Merge tag 'trace-v5.15-3' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[linux-2.6-microblaze.git] / include / linux / page-flags.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Macros for manipulating and testing page->flags
4  */
5
6 #ifndef PAGE_FLAGS_H
7 #define PAGE_FLAGS_H
8
9 #include <linux/types.h>
10 #include <linux/bug.h>
11 #include <linux/mmdebug.h>
12 #ifndef __GENERATING_BOUNDS_H
13 #include <linux/mm_types.h>
14 #include <generated/bounds.h>
15 #endif /* !__GENERATING_BOUNDS_H */
16
17 /*
18  * Various page->flags bits:
19  *
20  * PG_reserved is set for special pages. The "struct page" of such a page
21  * should in general not be touched (e.g. set dirty) except by its owner.
22  * Pages marked as PG_reserved include:
23  * - Pages part of the kernel image (including vDSO) and similar (e.g. BIOS,
24  *   initrd, HW tables)
25  * - Pages reserved or allocated early during boot (before the page allocator
26  *   was initialized). This includes (depending on the architecture) the
27  *   initial vmemmap, initial page tables, crashkernel, elfcorehdr, and much
28  *   much more. Once (if ever) freed, PG_reserved is cleared and they will
29  *   be given to the page allocator.
30  * - Pages falling into physical memory gaps - not IORESOURCE_SYSRAM. Trying
31  *   to read/write these pages might end badly. Don't touch!
32  * - The zero page(s)
33  * - Pages not added to the page allocator when onlining a section because
34  *   they were excluded via the online_page_callback() or because they are
35  *   PG_hwpoison.
36  * - Pages allocated in the context of kexec/kdump (loaded kernel image,
37  *   control pages, vmcoreinfo)
38  * - MMIO/DMA pages. Some architectures don't allow to ioremap pages that are
39  *   not marked PG_reserved (as they might be in use by somebody else who does
40  *   not respect the caching strategy).
41  * - Pages part of an offline section (struct pages of offline sections should
42  *   not be trusted as they will be initialized when first onlined).
43  * - MCA pages on ia64
44  * - Pages holding CPU notes for POWER Firmware Assisted Dump
45  * - Device memory (e.g. PMEM, DAX, HMM)
46  * Some PG_reserved pages will be excluded from the hibernation image.
47  * PG_reserved does in general not hinder anybody from dumping or swapping
48  * and is no longer required for remap_pfn_range(). ioremap might require it.
49  * Consequently, PG_reserved for a page mapped into user space can indicate
50  * the zero page, the vDSO, MMIO pages or device memory.
51  *
52  * The PG_private bitflag is set on pagecache pages if they contain filesystem
53  * specific data (which is normally at page->private). It can be used by
54  * private allocations for its own usage.
55  *
56  * During initiation of disk I/O, PG_locked is set. This bit is set before I/O
57  * and cleared when writeback _starts_ or when read _completes_. PG_writeback
58  * is set before writeback starts and cleared when it finishes.
59  *
60  * PG_locked also pins a page in pagecache, and blocks truncation of the file
61  * while it is held.
62  *
63  * page_waitqueue(page) is a wait queue of all tasks waiting for the page
64  * to become unlocked.
65  *
66  * PG_swapbacked is set when a page uses swap as a backing storage.  This are
67  * usually PageAnon or shmem pages but please note that even anonymous pages
68  * might lose their PG_swapbacked flag when they simply can be dropped (e.g. as
69  * a result of MADV_FREE).
70  *
71  * PG_uptodate tells whether the page's contents is valid.  When a read
72  * completes, the page becomes uptodate, unless a disk I/O error happened.
73  *
74  * PG_referenced, PG_reclaim are used for page reclaim for anonymous and
75  * file-backed pagecache (see mm/vmscan.c).
76  *
77  * PG_error is set to indicate that an I/O error occurred on this page.
78  *
79  * PG_arch_1 is an architecture specific page state bit.  The generic code
80  * guarantees that this bit is cleared for a page when it first is entered into
81  * the page cache.
82  *
83  * PG_hwpoison indicates that a page got corrupted in hardware and contains
84  * data with incorrect ECC bits that triggered a machine check. Accessing is
85  * not safe since it may cause another machine check. Don't touch!
86  */
87
88 /*
89  * Don't use the pageflags directly.  Use the PageFoo macros.
90  *
91  * The page flags field is split into two parts, the main flags area
92  * which extends from the low bits upwards, and the fields area which
93  * extends from the high bits downwards.
94  *
95  *  | FIELD | ... | FLAGS |
96  *  N-1           ^       0
97  *               (NR_PAGEFLAGS)
98  *
99  * The fields area is reserved for fields mapping zone, node (for NUMA) and
100  * SPARSEMEM section (for variants of SPARSEMEM that require section ids like
101  * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP).
102  */
103 enum pageflags {
104         PG_locked,              /* Page is locked. Don't touch. */
105         PG_referenced,
106         PG_uptodate,
107         PG_dirty,
108         PG_lru,
109         PG_active,
110         PG_workingset,
111         PG_waiters,             /* Page has waiters, check its waitqueue. Must be bit #7 and in the same byte as "PG_locked" */
112         PG_error,
113         PG_slab,
114         PG_owner_priv_1,        /* Owner use. If pagecache, fs may use*/
115         PG_arch_1,
116         PG_reserved,
117         PG_private,             /* If pagecache, has fs-private data */
118         PG_private_2,           /* If pagecache, has fs aux data */
119         PG_writeback,           /* Page is under writeback */
120         PG_head,                /* A head page */
121         PG_mappedtodisk,        /* Has blocks allocated on-disk */
122         PG_reclaim,             /* To be reclaimed asap */
123         PG_swapbacked,          /* Page is backed by RAM/swap */
124         PG_unevictable,         /* Page is "unevictable"  */
125 #ifdef CONFIG_MMU
126         PG_mlocked,             /* Page is vma mlocked */
127 #endif
128 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
129         PG_uncached,            /* Page has been mapped as uncached */
130 #endif
131 #ifdef CONFIG_MEMORY_FAILURE
132         PG_hwpoison,            /* hardware poisoned page. Don't touch */
133 #endif
134 #if defined(CONFIG_PAGE_IDLE_FLAG) && defined(CONFIG_64BIT)
135         PG_young,
136         PG_idle,
137 #endif
138 #ifdef CONFIG_64BIT
139         PG_arch_2,
140 #endif
141 #ifdef CONFIG_KASAN_HW_TAGS
142         PG_skip_kasan_poison,
143 #endif
144         __NR_PAGEFLAGS,
145
146         /* Filesystems */
147         PG_checked = PG_owner_priv_1,
148
149         /* SwapBacked */
150         PG_swapcache = PG_owner_priv_1, /* Swap page: swp_entry_t in private */
151
152         /* Two page bits are conscripted by FS-Cache to maintain local caching
153          * state.  These bits are set on pages belonging to the netfs's inodes
154          * when those inodes are being locally cached.
155          */
156         PG_fscache = PG_private_2,      /* page backed by cache */
157
158         /* XEN */
159         /* Pinned in Xen as a read-only pagetable page. */
160         PG_pinned = PG_owner_priv_1,
161         /* Pinned as part of domain save (see xen_mm_pin_all()). */
162         PG_savepinned = PG_dirty,
163         /* Has a grant mapping of another (foreign) domain's page. */
164         PG_foreign = PG_owner_priv_1,
165         /* Remapped by swiotlb-xen. */
166         PG_xen_remapped = PG_owner_priv_1,
167
168         /* SLOB */
169         PG_slob_free = PG_private,
170
171         /* Compound pages. Stored in first tail page's flags */
172         PG_double_map = PG_workingset,
173
174         /* non-lru isolated movable page */
175         PG_isolated = PG_reclaim,
176
177         /* Only valid for buddy pages. Used to track pages that are reported */
178         PG_reported = PG_uptodate,
179 };
180
181 #define PAGEFLAGS_MASK          ((1UL << NR_PAGEFLAGS) - 1)
182
183 #ifndef __GENERATING_BOUNDS_H
184
185 static inline unsigned long _compound_head(const struct page *page)
186 {
187         unsigned long head = READ_ONCE(page->compound_head);
188
189         if (unlikely(head & 1))
190                 return head - 1;
191         return (unsigned long)page;
192 }
193
194 #define compound_head(page)     ((typeof(page))_compound_head(page))
195
196 static __always_inline int PageTail(struct page *page)
197 {
198         return READ_ONCE(page->compound_head) & 1;
199 }
200
201 static __always_inline int PageCompound(struct page *page)
202 {
203         return test_bit(PG_head, &page->flags) || PageTail(page);
204 }
205
206 #define PAGE_POISON_PATTERN     -1l
207 static inline int PagePoisoned(const struct page *page)
208 {
209         return page->flags == PAGE_POISON_PATTERN;
210 }
211
212 #ifdef CONFIG_DEBUG_VM
213 void page_init_poison(struct page *page, size_t size);
214 #else
215 static inline void page_init_poison(struct page *page, size_t size)
216 {
217 }
218 #endif
219
220 /*
221  * Page flags policies wrt compound pages
222  *
223  * PF_POISONED_CHECK
224  *     check if this struct page poisoned/uninitialized
225  *
226  * PF_ANY:
227  *     the page flag is relevant for small, head and tail pages.
228  *
229  * PF_HEAD:
230  *     for compound page all operations related to the page flag applied to
231  *     head page.
232  *
233  * PF_ONLY_HEAD:
234  *     for compound page, callers only ever operate on the head page.
235  *
236  * PF_NO_TAIL:
237  *     modifications of the page flag must be done on small or head pages,
238  *     checks can be done on tail pages too.
239  *
240  * PF_NO_COMPOUND:
241  *     the page flag is not relevant for compound pages.
242  *
243  * PF_SECOND:
244  *     the page flag is stored in the first tail page.
245  */
246 #define PF_POISONED_CHECK(page) ({                                      \
247                 VM_BUG_ON_PGFLAGS(PagePoisoned(page), page);            \
248                 page; })
249 #define PF_ANY(page, enforce)   PF_POISONED_CHECK(page)
250 #define PF_HEAD(page, enforce)  PF_POISONED_CHECK(compound_head(page))
251 #define PF_ONLY_HEAD(page, enforce) ({                                  \
252                 VM_BUG_ON_PGFLAGS(PageTail(page), page);                \
253                 PF_POISONED_CHECK(page); })
254 #define PF_NO_TAIL(page, enforce) ({                                    \
255                 VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page);     \
256                 PF_POISONED_CHECK(compound_head(page)); })
257 #define PF_NO_COMPOUND(page, enforce) ({                                \
258                 VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page); \
259                 PF_POISONED_CHECK(page); })
260 #define PF_SECOND(page, enforce) ({                                     \
261                 VM_BUG_ON_PGFLAGS(!PageHead(page), page);               \
262                 PF_POISONED_CHECK(&page[1]); })
263
264 /*
265  * Macros to create function definitions for page flags
266  */
267 #define TESTPAGEFLAG(uname, lname, policy)                              \
268 static __always_inline int Page##uname(struct page *page)               \
269         { return test_bit(PG_##lname, &policy(page, 0)->flags); }
270
271 #define SETPAGEFLAG(uname, lname, policy)                               \
272 static __always_inline void SetPage##uname(struct page *page)           \
273         { set_bit(PG_##lname, &policy(page, 1)->flags); }
274
275 #define CLEARPAGEFLAG(uname, lname, policy)                             \
276 static __always_inline void ClearPage##uname(struct page *page)         \
277         { clear_bit(PG_##lname, &policy(page, 1)->flags); }
278
279 #define __SETPAGEFLAG(uname, lname, policy)                             \
280 static __always_inline void __SetPage##uname(struct page *page)         \
281         { __set_bit(PG_##lname, &policy(page, 1)->flags); }
282
283 #define __CLEARPAGEFLAG(uname, lname, policy)                           \
284 static __always_inline void __ClearPage##uname(struct page *page)       \
285         { __clear_bit(PG_##lname, &policy(page, 1)->flags); }
286
287 #define TESTSETFLAG(uname, lname, policy)                               \
288 static __always_inline int TestSetPage##uname(struct page *page)        \
289         { return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); }
290
291 #define TESTCLEARFLAG(uname, lname, policy)                             \
292 static __always_inline int TestClearPage##uname(struct page *page)      \
293         { return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); }
294
295 #define PAGEFLAG(uname, lname, policy)                                  \
296         TESTPAGEFLAG(uname, lname, policy)                              \
297         SETPAGEFLAG(uname, lname, policy)                               \
298         CLEARPAGEFLAG(uname, lname, policy)
299
300 #define __PAGEFLAG(uname, lname, policy)                                \
301         TESTPAGEFLAG(uname, lname, policy)                              \
302         __SETPAGEFLAG(uname, lname, policy)                             \
303         __CLEARPAGEFLAG(uname, lname, policy)
304
305 #define TESTSCFLAG(uname, lname, policy)                                \
306         TESTSETFLAG(uname, lname, policy)                               \
307         TESTCLEARFLAG(uname, lname, policy)
308
309 #define TESTPAGEFLAG_FALSE(uname)                                       \
310 static inline int Page##uname(const struct page *page) { return 0; }
311
312 #define SETPAGEFLAG_NOOP(uname)                                         \
313 static inline void SetPage##uname(struct page *page) {  }
314
315 #define CLEARPAGEFLAG_NOOP(uname)                                       \
316 static inline void ClearPage##uname(struct page *page) {  }
317
318 #define __CLEARPAGEFLAG_NOOP(uname)                                     \
319 static inline void __ClearPage##uname(struct page *page) {  }
320
321 #define TESTSETFLAG_FALSE(uname)                                        \
322 static inline int TestSetPage##uname(struct page *page) { return 0; }
323
324 #define TESTCLEARFLAG_FALSE(uname)                                      \
325 static inline int TestClearPage##uname(struct page *page) { return 0; }
326
327 #define PAGEFLAG_FALSE(uname) TESTPAGEFLAG_FALSE(uname)                 \
328         SETPAGEFLAG_NOOP(uname) CLEARPAGEFLAG_NOOP(uname)
329
330 #define TESTSCFLAG_FALSE(uname)                                         \
331         TESTSETFLAG_FALSE(uname) TESTCLEARFLAG_FALSE(uname)
332
333 __PAGEFLAG(Locked, locked, PF_NO_TAIL)
334 PAGEFLAG(Waiters, waiters, PF_ONLY_HEAD) __CLEARPAGEFLAG(Waiters, waiters, PF_ONLY_HEAD)
335 PAGEFLAG(Error, error, PF_NO_TAIL) TESTCLEARFLAG(Error, error, PF_NO_TAIL)
336 PAGEFLAG(Referenced, referenced, PF_HEAD)
337         TESTCLEARFLAG(Referenced, referenced, PF_HEAD)
338         __SETPAGEFLAG(Referenced, referenced, PF_HEAD)
339 PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD)
340         __CLEARPAGEFLAG(Dirty, dirty, PF_HEAD)
341 PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD)
342         TESTCLEARFLAG(LRU, lru, PF_HEAD)
343 PAGEFLAG(Active, active, PF_HEAD) __CLEARPAGEFLAG(Active, active, PF_HEAD)
344         TESTCLEARFLAG(Active, active, PF_HEAD)
345 PAGEFLAG(Workingset, workingset, PF_HEAD)
346         TESTCLEARFLAG(Workingset, workingset, PF_HEAD)
347 __PAGEFLAG(Slab, slab, PF_NO_TAIL)
348 __PAGEFLAG(SlobFree, slob_free, PF_NO_TAIL)
349 PAGEFLAG(Checked, checked, PF_NO_COMPOUND)         /* Used by some filesystems */
350
351 /* Xen */
352 PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND)
353         TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND)
354 PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND);
355 PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND);
356 PAGEFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND)
357         TESTCLEARFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND)
358
359 PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
360         __CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
361         __SETPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
362 PAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
363         __CLEARPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
364         __SETPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
365
366 /*
367  * Private page markings that may be used by the filesystem that owns the page
368  * for its own purposes.
369  * - PG_private and PG_private_2 cause releasepage() and co to be invoked
370  */
371 PAGEFLAG(Private, private, PF_ANY)
372 PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY)
373 PAGEFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
374         TESTCLEARFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
375
376 /*
377  * Only test-and-set exist for PG_writeback.  The unconditional operators are
378  * risky: they bypass page accounting.
379  */
380 TESTPAGEFLAG(Writeback, writeback, PF_NO_TAIL)
381         TESTSCFLAG(Writeback, writeback, PF_NO_TAIL)
382 PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_TAIL)
383
384 /* PG_readahead is only used for reads; PG_reclaim is only for writes */
385 PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL)
386         TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL)
387 PAGEFLAG(Readahead, reclaim, PF_NO_COMPOUND)
388         TESTCLEARFLAG(Readahead, reclaim, PF_NO_COMPOUND)
389
390 #ifdef CONFIG_HIGHMEM
391 /*
392  * Must use a macro here due to header dependency issues. page_zone() is not
393  * available at this point.
394  */
395 #define PageHighMem(__p) is_highmem_idx(page_zonenum(__p))
396 #else
397 PAGEFLAG_FALSE(HighMem)
398 #endif
399
400 #ifdef CONFIG_SWAP
401 static __always_inline int PageSwapCache(struct page *page)
402 {
403 #ifdef CONFIG_THP_SWAP
404         page = compound_head(page);
405 #endif
406         return PageSwapBacked(page) && test_bit(PG_swapcache, &page->flags);
407
408 }
409 SETPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
410 CLEARPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
411 #else
412 PAGEFLAG_FALSE(SwapCache)
413 #endif
414
415 PAGEFLAG(Unevictable, unevictable, PF_HEAD)
416         __CLEARPAGEFLAG(Unevictable, unevictable, PF_HEAD)
417         TESTCLEARFLAG(Unevictable, unevictable, PF_HEAD)
418
419 #ifdef CONFIG_MMU
420 PAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
421         __CLEARPAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
422         TESTSCFLAG(Mlocked, mlocked, PF_NO_TAIL)
423 #else
424 PAGEFLAG_FALSE(Mlocked) __CLEARPAGEFLAG_NOOP(Mlocked)
425         TESTSCFLAG_FALSE(Mlocked)
426 #endif
427
428 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
429 PAGEFLAG(Uncached, uncached, PF_NO_COMPOUND)
430 #else
431 PAGEFLAG_FALSE(Uncached)
432 #endif
433
434 #ifdef CONFIG_MEMORY_FAILURE
435 PAGEFLAG(HWPoison, hwpoison, PF_ANY)
436 TESTSCFLAG(HWPoison, hwpoison, PF_ANY)
437 #define __PG_HWPOISON (1UL << PG_hwpoison)
438 extern bool take_page_off_buddy(struct page *page);
439 #else
440 PAGEFLAG_FALSE(HWPoison)
441 #define __PG_HWPOISON 0
442 #endif
443
444 #if defined(CONFIG_PAGE_IDLE_FLAG) && defined(CONFIG_64BIT)
445 TESTPAGEFLAG(Young, young, PF_ANY)
446 SETPAGEFLAG(Young, young, PF_ANY)
447 TESTCLEARFLAG(Young, young, PF_ANY)
448 PAGEFLAG(Idle, idle, PF_ANY)
449 #endif
450
451 #ifdef CONFIG_KASAN_HW_TAGS
452 PAGEFLAG(SkipKASanPoison, skip_kasan_poison, PF_HEAD)
453 #else
454 PAGEFLAG_FALSE(SkipKASanPoison)
455 #endif
456
457 /*
458  * PageReported() is used to track reported free pages within the Buddy
459  * allocator. We can use the non-atomic version of the test and set
460  * operations as both should be shielded with the zone lock to prevent
461  * any possible races on the setting or clearing of the bit.
462  */
463 __PAGEFLAG(Reported, reported, PF_NO_COMPOUND)
464
465 /*
466  * On an anonymous page mapped into a user virtual memory area,
467  * page->mapping points to its anon_vma, not to a struct address_space;
468  * with the PAGE_MAPPING_ANON bit set to distinguish it.  See rmap.h.
469  *
470  * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
471  * the PAGE_MAPPING_MOVABLE bit may be set along with the PAGE_MAPPING_ANON
472  * bit; and then page->mapping points, not to an anon_vma, but to a private
473  * structure which KSM associates with that merged page.  See ksm.h.
474  *
475  * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is used for non-lru movable
476  * page and then page->mapping points a struct address_space.
477  *
478  * Please note that, confusingly, "page_mapping" refers to the inode
479  * address_space which maps the page from disk; whereas "page_mapped"
480  * refers to user virtual address space into which the page is mapped.
481  */
482 #define PAGE_MAPPING_ANON       0x1
483 #define PAGE_MAPPING_MOVABLE    0x2
484 #define PAGE_MAPPING_KSM        (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
485 #define PAGE_MAPPING_FLAGS      (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
486
487 static __always_inline int PageMappingFlags(struct page *page)
488 {
489         return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) != 0;
490 }
491
492 static __always_inline int PageAnon(struct page *page)
493 {
494         page = compound_head(page);
495         return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
496 }
497
498 static __always_inline int __PageMovable(struct page *page)
499 {
500         return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
501                                 PAGE_MAPPING_MOVABLE;
502 }
503
504 #ifdef CONFIG_KSM
505 /*
506  * A KSM page is one of those write-protected "shared pages" or "merged pages"
507  * which KSM maps into multiple mms, wherever identical anonymous page content
508  * is found in VM_MERGEABLE vmas.  It's a PageAnon page, pointing not to any
509  * anon_vma, but to that page's node of the stable tree.
510  */
511 static __always_inline int PageKsm(struct page *page)
512 {
513         page = compound_head(page);
514         return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
515                                 PAGE_MAPPING_KSM;
516 }
517 #else
518 TESTPAGEFLAG_FALSE(Ksm)
519 #endif
520
521 u64 stable_page_flags(struct page *page);
522
523 static inline int PageUptodate(struct page *page)
524 {
525         int ret;
526         page = compound_head(page);
527         ret = test_bit(PG_uptodate, &(page)->flags);
528         /*
529          * Must ensure that the data we read out of the page is loaded
530          * _after_ we've loaded page->flags to check for PageUptodate.
531          * We can skip the barrier if the page is not uptodate, because
532          * we wouldn't be reading anything from it.
533          *
534          * See SetPageUptodate() for the other side of the story.
535          */
536         if (ret)
537                 smp_rmb();
538
539         return ret;
540 }
541
542 static __always_inline void __SetPageUptodate(struct page *page)
543 {
544         VM_BUG_ON_PAGE(PageTail(page), page);
545         smp_wmb();
546         __set_bit(PG_uptodate, &page->flags);
547 }
548
549 static __always_inline void SetPageUptodate(struct page *page)
550 {
551         VM_BUG_ON_PAGE(PageTail(page), page);
552         /*
553          * Memory barrier must be issued before setting the PG_uptodate bit,
554          * so that all previous stores issued in order to bring the page
555          * uptodate are actually visible before PageUptodate becomes true.
556          */
557         smp_wmb();
558         set_bit(PG_uptodate, &page->flags);
559 }
560
561 CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL)
562
563 int test_clear_page_writeback(struct page *page);
564 int __test_set_page_writeback(struct page *page, bool keep_write);
565
566 #define test_set_page_writeback(page)                   \
567         __test_set_page_writeback(page, false)
568 #define test_set_page_writeback_keepwrite(page) \
569         __test_set_page_writeback(page, true)
570
571 static inline void set_page_writeback(struct page *page)
572 {
573         test_set_page_writeback(page);
574 }
575
576 static inline void set_page_writeback_keepwrite(struct page *page)
577 {
578         test_set_page_writeback_keepwrite(page);
579 }
580
581 __PAGEFLAG(Head, head, PF_ANY) CLEARPAGEFLAG(Head, head, PF_ANY)
582
583 static __always_inline void set_compound_head(struct page *page, struct page *head)
584 {
585         WRITE_ONCE(page->compound_head, (unsigned long)head + 1);
586 }
587
588 static __always_inline void clear_compound_head(struct page *page)
589 {
590         WRITE_ONCE(page->compound_head, 0);
591 }
592
593 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
594 static inline void ClearPageCompound(struct page *page)
595 {
596         BUG_ON(!PageHead(page));
597         ClearPageHead(page);
598 }
599 #endif
600
601 #define PG_head_mask ((1UL << PG_head))
602
603 #ifdef CONFIG_HUGETLB_PAGE
604 int PageHuge(struct page *page);
605 int PageHeadHuge(struct page *page);
606 #else
607 TESTPAGEFLAG_FALSE(Huge)
608 TESTPAGEFLAG_FALSE(HeadHuge)
609 #endif
610
611
612 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
613 /*
614  * PageHuge() only returns true for hugetlbfs pages, but not for
615  * normal or transparent huge pages.
616  *
617  * PageTransHuge() returns true for both transparent huge and
618  * hugetlbfs pages, but not normal pages. PageTransHuge() can only be
619  * called only in the core VM paths where hugetlbfs pages can't exist.
620  */
621 static inline int PageTransHuge(struct page *page)
622 {
623         VM_BUG_ON_PAGE(PageTail(page), page);
624         return PageHead(page);
625 }
626
627 /*
628  * PageTransCompound returns true for both transparent huge pages
629  * and hugetlbfs pages, so it should only be called when it's known
630  * that hugetlbfs pages aren't involved.
631  */
632 static inline int PageTransCompound(struct page *page)
633 {
634         return PageCompound(page);
635 }
636
637 /*
638  * PageTransTail returns true for both transparent huge pages
639  * and hugetlbfs pages, so it should only be called when it's known
640  * that hugetlbfs pages aren't involved.
641  */
642 static inline int PageTransTail(struct page *page)
643 {
644         return PageTail(page);
645 }
646
647 /*
648  * PageDoubleMap indicates that the compound page is mapped with PTEs as well
649  * as PMDs.
650  *
651  * This is required for optimization of rmap operations for THP: we can postpone
652  * per small page mapcount accounting (and its overhead from atomic operations)
653  * until the first PMD split.
654  *
655  * For the page PageDoubleMap means ->_mapcount in all sub-pages is offset up
656  * by one. This reference will go away with last compound_mapcount.
657  *
658  * See also __split_huge_pmd_locked() and page_remove_anon_compound_rmap().
659  */
660 PAGEFLAG(DoubleMap, double_map, PF_SECOND)
661         TESTSCFLAG(DoubleMap, double_map, PF_SECOND)
662 #else
663 TESTPAGEFLAG_FALSE(TransHuge)
664 TESTPAGEFLAG_FALSE(TransCompound)
665 TESTPAGEFLAG_FALSE(TransCompoundMap)
666 TESTPAGEFLAG_FALSE(TransTail)
667 PAGEFLAG_FALSE(DoubleMap)
668         TESTSCFLAG_FALSE(DoubleMap)
669 #endif
670
671 /*
672  * Check if a page is currently marked HWPoisoned. Note that this check is
673  * best effort only and inherently racy: there is no way to synchronize with
674  * failing hardware.
675  */
676 static inline bool is_page_hwpoison(struct page *page)
677 {
678         if (PageHWPoison(page))
679                 return true;
680         return PageHuge(page) && PageHWPoison(compound_head(page));
681 }
682
683 /*
684  * For pages that are never mapped to userspace (and aren't PageSlab),
685  * page_type may be used.  Because it is initialised to -1, we invert the
686  * sense of the bit, so __SetPageFoo *clears* the bit used for PageFoo, and
687  * __ClearPageFoo *sets* the bit used for PageFoo.  We reserve a few high and
688  * low bits so that an underflow or overflow of page_mapcount() won't be
689  * mistaken for a page type value.
690  */
691
692 #define PAGE_TYPE_BASE  0xf0000000
693 /* Reserve              0x0000007f to catch underflows of page_mapcount */
694 #define PAGE_MAPCOUNT_RESERVE   -128
695 #define PG_buddy        0x00000080
696 #define PG_offline      0x00000100
697 #define PG_table        0x00000200
698 #define PG_guard        0x00000400
699
700 #define PageType(page, flag)                                            \
701         ((page->page_type & (PAGE_TYPE_BASE | flag)) == PAGE_TYPE_BASE)
702
703 static inline int page_has_type(struct page *page)
704 {
705         return (int)page->page_type < PAGE_MAPCOUNT_RESERVE;
706 }
707
708 #define PAGE_TYPE_OPS(uname, lname)                                     \
709 static __always_inline int Page##uname(struct page *page)               \
710 {                                                                       \
711         return PageType(page, PG_##lname);                              \
712 }                                                                       \
713 static __always_inline void __SetPage##uname(struct page *page)         \
714 {                                                                       \
715         VM_BUG_ON_PAGE(!PageType(page, 0), page);                       \
716         page->page_type &= ~PG_##lname;                                 \
717 }                                                                       \
718 static __always_inline void __ClearPage##uname(struct page *page)       \
719 {                                                                       \
720         VM_BUG_ON_PAGE(!Page##uname(page), page);                       \
721         page->page_type |= PG_##lname;                                  \
722 }
723
724 /*
725  * PageBuddy() indicates that the page is free and in the buddy system
726  * (see mm/page_alloc.c).
727  */
728 PAGE_TYPE_OPS(Buddy, buddy)
729
730 /*
731  * PageOffline() indicates that the page is logically offline although the
732  * containing section is online. (e.g. inflated in a balloon driver or
733  * not onlined when onlining the section).
734  * The content of these pages is effectively stale. Such pages should not
735  * be touched (read/write/dump/save) except by their owner.
736  *
737  * If a driver wants to allow to offline unmovable PageOffline() pages without
738  * putting them back to the buddy, it can do so via the memory notifier by
739  * decrementing the reference count in MEM_GOING_OFFLINE and incrementing the
740  * reference count in MEM_CANCEL_OFFLINE. When offlining, the PageOffline()
741  * pages (now with a reference count of zero) are treated like free pages,
742  * allowing the containing memory block to get offlined. A driver that
743  * relies on this feature is aware that re-onlining the memory block will
744  * require to re-set the pages PageOffline() and not giving them to the
745  * buddy via online_page_callback_t.
746  *
747  * There are drivers that mark a page PageOffline() and expect there won't be
748  * any further access to page content. PFN walkers that read content of random
749  * pages should check PageOffline() and synchronize with such drivers using
750  * page_offline_freeze()/page_offline_thaw().
751  */
752 PAGE_TYPE_OPS(Offline, offline)
753
754 extern void page_offline_freeze(void);
755 extern void page_offline_thaw(void);
756 extern void page_offline_begin(void);
757 extern void page_offline_end(void);
758
759 /*
760  * Marks pages in use as page tables.
761  */
762 PAGE_TYPE_OPS(Table, table)
763
764 /*
765  * Marks guardpages used with debug_pagealloc.
766  */
767 PAGE_TYPE_OPS(Guard, guard)
768
769 extern bool is_free_buddy_page(struct page *page);
770
771 __PAGEFLAG(Isolated, isolated, PF_ANY);
772
773 /*
774  * If network-based swap is enabled, sl*b must keep track of whether pages
775  * were allocated from pfmemalloc reserves.
776  */
777 static inline int PageSlabPfmemalloc(struct page *page)
778 {
779         VM_BUG_ON_PAGE(!PageSlab(page), page);
780         return PageActive(page);
781 }
782
783 /*
784  * A version of PageSlabPfmemalloc() for opportunistic checks where the page
785  * might have been freed under us and not be a PageSlab anymore.
786  */
787 static inline int __PageSlabPfmemalloc(struct page *page)
788 {
789         return PageActive(page);
790 }
791
792 static inline void SetPageSlabPfmemalloc(struct page *page)
793 {
794         VM_BUG_ON_PAGE(!PageSlab(page), page);
795         SetPageActive(page);
796 }
797
798 static inline void __ClearPageSlabPfmemalloc(struct page *page)
799 {
800         VM_BUG_ON_PAGE(!PageSlab(page), page);
801         __ClearPageActive(page);
802 }
803
804 static inline void ClearPageSlabPfmemalloc(struct page *page)
805 {
806         VM_BUG_ON_PAGE(!PageSlab(page), page);
807         ClearPageActive(page);
808 }
809
810 #ifdef CONFIG_MMU
811 #define __PG_MLOCKED            (1UL << PG_mlocked)
812 #else
813 #define __PG_MLOCKED            0
814 #endif
815
816 /*
817  * Flags checked when a page is freed.  Pages being freed should not have
818  * these flags set.  If they are, there is a problem.
819  */
820 #define PAGE_FLAGS_CHECK_AT_FREE                                \
821         (1UL << PG_lru          | 1UL << PG_locked      |       \
822          1UL << PG_private      | 1UL << PG_private_2   |       \
823          1UL << PG_writeback    | 1UL << PG_reserved    |       \
824          1UL << PG_slab         | 1UL << PG_active      |       \
825          1UL << PG_unevictable  | __PG_MLOCKED)
826
827 /*
828  * Flags checked when a page is prepped for return by the page allocator.
829  * Pages being prepped should not have these flags set.  If they are set,
830  * there has been a kernel bug or struct page corruption.
831  *
832  * __PG_HWPOISON is exceptional because it needs to be kept beyond page's
833  * alloc-free cycle to prevent from reusing the page.
834  */
835 #define PAGE_FLAGS_CHECK_AT_PREP        \
836         (PAGEFLAGS_MASK & ~__PG_HWPOISON)
837
838 #define PAGE_FLAGS_PRIVATE                              \
839         (1UL << PG_private | 1UL << PG_private_2)
840 /**
841  * page_has_private - Determine if page has private stuff
842  * @page: The page to be checked
843  *
844  * Determine if a page has private stuff, indicating that release routines
845  * should be invoked upon it.
846  */
847 static inline int page_has_private(struct page *page)
848 {
849         return !!(page->flags & PAGE_FLAGS_PRIVATE);
850 }
851
852 #undef PF_ANY
853 #undef PF_HEAD
854 #undef PF_ONLY_HEAD
855 #undef PF_NO_TAIL
856 #undef PF_NO_COMPOUND
857 #undef PF_SECOND
858 #endif /* !__GENERATING_BOUNDS_H */
859
860 #endif  /* PAGE_FLAGS_H */