Merge branch 'akpm' (patches from Andrew)
[linux-2.6-microblaze.git] / fs / fs-writeback.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/fs-writeback.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  *
7  * Contains all the functions related to writing back and waiting
8  * upon dirty inodes against superblocks, and writing back dirty
9  * pages against inodes.  ie: data writeback.  Writeout of the
10  * inode itself is not handled here.
11  *
12  * 10Apr2002    Andrew Morton
13  *              Split out of fs/inode.c
14  *              Additions for address_space-based writeback
15  */
16
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/spinlock.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/fs.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kthread.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include <linux/device.h>
31 #include <linux/memcontrol.h>
32 #include "internal.h"
33
34 /*
35  * 4MB minimal write chunk size
36  */
37 #define MIN_WRITEBACK_PAGES     (4096UL >> (PAGE_SHIFT - 10))
38
39 /*
40  * Passed into wb_writeback(), essentially a subset of writeback_control
41  */
42 struct wb_writeback_work {
43         long nr_pages;
44         struct super_block *sb;
45         enum writeback_sync_modes sync_mode;
46         unsigned int tagged_writepages:1;
47         unsigned int for_kupdate:1;
48         unsigned int range_cyclic:1;
49         unsigned int for_background:1;
50         unsigned int for_sync:1;        /* sync(2) WB_SYNC_ALL writeback */
51         unsigned int auto_free:1;       /* free on completion */
52         enum wb_reason reason;          /* why was writeback initiated? */
53
54         struct list_head list;          /* pending work list */
55         struct wb_completion *done;     /* set if the caller waits */
56 };
57
58 /*
59  * If an inode is constantly having its pages dirtied, but then the
60  * updates stop dirtytime_expire_interval seconds in the past, it's
61  * possible for the worst case time between when an inode has its
62  * timestamps updated and when they finally get written out to be two
63  * dirtytime_expire_intervals.  We set the default to 12 hours (in
64  * seconds), which means most of the time inodes will have their
65  * timestamps written to disk after 12 hours, but in the worst case a
66  * few inodes might not their timestamps updated for 24 hours.
67  */
68 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
69
70 static inline struct inode *wb_inode(struct list_head *head)
71 {
72         return list_entry(head, struct inode, i_io_list);
73 }
74
75 /*
76  * Include the creation of the trace points after defining the
77  * wb_writeback_work structure and inline functions so that the definition
78  * remains local to this file.
79  */
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/writeback.h>
82
83 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
84
85 static bool wb_io_lists_populated(struct bdi_writeback *wb)
86 {
87         if (wb_has_dirty_io(wb)) {
88                 return false;
89         } else {
90                 set_bit(WB_has_dirty_io, &wb->state);
91                 WARN_ON_ONCE(!wb->avg_write_bandwidth);
92                 atomic_long_add(wb->avg_write_bandwidth,
93                                 &wb->bdi->tot_write_bandwidth);
94                 return true;
95         }
96 }
97
98 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
99 {
100         if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
101             list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
102                 clear_bit(WB_has_dirty_io, &wb->state);
103                 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
104                                         &wb->bdi->tot_write_bandwidth) < 0);
105         }
106 }
107
108 /**
109  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
110  * @inode: inode to be moved
111  * @wb: target bdi_writeback
112  * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
113  *
114  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
115  * Returns %true if @inode is the first occupant of the !dirty_time IO
116  * lists; otherwise, %false.
117  */
118 static bool inode_io_list_move_locked(struct inode *inode,
119                                       struct bdi_writeback *wb,
120                                       struct list_head *head)
121 {
122         assert_spin_locked(&wb->list_lock);
123
124         list_move(&inode->i_io_list, head);
125
126         /* dirty_time doesn't count as dirty_io until expiration */
127         if (head != &wb->b_dirty_time)
128                 return wb_io_lists_populated(wb);
129
130         wb_io_lists_depopulated(wb);
131         return false;
132 }
133
134 static void wb_wakeup(struct bdi_writeback *wb)
135 {
136         spin_lock_bh(&wb->work_lock);
137         if (test_bit(WB_registered, &wb->state))
138                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
139         spin_unlock_bh(&wb->work_lock);
140 }
141
142 static void finish_writeback_work(struct bdi_writeback *wb,
143                                   struct wb_writeback_work *work)
144 {
145         struct wb_completion *done = work->done;
146
147         if (work->auto_free)
148                 kfree(work);
149         if (done) {
150                 wait_queue_head_t *waitq = done->waitq;
151
152                 /* @done can't be accessed after the following dec */
153                 if (atomic_dec_and_test(&done->cnt))
154                         wake_up_all(waitq);
155         }
156 }
157
158 static void wb_queue_work(struct bdi_writeback *wb,
159                           struct wb_writeback_work *work)
160 {
161         trace_writeback_queue(wb, work);
162
163         if (work->done)
164                 atomic_inc(&work->done->cnt);
165
166         spin_lock_bh(&wb->work_lock);
167
168         if (test_bit(WB_registered, &wb->state)) {
169                 list_add_tail(&work->list, &wb->work_list);
170                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
171         } else
172                 finish_writeback_work(wb, work);
173
174         spin_unlock_bh(&wb->work_lock);
175 }
176
177 /**
178  * wb_wait_for_completion - wait for completion of bdi_writeback_works
179  * @done: target wb_completion
180  *
181  * Wait for one or more work items issued to @bdi with their ->done field
182  * set to @done, which should have been initialized with
183  * DEFINE_WB_COMPLETION().  This function returns after all such work items
184  * are completed.  Work items which are waited upon aren't freed
185  * automatically on completion.
186  */
187 void wb_wait_for_completion(struct wb_completion *done)
188 {
189         atomic_dec(&done->cnt);         /* put down the initial count */
190         wait_event(*done->waitq, !atomic_read(&done->cnt));
191 }
192
193 #ifdef CONFIG_CGROUP_WRITEBACK
194
195 /*
196  * Parameters for foreign inode detection, see wbc_detach_inode() to see
197  * how they're used.
198  *
199  * These paramters are inherently heuristical as the detection target
200  * itself is fuzzy.  All we want to do is detaching an inode from the
201  * current owner if it's being written to by some other cgroups too much.
202  *
203  * The current cgroup writeback is built on the assumption that multiple
204  * cgroups writing to the same inode concurrently is very rare and a mode
205  * of operation which isn't well supported.  As such, the goal is not
206  * taking too long when a different cgroup takes over an inode while
207  * avoiding too aggressive flip-flops from occasional foreign writes.
208  *
209  * We record, very roughly, 2s worth of IO time history and if more than
210  * half of that is foreign, trigger the switch.  The recording is quantized
211  * to 16 slots.  To avoid tiny writes from swinging the decision too much,
212  * writes smaller than 1/8 of avg size are ignored.
213  */
214 #define WB_FRN_TIME_SHIFT       13      /* 1s = 2^13, upto 8 secs w/ 16bit */
215 #define WB_FRN_TIME_AVG_SHIFT   3       /* avg = avg * 7/8 + new * 1/8 */
216 #define WB_FRN_TIME_CUT_DIV     8       /* ignore rounds < avg / 8 */
217 #define WB_FRN_TIME_PERIOD      (2 * (1 << WB_FRN_TIME_SHIFT))  /* 2s */
218
219 #define WB_FRN_HIST_SLOTS       16      /* inode->i_wb_frn_history is 16bit */
220 #define WB_FRN_HIST_UNIT        (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
221                                         /* each slot's duration is 2s / 16 */
222 #define WB_FRN_HIST_THR_SLOTS   (WB_FRN_HIST_SLOTS / 2)
223                                         /* if foreign slots >= 8, switch */
224 #define WB_FRN_HIST_MAX_SLOTS   (WB_FRN_HIST_THR_SLOTS / 2 + 1)
225                                         /* one round can affect upto 5 slots */
226 #define WB_FRN_MAX_IN_FLIGHT    1024    /* don't queue too many concurrently */
227
228 /*
229  * Maximum inodes per isw.  A specific value has been chosen to make
230  * struct inode_switch_wbs_context fit into 1024 bytes kmalloc.
231  */
232 #define WB_MAX_INODES_PER_ISW  ((1024UL - sizeof(struct inode_switch_wbs_context)) \
233                                 / sizeof(struct inode *))
234
235 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
236 static struct workqueue_struct *isw_wq;
237
238 void __inode_attach_wb(struct inode *inode, struct page *page)
239 {
240         struct backing_dev_info *bdi = inode_to_bdi(inode);
241         struct bdi_writeback *wb = NULL;
242
243         if (inode_cgwb_enabled(inode)) {
244                 struct cgroup_subsys_state *memcg_css;
245
246                 if (page) {
247                         memcg_css = mem_cgroup_css_from_page(page);
248                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
249                 } else {
250                         /* must pin memcg_css, see wb_get_create() */
251                         memcg_css = task_get_css(current, memory_cgrp_id);
252                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
253                         css_put(memcg_css);
254                 }
255         }
256
257         if (!wb)
258                 wb = &bdi->wb;
259
260         /*
261          * There may be multiple instances of this function racing to
262          * update the same inode.  Use cmpxchg() to tell the winner.
263          */
264         if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
265                 wb_put(wb);
266 }
267 EXPORT_SYMBOL_GPL(__inode_attach_wb);
268
269 /**
270  * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list
271  * @inode: inode of interest with i_lock held
272  * @wb: target bdi_writeback
273  *
274  * Remove the inode from wb's io lists and if necessarily put onto b_attached
275  * list.  Only inodes attached to cgwb's are kept on this list.
276  */
277 static void inode_cgwb_move_to_attached(struct inode *inode,
278                                         struct bdi_writeback *wb)
279 {
280         assert_spin_locked(&wb->list_lock);
281         assert_spin_locked(&inode->i_lock);
282
283         inode->i_state &= ~I_SYNC_QUEUED;
284         if (wb != &wb->bdi->wb)
285                 list_move(&inode->i_io_list, &wb->b_attached);
286         else
287                 list_del_init(&inode->i_io_list);
288         wb_io_lists_depopulated(wb);
289 }
290
291 /**
292  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
293  * @inode: inode of interest with i_lock held
294  *
295  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
296  * held on entry and is released on return.  The returned wb is guaranteed
297  * to stay @inode's associated wb until its list_lock is released.
298  */
299 static struct bdi_writeback *
300 locked_inode_to_wb_and_lock_list(struct inode *inode)
301         __releases(&inode->i_lock)
302         __acquires(&wb->list_lock)
303 {
304         while (true) {
305                 struct bdi_writeback *wb = inode_to_wb(inode);
306
307                 /*
308                  * inode_to_wb() association is protected by both
309                  * @inode->i_lock and @wb->list_lock but list_lock nests
310                  * outside i_lock.  Drop i_lock and verify that the
311                  * association hasn't changed after acquiring list_lock.
312                  */
313                 wb_get(wb);
314                 spin_unlock(&inode->i_lock);
315                 spin_lock(&wb->list_lock);
316
317                 /* i_wb may have changed inbetween, can't use inode_to_wb() */
318                 if (likely(wb == inode->i_wb)) {
319                         wb_put(wb);     /* @inode already has ref */
320                         return wb;
321                 }
322
323                 spin_unlock(&wb->list_lock);
324                 wb_put(wb);
325                 cpu_relax();
326                 spin_lock(&inode->i_lock);
327         }
328 }
329
330 /**
331  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
332  * @inode: inode of interest
333  *
334  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
335  * on entry.
336  */
337 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
338         __acquires(&wb->list_lock)
339 {
340         spin_lock(&inode->i_lock);
341         return locked_inode_to_wb_and_lock_list(inode);
342 }
343
344 struct inode_switch_wbs_context {
345         struct rcu_work         work;
346
347         /*
348          * Multiple inodes can be switched at once.  The switching procedure
349          * consists of two parts, separated by a RCU grace period.  To make
350          * sure that the second part is executed for each inode gone through
351          * the first part, all inode pointers are placed into a NULL-terminated
352          * array embedded into struct inode_switch_wbs_context.  Otherwise
353          * an inode could be left in a non-consistent state.
354          */
355         struct bdi_writeback    *new_wb;
356         struct inode            *inodes[];
357 };
358
359 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
360 {
361         down_write(&bdi->wb_switch_rwsem);
362 }
363
364 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
365 {
366         up_write(&bdi->wb_switch_rwsem);
367 }
368
369 static bool inode_do_switch_wbs(struct inode *inode,
370                                 struct bdi_writeback *old_wb,
371                                 struct bdi_writeback *new_wb)
372 {
373         struct address_space *mapping = inode->i_mapping;
374         XA_STATE(xas, &mapping->i_pages, 0);
375         struct page *page;
376         bool switched = false;
377
378         spin_lock(&inode->i_lock);
379         xa_lock_irq(&mapping->i_pages);
380
381         /*
382          * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction
383          * path owns the inode and we shouldn't modify ->i_io_list.
384          */
385         if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE)))
386                 goto skip_switch;
387
388         trace_inode_switch_wbs(inode, old_wb, new_wb);
389
390         /*
391          * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
392          * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
393          * pages actually under writeback.
394          */
395         xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
396                 if (PageDirty(page)) {
397                         dec_wb_stat(old_wb, WB_RECLAIMABLE);
398                         inc_wb_stat(new_wb, WB_RECLAIMABLE);
399                 }
400         }
401
402         xas_set(&xas, 0);
403         xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
404                 WARN_ON_ONCE(!PageWriteback(page));
405                 dec_wb_stat(old_wb, WB_WRITEBACK);
406                 inc_wb_stat(new_wb, WB_WRITEBACK);
407         }
408
409         if (mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) {
410                 atomic_dec(&old_wb->writeback_inodes);
411                 atomic_inc(&new_wb->writeback_inodes);
412         }
413
414         wb_get(new_wb);
415
416         /*
417          * Transfer to @new_wb's IO list if necessary.  If the @inode is dirty,
418          * the specific list @inode was on is ignored and the @inode is put on
419          * ->b_dirty which is always correct including from ->b_dirty_time.
420          * The transfer preserves @inode->dirtied_when ordering.  If the @inode
421          * was clean, it means it was on the b_attached list, so move it onto
422          * the b_attached list of @new_wb.
423          */
424         if (!list_empty(&inode->i_io_list)) {
425                 inode->i_wb = new_wb;
426
427                 if (inode->i_state & I_DIRTY_ALL) {
428                         struct inode *pos;
429
430                         list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
431                                 if (time_after_eq(inode->dirtied_when,
432                                                   pos->dirtied_when))
433                                         break;
434                         inode_io_list_move_locked(inode, new_wb,
435                                                   pos->i_io_list.prev);
436                 } else {
437                         inode_cgwb_move_to_attached(inode, new_wb);
438                 }
439         } else {
440                 inode->i_wb = new_wb;
441         }
442
443         /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
444         inode->i_wb_frn_winner = 0;
445         inode->i_wb_frn_avg_time = 0;
446         inode->i_wb_frn_history = 0;
447         switched = true;
448 skip_switch:
449         /*
450          * Paired with load_acquire in unlocked_inode_to_wb_begin() and
451          * ensures that the new wb is visible if they see !I_WB_SWITCH.
452          */
453         smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
454
455         xa_unlock_irq(&mapping->i_pages);
456         spin_unlock(&inode->i_lock);
457
458         return switched;
459 }
460
461 static void inode_switch_wbs_work_fn(struct work_struct *work)
462 {
463         struct inode_switch_wbs_context *isw =
464                 container_of(to_rcu_work(work), struct inode_switch_wbs_context, work);
465         struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]);
466         struct bdi_writeback *old_wb = isw->inodes[0]->i_wb;
467         struct bdi_writeback *new_wb = isw->new_wb;
468         unsigned long nr_switched = 0;
469         struct inode **inodep;
470
471         /*
472          * If @inode switches cgwb membership while sync_inodes_sb() is
473          * being issued, sync_inodes_sb() might miss it.  Synchronize.
474          */
475         down_read(&bdi->wb_switch_rwsem);
476
477         /*
478          * By the time control reaches here, RCU grace period has passed
479          * since I_WB_SWITCH assertion and all wb stat update transactions
480          * between unlocked_inode_to_wb_begin/end() are guaranteed to be
481          * synchronizing against the i_pages lock.
482          *
483          * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
484          * gives us exclusion against all wb related operations on @inode
485          * including IO list manipulations and stat updates.
486          */
487         if (old_wb < new_wb) {
488                 spin_lock(&old_wb->list_lock);
489                 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
490         } else {
491                 spin_lock(&new_wb->list_lock);
492                 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
493         }
494
495         for (inodep = isw->inodes; *inodep; inodep++) {
496                 WARN_ON_ONCE((*inodep)->i_wb != old_wb);
497                 if (inode_do_switch_wbs(*inodep, old_wb, new_wb))
498                         nr_switched++;
499         }
500
501         spin_unlock(&new_wb->list_lock);
502         spin_unlock(&old_wb->list_lock);
503
504         up_read(&bdi->wb_switch_rwsem);
505
506         if (nr_switched) {
507                 wb_wakeup(new_wb);
508                 wb_put_many(old_wb, nr_switched);
509         }
510
511         for (inodep = isw->inodes; *inodep; inodep++)
512                 iput(*inodep);
513         wb_put(new_wb);
514         kfree(isw);
515         atomic_dec(&isw_nr_in_flight);
516 }
517
518 static bool inode_prepare_wbs_switch(struct inode *inode,
519                                      struct bdi_writeback *new_wb)
520 {
521         /*
522          * Paired with smp_mb() in cgroup_writeback_umount().
523          * isw_nr_in_flight must be increased before checking SB_ACTIVE and
524          * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0
525          * in cgroup_writeback_umount() and the isw_wq will be not flushed.
526          */
527         smp_mb();
528
529         if (IS_DAX(inode))
530                 return false;
531
532         /* while holding I_WB_SWITCH, no one else can update the association */
533         spin_lock(&inode->i_lock);
534         if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
535             inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) ||
536             inode_to_wb(inode) == new_wb) {
537                 spin_unlock(&inode->i_lock);
538                 return false;
539         }
540         inode->i_state |= I_WB_SWITCH;
541         __iget(inode);
542         spin_unlock(&inode->i_lock);
543
544         return true;
545 }
546
547 /**
548  * inode_switch_wbs - change the wb association of an inode
549  * @inode: target inode
550  * @new_wb_id: ID of the new wb
551  *
552  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
553  * switching is performed asynchronously and may fail silently.
554  */
555 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
556 {
557         struct backing_dev_info *bdi = inode_to_bdi(inode);
558         struct cgroup_subsys_state *memcg_css;
559         struct inode_switch_wbs_context *isw;
560
561         /* noop if seems to be already in progress */
562         if (inode->i_state & I_WB_SWITCH)
563                 return;
564
565         /* avoid queueing a new switch if too many are already in flight */
566         if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
567                 return;
568
569         isw = kzalloc(sizeof(*isw) + 2 * sizeof(struct inode *), GFP_ATOMIC);
570         if (!isw)
571                 return;
572
573         atomic_inc(&isw_nr_in_flight);
574
575         /* find and pin the new wb */
576         rcu_read_lock();
577         memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
578         if (memcg_css && !css_tryget(memcg_css))
579                 memcg_css = NULL;
580         rcu_read_unlock();
581         if (!memcg_css)
582                 goto out_free;
583
584         isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
585         css_put(memcg_css);
586         if (!isw->new_wb)
587                 goto out_free;
588
589         if (!inode_prepare_wbs_switch(inode, isw->new_wb))
590                 goto out_free;
591
592         isw->inodes[0] = inode;
593
594         /*
595          * In addition to synchronizing among switchers, I_WB_SWITCH tells
596          * the RCU protected stat update paths to grab the i_page
597          * lock so that stat transfer can synchronize against them.
598          * Let's continue after I_WB_SWITCH is guaranteed to be visible.
599          */
600         INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
601         queue_rcu_work(isw_wq, &isw->work);
602         return;
603
604 out_free:
605         atomic_dec(&isw_nr_in_flight);
606         if (isw->new_wb)
607                 wb_put(isw->new_wb);
608         kfree(isw);
609 }
610
611 /**
612  * cleanup_offline_cgwb - detach associated inodes
613  * @wb: target wb
614  *
615  * Switch all inodes attached to @wb to a nearest living ancestor's wb in order
616  * to eventually release the dying @wb.  Returns %true if not all inodes were
617  * switched and the function has to be restarted.
618  */
619 bool cleanup_offline_cgwb(struct bdi_writeback *wb)
620 {
621         struct cgroup_subsys_state *memcg_css;
622         struct inode_switch_wbs_context *isw;
623         struct inode *inode;
624         int nr;
625         bool restart = false;
626
627         isw = kzalloc(sizeof(*isw) + WB_MAX_INODES_PER_ISW *
628                       sizeof(struct inode *), GFP_KERNEL);
629         if (!isw)
630                 return restart;
631
632         atomic_inc(&isw_nr_in_flight);
633
634         for (memcg_css = wb->memcg_css->parent; memcg_css;
635              memcg_css = memcg_css->parent) {
636                 isw->new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL);
637                 if (isw->new_wb)
638                         break;
639         }
640         if (unlikely(!isw->new_wb))
641                 isw->new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */
642
643         nr = 0;
644         spin_lock(&wb->list_lock);
645         list_for_each_entry(inode, &wb->b_attached, i_io_list) {
646                 if (!inode_prepare_wbs_switch(inode, isw->new_wb))
647                         continue;
648
649                 isw->inodes[nr++] = inode;
650
651                 if (nr >= WB_MAX_INODES_PER_ISW - 1) {
652                         restart = true;
653                         break;
654                 }
655         }
656         spin_unlock(&wb->list_lock);
657
658         /* no attached inodes? bail out */
659         if (nr == 0) {
660                 atomic_dec(&isw_nr_in_flight);
661                 wb_put(isw->new_wb);
662                 kfree(isw);
663                 return restart;
664         }
665
666         /*
667          * In addition to synchronizing among switchers, I_WB_SWITCH tells
668          * the RCU protected stat update paths to grab the i_page
669          * lock so that stat transfer can synchronize against them.
670          * Let's continue after I_WB_SWITCH is guaranteed to be visible.
671          */
672         INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
673         queue_rcu_work(isw_wq, &isw->work);
674
675         return restart;
676 }
677
678 /**
679  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
680  * @wbc: writeback_control of interest
681  * @inode: target inode
682  *
683  * @inode is locked and about to be written back under the control of @wbc.
684  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
685  * writeback completion, wbc_detach_inode() should be called.  This is used
686  * to track the cgroup writeback context.
687  */
688 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
689                                  struct inode *inode)
690 {
691         if (!inode_cgwb_enabled(inode)) {
692                 spin_unlock(&inode->i_lock);
693                 return;
694         }
695
696         wbc->wb = inode_to_wb(inode);
697         wbc->inode = inode;
698
699         wbc->wb_id = wbc->wb->memcg_css->id;
700         wbc->wb_lcand_id = inode->i_wb_frn_winner;
701         wbc->wb_tcand_id = 0;
702         wbc->wb_bytes = 0;
703         wbc->wb_lcand_bytes = 0;
704         wbc->wb_tcand_bytes = 0;
705
706         wb_get(wbc->wb);
707         spin_unlock(&inode->i_lock);
708
709         /*
710          * A dying wb indicates that either the blkcg associated with the
711          * memcg changed or the associated memcg is dying.  In the first
712          * case, a replacement wb should already be available and we should
713          * refresh the wb immediately.  In the second case, trying to
714          * refresh will keep failing.
715          */
716         if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
717                 inode_switch_wbs(inode, wbc->wb_id);
718 }
719 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
720
721 /**
722  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
723  * @wbc: writeback_control of the just finished writeback
724  *
725  * To be called after a writeback attempt of an inode finishes and undoes
726  * wbc_attach_and_unlock_inode().  Can be called under any context.
727  *
728  * As concurrent write sharing of an inode is expected to be very rare and
729  * memcg only tracks page ownership on first-use basis severely confining
730  * the usefulness of such sharing, cgroup writeback tracks ownership
731  * per-inode.  While the support for concurrent write sharing of an inode
732  * is deemed unnecessary, an inode being written to by different cgroups at
733  * different points in time is a lot more common, and, more importantly,
734  * charging only by first-use can too readily lead to grossly incorrect
735  * behaviors (single foreign page can lead to gigabytes of writeback to be
736  * incorrectly attributed).
737  *
738  * To resolve this issue, cgroup writeback detects the majority dirtier of
739  * an inode and transfers the ownership to it.  To avoid unnnecessary
740  * oscillation, the detection mechanism keeps track of history and gives
741  * out the switch verdict only if the foreign usage pattern is stable over
742  * a certain amount of time and/or writeback attempts.
743  *
744  * On each writeback attempt, @wbc tries to detect the majority writer
745  * using Boyer-Moore majority vote algorithm.  In addition to the byte
746  * count from the majority voting, it also counts the bytes written for the
747  * current wb and the last round's winner wb (max of last round's current
748  * wb, the winner from two rounds ago, and the last round's majority
749  * candidate).  Keeping track of the historical winner helps the algorithm
750  * to semi-reliably detect the most active writer even when it's not the
751  * absolute majority.
752  *
753  * Once the winner of the round is determined, whether the winner is
754  * foreign or not and how much IO time the round consumed is recorded in
755  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
756  * over a certain threshold, the switch verdict is given.
757  */
758 void wbc_detach_inode(struct writeback_control *wbc)
759 {
760         struct bdi_writeback *wb = wbc->wb;
761         struct inode *inode = wbc->inode;
762         unsigned long avg_time, max_bytes, max_time;
763         u16 history;
764         int max_id;
765
766         if (!wb)
767                 return;
768
769         history = inode->i_wb_frn_history;
770         avg_time = inode->i_wb_frn_avg_time;
771
772         /* pick the winner of this round */
773         if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
774             wbc->wb_bytes >= wbc->wb_tcand_bytes) {
775                 max_id = wbc->wb_id;
776                 max_bytes = wbc->wb_bytes;
777         } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
778                 max_id = wbc->wb_lcand_id;
779                 max_bytes = wbc->wb_lcand_bytes;
780         } else {
781                 max_id = wbc->wb_tcand_id;
782                 max_bytes = wbc->wb_tcand_bytes;
783         }
784
785         /*
786          * Calculate the amount of IO time the winner consumed and fold it
787          * into the running average kept per inode.  If the consumed IO
788          * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
789          * deciding whether to switch or not.  This is to prevent one-off
790          * small dirtiers from skewing the verdict.
791          */
792         max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
793                                 wb->avg_write_bandwidth);
794         if (avg_time)
795                 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
796                             (avg_time >> WB_FRN_TIME_AVG_SHIFT);
797         else
798                 avg_time = max_time;    /* immediate catch up on first run */
799
800         if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
801                 int slots;
802
803                 /*
804                  * The switch verdict is reached if foreign wb's consume
805                  * more than a certain proportion of IO time in a
806                  * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
807                  * history mask where each bit represents one sixteenth of
808                  * the period.  Determine the number of slots to shift into
809                  * history from @max_time.
810                  */
811                 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
812                             (unsigned long)WB_FRN_HIST_MAX_SLOTS);
813                 history <<= slots;
814                 if (wbc->wb_id != max_id)
815                         history |= (1U << slots) - 1;
816
817                 if (history)
818                         trace_inode_foreign_history(inode, wbc, history);
819
820                 /*
821                  * Switch if the current wb isn't the consistent winner.
822                  * If there are multiple closely competing dirtiers, the
823                  * inode may switch across them repeatedly over time, which
824                  * is okay.  The main goal is avoiding keeping an inode on
825                  * the wrong wb for an extended period of time.
826                  */
827                 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
828                         inode_switch_wbs(inode, max_id);
829         }
830
831         /*
832          * Multiple instances of this function may race to update the
833          * following fields but we don't mind occassional inaccuracies.
834          */
835         inode->i_wb_frn_winner = max_id;
836         inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
837         inode->i_wb_frn_history = history;
838
839         wb_put(wbc->wb);
840         wbc->wb = NULL;
841 }
842 EXPORT_SYMBOL_GPL(wbc_detach_inode);
843
844 /**
845  * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
846  * @wbc: writeback_control of the writeback in progress
847  * @page: page being written out
848  * @bytes: number of bytes being written out
849  *
850  * @bytes from @page are about to written out during the writeback
851  * controlled by @wbc.  Keep the book for foreign inode detection.  See
852  * wbc_detach_inode().
853  */
854 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
855                               size_t bytes)
856 {
857         struct cgroup_subsys_state *css;
858         int id;
859
860         /*
861          * pageout() path doesn't attach @wbc to the inode being written
862          * out.  This is intentional as we don't want the function to block
863          * behind a slow cgroup.  Ultimately, we want pageout() to kick off
864          * regular writeback instead of writing things out itself.
865          */
866         if (!wbc->wb || wbc->no_cgroup_owner)
867                 return;
868
869         css = mem_cgroup_css_from_page(page);
870         /* dead cgroups shouldn't contribute to inode ownership arbitration */
871         if (!(css->flags & CSS_ONLINE))
872                 return;
873
874         id = css->id;
875
876         if (id == wbc->wb_id) {
877                 wbc->wb_bytes += bytes;
878                 return;
879         }
880
881         if (id == wbc->wb_lcand_id)
882                 wbc->wb_lcand_bytes += bytes;
883
884         /* Boyer-Moore majority vote algorithm */
885         if (!wbc->wb_tcand_bytes)
886                 wbc->wb_tcand_id = id;
887         if (id == wbc->wb_tcand_id)
888                 wbc->wb_tcand_bytes += bytes;
889         else
890                 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
891 }
892 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
893
894 /**
895  * inode_congested - test whether an inode is congested
896  * @inode: inode to test for congestion (may be NULL)
897  * @cong_bits: mask of WB_[a]sync_congested bits to test
898  *
899  * Tests whether @inode is congested.  @cong_bits is the mask of congestion
900  * bits to test and the return value is the mask of set bits.
901  *
902  * If cgroup writeback is enabled for @inode, the congestion state is
903  * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
904  * associated with @inode is congested; otherwise, the root wb's congestion
905  * state is used.
906  *
907  * @inode is allowed to be NULL as this function is often called on
908  * mapping->host which is NULL for the swapper space.
909  */
910 int inode_congested(struct inode *inode, int cong_bits)
911 {
912         /*
913          * Once set, ->i_wb never becomes NULL while the inode is alive.
914          * Start transaction iff ->i_wb is visible.
915          */
916         if (inode && inode_to_wb_is_valid(inode)) {
917                 struct bdi_writeback *wb;
918                 struct wb_lock_cookie lock_cookie = {};
919                 bool congested;
920
921                 wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
922                 congested = wb_congested(wb, cong_bits);
923                 unlocked_inode_to_wb_end(inode, &lock_cookie);
924                 return congested;
925         }
926
927         return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
928 }
929 EXPORT_SYMBOL_GPL(inode_congested);
930
931 /**
932  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
933  * @wb: target bdi_writeback to split @nr_pages to
934  * @nr_pages: number of pages to write for the whole bdi
935  *
936  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
937  * relation to the total write bandwidth of all wb's w/ dirty inodes on
938  * @wb->bdi.
939  */
940 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
941 {
942         unsigned long this_bw = wb->avg_write_bandwidth;
943         unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
944
945         if (nr_pages == LONG_MAX)
946                 return LONG_MAX;
947
948         /*
949          * This may be called on clean wb's and proportional distribution
950          * may not make sense, just use the original @nr_pages in those
951          * cases.  In general, we wanna err on the side of writing more.
952          */
953         if (!tot_bw || this_bw >= tot_bw)
954                 return nr_pages;
955         else
956                 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
957 }
958
959 /**
960  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
961  * @bdi: target backing_dev_info
962  * @base_work: wb_writeback_work to issue
963  * @skip_if_busy: skip wb's which already have writeback in progress
964  *
965  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
966  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
967  * distributed to the busy wbs according to each wb's proportion in the
968  * total active write bandwidth of @bdi.
969  */
970 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
971                                   struct wb_writeback_work *base_work,
972                                   bool skip_if_busy)
973 {
974         struct bdi_writeback *last_wb = NULL;
975         struct bdi_writeback *wb = list_entry(&bdi->wb_list,
976                                               struct bdi_writeback, bdi_node);
977
978         might_sleep();
979 restart:
980         rcu_read_lock();
981         list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
982                 DEFINE_WB_COMPLETION(fallback_work_done, bdi);
983                 struct wb_writeback_work fallback_work;
984                 struct wb_writeback_work *work;
985                 long nr_pages;
986
987                 if (last_wb) {
988                         wb_put(last_wb);
989                         last_wb = NULL;
990                 }
991
992                 /* SYNC_ALL writes out I_DIRTY_TIME too */
993                 if (!wb_has_dirty_io(wb) &&
994                     (base_work->sync_mode == WB_SYNC_NONE ||
995                      list_empty(&wb->b_dirty_time)))
996                         continue;
997                 if (skip_if_busy && writeback_in_progress(wb))
998                         continue;
999
1000                 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
1001
1002                 work = kmalloc(sizeof(*work), GFP_ATOMIC);
1003                 if (work) {
1004                         *work = *base_work;
1005                         work->nr_pages = nr_pages;
1006                         work->auto_free = 1;
1007                         wb_queue_work(wb, work);
1008                         continue;
1009                 }
1010
1011                 /* alloc failed, execute synchronously using on-stack fallback */
1012                 work = &fallback_work;
1013                 *work = *base_work;
1014                 work->nr_pages = nr_pages;
1015                 work->auto_free = 0;
1016                 work->done = &fallback_work_done;
1017
1018                 wb_queue_work(wb, work);
1019
1020                 /*
1021                  * Pin @wb so that it stays on @bdi->wb_list.  This allows
1022                  * continuing iteration from @wb after dropping and
1023                  * regrabbing rcu read lock.
1024                  */
1025                 wb_get(wb);
1026                 last_wb = wb;
1027
1028                 rcu_read_unlock();
1029                 wb_wait_for_completion(&fallback_work_done);
1030                 goto restart;
1031         }
1032         rcu_read_unlock();
1033
1034         if (last_wb)
1035                 wb_put(last_wb);
1036 }
1037
1038 /**
1039  * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
1040  * @bdi_id: target bdi id
1041  * @memcg_id: target memcg css id
1042  * @reason: reason why some writeback work initiated
1043  * @done: target wb_completion
1044  *
1045  * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
1046  * with the specified parameters.
1047  */
1048 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id,
1049                            enum wb_reason reason, struct wb_completion *done)
1050 {
1051         struct backing_dev_info *bdi;
1052         struct cgroup_subsys_state *memcg_css;
1053         struct bdi_writeback *wb;
1054         struct wb_writeback_work *work;
1055         unsigned long dirty;
1056         int ret;
1057
1058         /* lookup bdi and memcg */
1059         bdi = bdi_get_by_id(bdi_id);
1060         if (!bdi)
1061                 return -ENOENT;
1062
1063         rcu_read_lock();
1064         memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
1065         if (memcg_css && !css_tryget(memcg_css))
1066                 memcg_css = NULL;
1067         rcu_read_unlock();
1068         if (!memcg_css) {
1069                 ret = -ENOENT;
1070                 goto out_bdi_put;
1071         }
1072
1073         /*
1074          * And find the associated wb.  If the wb isn't there already
1075          * there's nothing to flush, don't create one.
1076          */
1077         wb = wb_get_lookup(bdi, memcg_css);
1078         if (!wb) {
1079                 ret = -ENOENT;
1080                 goto out_css_put;
1081         }
1082
1083         /*
1084          * The caller is attempting to write out most of
1085          * the currently dirty pages.  Let's take the current dirty page
1086          * count and inflate it by 25% which should be large enough to
1087          * flush out most dirty pages while avoiding getting livelocked by
1088          * concurrent dirtiers.
1089          *
1090          * BTW the memcg stats are flushed periodically and this is best-effort
1091          * estimation, so some potential error is ok.
1092          */
1093         dirty = memcg_page_state(mem_cgroup_from_css(memcg_css), NR_FILE_DIRTY);
1094         dirty = dirty * 10 / 8;
1095
1096         /* issue the writeback work */
1097         work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
1098         if (work) {
1099                 work->nr_pages = dirty;
1100                 work->sync_mode = WB_SYNC_NONE;
1101                 work->range_cyclic = 1;
1102                 work->reason = reason;
1103                 work->done = done;
1104                 work->auto_free = 1;
1105                 wb_queue_work(wb, work);
1106                 ret = 0;
1107         } else {
1108                 ret = -ENOMEM;
1109         }
1110
1111         wb_put(wb);
1112 out_css_put:
1113         css_put(memcg_css);
1114 out_bdi_put:
1115         bdi_put(bdi);
1116         return ret;
1117 }
1118
1119 /**
1120  * cgroup_writeback_umount - flush inode wb switches for umount
1121  *
1122  * This function is called when a super_block is about to be destroyed and
1123  * flushes in-flight inode wb switches.  An inode wb switch goes through
1124  * RCU and then workqueue, so the two need to be flushed in order to ensure
1125  * that all previously scheduled switches are finished.  As wb switches are
1126  * rare occurrences and synchronize_rcu() can take a while, perform
1127  * flushing iff wb switches are in flight.
1128  */
1129 void cgroup_writeback_umount(void)
1130 {
1131         /*
1132          * SB_ACTIVE should be reliably cleared before checking
1133          * isw_nr_in_flight, see generic_shutdown_super().
1134          */
1135         smp_mb();
1136
1137         if (atomic_read(&isw_nr_in_flight)) {
1138                 /*
1139                  * Use rcu_barrier() to wait for all pending callbacks to
1140                  * ensure that all in-flight wb switches are in the workqueue.
1141                  */
1142                 rcu_barrier();
1143                 flush_workqueue(isw_wq);
1144         }
1145 }
1146
1147 static int __init cgroup_writeback_init(void)
1148 {
1149         isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1150         if (!isw_wq)
1151                 return -ENOMEM;
1152         return 0;
1153 }
1154 fs_initcall(cgroup_writeback_init);
1155
1156 #else   /* CONFIG_CGROUP_WRITEBACK */
1157
1158 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1159 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1160
1161 static void inode_cgwb_move_to_attached(struct inode *inode,
1162                                         struct bdi_writeback *wb)
1163 {
1164         assert_spin_locked(&wb->list_lock);
1165         assert_spin_locked(&inode->i_lock);
1166
1167         inode->i_state &= ~I_SYNC_QUEUED;
1168         list_del_init(&inode->i_io_list);
1169         wb_io_lists_depopulated(wb);
1170 }
1171
1172 static struct bdi_writeback *
1173 locked_inode_to_wb_and_lock_list(struct inode *inode)
1174         __releases(&inode->i_lock)
1175         __acquires(&wb->list_lock)
1176 {
1177         struct bdi_writeback *wb = inode_to_wb(inode);
1178
1179         spin_unlock(&inode->i_lock);
1180         spin_lock(&wb->list_lock);
1181         return wb;
1182 }
1183
1184 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1185         __acquires(&wb->list_lock)
1186 {
1187         struct bdi_writeback *wb = inode_to_wb(inode);
1188
1189         spin_lock(&wb->list_lock);
1190         return wb;
1191 }
1192
1193 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1194 {
1195         return nr_pages;
1196 }
1197
1198 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1199                                   struct wb_writeback_work *base_work,
1200                                   bool skip_if_busy)
1201 {
1202         might_sleep();
1203
1204         if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
1205                 base_work->auto_free = 0;
1206                 wb_queue_work(&bdi->wb, base_work);
1207         }
1208 }
1209
1210 #endif  /* CONFIG_CGROUP_WRITEBACK */
1211
1212 /*
1213  * Add in the number of potentially dirty inodes, because each inode
1214  * write can dirty pagecache in the underlying blockdev.
1215  */
1216 static unsigned long get_nr_dirty_pages(void)
1217 {
1218         return global_node_page_state(NR_FILE_DIRTY) +
1219                 get_nr_dirty_inodes();
1220 }
1221
1222 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
1223 {
1224         if (!wb_has_dirty_io(wb))
1225                 return;
1226
1227         /*
1228          * All callers of this function want to start writeback of all
1229          * dirty pages. Places like vmscan can call this at a very
1230          * high frequency, causing pointless allocations of tons of
1231          * work items and keeping the flusher threads busy retrieving
1232          * that work. Ensure that we only allow one of them pending and
1233          * inflight at the time.
1234          */
1235         if (test_bit(WB_start_all, &wb->state) ||
1236             test_and_set_bit(WB_start_all, &wb->state))
1237                 return;
1238
1239         wb->start_all_reason = reason;
1240         wb_wakeup(wb);
1241 }
1242
1243 /**
1244  * wb_start_background_writeback - start background writeback
1245  * @wb: bdi_writback to write from
1246  *
1247  * Description:
1248  *   This makes sure WB_SYNC_NONE background writeback happens. When
1249  *   this function returns, it is only guaranteed that for given wb
1250  *   some IO is happening if we are over background dirty threshold.
1251  *   Caller need not hold sb s_umount semaphore.
1252  */
1253 void wb_start_background_writeback(struct bdi_writeback *wb)
1254 {
1255         /*
1256          * We just wake up the flusher thread. It will perform background
1257          * writeback as soon as there is no other work to do.
1258          */
1259         trace_writeback_wake_background(wb);
1260         wb_wakeup(wb);
1261 }
1262
1263 /*
1264  * Remove the inode from the writeback list it is on.
1265  */
1266 void inode_io_list_del(struct inode *inode)
1267 {
1268         struct bdi_writeback *wb;
1269
1270         wb = inode_to_wb_and_lock_list(inode);
1271         spin_lock(&inode->i_lock);
1272
1273         inode->i_state &= ~I_SYNC_QUEUED;
1274         list_del_init(&inode->i_io_list);
1275         wb_io_lists_depopulated(wb);
1276
1277         spin_unlock(&inode->i_lock);
1278         spin_unlock(&wb->list_lock);
1279 }
1280 EXPORT_SYMBOL(inode_io_list_del);
1281
1282 /*
1283  * mark an inode as under writeback on the sb
1284  */
1285 void sb_mark_inode_writeback(struct inode *inode)
1286 {
1287         struct super_block *sb = inode->i_sb;
1288         unsigned long flags;
1289
1290         if (list_empty(&inode->i_wb_list)) {
1291                 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1292                 if (list_empty(&inode->i_wb_list)) {
1293                         list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1294                         trace_sb_mark_inode_writeback(inode);
1295                 }
1296                 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1297         }
1298 }
1299
1300 /*
1301  * clear an inode as under writeback on the sb
1302  */
1303 void sb_clear_inode_writeback(struct inode *inode)
1304 {
1305         struct super_block *sb = inode->i_sb;
1306         unsigned long flags;
1307
1308         if (!list_empty(&inode->i_wb_list)) {
1309                 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1310                 if (!list_empty(&inode->i_wb_list)) {
1311                         list_del_init(&inode->i_wb_list);
1312                         trace_sb_clear_inode_writeback(inode);
1313                 }
1314                 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1315         }
1316 }
1317
1318 /*
1319  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1320  * furthest end of its superblock's dirty-inode list.
1321  *
1322  * Before stamping the inode's ->dirtied_when, we check to see whether it is
1323  * already the most-recently-dirtied inode on the b_dirty list.  If that is
1324  * the case then the inode must have been redirtied while it was being written
1325  * out and we don't reset its dirtied_when.
1326  */
1327 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
1328 {
1329         assert_spin_locked(&inode->i_lock);
1330
1331         if (!list_empty(&wb->b_dirty)) {
1332                 struct inode *tail;
1333
1334                 tail = wb_inode(wb->b_dirty.next);
1335                 if (time_before(inode->dirtied_when, tail->dirtied_when))
1336                         inode->dirtied_when = jiffies;
1337         }
1338         inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1339         inode->i_state &= ~I_SYNC_QUEUED;
1340 }
1341
1342 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1343 {
1344         spin_lock(&inode->i_lock);
1345         redirty_tail_locked(inode, wb);
1346         spin_unlock(&inode->i_lock);
1347 }
1348
1349 /*
1350  * requeue inode for re-scanning after bdi->b_io list is exhausted.
1351  */
1352 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1353 {
1354         inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1355 }
1356
1357 static void inode_sync_complete(struct inode *inode)
1358 {
1359         inode->i_state &= ~I_SYNC;
1360         /* If inode is clean an unused, put it into LRU now... */
1361         inode_add_lru(inode);
1362         /* Waiters must see I_SYNC cleared before being woken up */
1363         smp_mb();
1364         wake_up_bit(&inode->i_state, __I_SYNC);
1365 }
1366
1367 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1368 {
1369         bool ret = time_after(inode->dirtied_when, t);
1370 #ifndef CONFIG_64BIT
1371         /*
1372          * For inodes being constantly redirtied, dirtied_when can get stuck.
1373          * It _appears_ to be in the future, but is actually in distant past.
1374          * This test is necessary to prevent such wrapped-around relative times
1375          * from permanently stopping the whole bdi writeback.
1376          */
1377         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1378 #endif
1379         return ret;
1380 }
1381
1382 #define EXPIRE_DIRTY_ATIME 0x0001
1383
1384 /*
1385  * Move expired (dirtied before dirtied_before) dirty inodes from
1386  * @delaying_queue to @dispatch_queue.
1387  */
1388 static int move_expired_inodes(struct list_head *delaying_queue,
1389                                struct list_head *dispatch_queue,
1390                                unsigned long dirtied_before)
1391 {
1392         LIST_HEAD(tmp);
1393         struct list_head *pos, *node;
1394         struct super_block *sb = NULL;
1395         struct inode *inode;
1396         int do_sb_sort = 0;
1397         int moved = 0;
1398
1399         while (!list_empty(delaying_queue)) {
1400                 inode = wb_inode(delaying_queue->prev);
1401                 if (inode_dirtied_after(inode, dirtied_before))
1402                         break;
1403                 list_move(&inode->i_io_list, &tmp);
1404                 moved++;
1405                 spin_lock(&inode->i_lock);
1406                 inode->i_state |= I_SYNC_QUEUED;
1407                 spin_unlock(&inode->i_lock);
1408                 if (sb_is_blkdev_sb(inode->i_sb))
1409                         continue;
1410                 if (sb && sb != inode->i_sb)
1411                         do_sb_sort = 1;
1412                 sb = inode->i_sb;
1413         }
1414
1415         /* just one sb in list, splice to dispatch_queue and we're done */
1416         if (!do_sb_sort) {
1417                 list_splice(&tmp, dispatch_queue);
1418                 goto out;
1419         }
1420
1421         /* Move inodes from one superblock together */
1422         while (!list_empty(&tmp)) {
1423                 sb = wb_inode(tmp.prev)->i_sb;
1424                 list_for_each_prev_safe(pos, node, &tmp) {
1425                         inode = wb_inode(pos);
1426                         if (inode->i_sb == sb)
1427                                 list_move(&inode->i_io_list, dispatch_queue);
1428                 }
1429         }
1430 out:
1431         return moved;
1432 }
1433
1434 /*
1435  * Queue all expired dirty inodes for io, eldest first.
1436  * Before
1437  *         newly dirtied     b_dirty    b_io    b_more_io
1438  *         =============>    gf         edc     BA
1439  * After
1440  *         newly dirtied     b_dirty    b_io    b_more_io
1441  *         =============>    g          fBAedc
1442  *                                           |
1443  *                                           +--> dequeue for IO
1444  */
1445 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1446                      unsigned long dirtied_before)
1447 {
1448         int moved;
1449         unsigned long time_expire_jif = dirtied_before;
1450
1451         assert_spin_locked(&wb->list_lock);
1452         list_splice_init(&wb->b_more_io, &wb->b_io);
1453         moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before);
1454         if (!work->for_sync)
1455                 time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
1456         moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1457                                      time_expire_jif);
1458         if (moved)
1459                 wb_io_lists_populated(wb);
1460         trace_writeback_queue_io(wb, work, dirtied_before, moved);
1461 }
1462
1463 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1464 {
1465         int ret;
1466
1467         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1468                 trace_writeback_write_inode_start(inode, wbc);
1469                 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1470                 trace_writeback_write_inode(inode, wbc);
1471                 return ret;
1472         }
1473         return 0;
1474 }
1475
1476 /*
1477  * Wait for writeback on an inode to complete. Called with i_lock held.
1478  * Caller must make sure inode cannot go away when we drop i_lock.
1479  */
1480 static void __inode_wait_for_writeback(struct inode *inode)
1481         __releases(inode->i_lock)
1482         __acquires(inode->i_lock)
1483 {
1484         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1485         wait_queue_head_t *wqh;
1486
1487         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1488         while (inode->i_state & I_SYNC) {
1489                 spin_unlock(&inode->i_lock);
1490                 __wait_on_bit(wqh, &wq, bit_wait,
1491                               TASK_UNINTERRUPTIBLE);
1492                 spin_lock(&inode->i_lock);
1493         }
1494 }
1495
1496 /*
1497  * Wait for writeback on an inode to complete. Caller must have inode pinned.
1498  */
1499 void inode_wait_for_writeback(struct inode *inode)
1500 {
1501         spin_lock(&inode->i_lock);
1502         __inode_wait_for_writeback(inode);
1503         spin_unlock(&inode->i_lock);
1504 }
1505
1506 /*
1507  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1508  * held and drops it. It is aimed for callers not holding any inode reference
1509  * so once i_lock is dropped, inode can go away.
1510  */
1511 static void inode_sleep_on_writeback(struct inode *inode)
1512         __releases(inode->i_lock)
1513 {
1514         DEFINE_WAIT(wait);
1515         wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1516         int sleep;
1517
1518         prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1519         sleep = inode->i_state & I_SYNC;
1520         spin_unlock(&inode->i_lock);
1521         if (sleep)
1522                 schedule();
1523         finish_wait(wqh, &wait);
1524 }
1525
1526 /*
1527  * Find proper writeback list for the inode depending on its current state and
1528  * possibly also change of its state while we were doing writeback.  Here we
1529  * handle things such as livelock prevention or fairness of writeback among
1530  * inodes. This function can be called only by flusher thread - noone else
1531  * processes all inodes in writeback lists and requeueing inodes behind flusher
1532  * thread's back can have unexpected consequences.
1533  */
1534 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1535                           struct writeback_control *wbc)
1536 {
1537         if (inode->i_state & I_FREEING)
1538                 return;
1539
1540         /*
1541          * Sync livelock prevention. Each inode is tagged and synced in one
1542          * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1543          * the dirty time to prevent enqueue and sync it again.
1544          */
1545         if ((inode->i_state & I_DIRTY) &&
1546             (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1547                 inode->dirtied_when = jiffies;
1548
1549         if (wbc->pages_skipped) {
1550                 /*
1551                  * writeback is not making progress due to locked
1552                  * buffers. Skip this inode for now.
1553                  */
1554                 redirty_tail_locked(inode, wb);
1555                 return;
1556         }
1557
1558         if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1559                 /*
1560                  * We didn't write back all the pages.  nfs_writepages()
1561                  * sometimes bales out without doing anything.
1562                  */
1563                 if (wbc->nr_to_write <= 0) {
1564                         /* Slice used up. Queue for next turn. */
1565                         requeue_io(inode, wb);
1566                 } else {
1567                         /*
1568                          * Writeback blocked by something other than
1569                          * congestion. Delay the inode for some time to
1570                          * avoid spinning on the CPU (100% iowait)
1571                          * retrying writeback of the dirty page/inode
1572                          * that cannot be performed immediately.
1573                          */
1574                         redirty_tail_locked(inode, wb);
1575                 }
1576         } else if (inode->i_state & I_DIRTY) {
1577                 /*
1578                  * Filesystems can dirty the inode during writeback operations,
1579                  * such as delayed allocation during submission or metadata
1580                  * updates after data IO completion.
1581                  */
1582                 redirty_tail_locked(inode, wb);
1583         } else if (inode->i_state & I_DIRTY_TIME) {
1584                 inode->dirtied_when = jiffies;
1585                 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1586                 inode->i_state &= ~I_SYNC_QUEUED;
1587         } else {
1588                 /* The inode is clean. Remove from writeback lists. */
1589                 inode_cgwb_move_to_attached(inode, wb);
1590         }
1591 }
1592
1593 /*
1594  * Write out an inode and its dirty pages (or some of its dirty pages, depending
1595  * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state.
1596  *
1597  * This doesn't remove the inode from the writeback list it is on, except
1598  * potentially to move it from b_dirty_time to b_dirty due to timestamp
1599  * expiration.  The caller is otherwise responsible for writeback list handling.
1600  *
1601  * The caller is also responsible for setting the I_SYNC flag beforehand and
1602  * calling inode_sync_complete() to clear it afterwards.
1603  */
1604 static int
1605 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1606 {
1607         struct address_space *mapping = inode->i_mapping;
1608         long nr_to_write = wbc->nr_to_write;
1609         unsigned dirty;
1610         int ret;
1611
1612         WARN_ON(!(inode->i_state & I_SYNC));
1613
1614         trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1615
1616         ret = do_writepages(mapping, wbc);
1617
1618         /*
1619          * Make sure to wait on the data before writing out the metadata.
1620          * This is important for filesystems that modify metadata on data
1621          * I/O completion. We don't do it for sync(2) writeback because it has a
1622          * separate, external IO completion path and ->sync_fs for guaranteeing
1623          * inode metadata is written back correctly.
1624          */
1625         if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1626                 int err = filemap_fdatawait(mapping);
1627                 if (ret == 0)
1628                         ret = err;
1629         }
1630
1631         /*
1632          * If the inode has dirty timestamps and we need to write them, call
1633          * mark_inode_dirty_sync() to notify the filesystem about it and to
1634          * change I_DIRTY_TIME into I_DIRTY_SYNC.
1635          */
1636         if ((inode->i_state & I_DIRTY_TIME) &&
1637             (wbc->sync_mode == WB_SYNC_ALL ||
1638              time_after(jiffies, inode->dirtied_time_when +
1639                         dirtytime_expire_interval * HZ))) {
1640                 trace_writeback_lazytime(inode);
1641                 mark_inode_dirty_sync(inode);
1642         }
1643
1644         /*
1645          * Get and clear the dirty flags from i_state.  This needs to be done
1646          * after calling writepages because some filesystems may redirty the
1647          * inode during writepages due to delalloc.  It also needs to be done
1648          * after handling timestamp expiration, as that may dirty the inode too.
1649          */
1650         spin_lock(&inode->i_lock);
1651         dirty = inode->i_state & I_DIRTY;
1652         inode->i_state &= ~dirty;
1653
1654         /*
1655          * Paired with smp_mb() in __mark_inode_dirty().  This allows
1656          * __mark_inode_dirty() to test i_state without grabbing i_lock -
1657          * either they see the I_DIRTY bits cleared or we see the dirtied
1658          * inode.
1659          *
1660          * I_DIRTY_PAGES is always cleared together above even if @mapping
1661          * still has dirty pages.  The flag is reinstated after smp_mb() if
1662          * necessary.  This guarantees that either __mark_inode_dirty()
1663          * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1664          */
1665         smp_mb();
1666
1667         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1668                 inode->i_state |= I_DIRTY_PAGES;
1669
1670         spin_unlock(&inode->i_lock);
1671
1672         /* Don't write the inode if only I_DIRTY_PAGES was set */
1673         if (dirty & ~I_DIRTY_PAGES) {
1674                 int err = write_inode(inode, wbc);
1675                 if (ret == 0)
1676                         ret = err;
1677         }
1678         trace_writeback_single_inode(inode, wbc, nr_to_write);
1679         return ret;
1680 }
1681
1682 /*
1683  * Write out an inode's dirty data and metadata on-demand, i.e. separately from
1684  * the regular batched writeback done by the flusher threads in
1685  * writeback_sb_inodes().  @wbc controls various aspects of the write, such as
1686  * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE).
1687  *
1688  * To prevent the inode from going away, either the caller must have a reference
1689  * to the inode, or the inode must have I_WILL_FREE or I_FREEING set.
1690  */
1691 static int writeback_single_inode(struct inode *inode,
1692                                   struct writeback_control *wbc)
1693 {
1694         struct bdi_writeback *wb;
1695         int ret = 0;
1696
1697         spin_lock(&inode->i_lock);
1698         if (!atomic_read(&inode->i_count))
1699                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1700         else
1701                 WARN_ON(inode->i_state & I_WILL_FREE);
1702
1703         if (inode->i_state & I_SYNC) {
1704                 /*
1705                  * Writeback is already running on the inode.  For WB_SYNC_NONE,
1706                  * that's enough and we can just return.  For WB_SYNC_ALL, we
1707                  * must wait for the existing writeback to complete, then do
1708                  * writeback again if there's anything left.
1709                  */
1710                 if (wbc->sync_mode != WB_SYNC_ALL)
1711                         goto out;
1712                 __inode_wait_for_writeback(inode);
1713         }
1714         WARN_ON(inode->i_state & I_SYNC);
1715         /*
1716          * If the inode is already fully clean, then there's nothing to do.
1717          *
1718          * For data-integrity syncs we also need to check whether any pages are
1719          * still under writeback, e.g. due to prior WB_SYNC_NONE writeback.  If
1720          * there are any such pages, we'll need to wait for them.
1721          */
1722         if (!(inode->i_state & I_DIRTY_ALL) &&
1723             (wbc->sync_mode != WB_SYNC_ALL ||
1724              !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1725                 goto out;
1726         inode->i_state |= I_SYNC;
1727         wbc_attach_and_unlock_inode(wbc, inode);
1728
1729         ret = __writeback_single_inode(inode, wbc);
1730
1731         wbc_detach_inode(wbc);
1732
1733         wb = inode_to_wb_and_lock_list(inode);
1734         spin_lock(&inode->i_lock);
1735         /*
1736          * If the inode is now fully clean, then it can be safely removed from
1737          * its writeback list (if any).  Otherwise the flusher threads are
1738          * responsible for the writeback lists.
1739          */
1740         if (!(inode->i_state & I_DIRTY_ALL))
1741                 inode_cgwb_move_to_attached(inode, wb);
1742         spin_unlock(&wb->list_lock);
1743         inode_sync_complete(inode);
1744 out:
1745         spin_unlock(&inode->i_lock);
1746         return ret;
1747 }
1748
1749 static long writeback_chunk_size(struct bdi_writeback *wb,
1750                                  struct wb_writeback_work *work)
1751 {
1752         long pages;
1753
1754         /*
1755          * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1756          * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1757          * here avoids calling into writeback_inodes_wb() more than once.
1758          *
1759          * The intended call sequence for WB_SYNC_ALL writeback is:
1760          *
1761          *      wb_writeback()
1762          *          writeback_sb_inodes()       <== called only once
1763          *              write_cache_pages()     <== called once for each inode
1764          *                   (quickly) tag currently dirty pages
1765          *                   (maybe slowly) sync all tagged pages
1766          */
1767         if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1768                 pages = LONG_MAX;
1769         else {
1770                 pages = min(wb->avg_write_bandwidth / 2,
1771                             global_wb_domain.dirty_limit / DIRTY_SCOPE);
1772                 pages = min(pages, work->nr_pages);
1773                 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1774                                    MIN_WRITEBACK_PAGES);
1775         }
1776
1777         return pages;
1778 }
1779
1780 /*
1781  * Write a portion of b_io inodes which belong to @sb.
1782  *
1783  * Return the number of pages and/or inodes written.
1784  *
1785  * NOTE! This is called with wb->list_lock held, and will
1786  * unlock and relock that for each inode it ends up doing
1787  * IO for.
1788  */
1789 static long writeback_sb_inodes(struct super_block *sb,
1790                                 struct bdi_writeback *wb,
1791                                 struct wb_writeback_work *work)
1792 {
1793         struct writeback_control wbc = {
1794                 .sync_mode              = work->sync_mode,
1795                 .tagged_writepages      = work->tagged_writepages,
1796                 .for_kupdate            = work->for_kupdate,
1797                 .for_background         = work->for_background,
1798                 .for_sync               = work->for_sync,
1799                 .range_cyclic           = work->range_cyclic,
1800                 .range_start            = 0,
1801                 .range_end              = LLONG_MAX,
1802         };
1803         unsigned long start_time = jiffies;
1804         long write_chunk;
1805         long wrote = 0;  /* count both pages and inodes */
1806
1807         while (!list_empty(&wb->b_io)) {
1808                 struct inode *inode = wb_inode(wb->b_io.prev);
1809                 struct bdi_writeback *tmp_wb;
1810
1811                 if (inode->i_sb != sb) {
1812                         if (work->sb) {
1813                                 /*
1814                                  * We only want to write back data for this
1815                                  * superblock, move all inodes not belonging
1816                                  * to it back onto the dirty list.
1817                                  */
1818                                 redirty_tail(inode, wb);
1819                                 continue;
1820                         }
1821
1822                         /*
1823                          * The inode belongs to a different superblock.
1824                          * Bounce back to the caller to unpin this and
1825                          * pin the next superblock.
1826                          */
1827                         break;
1828                 }
1829
1830                 /*
1831                  * Don't bother with new inodes or inodes being freed, first
1832                  * kind does not need periodic writeout yet, and for the latter
1833                  * kind writeout is handled by the freer.
1834                  */
1835                 spin_lock(&inode->i_lock);
1836                 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1837                         redirty_tail_locked(inode, wb);
1838                         spin_unlock(&inode->i_lock);
1839                         continue;
1840                 }
1841                 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1842                         /*
1843                          * If this inode is locked for writeback and we are not
1844                          * doing writeback-for-data-integrity, move it to
1845                          * b_more_io so that writeback can proceed with the
1846                          * other inodes on s_io.
1847                          *
1848                          * We'll have another go at writing back this inode
1849                          * when we completed a full scan of b_io.
1850                          */
1851                         spin_unlock(&inode->i_lock);
1852                         requeue_io(inode, wb);
1853                         trace_writeback_sb_inodes_requeue(inode);
1854                         continue;
1855                 }
1856                 spin_unlock(&wb->list_lock);
1857
1858                 /*
1859                  * We already requeued the inode if it had I_SYNC set and we
1860                  * are doing WB_SYNC_NONE writeback. So this catches only the
1861                  * WB_SYNC_ALL case.
1862                  */
1863                 if (inode->i_state & I_SYNC) {
1864                         /* Wait for I_SYNC. This function drops i_lock... */
1865                         inode_sleep_on_writeback(inode);
1866                         /* Inode may be gone, start again */
1867                         spin_lock(&wb->list_lock);
1868                         continue;
1869                 }
1870                 inode->i_state |= I_SYNC;
1871                 wbc_attach_and_unlock_inode(&wbc, inode);
1872
1873                 write_chunk = writeback_chunk_size(wb, work);
1874                 wbc.nr_to_write = write_chunk;
1875                 wbc.pages_skipped = 0;
1876
1877                 /*
1878                  * We use I_SYNC to pin the inode in memory. While it is set
1879                  * evict_inode() will wait so the inode cannot be freed.
1880                  */
1881                 __writeback_single_inode(inode, &wbc);
1882
1883                 wbc_detach_inode(&wbc);
1884                 work->nr_pages -= write_chunk - wbc.nr_to_write;
1885                 wrote += write_chunk - wbc.nr_to_write;
1886
1887                 if (need_resched()) {
1888                         /*
1889                          * We're trying to balance between building up a nice
1890                          * long list of IOs to improve our merge rate, and
1891                          * getting those IOs out quickly for anyone throttling
1892                          * in balance_dirty_pages().  cond_resched() doesn't
1893                          * unplug, so get our IOs out the door before we
1894                          * give up the CPU.
1895                          */
1896                         blk_flush_plug(current);
1897                         cond_resched();
1898                 }
1899
1900                 /*
1901                  * Requeue @inode if still dirty.  Be careful as @inode may
1902                  * have been switched to another wb in the meantime.
1903                  */
1904                 tmp_wb = inode_to_wb_and_lock_list(inode);
1905                 spin_lock(&inode->i_lock);
1906                 if (!(inode->i_state & I_DIRTY_ALL))
1907                         wrote++;
1908                 requeue_inode(inode, tmp_wb, &wbc);
1909                 inode_sync_complete(inode);
1910                 spin_unlock(&inode->i_lock);
1911
1912                 if (unlikely(tmp_wb != wb)) {
1913                         spin_unlock(&tmp_wb->list_lock);
1914                         spin_lock(&wb->list_lock);
1915                 }
1916
1917                 /*
1918                  * bail out to wb_writeback() often enough to check
1919                  * background threshold and other termination conditions.
1920                  */
1921                 if (wrote) {
1922                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1923                                 break;
1924                         if (work->nr_pages <= 0)
1925                                 break;
1926                 }
1927         }
1928         return wrote;
1929 }
1930
1931 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1932                                   struct wb_writeback_work *work)
1933 {
1934         unsigned long start_time = jiffies;
1935         long wrote = 0;
1936
1937         while (!list_empty(&wb->b_io)) {
1938                 struct inode *inode = wb_inode(wb->b_io.prev);
1939                 struct super_block *sb = inode->i_sb;
1940
1941                 if (!trylock_super(sb)) {
1942                         /*
1943                          * trylock_super() may fail consistently due to
1944                          * s_umount being grabbed by someone else. Don't use
1945                          * requeue_io() to avoid busy retrying the inode/sb.
1946                          */
1947                         redirty_tail(inode, wb);
1948                         continue;
1949                 }
1950                 wrote += writeback_sb_inodes(sb, wb, work);
1951                 up_read(&sb->s_umount);
1952
1953                 /* refer to the same tests at the end of writeback_sb_inodes */
1954                 if (wrote) {
1955                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1956                                 break;
1957                         if (work->nr_pages <= 0)
1958                                 break;
1959                 }
1960         }
1961         /* Leave any unwritten inodes on b_io */
1962         return wrote;
1963 }
1964
1965 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1966                                 enum wb_reason reason)
1967 {
1968         struct wb_writeback_work work = {
1969                 .nr_pages       = nr_pages,
1970                 .sync_mode      = WB_SYNC_NONE,
1971                 .range_cyclic   = 1,
1972                 .reason         = reason,
1973         };
1974         struct blk_plug plug;
1975
1976         blk_start_plug(&plug);
1977         spin_lock(&wb->list_lock);
1978         if (list_empty(&wb->b_io))
1979                 queue_io(wb, &work, jiffies);
1980         __writeback_inodes_wb(wb, &work);
1981         spin_unlock(&wb->list_lock);
1982         blk_finish_plug(&plug);
1983
1984         return nr_pages - work.nr_pages;
1985 }
1986
1987 /*
1988  * Explicit flushing or periodic writeback of "old" data.
1989  *
1990  * Define "old": the first time one of an inode's pages is dirtied, we mark the
1991  * dirtying-time in the inode's address_space.  So this periodic writeback code
1992  * just walks the superblock inode list, writing back any inodes which are
1993  * older than a specific point in time.
1994  *
1995  * Try to run once per dirty_writeback_interval.  But if a writeback event
1996  * takes longer than a dirty_writeback_interval interval, then leave a
1997  * one-second gap.
1998  *
1999  * dirtied_before takes precedence over nr_to_write.  So we'll only write back
2000  * all dirty pages if they are all attached to "old" mappings.
2001  */
2002 static long wb_writeback(struct bdi_writeback *wb,
2003                          struct wb_writeback_work *work)
2004 {
2005         long nr_pages = work->nr_pages;
2006         unsigned long dirtied_before = jiffies;
2007         struct inode *inode;
2008         long progress;
2009         struct blk_plug plug;
2010
2011         blk_start_plug(&plug);
2012         spin_lock(&wb->list_lock);
2013         for (;;) {
2014                 /*
2015                  * Stop writeback when nr_pages has been consumed
2016                  */
2017                 if (work->nr_pages <= 0)
2018                         break;
2019
2020                 /*
2021                  * Background writeout and kupdate-style writeback may
2022                  * run forever. Stop them if there is other work to do
2023                  * so that e.g. sync can proceed. They'll be restarted
2024                  * after the other works are all done.
2025                  */
2026                 if ((work->for_background || work->for_kupdate) &&
2027                     !list_empty(&wb->work_list))
2028                         break;
2029
2030                 /*
2031                  * For background writeout, stop when we are below the
2032                  * background dirty threshold
2033                  */
2034                 if (work->for_background && !wb_over_bg_thresh(wb))
2035                         break;
2036
2037                 /*
2038                  * Kupdate and background works are special and we want to
2039                  * include all inodes that need writing. Livelock avoidance is
2040                  * handled by these works yielding to any other work so we are
2041                  * safe.
2042                  */
2043                 if (work->for_kupdate) {
2044                         dirtied_before = jiffies -
2045                                 msecs_to_jiffies(dirty_expire_interval * 10);
2046                 } else if (work->for_background)
2047                         dirtied_before = jiffies;
2048
2049                 trace_writeback_start(wb, work);
2050                 if (list_empty(&wb->b_io))
2051                         queue_io(wb, work, dirtied_before);
2052                 if (work->sb)
2053                         progress = writeback_sb_inodes(work->sb, wb, work);
2054                 else
2055                         progress = __writeback_inodes_wb(wb, work);
2056                 trace_writeback_written(wb, work);
2057
2058                 /*
2059                  * Did we write something? Try for more
2060                  *
2061                  * Dirty inodes are moved to b_io for writeback in batches.
2062                  * The completion of the current batch does not necessarily
2063                  * mean the overall work is done. So we keep looping as long
2064                  * as made some progress on cleaning pages or inodes.
2065                  */
2066                 if (progress)
2067                         continue;
2068                 /*
2069                  * No more inodes for IO, bail
2070                  */
2071                 if (list_empty(&wb->b_more_io))
2072                         break;
2073                 /*
2074                  * Nothing written. Wait for some inode to
2075                  * become available for writeback. Otherwise
2076                  * we'll just busyloop.
2077                  */
2078                 trace_writeback_wait(wb, work);
2079                 inode = wb_inode(wb->b_more_io.prev);
2080                 spin_lock(&inode->i_lock);
2081                 spin_unlock(&wb->list_lock);
2082                 /* This function drops i_lock... */
2083                 inode_sleep_on_writeback(inode);
2084                 spin_lock(&wb->list_lock);
2085         }
2086         spin_unlock(&wb->list_lock);
2087         blk_finish_plug(&plug);
2088
2089         return nr_pages - work->nr_pages;
2090 }
2091
2092 /*
2093  * Return the next wb_writeback_work struct that hasn't been processed yet.
2094  */
2095 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
2096 {
2097         struct wb_writeback_work *work = NULL;
2098
2099         spin_lock_bh(&wb->work_lock);
2100         if (!list_empty(&wb->work_list)) {
2101                 work = list_entry(wb->work_list.next,
2102                                   struct wb_writeback_work, list);
2103                 list_del_init(&work->list);
2104         }
2105         spin_unlock_bh(&wb->work_lock);
2106         return work;
2107 }
2108
2109 static long wb_check_background_flush(struct bdi_writeback *wb)
2110 {
2111         if (wb_over_bg_thresh(wb)) {
2112
2113                 struct wb_writeback_work work = {
2114                         .nr_pages       = LONG_MAX,
2115                         .sync_mode      = WB_SYNC_NONE,
2116                         .for_background = 1,
2117                         .range_cyclic   = 1,
2118                         .reason         = WB_REASON_BACKGROUND,
2119                 };
2120
2121                 return wb_writeback(wb, &work);
2122         }
2123
2124         return 0;
2125 }
2126
2127 static long wb_check_old_data_flush(struct bdi_writeback *wb)
2128 {
2129         unsigned long expired;
2130         long nr_pages;
2131
2132         /*
2133          * When set to zero, disable periodic writeback
2134          */
2135         if (!dirty_writeback_interval)
2136                 return 0;
2137
2138         expired = wb->last_old_flush +
2139                         msecs_to_jiffies(dirty_writeback_interval * 10);
2140         if (time_before(jiffies, expired))
2141                 return 0;
2142
2143         wb->last_old_flush = jiffies;
2144         nr_pages = get_nr_dirty_pages();
2145
2146         if (nr_pages) {
2147                 struct wb_writeback_work work = {
2148                         .nr_pages       = nr_pages,
2149                         .sync_mode      = WB_SYNC_NONE,
2150                         .for_kupdate    = 1,
2151                         .range_cyclic   = 1,
2152                         .reason         = WB_REASON_PERIODIC,
2153                 };
2154
2155                 return wb_writeback(wb, &work);
2156         }
2157
2158         return 0;
2159 }
2160
2161 static long wb_check_start_all(struct bdi_writeback *wb)
2162 {
2163         long nr_pages;
2164
2165         if (!test_bit(WB_start_all, &wb->state))
2166                 return 0;
2167
2168         nr_pages = get_nr_dirty_pages();
2169         if (nr_pages) {
2170                 struct wb_writeback_work work = {
2171                         .nr_pages       = wb_split_bdi_pages(wb, nr_pages),
2172                         .sync_mode      = WB_SYNC_NONE,
2173                         .range_cyclic   = 1,
2174                         .reason         = wb->start_all_reason,
2175                 };
2176
2177                 nr_pages = wb_writeback(wb, &work);
2178         }
2179
2180         clear_bit(WB_start_all, &wb->state);
2181         return nr_pages;
2182 }
2183
2184
2185 /*
2186  * Retrieve work items and do the writeback they describe
2187  */
2188 static long wb_do_writeback(struct bdi_writeback *wb)
2189 {
2190         struct wb_writeback_work *work;
2191         long wrote = 0;
2192
2193         set_bit(WB_writeback_running, &wb->state);
2194         while ((work = get_next_work_item(wb)) != NULL) {
2195                 trace_writeback_exec(wb, work);
2196                 wrote += wb_writeback(wb, work);
2197                 finish_writeback_work(wb, work);
2198         }
2199
2200         /*
2201          * Check for a flush-everything request
2202          */
2203         wrote += wb_check_start_all(wb);
2204
2205         /*
2206          * Check for periodic writeback, kupdated() style
2207          */
2208         wrote += wb_check_old_data_flush(wb);
2209         wrote += wb_check_background_flush(wb);
2210         clear_bit(WB_writeback_running, &wb->state);
2211
2212         return wrote;
2213 }
2214
2215 /*
2216  * Handle writeback of dirty data for the device backed by this bdi. Also
2217  * reschedules periodically and does kupdated style flushing.
2218  */
2219 void wb_workfn(struct work_struct *work)
2220 {
2221         struct bdi_writeback *wb = container_of(to_delayed_work(work),
2222                                                 struct bdi_writeback, dwork);
2223         long pages_written;
2224
2225         set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
2226         current->flags |= PF_SWAPWRITE;
2227
2228         if (likely(!current_is_workqueue_rescuer() ||
2229                    !test_bit(WB_registered, &wb->state))) {
2230                 /*
2231                  * The normal path.  Keep writing back @wb until its
2232                  * work_list is empty.  Note that this path is also taken
2233                  * if @wb is shutting down even when we're running off the
2234                  * rescuer as work_list needs to be drained.
2235                  */
2236                 do {
2237                         pages_written = wb_do_writeback(wb);
2238                         trace_writeback_pages_written(pages_written);
2239                 } while (!list_empty(&wb->work_list));
2240         } else {
2241                 /*
2242                  * bdi_wq can't get enough workers and we're running off
2243                  * the emergency worker.  Don't hog it.  Hopefully, 1024 is
2244                  * enough for efficient IO.
2245                  */
2246                 pages_written = writeback_inodes_wb(wb, 1024,
2247                                                     WB_REASON_FORKER_THREAD);
2248                 trace_writeback_pages_written(pages_written);
2249         }
2250
2251         if (!list_empty(&wb->work_list))
2252                 wb_wakeup(wb);
2253         else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2254                 wb_wakeup_delayed(wb);
2255
2256         current->flags &= ~PF_SWAPWRITE;
2257 }
2258
2259 /*
2260  * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2261  * write back the whole world.
2262  */
2263 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2264                                          enum wb_reason reason)
2265 {
2266         struct bdi_writeback *wb;
2267
2268         if (!bdi_has_dirty_io(bdi))
2269                 return;
2270
2271         list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2272                 wb_start_writeback(wb, reason);
2273 }
2274
2275 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2276                                 enum wb_reason reason)
2277 {
2278         rcu_read_lock();
2279         __wakeup_flusher_threads_bdi(bdi, reason);
2280         rcu_read_unlock();
2281 }
2282
2283 /*
2284  * Wakeup the flusher threads to start writeback of all currently dirty pages
2285  */
2286 void wakeup_flusher_threads(enum wb_reason reason)
2287 {
2288         struct backing_dev_info *bdi;
2289
2290         /*
2291          * If we are expecting writeback progress we must submit plugged IO.
2292          */
2293         if (blk_needs_flush_plug(current))
2294                 blk_schedule_flush_plug(current);
2295
2296         rcu_read_lock();
2297         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2298                 __wakeup_flusher_threads_bdi(bdi, reason);
2299         rcu_read_unlock();
2300 }
2301
2302 /*
2303  * Wake up bdi's periodically to make sure dirtytime inodes gets
2304  * written back periodically.  We deliberately do *not* check the
2305  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2306  * kernel to be constantly waking up once there are any dirtytime
2307  * inodes on the system.  So instead we define a separate delayed work
2308  * function which gets called much more rarely.  (By default, only
2309  * once every 12 hours.)
2310  *
2311  * If there is any other write activity going on in the file system,
2312  * this function won't be necessary.  But if the only thing that has
2313  * happened on the file system is a dirtytime inode caused by an atime
2314  * update, we need this infrastructure below to make sure that inode
2315  * eventually gets pushed out to disk.
2316  */
2317 static void wakeup_dirtytime_writeback(struct work_struct *w);
2318 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2319
2320 static void wakeup_dirtytime_writeback(struct work_struct *w)
2321 {
2322         struct backing_dev_info *bdi;
2323
2324         rcu_read_lock();
2325         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2326                 struct bdi_writeback *wb;
2327
2328                 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2329                         if (!list_empty(&wb->b_dirty_time))
2330                                 wb_wakeup(wb);
2331         }
2332         rcu_read_unlock();
2333         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2334 }
2335
2336 static int __init start_dirtytime_writeback(void)
2337 {
2338         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2339         return 0;
2340 }
2341 __initcall(start_dirtytime_writeback);
2342
2343 int dirtytime_interval_handler(struct ctl_table *table, int write,
2344                                void *buffer, size_t *lenp, loff_t *ppos)
2345 {
2346         int ret;
2347
2348         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2349         if (ret == 0 && write)
2350                 mod_delayed_work(system_wq, &dirtytime_work, 0);
2351         return ret;
2352 }
2353
2354 /**
2355  * __mark_inode_dirty - internal function to mark an inode dirty
2356  *
2357  * @inode: inode to mark
2358  * @flags: what kind of dirty, e.g. I_DIRTY_SYNC.  This can be a combination of
2359  *         multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined
2360  *         with I_DIRTY_PAGES.
2361  *
2362  * Mark an inode as dirty.  We notify the filesystem, then update the inode's
2363  * dirty flags.  Then, if needed we add the inode to the appropriate dirty list.
2364  *
2365  * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync()
2366  * instead of calling this directly.
2367  *
2368  * CAREFUL!  We only add the inode to the dirty list if it is hashed or if it
2369  * refers to a blockdev.  Unhashed inodes will never be added to the dirty list
2370  * even if they are later hashed, as they will have been marked dirty already.
2371  *
2372  * In short, ensure you hash any inodes _before_ you start marking them dirty.
2373  *
2374  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2375  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2376  * the kernel-internal blockdev inode represents the dirtying time of the
2377  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2378  * page->mapping->host, so the page-dirtying time is recorded in the internal
2379  * blockdev inode.
2380  */
2381 void __mark_inode_dirty(struct inode *inode, int flags)
2382 {
2383         struct super_block *sb = inode->i_sb;
2384         int dirtytime = 0;
2385
2386         trace_writeback_mark_inode_dirty(inode, flags);
2387
2388         if (flags & I_DIRTY_INODE) {
2389                 /*
2390                  * Notify the filesystem about the inode being dirtied, so that
2391                  * (if needed) it can update on-disk fields and journal the
2392                  * inode.  This is only needed when the inode itself is being
2393                  * dirtied now.  I.e. it's only needed for I_DIRTY_INODE, not
2394                  * for just I_DIRTY_PAGES or I_DIRTY_TIME.
2395                  */
2396                 trace_writeback_dirty_inode_start(inode, flags);
2397                 if (sb->s_op->dirty_inode)
2398                         sb->s_op->dirty_inode(inode, flags & I_DIRTY_INODE);
2399                 trace_writeback_dirty_inode(inode, flags);
2400
2401                 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2402                 flags &= ~I_DIRTY_TIME;
2403         } else {
2404                 /*
2405                  * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing.
2406                  * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME
2407                  * in one call to __mark_inode_dirty().)
2408                  */
2409                 dirtytime = flags & I_DIRTY_TIME;
2410                 WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME);
2411         }
2412
2413         /*
2414          * Paired with smp_mb() in __writeback_single_inode() for the
2415          * following lockless i_state test.  See there for details.
2416          */
2417         smp_mb();
2418
2419         if (((inode->i_state & flags) == flags) ||
2420             (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2421                 return;
2422
2423         spin_lock(&inode->i_lock);
2424         if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2425                 goto out_unlock_inode;
2426         if ((inode->i_state & flags) != flags) {
2427                 const int was_dirty = inode->i_state & I_DIRTY;
2428
2429                 inode_attach_wb(inode, NULL);
2430
2431                 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2432                 if (flags & I_DIRTY_INODE)
2433                         inode->i_state &= ~I_DIRTY_TIME;
2434                 inode->i_state |= flags;
2435
2436                 /*
2437                  * If the inode is queued for writeback by flush worker, just
2438                  * update its dirty state. Once the flush worker is done with
2439                  * the inode it will place it on the appropriate superblock
2440                  * list, based upon its state.
2441                  */
2442                 if (inode->i_state & I_SYNC_QUEUED)
2443                         goto out_unlock_inode;
2444
2445                 /*
2446                  * Only add valid (hashed) inodes to the superblock's
2447                  * dirty list.  Add blockdev inodes as well.
2448                  */
2449                 if (!S_ISBLK(inode->i_mode)) {
2450                         if (inode_unhashed(inode))
2451                                 goto out_unlock_inode;
2452                 }
2453                 if (inode->i_state & I_FREEING)
2454                         goto out_unlock_inode;
2455
2456                 /*
2457                  * If the inode was already on b_dirty/b_io/b_more_io, don't
2458                  * reposition it (that would break b_dirty time-ordering).
2459                  */
2460                 if (!was_dirty) {
2461                         struct bdi_writeback *wb;
2462                         struct list_head *dirty_list;
2463                         bool wakeup_bdi = false;
2464
2465                         wb = locked_inode_to_wb_and_lock_list(inode);
2466
2467                         inode->dirtied_when = jiffies;
2468                         if (dirtytime)
2469                                 inode->dirtied_time_when = jiffies;
2470
2471                         if (inode->i_state & I_DIRTY)
2472                                 dirty_list = &wb->b_dirty;
2473                         else
2474                                 dirty_list = &wb->b_dirty_time;
2475
2476                         wakeup_bdi = inode_io_list_move_locked(inode, wb,
2477                                                                dirty_list);
2478
2479                         spin_unlock(&wb->list_lock);
2480                         trace_writeback_dirty_inode_enqueue(inode);
2481
2482                         /*
2483                          * If this is the first dirty inode for this bdi,
2484                          * we have to wake-up the corresponding bdi thread
2485                          * to make sure background write-back happens
2486                          * later.
2487                          */
2488                         if (wakeup_bdi &&
2489                             (wb->bdi->capabilities & BDI_CAP_WRITEBACK))
2490                                 wb_wakeup_delayed(wb);
2491                         return;
2492                 }
2493         }
2494 out_unlock_inode:
2495         spin_unlock(&inode->i_lock);
2496 }
2497 EXPORT_SYMBOL(__mark_inode_dirty);
2498
2499 /*
2500  * The @s_sync_lock is used to serialise concurrent sync operations
2501  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2502  * Concurrent callers will block on the s_sync_lock rather than doing contending
2503  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2504  * has been issued up to the time this function is enter is guaranteed to be
2505  * completed by the time we have gained the lock and waited for all IO that is
2506  * in progress regardless of the order callers are granted the lock.
2507  */
2508 static void wait_sb_inodes(struct super_block *sb)
2509 {
2510         LIST_HEAD(sync_list);
2511
2512         /*
2513          * We need to be protected against the filesystem going from
2514          * r/o to r/w or vice versa.
2515          */
2516         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2517
2518         mutex_lock(&sb->s_sync_lock);
2519
2520         /*
2521          * Splice the writeback list onto a temporary list to avoid waiting on
2522          * inodes that have started writeback after this point.
2523          *
2524          * Use rcu_read_lock() to keep the inodes around until we have a
2525          * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2526          * the local list because inodes can be dropped from either by writeback
2527          * completion.
2528          */
2529         rcu_read_lock();
2530         spin_lock_irq(&sb->s_inode_wblist_lock);
2531         list_splice_init(&sb->s_inodes_wb, &sync_list);
2532
2533         /*
2534          * Data integrity sync. Must wait for all pages under writeback, because
2535          * there may have been pages dirtied before our sync call, but which had
2536          * writeout started before we write it out.  In which case, the inode
2537          * may not be on the dirty list, but we still have to wait for that
2538          * writeout.
2539          */
2540         while (!list_empty(&sync_list)) {
2541                 struct inode *inode = list_first_entry(&sync_list, struct inode,
2542                                                        i_wb_list);
2543                 struct address_space *mapping = inode->i_mapping;
2544
2545                 /*
2546                  * Move each inode back to the wb list before we drop the lock
2547                  * to preserve consistency between i_wb_list and the mapping
2548                  * writeback tag. Writeback completion is responsible to remove
2549                  * the inode from either list once the writeback tag is cleared.
2550                  */
2551                 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2552
2553                 /*
2554                  * The mapping can appear untagged while still on-list since we
2555                  * do not have the mapping lock. Skip it here, wb completion
2556                  * will remove it.
2557                  */
2558                 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2559                         continue;
2560
2561                 spin_unlock_irq(&sb->s_inode_wblist_lock);
2562
2563                 spin_lock(&inode->i_lock);
2564                 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2565                         spin_unlock(&inode->i_lock);
2566
2567                         spin_lock_irq(&sb->s_inode_wblist_lock);
2568                         continue;
2569                 }
2570                 __iget(inode);
2571                 spin_unlock(&inode->i_lock);
2572                 rcu_read_unlock();
2573
2574                 /*
2575                  * We keep the error status of individual mapping so that
2576                  * applications can catch the writeback error using fsync(2).
2577                  * See filemap_fdatawait_keep_errors() for details.
2578                  */
2579                 filemap_fdatawait_keep_errors(mapping);
2580
2581                 cond_resched();
2582
2583                 iput(inode);
2584
2585                 rcu_read_lock();
2586                 spin_lock_irq(&sb->s_inode_wblist_lock);
2587         }
2588         spin_unlock_irq(&sb->s_inode_wblist_lock);
2589         rcu_read_unlock();
2590         mutex_unlock(&sb->s_sync_lock);
2591 }
2592
2593 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2594                                      enum wb_reason reason, bool skip_if_busy)
2595 {
2596         struct backing_dev_info *bdi = sb->s_bdi;
2597         DEFINE_WB_COMPLETION(done, bdi);
2598         struct wb_writeback_work work = {
2599                 .sb                     = sb,
2600                 .sync_mode              = WB_SYNC_NONE,
2601                 .tagged_writepages      = 1,
2602                 .done                   = &done,
2603                 .nr_pages               = nr,
2604                 .reason                 = reason,
2605         };
2606
2607         if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2608                 return;
2609         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2610
2611         bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2612         wb_wait_for_completion(&done);
2613 }
2614
2615 /**
2616  * writeback_inodes_sb_nr -     writeback dirty inodes from given super_block
2617  * @sb: the superblock
2618  * @nr: the number of pages to write
2619  * @reason: reason why some writeback work initiated
2620  *
2621  * Start writeback on some inodes on this super_block. No guarantees are made
2622  * on how many (if any) will be written, and this function does not wait
2623  * for IO completion of submitted IO.
2624  */
2625 void writeback_inodes_sb_nr(struct super_block *sb,
2626                             unsigned long nr,
2627                             enum wb_reason reason)
2628 {
2629         __writeback_inodes_sb_nr(sb, nr, reason, false);
2630 }
2631 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2632
2633 /**
2634  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
2635  * @sb: the superblock
2636  * @reason: reason why some writeback work was initiated
2637  *
2638  * Start writeback on some inodes on this super_block. No guarantees are made
2639  * on how many (if any) will be written, and this function does not wait
2640  * for IO completion of submitted IO.
2641  */
2642 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2643 {
2644         return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2645 }
2646 EXPORT_SYMBOL(writeback_inodes_sb);
2647
2648 /**
2649  * try_to_writeback_inodes_sb - try to start writeback if none underway
2650  * @sb: the superblock
2651  * @reason: reason why some writeback work was initiated
2652  *
2653  * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2654  */
2655 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2656 {
2657         if (!down_read_trylock(&sb->s_umount))
2658                 return;
2659
2660         __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2661         up_read(&sb->s_umount);
2662 }
2663 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2664
2665 /**
2666  * sync_inodes_sb       -       sync sb inode pages
2667  * @sb: the superblock
2668  *
2669  * This function writes and waits on any dirty inode belonging to this
2670  * super_block.
2671  */
2672 void sync_inodes_sb(struct super_block *sb)
2673 {
2674         struct backing_dev_info *bdi = sb->s_bdi;
2675         DEFINE_WB_COMPLETION(done, bdi);
2676         struct wb_writeback_work work = {
2677                 .sb             = sb,
2678                 .sync_mode      = WB_SYNC_ALL,
2679                 .nr_pages       = LONG_MAX,
2680                 .range_cyclic   = 0,
2681                 .done           = &done,
2682                 .reason         = WB_REASON_SYNC,
2683                 .for_sync       = 1,
2684         };
2685
2686         /*
2687          * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2688          * inodes under writeback and I_DIRTY_TIME inodes ignored by
2689          * bdi_has_dirty() need to be written out too.
2690          */
2691         if (bdi == &noop_backing_dev_info)
2692                 return;
2693         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2694
2695         /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2696         bdi_down_write_wb_switch_rwsem(bdi);
2697         bdi_split_work_to_wbs(bdi, &work, false);
2698         wb_wait_for_completion(&done);
2699         bdi_up_write_wb_switch_rwsem(bdi);
2700
2701         wait_sb_inodes(sb);
2702 }
2703 EXPORT_SYMBOL(sync_inodes_sb);
2704
2705 /**
2706  * write_inode_now      -       write an inode to disk
2707  * @inode: inode to write to disk
2708  * @sync: whether the write should be synchronous or not
2709  *
2710  * This function commits an inode to disk immediately if it is dirty. This is
2711  * primarily needed by knfsd.
2712  *
2713  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2714  */
2715 int write_inode_now(struct inode *inode, int sync)
2716 {
2717         struct writeback_control wbc = {
2718                 .nr_to_write = LONG_MAX,
2719                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2720                 .range_start = 0,
2721                 .range_end = LLONG_MAX,
2722         };
2723
2724         if (!mapping_can_writeback(inode->i_mapping))
2725                 wbc.nr_to_write = 0;
2726
2727         might_sleep();
2728         return writeback_single_inode(inode, &wbc);
2729 }
2730 EXPORT_SYMBOL(write_inode_now);
2731
2732 /**
2733  * sync_inode_metadata - write an inode to disk
2734  * @inode: the inode to sync
2735  * @wait: wait for I/O to complete.
2736  *
2737  * Write an inode to disk and adjust its dirty state after completion.
2738  *
2739  * Note: only writes the actual inode, no associated data or other metadata.
2740  */
2741 int sync_inode_metadata(struct inode *inode, int wait)
2742 {
2743         struct writeback_control wbc = {
2744                 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2745                 .nr_to_write = 0, /* metadata-only */
2746         };
2747
2748         return writeback_single_inode(inode, &wbc);
2749 }
2750 EXPORT_SYMBOL(sync_inode_metadata);