Merge tag 'io_uring-5.15-2021-09-11' of git://git.kernel.dk/linux-block
[linux-2.6-microblaze.git] / include / asm-generic / div64.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_GENERIC_DIV64_H
3 #define _ASM_GENERIC_DIV64_H
4 /*
5  * Copyright (C) 2003 Bernardo Innocenti <bernie@develer.com>
6  * Based on former asm-ppc/div64.h and asm-m68knommu/div64.h
7  *
8  * Optimization for constant divisors on 32-bit machines:
9  * Copyright (C) 2006-2015 Nicolas Pitre
10  *
11  * The semantics of do_div() is, in C++ notation, observing that the name
12  * is a function-like macro and the n parameter has the semantics of a C++
13  * reference:
14  *
15  * uint32_t do_div(uint64_t &n, uint32_t base)
16  * {
17  *      uint32_t remainder = n % base;
18  *      n = n / base;
19  *      return remainder;
20  * }
21  *
22  * NOTE: macro parameter n is evaluated multiple times,
23  *       beware of side effects!
24  */
25
26 #include <linux/types.h>
27 #include <linux/compiler.h>
28
29 #if BITS_PER_LONG == 64
30
31 /**
32  * do_div - returns 2 values: calculate remainder and update new dividend
33  * @n: uint64_t dividend (will be updated)
34  * @base: uint32_t divisor
35  *
36  * Summary:
37  * ``uint32_t remainder = n % base;``
38  * ``n = n / base;``
39  *
40  * Return: (uint32_t)remainder
41  *
42  * NOTE: macro parameter @n is evaluated multiple times,
43  * beware of side effects!
44  */
45 # define do_div(n,base) ({                                      \
46         uint32_t __base = (base);                               \
47         uint32_t __rem;                                         \
48         __rem = ((uint64_t)(n)) % __base;                       \
49         (n) = ((uint64_t)(n)) / __base;                         \
50         __rem;                                                  \
51  })
52
53 #elif BITS_PER_LONG == 32
54
55 #include <linux/log2.h>
56
57 /*
58  * If the divisor happens to be constant, we determine the appropriate
59  * inverse at compile time to turn the division into a few inline
60  * multiplications which ought to be much faster.
61  *
62  * (It is unfortunate that gcc doesn't perform all this internally.)
63  */
64
65 #define __div64_const32(n, ___b)                                        \
66 ({                                                                      \
67         /*                                                              \
68          * Multiplication by reciprocal of b: n / b = n * (p / b) / p   \
69          *                                                              \
70          * We rely on the fact that most of this code gets optimized    \
71          * away at compile time due to constant propagation and only    \
72          * a few multiplication instructions should remain.             \
73          * Hence this monstrous macro (static inline doesn't always     \
74          * do the trick here).                                          \
75          */                                                             \
76         uint64_t ___res, ___x, ___t, ___m, ___n = (n);                  \
77         uint32_t ___p, ___bias;                                         \
78                                                                         \
79         /* determine MSB of b */                                        \
80         ___p = 1 << ilog2(___b);                                        \
81                                                                         \
82         /* compute m = ((p << 64) + b - 1) / b */                       \
83         ___m = (~0ULL / ___b) * ___p;                                   \
84         ___m += (((~0ULL % ___b + 1) * ___p) + ___b - 1) / ___b;        \
85                                                                         \
86         /* one less than the dividend with highest result */            \
87         ___x = ~0ULL / ___b * ___b - 1;                                 \
88                                                                         \
89         /* test our ___m with res = m * x / (p << 64) */                \
90         ___res = ((___m & 0xffffffff) * (___x & 0xffffffff)) >> 32;     \
91         ___t = ___res += (___m & 0xffffffff) * (___x >> 32);            \
92         ___res += (___x & 0xffffffff) * (___m >> 32);                   \
93         ___t = (___res < ___t) ? (1ULL << 32) : 0;                      \
94         ___res = (___res >> 32) + ___t;                                 \
95         ___res += (___m >> 32) * (___x >> 32);                          \
96         ___res /= ___p;                                                 \
97                                                                         \
98         /* Now sanitize and optimize what we've got. */                 \
99         if (~0ULL % (___b / (___b & -___b)) == 0) {                     \
100                 /* special case, can be simplified to ... */            \
101                 ___n /= (___b & -___b);                                 \
102                 ___m = ~0ULL / (___b / (___b & -___b));                 \
103                 ___p = 1;                                               \
104                 ___bias = 1;                                            \
105         } else if (___res != ___x / ___b) {                             \
106                 /*                                                      \
107                  * We can't get away without a bias to compensate       \
108                  * for bit truncation errors.  To avoid it we'd need an \
109                  * additional bit to represent m which would overflow   \
110                  * a 64-bit variable.                                   \
111                  *                                                      \
112                  * Instead we do m = p / b and n / b = (n * m + m) / p. \
113                  */                                                     \
114                 ___bias = 1;                                            \
115                 /* Compute m = (p << 64) / b */                         \
116                 ___m = (~0ULL / ___b) * ___p;                           \
117                 ___m += ((~0ULL % ___b + 1) * ___p) / ___b;             \
118         } else {                                                        \
119                 /*                                                      \
120                  * Reduce m / p, and try to clear bit 31 of m when      \
121                  * possible, otherwise that'll need extra overflow      \
122                  * handling later.                                      \
123                  */                                                     \
124                 uint32_t ___bits = -(___m & -___m);                     \
125                 ___bits |= ___m >> 32;                                  \
126                 ___bits = (~___bits) << 1;                              \
127                 /*                                                      \
128                  * If ___bits == 0 then setting bit 31 is  unavoidable. \
129                  * Simply apply the maximum possible reduction in that  \
130                  * case. Otherwise the MSB of ___bits indicates the     \
131                  * best reduction we should apply.                      \
132                  */                                                     \
133                 if (!___bits) {                                         \
134                         ___p /= (___m & -___m);                         \
135                         ___m /= (___m & -___m);                         \
136                 } else {                                                \
137                         ___p >>= ilog2(___bits);                        \
138                         ___m >>= ilog2(___bits);                        \
139                 }                                                       \
140                 /* No bias needed. */                                   \
141                 ___bias = 0;                                            \
142         }                                                               \
143                                                                         \
144         /*                                                              \
145          * Now we have a combination of 2 conditions:                   \
146          *                                                              \
147          * 1) whether or not we need to apply a bias, and               \
148          *                                                              \
149          * 2) whether or not there might be an overflow in the cross    \
150          *    product determined by (___m & ((1 << 63) | (1 << 31))).   \
151          *                                                              \
152          * Select the best way to do (m_bias + m * n) / (1 << 64).      \
153          * From now on there will be actual runtime code generated.     \
154          */                                                             \
155         ___res = __arch_xprod_64(___m, ___n, ___bias);                  \
156                                                                         \
157         ___res /= ___p;                                                 \
158 })
159
160 #ifndef __arch_xprod_64
161 /*
162  * Default C implementation for __arch_xprod_64()
163  *
164  * Prototype: uint64_t __arch_xprod_64(const uint64_t m, uint64_t n, bool bias)
165  * Semantic:  retval = ((bias ? m : 0) + m * n) >> 64
166  *
167  * The product is a 128-bit value, scaled down to 64 bits.
168  * Assuming constant propagation to optimize away unused conditional code.
169  * Architectures may provide their own optimized assembly implementation.
170  */
171 static inline uint64_t __arch_xprod_64(const uint64_t m, uint64_t n, bool bias)
172 {
173         uint32_t m_lo = m;
174         uint32_t m_hi = m >> 32;
175         uint32_t n_lo = n;
176         uint32_t n_hi = n >> 32;
177         uint64_t res;
178         uint32_t res_lo, res_hi, tmp;
179
180         if (!bias) {
181                 res = ((uint64_t)m_lo * n_lo) >> 32;
182         } else if (!(m & ((1ULL << 63) | (1ULL << 31)))) {
183                 /* there can't be any overflow here */
184                 res = (m + (uint64_t)m_lo * n_lo) >> 32;
185         } else {
186                 res = m + (uint64_t)m_lo * n_lo;
187                 res_lo = res >> 32;
188                 res_hi = (res_lo < m_hi);
189                 res = res_lo | ((uint64_t)res_hi << 32);
190         }
191
192         if (!(m & ((1ULL << 63) | (1ULL << 31)))) {
193                 /* there can't be any overflow here */
194                 res += (uint64_t)m_lo * n_hi;
195                 res += (uint64_t)m_hi * n_lo;
196                 res >>= 32;
197         } else {
198                 res += (uint64_t)m_lo * n_hi;
199                 tmp = res >> 32;
200                 res += (uint64_t)m_hi * n_lo;
201                 res_lo = res >> 32;
202                 res_hi = (res_lo < tmp);
203                 res = res_lo | ((uint64_t)res_hi << 32);
204         }
205
206         res += (uint64_t)m_hi * n_hi;
207
208         return res;
209 }
210 #endif
211
212 #ifndef __div64_32
213 extern uint32_t __div64_32(uint64_t *dividend, uint32_t divisor);
214 #endif
215
216 /* The unnecessary pointer compare is there
217  * to check for type safety (n must be 64bit)
218  */
219 # define do_div(n,base) ({                              \
220         uint32_t __base = (base);                       \
221         uint32_t __rem;                                 \
222         (void)(((typeof((n)) *)0) == ((uint64_t *)0));  \
223         if (__builtin_constant_p(__base) &&             \
224             is_power_of_2(__base)) {                    \
225                 __rem = (n) & (__base - 1);             \
226                 (n) >>= ilog2(__base);                  \
227         } else if (__builtin_constant_p(__base) &&      \
228                    __base != 0) {                       \
229                 uint32_t __res_lo, __n_lo = (n);        \
230                 (n) = __div64_const32(n, __base);       \
231                 /* the remainder can be computed with 32-bit regs */ \
232                 __res_lo = (n);                         \
233                 __rem = __n_lo - __res_lo * __base;     \
234         } else if (likely(((n) >> 32) == 0)) {          \
235                 __rem = (uint32_t)(n) % __base;         \
236                 (n) = (uint32_t)(n) / __base;           \
237         } else {                                        \
238                 __rem = __div64_32(&(n), __base);       \
239         }                                               \
240         __rem;                                          \
241  })
242
243 #else /* BITS_PER_LONG == ?? */
244
245 # error do_div() does not yet support the C64
246
247 #endif /* BITS_PER_LONG */
248
249 #endif /* _ASM_GENERIC_DIV64_H */