Merge branch 'stable/for-linus-5.15' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / kernel / dma / direct.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2018-2020 Christoph Hellwig.
4  *
5  * DMA operations that map physical memory directly without using an IOMMU.
6  */
7 #include <linux/memblock.h> /* for max_pfn */
8 #include <linux/export.h>
9 #include <linux/mm.h>
10 #include <linux/dma-map-ops.h>
11 #include <linux/scatterlist.h>
12 #include <linux/pfn.h>
13 #include <linux/vmalloc.h>
14 #include <linux/set_memory.h>
15 #include <linux/slab.h>
16 #include "direct.h"
17
18 /*
19  * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use
20  * it for entirely different regions. In that case the arch code needs to
21  * override the variable below for dma-direct to work properly.
22  */
23 unsigned int zone_dma_bits __ro_after_init = 24;
24
25 static inline dma_addr_t phys_to_dma_direct(struct device *dev,
26                 phys_addr_t phys)
27 {
28         if (force_dma_unencrypted(dev))
29                 return phys_to_dma_unencrypted(dev, phys);
30         return phys_to_dma(dev, phys);
31 }
32
33 static inline struct page *dma_direct_to_page(struct device *dev,
34                 dma_addr_t dma_addr)
35 {
36         return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
37 }
38
39 u64 dma_direct_get_required_mask(struct device *dev)
40 {
41         phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT;
42         u64 max_dma = phys_to_dma_direct(dev, phys);
43
44         return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
45 }
46
47 static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
48                                   u64 *phys_limit)
49 {
50         u64 dma_limit = min_not_zero(dma_mask, dev->bus_dma_limit);
51
52         /*
53          * Optimistically try the zone that the physical address mask falls
54          * into first.  If that returns memory that isn't actually addressable
55          * we will fallback to the next lower zone and try again.
56          *
57          * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
58          * zones.
59          */
60         *phys_limit = dma_to_phys(dev, dma_limit);
61         if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits))
62                 return GFP_DMA;
63         if (*phys_limit <= DMA_BIT_MASK(32))
64                 return GFP_DMA32;
65         return 0;
66 }
67
68 static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
69 {
70         dma_addr_t dma_addr = phys_to_dma_direct(dev, phys);
71
72         if (dma_addr == DMA_MAPPING_ERROR)
73                 return false;
74         return dma_addr + size - 1 <=
75                 min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
76 }
77
78 static void __dma_direct_free_pages(struct device *dev, struct page *page,
79                                     size_t size)
80 {
81         if (IS_ENABLED(CONFIG_DMA_RESTRICTED_POOL) &&
82             swiotlb_free(dev, page, size))
83                 return;
84         dma_free_contiguous(dev, page, size);
85 }
86
87 static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
88                 gfp_t gfp)
89 {
90         int node = dev_to_node(dev);
91         struct page *page = NULL;
92         u64 phys_limit;
93
94         WARN_ON_ONCE(!PAGE_ALIGNED(size));
95
96         gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
97                                            &phys_limit);
98         if (IS_ENABLED(CONFIG_DMA_RESTRICTED_POOL) &&
99             is_swiotlb_for_alloc(dev)) {
100                 page = swiotlb_alloc(dev, size);
101                 if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
102                         __dma_direct_free_pages(dev, page, size);
103                         return NULL;
104                 }
105                 return page;
106         }
107
108         page = dma_alloc_contiguous(dev, size, gfp);
109         if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
110                 dma_free_contiguous(dev, page, size);
111                 page = NULL;
112         }
113 again:
114         if (!page)
115                 page = alloc_pages_node(node, gfp, get_order(size));
116         if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
117                 dma_free_contiguous(dev, page, size);
118                 page = NULL;
119
120                 if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
121                     phys_limit < DMA_BIT_MASK(64) &&
122                     !(gfp & (GFP_DMA32 | GFP_DMA))) {
123                         gfp |= GFP_DMA32;
124                         goto again;
125                 }
126
127                 if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
128                         gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
129                         goto again;
130                 }
131         }
132
133         return page;
134 }
135
136 static void *dma_direct_alloc_from_pool(struct device *dev, size_t size,
137                 dma_addr_t *dma_handle, gfp_t gfp)
138 {
139         struct page *page;
140         u64 phys_mask;
141         void *ret;
142
143         gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
144                                            &phys_mask);
145         page = dma_alloc_from_pool(dev, size, &ret, gfp, dma_coherent_ok);
146         if (!page)
147                 return NULL;
148         *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
149         return ret;
150 }
151
152 void *dma_direct_alloc(struct device *dev, size_t size,
153                 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
154 {
155         struct page *page;
156         void *ret;
157         int err;
158
159         size = PAGE_ALIGN(size);
160         if (attrs & DMA_ATTR_NO_WARN)
161                 gfp |= __GFP_NOWARN;
162
163         if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
164             !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) {
165                 page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO);
166                 if (!page)
167                         return NULL;
168                 /* remove any dirty cache lines on the kernel alias */
169                 if (!PageHighMem(page))
170                         arch_dma_prep_coherent(page, size);
171                 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
172                 /* return the page pointer as the opaque cookie */
173                 return page;
174         }
175
176         if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
177             !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
178             !IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
179             !dev_is_dma_coherent(dev) &&
180             !is_swiotlb_for_alloc(dev))
181                 return arch_dma_alloc(dev, size, dma_handle, gfp, attrs);
182
183         if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
184             !dev_is_dma_coherent(dev))
185                 return dma_alloc_from_global_coherent(dev, size, dma_handle);
186
187         /*
188          * Remapping or decrypting memory may block. If either is required and
189          * we can't block, allocate the memory from the atomic pools.
190          * If restricted DMA (i.e., is_swiotlb_for_alloc) is required, one must
191          * set up another device coherent pool by shared-dma-pool and use
192          * dma_alloc_from_dev_coherent instead.
193          */
194         if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
195             !gfpflags_allow_blocking(gfp) &&
196             (force_dma_unencrypted(dev) ||
197              (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
198               !dev_is_dma_coherent(dev))) &&
199             !is_swiotlb_for_alloc(dev))
200                 return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
201
202         /* we always manually zero the memory once we are done */
203         page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO);
204         if (!page)
205                 return NULL;
206
207         if ((IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
208              !dev_is_dma_coherent(dev)) ||
209             (IS_ENABLED(CONFIG_DMA_REMAP) && PageHighMem(page))) {
210                 /* remove any dirty cache lines on the kernel alias */
211                 arch_dma_prep_coherent(page, size);
212
213                 /* create a coherent mapping */
214                 ret = dma_common_contiguous_remap(page, size,
215                                 dma_pgprot(dev, PAGE_KERNEL, attrs),
216                                 __builtin_return_address(0));
217                 if (!ret)
218                         goto out_free_pages;
219                 if (force_dma_unencrypted(dev)) {
220                         err = set_memory_decrypted((unsigned long)ret,
221                                                    1 << get_order(size));
222                         if (err)
223                                 goto out_free_pages;
224                 }
225                 memset(ret, 0, size);
226                 goto done;
227         }
228
229         if (PageHighMem(page)) {
230                 /*
231                  * Depending on the cma= arguments and per-arch setup
232                  * dma_alloc_contiguous could return highmem pages.
233                  * Without remapping there is no way to return them here,
234                  * so log an error and fail.
235                  */
236                 dev_info(dev, "Rejecting highmem page from CMA.\n");
237                 goto out_free_pages;
238         }
239
240         ret = page_address(page);
241         if (force_dma_unencrypted(dev)) {
242                 err = set_memory_decrypted((unsigned long)ret,
243                                            1 << get_order(size));
244                 if (err)
245                         goto out_free_pages;
246         }
247
248         memset(ret, 0, size);
249
250         if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
251             !dev_is_dma_coherent(dev)) {
252                 arch_dma_prep_coherent(page, size);
253                 ret = arch_dma_set_uncached(ret, size);
254                 if (IS_ERR(ret))
255                         goto out_encrypt_pages;
256         }
257 done:
258         *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
259         return ret;
260
261 out_encrypt_pages:
262         if (force_dma_unencrypted(dev)) {
263                 err = set_memory_encrypted((unsigned long)page_address(page),
264                                            1 << get_order(size));
265                 /* If memory cannot be re-encrypted, it must be leaked */
266                 if (err)
267                         return NULL;
268         }
269 out_free_pages:
270         __dma_direct_free_pages(dev, page, size);
271         return NULL;
272 }
273
274 void dma_direct_free(struct device *dev, size_t size,
275                 void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
276 {
277         unsigned int page_order = get_order(size);
278
279         if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
280             !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) {
281                 /* cpu_addr is a struct page cookie, not a kernel address */
282                 dma_free_contiguous(dev, cpu_addr, size);
283                 return;
284         }
285
286         if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
287             !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
288             !IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
289             !dev_is_dma_coherent(dev) &&
290             !is_swiotlb_for_alloc(dev)) {
291                 arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
292                 return;
293         }
294
295         if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
296             !dev_is_dma_coherent(dev)) {
297                 if (!dma_release_from_global_coherent(page_order, cpu_addr))
298                         WARN_ON_ONCE(1);
299                 return;
300         }
301
302         /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
303         if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
304             dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size)))
305                 return;
306
307         if (force_dma_unencrypted(dev))
308                 set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order);
309
310         if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr))
311                 vunmap(cpu_addr);
312         else if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED))
313                 arch_dma_clear_uncached(cpu_addr, size);
314
315         __dma_direct_free_pages(dev, dma_direct_to_page(dev, dma_addr), size);
316 }
317
318 struct page *dma_direct_alloc_pages(struct device *dev, size_t size,
319                 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
320 {
321         struct page *page;
322         void *ret;
323
324         if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
325             force_dma_unencrypted(dev) && !gfpflags_allow_blocking(gfp) &&
326             !is_swiotlb_for_alloc(dev))
327                 return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
328
329         page = __dma_direct_alloc_pages(dev, size, gfp);
330         if (!page)
331                 return NULL;
332         if (PageHighMem(page)) {
333                 /*
334                  * Depending on the cma= arguments and per-arch setup
335                  * dma_alloc_contiguous could return highmem pages.
336                  * Without remapping there is no way to return them here,
337                  * so log an error and fail.
338                  */
339                 dev_info(dev, "Rejecting highmem page from CMA.\n");
340                 goto out_free_pages;
341         }
342
343         ret = page_address(page);
344         if (force_dma_unencrypted(dev)) {
345                 if (set_memory_decrypted((unsigned long)ret,
346                                 1 << get_order(size)))
347                         goto out_free_pages;
348         }
349         memset(ret, 0, size);
350         *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
351         return page;
352 out_free_pages:
353         __dma_direct_free_pages(dev, page, size);
354         return NULL;
355 }
356
357 void dma_direct_free_pages(struct device *dev, size_t size,
358                 struct page *page, dma_addr_t dma_addr,
359                 enum dma_data_direction dir)
360 {
361         unsigned int page_order = get_order(size);
362         void *vaddr = page_address(page);
363
364         /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
365         if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
366             dma_free_from_pool(dev, vaddr, size))
367                 return;
368
369         if (force_dma_unencrypted(dev))
370                 set_memory_encrypted((unsigned long)vaddr, 1 << page_order);
371
372         __dma_direct_free_pages(dev, page, size);
373 }
374
375 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
376     defined(CONFIG_SWIOTLB)
377 void dma_direct_sync_sg_for_device(struct device *dev,
378                 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
379 {
380         struct scatterlist *sg;
381         int i;
382
383         for_each_sg(sgl, sg, nents, i) {
384                 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
385
386                 if (unlikely(is_swiotlb_buffer(dev, paddr)))
387                         swiotlb_sync_single_for_device(dev, paddr, sg->length,
388                                                        dir);
389
390                 if (!dev_is_dma_coherent(dev))
391                         arch_sync_dma_for_device(paddr, sg->length,
392                                         dir);
393         }
394 }
395 #endif
396
397 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
398     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
399     defined(CONFIG_SWIOTLB)
400 void dma_direct_sync_sg_for_cpu(struct device *dev,
401                 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
402 {
403         struct scatterlist *sg;
404         int i;
405
406         for_each_sg(sgl, sg, nents, i) {
407                 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
408
409                 if (!dev_is_dma_coherent(dev))
410                         arch_sync_dma_for_cpu(paddr, sg->length, dir);
411
412                 if (unlikely(is_swiotlb_buffer(dev, paddr)))
413                         swiotlb_sync_single_for_cpu(dev, paddr, sg->length,
414                                                     dir);
415
416                 if (dir == DMA_FROM_DEVICE)
417                         arch_dma_mark_clean(paddr, sg->length);
418         }
419
420         if (!dev_is_dma_coherent(dev))
421                 arch_sync_dma_for_cpu_all();
422 }
423
424 void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
425                 int nents, enum dma_data_direction dir, unsigned long attrs)
426 {
427         struct scatterlist *sg;
428         int i;
429
430         for_each_sg(sgl, sg, nents, i)
431                 dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir,
432                              attrs);
433 }
434 #endif
435
436 int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
437                 enum dma_data_direction dir, unsigned long attrs)
438 {
439         int i;
440         struct scatterlist *sg;
441
442         for_each_sg(sgl, sg, nents, i) {
443                 sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
444                                 sg->offset, sg->length, dir, attrs);
445                 if (sg->dma_address == DMA_MAPPING_ERROR)
446                         goto out_unmap;
447                 sg_dma_len(sg) = sg->length;
448         }
449
450         return nents;
451
452 out_unmap:
453         dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
454         return -EIO;
455 }
456
457 dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
458                 size_t size, enum dma_data_direction dir, unsigned long attrs)
459 {
460         dma_addr_t dma_addr = paddr;
461
462         if (unlikely(!dma_capable(dev, dma_addr, size, false))) {
463                 dev_err_once(dev,
464                              "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
465                              &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
466                 WARN_ON_ONCE(1);
467                 return DMA_MAPPING_ERROR;
468         }
469
470         return dma_addr;
471 }
472
473 int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
474                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
475                 unsigned long attrs)
476 {
477         struct page *page = dma_direct_to_page(dev, dma_addr);
478         int ret;
479
480         ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
481         if (!ret)
482                 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
483         return ret;
484 }
485
486 bool dma_direct_can_mmap(struct device *dev)
487 {
488         return dev_is_dma_coherent(dev) ||
489                 IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
490 }
491
492 int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
493                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
494                 unsigned long attrs)
495 {
496         unsigned long user_count = vma_pages(vma);
497         unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
498         unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
499         int ret = -ENXIO;
500
501         vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
502
503         if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
504                 return ret;
505         if (dma_mmap_from_global_coherent(vma, cpu_addr, size, &ret))
506                 return ret;
507
508         if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
509                 return -ENXIO;
510         return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
511                         user_count << PAGE_SHIFT, vma->vm_page_prot);
512 }
513
514 int dma_direct_supported(struct device *dev, u64 mask)
515 {
516         u64 min_mask = (max_pfn - 1) << PAGE_SHIFT;
517
518         /*
519          * Because 32-bit DMA masks are so common we expect every architecture
520          * to be able to satisfy them - either by not supporting more physical
521          * memory, or by providing a ZONE_DMA32.  If neither is the case, the
522          * architecture needs to use an IOMMU instead of the direct mapping.
523          */
524         if (mask >= DMA_BIT_MASK(32))
525                 return 1;
526
527         /*
528          * This check needs to be against the actual bit mask value, so use
529          * phys_to_dma_unencrypted() here so that the SME encryption mask isn't
530          * part of the check.
531          */
532         if (IS_ENABLED(CONFIG_ZONE_DMA))
533                 min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits));
534         return mask >= phys_to_dma_unencrypted(dev, min_mask);
535 }
536
537 size_t dma_direct_max_mapping_size(struct device *dev)
538 {
539         /* If SWIOTLB is active, use its maximum mapping size */
540         if (is_swiotlb_active(dev) &&
541             (dma_addressing_limited(dev) || is_swiotlb_force_bounce(dev)))
542                 return swiotlb_max_mapping_size(dev);
543         return SIZE_MAX;
544 }
545
546 bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr)
547 {
548         return !dev_is_dma_coherent(dev) ||
549                is_swiotlb_buffer(dev, dma_to_phys(dev, dma_addr));
550 }
551
552 /**
553  * dma_direct_set_offset - Assign scalar offset for a single DMA range.
554  * @dev:        device pointer; needed to "own" the alloced memory.
555  * @cpu_start:  beginning of memory region covered by this offset.
556  * @dma_start:  beginning of DMA/PCI region covered by this offset.
557  * @size:       size of the region.
558  *
559  * This is for the simple case of a uniform offset which cannot
560  * be discovered by "dma-ranges".
561  *
562  * It returns -ENOMEM if out of memory, -EINVAL if a map
563  * already exists, 0 otherwise.
564  *
565  * Note: any call to this from a driver is a bug.  The mapping needs
566  * to be described by the device tree or other firmware interfaces.
567  */
568 int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start,
569                          dma_addr_t dma_start, u64 size)
570 {
571         struct bus_dma_region *map;
572         u64 offset = (u64)cpu_start - (u64)dma_start;
573
574         if (dev->dma_range_map) {
575                 dev_err(dev, "attempt to add DMA range to existing map\n");
576                 return -EINVAL;
577         }
578
579         if (!offset)
580                 return 0;
581
582         map = kcalloc(2, sizeof(*map), GFP_KERNEL);
583         if (!map)
584                 return -ENOMEM;
585         map[0].cpu_start = cpu_start;
586         map[0].dma_start = dma_start;
587         map[0].offset = offset;
588         map[0].size = size;
589         dev->dma_range_map = map;
590         return 0;
591 }