489                  * XXX pmu::event_init needs to know what task to account to
11490                  * and we cannot use the ctx information because we need the
11491                  * pmu before we get a ctx.
11492                  */
11493                 event->hw.target = get_task_struct(task);
11494         }
11495
11496         event->clock = &local_clock;
11497         if (parent_event)
11498                 event->clock = parent_event->clock;
11499
11500         if (!overflow_handler && parent_event) {
11501                 overflow_handler = parent_event->overflow_handler;
11502                 context = parent_event->overflow_handler_context;
11503 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11504                 if (overflow_handler == bpf_overflow_handler) {
11505                         struct bpf_prog *prog = parent_event->prog;
11506
11507                         bpf_prog_inc(prog);
11508                         event->prog = prog;
11509                         event->orig_overflow_handler =
11510                                 parent_event->orig_overflow_handler;
11511                 }
11512 #endif
11513         }
11514
11515         if (overflow_handler) {
11516                 event->overflow_handler = overflow_handler;
11517                 event->overflow_handler_context = context;
11518         } else if (is_write_backward(event)){
11519                 event->overflow_handler = perf_event_output_backward;
11520                 event->overflow_handler_context = NULL;
11521         } else {
11522                 event->overflow_handler = perf_event_output_forward;
11523                 event->overflow_handler_context = NULL;
11524         }
11525
11526         perf_event__state_init(event);
11527
11528         pmu = NULL;
11529
11530         hwc = &event->hw;
11531         hwc->sample_period = attr->sample_period;
11532         if (attr->freq && attr->sample_freq)
11533                 hwc->sample_period = 1;
11534         hwc->last_period = hwc->sample_period;
11535
11536         local64_set(&hwc->period_left, hwc->sample_period);
11537
11538         /*
11539          * We currently do not support PERF_SAMPLE_READ on inherited events.
11540          * See perf_output_read().
11541          */
11542         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11543                 goto err_ns;
11544
11545         if (!has_branch_stack(event))
11546                 event->attr.branch_sample_type = 0;
11547
11548         pmu = perf_init_event(event);
11549         if (IS_ERR(pmu)) {
11550                 err = PTR_ERR(pmu);
11551                 goto err_ns;
11552         }
11553
11554         /*
11555          * Disallow uncore-cgroup events, they don't make sense as the cgroup will
11556          * be different on other CPUs in the uncore mask.
11557          */
11558         if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
11559                 err = -EINVAL;
11560                 goto err_pmu;
11561         }
11562
11563         if (event->attr.aux_output &&
11564             !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
11565                 err = -EOPNOTSUPP;
11566                 goto err_pmu;
11567         }
11568
11569         if (cgroup_fd != -1) {
11570                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
11571                 if (err)
11572                         goto err_pmu;
11573         }
11574
11575         err = exclusive_event_init(event);
11576         if (err)
11577                 goto err_pmu;
11578
11579         if (has_addr_filter(event)) {
11580                 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
11581                                                     sizeof(struct perf_addr_filter_range),
11582                                                     GFP_KERNEL);
11583                 if (!event->addr_filter_ranges) {
11584                         err = -ENOMEM;
11585                         goto err_per_task;
11586                 }
11587
11588                 /*
11589                  * Clone the parent's vma offsets: they are valid until exec()
11590                  * even if the mm is not shared with the parent.
11591                  */
11592                 if (event->parent) {
11593                         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11594
11595                         raw_spin_lock_irq(&ifh->lock);
11596                         memcpy(event->addr_filter_ranges,
11597                                event->parent->addr_filter_ranges,
11598                                pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
11599                         raw_spin_unlock_irq(&ifh->lock);
11600                 }
11601
11602                 /* force hw sync on the address filters */
11603                 event->addr_filters_gen = 1;
11604         }
11605
11606         if (!event->parent) {
11607                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
11608                         err = get_callchain_buffers(attr->sample_max_stack);
11609                         if (err)
11610                                 goto err_addr_filters;
11611                 }
11612         }
11613
11614         err = security_perf_event_alloc(event);
11615         if (err)
11616                 goto err_callchain_buffer;
11617
11618         /* symmetric to unaccount_event() in _free_event() */
11619         account_event(event);
11620
11621         return event;
11622
11623 err_callchain_buffer:
11624         if (!event->parent) {
11625                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
11626                         put_callchain_buffers();
11627         }
11628 err_addr_filters:
11629         kfree(event->addr_filter_ranges);
11630
11631 err_per_task:
11632         exclusive_event_destroy(event);
11633
11634 err_pmu:
11635         if (is_cgroup_event(event))
11636                 perf_detach_cgroup(event);
11637         if (event->destroy)
11638                 event->destroy(event);
11639         module_put(pmu->module);
11640 err_ns:
11641         if (event->ns)
11642                 put_pid_ns(event->ns);
11643         if (event->hw.target)
11644                 put_task_struct(event->hw.target);
11645         kmem_cache_free(perf_event_cache, event);
11646
11647         return ERR_PTR(err);
11648 }
11649
11650 static int perf_copy_attr(struct perf_event_attr __user *uattr,
11651                           struct perf_event_attr *attr)
11652 {
11653         u32 size;
11654         int ret;
11655
11656         /* Zero the full structure, so that a short copy will be nice. */
11657         memset(attr, 0, sizeof(*attr));
11658
11659         ret = get_user(size, &uattr->size);
11660         if (ret)
11661                 return ret;
11662
11663         /* ABI compatibility quirk: */
11664         if (!size)
11665                 size = PERF_ATTR_SIZE_VER0;
11666         if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
11667                 goto err_size;
11668
11669         ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
11670         if (ret) {
11671                 if (ret == -E2BIG)
11672                         goto err_size;
11673                 return ret;
11674         }
11675
11676         attr->size = size;
11677
11678         if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
11679                 return -EINVAL;
11680
11681         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
11682                 return -EINVAL;
11683
11684         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
11685                 return -EINVAL;
11686
11687         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
11688                 u64 mask = attr->branch_sample_type;
11689
11690                 /* only using defined bits */
11691                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
11692                         return -EINVAL;
11693
11694                 /* at least one branch bit must be set */
11695                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
11696                         return -EINVAL;
11697
11698                 /* propagate priv level, when not set for branch */
11699                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
11700
11701                         /* exclude_kernel checked on syscall entry */
11702                         if (!attr->exclude_kernel)
11703                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
11704
11705                         if (!attr->exclude_user)
11706                                 mask |= PERF_SAMPLE_BRANCH_USER;
11707
11708                         if (!attr->exclude_hv)
11709                                 mask |= PERF_SAMPLE_BRANCH_HV;
11710                         /*
11711                          * adjust user setting (for HW filter setup)
11712                          */
11713                         attr->branch_sample_type = mask;
11714                 }
11715                 /* privileged levels capture (kernel, hv): check permissions */
11716                 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
11717                         ret = perf_allow_kernel(attr);
11718                         if (ret)
11719                                 return ret;
11720                 }
11721         }
11722
11723         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
11724                 ret = perf_reg_validate(attr->sample_regs_user);
11725                 if (ret)
11726                         return ret;
11727         }
11728
11729         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
11730                 if (!arch_perf_have_user_stack_dump())
11731                         return -ENOSYS;
11732
11733                 /*
11734                  * We have __u32 type for the size, but so far
11735                  * we can only use __u16 as maximum due to the
11736                  * __u16 sample size limit.
11737                  */
11738                 if (attr->sample_stack_user >= USHRT_MAX)
11739                         return -EINVAL;
11740                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
11741                         return -EINVAL;
11742         }
11743
11744         if (!attr->sample_max_stack)
11745                 attr->sample_max_stack = sysctl_perf_event_max_stack;
11746
11747         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
11748                 ret = perf_reg_validate(attr->sample_regs_intr);
11749
11750 #ifndef CONFIG_CGROUP_PERF
11751         if (attr->sample_type & PERF_SAMPLE_CGROUP)
11752                 return -EINVAL;
11753 #endif
11754         if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
11755             (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
11756                 return -EINVAL;
11757
11758         if (!attr->inherit && attr->inherit_thread)
11759                 return -EINVAL;
11760
11761         if (attr->remove_on_exec && attr->enable_on_exec)
11762                 return -EINVAL;
11763
11764         if (attr->sigtrap && !attr->remove_on_exec)
11765                 return -EINVAL;
11766
11767 out:
11768         return ret;
11769
11770 err_size:
11771         put_user(sizeof(*attr), &uattr->size);
11772         ret = -E2BIG;
11773         goto out;
11774 }
11775
11776 static int
11777 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
11778 {
11779         struct perf_buffer *rb = NULL;
11780         int ret = -EINVAL;
11781
11782         if (!output_event)
11783                 goto set;
11784
11785         /* don't allow circular references */
11786         if (event == output_event)
11787                 goto out;
11788
11789         /*
11790          * Don't allow cross-cpu buffers
11791          */
11792         if (output_event->cpu != event->cpu)
11793                 goto out;
11794
11795         /*
11796          * If its not a per-cpu rb, it must be the same task.
11797          */
11798         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
11799                 goto out;
11800
11801         /*
11802          * Mixing clocks in the same buffer is trouble you don't need.
11803          */
11804         if (output_event->clock != event->clock)
11805                 goto out;
11806
11807         /*
11808          * Either writing ring buffer from beginning or from end.
11809          * Mixing is not allowed.
11810          */
11811         if (is_write_backward(output_event) != is_write_backward(event))
11812                 goto out;
11813
11814         /*
11815          * If both events generate aux data, they must be on the same PMU
11816          */
11817         if (has_aux(event) && has_aux(output_event) &&
11818             event->pmu != output_event->pmu)
11819                 goto out;
11820
11821 set:
11822         mutex_lock(&event->mmap_mutex);
11823         /* Can't redirect output if we've got an active mmap() */
11824         if (atomic_read(&event->mmap_count))
11825                 goto unlock;
11826
11827         if (output_event) {
11828                 /* get the rb we want to redirect to */
11829                 rb = ring_buffer_get(output_event);
11830                 if (!rb)
11831                         goto unlock;
11832         }
11833
11834         ring_buffer_attach(event, rb);
11835
11836         ret = 0;
11837 unlock:
11838         mutex_unlock(&event->mmap_mutex);
11839
11840 out:
11841         return ret;
11842 }
11843
11844 static void mutex_lock_double(struct mutex *a, struct mutex *b)
11845 {
11846         if (b < a)
11847                 swap(a, b);
11848
11849         mutex_lock(a);
11850         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
11851 }
11852
11853 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
11854 {
11855         bool nmi_safe = false;
11856
11857         switch (clk_id) {
11858         case CLOCK_MONOTONIC:
11859                 event->clock = &ktime_get_mono_fast_ns;
11860                 nmi_safe = true;
11861                 break;
11862
11863         case CLOCK_MONOTONIC_RAW:
11864                 event->clock = &ktime_get_raw_fast_ns;
11865                 nmi_safe = true;
11866                 break;
11867
11868         case CLOCK_REALTIME:
11869                 event->clock = &ktime_get_real_ns;
11870                 break;
11871
11872         case CLOCK_BOOTTIME:
11873                 event->clock = &ktime_get_boottime_ns;
11874                 break;
11875
11876         case CLOCK_TAI:
11877                 event->clock = &ktime_get_clocktai_ns;
11878                 break;
11879
11880         default:
11881                 return -EINVAL;
11882         }
11883
11884         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
11885                 return -EINVAL;
11886
11887         return 0;
11888 }
11889
11890 /*
11891  * Variation on perf_event_ctx_lock_nested(), except we take two context
11892  * mutexes.
11893  */
11894 static struct perf_event_context *
11895 __perf_event_ctx_lock_double(struct perf_event *group_leader,
11896                              struct perf_event_context *ctx)
11897 {
11898         struct perf_event_context *gctx;
11899
11900 again:
11901         rcu_read_lock();
11902         gctx = READ_ONCE(group_leader->ctx);
11903         if (!refcount_inc_not_zero(&gctx->refcount)) {
11904                 rcu_read_unlock();
11905                 goto again;
11906         }
11907         rcu_read_unlock();
11908
11909         mutex_lock_double(&gctx->mutex, &ctx->mutex);
11910
11911         if (group_leader->ctx != gctx) {
11912                 mutex_unlock(&ctx->mutex);
11913                 mutex_unlock(&gctx->mutex);
11914                 put_ctx(gctx);
11915                 goto again;
11916         }
11917
11918         return gctx;
11919 }
11920
11921 static bool
11922 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
11923 {
11924         unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
11925         bool is_capable = perfmon_capable();
11926
11927         if (attr->sigtrap) {
11928                 /*
11929                  * perf_event_attr::sigtrap sends signals to the other task.
11930                  * Require the current task to also have CAP_KILL.
11931                  */
11932                 rcu_read_lock();
11933                 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
11934                 rcu_read_unlock();
11935
11936                 /*
11937                  * If the required capabilities aren't available, checks for
11938                  * ptrace permissions: upgrade to ATTACH, since sending signals
11939                  * can effectively change the target task.
11940                  */
11941                 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
11942         }
11943
11944         /*
11945          * Preserve ptrace permission check for backwards compatibility. The
11946          * ptrace check also includes checks that the current task and other
11947          * task have matching uids, and is therefore not done here explicitly.
11948          */
11949         return is_capable || ptrace_may_access(task, ptrace_mode);
11950 }
11951
11952 /**
11953  * sys_perf_event_open - open a performance event, associate it to a task/cpu
11954  *
11955  * @attr_uptr:  event_id type attributes for monitoring/sampling
11956  * @pid:                target pid
11957  * @cpu:                target cpu
11958  * @group_fd:           group leader event fd
11959  * @flags:              perf event open flags
11960  */
11961 SYSCALL_DEFINE5(perf_event_open,
11962                 struct perf_event_attr __user *, attr_uptr,
11963                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
11964 {
11965         struct perf_event *group_leader = NULL, *output_event = NULL;
11966         struct perf_event *event, *sibling;
11967         struct perf_event_attr attr;
11968         struct perf_event_context *ctx, *gctx;
11969         struct file *event_file = NULL;
11970         struct fd group = {NULL, 0};
11971         struct task_struct *task = NULL;
11972         struct pmu *pmu;
11973         int event_fd;
11974         int move_group = 0;
11975         int err;
11976         int f_flags = O_RDWR;
11977         int cgroup_fd = -1;
11978
11979         /* for future expandability... */
11980         if (flags & ~PERF_FLAG_ALL)
11981                 return -EINVAL;
11982
11983         /* Do we allow access to perf_event_open(2) ? */
11984         err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
11985         if (err)
11986                 return err;
11987
11988         err = perf_copy_attr(attr_uptr, &attr);
11989         if (err)
11990                 return err;
11991
11992         if (!attr.exclude_kernel) {
11993                 err = perf_allow_kernel(&attr);
11994                 if (err)
11995                         return err;
11996         }
11997
11998         if (attr.namespaces) {
11999                 if (!perfmon_capable())
12000                         return -EACCES;
12001         }
12002
12003         if (attr.freq) {
12004                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
12005                         return -EINVAL;
12006         } else {
12007                 if (attr.sample_period & (1ULL << 63))
12008                         return -EINVAL;
12009         }
12010
12011         /* Only privileged users can get physical addresses */
12012         if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
12013                 err = perf_allow_kernel(&attr);
12014                 if (err)
12015                         return err;
12016         }
12017
12018         /* REGS_INTR can leak data, lockdown must prevent this */
12019         if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
12020                 err = security_locked_down(LOCKDOWN_PERF);
12021                 if (err)
12022                         return err;
12023         }
12024
12025         /*
12026          * In cgroup mode, the pid argument is used to pass the fd
12027          * opened to the cgroup directory in cgroupfs. The cpu argument
12028          * designates the cpu on which to monitor threads from that
12029          * cgroup.
12030          */
12031         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12032                 return -EINVAL;
12033
12034         if (flags & PERF_FLAG_FD_CLOEXEC)
12035                 f_flags |= O_CLOEXEC;
12036
12037         event_fd = get_unused_fd_flags(f_flags);
12038         if (event_fd < 0)
12039                 return event_fd;
12040
12041         if (group_fd != -1) {
12042                 err = perf_fget_light(group_fd, &group);
12043                 if (err)
12044                         goto err_fd;
12045                 group_leader = group.file->private_data;
12046                 if (flags & PERF_FLAG_FD_OUTPUT)
12047                         output_event = group_leader;
12048                 if (flags & PERF_FLAG_FD_NO_GROUP)
12049                         group_leader = NULL;
12050         }
12051
12052         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12053                 task = find_lively_task_by_vpid(pid);
12054                 if (IS_ERR(task)) {
12055                         err = PTR_ERR(task);
12056                         goto err_group_fd;
12057                 }
12058         }
12059
12060         if (task && group_leader &&
12061             group_leader->attr.inherit != attr.inherit) {
12062                 err = -EINVAL;
12063                 goto err_task;
12064         }
12065
12066         if (flags & PERF_FLAG_PID_CGROUP)
12067                 cgroup_fd = pid;
12068
12069         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12070                                  NULL, NULL, cgroup_fd);
12071         if (IS_ERR(event)) {
12072                 err = PTR_ERR(event);
12073                 goto err_task;
12074         }
12075
12076         if (is_sampling_event(event)) {
12077                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12078                         err = -EOPNOTSUPP;
12079                         goto err_alloc;
12080                 }
12081         }
12082
12083         /*
12084          * Special case software events and allow them to be part of
12085          * any hardware group.
12086          */
12087         pmu = event->pmu;
12088
12089         if (attr.use_clockid) {
12090                 err = perf_event_set_clock(event, attr.clockid);
12091                 if (err)
12092                         goto err_alloc;
12093         }
12094
12095         if (pmu->task_ctx_nr == perf_sw_context)
12096                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
12097
12098         if (group_leader) {
12099                 if (is_software_event(event) &&
12100                     !in_software_context(group_leader)) {
12101                         /*
12102                          * If the event is a sw event, but the group_leader
12103                          * is on hw context.
12104                          *
12105                          * Allow the addition of software events to hw
12106                          * groups, this is safe because software events
12107                          * never fail to schedule.
12108                          */
12109                         pmu = group_leader->ctx->pmu;
12110                 } else if (!is_software_event(event) &&
12111                            is_software_event(group_leader) &&
12112                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12113                         /*
12114                          * In case the group is a pure software group, and we
12115                          * try to add a hardware event, move the whole group to
12116                          * the hardware context.
12117                          */
12118                         move_group = 1;
12119                 }
12120         }
12121
12122         /*
12123          * Get the target context (task or percpu):
12124          */
12125         ctx = find_get_context(pmu, task, event);
12126         if (IS_ERR(ctx)) {
12127                 err = PTR_ERR(ctx);
12128                 goto err_alloc;
12129         }
12130
12131         /*
12132          * Look up the group leader (we will attach this event to it):
12133          */
12134         if (group_leader) {
12135                 err = -EINVAL;
12136
12137                 /*
12138                  * Do not allow a recursive hierarchy (this new sibling
12139                  * becoming part of another group-sibling):
12140                  */
12141                 if (group_leader->group_leader != group_leader)
12142                         goto err_context;
12143
12144                 /* All events in a group should have the same clock */
12145                 if (group_leader->clock != event->clock)
12146                         goto err_context;
12147
12148                 /*
12149                  * Make sure we're both events for the same CPU;
12150                  * grouping events for different CPUs is broken; since
12151                  * you can never concurrently schedule them anyhow.
12152                  */
12153                 if (group_leader->cpu != event->cpu)
12154                         goto err_context;
12155
12156                 /*
12157                  * Make sure we're both on the same task, or both
12158                  * per-CPU events.
12159                  */
12160                 if (group_leader->ctx->task != ctx->task)
12161                         goto err_context;
12162
12163                 /*
12164                  * Do not allow to attach to a group in a different task
12165                  * or CPU context. If we're moving SW events, we'll fix
12166                  * this up later, so allow that.
12167                  */
12168                 if (!move_group && group_leader->ctx != ctx)
12169                         goto err_context;
12170
12171                 /*
12172                  * Only a group leader can be exclusive or pinned
12173                  */
12174                 if (attr.exclusive || attr.pinned)
12175                         goto err_context;
12176         }
12177
12178         if (output_event) {
12179                 err = perf_event_set_output(event, output_event);
12180                 if (err)
12181                         goto err_context;
12182         }
12183
12184         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
12185                                         f_flags);
12186         if (IS_ERR(event_file)) {
12187                 err = PTR_ERR(event_file);
12188                 event_file = NULL;
12189                 goto err_context;
12190         }
12191
12192         if (task) {
12193                 err = down_read_interruptible(&task->signal->exec_update_lock);
12194                 if (err)
12195                         goto err_file;
12196
12197                 /*
12198                  * We must hold exec_update_lock across this and any potential
12199                  * perf_install_in_context() call for this new event to
12200                  * serialize against exec() altering our credentials (and the
12201                  * perf_event_exit_task() that could imply).
12202                  */
12203                 err = -EACCES;
12204                 if (!perf_check_permission(&attr, task))
12205                         goto err_cred;
12206         }
12207
12208         if (move_group) {
12209                 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
12210
12211                 if (gctx->task == TASK_TOMBSTONE) {
12212                         err = -ESRCH;
12213                         goto err_locked;
12214                 }
12215
12216                 /*
12217                  * Check if we raced against another sys_perf_event_open() call
12218                  * moving the software group underneath us.
12219                  */
12220                 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12221                         /*
12222                          * If someone moved the group out from under us, check
12223                          * if this new event wound up on the same ctx, if so
12224                          * its the regular !move_group case, otherwise fail.
12225                          */
12226                         if (gctx != ctx) {
12227                                 err = -EINVAL;
12228                                 goto err_locked;
12229                         } else {
12230                                 perf_event_ctx_unlock(group_leader, gctx);
12231                                 move_group = 0;
12232                         }
12233                 }
12234
12235                 /*
12236                  * Failure to create exclusive events returns -EBUSY.
12237                  */
12238                 err = -EBUSY;
12239                 if (!exclusive_event_installable(group_leader, ctx))
12240                         goto err_locked;
12241
12242                 for_each_sibling_event(sibling, group_leader) {
12243                         if (!exclusive_event_installable(sibling, ctx))
12244                                 goto err_locked;
12245                 }
12246         } else {
12247                 mutex_lock(&ctx->mutex);
12248         }
12249
12250         if (ctx->task == TASK_TOMBSTONE) {
12251                 err = -ESRCH;
12252                 goto err_locked;
12253         }
12254
12255         if (!perf_event_validate_size(event)) {
12256                 err = -E2BIG;
12257                 goto err_locked;
12258         }
12259
12260         if (!task) {
12261                 /*
12262                  * Check if the @cpu we're creating an event for is online.
12263                  *
12264                  * We use the perf_cpu_context::ctx::mutex to serialize against
12265                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12266                  */
12267                 struct perf_cpu_context *cpuctx =
12268                         container_of(ctx, struct perf_cpu_context, ctx);
12269
12270                 if (!cpuctx->online) {
12271                         err = -ENODEV;
12272                         goto err_locked;
12273                 }
12274         }
12275
12276         if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12277                 err = -EINVAL;
12278                 goto err_locked;
12279         }
12280
12281         /*
12282          * Must be under the same ctx::mutex as perf_install_in_context(),
12283          * because we need to serialize with concurrent event creation.
12284          */
12285         if (!exclusive_event_installable(event, ctx)) {
12286                 err = -EBUSY;
12287                 goto err_locked;
12288         }
12289
12290         WARN_ON_ONCE(ctx->parent_ctx);
12291
12292         /*
12293          * This is the point on no return; we cannot fail hereafter. This is
12294          * where we start modifying current state.
12295          */
12296
12297         if (move_group) {
12298                 /*
12299                  * See perf_event_ctx_lock() for comments on the details
12300                  * of swizzling perf_event::ctx.
12301                  */
12302                 perf_remove_from_context(group_leader, 0);
12303                 put_ctx(gctx);
12304
12305                 for_each_sibling_event(sibling, group_leader) {
12306                         perf_remove_from_context(sibling, 0);
12307                         put_ctx(gctx);
12308                 }
12309
12310                 /*
12311                  * Wait for everybody to stop referencing the events through
12312                  * the old lists, before installing it on new lists.
12313                  */
12314                 synchronize_rcu();
12315
12316                 /*
12317                  * Install the group siblings before the group leader.
12318                  *
12319                  * Because a group leader will try and install the entire group
12320                  * (through the sibling list, which is still in-tact), we can
12321                  * end up with siblings installed in the wrong context.
12322                  *
12323                  * By installing siblings first we NO-OP because they're not
12324                  * reachable through the group lists.
12325                  */
12326                 for_each_sibling_event(sibling, group_leader) {
12327                         perf_event__state_init(sibling);
12328                         perf_install_in_context(ctx, sibling, sibling->cpu);
12329                         get_ctx(ctx);
12330                 }
12331
12332                 /*
12333                  * Removing from the context ends up with disabled
12334                  * event. What we want here is event in the initial
12335                  * startup state, ready to be add into new context.
12336                  */
12337                 perf_event__state_init(group_leader);
12338                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
12339                 get_ctx(ctx);
12340         }
12341
12342         /*
12343          * Precalculate sample_data sizes; do while holding ctx::mutex such
12344          * that we're serialized against further additions and before
12345          * perf_install_in_context() which is the point the event is active and
12346          * can use these values.
12347          */
12348         perf_event__header_size(event);
12349         perf_event__id_header_size(event);
12350
12351         event->owner = current;
12352
12353         perf_install_in_context(ctx, event, event->cpu);
12354         perf_unpin_context(ctx);
12355
12356         if (move_group)
12357                 perf_event_ctx_unlock(group_leader, gctx);
12358         mutex_unlock(&ctx->mutex);
12359
12360         if (task) {
12361                 up_read(&task->signal->exec_update_lock);
12362                 put_task_struct(task);
12363         }
12364
12365         mutex_lock(&current->perf_event_mutex);
12366         list_add_tail(&event->owner_entry, &current->perf_event_list);
12367         mutex_unlock(&current->perf_event_mutex);
12368
12369         /*
12370          * Drop the reference on the group_event after placing the
12371          * new event on the sibling_list. This ensures destruction
12372          * of the group leader will find the pointer to itself in
12373          * perf_group_detach().
12374          */
12375         fdput(group);
12376         fd_install(event_fd, event_file);
12377         return event_fd;
12378
12379 err_locked:
12380         if (move_group)
12381                 perf_event_ctx_unlock(group_leader, gctx);
12382         mutex_unlock(&ctx->mutex);
12383 err_cred:
12384         if (task)
12385                 up_read(&task->signal->exec_update_lock);
12386 err_file:
12387         fput(event_file);
12388 err_context:
12389         perf_unpin_context(ctx);
12390         put_ctx(ctx);
12391 err_alloc:
12392         /*
12393          * If event_file is set, the fput() above will have called ->release()
12394          * and that will take care of freeing the event.
12395          */
12396         if (!event_file)
12397                 free_event(event);
12398 err_task:
12399         if (task)
12400                 put_task_struct(task);
12401 err_group_fd:
12402         fdput(group);
12403 err_fd:
12404         put_unused_fd(event_fd);
12405         return err;
12406 }
12407
12408 /**
12409  * perf_event_create_kernel_counter
12410  *
12411  * @attr: attributes of the counter to create
12412  * @cpu: cpu in which the counter is bound
12413  * @task: task to profile (NULL for percpu)
12414  * @overflow_handler: callback to trigger when we hit the event
12415  * @context: context data could be used in overflow_handler callback
12416  */
12417 struct perf_event *
12418 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12419                                  struct task_struct *task,
12420                                  perf_overflow_handler_t overflow_handler,
12421                                  void *context)
12422 {
12423         struct perf_event_context *ctx;
12424         struct perf_event *event;
12425         int err;
12426
12427         /*
12428          * Grouping is not supported for kernel events, neither is 'AUX',
12429          * make sure the caller's intentions are adjusted.
12430          */
12431         if (attr->aux_output)
12432                 return ERR_PTR(-EINVAL);
12433
12434         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12435                                  overflow_handler, context, -1);
12436         if (IS_ERR(event)) {
12437                 err = PTR_ERR(event);
12438                 goto err;
12439         }
12440
12441         /* Mark owner so we could distinguish it from user events. */
12442         event->owner = TASK_TOMBSTONE;
12443
12444         /*
12445          * Get the target context (task or percpu):
12446          */
12447         ctx = find_get_context(event->pmu, task, event);
12448         if (IS_ERR(ctx)) {
12449                 err = PTR_ERR(ctx);
12450                 goto err_free;
12451         }
12452
12453         WARN_ON_ONCE(ctx->parent_ctx);
12454         mutex_lock(&ctx->mutex);
12455         if (ctx->task == TASK_TOMBSTONE) {
12456                 err = -ESRCH;
12457                 goto err_unlock;
12458         }
12459
12460         if (!task) {
12461                 /*
12462                  * Check if the @cpu we're creating an event for is online.
12463                  *
12464                  * We use the perf_cpu_context::ctx::mutex to serialize against
12465                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12466                  */
12467                 struct perf_cpu_context *cpuctx =
12468                         container_of(ctx, struct perf_cpu_context, ctx);
12469                 if (!cpuctx->online) {
12470                         err = -ENODEV;
12471                         goto err_unlock;
12472                 }
12473         }
12474
12475         if (!exclusive_event_installable(event, ctx)) {
12476                 err = -EBUSY;
12477                 goto err_unlock;
12478         }
12479
12480         perf_install_in_context(ctx, event, event->cpu);
12481         perf_unpin_context(ctx);
12482         mutex_unlock(&ctx->mutex);
12483
12484         return event;
12485
12486 err_unlock:
12487         mutex_unlock(&ctx->mutex);
12488         perf_unpin_context(ctx);
12489         put_ctx(ctx);
12490 err_free:
12491         free_event(event);
12492 err:
12493         return ERR_PTR(err);
12494 }
12495 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12496
12497 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12498 {
12499         struct perf_event_context *src_ctx;
12500         struct perf_event_context *dst_ctx;
12501         struct perf_event *event, *tmp;
12502         LIST_HEAD(events);
12503
12504         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
12505         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
12506
12507         /*
12508          * See perf_event_ctx_lock() for comments on the details
12509          * of swizzling perf_event::ctx.
12510          */
12511         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
12512         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
12513                                  event_entry) {
12514                 perf_remove_from_context(event, 0);
12515                 unaccount_event_cpu(event, src_cpu);
12516                 put_ctx(src_ctx);
12517                 list_add(&event->migrate_entry, &events);
12518         }
12519
12520         /*
12521          * Wait for the events to quiesce before re-instating them.
12522          */
12523         synchronize_rcu();
12524
12525         /*
12526          * Re-instate events in 2 passes.
12527          *
12528          * Skip over group leaders and only install siblings on this first
12529          * pass, siblings will not get enabled without a leader, however a
12530          * leader will enable its siblings, even if those are still on the old
12531          * context.
12532          */
12533         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12534                 if (event->group_leader == event)
12535                         continue;
12536
12537                 list_del(&event->migrate_entry);
12538                 if (event->state >= PERF_EVENT_STATE_OFF)
12539                         event->state = PERF_EVENT_STATE_INACTIVE;
12540                 account_event_cpu(event, dst_cpu);
12541                 perf_install_in_context(dst_ctx, event, dst_cpu);
12542                 get_ctx(dst_ctx);
12543         }
12544
12545         /*
12546          * Once all the siblings are setup properly, install the group leaders
12547          * to make it go.
12548          */
12549         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12550                 list_del(&event->migrate_entry);
12551                 if (event->state >= PERF_EVENT_STATE_OFF)
12552                         event->state = PERF_EVENT_STATE_INACTIVE;
12553                 account_event_cpu(event, dst_cpu);
12554                 perf_install_in_context(dst_ctx, event, dst_cpu);
12555                 get_ctx(dst_ctx);
12556         }
12557         mutex_unlock(&dst_ctx->mutex);
12558         mutex_unlock(&src_ctx->mutex);
12559 }
12560 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12561
12562 static void sync_child_event(struct perf_event *child_event)
12563 {
12564         struct perf_event *parent_event = child_event->parent;
12565         u64 child_val;
12566
12567         if (child_event->attr.inherit_stat) {
12568                 struct task_struct *task = child_event->ctx->task;
12569
12570                 if (task && task != TASK_TOMBSTONE)
12571                         perf_event_read_event(child_event, task);
12572         }
12573
12574         child_val = perf_event_count(child_event);
12575
12576         /*
12577          * Add back the child's count to the parent's count:
12578          */
12579         atomic64_add(child_val, &parent_event->child_count);
12580         atomic64_add(child_event->total_time_enabled,
12581                      &parent_event->child_total_time_enabled);
12582         atomic64_add(child_event->total_time_running,
12583                      &parent_event->child_total_time_running);
12584 }
12585
12586 static void
12587 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
12588 {
12589         struct perf_event *parent_event = event->parent;
12590         unsigned long detach_flags = 0;
12591
12592         if (parent_event) {
12593                 /*
12594                  * Do not destroy the 'original' grouping; because of the
12595                  * context switch optimization the original events could've
12596                  * ended up in a random child task.
12597                  *
12598                  * If we were to destroy the original group, all group related
12599                  * operations would cease to function properly after this
12600                  * random child dies.
12601                  *
12602                  * Do destroy all inherited groups, we don't care about those
12603                  * and being thorough is better.
12604                  */
12605                 detach_flags = DETACH_GROUP | DETACH_CHILD;
12606                 mutex_lock(&parent_event->child_mutex);
12607         }
12608
12609         perf_remove_from_context(event, detach_flags);
12610
12611         raw_spin_lock_irq(&ctx->lock);
12612         if (event->state > PERF_EVENT_STATE_EXIT)
12613                 perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
12614         raw_spin_unlock_irq(&ctx->lock);
12615
12616         /*
12617          * Child events can be freed.
12618          */
12619         if (parent_event) {
12620                 mutex_unlock(&parent_event->child_mutex);
12621                 /*
12622                  * Kick perf_poll() for is_event_hup();
12623                  */
12624                 perf_event_wakeup(parent_event);
12625                 free_event(event);
12626                 put_event(parent_event);
12627                 return;
12628         }
12629
12630         /*
12631          * Parent events are governed by their filedesc, retain them.
12632          */
12633         perf_event_wakeup(event);
12634 }
12635
12636 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
12637 {
12638         struct perf_event_context *child_ctx, *clone_ctx = NULL;
12639         struct perf_event *child_event, *next;
12640
12641         WARN_ON_ONCE(child != current);
12642
12643         child_ctx = perf_pin_task_context(child, ctxn);
12644         if (!child_ctx)
12645                 return;
12646
12647         /*
12648          * In order to reduce the amount of tricky in ctx tear-down, we hold
12649          * ctx::mutex over the entire thing. This serializes against almost
12650          * everything that wants to access the ctx.
12651          *
12652          * The exception is sys_perf_event_open() /
12653          * perf_event_create_kernel_count() which does find_get_context()
12654          * without ctx::mutex (it cannot because of the move_group double mutex
12655          * lock thing). See the comments in perf_install_in_context().
12656          */
12657         mutex_lock(&child_ctx->mutex);
12658
12659         /*
12660          * In a single ctx::lock section, de-schedule the events and detach the
12661          * context from the task such that we cannot ever get it scheduled back
12662          * in.
12663          */
12664         raw_spin_lock_irq(&child_ctx->lock);
12665         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
12666
12667         /*
12668          * Now that the context is inactive, destroy the task <-> ctx relation
12669          * and mark the context dead.
12670          */
12671         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
12672         put_ctx(child_ctx); /* cannot be last */
12673         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
12674         put_task_struct(current); /* cannot be last */
12675
12676         clone_ctx = unclone_ctx(child_ctx);
12677         raw_spin_unlock_irq(&child_ctx->lock);
12678
12679         if (clone_ctx)
12680                 put_ctx(clone_ctx);
12681
12682         /*
12683          * Report the task dead after unscheduling the events so that we
12684          * won't get any samples after PERF_RECORD_EXIT. We can however still
12685          * get a few PERF_RECORD_READ events.
12686          */
12687         perf_event_task(child, child_ctx, 0);
12688
12689         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
12690                 perf_event_exit_event(child_event, child_ctx);
12691
12692         mutex_unlock(&child_ctx->mutex);
12693
12694         put_ctx(child_ctx);
12695 }
12696
12697 /*
12698  * When a child task exits, feed back event values to parent events.
12699  *
12700  * Can be called with exec_update_lock held when called from
12701  * setup_new_exec().
12702  */
12703 void perf_event_exit_task(struct task_struct *child)
12704 {
12705         struct perf_event *event, *tmp;
12706         int ctxn;
12707
12708         mutex_lock(&child->perf_event_mutex);
12709         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
12710                                  owner_entry) {
12711                 list_del_init(&event->owner_entry);
12712
12713                 /*
12714                  * Ensure the list deletion is visible before we clear
12715                  * the owner, closes a race against perf_release() where
12716                  * we need to serialize on the owner->perf_event_mutex.
12717                  */
12718                 smp_store_release(&event->owner, NULL);
12719         }
12720         mutex_unlock(&child->perf_event_mutex);
12721
12722         for_each_task_context_nr(ctxn)
12723                 perf_event_exit_task_context(child, ctxn);
12724
12725         /*
12726          * The perf_event_exit_task_context calls perf_event_task
12727          * with child's task_ctx, which generates EXIT events for
12728          * child contexts and sets child->perf_event_ctxp[] to NULL.
12729          * At this point we need to send EXIT events to cpu contexts.
12730          */
12731         perf_event_task(child, NULL, 0);
12732 }
12733
12734 static void perf_free_event(struct perf_event *event,
12735                             struct perf_event_context *ctx)
12736 {
12737         struct perf_event *parent = event->parent;
12738
12739         if (WARN_ON_ONCE(!parent))
12740                 return;
12741
12742         mutex_lock(&parent->child_mutex);
12743         list_del_init(&event->child_list);
12744         mutex_unlock(&parent->child_mutex);
12745
12746         put_event(parent);
12747
12748         raw_spin_lock_irq(&ctx->lock);
12749         perf_group_detach(event);
12750         list_del_event(event, ctx);
12751         raw_spin_unlock_irq(&ctx->lock);
12752         free_event(event);
12753 }
12754
12755 /*
12756  * Free a context as created by inheritance by perf_event_init_task() below,
12757  * used by fork() in case of fail.
12758  *
12759  * Even though the task has never lived, the context and events have been
12760  * exposed through the child_list, so we must take care tearing it all down.
12761  */
12762 void perf_event_free_task(struct task_struct *task)
12763 {
12764         struct perf_event_context *ctx;
12765         struct perf_event *event, *tmp;
12766         int ctxn;
12767
12768         for_each_task_context_nr(ctxn) {
12769                 ctx = task->perf_event_ctxp[ctxn];
12770                 if (!ctx)
12771                         continue;
12772
12773                 mutex_lock(&ctx->mutex);
12774                 raw_spin_lock_irq(&ctx->lock);
12775                 /*
12776                  * Destroy the task <-> ctx relation and mark the context dead.
12777                  *
12778                  * This is important because even though the task hasn't been
12779                  * exposed yet the context has been (through child_list).
12780                  */
12781                 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
12782                 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
12783                 put_task_struct(task); /* cannot be last */
12784                 raw_spin_unlock_irq(&ctx->lock);
12785
12786                 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
12787                         perf_free_event(event, ctx);
12788
12789                 mutex_unlock(&ctx->mutex);
12790
12791                 /*
12792                  * perf_event_release_kernel() could've stolen some of our
12793                  * child events and still have them on its free_list. In that
12794                  * case we must wait for these events to have been freed (in
12795                  * particular all their references to this task must've been
12796                  * dropped).
12797                  *
12798                  * Without this copy_process() will unconditionally free this
12799                  * task (irrespective of its reference count) and
12800                  * _free_event()'s put_task_struct(event->hw.target) will be a
12801                  * use-after-free.
12802                  *
12803                  * Wait for all events to drop their context reference.
12804                  */
12805                 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
12806                 put_ctx(ctx); /* must be last */
12807         }
12808 }
12809
12810 void perf_event_delayed_put(struct task_struct *task)
12811 {
12812         int ctxn;
12813
12814         for_each_task_context_nr(ctxn)
12815                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
12816 }
12817
12818 struct file *perf_event_get(unsigned int fd)
12819 {
12820         struct file *file = fget(fd);
12821         if (!file)
12822                 return ERR_PTR(-EBADF);
12823
12824         if (file->f_op != &perf_fops) {
12825                 fput(file);
12826                 return ERR_PTR(-EBADF);
12827         }
12828
12829         return file;
12830 }
12831
12832 const struct perf_event *perf_get_event(struct file *file)
12833 {
12834         if (file->f_op != &perf_fops)
12835                 return ERR_PTR(-EINVAL);
12836
12837         return file->private_data;
12838 }
12839
12840 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
12841 {
12842         if (!event)
12843                 return ERR_PTR(-EINVAL);
12844
12845         return &event->attr;
12846 }
12847
12848 /*
12849  * Inherit an event from parent task to child task.
12850  *
12851  * Returns:
12852  *  - valid pointer on success
12853  *  - NULL for orphaned events
12854  *  - IS_ERR() on error
12855  */
12856 static struct perf_event *
12857 inherit_event(struct perf_event *parent_event,
12858               struct task_struct *parent,
12859               struct perf_event_context *parent_ctx,
12860               struct task_struct *child,
12861               struct perf_event *group_leader,
12862               struct perf_event_context *child_ctx)
12863 {
12864         enum perf_event_state parent_state = parent_event->state;
12865         struct perf_event *child_event;
12866         unsigned long flags;
12867
12868         /*
12869          * Instead of creating recursive hierarchies of events,
12870          * we link inherited events back to the original parent,
12871          * which has a filp for sure, which we use as the reference
12872          * count:
12873          */
12874         if (parent_event->parent)
12875                 parent_event = parent_event->parent;
12876
12877         child_event = perf_event_alloc(&parent_event->attr,
12878                                            parent_event->cpu,
12879                                            child,
12880                                            group_leader, parent_event,
12881                                            NULL, NULL, -1);
12882         if (IS_ERR(child_event))
12883                 return child_event;
12884
12885
12886         if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
12887             !child_ctx->task_ctx_data) {
12888                 struct pmu *pmu = child_event->pmu;
12889
12890                 child_ctx->task_ctx_data = alloc_task_ctx_data(pmu);
12891                 if (!child_ctx->task_ctx_data) {
12892                         free_event(child_event);
12893                         return ERR_PTR(-ENOMEM);
12894                 }
12895         }
12896
12897         /*
12898          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
12899          * must be under the same lock in order to serialize against
12900          * perf_event_release_kernel(), such that either we must observe
12901          * is_orphaned_event() or they will observe us on the child_list.
12902          */
12903         mutex_lock(&parent_event->child_mutex);
12904         if (is_orphaned_event(parent_event) ||
12905             !atomic_long_inc_not_zero(&parent_event->refcount)) {
12906                 mutex_unlock(&parent_event->child_mutex);
12907                 /* task_ctx_data is freed with child_ctx */
12908                 free_event(child_event);
12909                 return NULL;
12910         }
12911
12912         get_ctx(child_ctx);
12913
12914         /*
12915          * Make the child state follow the state of the parent event,
12916          * not its attr.disabled bit.  We hold the parent's mutex,
12917          * so we won't race with perf_event_{en, dis}able_family.
12918          */
12919         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
12920                 child_event->state = PERF_EVENT_STATE_INACTIVE;
12921         else
12922                 child_event->state = PERF_EVENT_STATE_OFF;
12923
12924         if (parent_event->attr.freq) {
12925                 u64 sample_period = parent_event->hw.sample_period;
12926                 struct hw_perf_event *hwc = &child_event->hw;
12927
12928                 hwc->sample_period = sample_period;
12929                 hwc->last_period   = sample_period;
12930
12931                 local64_set(&hwc->period_left, sample_period);
12932         }
12933
12934         child_event->ctx = child_ctx;
12935         child_event->overflow_handler = parent_event->overflow_handler;
12936         child_event->overflow_handler_context
12937                 = parent_event->overflow_handler_context;
12938
12939         /*
12940          * Precalculate sample_data sizes
12941          */
12942         perf_event__header_size(child_event);
12943         perf_event__id_header_size(child_event);
12944
12945         /*
12946          * Link it up in the child's context:
12947          */
12948         raw_spin_lock_irqsave(&child_ctx->lock, flags);
12949         add_event_to_ctx(child_event, child_ctx);
12950         child_event->attach_state |= PERF_ATTACH_CHILD;
12951         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
12952
12953         /*
12954          * Link this into the parent event's child list
12955          */
12956         list_add_tail(&child_event->child_list, &parent_event->child_list);
12957         mutex_unlock(&parent_event->child_mutex);
12958
12959         return child_event;
12960 }
12961
12962 /*
12963  * Inherits an event group.
12964  *
12965  * This will quietly suppress orphaned events; !inherit_event() is not an error.
12966  * This matches with perf_event_release_kernel() removing all child events.
12967  *
12968  * Returns:
12969  *  - 0 on success
12970  *  - <0 on error
12971  */
12972 static int inherit_group(struct perf_event *parent_event,
12973               struct task_struct *parent,
12974               struct perf_event_context *parent_ctx,
12975               struct task_struct *child,
12976               struct perf_event_context *child_ctx)
12977 {
12978         struct perf_event *leader;
12979         struct perf_event *sub;
12980         struct perf_event *child_ctr;
12981
12982         leader = inherit_event(parent_event, parent, parent_ctx,
12983                                  child, NULL, child_ctx);
12984         if (IS_ERR(leader))
12985                 return PTR_ERR(leader);
12986         /*
12987          * @leader can be NULL here because of is_orphaned_event(). In this
12988          * case inherit_event() will create individual events, similar to what
12989          * perf_group_detach() would do anyway.
12990          */
12991         for_each_sibling_event(sub, parent_event) {
12992                 child_ctr = inherit_event(sub, parent, parent_ctx,
12993                                             child, leader, child_ctx);
12994                 if (IS_ERR(child_ctr))
12995                         return PTR_ERR(child_ctr);
12996
12997                 if (sub->aux_event == parent_event && child_ctr &&
12998                     !perf_get_aux_event(child_ctr, leader))
12999                         return -EINVAL;
13000         }
13001         return 0;
13002 }
13003
13004 /*
13005  * Creates the child task context and tries to inherit the event-group.
13006  *
13007  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13008  * inherited_all set when we 'fail' to inherit an orphaned event; this is
13009  * consistent with perf_event_release_kernel() removing all child events.
13010  *
13011  * Returns:
13012  *  - 0 on success
13013  *  - <0 on error
13014  */
13015 static int
13016 inherit_task_group(struct perf_event *event, struct task_struct *parent,
13017                    struct perf_event_context *parent_ctx,
13018                    struct task_struct *child, int ctxn,
13019                    u64 clone_flags, int *inherited_all)
13020 {
13021         int ret;
13022         struct perf_event_context *child_ctx;
13023
13024         if (!event->attr.inherit ||
13025             (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13026             /* Do not inherit if sigtrap and signal handlers were cleared. */
13027             (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13028                 *inherited_all = 0;
13029                 return 0;
13030         }
13031
13032         child_ctx = child->perf_event_ctxp[ctxn];
13033         if (!child_ctx) {
13034                 /*
13035                  * This is executed from the parent task context, so
13036                  * inherit events that have been marked for cloning.
13037                  * First allocate and initialize a context for the
13038                  * child.
13039                  */
13040                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
13041                 if (!child_ctx)
13042                         return -ENOMEM;
13043
13044                 child->perf_event_ctxp[ctxn] = child_ctx;
13045         }
13046
13047         ret = inherit_group(event, parent, parent_ctx,
13048                             child, child_ctx);
13049
13050         if (ret)
13051                 *inherited_all = 0;
13052
13053         return ret;
13054 }
13055
13056 /*
13057  * Initialize the perf_event context in task_struct
13058  */
13059 static int perf_event_init_context(struct task_struct *child, int ctxn,
13060                                    u64 clone_flags)
13061 {
13062         struct perf_event_context *child_ctx, *parent_ctx;
13063         struct perf_event_context *cloned_ctx;
13064         struct perf_event *event;
13065         struct task_struct *parent = current;
13066         int inherited_all = 1;
13067         unsigned long flags;
13068         int ret = 0;
13069
13070         if (likely(!parent->perf_event_ctxp[ctxn]))
13071                 return 0;
13072
13073         /*
13074          * If the parent's context is a clone, pin it so it won't get
13075          * swapped under us.
13076          */
13077         parent_ctx = perf_pin_task_context(parent, ctxn);
13078         if (!parent_ctx)
13079                 return 0;
13080
13081         /*
13082          * No need to check if parent_ctx != NULL here; since we saw
13083          * it non-NULL earlier, the only reason for it to become NULL
13084          * is if we exit, and since we're currently in the middle of
13085          * a fork we can't be exiting at the same time.
13086          */
13087
13088         /*
13089          * Lock the parent list. No need to lock the child - not PID
13090          * hashed yet and not running, so nobody can access it.
13091          */
13092         mutex_lock(&parent_ctx->mutex);
13093
13094         /*
13095          * We dont have to disable NMIs - we are only looking at
13096          * the list, not manipulating it:
13097          */
13098         perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13099                 ret = inherit_task_group(event, parent, parent_ctx,
13100                                          child, ctxn, clone_flags,
13101                                          &inherited_all);
13102                 if (ret)
13103                         goto out_unlock;
13104         }
13105
13106         /*
13107          * We can't hold ctx->lock when iterating the ->flexible_group list due
13108          * to allocations, but we need to prevent rotation because
13109          * rotate_ctx() will change the list from interrupt context.
13110          */
13111         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13112         parent_ctx->rotate_disable = 1;
13113         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13114
13115         perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13116                 ret = inherit_task_group(event, parent, parent_ctx,
13117                                          child, ctxn, clone_flags,
13118                                          &inherited_all);
13119                 if (ret)
13120                         goto out_unlock;
13121         }
13122
13123         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13124         parent_ctx->rotate_disable = 0;
13125
13126         child_ctx = child->perf_event_ctxp[ctxn];
13127
13128         if (child_ctx && inherited_all) {
13129                 /*
13130                  * Mark the child context as a clone of the parent
13131                  * context, or of whatever the parent is a clone of.
13132                  *
13133                  * Note that if the parent is a clone, the holding of
13134                  * parent_ctx->lock avoids it from being uncloned.
13135                  */
13136                 cloned_ctx = parent_ctx->parent_ctx;
13137                 if (cloned_ctx) {
13138                         child_ctx->parent_ctx = cloned_ctx;
13139                         child_ctx->parent_gen = parent_ctx->parent_gen;
13140                 } else {
13141                         child_ctx->parent_ctx = parent_ctx;
13142                         child_ctx->parent_gen = parent_ctx->generation;
13143                 }
13144                 get_ctx(child_ctx->parent_ctx);
13145         }
13146
13147         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13148 out_unlock:
13149         mutex_unlock(&parent_ctx->mutex);
13150
13151         perf_unpin_context(parent_ctx);
13152         put_ctx(parent_ctx);
13153
13154         return ret;
13155 }
13156
13157 /*
13158  * Initialize the perf_event context in task_struct
13159  */
13160 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13161 {
13162         int ctxn, ret;
13163
13164         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
13165         mutex_init(&child->perf_event_mutex);
13166         INIT_LIST_HEAD(&child->perf_event_list);
13167
13168         for_each_task_context_nr(ctxn) {
13169                 ret = perf_event_init_context(child, ctxn, clone_flags);
13170                 if (ret) {
13171                         perf_event_free_task(child);
13172                         return ret;
13173                 }
13174         }
13175
13176         return 0;
13177 }
13178
13179 static void __init perf_event_init_all_cpus(void)
13180 {
13181         struct swevent_htable *swhash;
13182         int cpu;
13183
13184         zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13185
13186         for_each_possible_cpu(cpu) {
13187                 swhash = &per_cpu(swevent_htable, cpu);
13188                 mutex_init(&swhash->hlist_mutex);
13189                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
13190
13191                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13192                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13193
13194 #ifdef CONFIG_CGROUP_PERF
13195                 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
13196 #endif
13197                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13198         }
13199 }
13200
13201 static void perf_swevent_init_cpu(unsigned int cpu)
13202 {
13203         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13204
13205         mutex_lock(&swhash->hlist_mutex);
13206         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13207                 struct swevent_hlist *hlist;
13208
13209                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13210                 WARN_ON(!hlist);
13211                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
13212         }
13213         mutex_unlock(&swhash->hlist_mutex);
13214 }
13215
13216 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
13217 static void __perf_event_exit_context(void *__info)
13218 {
13219         struct perf_event_context *ctx = __info;
13220         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
13221         struct perf_event *event;
13222
13223         raw_spin_lock(&ctx->lock);
13224         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
13225         list_for_each_entry(event, &ctx->event_list, event_entry)
13226                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13227         raw_spin_unlock(&ctx->lock);
13228 }
13229
13230 static void perf_event_exit_cpu_context(int cpu)
13231 {
13232         struct perf_cpu_context *cpuctx;
13233         struct perf_event_context *ctx;
13234         struct pmu *pmu;
13235
13236         mutex_lock(&pmus_lock);
13237         list_for_each_entry(pmu, &pmus, entry) {
13238                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13239                 ctx = &cpuctx->ctx;
13240
13241                 mutex_lock(&ctx->mutex);
13242                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13243                 cpuctx->online = 0;
13244                 mutex_unlock(&ctx->mutex);
13245         }
13246         cpumask_clear_cpu(cpu, perf_online_mask);
13247         mutex_unlock(&pmus_lock);
13248 }
13249 #else
13250
13251 static void perf_event_exit_cpu_context(int cpu) { }
13252
13253 #endif
13254
13255 int perf_event_init_cpu(unsigned int cpu)
13256 {
13257         struct perf_cpu_context *cpuctx;
13258         struct perf_event_context *ctx;
13259         struct pmu *pmu;
13260
13261         perf_swevent_init_cpu(cpu);
13262
13263         mutex_lock(&pmus_lock);
13264         cpumask_set_cpu(cpu, perf_online_mask);
13265         list_for_each_entry(pmu, &pmus, entry) {
13266                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13267                 ctx = &cpuctx->ctx;
13268
13269                 mutex_lock(&ctx->mutex);
13270                 cpuctx->online = 1;
13271                 mutex_unlock(&ctx->mutex);
13272         }
13273         mutex_unlock(&pmus_lock);
13274
13275         return 0;
13276 }
13277
13278 int perf_event_exit_cpu(unsigned int cpu)
13279 {
13280         perf_event_exit_cpu_context(cpu);
13281         return 0;
13282 }
13283
13284 static int
13285 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13286 {
13287         int cpu;
13288
13289         for_each_online_cpu(cpu)
13290                 perf_event_exit_cpu(cpu);
13291
13292         return NOTIFY_OK;
13293 }
13294
13295 /*
13296  * Run the perf reboot notifier at the very last possible moment so that
13297  * the generic watchdog code runs as long as possible.
13298  */
13299 static struct notifier_block perf_reboot_notifier = {
13300         .notifier_call = perf_reboot,
13301         .priority = INT_MIN,
13302 };
13303
13304 void __init perf_event_init(void)
13305 {
13306         int ret;
13307
13308         idr_init(&pmu_idr);
13309
13310         perf_event_init_all_cpus();
13311         init_srcu_struct(&pmus_srcu);
13312         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13313         perf_pmu_register(&perf_cpu_clock, NULL, -1);
13314         perf_pmu_register(&perf_task_clock, NULL, -1);
13315         perf_tp_register();
13316         perf_event_init_cpu(smp_processor_id());
13317         register_reboot_notifier(&perf_reboot_notifier);
13318
13319         ret = init_hw_breakpoint();
13320         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13321
13322         perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
13323
13324         /*
13325          * Build time assertion that we keep the data_head at the intended
13326          * location.  IOW, validation we got the __reserved[] size right.
13327          */
13328         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13329                      != 1024);
13330 }
13331
13332 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13333                               char *page)
13334 {
13335         struct perf_pmu_events_attr *pmu_attr =
13336                 container_of(attr, struct perf_pmu_events_attr, attr);
13337
13338         if (pmu_attr->event_str)
13339                 return sprintf(page, "%s\n", pmu_attr->event_str);
13340
13341         return 0;
13342 }
13343 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13344
13345 static int __init perf_event_sysfs_init(void)
13346 {
13347         struct pmu *pmu;
13348         int ret;
13349
13350         mutex_lock(&pmus_lock);
13351
13352         ret = bus_register(&pmu_bus);
13353         if (ret)
13354                 goto unlock;
13355
13356         list_for_each_entry(pmu, &pmus, entry) {
13357                 if (!pmu->name || pmu->type < 0)
13358                         continue;
13359
13360                 ret = pmu_dev_alloc(pmu);
13361                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13362         }
13363         pmu_bus_running = 1;
13364         ret = 0;
13365
13366 unlock:
13367         mutex_unlock(&pmus_lock);
13368
13369         return ret;
13370 }
13371 device_initcall(perf_event_sysfs_init);
13372
13373 #ifdef CONFIG_CGROUP_PERF
13374 static struct cgroup_subsys_state *
13375 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13376 {
13377         struct perf_cgroup *jc;
13378
13379         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13380         if (!jc)
13381                 return ERR_PTR(-ENOMEM);
13382
13383         jc->info = alloc_percpu(struct perf_cgroup_info);
13384         if (!jc->info) {
13385                 kfree(jc);
13386                 return ERR_PTR(-ENOMEM);
13387         }
13388
13389         return &jc->css;
13390 }
13391
13392 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13393 {
13394         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13395
13396         free_percpu(jc->info);
13397         kfree(jc);
13398 }
13399
13400 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13401 {
13402         perf_event_cgroup(css->cgroup);
13403         return 0;
13404 }
13405
13406 static int __perf_cgroup_move(void *info)
13407 {
13408         struct task_struct *task = info;
13409         rcu_read_lock();
13410         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
13411         rcu_read_unlock();
13412         return 0;
13413 }
13414
13415 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13416 {
13417         struct task_struct *task;
13418         struct cgroup_subsys_state *css;
13419
13420         cgroup_taskset_for_each(task, css, tset)
13421                 task_function_call(task, __perf_cgroup_move, task);
13422 }
13423
13424 struct cgroup_subsys perf_event_cgrp_subsys = {
13425         .css_alloc      = perf_cgroup_css_alloc,
13426         .css_free       = perf_cgroup_css_free,
13427         .css_online     = perf_cgroup_css_online,
13428         .attach         = perf_cgroup_attach,
13429         /*
13430          * Implicitly enable on dfl hierarchy so that perf events can
13431          * always be filtered by cgroup2 path as long as perf_event
13432          * controller is not mounted on a legacy hierarchy.
13433          */
13434         .implicit_on_dfl = true,
13435         .threaded       = true,
13436 };
13437 #endif /* CONFIG_CGROUP_PERF */