Linux 6.0-rc1
[linux-2.6-microblaze.git] / fs / inode.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * (C) 1997 Linus Torvalds
4  * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5  */
6 #include <linux/export.h>
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/backing-dev.h>
10 #include <linux/hash.h>
11 #include <linux/swap.h>
12 #include <linux/security.h>
13 #include <linux/cdev.h>
14 #include <linux/memblock.h>
15 #include <linux/fsnotify.h>
16 #include <linux/mount.h>
17 #include <linux/posix_acl.h>
18 #include <linux/prefetch.h>
19 #include <linux/buffer_head.h> /* for inode_has_buffers */
20 #include <linux/ratelimit.h>
21 #include <linux/list_lru.h>
22 #include <linux/iversion.h>
23 #include <trace/events/writeback.h>
24 #include "internal.h"
25
26 /*
27  * Inode locking rules:
28  *
29  * inode->i_lock protects:
30  *   inode->i_state, inode->i_hash, __iget(), inode->i_io_list
31  * Inode LRU list locks protect:
32  *   inode->i_sb->s_inode_lru, inode->i_lru
33  * inode->i_sb->s_inode_list_lock protects:
34  *   inode->i_sb->s_inodes, inode->i_sb_list
35  * bdi->wb.list_lock protects:
36  *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
37  * inode_hash_lock protects:
38  *   inode_hashtable, inode->i_hash
39  *
40  * Lock ordering:
41  *
42  * inode->i_sb->s_inode_list_lock
43  *   inode->i_lock
44  *     Inode LRU list locks
45  *
46  * bdi->wb.list_lock
47  *   inode->i_lock
48  *
49  * inode_hash_lock
50  *   inode->i_sb->s_inode_list_lock
51  *   inode->i_lock
52  *
53  * iunique_lock
54  *   inode_hash_lock
55  */
56
57 static unsigned int i_hash_mask __read_mostly;
58 static unsigned int i_hash_shift __read_mostly;
59 static struct hlist_head *inode_hashtable __read_mostly;
60 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
61
62 /*
63  * Empty aops. Can be used for the cases where the user does not
64  * define any of the address_space operations.
65  */
66 const struct address_space_operations empty_aops = {
67 };
68 EXPORT_SYMBOL(empty_aops);
69
70 static DEFINE_PER_CPU(unsigned long, nr_inodes);
71 static DEFINE_PER_CPU(unsigned long, nr_unused);
72
73 static struct kmem_cache *inode_cachep __read_mostly;
74
75 static long get_nr_inodes(void)
76 {
77         int i;
78         long sum = 0;
79         for_each_possible_cpu(i)
80                 sum += per_cpu(nr_inodes, i);
81         return sum < 0 ? 0 : sum;
82 }
83
84 static inline long get_nr_inodes_unused(void)
85 {
86         int i;
87         long sum = 0;
88         for_each_possible_cpu(i)
89                 sum += per_cpu(nr_unused, i);
90         return sum < 0 ? 0 : sum;
91 }
92
93 long get_nr_dirty_inodes(void)
94 {
95         /* not actually dirty inodes, but a wild approximation */
96         long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
97         return nr_dirty > 0 ? nr_dirty : 0;
98 }
99
100 /*
101  * Handle nr_inode sysctl
102  */
103 #ifdef CONFIG_SYSCTL
104 /*
105  * Statistics gathering..
106  */
107 static struct inodes_stat_t inodes_stat;
108
109 static int proc_nr_inodes(struct ctl_table *table, int write, void *buffer,
110                           size_t *lenp, loff_t *ppos)
111 {
112         inodes_stat.nr_inodes = get_nr_inodes();
113         inodes_stat.nr_unused = get_nr_inodes_unused();
114         return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
115 }
116
117 static struct ctl_table inodes_sysctls[] = {
118         {
119                 .procname       = "inode-nr",
120                 .data           = &inodes_stat,
121                 .maxlen         = 2*sizeof(long),
122                 .mode           = 0444,
123                 .proc_handler   = proc_nr_inodes,
124         },
125         {
126                 .procname       = "inode-state",
127                 .data           = &inodes_stat,
128                 .maxlen         = 7*sizeof(long),
129                 .mode           = 0444,
130                 .proc_handler   = proc_nr_inodes,
131         },
132         { }
133 };
134
135 static int __init init_fs_inode_sysctls(void)
136 {
137         register_sysctl_init("fs", inodes_sysctls);
138         return 0;
139 }
140 early_initcall(init_fs_inode_sysctls);
141 #endif
142
143 static int no_open(struct inode *inode, struct file *file)
144 {
145         return -ENXIO;
146 }
147
148 /**
149  * inode_init_always - perform inode structure initialisation
150  * @sb: superblock inode belongs to
151  * @inode: inode to initialise
152  *
153  * These are initializations that need to be done on every inode
154  * allocation as the fields are not initialised by slab allocation.
155  */
156 int inode_init_always(struct super_block *sb, struct inode *inode)
157 {
158         static const struct inode_operations empty_iops;
159         static const struct file_operations no_open_fops = {.open = no_open};
160         struct address_space *const mapping = &inode->i_data;
161
162         inode->i_sb = sb;
163         inode->i_blkbits = sb->s_blocksize_bits;
164         inode->i_flags = 0;
165         atomic64_set(&inode->i_sequence, 0);
166         atomic_set(&inode->i_count, 1);
167         inode->i_op = &empty_iops;
168         inode->i_fop = &no_open_fops;
169         inode->i_ino = 0;
170         inode->__i_nlink = 1;
171         inode->i_opflags = 0;
172         if (sb->s_xattr)
173                 inode->i_opflags |= IOP_XATTR;
174         i_uid_write(inode, 0);
175         i_gid_write(inode, 0);
176         atomic_set(&inode->i_writecount, 0);
177         inode->i_size = 0;
178         inode->i_write_hint = WRITE_LIFE_NOT_SET;
179         inode->i_blocks = 0;
180         inode->i_bytes = 0;
181         inode->i_generation = 0;
182         inode->i_pipe = NULL;
183         inode->i_cdev = NULL;
184         inode->i_link = NULL;
185         inode->i_dir_seq = 0;
186         inode->i_rdev = 0;
187         inode->dirtied_when = 0;
188
189 #ifdef CONFIG_CGROUP_WRITEBACK
190         inode->i_wb_frn_winner = 0;
191         inode->i_wb_frn_avg_time = 0;
192         inode->i_wb_frn_history = 0;
193 #endif
194
195         if (security_inode_alloc(inode))
196                 goto out;
197         spin_lock_init(&inode->i_lock);
198         lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
199
200         init_rwsem(&inode->i_rwsem);
201         lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
202
203         atomic_set(&inode->i_dio_count, 0);
204
205         mapping->a_ops = &empty_aops;
206         mapping->host = inode;
207         mapping->flags = 0;
208         mapping->wb_err = 0;
209         atomic_set(&mapping->i_mmap_writable, 0);
210 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
211         atomic_set(&mapping->nr_thps, 0);
212 #endif
213         mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
214         mapping->private_data = NULL;
215         mapping->writeback_index = 0;
216         init_rwsem(&mapping->invalidate_lock);
217         lockdep_set_class_and_name(&mapping->invalidate_lock,
218                                    &sb->s_type->invalidate_lock_key,
219                                    "mapping.invalidate_lock");
220         inode->i_private = NULL;
221         inode->i_mapping = mapping;
222         INIT_HLIST_HEAD(&inode->i_dentry);      /* buggered by rcu freeing */
223 #ifdef CONFIG_FS_POSIX_ACL
224         inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
225 #endif
226
227 #ifdef CONFIG_FSNOTIFY
228         inode->i_fsnotify_mask = 0;
229 #endif
230         inode->i_flctx = NULL;
231         this_cpu_inc(nr_inodes);
232
233         return 0;
234 out:
235         return -ENOMEM;
236 }
237 EXPORT_SYMBOL(inode_init_always);
238
239 void free_inode_nonrcu(struct inode *inode)
240 {
241         kmem_cache_free(inode_cachep, inode);
242 }
243 EXPORT_SYMBOL(free_inode_nonrcu);
244
245 static void i_callback(struct rcu_head *head)
246 {
247         struct inode *inode = container_of(head, struct inode, i_rcu);
248         if (inode->free_inode)
249                 inode->free_inode(inode);
250         else
251                 free_inode_nonrcu(inode);
252 }
253
254 static struct inode *alloc_inode(struct super_block *sb)
255 {
256         const struct super_operations *ops = sb->s_op;
257         struct inode *inode;
258
259         if (ops->alloc_inode)
260                 inode = ops->alloc_inode(sb);
261         else
262                 inode = alloc_inode_sb(sb, inode_cachep, GFP_KERNEL);
263
264         if (!inode)
265                 return NULL;
266
267         if (unlikely(inode_init_always(sb, inode))) {
268                 if (ops->destroy_inode) {
269                         ops->destroy_inode(inode);
270                         if (!ops->free_inode)
271                                 return NULL;
272                 }
273                 inode->free_inode = ops->free_inode;
274                 i_callback(&inode->i_rcu);
275                 return NULL;
276         }
277
278         return inode;
279 }
280
281 void __destroy_inode(struct inode *inode)
282 {
283         BUG_ON(inode_has_buffers(inode));
284         inode_detach_wb(inode);
285         security_inode_free(inode);
286         fsnotify_inode_delete(inode);
287         locks_free_lock_context(inode);
288         if (!inode->i_nlink) {
289                 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
290                 atomic_long_dec(&inode->i_sb->s_remove_count);
291         }
292
293 #ifdef CONFIG_FS_POSIX_ACL
294         if (inode->i_acl && !is_uncached_acl(inode->i_acl))
295                 posix_acl_release(inode->i_acl);
296         if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
297                 posix_acl_release(inode->i_default_acl);
298 #endif
299         this_cpu_dec(nr_inodes);
300 }
301 EXPORT_SYMBOL(__destroy_inode);
302
303 static void destroy_inode(struct inode *inode)
304 {
305         const struct super_operations *ops = inode->i_sb->s_op;
306
307         BUG_ON(!list_empty(&inode->i_lru));
308         __destroy_inode(inode);
309         if (ops->destroy_inode) {
310                 ops->destroy_inode(inode);
311                 if (!ops->free_inode)
312                         return;
313         }
314         inode->free_inode = ops->free_inode;
315         call_rcu(&inode->i_rcu, i_callback);
316 }
317
318 /**
319  * drop_nlink - directly drop an inode's link count
320  * @inode: inode
321  *
322  * This is a low-level filesystem helper to replace any
323  * direct filesystem manipulation of i_nlink.  In cases
324  * where we are attempting to track writes to the
325  * filesystem, a decrement to zero means an imminent
326  * write when the file is truncated and actually unlinked
327  * on the filesystem.
328  */
329 void drop_nlink(struct inode *inode)
330 {
331         WARN_ON(inode->i_nlink == 0);
332         inode->__i_nlink--;
333         if (!inode->i_nlink)
334                 atomic_long_inc(&inode->i_sb->s_remove_count);
335 }
336 EXPORT_SYMBOL(drop_nlink);
337
338 /**
339  * clear_nlink - directly zero an inode's link count
340  * @inode: inode
341  *
342  * This is a low-level filesystem helper to replace any
343  * direct filesystem manipulation of i_nlink.  See
344  * drop_nlink() for why we care about i_nlink hitting zero.
345  */
346 void clear_nlink(struct inode *inode)
347 {
348         if (inode->i_nlink) {
349                 inode->__i_nlink = 0;
350                 atomic_long_inc(&inode->i_sb->s_remove_count);
351         }
352 }
353 EXPORT_SYMBOL(clear_nlink);
354
355 /**
356  * set_nlink - directly set an inode's link count
357  * @inode: inode
358  * @nlink: new nlink (should be non-zero)
359  *
360  * This is a low-level filesystem helper to replace any
361  * direct filesystem manipulation of i_nlink.
362  */
363 void set_nlink(struct inode *inode, unsigned int nlink)
364 {
365         if (!nlink) {
366                 clear_nlink(inode);
367         } else {
368                 /* Yes, some filesystems do change nlink from zero to one */
369                 if (inode->i_nlink == 0)
370                         atomic_long_dec(&inode->i_sb->s_remove_count);
371
372                 inode->__i_nlink = nlink;
373         }
374 }
375 EXPORT_SYMBOL(set_nlink);
376
377 /**
378  * inc_nlink - directly increment an inode's link count
379  * @inode: inode
380  *
381  * This is a low-level filesystem helper to replace any
382  * direct filesystem manipulation of i_nlink.  Currently,
383  * it is only here for parity with dec_nlink().
384  */
385 void inc_nlink(struct inode *inode)
386 {
387         if (unlikely(inode->i_nlink == 0)) {
388                 WARN_ON(!(inode->i_state & I_LINKABLE));
389                 atomic_long_dec(&inode->i_sb->s_remove_count);
390         }
391
392         inode->__i_nlink++;
393 }
394 EXPORT_SYMBOL(inc_nlink);
395
396 static void __address_space_init_once(struct address_space *mapping)
397 {
398         xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
399         init_rwsem(&mapping->i_mmap_rwsem);
400         INIT_LIST_HEAD(&mapping->private_list);
401         spin_lock_init(&mapping->private_lock);
402         mapping->i_mmap = RB_ROOT_CACHED;
403 }
404
405 void address_space_init_once(struct address_space *mapping)
406 {
407         memset(mapping, 0, sizeof(*mapping));
408         __address_space_init_once(mapping);
409 }
410 EXPORT_SYMBOL(address_space_init_once);
411
412 /*
413  * These are initializations that only need to be done
414  * once, because the fields are idempotent across use
415  * of the inode, so let the slab aware of that.
416  */
417 void inode_init_once(struct inode *inode)
418 {
419         memset(inode, 0, sizeof(*inode));
420         INIT_HLIST_NODE(&inode->i_hash);
421         INIT_LIST_HEAD(&inode->i_devices);
422         INIT_LIST_HEAD(&inode->i_io_list);
423         INIT_LIST_HEAD(&inode->i_wb_list);
424         INIT_LIST_HEAD(&inode->i_lru);
425         INIT_LIST_HEAD(&inode->i_sb_list);
426         __address_space_init_once(&inode->i_data);
427         i_size_ordered_init(inode);
428 }
429 EXPORT_SYMBOL(inode_init_once);
430
431 static void init_once(void *foo)
432 {
433         struct inode *inode = (struct inode *) foo;
434
435         inode_init_once(inode);
436 }
437
438 /*
439  * inode->i_lock must be held
440  */
441 void __iget(struct inode *inode)
442 {
443         atomic_inc(&inode->i_count);
444 }
445
446 /*
447  * get additional reference to inode; caller must already hold one.
448  */
449 void ihold(struct inode *inode)
450 {
451         WARN_ON(atomic_inc_return(&inode->i_count) < 2);
452 }
453 EXPORT_SYMBOL(ihold);
454
455 static void __inode_add_lru(struct inode *inode, bool rotate)
456 {
457         if (inode->i_state & (I_DIRTY_ALL | I_SYNC | I_FREEING | I_WILL_FREE))
458                 return;
459         if (atomic_read(&inode->i_count))
460                 return;
461         if (!(inode->i_sb->s_flags & SB_ACTIVE))
462                 return;
463         if (!mapping_shrinkable(&inode->i_data))
464                 return;
465
466         if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
467                 this_cpu_inc(nr_unused);
468         else if (rotate)
469                 inode->i_state |= I_REFERENCED;
470 }
471
472 /*
473  * Add inode to LRU if needed (inode is unused and clean).
474  *
475  * Needs inode->i_lock held.
476  */
477 void inode_add_lru(struct inode *inode)
478 {
479         __inode_add_lru(inode, false);
480 }
481
482 static void inode_lru_list_del(struct inode *inode)
483 {
484         if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
485                 this_cpu_dec(nr_unused);
486 }
487
488 /**
489  * inode_sb_list_add - add inode to the superblock list of inodes
490  * @inode: inode to add
491  */
492 void inode_sb_list_add(struct inode *inode)
493 {
494         spin_lock(&inode->i_sb->s_inode_list_lock);
495         list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
496         spin_unlock(&inode->i_sb->s_inode_list_lock);
497 }
498 EXPORT_SYMBOL_GPL(inode_sb_list_add);
499
500 static inline void inode_sb_list_del(struct inode *inode)
501 {
502         if (!list_empty(&inode->i_sb_list)) {
503                 spin_lock(&inode->i_sb->s_inode_list_lock);
504                 list_del_init(&inode->i_sb_list);
505                 spin_unlock(&inode->i_sb->s_inode_list_lock);
506         }
507 }
508
509 static unsigned long hash(struct super_block *sb, unsigned long hashval)
510 {
511         unsigned long tmp;
512
513         tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
514                         L1_CACHE_BYTES;
515         tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
516         return tmp & i_hash_mask;
517 }
518
519 /**
520  *      __insert_inode_hash - hash an inode
521  *      @inode: unhashed inode
522  *      @hashval: unsigned long value used to locate this object in the
523  *              inode_hashtable.
524  *
525  *      Add an inode to the inode hash for this superblock.
526  */
527 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
528 {
529         struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
530
531         spin_lock(&inode_hash_lock);
532         spin_lock(&inode->i_lock);
533         hlist_add_head_rcu(&inode->i_hash, b);
534         spin_unlock(&inode->i_lock);
535         spin_unlock(&inode_hash_lock);
536 }
537 EXPORT_SYMBOL(__insert_inode_hash);
538
539 /**
540  *      __remove_inode_hash - remove an inode from the hash
541  *      @inode: inode to unhash
542  *
543  *      Remove an inode from the superblock.
544  */
545 void __remove_inode_hash(struct inode *inode)
546 {
547         spin_lock(&inode_hash_lock);
548         spin_lock(&inode->i_lock);
549         hlist_del_init_rcu(&inode->i_hash);
550         spin_unlock(&inode->i_lock);
551         spin_unlock(&inode_hash_lock);
552 }
553 EXPORT_SYMBOL(__remove_inode_hash);
554
555 void dump_mapping(const struct address_space *mapping)
556 {
557         struct inode *host;
558         const struct address_space_operations *a_ops;
559         struct hlist_node *dentry_first;
560         struct dentry *dentry_ptr;
561         struct dentry dentry;
562         unsigned long ino;
563
564         /*
565          * If mapping is an invalid pointer, we don't want to crash
566          * accessing it, so probe everything depending on it carefully.
567          */
568         if (get_kernel_nofault(host, &mapping->host) ||
569             get_kernel_nofault(a_ops, &mapping->a_ops)) {
570                 pr_warn("invalid mapping:%px\n", mapping);
571                 return;
572         }
573
574         if (!host) {
575                 pr_warn("aops:%ps\n", a_ops);
576                 return;
577         }
578
579         if (get_kernel_nofault(dentry_first, &host->i_dentry.first) ||
580             get_kernel_nofault(ino, &host->i_ino)) {
581                 pr_warn("aops:%ps invalid inode:%px\n", a_ops, host);
582                 return;
583         }
584
585         if (!dentry_first) {
586                 pr_warn("aops:%ps ino:%lx\n", a_ops, ino);
587                 return;
588         }
589
590         dentry_ptr = container_of(dentry_first, struct dentry, d_u.d_alias);
591         if (get_kernel_nofault(dentry, dentry_ptr)) {
592                 pr_warn("aops:%ps ino:%lx invalid dentry:%px\n",
593                                 a_ops, ino, dentry_ptr);
594                 return;
595         }
596
597         /*
598          * if dentry is corrupted, the %pd handler may still crash,
599          * but it's unlikely that we reach here with a corrupt mapping
600          */
601         pr_warn("aops:%ps ino:%lx dentry name:\"%pd\"\n", a_ops, ino, &dentry);
602 }
603
604 void clear_inode(struct inode *inode)
605 {
606         /*
607          * We have to cycle the i_pages lock here because reclaim can be in the
608          * process of removing the last page (in __filemap_remove_folio())
609          * and we must not free the mapping under it.
610          */
611         xa_lock_irq(&inode->i_data.i_pages);
612         BUG_ON(inode->i_data.nrpages);
613         /*
614          * Almost always, mapping_empty(&inode->i_data) here; but there are
615          * two known and long-standing ways in which nodes may get left behind
616          * (when deep radix-tree node allocation failed partway; or when THP
617          * collapse_file() failed). Until those two known cases are cleaned up,
618          * or a cleanup function is called here, do not BUG_ON(!mapping_empty),
619          * nor even WARN_ON(!mapping_empty).
620          */
621         xa_unlock_irq(&inode->i_data.i_pages);
622         BUG_ON(!list_empty(&inode->i_data.private_list));
623         BUG_ON(!(inode->i_state & I_FREEING));
624         BUG_ON(inode->i_state & I_CLEAR);
625         BUG_ON(!list_empty(&inode->i_wb_list));
626         /* don't need i_lock here, no concurrent mods to i_state */
627         inode->i_state = I_FREEING | I_CLEAR;
628 }
629 EXPORT_SYMBOL(clear_inode);
630
631 /*
632  * Free the inode passed in, removing it from the lists it is still connected
633  * to. We remove any pages still attached to the inode and wait for any IO that
634  * is still in progress before finally destroying the inode.
635  *
636  * An inode must already be marked I_FREEING so that we avoid the inode being
637  * moved back onto lists if we race with other code that manipulates the lists
638  * (e.g. writeback_single_inode). The caller is responsible for setting this.
639  *
640  * An inode must already be removed from the LRU list before being evicted from
641  * the cache. This should occur atomically with setting the I_FREEING state
642  * flag, so no inodes here should ever be on the LRU when being evicted.
643  */
644 static void evict(struct inode *inode)
645 {
646         const struct super_operations *op = inode->i_sb->s_op;
647
648         BUG_ON(!(inode->i_state & I_FREEING));
649         BUG_ON(!list_empty(&inode->i_lru));
650
651         if (!list_empty(&inode->i_io_list))
652                 inode_io_list_del(inode);
653
654         inode_sb_list_del(inode);
655
656         /*
657          * Wait for flusher thread to be done with the inode so that filesystem
658          * does not start destroying it while writeback is still running. Since
659          * the inode has I_FREEING set, flusher thread won't start new work on
660          * the inode.  We just have to wait for running writeback to finish.
661          */
662         inode_wait_for_writeback(inode);
663
664         if (op->evict_inode) {
665                 op->evict_inode(inode);
666         } else {
667                 truncate_inode_pages_final(&inode->i_data);
668                 clear_inode(inode);
669         }
670         if (S_ISCHR(inode->i_mode) && inode->i_cdev)
671                 cd_forget(inode);
672
673         remove_inode_hash(inode);
674
675         spin_lock(&inode->i_lock);
676         wake_up_bit(&inode->i_state, __I_NEW);
677         BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
678         spin_unlock(&inode->i_lock);
679
680         destroy_inode(inode);
681 }
682
683 /*
684  * dispose_list - dispose of the contents of a local list
685  * @head: the head of the list to free
686  *
687  * Dispose-list gets a local list with local inodes in it, so it doesn't
688  * need to worry about list corruption and SMP locks.
689  */
690 static void dispose_list(struct list_head *head)
691 {
692         while (!list_empty(head)) {
693                 struct inode *inode;
694
695                 inode = list_first_entry(head, struct inode, i_lru);
696                 list_del_init(&inode->i_lru);
697
698                 evict(inode);
699                 cond_resched();
700         }
701 }
702
703 /**
704  * evict_inodes - evict all evictable inodes for a superblock
705  * @sb:         superblock to operate on
706  *
707  * Make sure that no inodes with zero refcount are retained.  This is
708  * called by superblock shutdown after having SB_ACTIVE flag removed,
709  * so any inode reaching zero refcount during or after that call will
710  * be immediately evicted.
711  */
712 void evict_inodes(struct super_block *sb)
713 {
714         struct inode *inode, *next;
715         LIST_HEAD(dispose);
716
717 again:
718         spin_lock(&sb->s_inode_list_lock);
719         list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
720                 if (atomic_read(&inode->i_count))
721                         continue;
722
723                 spin_lock(&inode->i_lock);
724                 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
725                         spin_unlock(&inode->i_lock);
726                         continue;
727                 }
728
729                 inode->i_state |= I_FREEING;
730                 inode_lru_list_del(inode);
731                 spin_unlock(&inode->i_lock);
732                 list_add(&inode->i_lru, &dispose);
733
734                 /*
735                  * We can have a ton of inodes to evict at unmount time given
736                  * enough memory, check to see if we need to go to sleep for a
737                  * bit so we don't livelock.
738                  */
739                 if (need_resched()) {
740                         spin_unlock(&sb->s_inode_list_lock);
741                         cond_resched();
742                         dispose_list(&dispose);
743                         goto again;
744                 }
745         }
746         spin_unlock(&sb->s_inode_list_lock);
747
748         dispose_list(&dispose);
749 }
750 EXPORT_SYMBOL_GPL(evict_inodes);
751
752 /**
753  * invalidate_inodes    - attempt to free all inodes on a superblock
754  * @sb:         superblock to operate on
755  * @kill_dirty: flag to guide handling of dirty inodes
756  *
757  * Attempts to free all inodes for a given superblock.  If there were any
758  * busy inodes return a non-zero value, else zero.
759  * If @kill_dirty is set, discard dirty inodes too, otherwise treat
760  * them as busy.
761  */
762 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
763 {
764         int busy = 0;
765         struct inode *inode, *next;
766         LIST_HEAD(dispose);
767
768 again:
769         spin_lock(&sb->s_inode_list_lock);
770         list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
771                 spin_lock(&inode->i_lock);
772                 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
773                         spin_unlock(&inode->i_lock);
774                         continue;
775                 }
776                 if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
777                         spin_unlock(&inode->i_lock);
778                         busy = 1;
779                         continue;
780                 }
781                 if (atomic_read(&inode->i_count)) {
782                         spin_unlock(&inode->i_lock);
783                         busy = 1;
784                         continue;
785                 }
786
787                 inode->i_state |= I_FREEING;
788                 inode_lru_list_del(inode);
789                 spin_unlock(&inode->i_lock);
790                 list_add(&inode->i_lru, &dispose);
791                 if (need_resched()) {
792                         spin_unlock(&sb->s_inode_list_lock);
793                         cond_resched();
794                         dispose_list(&dispose);
795                         goto again;
796                 }
797         }
798         spin_unlock(&sb->s_inode_list_lock);
799
800         dispose_list(&dispose);
801
802         return busy;
803 }
804
805 /*
806  * Isolate the inode from the LRU in preparation for freeing it.
807  *
808  * If the inode has the I_REFERENCED flag set, then it means that it has been
809  * used recently - the flag is set in iput_final(). When we encounter such an
810  * inode, clear the flag and move it to the back of the LRU so it gets another
811  * pass through the LRU before it gets reclaimed. This is necessary because of
812  * the fact we are doing lazy LRU updates to minimise lock contention so the
813  * LRU does not have strict ordering. Hence we don't want to reclaim inodes
814  * with this flag set because they are the inodes that are out of order.
815  */
816 static enum lru_status inode_lru_isolate(struct list_head *item,
817                 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
818 {
819         struct list_head *freeable = arg;
820         struct inode    *inode = container_of(item, struct inode, i_lru);
821
822         /*
823          * We are inverting the lru lock/inode->i_lock here, so use a
824          * trylock. If we fail to get the lock, just skip it.
825          */
826         if (!spin_trylock(&inode->i_lock))
827                 return LRU_SKIP;
828
829         /*
830          * Inodes can get referenced, redirtied, or repopulated while
831          * they're already on the LRU, and this can make them
832          * unreclaimable for a while. Remove them lazily here; iput,
833          * sync, or the last page cache deletion will requeue them.
834          */
835         if (atomic_read(&inode->i_count) ||
836             (inode->i_state & ~I_REFERENCED) ||
837             !mapping_shrinkable(&inode->i_data)) {
838                 list_lru_isolate(lru, &inode->i_lru);
839                 spin_unlock(&inode->i_lock);
840                 this_cpu_dec(nr_unused);
841                 return LRU_REMOVED;
842         }
843
844         /* Recently referenced inodes get one more pass */
845         if (inode->i_state & I_REFERENCED) {
846                 inode->i_state &= ~I_REFERENCED;
847                 spin_unlock(&inode->i_lock);
848                 return LRU_ROTATE;
849         }
850
851         /*
852          * On highmem systems, mapping_shrinkable() permits dropping
853          * page cache in order to free up struct inodes: lowmem might
854          * be under pressure before the cache inside the highmem zone.
855          */
856         if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) {
857                 __iget(inode);
858                 spin_unlock(&inode->i_lock);
859                 spin_unlock(lru_lock);
860                 if (remove_inode_buffers(inode)) {
861                         unsigned long reap;
862                         reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
863                         if (current_is_kswapd())
864                                 __count_vm_events(KSWAPD_INODESTEAL, reap);
865                         else
866                                 __count_vm_events(PGINODESTEAL, reap);
867                         if (current->reclaim_state)
868                                 current->reclaim_state->reclaimed_slab += reap;
869                 }
870                 iput(inode);
871                 spin_lock(lru_lock);
872                 return LRU_RETRY;
873         }
874
875         WARN_ON(inode->i_state & I_NEW);
876         inode->i_state |= I_FREEING;
877         list_lru_isolate_move(lru, &inode->i_lru, freeable);
878         spin_unlock(&inode->i_lock);
879
880         this_cpu_dec(nr_unused);
881         return LRU_REMOVED;
882 }
883
884 /*
885  * Walk the superblock inode LRU for freeable inodes and attempt to free them.
886  * This is called from the superblock shrinker function with a number of inodes
887  * to trim from the LRU. Inodes to be freed are moved to a temporary list and
888  * then are freed outside inode_lock by dispose_list().
889  */
890 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
891 {
892         LIST_HEAD(freeable);
893         long freed;
894
895         freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
896                                      inode_lru_isolate, &freeable);
897         dispose_list(&freeable);
898         return freed;
899 }
900
901 static void __wait_on_freeing_inode(struct inode *inode);
902 /*
903  * Called with the inode lock held.
904  */
905 static struct inode *find_inode(struct super_block *sb,
906                                 struct hlist_head *head,
907                                 int (*test)(struct inode *, void *),
908                                 void *data)
909 {
910         struct inode *inode = NULL;
911
912 repeat:
913         hlist_for_each_entry(inode, head, i_hash) {
914                 if (inode->i_sb != sb)
915                         continue;
916                 if (!test(inode, data))
917                         continue;
918                 spin_lock(&inode->i_lock);
919                 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
920                         __wait_on_freeing_inode(inode);
921                         goto repeat;
922                 }
923                 if (unlikely(inode->i_state & I_CREATING)) {
924                         spin_unlock(&inode->i_lock);
925                         return ERR_PTR(-ESTALE);
926                 }
927                 __iget(inode);
928                 spin_unlock(&inode->i_lock);
929                 return inode;
930         }
931         return NULL;
932 }
933
934 /*
935  * find_inode_fast is the fast path version of find_inode, see the comment at
936  * iget_locked for details.
937  */
938 static struct inode *find_inode_fast(struct super_block *sb,
939                                 struct hlist_head *head, unsigned long ino)
940 {
941         struct inode *inode = NULL;
942
943 repeat:
944         hlist_for_each_entry(inode, head, i_hash) {
945                 if (inode->i_ino != ino)
946                         continue;
947                 if (inode->i_sb != sb)
948                         continue;
949                 spin_lock(&inode->i_lock);
950                 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
951                         __wait_on_freeing_inode(inode);
952                         goto repeat;
953                 }
954                 if (unlikely(inode->i_state & I_CREATING)) {
955                         spin_unlock(&inode->i_lock);
956                         return ERR_PTR(-ESTALE);
957                 }
958                 __iget(inode);
959                 spin_unlock(&inode->i_lock);
960                 return inode;
961         }
962         return NULL;
963 }
964
965 /*
966  * Each cpu owns a range of LAST_INO_BATCH numbers.
967  * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
968  * to renew the exhausted range.
969  *
970  * This does not significantly increase overflow rate because every CPU can
971  * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
972  * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
973  * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
974  * overflow rate by 2x, which does not seem too significant.
975  *
976  * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
977  * error if st_ino won't fit in target struct field. Use 32bit counter
978  * here to attempt to avoid that.
979  */
980 #define LAST_INO_BATCH 1024
981 static DEFINE_PER_CPU(unsigned int, last_ino);
982
983 unsigned int get_next_ino(void)
984 {
985         unsigned int *p = &get_cpu_var(last_ino);
986         unsigned int res = *p;
987
988 #ifdef CONFIG_SMP
989         if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
990                 static atomic_t shared_last_ino;
991                 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
992
993                 res = next - LAST_INO_BATCH;
994         }
995 #endif
996
997         res++;
998         /* get_next_ino should not provide a 0 inode number */
999         if (unlikely(!res))
1000                 res++;
1001         *p = res;
1002         put_cpu_var(last_ino);
1003         return res;
1004 }
1005 EXPORT_SYMBOL(get_next_ino);
1006
1007 /**
1008  *      new_inode_pseudo        - obtain an inode
1009  *      @sb: superblock
1010  *
1011  *      Allocates a new inode for given superblock.
1012  *      Inode wont be chained in superblock s_inodes list
1013  *      This means :
1014  *      - fs can't be unmount
1015  *      - quotas, fsnotify, writeback can't work
1016  */
1017 struct inode *new_inode_pseudo(struct super_block *sb)
1018 {
1019         struct inode *inode = alloc_inode(sb);
1020
1021         if (inode) {
1022                 spin_lock(&inode->i_lock);
1023                 inode->i_state = 0;
1024                 spin_unlock(&inode->i_lock);
1025         }
1026         return inode;
1027 }
1028
1029 /**
1030  *      new_inode       - obtain an inode
1031  *      @sb: superblock
1032  *
1033  *      Allocates a new inode for given superblock. The default gfp_mask
1034  *      for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
1035  *      If HIGHMEM pages are unsuitable or it is known that pages allocated
1036  *      for the page cache are not reclaimable or migratable,
1037  *      mapping_set_gfp_mask() must be called with suitable flags on the
1038  *      newly created inode's mapping
1039  *
1040  */
1041 struct inode *new_inode(struct super_block *sb)
1042 {
1043         struct inode *inode;
1044
1045         spin_lock_prefetch(&sb->s_inode_list_lock);
1046
1047         inode = new_inode_pseudo(sb);
1048         if (inode)
1049                 inode_sb_list_add(inode);
1050         return inode;
1051 }
1052 EXPORT_SYMBOL(new_inode);
1053
1054 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1055 void lockdep_annotate_inode_mutex_key(struct inode *inode)
1056 {
1057         if (S_ISDIR(inode->i_mode)) {
1058                 struct file_system_type *type = inode->i_sb->s_type;
1059
1060                 /* Set new key only if filesystem hasn't already changed it */
1061                 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
1062                         /*
1063                          * ensure nobody is actually holding i_mutex
1064                          */
1065                         // mutex_destroy(&inode->i_mutex);
1066                         init_rwsem(&inode->i_rwsem);
1067                         lockdep_set_class(&inode->i_rwsem,
1068                                           &type->i_mutex_dir_key);
1069                 }
1070         }
1071 }
1072 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
1073 #endif
1074
1075 /**
1076  * unlock_new_inode - clear the I_NEW state and wake up any waiters
1077  * @inode:      new inode to unlock
1078  *
1079  * Called when the inode is fully initialised to clear the new state of the
1080  * inode and wake up anyone waiting for the inode to finish initialisation.
1081  */
1082 void unlock_new_inode(struct inode *inode)
1083 {
1084         lockdep_annotate_inode_mutex_key(inode);
1085         spin_lock(&inode->i_lock);
1086         WARN_ON(!(inode->i_state & I_NEW));
1087         inode->i_state &= ~I_NEW & ~I_CREATING;
1088         smp_mb();
1089         wake_up_bit(&inode->i_state, __I_NEW);
1090         spin_unlock(&inode->i_lock);
1091 }
1092 EXPORT_SYMBOL(unlock_new_inode);
1093
1094 void discard_new_inode(struct inode *inode)
1095 {
1096         lockdep_annotate_inode_mutex_key(inode);
1097         spin_lock(&inode->i_lock);
1098         WARN_ON(!(inode->i_state & I_NEW));
1099         inode->i_state &= ~I_NEW;
1100         smp_mb();
1101         wake_up_bit(&inode->i_state, __I_NEW);
1102         spin_unlock(&inode->i_lock);
1103         iput(inode);
1104 }
1105 EXPORT_SYMBOL(discard_new_inode);
1106
1107 /**
1108  * lock_two_nondirectories - take two i_mutexes on non-directory objects
1109  *
1110  * Lock any non-NULL argument that is not a directory.
1111  * Zero, one or two objects may be locked by this function.
1112  *
1113  * @inode1: first inode to lock
1114  * @inode2: second inode to lock
1115  */
1116 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1117 {
1118         if (inode1 > inode2)
1119                 swap(inode1, inode2);
1120
1121         if (inode1 && !S_ISDIR(inode1->i_mode))
1122                 inode_lock(inode1);
1123         if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1124                 inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1125 }
1126 EXPORT_SYMBOL(lock_two_nondirectories);
1127
1128 /**
1129  * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1130  * @inode1: first inode to unlock
1131  * @inode2: second inode to unlock
1132  */
1133 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1134 {
1135         if (inode1 && !S_ISDIR(inode1->i_mode))
1136                 inode_unlock(inode1);
1137         if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1138                 inode_unlock(inode2);
1139 }
1140 EXPORT_SYMBOL(unlock_two_nondirectories);
1141
1142 /**
1143  * inode_insert5 - obtain an inode from a mounted file system
1144  * @inode:      pre-allocated inode to use for insert to cache
1145  * @hashval:    hash value (usually inode number) to get
1146  * @test:       callback used for comparisons between inodes
1147  * @set:        callback used to initialize a new struct inode
1148  * @data:       opaque data pointer to pass to @test and @set
1149  *
1150  * Search for the inode specified by @hashval and @data in the inode cache,
1151  * and if present it is return it with an increased reference count. This is
1152  * a variant of iget5_locked() for callers that don't want to fail on memory
1153  * allocation of inode.
1154  *
1155  * If the inode is not in cache, insert the pre-allocated inode to cache and
1156  * return it locked, hashed, and with the I_NEW flag set. The file system gets
1157  * to fill it in before unlocking it via unlock_new_inode().
1158  *
1159  * Note both @test and @set are called with the inode_hash_lock held, so can't
1160  * sleep.
1161  */
1162 struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1163                             int (*test)(struct inode *, void *),
1164                             int (*set)(struct inode *, void *), void *data)
1165 {
1166         struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1167         struct inode *old;
1168
1169 again:
1170         spin_lock(&inode_hash_lock);
1171         old = find_inode(inode->i_sb, head, test, data);
1172         if (unlikely(old)) {
1173                 /*
1174                  * Uhhuh, somebody else created the same inode under us.
1175                  * Use the old inode instead of the preallocated one.
1176                  */
1177                 spin_unlock(&inode_hash_lock);
1178                 if (IS_ERR(old))
1179                         return NULL;
1180                 wait_on_inode(old);
1181                 if (unlikely(inode_unhashed(old))) {
1182                         iput(old);
1183                         goto again;
1184                 }
1185                 return old;
1186         }
1187
1188         if (set && unlikely(set(inode, data))) {
1189                 inode = NULL;
1190                 goto unlock;
1191         }
1192
1193         /*
1194          * Return the locked inode with I_NEW set, the
1195          * caller is responsible for filling in the contents
1196          */
1197         spin_lock(&inode->i_lock);
1198         inode->i_state |= I_NEW;
1199         hlist_add_head_rcu(&inode->i_hash, head);
1200         spin_unlock(&inode->i_lock);
1201
1202         /*
1203          * Add inode to the sb list if it's not already. It has I_NEW at this
1204          * point, so it should be safe to test i_sb_list locklessly.
1205          */
1206         if (list_empty(&inode->i_sb_list))
1207                 inode_sb_list_add(inode);
1208 unlock:
1209         spin_unlock(&inode_hash_lock);
1210
1211         return inode;
1212 }
1213 EXPORT_SYMBOL(inode_insert5);
1214
1215 /**
1216  * iget5_locked - obtain an inode from a mounted file system
1217  * @sb:         super block of file system
1218  * @hashval:    hash value (usually inode number) to get
1219  * @test:       callback used for comparisons between inodes
1220  * @set:        callback used to initialize a new struct inode
1221  * @data:       opaque data pointer to pass to @test and @set
1222  *
1223  * Search for the inode specified by @hashval and @data in the inode cache,
1224  * and if present it is return it with an increased reference count. This is
1225  * a generalized version of iget_locked() for file systems where the inode
1226  * number is not sufficient for unique identification of an inode.
1227  *
1228  * If the inode is not in cache, allocate a new inode and return it locked,
1229  * hashed, and with the I_NEW flag set. The file system gets to fill it in
1230  * before unlocking it via unlock_new_inode().
1231  *
1232  * Note both @test and @set are called with the inode_hash_lock held, so can't
1233  * sleep.
1234  */
1235 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1236                 int (*test)(struct inode *, void *),
1237                 int (*set)(struct inode *, void *), void *data)
1238 {
1239         struct inode *inode = ilookup5(sb, hashval, test, data);
1240
1241         if (!inode) {
1242                 struct inode *new = alloc_inode(sb);
1243
1244                 if (new) {
1245                         new->i_state = 0;
1246                         inode = inode_insert5(new, hashval, test, set, data);
1247                         if (unlikely(inode != new))
1248                                 destroy_inode(new);
1249                 }
1250         }
1251         return inode;
1252 }
1253 EXPORT_SYMBOL(iget5_locked);
1254
1255 /**
1256  * iget_locked - obtain an inode from a mounted file system
1257  * @sb:         super block of file system
1258  * @ino:        inode number to get
1259  *
1260  * Search for the inode specified by @ino in the inode cache and if present
1261  * return it with an increased reference count. This is for file systems
1262  * where the inode number is sufficient for unique identification of an inode.
1263  *
1264  * If the inode is not in cache, allocate a new inode and return it locked,
1265  * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1266  * before unlocking it via unlock_new_inode().
1267  */
1268 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1269 {
1270         struct hlist_head *head = inode_hashtable + hash(sb, ino);
1271         struct inode *inode;
1272 again:
1273         spin_lock(&inode_hash_lock);
1274         inode = find_inode_fast(sb, head, ino);
1275         spin_unlock(&inode_hash_lock);
1276         if (inode) {
1277                 if (IS_ERR(inode))
1278                         return NULL;
1279                 wait_on_inode(inode);
1280                 if (unlikely(inode_unhashed(inode))) {
1281                         iput(inode);
1282                         goto again;
1283                 }
1284                 return inode;
1285         }
1286
1287         inode = alloc_inode(sb);
1288         if (inode) {
1289                 struct inode *old;
1290
1291                 spin_lock(&inode_hash_lock);
1292                 /* We released the lock, so.. */
1293                 old = find_inode_fast(sb, head, ino);
1294                 if (!old) {
1295                         inode->i_ino = ino;
1296                         spin_lock(&inode->i_lock);
1297                         inode->i_state = I_NEW;
1298                         hlist_add_head_rcu(&inode->i_hash, head);
1299                         spin_unlock(&inode->i_lock);
1300                         inode_sb_list_add(inode);
1301                         spin_unlock(&inode_hash_lock);
1302
1303                         /* Return the locked inode with I_NEW set, the
1304                          * caller is responsible for filling in the contents
1305                          */
1306                         return inode;
1307                 }
1308
1309                 /*
1310                  * Uhhuh, somebody else created the same inode under
1311                  * us. Use the old inode instead of the one we just
1312                  * allocated.
1313                  */
1314                 spin_unlock(&inode_hash_lock);
1315                 destroy_inode(inode);
1316                 if (IS_ERR(old))
1317                         return NULL;
1318                 inode = old;
1319                 wait_on_inode(inode);
1320                 if (unlikely(inode_unhashed(inode))) {
1321                         iput(inode);
1322                         goto again;
1323                 }
1324         }
1325         return inode;
1326 }
1327 EXPORT_SYMBOL(iget_locked);
1328
1329 /*
1330  * search the inode cache for a matching inode number.
1331  * If we find one, then the inode number we are trying to
1332  * allocate is not unique and so we should not use it.
1333  *
1334  * Returns 1 if the inode number is unique, 0 if it is not.
1335  */
1336 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1337 {
1338         struct hlist_head *b = inode_hashtable + hash(sb, ino);
1339         struct inode *inode;
1340
1341         hlist_for_each_entry_rcu(inode, b, i_hash) {
1342                 if (inode->i_ino == ino && inode->i_sb == sb)
1343                         return 0;
1344         }
1345         return 1;
1346 }
1347
1348 /**
1349  *      iunique - get a unique inode number
1350  *      @sb: superblock
1351  *      @max_reserved: highest reserved inode number
1352  *
1353  *      Obtain an inode number that is unique on the system for a given
1354  *      superblock. This is used by file systems that have no natural
1355  *      permanent inode numbering system. An inode number is returned that
1356  *      is higher than the reserved limit but unique.
1357  *
1358  *      BUGS:
1359  *      With a large number of inodes live on the file system this function
1360  *      currently becomes quite slow.
1361  */
1362 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1363 {
1364         /*
1365          * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1366          * error if st_ino won't fit in target struct field. Use 32bit counter
1367          * here to attempt to avoid that.
1368          */
1369         static DEFINE_SPINLOCK(iunique_lock);
1370         static unsigned int counter;
1371         ino_t res;
1372
1373         rcu_read_lock();
1374         spin_lock(&iunique_lock);
1375         do {
1376                 if (counter <= max_reserved)
1377                         counter = max_reserved + 1;
1378                 res = counter++;
1379         } while (!test_inode_iunique(sb, res));
1380         spin_unlock(&iunique_lock);
1381         rcu_read_unlock();
1382
1383         return res;
1384 }
1385 EXPORT_SYMBOL(iunique);
1386
1387 struct inode *igrab(struct inode *inode)
1388 {
1389         spin_lock(&inode->i_lock);
1390         if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1391                 __iget(inode);
1392                 spin_unlock(&inode->i_lock);
1393         } else {
1394                 spin_unlock(&inode->i_lock);
1395                 /*
1396                  * Handle the case where s_op->clear_inode is not been
1397                  * called yet, and somebody is calling igrab
1398                  * while the inode is getting freed.
1399                  */
1400                 inode = NULL;
1401         }
1402         return inode;
1403 }
1404 EXPORT_SYMBOL(igrab);
1405
1406 /**
1407  * ilookup5_nowait - search for an inode in the inode cache
1408  * @sb:         super block of file system to search
1409  * @hashval:    hash value (usually inode number) to search for
1410  * @test:       callback used for comparisons between inodes
1411  * @data:       opaque data pointer to pass to @test
1412  *
1413  * Search for the inode specified by @hashval and @data in the inode cache.
1414  * If the inode is in the cache, the inode is returned with an incremented
1415  * reference count.
1416  *
1417  * Note: I_NEW is not waited upon so you have to be very careful what you do
1418  * with the returned inode.  You probably should be using ilookup5() instead.
1419  *
1420  * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1421  */
1422 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1423                 int (*test)(struct inode *, void *), void *data)
1424 {
1425         struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1426         struct inode *inode;
1427
1428         spin_lock(&inode_hash_lock);
1429         inode = find_inode(sb, head, test, data);
1430         spin_unlock(&inode_hash_lock);
1431
1432         return IS_ERR(inode) ? NULL : inode;
1433 }
1434 EXPORT_SYMBOL(ilookup5_nowait);
1435
1436 /**
1437  * ilookup5 - search for an inode in the inode cache
1438  * @sb:         super block of file system to search
1439  * @hashval:    hash value (usually inode number) to search for
1440  * @test:       callback used for comparisons between inodes
1441  * @data:       opaque data pointer to pass to @test
1442  *
1443  * Search for the inode specified by @hashval and @data in the inode cache,
1444  * and if the inode is in the cache, return the inode with an incremented
1445  * reference count.  Waits on I_NEW before returning the inode.
1446  * returned with an incremented reference count.
1447  *
1448  * This is a generalized version of ilookup() for file systems where the
1449  * inode number is not sufficient for unique identification of an inode.
1450  *
1451  * Note: @test is called with the inode_hash_lock held, so can't sleep.
1452  */
1453 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1454                 int (*test)(struct inode *, void *), void *data)
1455 {
1456         struct inode *inode;
1457 again:
1458         inode = ilookup5_nowait(sb, hashval, test, data);
1459         if (inode) {
1460                 wait_on_inode(inode);
1461                 if (unlikely(inode_unhashed(inode))) {
1462                         iput(inode);
1463                         goto again;
1464                 }
1465         }
1466         return inode;
1467 }
1468 EXPORT_SYMBOL(ilookup5);
1469
1470 /**
1471  * ilookup - search for an inode in the inode cache
1472  * @sb:         super block of file system to search
1473  * @ino:        inode number to search for
1474  *
1475  * Search for the inode @ino in the inode cache, and if the inode is in the
1476  * cache, the inode is returned with an incremented reference count.
1477  */
1478 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1479 {
1480         struct hlist_head *head = inode_hashtable + hash(sb, ino);
1481         struct inode *inode;
1482 again:
1483         spin_lock(&inode_hash_lock);
1484         inode = find_inode_fast(sb, head, ino);
1485         spin_unlock(&inode_hash_lock);
1486
1487         if (inode) {
1488                 if (IS_ERR(inode))
1489                         return NULL;
1490                 wait_on_inode(inode);
1491                 if (unlikely(inode_unhashed(inode))) {
1492                         iput(inode);
1493                         goto again;
1494                 }
1495         }
1496         return inode;
1497 }
1498 EXPORT_SYMBOL(ilookup);
1499
1500 /**
1501  * find_inode_nowait - find an inode in the inode cache
1502  * @sb:         super block of file system to search
1503  * @hashval:    hash value (usually inode number) to search for
1504  * @match:      callback used for comparisons between inodes
1505  * @data:       opaque data pointer to pass to @match
1506  *
1507  * Search for the inode specified by @hashval and @data in the inode
1508  * cache, where the helper function @match will return 0 if the inode
1509  * does not match, 1 if the inode does match, and -1 if the search
1510  * should be stopped.  The @match function must be responsible for
1511  * taking the i_lock spin_lock and checking i_state for an inode being
1512  * freed or being initialized, and incrementing the reference count
1513  * before returning 1.  It also must not sleep, since it is called with
1514  * the inode_hash_lock spinlock held.
1515  *
1516  * This is a even more generalized version of ilookup5() when the
1517  * function must never block --- find_inode() can block in
1518  * __wait_on_freeing_inode() --- or when the caller can not increment
1519  * the reference count because the resulting iput() might cause an
1520  * inode eviction.  The tradeoff is that the @match funtion must be
1521  * very carefully implemented.
1522  */
1523 struct inode *find_inode_nowait(struct super_block *sb,
1524                                 unsigned long hashval,
1525                                 int (*match)(struct inode *, unsigned long,
1526                                              void *),
1527                                 void *data)
1528 {
1529         struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1530         struct inode *inode, *ret_inode = NULL;
1531         int mval;
1532
1533         spin_lock(&inode_hash_lock);
1534         hlist_for_each_entry(inode, head, i_hash) {
1535                 if (inode->i_sb != sb)
1536                         continue;
1537                 mval = match(inode, hashval, data);
1538                 if (mval == 0)
1539                         continue;
1540                 if (mval == 1)
1541                         ret_inode = inode;
1542                 goto out;
1543         }
1544 out:
1545         spin_unlock(&inode_hash_lock);
1546         return ret_inode;
1547 }
1548 EXPORT_SYMBOL(find_inode_nowait);
1549
1550 /**
1551  * find_inode_rcu - find an inode in the inode cache
1552  * @sb:         Super block of file system to search
1553  * @hashval:    Key to hash
1554  * @test:       Function to test match on an inode
1555  * @data:       Data for test function
1556  *
1557  * Search for the inode specified by @hashval and @data in the inode cache,
1558  * where the helper function @test will return 0 if the inode does not match
1559  * and 1 if it does.  The @test function must be responsible for taking the
1560  * i_lock spin_lock and checking i_state for an inode being freed or being
1561  * initialized.
1562  *
1563  * If successful, this will return the inode for which the @test function
1564  * returned 1 and NULL otherwise.
1565  *
1566  * The @test function is not permitted to take a ref on any inode presented.
1567  * It is also not permitted to sleep.
1568  *
1569  * The caller must hold the RCU read lock.
1570  */
1571 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval,
1572                              int (*test)(struct inode *, void *), void *data)
1573 {
1574         struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1575         struct inode *inode;
1576
1577         RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1578                          "suspicious find_inode_rcu() usage");
1579
1580         hlist_for_each_entry_rcu(inode, head, i_hash) {
1581                 if (inode->i_sb == sb &&
1582                     !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) &&
1583                     test(inode, data))
1584                         return inode;
1585         }
1586         return NULL;
1587 }
1588 EXPORT_SYMBOL(find_inode_rcu);
1589
1590 /**
1591  * find_inode_by_ino_rcu - Find an inode in the inode cache
1592  * @sb:         Super block of file system to search
1593  * @ino:        The inode number to match
1594  *
1595  * Search for the inode specified by @hashval and @data in the inode cache,
1596  * where the helper function @test will return 0 if the inode does not match
1597  * and 1 if it does.  The @test function must be responsible for taking the
1598  * i_lock spin_lock and checking i_state for an inode being freed or being
1599  * initialized.
1600  *
1601  * If successful, this will return the inode for which the @test function
1602  * returned 1 and NULL otherwise.
1603  *
1604  * The @test function is not permitted to take a ref on any inode presented.
1605  * It is also not permitted to sleep.
1606  *
1607  * The caller must hold the RCU read lock.
1608  */
1609 struct inode *find_inode_by_ino_rcu(struct super_block *sb,
1610                                     unsigned long ino)
1611 {
1612         struct hlist_head *head = inode_hashtable + hash(sb, ino);
1613         struct inode *inode;
1614
1615         RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1616                          "suspicious find_inode_by_ino_rcu() usage");
1617
1618         hlist_for_each_entry_rcu(inode, head, i_hash) {
1619                 if (inode->i_ino == ino &&
1620                     inode->i_sb == sb &&
1621                     !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)))
1622                     return inode;
1623         }
1624         return NULL;
1625 }
1626 EXPORT_SYMBOL(find_inode_by_ino_rcu);
1627
1628 int insert_inode_locked(struct inode *inode)
1629 {
1630         struct super_block *sb = inode->i_sb;
1631         ino_t ino = inode->i_ino;
1632         struct hlist_head *head = inode_hashtable + hash(sb, ino);
1633
1634         while (1) {
1635                 struct inode *old = NULL;
1636                 spin_lock(&inode_hash_lock);
1637                 hlist_for_each_entry(old, head, i_hash) {
1638                         if (old->i_ino != ino)
1639                                 continue;
1640                         if (old->i_sb != sb)
1641                                 continue;
1642                         spin_lock(&old->i_lock);
1643                         if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1644                                 spin_unlock(&old->i_lock);
1645                                 continue;
1646                         }
1647                         break;
1648                 }
1649                 if (likely(!old)) {
1650                         spin_lock(&inode->i_lock);
1651                         inode->i_state |= I_NEW | I_CREATING;
1652                         hlist_add_head_rcu(&inode->i_hash, head);
1653                         spin_unlock(&inode->i_lock);
1654                         spin_unlock(&inode_hash_lock);
1655                         return 0;
1656                 }
1657                 if (unlikely(old->i_state & I_CREATING)) {
1658                         spin_unlock(&old->i_lock);
1659                         spin_unlock(&inode_hash_lock);
1660                         return -EBUSY;
1661                 }
1662                 __iget(old);
1663                 spin_unlock(&old->i_lock);
1664                 spin_unlock(&inode_hash_lock);
1665                 wait_on_inode(old);
1666                 if (unlikely(!inode_unhashed(old))) {
1667                         iput(old);
1668                         return -EBUSY;
1669                 }
1670                 iput(old);
1671         }
1672 }
1673 EXPORT_SYMBOL(insert_inode_locked);
1674
1675 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1676                 int (*test)(struct inode *, void *), void *data)
1677 {
1678         struct inode *old;
1679
1680         inode->i_state |= I_CREATING;
1681         old = inode_insert5(inode, hashval, test, NULL, data);
1682
1683         if (old != inode) {
1684                 iput(old);
1685                 return -EBUSY;
1686         }
1687         return 0;
1688 }
1689 EXPORT_SYMBOL(insert_inode_locked4);
1690
1691
1692 int generic_delete_inode(struct inode *inode)
1693 {
1694         return 1;
1695 }
1696 EXPORT_SYMBOL(generic_delete_inode);
1697
1698 /*
1699  * Called when we're dropping the last reference
1700  * to an inode.
1701  *
1702  * Call the FS "drop_inode()" function, defaulting to
1703  * the legacy UNIX filesystem behaviour.  If it tells
1704  * us to evict inode, do so.  Otherwise, retain inode
1705  * in cache if fs is alive, sync and evict if fs is
1706  * shutting down.
1707  */
1708 static void iput_final(struct inode *inode)
1709 {
1710         struct super_block *sb = inode->i_sb;
1711         const struct super_operations *op = inode->i_sb->s_op;
1712         unsigned long state;
1713         int drop;
1714
1715         WARN_ON(inode->i_state & I_NEW);
1716
1717         if (op->drop_inode)
1718                 drop = op->drop_inode(inode);
1719         else
1720                 drop = generic_drop_inode(inode);
1721
1722         if (!drop &&
1723             !(inode->i_state & I_DONTCACHE) &&
1724             (sb->s_flags & SB_ACTIVE)) {
1725                 __inode_add_lru(inode, true);
1726                 spin_unlock(&inode->i_lock);
1727                 return;
1728         }
1729
1730         state = inode->i_state;
1731         if (!drop) {
1732                 WRITE_ONCE(inode->i_state, state | I_WILL_FREE);
1733                 spin_unlock(&inode->i_lock);
1734
1735                 write_inode_now(inode, 1);
1736
1737                 spin_lock(&inode->i_lock);
1738                 state = inode->i_state;
1739                 WARN_ON(state & I_NEW);
1740                 state &= ~I_WILL_FREE;
1741         }
1742
1743         WRITE_ONCE(inode->i_state, state | I_FREEING);
1744         if (!list_empty(&inode->i_lru))
1745                 inode_lru_list_del(inode);
1746         spin_unlock(&inode->i_lock);
1747
1748         evict(inode);
1749 }
1750
1751 /**
1752  *      iput    - put an inode
1753  *      @inode: inode to put
1754  *
1755  *      Puts an inode, dropping its usage count. If the inode use count hits
1756  *      zero, the inode is then freed and may also be destroyed.
1757  *
1758  *      Consequently, iput() can sleep.
1759  */
1760 void iput(struct inode *inode)
1761 {
1762         if (!inode)
1763                 return;
1764         BUG_ON(inode->i_state & I_CLEAR);
1765 retry:
1766         if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1767                 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1768                         atomic_inc(&inode->i_count);
1769                         spin_unlock(&inode->i_lock);
1770                         trace_writeback_lazytime_iput(inode);
1771                         mark_inode_dirty_sync(inode);
1772                         goto retry;
1773                 }
1774                 iput_final(inode);
1775         }
1776 }
1777 EXPORT_SYMBOL(iput);
1778
1779 #ifdef CONFIG_BLOCK
1780 /**
1781  *      bmap    - find a block number in a file
1782  *      @inode:  inode owning the block number being requested
1783  *      @block: pointer containing the block to find
1784  *
1785  *      Replaces the value in ``*block`` with the block number on the device holding
1786  *      corresponding to the requested block number in the file.
1787  *      That is, asked for block 4 of inode 1 the function will replace the
1788  *      4 in ``*block``, with disk block relative to the disk start that holds that
1789  *      block of the file.
1790  *
1791  *      Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
1792  *      hole, returns 0 and ``*block`` is also set to 0.
1793  */
1794 int bmap(struct inode *inode, sector_t *block)
1795 {
1796         if (!inode->i_mapping->a_ops->bmap)
1797                 return -EINVAL;
1798
1799         *block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block);
1800         return 0;
1801 }
1802 EXPORT_SYMBOL(bmap);
1803 #endif
1804
1805 /*
1806  * With relative atime, only update atime if the previous atime is
1807  * earlier than either the ctime or mtime or if at least a day has
1808  * passed since the last atime update.
1809  */
1810 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1811                              struct timespec64 now)
1812 {
1813
1814         if (!(mnt->mnt_flags & MNT_RELATIME))
1815                 return 1;
1816         /*
1817          * Is mtime younger than atime? If yes, update atime:
1818          */
1819         if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1820                 return 1;
1821         /*
1822          * Is ctime younger than atime? If yes, update atime:
1823          */
1824         if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1825                 return 1;
1826
1827         /*
1828          * Is the previous atime value older than a day? If yes,
1829          * update atime:
1830          */
1831         if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1832                 return 1;
1833         /*
1834          * Good, we can skip the atime update:
1835          */
1836         return 0;
1837 }
1838
1839 int generic_update_time(struct inode *inode, struct timespec64 *time, int flags)
1840 {
1841         int dirty_flags = 0;
1842
1843         if (flags & (S_ATIME | S_CTIME | S_MTIME)) {
1844                 if (flags & S_ATIME)
1845                         inode->i_atime = *time;
1846                 if (flags & S_CTIME)
1847                         inode->i_ctime = *time;
1848                 if (flags & S_MTIME)
1849                         inode->i_mtime = *time;
1850
1851                 if (inode->i_sb->s_flags & SB_LAZYTIME)
1852                         dirty_flags |= I_DIRTY_TIME;
1853                 else
1854                         dirty_flags |= I_DIRTY_SYNC;
1855         }
1856
1857         if ((flags & S_VERSION) && inode_maybe_inc_iversion(inode, false))
1858                 dirty_flags |= I_DIRTY_SYNC;
1859
1860         __mark_inode_dirty(inode, dirty_flags);
1861         return 0;
1862 }
1863 EXPORT_SYMBOL(generic_update_time);
1864
1865 /*
1866  * This does the actual work of updating an inodes time or version.  Must have
1867  * had called mnt_want_write() before calling this.
1868  */
1869 int inode_update_time(struct inode *inode, struct timespec64 *time, int flags)
1870 {
1871         if (inode->i_op->update_time)
1872                 return inode->i_op->update_time(inode, time, flags);
1873         return generic_update_time(inode, time, flags);
1874 }
1875 EXPORT_SYMBOL(inode_update_time);
1876
1877 /**
1878  *      atime_needs_update      -       update the access time
1879  *      @path: the &struct path to update
1880  *      @inode: inode to update
1881  *
1882  *      Update the accessed time on an inode and mark it for writeback.
1883  *      This function automatically handles read only file systems and media,
1884  *      as well as the "noatime" flag and inode specific "noatime" markers.
1885  */
1886 bool atime_needs_update(const struct path *path, struct inode *inode)
1887 {
1888         struct vfsmount *mnt = path->mnt;
1889         struct timespec64 now;
1890
1891         if (inode->i_flags & S_NOATIME)
1892                 return false;
1893
1894         /* Atime updates will likely cause i_uid and i_gid to be written
1895          * back improprely if their true value is unknown to the vfs.
1896          */
1897         if (HAS_UNMAPPED_ID(mnt_user_ns(mnt), inode))
1898                 return false;
1899
1900         if (IS_NOATIME(inode))
1901                 return false;
1902         if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1903                 return false;
1904
1905         if (mnt->mnt_flags & MNT_NOATIME)
1906                 return false;
1907         if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1908                 return false;
1909
1910         now = current_time(inode);
1911
1912         if (!relatime_need_update(mnt, inode, now))
1913                 return false;
1914
1915         if (timespec64_equal(&inode->i_atime, &now))
1916                 return false;
1917
1918         return true;
1919 }
1920
1921 void touch_atime(const struct path *path)
1922 {
1923         struct vfsmount *mnt = path->mnt;
1924         struct inode *inode = d_inode(path->dentry);
1925         struct timespec64 now;
1926
1927         if (!atime_needs_update(path, inode))
1928                 return;
1929
1930         if (!sb_start_write_trylock(inode->i_sb))
1931                 return;
1932
1933         if (__mnt_want_write(mnt) != 0)
1934                 goto skip_update;
1935         /*
1936          * File systems can error out when updating inodes if they need to
1937          * allocate new space to modify an inode (such is the case for
1938          * Btrfs), but since we touch atime while walking down the path we
1939          * really don't care if we failed to update the atime of the file,
1940          * so just ignore the return value.
1941          * We may also fail on filesystems that have the ability to make parts
1942          * of the fs read only, e.g. subvolumes in Btrfs.
1943          */
1944         now = current_time(inode);
1945         inode_update_time(inode, &now, S_ATIME);
1946         __mnt_drop_write(mnt);
1947 skip_update:
1948         sb_end_write(inode->i_sb);
1949 }
1950 EXPORT_SYMBOL(touch_atime);
1951
1952 /*
1953  * The logic we want is
1954  *
1955  *      if suid or (sgid and xgrp)
1956  *              remove privs
1957  */
1958 int should_remove_suid(struct dentry *dentry)
1959 {
1960         umode_t mode = d_inode(dentry)->i_mode;
1961         int kill = 0;
1962
1963         /* suid always must be killed */
1964         if (unlikely(mode & S_ISUID))
1965                 kill = ATTR_KILL_SUID;
1966
1967         /*
1968          * sgid without any exec bits is just a mandatory locking mark; leave
1969          * it alone.  If some exec bits are set, it's a real sgid; kill it.
1970          */
1971         if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1972                 kill |= ATTR_KILL_SGID;
1973
1974         if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1975                 return kill;
1976
1977         return 0;
1978 }
1979 EXPORT_SYMBOL(should_remove_suid);
1980
1981 /*
1982  * Return mask of changes for notify_change() that need to be done as a
1983  * response to write or truncate. Return 0 if nothing has to be changed.
1984  * Negative value on error (change should be denied).
1985  */
1986 int dentry_needs_remove_privs(struct dentry *dentry)
1987 {
1988         struct inode *inode = d_inode(dentry);
1989         int mask = 0;
1990         int ret;
1991
1992         if (IS_NOSEC(inode))
1993                 return 0;
1994
1995         mask = should_remove_suid(dentry);
1996         ret = security_inode_need_killpriv(dentry);
1997         if (ret < 0)
1998                 return ret;
1999         if (ret)
2000                 mask |= ATTR_KILL_PRIV;
2001         return mask;
2002 }
2003
2004 static int __remove_privs(struct user_namespace *mnt_userns,
2005                           struct dentry *dentry, int kill)
2006 {
2007         struct iattr newattrs;
2008
2009         newattrs.ia_valid = ATTR_FORCE | kill;
2010         /*
2011          * Note we call this on write, so notify_change will not
2012          * encounter any conflicting delegations:
2013          */
2014         return notify_change(mnt_userns, dentry, &newattrs, NULL);
2015 }
2016
2017 static int __file_remove_privs(struct file *file, unsigned int flags)
2018 {
2019         struct dentry *dentry = file_dentry(file);
2020         struct inode *inode = file_inode(file);
2021         int error;
2022         int kill;
2023
2024         if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
2025                 return 0;
2026
2027         kill = dentry_needs_remove_privs(dentry);
2028         if (kill <= 0)
2029                 return kill;
2030
2031         if (flags & IOCB_NOWAIT)
2032                 return -EAGAIN;
2033
2034         error = __remove_privs(file_mnt_user_ns(file), dentry, kill);
2035         if (!error)
2036                 inode_has_no_xattr(inode);
2037
2038         return error;
2039 }
2040
2041 /**
2042  * file_remove_privs - remove special file privileges (suid, capabilities)
2043  * @file: file to remove privileges from
2044  *
2045  * When file is modified by a write or truncation ensure that special
2046  * file privileges are removed.
2047  *
2048  * Return: 0 on success, negative errno on failure.
2049  */
2050 int file_remove_privs(struct file *file)
2051 {
2052         return __file_remove_privs(file, 0);
2053 }
2054 EXPORT_SYMBOL(file_remove_privs);
2055
2056 static int inode_needs_update_time(struct inode *inode, struct timespec64 *now)
2057 {
2058         int sync_it = 0;
2059
2060         /* First try to exhaust all avenues to not sync */
2061         if (IS_NOCMTIME(inode))
2062                 return 0;
2063
2064         if (!timespec64_equal(&inode->i_mtime, now))
2065                 sync_it = S_MTIME;
2066
2067         if (!timespec64_equal(&inode->i_ctime, now))
2068                 sync_it |= S_CTIME;
2069
2070         if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
2071                 sync_it |= S_VERSION;
2072
2073         if (!sync_it)
2074                 return 0;
2075
2076         return sync_it;
2077 }
2078
2079 static int __file_update_time(struct file *file, struct timespec64 *now,
2080                         int sync_mode)
2081 {
2082         int ret = 0;
2083         struct inode *inode = file_inode(file);
2084
2085         /* try to update time settings */
2086         if (!__mnt_want_write_file(file)) {
2087                 ret = inode_update_time(inode, now, sync_mode);
2088                 __mnt_drop_write_file(file);
2089         }
2090
2091         return ret;
2092 }
2093
2094 /**
2095  * file_update_time - update mtime and ctime time
2096  * @file: file accessed
2097  *
2098  * Update the mtime and ctime members of an inode and mark the inode for
2099  * writeback. Note that this function is meant exclusively for usage in
2100  * the file write path of filesystems, and filesystems may choose to
2101  * explicitly ignore updates via this function with the _NOCMTIME inode
2102  * flag, e.g. for network filesystem where these imestamps are handled
2103  * by the server. This can return an error for file systems who need to
2104  * allocate space in order to update an inode.
2105  *
2106  * Return: 0 on success, negative errno on failure.
2107  */
2108 int file_update_time(struct file *file)
2109 {
2110         int ret;
2111         struct inode *inode = file_inode(file);
2112         struct timespec64 now = current_time(inode);
2113
2114         ret = inode_needs_update_time(inode, &now);
2115         if (ret <= 0)
2116                 return ret;
2117
2118         return __file_update_time(file, &now, ret);
2119 }
2120 EXPORT_SYMBOL(file_update_time);
2121
2122 /**
2123  * file_modified_flags - handle mandated vfs changes when modifying a file
2124  * @file: file that was modified
2125  * @flags: kiocb flags
2126  *
2127  * When file has been modified ensure that special
2128  * file privileges are removed and time settings are updated.
2129  *
2130  * If IOCB_NOWAIT is set, special file privileges will not be removed and
2131  * time settings will not be updated. It will return -EAGAIN.
2132  *
2133  * Context: Caller must hold the file's inode lock.
2134  *
2135  * Return: 0 on success, negative errno on failure.
2136  */
2137 static int file_modified_flags(struct file *file, int flags)
2138 {
2139         int ret;
2140         struct inode *inode = file_inode(file);
2141         struct timespec64 now = current_time(inode);
2142
2143         /*
2144          * Clear the security bits if the process is not being run by root.
2145          * This keeps people from modifying setuid and setgid binaries.
2146          */
2147         ret = __file_remove_privs(file, flags);
2148         if (ret)
2149                 return ret;
2150
2151         if (unlikely(file->f_mode & FMODE_NOCMTIME))
2152                 return 0;
2153
2154         ret = inode_needs_update_time(inode, &now);
2155         if (ret <= 0)
2156                 return ret;
2157         if (flags & IOCB_NOWAIT)
2158                 return -EAGAIN;
2159
2160         return __file_update_time(file, &now, ret);
2161 }
2162
2163 /**
2164  * file_modified - handle mandated vfs changes when modifying a file
2165  * @file: file that was modified
2166  *
2167  * When file has been modified ensure that special
2168  * file privileges are removed and time settings are updated.
2169  *
2170  * Context: Caller must hold the file's inode lock.
2171  *
2172  * Return: 0 on success, negative errno on failure.
2173  */
2174 int file_modified(struct file *file)
2175 {
2176         return file_modified_flags(file, 0);
2177 }
2178 EXPORT_SYMBOL(file_modified);
2179
2180 /**
2181  * kiocb_modified - handle mandated vfs changes when modifying a file
2182  * @iocb: iocb that was modified
2183  *
2184  * When file has been modified ensure that special
2185  * file privileges are removed and time settings are updated.
2186  *
2187  * Context: Caller must hold the file's inode lock.
2188  *
2189  * Return: 0 on success, negative errno on failure.
2190  */
2191 int kiocb_modified(struct kiocb *iocb)
2192 {
2193         return file_modified_flags(iocb->ki_filp, iocb->ki_flags);
2194 }
2195 EXPORT_SYMBOL_GPL(kiocb_modified);
2196
2197 int inode_needs_sync(struct inode *inode)
2198 {
2199         if (IS_SYNC(inode))
2200                 return 1;
2201         if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
2202                 return 1;
2203         return 0;
2204 }
2205 EXPORT_SYMBOL(inode_needs_sync);
2206
2207 /*
2208  * If we try to find an inode in the inode hash while it is being
2209  * deleted, we have to wait until the filesystem completes its
2210  * deletion before reporting that it isn't found.  This function waits
2211  * until the deletion _might_ have completed.  Callers are responsible
2212  * to recheck inode state.
2213  *
2214  * It doesn't matter if I_NEW is not set initially, a call to
2215  * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
2216  * will DTRT.
2217  */
2218 static void __wait_on_freeing_inode(struct inode *inode)
2219 {
2220         wait_queue_head_t *wq;
2221         DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
2222         wq = bit_waitqueue(&inode->i_state, __I_NEW);
2223         prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2224         spin_unlock(&inode->i_lock);
2225         spin_unlock(&inode_hash_lock);
2226         schedule();
2227         finish_wait(wq, &wait.wq_entry);
2228         spin_lock(&inode_hash_lock);
2229 }
2230
2231 static __initdata unsigned long ihash_entries;
2232 static int __init set_ihash_entries(char *str)
2233 {
2234         if (!str)
2235                 return 0;
2236         ihash_entries = simple_strtoul(str, &str, 0);
2237         return 1;
2238 }
2239 __setup("ihash_entries=", set_ihash_entries);
2240
2241 /*
2242  * Initialize the waitqueues and inode hash table.
2243  */
2244 void __init inode_init_early(void)
2245 {
2246         /* If hashes are distributed across NUMA nodes, defer
2247          * hash allocation until vmalloc space is available.
2248          */
2249         if (hashdist)
2250                 return;
2251
2252         inode_hashtable =
2253                 alloc_large_system_hash("Inode-cache",
2254                                         sizeof(struct hlist_head),
2255                                         ihash_entries,
2256                                         14,
2257                                         HASH_EARLY | HASH_ZERO,
2258                                         &i_hash_shift,
2259                                         &i_hash_mask,
2260                                         0,
2261                                         0);
2262 }
2263
2264 void __init inode_init(void)
2265 {
2266         /* inode slab cache */
2267         inode_cachep = kmem_cache_create("inode_cache",
2268                                          sizeof(struct inode),
2269                                          0,
2270                                          (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2271                                          SLAB_MEM_SPREAD|SLAB_ACCOUNT),
2272                                          init_once);
2273
2274         /* Hash may have been set up in inode_init_early */
2275         if (!hashdist)
2276                 return;
2277
2278         inode_hashtable =
2279                 alloc_large_system_hash("Inode-cache",
2280                                         sizeof(struct hlist_head),
2281                                         ihash_entries,
2282                                         14,
2283                                         HASH_ZERO,
2284                                         &i_hash_shift,
2285                                         &i_hash_mask,
2286                                         0,
2287                                         0);
2288 }
2289
2290 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2291 {
2292         inode->i_mode = mode;
2293         if (S_ISCHR(mode)) {
2294                 inode->i_fop = &def_chr_fops;
2295                 inode->i_rdev = rdev;
2296         } else if (S_ISBLK(mode)) {
2297                 inode->i_fop = &def_blk_fops;
2298                 inode->i_rdev = rdev;
2299         } else if (S_ISFIFO(mode))
2300                 inode->i_fop = &pipefifo_fops;
2301         else if (S_ISSOCK(mode))
2302                 ;       /* leave it no_open_fops */
2303         else
2304                 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2305                                   " inode %s:%lu\n", mode, inode->i_sb->s_id,
2306                                   inode->i_ino);
2307 }
2308 EXPORT_SYMBOL(init_special_inode);
2309
2310 /**
2311  * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2312  * @mnt_userns: User namespace of the mount the inode was created from
2313  * @inode: New inode
2314  * @dir: Directory inode
2315  * @mode: mode of the new inode
2316  *
2317  * If the inode has been created through an idmapped mount the user namespace of
2318  * the vfsmount must be passed through @mnt_userns. This function will then take
2319  * care to map the inode according to @mnt_userns before checking permissions
2320  * and initializing i_uid and i_gid. On non-idmapped mounts or if permission
2321  * checking is to be performed on the raw inode simply passs init_user_ns.
2322  */
2323 void inode_init_owner(struct user_namespace *mnt_userns, struct inode *inode,
2324                       const struct inode *dir, umode_t mode)
2325 {
2326         inode_fsuid_set(inode, mnt_userns);
2327         if (dir && dir->i_mode & S_ISGID) {
2328                 inode->i_gid = dir->i_gid;
2329
2330                 /* Directories are special, and always inherit S_ISGID */
2331                 if (S_ISDIR(mode))
2332                         mode |= S_ISGID;
2333         } else
2334                 inode_fsgid_set(inode, mnt_userns);
2335         inode->i_mode = mode;
2336 }
2337 EXPORT_SYMBOL(inode_init_owner);
2338
2339 /**
2340  * inode_owner_or_capable - check current task permissions to inode
2341  * @mnt_userns: user namespace of the mount the inode was found from
2342  * @inode: inode being checked
2343  *
2344  * Return true if current either has CAP_FOWNER in a namespace with the
2345  * inode owner uid mapped, or owns the file.
2346  *
2347  * If the inode has been found through an idmapped mount the user namespace of
2348  * the vfsmount must be passed through @mnt_userns. This function will then take
2349  * care to map the inode according to @mnt_userns before checking permissions.
2350  * On non-idmapped mounts or if permission checking is to be performed on the
2351  * raw inode simply passs init_user_ns.
2352  */
2353 bool inode_owner_or_capable(struct user_namespace *mnt_userns,
2354                             const struct inode *inode)
2355 {
2356         kuid_t i_uid;
2357         struct user_namespace *ns;
2358
2359         i_uid = i_uid_into_mnt(mnt_userns, inode);
2360         if (uid_eq(current_fsuid(), i_uid))
2361                 return true;
2362
2363         ns = current_user_ns();
2364         if (kuid_has_mapping(ns, i_uid) && ns_capable(ns, CAP_FOWNER))
2365                 return true;
2366         return false;
2367 }
2368 EXPORT_SYMBOL(inode_owner_or_capable);
2369
2370 /*
2371  * Direct i/o helper functions
2372  */
2373 static void __inode_dio_wait(struct inode *inode)
2374 {
2375         wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2376         DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2377
2378         do {
2379                 prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2380                 if (atomic_read(&inode->i_dio_count))
2381                         schedule();
2382         } while (atomic_read(&inode->i_dio_count));
2383         finish_wait(wq, &q.wq_entry);
2384 }
2385
2386 /**
2387  * inode_dio_wait - wait for outstanding DIO requests to finish
2388  * @inode: inode to wait for
2389  *
2390  * Waits for all pending direct I/O requests to finish so that we can
2391  * proceed with a truncate or equivalent operation.
2392  *
2393  * Must be called under a lock that serializes taking new references
2394  * to i_dio_count, usually by inode->i_mutex.
2395  */
2396 void inode_dio_wait(struct inode *inode)
2397 {
2398         if (atomic_read(&inode->i_dio_count))
2399                 __inode_dio_wait(inode);
2400 }
2401 EXPORT_SYMBOL(inode_dio_wait);
2402
2403 /*
2404  * inode_set_flags - atomically set some inode flags
2405  *
2406  * Note: the caller should be holding i_mutex, or else be sure that
2407  * they have exclusive access to the inode structure (i.e., while the
2408  * inode is being instantiated).  The reason for the cmpxchg() loop
2409  * --- which wouldn't be necessary if all code paths which modify
2410  * i_flags actually followed this rule, is that there is at least one
2411  * code path which doesn't today so we use cmpxchg() out of an abundance
2412  * of caution.
2413  *
2414  * In the long run, i_mutex is overkill, and we should probably look
2415  * at using the i_lock spinlock to protect i_flags, and then make sure
2416  * it is so documented in include/linux/fs.h and that all code follows
2417  * the locking convention!!
2418  */
2419 void inode_set_flags(struct inode *inode, unsigned int flags,
2420                      unsigned int mask)
2421 {
2422         WARN_ON_ONCE(flags & ~mask);
2423         set_mask_bits(&inode->i_flags, mask, flags);
2424 }
2425 EXPORT_SYMBOL(inode_set_flags);
2426
2427 void inode_nohighmem(struct inode *inode)
2428 {
2429         mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2430 }
2431 EXPORT_SYMBOL(inode_nohighmem);
2432
2433 /**
2434  * timestamp_truncate - Truncate timespec to a granularity
2435  * @t: Timespec
2436  * @inode: inode being updated
2437  *
2438  * Truncate a timespec to the granularity supported by the fs
2439  * containing the inode. Always rounds down. gran must
2440  * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2441  */
2442 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2443 {
2444         struct super_block *sb = inode->i_sb;
2445         unsigned int gran = sb->s_time_gran;
2446
2447         t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2448         if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2449                 t.tv_nsec = 0;
2450
2451         /* Avoid division in the common cases 1 ns and 1 s. */
2452         if (gran == 1)
2453                 ; /* nothing */
2454         else if (gran == NSEC_PER_SEC)
2455                 t.tv_nsec = 0;
2456         else if (gran > 1 && gran < NSEC_PER_SEC)
2457                 t.tv_nsec -= t.tv_nsec % gran;
2458         else
2459                 WARN(1, "invalid file time granularity: %u", gran);
2460         return t;
2461 }
2462 EXPORT_SYMBOL(timestamp_truncate);
2463
2464 /**
2465  * current_time - Return FS time
2466  * @inode: inode.
2467  *
2468  * Return the current time truncated to the time granularity supported by
2469  * the fs.
2470  *
2471  * Note that inode and inode->sb cannot be NULL.
2472  * Otherwise, the function warns and returns time without truncation.
2473  */
2474 struct timespec64 current_time(struct inode *inode)
2475 {
2476         struct timespec64 now;
2477
2478         ktime_get_coarse_real_ts64(&now);
2479
2480         if (unlikely(!inode->i_sb)) {
2481                 WARN(1, "current_time() called with uninitialized super_block in the inode");
2482                 return now;
2483         }
2484
2485         return timestamp_truncate(now, inode);
2486 }
2487 EXPORT_SYMBOL(current_time);
2488
2489 /**
2490  * mode_strip_sgid - handle the sgid bit for non-directories
2491  * @mnt_userns: User namespace of the mount the inode was created from
2492  * @dir: parent directory inode
2493  * @mode: mode of the file to be created in @dir
2494  *
2495  * If the @mode of the new file has both the S_ISGID and S_IXGRP bit
2496  * raised and @dir has the S_ISGID bit raised ensure that the caller is
2497  * either in the group of the parent directory or they have CAP_FSETID
2498  * in their user namespace and are privileged over the parent directory.
2499  * In all other cases, strip the S_ISGID bit from @mode.
2500  *
2501  * Return: the new mode to use for the file
2502  */
2503 umode_t mode_strip_sgid(struct user_namespace *mnt_userns,
2504                         const struct inode *dir, umode_t mode)
2505 {
2506         if ((mode & (S_ISGID | S_IXGRP)) != (S_ISGID | S_IXGRP))
2507                 return mode;
2508         if (S_ISDIR(mode) || !dir || !(dir->i_mode & S_ISGID))
2509                 return mode;
2510         if (in_group_p(i_gid_into_mnt(mnt_userns, dir)))
2511                 return mode;
2512         if (capable_wrt_inode_uidgid(mnt_userns, dir, CAP_FSETID))
2513                 return mode;
2514
2515         return mode & ~S_ISGID;
2516 }
2517 EXPORT_SYMBOL(mode_strip_sgid);