Merge tag 'f2fs-for-5.15-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/jaegeu...
[linux-2.6-microblaze.git] / fs / f2fs / file.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/file.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/stat.h>
11 #include <linux/buffer_head.h>
12 #include <linux/writeback.h>
13 #include <linux/blkdev.h>
14 #include <linux/falloc.h>
15 #include <linux/types.h>
16 #include <linux/compat.h>
17 #include <linux/uaccess.h>
18 #include <linux/mount.h>
19 #include <linux/pagevec.h>
20 #include <linux/uio.h>
21 #include <linux/uuid.h>
22 #include <linux/file.h>
23 #include <linux/nls.h>
24 #include <linux/sched/signal.h>
25 #include <linux/fileattr.h>
26 #include <linux/fadvise.h>
27
28 #include "f2fs.h"
29 #include "node.h"
30 #include "segment.h"
31 #include "xattr.h"
32 #include "acl.h"
33 #include "gc.h"
34 #include "iostat.h"
35 #include <trace/events/f2fs.h>
36 #include <uapi/linux/f2fs.h>
37
38 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
39 {
40         struct inode *inode = file_inode(vmf->vma->vm_file);
41         vm_fault_t ret;
42
43         ret = filemap_fault(vmf);
44         if (!ret)
45                 f2fs_update_iostat(F2FS_I_SB(inode), APP_MAPPED_READ_IO,
46                                                         F2FS_BLKSIZE);
47
48         trace_f2fs_filemap_fault(inode, vmf->pgoff, (unsigned long)ret);
49
50         return ret;
51 }
52
53 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
54 {
55         struct page *page = vmf->page;
56         struct inode *inode = file_inode(vmf->vma->vm_file);
57         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
58         struct dnode_of_data dn;
59         bool need_alloc = true;
60         int err = 0;
61
62         if (unlikely(IS_IMMUTABLE(inode)))
63                 return VM_FAULT_SIGBUS;
64
65         if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
66                 return VM_FAULT_SIGBUS;
67
68         if (unlikely(f2fs_cp_error(sbi))) {
69                 err = -EIO;
70                 goto err;
71         }
72
73         if (!f2fs_is_checkpoint_ready(sbi)) {
74                 err = -ENOSPC;
75                 goto err;
76         }
77
78         err = f2fs_convert_inline_inode(inode);
79         if (err)
80                 goto err;
81
82 #ifdef CONFIG_F2FS_FS_COMPRESSION
83         if (f2fs_compressed_file(inode)) {
84                 int ret = f2fs_is_compressed_cluster(inode, page->index);
85
86                 if (ret < 0) {
87                         err = ret;
88                         goto err;
89                 } else if (ret) {
90                         need_alloc = false;
91                 }
92         }
93 #endif
94         /* should do out of any locked page */
95         if (need_alloc)
96                 f2fs_balance_fs(sbi, true);
97
98         sb_start_pagefault(inode->i_sb);
99
100         f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
101
102         file_update_time(vmf->vma->vm_file);
103         filemap_invalidate_lock_shared(inode->i_mapping);
104         lock_page(page);
105         if (unlikely(page->mapping != inode->i_mapping ||
106                         page_offset(page) > i_size_read(inode) ||
107                         !PageUptodate(page))) {
108                 unlock_page(page);
109                 err = -EFAULT;
110                 goto out_sem;
111         }
112
113         if (need_alloc) {
114                 /* block allocation */
115                 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true);
116                 set_new_dnode(&dn, inode, NULL, NULL, 0);
117                 err = f2fs_get_block(&dn, page->index);
118                 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false);
119         }
120
121 #ifdef CONFIG_F2FS_FS_COMPRESSION
122         if (!need_alloc) {
123                 set_new_dnode(&dn, inode, NULL, NULL, 0);
124                 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
125                 f2fs_put_dnode(&dn);
126         }
127 #endif
128         if (err) {
129                 unlock_page(page);
130                 goto out_sem;
131         }
132
133         f2fs_wait_on_page_writeback(page, DATA, false, true);
134
135         /* wait for GCed page writeback via META_MAPPING */
136         f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
137
138         /*
139          * check to see if the page is mapped already (no holes)
140          */
141         if (PageMappedToDisk(page))
142                 goto out_sem;
143
144         /* page is wholly or partially inside EOF */
145         if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
146                                                 i_size_read(inode)) {
147                 loff_t offset;
148
149                 offset = i_size_read(inode) & ~PAGE_MASK;
150                 zero_user_segment(page, offset, PAGE_SIZE);
151         }
152         set_page_dirty(page);
153         if (!PageUptodate(page))
154                 SetPageUptodate(page);
155
156         f2fs_update_iostat(sbi, APP_MAPPED_IO, F2FS_BLKSIZE);
157         f2fs_update_time(sbi, REQ_TIME);
158
159         trace_f2fs_vm_page_mkwrite(page, DATA);
160 out_sem:
161         filemap_invalidate_unlock_shared(inode->i_mapping);
162
163         sb_end_pagefault(inode->i_sb);
164 err:
165         return block_page_mkwrite_return(err);
166 }
167
168 static const struct vm_operations_struct f2fs_file_vm_ops = {
169         .fault          = f2fs_filemap_fault,
170         .map_pages      = filemap_map_pages,
171         .page_mkwrite   = f2fs_vm_page_mkwrite,
172 };
173
174 static int get_parent_ino(struct inode *inode, nid_t *pino)
175 {
176         struct dentry *dentry;
177
178         /*
179          * Make sure to get the non-deleted alias.  The alias associated with
180          * the open file descriptor being fsync()'ed may be deleted already.
181          */
182         dentry = d_find_alias(inode);
183         if (!dentry)
184                 return 0;
185
186         *pino = parent_ino(dentry);
187         dput(dentry);
188         return 1;
189 }
190
191 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
192 {
193         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
194         enum cp_reason_type cp_reason = CP_NO_NEEDED;
195
196         if (!S_ISREG(inode->i_mode))
197                 cp_reason = CP_NON_REGULAR;
198         else if (f2fs_compressed_file(inode))
199                 cp_reason = CP_COMPRESSED;
200         else if (inode->i_nlink != 1)
201                 cp_reason = CP_HARDLINK;
202         else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
203                 cp_reason = CP_SB_NEED_CP;
204         else if (file_wrong_pino(inode))
205                 cp_reason = CP_WRONG_PINO;
206         else if (!f2fs_space_for_roll_forward(sbi))
207                 cp_reason = CP_NO_SPC_ROLL;
208         else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
209                 cp_reason = CP_NODE_NEED_CP;
210         else if (test_opt(sbi, FASTBOOT))
211                 cp_reason = CP_FASTBOOT_MODE;
212         else if (F2FS_OPTION(sbi).active_logs == 2)
213                 cp_reason = CP_SPEC_LOG_NUM;
214         else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
215                 f2fs_need_dentry_mark(sbi, inode->i_ino) &&
216                 f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
217                                                         TRANS_DIR_INO))
218                 cp_reason = CP_RECOVER_DIR;
219
220         return cp_reason;
221 }
222
223 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
224 {
225         struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
226         bool ret = false;
227         /* But we need to avoid that there are some inode updates */
228         if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino))
229                 ret = true;
230         f2fs_put_page(i, 0);
231         return ret;
232 }
233
234 static void try_to_fix_pino(struct inode *inode)
235 {
236         struct f2fs_inode_info *fi = F2FS_I(inode);
237         nid_t pino;
238
239         down_write(&fi->i_sem);
240         if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
241                         get_parent_ino(inode, &pino)) {
242                 f2fs_i_pino_write(inode, pino);
243                 file_got_pino(inode);
244         }
245         up_write(&fi->i_sem);
246 }
247
248 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
249                                                 int datasync, bool atomic)
250 {
251         struct inode *inode = file->f_mapping->host;
252         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
253         nid_t ino = inode->i_ino;
254         int ret = 0;
255         enum cp_reason_type cp_reason = 0;
256         struct writeback_control wbc = {
257                 .sync_mode = WB_SYNC_ALL,
258                 .nr_to_write = LONG_MAX,
259                 .for_reclaim = 0,
260         };
261         unsigned int seq_id = 0;
262
263         if (unlikely(f2fs_readonly(inode->i_sb)))
264                 return 0;
265
266         trace_f2fs_sync_file_enter(inode);
267
268         if (S_ISDIR(inode->i_mode))
269                 goto go_write;
270
271         /* if fdatasync is triggered, let's do in-place-update */
272         if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
273                 set_inode_flag(inode, FI_NEED_IPU);
274         ret = file_write_and_wait_range(file, start, end);
275         clear_inode_flag(inode, FI_NEED_IPU);
276
277         if (ret || is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
278                 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
279                 return ret;
280         }
281
282         /* if the inode is dirty, let's recover all the time */
283         if (!f2fs_skip_inode_update(inode, datasync)) {
284                 f2fs_write_inode(inode, NULL);
285                 goto go_write;
286         }
287
288         /*
289          * if there is no written data, don't waste time to write recovery info.
290          */
291         if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
292                         !f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
293
294                 /* it may call write_inode just prior to fsync */
295                 if (need_inode_page_update(sbi, ino))
296                         goto go_write;
297
298                 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
299                                 f2fs_exist_written_data(sbi, ino, UPDATE_INO))
300                         goto flush_out;
301                 goto out;
302         } else {
303                 /*
304                  * for OPU case, during fsync(), node can be persisted before
305                  * data when lower device doesn't support write barrier, result
306                  * in data corruption after SPO.
307                  * So for strict fsync mode, force to use atomic write sematics
308                  * to keep write order in between data/node and last node to
309                  * avoid potential data corruption.
310                  */
311                 if (F2FS_OPTION(sbi).fsync_mode ==
312                                 FSYNC_MODE_STRICT && !atomic)
313                         atomic = true;
314         }
315 go_write:
316         /*
317          * Both of fdatasync() and fsync() are able to be recovered from
318          * sudden-power-off.
319          */
320         down_read(&F2FS_I(inode)->i_sem);
321         cp_reason = need_do_checkpoint(inode);
322         up_read(&F2FS_I(inode)->i_sem);
323
324         if (cp_reason) {
325                 /* all the dirty node pages should be flushed for POR */
326                 ret = f2fs_sync_fs(inode->i_sb, 1);
327
328                 /*
329                  * We've secured consistency through sync_fs. Following pino
330                  * will be used only for fsynced inodes after checkpoint.
331                  */
332                 try_to_fix_pino(inode);
333                 clear_inode_flag(inode, FI_APPEND_WRITE);
334                 clear_inode_flag(inode, FI_UPDATE_WRITE);
335                 goto out;
336         }
337 sync_nodes:
338         atomic_inc(&sbi->wb_sync_req[NODE]);
339         ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id);
340         atomic_dec(&sbi->wb_sync_req[NODE]);
341         if (ret)
342                 goto out;
343
344         /* if cp_error was enabled, we should avoid infinite loop */
345         if (unlikely(f2fs_cp_error(sbi))) {
346                 ret = -EIO;
347                 goto out;
348         }
349
350         if (f2fs_need_inode_block_update(sbi, ino)) {
351                 f2fs_mark_inode_dirty_sync(inode, true);
352                 f2fs_write_inode(inode, NULL);
353                 goto sync_nodes;
354         }
355
356         /*
357          * If it's atomic_write, it's just fine to keep write ordering. So
358          * here we don't need to wait for node write completion, since we use
359          * node chain which serializes node blocks. If one of node writes are
360          * reordered, we can see simply broken chain, resulting in stopping
361          * roll-forward recovery. It means we'll recover all or none node blocks
362          * given fsync mark.
363          */
364         if (!atomic) {
365                 ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id);
366                 if (ret)
367                         goto out;
368         }
369
370         /* once recovery info is written, don't need to tack this */
371         f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
372         clear_inode_flag(inode, FI_APPEND_WRITE);
373 flush_out:
374         if (!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER)
375                 ret = f2fs_issue_flush(sbi, inode->i_ino);
376         if (!ret) {
377                 f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
378                 clear_inode_flag(inode, FI_UPDATE_WRITE);
379                 f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
380         }
381         f2fs_update_time(sbi, REQ_TIME);
382 out:
383         trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
384         return ret;
385 }
386
387 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
388 {
389         if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
390                 return -EIO;
391         return f2fs_do_sync_file(file, start, end, datasync, false);
392 }
393
394 static bool __found_offset(struct address_space *mapping, block_t blkaddr,
395                                 pgoff_t index, int whence)
396 {
397         switch (whence) {
398         case SEEK_DATA:
399                 if (__is_valid_data_blkaddr(blkaddr))
400                         return true;
401                 if (blkaddr == NEW_ADDR &&
402                     xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY))
403                         return true;
404                 break;
405         case SEEK_HOLE:
406                 if (blkaddr == NULL_ADDR)
407                         return true;
408                 break;
409         }
410         return false;
411 }
412
413 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
414 {
415         struct inode *inode = file->f_mapping->host;
416         loff_t maxbytes = inode->i_sb->s_maxbytes;
417         struct dnode_of_data dn;
418         pgoff_t pgofs, end_offset;
419         loff_t data_ofs = offset;
420         loff_t isize;
421         int err = 0;
422
423         inode_lock(inode);
424
425         isize = i_size_read(inode);
426         if (offset >= isize)
427                 goto fail;
428
429         /* handle inline data case */
430         if (f2fs_has_inline_data(inode)) {
431                 if (whence == SEEK_HOLE) {
432                         data_ofs = isize;
433                         goto found;
434                 } else if (whence == SEEK_DATA) {
435                         data_ofs = offset;
436                         goto found;
437                 }
438         }
439
440         pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
441
442         for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
443                 set_new_dnode(&dn, inode, NULL, NULL, 0);
444                 err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
445                 if (err && err != -ENOENT) {
446                         goto fail;
447                 } else if (err == -ENOENT) {
448                         /* direct node does not exists */
449                         if (whence == SEEK_DATA) {
450                                 pgofs = f2fs_get_next_page_offset(&dn, pgofs);
451                                 continue;
452                         } else {
453                                 goto found;
454                         }
455                 }
456
457                 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
458
459                 /* find data/hole in dnode block */
460                 for (; dn.ofs_in_node < end_offset;
461                                 dn.ofs_in_node++, pgofs++,
462                                 data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
463                         block_t blkaddr;
464
465                         blkaddr = f2fs_data_blkaddr(&dn);
466
467                         if (__is_valid_data_blkaddr(blkaddr) &&
468                                 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
469                                         blkaddr, DATA_GENERIC_ENHANCE)) {
470                                 f2fs_put_dnode(&dn);
471                                 goto fail;
472                         }
473
474                         if (__found_offset(file->f_mapping, blkaddr,
475                                                         pgofs, whence)) {
476                                 f2fs_put_dnode(&dn);
477                                 goto found;
478                         }
479                 }
480                 f2fs_put_dnode(&dn);
481         }
482
483         if (whence == SEEK_DATA)
484                 goto fail;
485 found:
486         if (whence == SEEK_HOLE && data_ofs > isize)
487                 data_ofs = isize;
488         inode_unlock(inode);
489         return vfs_setpos(file, data_ofs, maxbytes);
490 fail:
491         inode_unlock(inode);
492         return -ENXIO;
493 }
494
495 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
496 {
497         struct inode *inode = file->f_mapping->host;
498         loff_t maxbytes = inode->i_sb->s_maxbytes;
499
500         if (f2fs_compressed_file(inode))
501                 maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
502
503         switch (whence) {
504         case SEEK_SET:
505         case SEEK_CUR:
506         case SEEK_END:
507                 return generic_file_llseek_size(file, offset, whence,
508                                                 maxbytes, i_size_read(inode));
509         case SEEK_DATA:
510         case SEEK_HOLE:
511                 if (offset < 0)
512                         return -ENXIO;
513                 return f2fs_seek_block(file, offset, whence);
514         }
515
516         return -EINVAL;
517 }
518
519 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
520 {
521         struct inode *inode = file_inode(file);
522
523         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
524                 return -EIO;
525
526         if (!f2fs_is_compress_backend_ready(inode))
527                 return -EOPNOTSUPP;
528
529         file_accessed(file);
530         vma->vm_ops = &f2fs_file_vm_ops;
531         set_inode_flag(inode, FI_MMAP_FILE);
532         return 0;
533 }
534
535 static int f2fs_file_open(struct inode *inode, struct file *filp)
536 {
537         int err = fscrypt_file_open(inode, filp);
538
539         if (err)
540                 return err;
541
542         if (!f2fs_is_compress_backend_ready(inode))
543                 return -EOPNOTSUPP;
544
545         err = fsverity_file_open(inode, filp);
546         if (err)
547                 return err;
548
549         filp->f_mode |= FMODE_NOWAIT;
550
551         return dquot_file_open(inode, filp);
552 }
553
554 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
555 {
556         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
557         struct f2fs_node *raw_node;
558         int nr_free = 0, ofs = dn->ofs_in_node, len = count;
559         __le32 *addr;
560         int base = 0;
561         bool compressed_cluster = false;
562         int cluster_index = 0, valid_blocks = 0;
563         int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
564         bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks);
565
566         if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
567                 base = get_extra_isize(dn->inode);
568
569         raw_node = F2FS_NODE(dn->node_page);
570         addr = blkaddr_in_node(raw_node) + base + ofs;
571
572         /* Assumption: truncateion starts with cluster */
573         for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) {
574                 block_t blkaddr = le32_to_cpu(*addr);
575
576                 if (f2fs_compressed_file(dn->inode) &&
577                                         !(cluster_index & (cluster_size - 1))) {
578                         if (compressed_cluster)
579                                 f2fs_i_compr_blocks_update(dn->inode,
580                                                         valid_blocks, false);
581                         compressed_cluster = (blkaddr == COMPRESS_ADDR);
582                         valid_blocks = 0;
583                 }
584
585                 if (blkaddr == NULL_ADDR)
586                         continue;
587
588                 dn->data_blkaddr = NULL_ADDR;
589                 f2fs_set_data_blkaddr(dn);
590
591                 if (__is_valid_data_blkaddr(blkaddr)) {
592                         if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
593                                         DATA_GENERIC_ENHANCE))
594                                 continue;
595                         if (compressed_cluster)
596                                 valid_blocks++;
597                 }
598
599                 if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
600                         clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
601
602                 f2fs_invalidate_blocks(sbi, blkaddr);
603
604                 if (!released || blkaddr != COMPRESS_ADDR)
605                         nr_free++;
606         }
607
608         if (compressed_cluster)
609                 f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false);
610
611         if (nr_free) {
612                 pgoff_t fofs;
613                 /*
614                  * once we invalidate valid blkaddr in range [ofs, ofs + count],
615                  * we will invalidate all blkaddr in the whole range.
616                  */
617                 fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page),
618                                                         dn->inode) + ofs;
619                 f2fs_update_extent_cache_range(dn, fofs, 0, len);
620                 dec_valid_block_count(sbi, dn->inode, nr_free);
621         }
622         dn->ofs_in_node = ofs;
623
624         f2fs_update_time(sbi, REQ_TIME);
625         trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
626                                          dn->ofs_in_node, nr_free);
627 }
628
629 void f2fs_truncate_data_blocks(struct dnode_of_data *dn)
630 {
631         f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode));
632 }
633
634 static int truncate_partial_data_page(struct inode *inode, u64 from,
635                                                                 bool cache_only)
636 {
637         loff_t offset = from & (PAGE_SIZE - 1);
638         pgoff_t index = from >> PAGE_SHIFT;
639         struct address_space *mapping = inode->i_mapping;
640         struct page *page;
641
642         if (!offset && !cache_only)
643                 return 0;
644
645         if (cache_only) {
646                 page = find_lock_page(mapping, index);
647                 if (page && PageUptodate(page))
648                         goto truncate_out;
649                 f2fs_put_page(page, 1);
650                 return 0;
651         }
652
653         page = f2fs_get_lock_data_page(inode, index, true);
654         if (IS_ERR(page))
655                 return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
656 truncate_out:
657         f2fs_wait_on_page_writeback(page, DATA, true, true);
658         zero_user(page, offset, PAGE_SIZE - offset);
659
660         /* An encrypted inode should have a key and truncate the last page. */
661         f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode));
662         if (!cache_only)
663                 set_page_dirty(page);
664         f2fs_put_page(page, 1);
665         return 0;
666 }
667
668 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock)
669 {
670         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
671         struct dnode_of_data dn;
672         pgoff_t free_from;
673         int count = 0, err = 0;
674         struct page *ipage;
675         bool truncate_page = false;
676
677         trace_f2fs_truncate_blocks_enter(inode, from);
678
679         free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
680
681         if (free_from >= max_file_blocks(inode))
682                 goto free_partial;
683
684         if (lock)
685                 f2fs_lock_op(sbi);
686
687         ipage = f2fs_get_node_page(sbi, inode->i_ino);
688         if (IS_ERR(ipage)) {
689                 err = PTR_ERR(ipage);
690                 goto out;
691         }
692
693         if (f2fs_has_inline_data(inode)) {
694                 f2fs_truncate_inline_inode(inode, ipage, from);
695                 f2fs_put_page(ipage, 1);
696                 truncate_page = true;
697                 goto out;
698         }
699
700         set_new_dnode(&dn, inode, ipage, NULL, 0);
701         err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
702         if (err) {
703                 if (err == -ENOENT)
704                         goto free_next;
705                 goto out;
706         }
707
708         count = ADDRS_PER_PAGE(dn.node_page, inode);
709
710         count -= dn.ofs_in_node;
711         f2fs_bug_on(sbi, count < 0);
712
713         if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
714                 f2fs_truncate_data_blocks_range(&dn, count);
715                 free_from += count;
716         }
717
718         f2fs_put_dnode(&dn);
719 free_next:
720         err = f2fs_truncate_inode_blocks(inode, free_from);
721 out:
722         if (lock)
723                 f2fs_unlock_op(sbi);
724 free_partial:
725         /* lastly zero out the first data page */
726         if (!err)
727                 err = truncate_partial_data_page(inode, from, truncate_page);
728
729         trace_f2fs_truncate_blocks_exit(inode, err);
730         return err;
731 }
732
733 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
734 {
735         u64 free_from = from;
736         int err;
737
738 #ifdef CONFIG_F2FS_FS_COMPRESSION
739         /*
740          * for compressed file, only support cluster size
741          * aligned truncation.
742          */
743         if (f2fs_compressed_file(inode))
744                 free_from = round_up(from,
745                                 F2FS_I(inode)->i_cluster_size << PAGE_SHIFT);
746 #endif
747
748         err = f2fs_do_truncate_blocks(inode, free_from, lock);
749         if (err)
750                 return err;
751
752 #ifdef CONFIG_F2FS_FS_COMPRESSION
753         /*
754          * For compressed file, after release compress blocks, don't allow write
755          * direct, but we should allow write direct after truncate to zero.
756          */
757         if (f2fs_compressed_file(inode) && !free_from
758                         && is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
759                 clear_inode_flag(inode, FI_COMPRESS_RELEASED);
760
761         if (from != free_from) {
762                 err = f2fs_truncate_partial_cluster(inode, from, lock);
763                 if (err)
764                         return err;
765         }
766 #endif
767
768         return 0;
769 }
770
771 int f2fs_truncate(struct inode *inode)
772 {
773         int err;
774
775         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
776                 return -EIO;
777
778         if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
779                                 S_ISLNK(inode->i_mode)))
780                 return 0;
781
782         trace_f2fs_truncate(inode);
783
784         if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) {
785                 f2fs_show_injection_info(F2FS_I_SB(inode), FAULT_TRUNCATE);
786                 return -EIO;
787         }
788
789         err = dquot_initialize(inode);
790         if (err)
791                 return err;
792
793         /* we should check inline_data size */
794         if (!f2fs_may_inline_data(inode)) {
795                 err = f2fs_convert_inline_inode(inode);
796                 if (err)
797                         return err;
798         }
799
800         err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
801         if (err)
802                 return err;
803
804         inode->i_mtime = inode->i_ctime = current_time(inode);
805         f2fs_mark_inode_dirty_sync(inode, false);
806         return 0;
807 }
808
809 int f2fs_getattr(struct user_namespace *mnt_userns, const struct path *path,
810                  struct kstat *stat, u32 request_mask, unsigned int query_flags)
811 {
812         struct inode *inode = d_inode(path->dentry);
813         struct f2fs_inode_info *fi = F2FS_I(inode);
814         struct f2fs_inode *ri;
815         unsigned int flags;
816
817         if (f2fs_has_extra_attr(inode) &&
818                         f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) &&
819                         F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
820                 stat->result_mask |= STATX_BTIME;
821                 stat->btime.tv_sec = fi->i_crtime.tv_sec;
822                 stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
823         }
824
825         flags = fi->i_flags;
826         if (flags & F2FS_COMPR_FL)
827                 stat->attributes |= STATX_ATTR_COMPRESSED;
828         if (flags & F2FS_APPEND_FL)
829                 stat->attributes |= STATX_ATTR_APPEND;
830         if (IS_ENCRYPTED(inode))
831                 stat->attributes |= STATX_ATTR_ENCRYPTED;
832         if (flags & F2FS_IMMUTABLE_FL)
833                 stat->attributes |= STATX_ATTR_IMMUTABLE;
834         if (flags & F2FS_NODUMP_FL)
835                 stat->attributes |= STATX_ATTR_NODUMP;
836         if (IS_VERITY(inode))
837                 stat->attributes |= STATX_ATTR_VERITY;
838
839         stat->attributes_mask |= (STATX_ATTR_COMPRESSED |
840                                   STATX_ATTR_APPEND |
841                                   STATX_ATTR_ENCRYPTED |
842                                   STATX_ATTR_IMMUTABLE |
843                                   STATX_ATTR_NODUMP |
844                                   STATX_ATTR_VERITY);
845
846         generic_fillattr(&init_user_ns, inode, stat);
847
848         /* we need to show initial sectors used for inline_data/dentries */
849         if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
850                                         f2fs_has_inline_dentry(inode))
851                 stat->blocks += (stat->size + 511) >> 9;
852
853         return 0;
854 }
855
856 #ifdef CONFIG_F2FS_FS_POSIX_ACL
857 static void __setattr_copy(struct user_namespace *mnt_userns,
858                            struct inode *inode, const struct iattr *attr)
859 {
860         unsigned int ia_valid = attr->ia_valid;
861
862         if (ia_valid & ATTR_UID)
863                 inode->i_uid = attr->ia_uid;
864         if (ia_valid & ATTR_GID)
865                 inode->i_gid = attr->ia_gid;
866         if (ia_valid & ATTR_ATIME)
867                 inode->i_atime = attr->ia_atime;
868         if (ia_valid & ATTR_MTIME)
869                 inode->i_mtime = attr->ia_mtime;
870         if (ia_valid & ATTR_CTIME)
871                 inode->i_ctime = attr->ia_ctime;
872         if (ia_valid & ATTR_MODE) {
873                 umode_t mode = attr->ia_mode;
874                 kgid_t kgid = i_gid_into_mnt(mnt_userns, inode);
875
876                 if (!in_group_p(kgid) && !capable_wrt_inode_uidgid(mnt_userns, inode, CAP_FSETID))
877                         mode &= ~S_ISGID;
878                 set_acl_inode(inode, mode);
879         }
880 }
881 #else
882 #define __setattr_copy setattr_copy
883 #endif
884
885 int f2fs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
886                  struct iattr *attr)
887 {
888         struct inode *inode = d_inode(dentry);
889         int err;
890
891         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
892                 return -EIO;
893
894         if (unlikely(IS_IMMUTABLE(inode)))
895                 return -EPERM;
896
897         if (unlikely(IS_APPEND(inode) &&
898                         (attr->ia_valid & (ATTR_MODE | ATTR_UID |
899                                   ATTR_GID | ATTR_TIMES_SET))))
900                 return -EPERM;
901
902         if ((attr->ia_valid & ATTR_SIZE) &&
903                 !f2fs_is_compress_backend_ready(inode))
904                 return -EOPNOTSUPP;
905
906         err = setattr_prepare(&init_user_ns, dentry, attr);
907         if (err)
908                 return err;
909
910         err = fscrypt_prepare_setattr(dentry, attr);
911         if (err)
912                 return err;
913
914         err = fsverity_prepare_setattr(dentry, attr);
915         if (err)
916                 return err;
917
918         if (is_quota_modification(inode, attr)) {
919                 err = dquot_initialize(inode);
920                 if (err)
921                         return err;
922         }
923         if ((attr->ia_valid & ATTR_UID &&
924                 !uid_eq(attr->ia_uid, inode->i_uid)) ||
925                 (attr->ia_valid & ATTR_GID &&
926                 !gid_eq(attr->ia_gid, inode->i_gid))) {
927                 f2fs_lock_op(F2FS_I_SB(inode));
928                 err = dquot_transfer(inode, attr);
929                 if (err) {
930                         set_sbi_flag(F2FS_I_SB(inode),
931                                         SBI_QUOTA_NEED_REPAIR);
932                         f2fs_unlock_op(F2FS_I_SB(inode));
933                         return err;
934                 }
935                 /*
936                  * update uid/gid under lock_op(), so that dquot and inode can
937                  * be updated atomically.
938                  */
939                 if (attr->ia_valid & ATTR_UID)
940                         inode->i_uid = attr->ia_uid;
941                 if (attr->ia_valid & ATTR_GID)
942                         inode->i_gid = attr->ia_gid;
943                 f2fs_mark_inode_dirty_sync(inode, true);
944                 f2fs_unlock_op(F2FS_I_SB(inode));
945         }
946
947         if (attr->ia_valid & ATTR_SIZE) {
948                 loff_t old_size = i_size_read(inode);
949
950                 if (attr->ia_size > MAX_INLINE_DATA(inode)) {
951                         /*
952                          * should convert inline inode before i_size_write to
953                          * keep smaller than inline_data size with inline flag.
954                          */
955                         err = f2fs_convert_inline_inode(inode);
956                         if (err)
957                                 return err;
958                 }
959
960                 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
961                 filemap_invalidate_lock(inode->i_mapping);
962
963                 truncate_setsize(inode, attr->ia_size);
964
965                 if (attr->ia_size <= old_size)
966                         err = f2fs_truncate(inode);
967                 /*
968                  * do not trim all blocks after i_size if target size is
969                  * larger than i_size.
970                  */
971                 filemap_invalidate_unlock(inode->i_mapping);
972                 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
973                 if (err)
974                         return err;
975
976                 spin_lock(&F2FS_I(inode)->i_size_lock);
977                 inode->i_mtime = inode->i_ctime = current_time(inode);
978                 F2FS_I(inode)->last_disk_size = i_size_read(inode);
979                 spin_unlock(&F2FS_I(inode)->i_size_lock);
980         }
981
982         __setattr_copy(&init_user_ns, inode, attr);
983
984         if (attr->ia_valid & ATTR_MODE) {
985                 err = posix_acl_chmod(&init_user_ns, inode, f2fs_get_inode_mode(inode));
986
987                 if (is_inode_flag_set(inode, FI_ACL_MODE)) {
988                         if (!err)
989                                 inode->i_mode = F2FS_I(inode)->i_acl_mode;
990                         clear_inode_flag(inode, FI_ACL_MODE);
991                 }
992         }
993
994         /* file size may changed here */
995         f2fs_mark_inode_dirty_sync(inode, true);
996
997         /* inode change will produce dirty node pages flushed by checkpoint */
998         f2fs_balance_fs(F2FS_I_SB(inode), true);
999
1000         return err;
1001 }
1002
1003 const struct inode_operations f2fs_file_inode_operations = {
1004         .getattr        = f2fs_getattr,
1005         .setattr        = f2fs_setattr,
1006         .get_acl        = f2fs_get_acl,
1007         .set_acl        = f2fs_set_acl,
1008         .listxattr      = f2fs_listxattr,
1009         .fiemap         = f2fs_fiemap,
1010         .fileattr_get   = f2fs_fileattr_get,
1011         .fileattr_set   = f2fs_fileattr_set,
1012 };
1013
1014 static int fill_zero(struct inode *inode, pgoff_t index,
1015                                         loff_t start, loff_t len)
1016 {
1017         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1018         struct page *page;
1019
1020         if (!len)
1021                 return 0;
1022
1023         f2fs_balance_fs(sbi, true);
1024
1025         f2fs_lock_op(sbi);
1026         page = f2fs_get_new_data_page(inode, NULL, index, false);
1027         f2fs_unlock_op(sbi);
1028
1029         if (IS_ERR(page))
1030                 return PTR_ERR(page);
1031
1032         f2fs_wait_on_page_writeback(page, DATA, true, true);
1033         zero_user(page, start, len);
1034         set_page_dirty(page);
1035         f2fs_put_page(page, 1);
1036         return 0;
1037 }
1038
1039 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
1040 {
1041         int err;
1042
1043         while (pg_start < pg_end) {
1044                 struct dnode_of_data dn;
1045                 pgoff_t end_offset, count;
1046
1047                 set_new_dnode(&dn, inode, NULL, NULL, 0);
1048                 err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
1049                 if (err) {
1050                         if (err == -ENOENT) {
1051                                 pg_start = f2fs_get_next_page_offset(&dn,
1052                                                                 pg_start);
1053                                 continue;
1054                         }
1055                         return err;
1056                 }
1057
1058                 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1059                 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
1060
1061                 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
1062
1063                 f2fs_truncate_data_blocks_range(&dn, count);
1064                 f2fs_put_dnode(&dn);
1065
1066                 pg_start += count;
1067         }
1068         return 0;
1069 }
1070
1071 static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
1072 {
1073         pgoff_t pg_start, pg_end;
1074         loff_t off_start, off_end;
1075         int ret;
1076
1077         ret = f2fs_convert_inline_inode(inode);
1078         if (ret)
1079                 return ret;
1080
1081         pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1082         pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1083
1084         off_start = offset & (PAGE_SIZE - 1);
1085         off_end = (offset + len) & (PAGE_SIZE - 1);
1086
1087         if (pg_start == pg_end) {
1088                 ret = fill_zero(inode, pg_start, off_start,
1089                                                 off_end - off_start);
1090                 if (ret)
1091                         return ret;
1092         } else {
1093                 if (off_start) {
1094                         ret = fill_zero(inode, pg_start++, off_start,
1095                                                 PAGE_SIZE - off_start);
1096                         if (ret)
1097                                 return ret;
1098                 }
1099                 if (off_end) {
1100                         ret = fill_zero(inode, pg_end, 0, off_end);
1101                         if (ret)
1102                                 return ret;
1103                 }
1104
1105                 if (pg_start < pg_end) {
1106                         loff_t blk_start, blk_end;
1107                         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1108
1109                         f2fs_balance_fs(sbi, true);
1110
1111                         blk_start = (loff_t)pg_start << PAGE_SHIFT;
1112                         blk_end = (loff_t)pg_end << PAGE_SHIFT;
1113
1114                         down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1115                         filemap_invalidate_lock(inode->i_mapping);
1116
1117                         truncate_pagecache_range(inode, blk_start, blk_end - 1);
1118
1119                         f2fs_lock_op(sbi);
1120                         ret = f2fs_truncate_hole(inode, pg_start, pg_end);
1121                         f2fs_unlock_op(sbi);
1122
1123                         filemap_invalidate_unlock(inode->i_mapping);
1124                         up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1125                 }
1126         }
1127
1128         return ret;
1129 }
1130
1131 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
1132                                 int *do_replace, pgoff_t off, pgoff_t len)
1133 {
1134         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1135         struct dnode_of_data dn;
1136         int ret, done, i;
1137
1138 next_dnode:
1139         set_new_dnode(&dn, inode, NULL, NULL, 0);
1140         ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
1141         if (ret && ret != -ENOENT) {
1142                 return ret;
1143         } else if (ret == -ENOENT) {
1144                 if (dn.max_level == 0)
1145                         return -ENOENT;
1146                 done = min((pgoff_t)ADDRS_PER_BLOCK(inode) -
1147                                                 dn.ofs_in_node, len);
1148                 blkaddr += done;
1149                 do_replace += done;
1150                 goto next;
1151         }
1152
1153         done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
1154                                                         dn.ofs_in_node, len);
1155         for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
1156                 *blkaddr = f2fs_data_blkaddr(&dn);
1157
1158                 if (__is_valid_data_blkaddr(*blkaddr) &&
1159                         !f2fs_is_valid_blkaddr(sbi, *blkaddr,
1160                                         DATA_GENERIC_ENHANCE)) {
1161                         f2fs_put_dnode(&dn);
1162                         return -EFSCORRUPTED;
1163                 }
1164
1165                 if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
1166
1167                         if (f2fs_lfs_mode(sbi)) {
1168                                 f2fs_put_dnode(&dn);
1169                                 return -EOPNOTSUPP;
1170                         }
1171
1172                         /* do not invalidate this block address */
1173                         f2fs_update_data_blkaddr(&dn, NULL_ADDR);
1174                         *do_replace = 1;
1175                 }
1176         }
1177         f2fs_put_dnode(&dn);
1178 next:
1179         len -= done;
1180         off += done;
1181         if (len)
1182                 goto next_dnode;
1183         return 0;
1184 }
1185
1186 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1187                                 int *do_replace, pgoff_t off, int len)
1188 {
1189         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1190         struct dnode_of_data dn;
1191         int ret, i;
1192
1193         for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1194                 if (*do_replace == 0)
1195                         continue;
1196
1197                 set_new_dnode(&dn, inode, NULL, NULL, 0);
1198                 ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1199                 if (ret) {
1200                         dec_valid_block_count(sbi, inode, 1);
1201                         f2fs_invalidate_blocks(sbi, *blkaddr);
1202                 } else {
1203                         f2fs_update_data_blkaddr(&dn, *blkaddr);
1204                 }
1205                 f2fs_put_dnode(&dn);
1206         }
1207         return 0;
1208 }
1209
1210 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1211                         block_t *blkaddr, int *do_replace,
1212                         pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1213 {
1214         struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1215         pgoff_t i = 0;
1216         int ret;
1217
1218         while (i < len) {
1219                 if (blkaddr[i] == NULL_ADDR && !full) {
1220                         i++;
1221                         continue;
1222                 }
1223
1224                 if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1225                         struct dnode_of_data dn;
1226                         struct node_info ni;
1227                         size_t new_size;
1228                         pgoff_t ilen;
1229
1230                         set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1231                         ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1232                         if (ret)
1233                                 return ret;
1234
1235                         ret = f2fs_get_node_info(sbi, dn.nid, &ni);
1236                         if (ret) {
1237                                 f2fs_put_dnode(&dn);
1238                                 return ret;
1239                         }
1240
1241                         ilen = min((pgoff_t)
1242                                 ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1243                                                 dn.ofs_in_node, len - i);
1244                         do {
1245                                 dn.data_blkaddr = f2fs_data_blkaddr(&dn);
1246                                 f2fs_truncate_data_blocks_range(&dn, 1);
1247
1248                                 if (do_replace[i]) {
1249                                         f2fs_i_blocks_write(src_inode,
1250                                                         1, false, false);
1251                                         f2fs_i_blocks_write(dst_inode,
1252                                                         1, true, false);
1253                                         f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1254                                         blkaddr[i], ni.version, true, false);
1255
1256                                         do_replace[i] = 0;
1257                                 }
1258                                 dn.ofs_in_node++;
1259                                 i++;
1260                                 new_size = (loff_t)(dst + i) << PAGE_SHIFT;
1261                                 if (dst_inode->i_size < new_size)
1262                                         f2fs_i_size_write(dst_inode, new_size);
1263                         } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1264
1265                         f2fs_put_dnode(&dn);
1266                 } else {
1267                         struct page *psrc, *pdst;
1268
1269                         psrc = f2fs_get_lock_data_page(src_inode,
1270                                                         src + i, true);
1271                         if (IS_ERR(psrc))
1272                                 return PTR_ERR(psrc);
1273                         pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i,
1274                                                                 true);
1275                         if (IS_ERR(pdst)) {
1276                                 f2fs_put_page(psrc, 1);
1277                                 return PTR_ERR(pdst);
1278                         }
1279                         f2fs_copy_page(psrc, pdst);
1280                         set_page_dirty(pdst);
1281                         f2fs_put_page(pdst, 1);
1282                         f2fs_put_page(psrc, 1);
1283
1284                         ret = f2fs_truncate_hole(src_inode,
1285                                                 src + i, src + i + 1);
1286                         if (ret)
1287                                 return ret;
1288                         i++;
1289                 }
1290         }
1291         return 0;
1292 }
1293
1294 static int __exchange_data_block(struct inode *src_inode,
1295                         struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1296                         pgoff_t len, bool full)
1297 {
1298         block_t *src_blkaddr;
1299         int *do_replace;
1300         pgoff_t olen;
1301         int ret;
1302
1303         while (len) {
1304                 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len);
1305
1306                 src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1307                                         array_size(olen, sizeof(block_t)),
1308                                         GFP_NOFS);
1309                 if (!src_blkaddr)
1310                         return -ENOMEM;
1311
1312                 do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1313                                         array_size(olen, sizeof(int)),
1314                                         GFP_NOFS);
1315                 if (!do_replace) {
1316                         kvfree(src_blkaddr);
1317                         return -ENOMEM;
1318                 }
1319
1320                 ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1321                                         do_replace, src, olen);
1322                 if (ret)
1323                         goto roll_back;
1324
1325                 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1326                                         do_replace, src, dst, olen, full);
1327                 if (ret)
1328                         goto roll_back;
1329
1330                 src += olen;
1331                 dst += olen;
1332                 len -= olen;
1333
1334                 kvfree(src_blkaddr);
1335                 kvfree(do_replace);
1336         }
1337         return 0;
1338
1339 roll_back:
1340         __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
1341         kvfree(src_blkaddr);
1342         kvfree(do_replace);
1343         return ret;
1344 }
1345
1346 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len)
1347 {
1348         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1349         pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1350         pgoff_t start = offset >> PAGE_SHIFT;
1351         pgoff_t end = (offset + len) >> PAGE_SHIFT;
1352         int ret;
1353
1354         f2fs_balance_fs(sbi, true);
1355
1356         /* avoid gc operation during block exchange */
1357         down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1358         filemap_invalidate_lock(inode->i_mapping);
1359
1360         f2fs_lock_op(sbi);
1361         f2fs_drop_extent_tree(inode);
1362         truncate_pagecache(inode, offset);
1363         ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1364         f2fs_unlock_op(sbi);
1365
1366         filemap_invalidate_unlock(inode->i_mapping);
1367         up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1368         return ret;
1369 }
1370
1371 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1372 {
1373         loff_t new_size;
1374         int ret;
1375
1376         if (offset + len >= i_size_read(inode))
1377                 return -EINVAL;
1378
1379         /* collapse range should be aligned to block size of f2fs. */
1380         if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1381                 return -EINVAL;
1382
1383         ret = f2fs_convert_inline_inode(inode);
1384         if (ret)
1385                 return ret;
1386
1387         /* write out all dirty pages from offset */
1388         ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1389         if (ret)
1390                 return ret;
1391
1392         ret = f2fs_do_collapse(inode, offset, len);
1393         if (ret)
1394                 return ret;
1395
1396         /* write out all moved pages, if possible */
1397         filemap_invalidate_lock(inode->i_mapping);
1398         filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1399         truncate_pagecache(inode, offset);
1400
1401         new_size = i_size_read(inode) - len;
1402         ret = f2fs_truncate_blocks(inode, new_size, true);
1403         filemap_invalidate_unlock(inode->i_mapping);
1404         if (!ret)
1405                 f2fs_i_size_write(inode, new_size);
1406         return ret;
1407 }
1408
1409 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1410                                                                 pgoff_t end)
1411 {
1412         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1413         pgoff_t index = start;
1414         unsigned int ofs_in_node = dn->ofs_in_node;
1415         blkcnt_t count = 0;
1416         int ret;
1417
1418         for (; index < end; index++, dn->ofs_in_node++) {
1419                 if (f2fs_data_blkaddr(dn) == NULL_ADDR)
1420                         count++;
1421         }
1422
1423         dn->ofs_in_node = ofs_in_node;
1424         ret = f2fs_reserve_new_blocks(dn, count);
1425         if (ret)
1426                 return ret;
1427
1428         dn->ofs_in_node = ofs_in_node;
1429         for (index = start; index < end; index++, dn->ofs_in_node++) {
1430                 dn->data_blkaddr = f2fs_data_blkaddr(dn);
1431                 /*
1432                  * f2fs_reserve_new_blocks will not guarantee entire block
1433                  * allocation.
1434                  */
1435                 if (dn->data_blkaddr == NULL_ADDR) {
1436                         ret = -ENOSPC;
1437                         break;
1438                 }
1439                 if (dn->data_blkaddr != NEW_ADDR) {
1440                         f2fs_invalidate_blocks(sbi, dn->data_blkaddr);
1441                         dn->data_blkaddr = NEW_ADDR;
1442                         f2fs_set_data_blkaddr(dn);
1443                 }
1444         }
1445
1446         f2fs_update_extent_cache_range(dn, start, 0, index - start);
1447
1448         return ret;
1449 }
1450
1451 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1452                                                                 int mode)
1453 {
1454         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1455         struct address_space *mapping = inode->i_mapping;
1456         pgoff_t index, pg_start, pg_end;
1457         loff_t new_size = i_size_read(inode);
1458         loff_t off_start, off_end;
1459         int ret = 0;
1460
1461         ret = inode_newsize_ok(inode, (len + offset));
1462         if (ret)
1463                 return ret;
1464
1465         ret = f2fs_convert_inline_inode(inode);
1466         if (ret)
1467                 return ret;
1468
1469         ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1470         if (ret)
1471                 return ret;
1472
1473         pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1474         pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1475
1476         off_start = offset & (PAGE_SIZE - 1);
1477         off_end = (offset + len) & (PAGE_SIZE - 1);
1478
1479         if (pg_start == pg_end) {
1480                 ret = fill_zero(inode, pg_start, off_start,
1481                                                 off_end - off_start);
1482                 if (ret)
1483                         return ret;
1484
1485                 new_size = max_t(loff_t, new_size, offset + len);
1486         } else {
1487                 if (off_start) {
1488                         ret = fill_zero(inode, pg_start++, off_start,
1489                                                 PAGE_SIZE - off_start);
1490                         if (ret)
1491                                 return ret;
1492
1493                         new_size = max_t(loff_t, new_size,
1494                                         (loff_t)pg_start << PAGE_SHIFT);
1495                 }
1496
1497                 for (index = pg_start; index < pg_end;) {
1498                         struct dnode_of_data dn;
1499                         unsigned int end_offset;
1500                         pgoff_t end;
1501
1502                         down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1503                         filemap_invalidate_lock(mapping);
1504
1505                         truncate_pagecache_range(inode,
1506                                 (loff_t)index << PAGE_SHIFT,
1507                                 ((loff_t)pg_end << PAGE_SHIFT) - 1);
1508
1509                         f2fs_lock_op(sbi);
1510
1511                         set_new_dnode(&dn, inode, NULL, NULL, 0);
1512                         ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
1513                         if (ret) {
1514                                 f2fs_unlock_op(sbi);
1515                                 filemap_invalidate_unlock(mapping);
1516                                 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1517                                 goto out;
1518                         }
1519
1520                         end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1521                         end = min(pg_end, end_offset - dn.ofs_in_node + index);
1522
1523                         ret = f2fs_do_zero_range(&dn, index, end);
1524                         f2fs_put_dnode(&dn);
1525
1526                         f2fs_unlock_op(sbi);
1527                         filemap_invalidate_unlock(mapping);
1528                         up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1529
1530                         f2fs_balance_fs(sbi, dn.node_changed);
1531
1532                         if (ret)
1533                                 goto out;
1534
1535                         index = end;
1536                         new_size = max_t(loff_t, new_size,
1537                                         (loff_t)index << PAGE_SHIFT);
1538                 }
1539
1540                 if (off_end) {
1541                         ret = fill_zero(inode, pg_end, 0, off_end);
1542                         if (ret)
1543                                 goto out;
1544
1545                         new_size = max_t(loff_t, new_size, offset + len);
1546                 }
1547         }
1548
1549 out:
1550         if (new_size > i_size_read(inode)) {
1551                 if (mode & FALLOC_FL_KEEP_SIZE)
1552                         file_set_keep_isize(inode);
1553                 else
1554                         f2fs_i_size_write(inode, new_size);
1555         }
1556         return ret;
1557 }
1558
1559 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1560 {
1561         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1562         struct address_space *mapping = inode->i_mapping;
1563         pgoff_t nr, pg_start, pg_end, delta, idx;
1564         loff_t new_size;
1565         int ret = 0;
1566
1567         new_size = i_size_read(inode) + len;
1568         ret = inode_newsize_ok(inode, new_size);
1569         if (ret)
1570                 return ret;
1571
1572         if (offset >= i_size_read(inode))
1573                 return -EINVAL;
1574
1575         /* insert range should be aligned to block size of f2fs. */
1576         if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1577                 return -EINVAL;
1578
1579         ret = f2fs_convert_inline_inode(inode);
1580         if (ret)
1581                 return ret;
1582
1583         f2fs_balance_fs(sbi, true);
1584
1585         filemap_invalidate_lock(mapping);
1586         ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
1587         filemap_invalidate_unlock(mapping);
1588         if (ret)
1589                 return ret;
1590
1591         /* write out all dirty pages from offset */
1592         ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1593         if (ret)
1594                 return ret;
1595
1596         pg_start = offset >> PAGE_SHIFT;
1597         pg_end = (offset + len) >> PAGE_SHIFT;
1598         delta = pg_end - pg_start;
1599         idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1600
1601         /* avoid gc operation during block exchange */
1602         down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1603         filemap_invalidate_lock(mapping);
1604         truncate_pagecache(inode, offset);
1605
1606         while (!ret && idx > pg_start) {
1607                 nr = idx - pg_start;
1608                 if (nr > delta)
1609                         nr = delta;
1610                 idx -= nr;
1611
1612                 f2fs_lock_op(sbi);
1613                 f2fs_drop_extent_tree(inode);
1614
1615                 ret = __exchange_data_block(inode, inode, idx,
1616                                         idx + delta, nr, false);
1617                 f2fs_unlock_op(sbi);
1618         }
1619         filemap_invalidate_unlock(mapping);
1620         up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1621
1622         /* write out all moved pages, if possible */
1623         filemap_invalidate_lock(mapping);
1624         filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1625         truncate_pagecache(inode, offset);
1626         filemap_invalidate_unlock(mapping);
1627
1628         if (!ret)
1629                 f2fs_i_size_write(inode, new_size);
1630         return ret;
1631 }
1632
1633 static int expand_inode_data(struct inode *inode, loff_t offset,
1634                                         loff_t len, int mode)
1635 {
1636         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1637         struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1638                         .m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE,
1639                         .m_may_create = true };
1640         pgoff_t pg_start, pg_end;
1641         loff_t new_size = i_size_read(inode);
1642         loff_t off_end;
1643         block_t expanded = 0;
1644         int err;
1645
1646         err = inode_newsize_ok(inode, (len + offset));
1647         if (err)
1648                 return err;
1649
1650         err = f2fs_convert_inline_inode(inode);
1651         if (err)
1652                 return err;
1653
1654         f2fs_balance_fs(sbi, true);
1655
1656         pg_start = ((unsigned long long)offset) >> PAGE_SHIFT;
1657         pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1658         off_end = (offset + len) & (PAGE_SIZE - 1);
1659
1660         map.m_lblk = pg_start;
1661         map.m_len = pg_end - pg_start;
1662         if (off_end)
1663                 map.m_len++;
1664
1665         if (!map.m_len)
1666                 return 0;
1667
1668         if (f2fs_is_pinned_file(inode)) {
1669                 block_t sec_blks = BLKS_PER_SEC(sbi);
1670                 block_t sec_len = roundup(map.m_len, sec_blks);
1671
1672                 map.m_len = sec_blks;
1673 next_alloc:
1674                 if (has_not_enough_free_secs(sbi, 0,
1675                         GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) {
1676                         down_write(&sbi->gc_lock);
1677                         err = f2fs_gc(sbi, true, false, false, NULL_SEGNO);
1678                         if (err && err != -ENODATA && err != -EAGAIN)
1679                                 goto out_err;
1680                 }
1681
1682                 down_write(&sbi->pin_sem);
1683
1684                 f2fs_lock_op(sbi);
1685                 f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
1686                 f2fs_unlock_op(sbi);
1687
1688                 map.m_seg_type = CURSEG_COLD_DATA_PINNED;
1689                 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_DIO);
1690
1691                 up_write(&sbi->pin_sem);
1692
1693                 expanded += map.m_len;
1694                 sec_len -= map.m_len;
1695                 map.m_lblk += map.m_len;
1696                 if (!err && sec_len)
1697                         goto next_alloc;
1698
1699                 map.m_len = expanded;
1700         } else {
1701                 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
1702                 expanded = map.m_len;
1703         }
1704 out_err:
1705         if (err) {
1706                 pgoff_t last_off;
1707
1708                 if (!expanded)
1709                         return err;
1710
1711                 last_off = pg_start + expanded - 1;
1712
1713                 /* update new size to the failed position */
1714                 new_size = (last_off == pg_end) ? offset + len :
1715                                         (loff_t)(last_off + 1) << PAGE_SHIFT;
1716         } else {
1717                 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1718         }
1719
1720         if (new_size > i_size_read(inode)) {
1721                 if (mode & FALLOC_FL_KEEP_SIZE)
1722                         file_set_keep_isize(inode);
1723                 else
1724                         f2fs_i_size_write(inode, new_size);
1725         }
1726
1727         return err;
1728 }
1729
1730 static long f2fs_fallocate(struct file *file, int mode,
1731                                 loff_t offset, loff_t len)
1732 {
1733         struct inode *inode = file_inode(file);
1734         long ret = 0;
1735
1736         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1737                 return -EIO;
1738         if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
1739                 return -ENOSPC;
1740         if (!f2fs_is_compress_backend_ready(inode))
1741                 return -EOPNOTSUPP;
1742
1743         /* f2fs only support ->fallocate for regular file */
1744         if (!S_ISREG(inode->i_mode))
1745                 return -EINVAL;
1746
1747         if (IS_ENCRYPTED(inode) &&
1748                 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1749                 return -EOPNOTSUPP;
1750
1751         if (f2fs_compressed_file(inode) &&
1752                 (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE |
1753                         FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE)))
1754                 return -EOPNOTSUPP;
1755
1756         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1757                         FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1758                         FALLOC_FL_INSERT_RANGE))
1759                 return -EOPNOTSUPP;
1760
1761         inode_lock(inode);
1762
1763         if (mode & FALLOC_FL_PUNCH_HOLE) {
1764                 if (offset >= inode->i_size)
1765                         goto out;
1766
1767                 ret = punch_hole(inode, offset, len);
1768         } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1769                 ret = f2fs_collapse_range(inode, offset, len);
1770         } else if (mode & FALLOC_FL_ZERO_RANGE) {
1771                 ret = f2fs_zero_range(inode, offset, len, mode);
1772         } else if (mode & FALLOC_FL_INSERT_RANGE) {
1773                 ret = f2fs_insert_range(inode, offset, len);
1774         } else {
1775                 ret = expand_inode_data(inode, offset, len, mode);
1776         }
1777
1778         if (!ret) {
1779                 inode->i_mtime = inode->i_ctime = current_time(inode);
1780                 f2fs_mark_inode_dirty_sync(inode, false);
1781                 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1782         }
1783
1784 out:
1785         inode_unlock(inode);
1786
1787         trace_f2fs_fallocate(inode, mode, offset, len, ret);
1788         return ret;
1789 }
1790
1791 static int f2fs_release_file(struct inode *inode, struct file *filp)
1792 {
1793         /*
1794          * f2fs_relase_file is called at every close calls. So we should
1795          * not drop any inmemory pages by close called by other process.
1796          */
1797         if (!(filp->f_mode & FMODE_WRITE) ||
1798                         atomic_read(&inode->i_writecount) != 1)
1799                 return 0;
1800
1801         /* some remained atomic pages should discarded */
1802         if (f2fs_is_atomic_file(inode))
1803                 f2fs_drop_inmem_pages(inode);
1804         if (f2fs_is_volatile_file(inode)) {
1805                 set_inode_flag(inode, FI_DROP_CACHE);
1806                 filemap_fdatawrite(inode->i_mapping);
1807                 clear_inode_flag(inode, FI_DROP_CACHE);
1808                 clear_inode_flag(inode, FI_VOLATILE_FILE);
1809                 stat_dec_volatile_write(inode);
1810         }
1811         return 0;
1812 }
1813
1814 static int f2fs_file_flush(struct file *file, fl_owner_t id)
1815 {
1816         struct inode *inode = file_inode(file);
1817
1818         /*
1819          * If the process doing a transaction is crashed, we should do
1820          * roll-back. Otherwise, other reader/write can see corrupted database
1821          * until all the writers close its file. Since this should be done
1822          * before dropping file lock, it needs to do in ->flush.
1823          */
1824         if (f2fs_is_atomic_file(inode) &&
1825                         F2FS_I(inode)->inmem_task == current)
1826                 f2fs_drop_inmem_pages(inode);
1827         return 0;
1828 }
1829
1830 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask)
1831 {
1832         struct f2fs_inode_info *fi = F2FS_I(inode);
1833         u32 masked_flags = fi->i_flags & mask;
1834
1835         /* mask can be shrunk by flags_valid selector */
1836         iflags &= mask;
1837
1838         /* Is it quota file? Do not allow user to mess with it */
1839         if (IS_NOQUOTA(inode))
1840                 return -EPERM;
1841
1842         if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) {
1843                 if (!f2fs_sb_has_casefold(F2FS_I_SB(inode)))
1844                         return -EOPNOTSUPP;
1845                 if (!f2fs_empty_dir(inode))
1846                         return -ENOTEMPTY;
1847         }
1848
1849         if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) {
1850                 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
1851                         return -EOPNOTSUPP;
1852                 if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL))
1853                         return -EINVAL;
1854         }
1855
1856         if ((iflags ^ masked_flags) & F2FS_COMPR_FL) {
1857                 if (masked_flags & F2FS_COMPR_FL) {
1858                         if (!f2fs_disable_compressed_file(inode))
1859                                 return -EINVAL;
1860                 }
1861                 if (iflags & F2FS_NOCOMP_FL)
1862                         return -EINVAL;
1863                 if (iflags & F2FS_COMPR_FL) {
1864                         if (!f2fs_may_compress(inode))
1865                                 return -EINVAL;
1866                         if (S_ISREG(inode->i_mode) && inode->i_size)
1867                                 return -EINVAL;
1868
1869                         set_compress_context(inode);
1870                 }
1871         }
1872         if ((iflags ^ masked_flags) & F2FS_NOCOMP_FL) {
1873                 if (masked_flags & F2FS_COMPR_FL)
1874                         return -EINVAL;
1875         }
1876
1877         fi->i_flags = iflags | (fi->i_flags & ~mask);
1878         f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) &&
1879                                         (fi->i_flags & F2FS_NOCOMP_FL));
1880
1881         if (fi->i_flags & F2FS_PROJINHERIT_FL)
1882                 set_inode_flag(inode, FI_PROJ_INHERIT);
1883         else
1884                 clear_inode_flag(inode, FI_PROJ_INHERIT);
1885
1886         inode->i_ctime = current_time(inode);
1887         f2fs_set_inode_flags(inode);
1888         f2fs_mark_inode_dirty_sync(inode, true);
1889         return 0;
1890 }
1891
1892 /* FS_IOC_[GS]ETFLAGS and FS_IOC_FS[GS]ETXATTR support */
1893
1894 /*
1895  * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry
1896  * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to
1897  * F2FS_GETTABLE_FS_FL.  To also make it settable via FS_IOC_SETFLAGS, also add
1898  * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL.
1899  *
1900  * Translating flags to fsx_flags value used by FS_IOC_FSGETXATTR and
1901  * FS_IOC_FSSETXATTR is done by the VFS.
1902  */
1903
1904 static const struct {
1905         u32 iflag;
1906         u32 fsflag;
1907 } f2fs_fsflags_map[] = {
1908         { F2FS_COMPR_FL,        FS_COMPR_FL },
1909         { F2FS_SYNC_FL,         FS_SYNC_FL },
1910         { F2FS_IMMUTABLE_FL,    FS_IMMUTABLE_FL },
1911         { F2FS_APPEND_FL,       FS_APPEND_FL },
1912         { F2FS_NODUMP_FL,       FS_NODUMP_FL },
1913         { F2FS_NOATIME_FL,      FS_NOATIME_FL },
1914         { F2FS_NOCOMP_FL,       FS_NOCOMP_FL },
1915         { F2FS_INDEX_FL,        FS_INDEX_FL },
1916         { F2FS_DIRSYNC_FL,      FS_DIRSYNC_FL },
1917         { F2FS_PROJINHERIT_FL,  FS_PROJINHERIT_FL },
1918         { F2FS_CASEFOLD_FL,     FS_CASEFOLD_FL },
1919 };
1920
1921 #define F2FS_GETTABLE_FS_FL (           \
1922                 FS_COMPR_FL |           \
1923                 FS_SYNC_FL |            \
1924                 FS_IMMUTABLE_FL |       \
1925                 FS_APPEND_FL |          \
1926                 FS_NODUMP_FL |          \
1927                 FS_NOATIME_FL |         \
1928                 FS_NOCOMP_FL |          \
1929                 FS_INDEX_FL |           \
1930                 FS_DIRSYNC_FL |         \
1931                 FS_PROJINHERIT_FL |     \
1932                 FS_ENCRYPT_FL |         \
1933                 FS_INLINE_DATA_FL |     \
1934                 FS_NOCOW_FL |           \
1935                 FS_VERITY_FL |          \
1936                 FS_CASEFOLD_FL)
1937
1938 #define F2FS_SETTABLE_FS_FL (           \
1939                 FS_COMPR_FL |           \
1940                 FS_SYNC_FL |            \
1941                 FS_IMMUTABLE_FL |       \
1942                 FS_APPEND_FL |          \
1943                 FS_NODUMP_FL |          \
1944                 FS_NOATIME_FL |         \
1945                 FS_NOCOMP_FL |          \
1946                 FS_DIRSYNC_FL |         \
1947                 FS_PROJINHERIT_FL |     \
1948                 FS_CASEFOLD_FL)
1949
1950 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */
1951 static inline u32 f2fs_iflags_to_fsflags(u32 iflags)
1952 {
1953         u32 fsflags = 0;
1954         int i;
1955
1956         for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
1957                 if (iflags & f2fs_fsflags_map[i].iflag)
1958                         fsflags |= f2fs_fsflags_map[i].fsflag;
1959
1960         return fsflags;
1961 }
1962
1963 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */
1964 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags)
1965 {
1966         u32 iflags = 0;
1967         int i;
1968
1969         for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
1970                 if (fsflags & f2fs_fsflags_map[i].fsflag)
1971                         iflags |= f2fs_fsflags_map[i].iflag;
1972
1973         return iflags;
1974 }
1975
1976 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
1977 {
1978         struct inode *inode = file_inode(filp);
1979
1980         return put_user(inode->i_generation, (int __user *)arg);
1981 }
1982
1983 static int f2fs_ioc_start_atomic_write(struct file *filp)
1984 {
1985         struct inode *inode = file_inode(filp);
1986         struct f2fs_inode_info *fi = F2FS_I(inode);
1987         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1988         int ret;
1989
1990         if (!inode_owner_or_capable(&init_user_ns, inode))
1991                 return -EACCES;
1992
1993         if (!S_ISREG(inode->i_mode))
1994                 return -EINVAL;
1995
1996         if (filp->f_flags & O_DIRECT)
1997                 return -EINVAL;
1998
1999         ret = mnt_want_write_file(filp);
2000         if (ret)
2001                 return ret;
2002
2003         inode_lock(inode);
2004
2005         f2fs_disable_compressed_file(inode);
2006
2007         if (f2fs_is_atomic_file(inode)) {
2008                 if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST))
2009                         ret = -EINVAL;
2010                 goto out;
2011         }
2012
2013         ret = f2fs_convert_inline_inode(inode);
2014         if (ret)
2015                 goto out;
2016
2017         down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2018
2019         /*
2020          * Should wait end_io to count F2FS_WB_CP_DATA correctly by
2021          * f2fs_is_atomic_file.
2022          */
2023         if (get_dirty_pages(inode))
2024                 f2fs_warn(F2FS_I_SB(inode), "Unexpected flush for atomic writes: ino=%lu, npages=%u",
2025                           inode->i_ino, get_dirty_pages(inode));
2026         ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
2027         if (ret) {
2028                 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2029                 goto out;
2030         }
2031
2032         spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
2033         if (list_empty(&fi->inmem_ilist))
2034                 list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]);
2035         sbi->atomic_files++;
2036         spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
2037
2038         /* add inode in inmem_list first and set atomic_file */
2039         set_inode_flag(inode, FI_ATOMIC_FILE);
2040         clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
2041         up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2042
2043         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2044         F2FS_I(inode)->inmem_task = current;
2045         stat_update_max_atomic_write(inode);
2046 out:
2047         inode_unlock(inode);
2048         mnt_drop_write_file(filp);
2049         return ret;
2050 }
2051
2052 static int f2fs_ioc_commit_atomic_write(struct file *filp)
2053 {
2054         struct inode *inode = file_inode(filp);
2055         int ret;
2056
2057         if (!inode_owner_or_capable(&init_user_ns, inode))
2058                 return -EACCES;
2059
2060         ret = mnt_want_write_file(filp);
2061         if (ret)
2062                 return ret;
2063
2064         f2fs_balance_fs(F2FS_I_SB(inode), true);
2065
2066         inode_lock(inode);
2067
2068         if (f2fs_is_volatile_file(inode)) {
2069                 ret = -EINVAL;
2070                 goto err_out;
2071         }
2072
2073         if (f2fs_is_atomic_file(inode)) {
2074                 ret = f2fs_commit_inmem_pages(inode);
2075                 if (ret)
2076                         goto err_out;
2077
2078                 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2079                 if (!ret)
2080                         f2fs_drop_inmem_pages(inode);
2081         } else {
2082                 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
2083         }
2084 err_out:
2085         if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
2086                 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
2087                 ret = -EINVAL;
2088         }
2089         inode_unlock(inode);
2090         mnt_drop_write_file(filp);
2091         return ret;
2092 }
2093
2094 static int f2fs_ioc_start_volatile_write(struct file *filp)
2095 {
2096         struct inode *inode = file_inode(filp);
2097         int ret;
2098
2099         if (!inode_owner_or_capable(&init_user_ns, inode))
2100                 return -EACCES;
2101
2102         if (!S_ISREG(inode->i_mode))
2103                 return -EINVAL;
2104
2105         ret = mnt_want_write_file(filp);
2106         if (ret)
2107                 return ret;
2108
2109         inode_lock(inode);
2110
2111         if (f2fs_is_volatile_file(inode))
2112                 goto out;
2113
2114         ret = f2fs_convert_inline_inode(inode);
2115         if (ret)
2116                 goto out;
2117
2118         stat_inc_volatile_write(inode);
2119         stat_update_max_volatile_write(inode);
2120
2121         set_inode_flag(inode, FI_VOLATILE_FILE);
2122         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2123 out:
2124         inode_unlock(inode);
2125         mnt_drop_write_file(filp);
2126         return ret;
2127 }
2128
2129 static int f2fs_ioc_release_volatile_write(struct file *filp)
2130 {
2131         struct inode *inode = file_inode(filp);
2132         int ret;
2133
2134         if (!inode_owner_or_capable(&init_user_ns, inode))
2135                 return -EACCES;
2136
2137         ret = mnt_want_write_file(filp);
2138         if (ret)
2139                 return ret;
2140
2141         inode_lock(inode);
2142
2143         if (!f2fs_is_volatile_file(inode))
2144                 goto out;
2145
2146         if (!f2fs_is_first_block_written(inode)) {
2147                 ret = truncate_partial_data_page(inode, 0, true);
2148                 goto out;
2149         }
2150
2151         ret = punch_hole(inode, 0, F2FS_BLKSIZE);
2152 out:
2153         inode_unlock(inode);
2154         mnt_drop_write_file(filp);
2155         return ret;
2156 }
2157
2158 static int f2fs_ioc_abort_volatile_write(struct file *filp)
2159 {
2160         struct inode *inode = file_inode(filp);
2161         int ret;
2162
2163         if (!inode_owner_or_capable(&init_user_ns, inode))
2164                 return -EACCES;
2165
2166         ret = mnt_want_write_file(filp);
2167         if (ret)
2168                 return ret;
2169
2170         inode_lock(inode);
2171
2172         if (f2fs_is_atomic_file(inode))
2173                 f2fs_drop_inmem_pages(inode);
2174         if (f2fs_is_volatile_file(inode)) {
2175                 clear_inode_flag(inode, FI_VOLATILE_FILE);
2176                 stat_dec_volatile_write(inode);
2177                 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2178         }
2179
2180         clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
2181
2182         inode_unlock(inode);
2183
2184         mnt_drop_write_file(filp);
2185         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2186         return ret;
2187 }
2188
2189 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
2190 {
2191         struct inode *inode = file_inode(filp);
2192         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2193         struct super_block *sb = sbi->sb;
2194         __u32 in;
2195         int ret = 0;
2196
2197         if (!capable(CAP_SYS_ADMIN))
2198                 return -EPERM;
2199
2200         if (get_user(in, (__u32 __user *)arg))
2201                 return -EFAULT;
2202
2203         if (in != F2FS_GOING_DOWN_FULLSYNC) {
2204                 ret = mnt_want_write_file(filp);
2205                 if (ret) {
2206                         if (ret == -EROFS) {
2207                                 ret = 0;
2208                                 f2fs_stop_checkpoint(sbi, false);
2209                                 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2210                                 trace_f2fs_shutdown(sbi, in, ret);
2211                         }
2212                         return ret;
2213                 }
2214         }
2215
2216         switch (in) {
2217         case F2FS_GOING_DOWN_FULLSYNC:
2218                 ret = freeze_bdev(sb->s_bdev);
2219                 if (ret)
2220                         goto out;
2221                 f2fs_stop_checkpoint(sbi, false);
2222                 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2223                 thaw_bdev(sb->s_bdev);
2224                 break;
2225         case F2FS_GOING_DOWN_METASYNC:
2226                 /* do checkpoint only */
2227                 ret = f2fs_sync_fs(sb, 1);
2228                 if (ret)
2229                         goto out;
2230                 f2fs_stop_checkpoint(sbi, false);
2231                 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2232                 break;
2233         case F2FS_GOING_DOWN_NOSYNC:
2234                 f2fs_stop_checkpoint(sbi, false);
2235                 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2236                 break;
2237         case F2FS_GOING_DOWN_METAFLUSH:
2238                 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
2239                 f2fs_stop_checkpoint(sbi, false);
2240                 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2241                 break;
2242         case F2FS_GOING_DOWN_NEED_FSCK:
2243                 set_sbi_flag(sbi, SBI_NEED_FSCK);
2244                 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
2245                 set_sbi_flag(sbi, SBI_IS_DIRTY);
2246                 /* do checkpoint only */
2247                 ret = f2fs_sync_fs(sb, 1);
2248                 goto out;
2249         default:
2250                 ret = -EINVAL;
2251                 goto out;
2252         }
2253
2254         f2fs_stop_gc_thread(sbi);
2255         f2fs_stop_discard_thread(sbi);
2256
2257         f2fs_drop_discard_cmd(sbi);
2258         clear_opt(sbi, DISCARD);
2259
2260         f2fs_update_time(sbi, REQ_TIME);
2261 out:
2262         if (in != F2FS_GOING_DOWN_FULLSYNC)
2263                 mnt_drop_write_file(filp);
2264
2265         trace_f2fs_shutdown(sbi, in, ret);
2266
2267         return ret;
2268 }
2269
2270 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
2271 {
2272         struct inode *inode = file_inode(filp);
2273         struct super_block *sb = inode->i_sb;
2274         struct request_queue *q = bdev_get_queue(sb->s_bdev);
2275         struct fstrim_range range;
2276         int ret;
2277
2278         if (!capable(CAP_SYS_ADMIN))
2279                 return -EPERM;
2280
2281         if (!f2fs_hw_support_discard(F2FS_SB(sb)))
2282                 return -EOPNOTSUPP;
2283
2284         if (copy_from_user(&range, (struct fstrim_range __user *)arg,
2285                                 sizeof(range)))
2286                 return -EFAULT;
2287
2288         ret = mnt_want_write_file(filp);
2289         if (ret)
2290                 return ret;
2291
2292         range.minlen = max((unsigned int)range.minlen,
2293                                 q->limits.discard_granularity);
2294         ret = f2fs_trim_fs(F2FS_SB(sb), &range);
2295         mnt_drop_write_file(filp);
2296         if (ret < 0)
2297                 return ret;
2298
2299         if (copy_to_user((struct fstrim_range __user *)arg, &range,
2300                                 sizeof(range)))
2301                 return -EFAULT;
2302         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2303         return 0;
2304 }
2305
2306 static bool uuid_is_nonzero(__u8 u[16])
2307 {
2308         int i;
2309
2310         for (i = 0; i < 16; i++)
2311                 if (u[i])
2312                         return true;
2313         return false;
2314 }
2315
2316 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
2317 {
2318         struct inode *inode = file_inode(filp);
2319
2320         if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode)))
2321                 return -EOPNOTSUPP;
2322
2323         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2324
2325         return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
2326 }
2327
2328 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
2329 {
2330         if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2331                 return -EOPNOTSUPP;
2332         return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
2333 }
2334
2335 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
2336 {
2337         struct inode *inode = file_inode(filp);
2338         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2339         int err;
2340
2341         if (!f2fs_sb_has_encrypt(sbi))
2342                 return -EOPNOTSUPP;
2343
2344         err = mnt_want_write_file(filp);
2345         if (err)
2346                 return err;
2347
2348         down_write(&sbi->sb_lock);
2349
2350         if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
2351                 goto got_it;
2352
2353         /* update superblock with uuid */
2354         generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
2355
2356         err = f2fs_commit_super(sbi, false);
2357         if (err) {
2358                 /* undo new data */
2359                 memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
2360                 goto out_err;
2361         }
2362 got_it:
2363         if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
2364                                                                         16))
2365                 err = -EFAULT;
2366 out_err:
2367         up_write(&sbi->sb_lock);
2368         mnt_drop_write_file(filp);
2369         return err;
2370 }
2371
2372 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp,
2373                                              unsigned long arg)
2374 {
2375         if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2376                 return -EOPNOTSUPP;
2377
2378         return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg);
2379 }
2380
2381 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg)
2382 {
2383         if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2384                 return -EOPNOTSUPP;
2385
2386         return fscrypt_ioctl_add_key(filp, (void __user *)arg);
2387 }
2388
2389 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg)
2390 {
2391         if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2392                 return -EOPNOTSUPP;
2393
2394         return fscrypt_ioctl_remove_key(filp, (void __user *)arg);
2395 }
2396
2397 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp,
2398                                                     unsigned long arg)
2399 {
2400         if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2401                 return -EOPNOTSUPP;
2402
2403         return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg);
2404 }
2405
2406 static int f2fs_ioc_get_encryption_key_status(struct file *filp,
2407                                               unsigned long arg)
2408 {
2409         if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2410                 return -EOPNOTSUPP;
2411
2412         return fscrypt_ioctl_get_key_status(filp, (void __user *)arg);
2413 }
2414
2415 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg)
2416 {
2417         if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2418                 return -EOPNOTSUPP;
2419
2420         return fscrypt_ioctl_get_nonce(filp, (void __user *)arg);
2421 }
2422
2423 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
2424 {
2425         struct inode *inode = file_inode(filp);
2426         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2427         __u32 sync;
2428         int ret;
2429
2430         if (!capable(CAP_SYS_ADMIN))
2431                 return -EPERM;
2432
2433         if (get_user(sync, (__u32 __user *)arg))
2434                 return -EFAULT;
2435
2436         if (f2fs_readonly(sbi->sb))
2437                 return -EROFS;
2438
2439         ret = mnt_want_write_file(filp);
2440         if (ret)
2441                 return ret;
2442
2443         if (!sync) {
2444                 if (!down_write_trylock(&sbi->gc_lock)) {
2445                         ret = -EBUSY;
2446                         goto out;
2447                 }
2448         } else {
2449                 down_write(&sbi->gc_lock);
2450         }
2451
2452         ret = f2fs_gc(sbi, sync, true, false, NULL_SEGNO);
2453 out:
2454         mnt_drop_write_file(filp);
2455         return ret;
2456 }
2457
2458 static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range)
2459 {
2460         struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
2461         u64 end;
2462         int ret;
2463
2464         if (!capable(CAP_SYS_ADMIN))
2465                 return -EPERM;
2466         if (f2fs_readonly(sbi->sb))
2467                 return -EROFS;
2468
2469         end = range->start + range->len;
2470         if (end < range->start || range->start < MAIN_BLKADDR(sbi) ||
2471                                         end >= MAX_BLKADDR(sbi))
2472                 return -EINVAL;
2473
2474         ret = mnt_want_write_file(filp);
2475         if (ret)
2476                 return ret;
2477
2478 do_more:
2479         if (!range->sync) {
2480                 if (!down_write_trylock(&sbi->gc_lock)) {
2481                         ret = -EBUSY;
2482                         goto out;
2483                 }
2484         } else {
2485                 down_write(&sbi->gc_lock);
2486         }
2487
2488         ret = f2fs_gc(sbi, range->sync, true, false,
2489                                 GET_SEGNO(sbi, range->start));
2490         if (ret) {
2491                 if (ret == -EBUSY)
2492                         ret = -EAGAIN;
2493                 goto out;
2494         }
2495         range->start += BLKS_PER_SEC(sbi);
2496         if (range->start <= end)
2497                 goto do_more;
2498 out:
2499         mnt_drop_write_file(filp);
2500         return ret;
2501 }
2502
2503 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2504 {
2505         struct f2fs_gc_range range;
2506
2507         if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2508                                                         sizeof(range)))
2509                 return -EFAULT;
2510         return __f2fs_ioc_gc_range(filp, &range);
2511 }
2512
2513 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
2514 {
2515         struct inode *inode = file_inode(filp);
2516         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2517         int ret;
2518
2519         if (!capable(CAP_SYS_ADMIN))
2520                 return -EPERM;
2521
2522         if (f2fs_readonly(sbi->sb))
2523                 return -EROFS;
2524
2525         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2526                 f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled.");
2527                 return -EINVAL;
2528         }
2529
2530         ret = mnt_want_write_file(filp);
2531         if (ret)
2532                 return ret;
2533
2534         ret = f2fs_sync_fs(sbi->sb, 1);
2535
2536         mnt_drop_write_file(filp);
2537         return ret;
2538 }
2539
2540 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2541                                         struct file *filp,
2542                                         struct f2fs_defragment *range)
2543 {
2544         struct inode *inode = file_inode(filp);
2545         struct f2fs_map_blocks map = { .m_next_extent = NULL,
2546                                         .m_seg_type = NO_CHECK_TYPE,
2547                                         .m_may_create = false };
2548         struct extent_info ei = {0, 0, 0};
2549         pgoff_t pg_start, pg_end, next_pgofs;
2550         unsigned int blk_per_seg = sbi->blocks_per_seg;
2551         unsigned int total = 0, sec_num;
2552         block_t blk_end = 0;
2553         bool fragmented = false;
2554         int err;
2555
2556         /* if in-place-update policy is enabled, don't waste time here */
2557         if (f2fs_should_update_inplace(inode, NULL))
2558                 return -EINVAL;
2559
2560         pg_start = range->start >> PAGE_SHIFT;
2561         pg_end = (range->start + range->len) >> PAGE_SHIFT;
2562
2563         f2fs_balance_fs(sbi, true);
2564
2565         inode_lock(inode);
2566
2567         /* writeback all dirty pages in the range */
2568         err = filemap_write_and_wait_range(inode->i_mapping, range->start,
2569                                                 range->start + range->len - 1);
2570         if (err)
2571                 goto out;
2572
2573         /*
2574          * lookup mapping info in extent cache, skip defragmenting if physical
2575          * block addresses are continuous.
2576          */
2577         if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
2578                 if (ei.fofs + ei.len >= pg_end)
2579                         goto out;
2580         }
2581
2582         map.m_lblk = pg_start;
2583         map.m_next_pgofs = &next_pgofs;
2584
2585         /*
2586          * lookup mapping info in dnode page cache, skip defragmenting if all
2587          * physical block addresses are continuous even if there are hole(s)
2588          * in logical blocks.
2589          */
2590         while (map.m_lblk < pg_end) {
2591                 map.m_len = pg_end - map.m_lblk;
2592                 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2593                 if (err)
2594                         goto out;
2595
2596                 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2597                         map.m_lblk = next_pgofs;
2598                         continue;
2599                 }
2600
2601                 if (blk_end && blk_end != map.m_pblk)
2602                         fragmented = true;
2603
2604                 /* record total count of block that we're going to move */
2605                 total += map.m_len;
2606
2607                 blk_end = map.m_pblk + map.m_len;
2608
2609                 map.m_lblk += map.m_len;
2610         }
2611
2612         if (!fragmented) {
2613                 total = 0;
2614                 goto out;
2615         }
2616
2617         sec_num = DIV_ROUND_UP(total, BLKS_PER_SEC(sbi));
2618
2619         /*
2620          * make sure there are enough free section for LFS allocation, this can
2621          * avoid defragment running in SSR mode when free section are allocated
2622          * intensively
2623          */
2624         if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2625                 err = -EAGAIN;
2626                 goto out;
2627         }
2628
2629         map.m_lblk = pg_start;
2630         map.m_len = pg_end - pg_start;
2631         total = 0;
2632
2633         while (map.m_lblk < pg_end) {
2634                 pgoff_t idx;
2635                 int cnt = 0;
2636
2637 do_map:
2638                 map.m_len = pg_end - map.m_lblk;
2639                 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2640                 if (err)
2641                         goto clear_out;
2642
2643                 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2644                         map.m_lblk = next_pgofs;
2645                         goto check;
2646                 }
2647
2648                 set_inode_flag(inode, FI_DO_DEFRAG);
2649
2650                 idx = map.m_lblk;
2651                 while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
2652                         struct page *page;
2653
2654                         page = f2fs_get_lock_data_page(inode, idx, true);
2655                         if (IS_ERR(page)) {
2656                                 err = PTR_ERR(page);
2657                                 goto clear_out;
2658                         }
2659
2660                         set_page_dirty(page);
2661                         f2fs_put_page(page, 1);
2662
2663                         idx++;
2664                         cnt++;
2665                         total++;
2666                 }
2667
2668                 map.m_lblk = idx;
2669 check:
2670                 if (map.m_lblk < pg_end && cnt < blk_per_seg)
2671                         goto do_map;
2672
2673                 clear_inode_flag(inode, FI_DO_DEFRAG);
2674
2675                 err = filemap_fdatawrite(inode->i_mapping);
2676                 if (err)
2677                         goto out;
2678         }
2679 clear_out:
2680         clear_inode_flag(inode, FI_DO_DEFRAG);
2681 out:
2682         inode_unlock(inode);
2683         if (!err)
2684                 range->len = (u64)total << PAGE_SHIFT;
2685         return err;
2686 }
2687
2688 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2689 {
2690         struct inode *inode = file_inode(filp);
2691         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2692         struct f2fs_defragment range;
2693         int err;
2694
2695         if (!capable(CAP_SYS_ADMIN))
2696                 return -EPERM;
2697
2698         if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2699                 return -EINVAL;
2700
2701         if (f2fs_readonly(sbi->sb))
2702                 return -EROFS;
2703
2704         if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2705                                                         sizeof(range)))
2706                 return -EFAULT;
2707
2708         /* verify alignment of offset & size */
2709         if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2710                 return -EINVAL;
2711
2712         if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2713                                         max_file_blocks(inode)))
2714                 return -EINVAL;
2715
2716         err = mnt_want_write_file(filp);
2717         if (err)
2718                 return err;
2719
2720         err = f2fs_defragment_range(sbi, filp, &range);
2721         mnt_drop_write_file(filp);
2722
2723         f2fs_update_time(sbi, REQ_TIME);
2724         if (err < 0)
2725                 return err;
2726
2727         if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2728                                                         sizeof(range)))
2729                 return -EFAULT;
2730
2731         return 0;
2732 }
2733
2734 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2735                         struct file *file_out, loff_t pos_out, size_t len)
2736 {
2737         struct inode *src = file_inode(file_in);
2738         struct inode *dst = file_inode(file_out);
2739         struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2740         size_t olen = len, dst_max_i_size = 0;
2741         size_t dst_osize;
2742         int ret;
2743
2744         if (file_in->f_path.mnt != file_out->f_path.mnt ||
2745                                 src->i_sb != dst->i_sb)
2746                 return -EXDEV;
2747
2748         if (unlikely(f2fs_readonly(src->i_sb)))
2749                 return -EROFS;
2750
2751         if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2752                 return -EINVAL;
2753
2754         if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst))
2755                 return -EOPNOTSUPP;
2756
2757         if (pos_out < 0 || pos_in < 0)
2758                 return -EINVAL;
2759
2760         if (src == dst) {
2761                 if (pos_in == pos_out)
2762                         return 0;
2763                 if (pos_out > pos_in && pos_out < pos_in + len)
2764                         return -EINVAL;
2765         }
2766
2767         inode_lock(src);
2768         if (src != dst) {
2769                 ret = -EBUSY;
2770                 if (!inode_trylock(dst))
2771                         goto out;
2772         }
2773
2774         ret = -EINVAL;
2775         if (pos_in + len > src->i_size || pos_in + len < pos_in)
2776                 goto out_unlock;
2777         if (len == 0)
2778                 olen = len = src->i_size - pos_in;
2779         if (pos_in + len == src->i_size)
2780                 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2781         if (len == 0) {
2782                 ret = 0;
2783                 goto out_unlock;
2784         }
2785
2786         dst_osize = dst->i_size;
2787         if (pos_out + olen > dst->i_size)
2788                 dst_max_i_size = pos_out + olen;
2789
2790         /* verify the end result is block aligned */
2791         if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2792                         !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2793                         !IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2794                 goto out_unlock;
2795
2796         ret = f2fs_convert_inline_inode(src);
2797         if (ret)
2798                 goto out_unlock;
2799
2800         ret = f2fs_convert_inline_inode(dst);
2801         if (ret)
2802                 goto out_unlock;
2803
2804         /* write out all dirty pages from offset */
2805         ret = filemap_write_and_wait_range(src->i_mapping,
2806                                         pos_in, pos_in + len);
2807         if (ret)
2808                 goto out_unlock;
2809
2810         ret = filemap_write_and_wait_range(dst->i_mapping,
2811                                         pos_out, pos_out + len);
2812         if (ret)
2813                 goto out_unlock;
2814
2815         f2fs_balance_fs(sbi, true);
2816
2817         down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2818         if (src != dst) {
2819                 ret = -EBUSY;
2820                 if (!down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE]))
2821                         goto out_src;
2822         }
2823
2824         f2fs_lock_op(sbi);
2825         ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2826                                 pos_out >> F2FS_BLKSIZE_BITS,
2827                                 len >> F2FS_BLKSIZE_BITS, false);
2828
2829         if (!ret) {
2830                 if (dst_max_i_size)
2831                         f2fs_i_size_write(dst, dst_max_i_size);
2832                 else if (dst_osize != dst->i_size)
2833                         f2fs_i_size_write(dst, dst_osize);
2834         }
2835         f2fs_unlock_op(sbi);
2836
2837         if (src != dst)
2838                 up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
2839 out_src:
2840         up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2841 out_unlock:
2842         if (src != dst)
2843                 inode_unlock(dst);
2844 out:
2845         inode_unlock(src);
2846         return ret;
2847 }
2848
2849 static int __f2fs_ioc_move_range(struct file *filp,
2850                                 struct f2fs_move_range *range)
2851 {
2852         struct fd dst;
2853         int err;
2854
2855         if (!(filp->f_mode & FMODE_READ) ||
2856                         !(filp->f_mode & FMODE_WRITE))
2857                 return -EBADF;
2858
2859         dst = fdget(range->dst_fd);
2860         if (!dst.file)
2861                 return -EBADF;
2862
2863         if (!(dst.file->f_mode & FMODE_WRITE)) {
2864                 err = -EBADF;
2865                 goto err_out;
2866         }
2867
2868         err = mnt_want_write_file(filp);
2869         if (err)
2870                 goto err_out;
2871
2872         err = f2fs_move_file_range(filp, range->pos_in, dst.file,
2873                                         range->pos_out, range->len);
2874
2875         mnt_drop_write_file(filp);
2876 err_out:
2877         fdput(dst);
2878         return err;
2879 }
2880
2881 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2882 {
2883         struct f2fs_move_range range;
2884
2885         if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2886                                                         sizeof(range)))
2887                 return -EFAULT;
2888         return __f2fs_ioc_move_range(filp, &range);
2889 }
2890
2891 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
2892 {
2893         struct inode *inode = file_inode(filp);
2894         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2895         struct sit_info *sm = SIT_I(sbi);
2896         unsigned int start_segno = 0, end_segno = 0;
2897         unsigned int dev_start_segno = 0, dev_end_segno = 0;
2898         struct f2fs_flush_device range;
2899         int ret;
2900
2901         if (!capable(CAP_SYS_ADMIN))
2902                 return -EPERM;
2903
2904         if (f2fs_readonly(sbi->sb))
2905                 return -EROFS;
2906
2907         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2908                 return -EINVAL;
2909
2910         if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
2911                                                         sizeof(range)))
2912                 return -EFAULT;
2913
2914         if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num ||
2915                         __is_large_section(sbi)) {
2916                 f2fs_warn(sbi, "Can't flush %u in %d for segs_per_sec %u != 1",
2917                           range.dev_num, sbi->s_ndevs, sbi->segs_per_sec);
2918                 return -EINVAL;
2919         }
2920
2921         ret = mnt_want_write_file(filp);
2922         if (ret)
2923                 return ret;
2924
2925         if (range.dev_num != 0)
2926                 dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
2927         dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
2928
2929         start_segno = sm->last_victim[FLUSH_DEVICE];
2930         if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
2931                 start_segno = dev_start_segno;
2932         end_segno = min(start_segno + range.segments, dev_end_segno);
2933
2934         while (start_segno < end_segno) {
2935                 if (!down_write_trylock(&sbi->gc_lock)) {
2936                         ret = -EBUSY;
2937                         goto out;
2938                 }
2939                 sm->last_victim[GC_CB] = end_segno + 1;
2940                 sm->last_victim[GC_GREEDY] = end_segno + 1;
2941                 sm->last_victim[ALLOC_NEXT] = end_segno + 1;
2942                 ret = f2fs_gc(sbi, true, true, true, start_segno);
2943                 if (ret == -EAGAIN)
2944                         ret = 0;
2945                 else if (ret < 0)
2946                         break;
2947                 start_segno++;
2948         }
2949 out:
2950         mnt_drop_write_file(filp);
2951         return ret;
2952 }
2953
2954 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
2955 {
2956         struct inode *inode = file_inode(filp);
2957         u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
2958
2959         /* Must validate to set it with SQLite behavior in Android. */
2960         sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
2961
2962         return put_user(sb_feature, (u32 __user *)arg);
2963 }
2964
2965 #ifdef CONFIG_QUOTA
2966 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
2967 {
2968         struct dquot *transfer_to[MAXQUOTAS] = {};
2969         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2970         struct super_block *sb = sbi->sb;
2971         int err = 0;
2972
2973         transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
2974         if (!IS_ERR(transfer_to[PRJQUOTA])) {
2975                 err = __dquot_transfer(inode, transfer_to);
2976                 if (err)
2977                         set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2978                 dqput(transfer_to[PRJQUOTA]);
2979         }
2980         return err;
2981 }
2982
2983 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
2984 {
2985         struct f2fs_inode_info *fi = F2FS_I(inode);
2986         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2987         struct page *ipage;
2988         kprojid_t kprojid;
2989         int err;
2990
2991         if (!f2fs_sb_has_project_quota(sbi)) {
2992                 if (projid != F2FS_DEF_PROJID)
2993                         return -EOPNOTSUPP;
2994                 else
2995                         return 0;
2996         }
2997
2998         if (!f2fs_has_extra_attr(inode))
2999                 return -EOPNOTSUPP;
3000
3001         kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
3002
3003         if (projid_eq(kprojid, F2FS_I(inode)->i_projid))
3004                 return 0;
3005
3006         err = -EPERM;
3007         /* Is it quota file? Do not allow user to mess with it */
3008         if (IS_NOQUOTA(inode))
3009                 return err;
3010
3011         ipage = f2fs_get_node_page(sbi, inode->i_ino);
3012         if (IS_ERR(ipage))
3013                 return PTR_ERR(ipage);
3014
3015         if (!F2FS_FITS_IN_INODE(F2FS_INODE(ipage), fi->i_extra_isize,
3016                                                                 i_projid)) {
3017                 err = -EOVERFLOW;
3018                 f2fs_put_page(ipage, 1);
3019                 return err;
3020         }
3021         f2fs_put_page(ipage, 1);
3022
3023         err = dquot_initialize(inode);
3024         if (err)
3025                 return err;
3026
3027         f2fs_lock_op(sbi);
3028         err = f2fs_transfer_project_quota(inode, kprojid);
3029         if (err)
3030                 goto out_unlock;
3031
3032         F2FS_I(inode)->i_projid = kprojid;
3033         inode->i_ctime = current_time(inode);
3034         f2fs_mark_inode_dirty_sync(inode, true);
3035 out_unlock:
3036         f2fs_unlock_op(sbi);
3037         return err;
3038 }
3039 #else
3040 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3041 {
3042         return 0;
3043 }
3044
3045 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3046 {
3047         if (projid != F2FS_DEF_PROJID)
3048                 return -EOPNOTSUPP;
3049         return 0;
3050 }
3051 #endif
3052
3053 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3054 {
3055         struct inode *inode = d_inode(dentry);
3056         struct f2fs_inode_info *fi = F2FS_I(inode);
3057         u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
3058
3059         if (IS_ENCRYPTED(inode))
3060                 fsflags |= FS_ENCRYPT_FL;
3061         if (IS_VERITY(inode))
3062                 fsflags |= FS_VERITY_FL;
3063         if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
3064                 fsflags |= FS_INLINE_DATA_FL;
3065         if (is_inode_flag_set(inode, FI_PIN_FILE))
3066                 fsflags |= FS_NOCOW_FL;
3067
3068         fileattr_fill_flags(fa, fsflags & F2FS_GETTABLE_FS_FL);
3069
3070         if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)))
3071                 fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid);
3072
3073         return 0;
3074 }
3075
3076 int f2fs_fileattr_set(struct user_namespace *mnt_userns,
3077                       struct dentry *dentry, struct fileattr *fa)
3078 {
3079         struct inode *inode = d_inode(dentry);
3080         u32 fsflags = fa->flags, mask = F2FS_SETTABLE_FS_FL;
3081         u32 iflags;
3082         int err;
3083
3084         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
3085                 return -EIO;
3086         if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
3087                 return -ENOSPC;
3088         if (fsflags & ~F2FS_GETTABLE_FS_FL)
3089                 return -EOPNOTSUPP;
3090         fsflags &= F2FS_SETTABLE_FS_FL;
3091         if (!fa->flags_valid)
3092                 mask &= FS_COMMON_FL;
3093
3094         iflags = f2fs_fsflags_to_iflags(fsflags);
3095         if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
3096                 return -EOPNOTSUPP;
3097
3098         err = f2fs_setflags_common(inode, iflags, f2fs_fsflags_to_iflags(mask));
3099         if (!err)
3100                 err = f2fs_ioc_setproject(inode, fa->fsx_projid);
3101
3102         return err;
3103 }
3104
3105 int f2fs_pin_file_control(struct inode *inode, bool inc)
3106 {
3107         struct f2fs_inode_info *fi = F2FS_I(inode);
3108         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3109
3110         /* Use i_gc_failures for normal file as a risk signal. */
3111         if (inc)
3112                 f2fs_i_gc_failures_write(inode,
3113                                 fi->i_gc_failures[GC_FAILURE_PIN] + 1);
3114
3115         if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) {
3116                 f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials",
3117                           __func__, inode->i_ino,
3118                           fi->i_gc_failures[GC_FAILURE_PIN]);
3119                 clear_inode_flag(inode, FI_PIN_FILE);
3120                 return -EAGAIN;
3121         }
3122         return 0;
3123 }
3124
3125 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
3126 {
3127         struct inode *inode = file_inode(filp);
3128         __u32 pin;
3129         int ret = 0;
3130
3131         if (get_user(pin, (__u32 __user *)arg))
3132                 return -EFAULT;
3133
3134         if (!S_ISREG(inode->i_mode))
3135                 return -EINVAL;
3136
3137         if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3138                 return -EROFS;
3139
3140         ret = mnt_want_write_file(filp);
3141         if (ret)
3142                 return ret;
3143
3144         inode_lock(inode);
3145
3146         if (f2fs_should_update_outplace(inode, NULL)) {
3147                 ret = -EINVAL;
3148                 goto out;
3149         }
3150
3151         if (!pin) {
3152                 clear_inode_flag(inode, FI_PIN_FILE);
3153                 f2fs_i_gc_failures_write(inode, 0);
3154                 goto done;
3155         }
3156
3157         if (f2fs_pin_file_control(inode, false)) {
3158                 ret = -EAGAIN;
3159                 goto out;
3160         }
3161
3162         ret = f2fs_convert_inline_inode(inode);
3163         if (ret)
3164                 goto out;
3165
3166         if (!f2fs_disable_compressed_file(inode)) {
3167                 ret = -EOPNOTSUPP;
3168                 goto out;
3169         }
3170
3171         set_inode_flag(inode, FI_PIN_FILE);
3172         ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3173 done:
3174         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3175 out:
3176         inode_unlock(inode);
3177         mnt_drop_write_file(filp);
3178         return ret;
3179 }
3180
3181 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
3182 {
3183         struct inode *inode = file_inode(filp);
3184         __u32 pin = 0;
3185
3186         if (is_inode_flag_set(inode, FI_PIN_FILE))
3187                 pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3188         return put_user(pin, (u32 __user *)arg);
3189 }
3190
3191 int f2fs_precache_extents(struct inode *inode)
3192 {
3193         struct f2fs_inode_info *fi = F2FS_I(inode);
3194         struct f2fs_map_blocks map;
3195         pgoff_t m_next_extent;
3196         loff_t end;
3197         int err;
3198
3199         if (is_inode_flag_set(inode, FI_NO_EXTENT))
3200                 return -EOPNOTSUPP;
3201
3202         map.m_lblk = 0;
3203         map.m_next_pgofs = NULL;
3204         map.m_next_extent = &m_next_extent;
3205         map.m_seg_type = NO_CHECK_TYPE;
3206         map.m_may_create = false;
3207         end = max_file_blocks(inode);
3208
3209         while (map.m_lblk < end) {
3210                 map.m_len = end - map.m_lblk;
3211
3212                 down_write(&fi->i_gc_rwsem[WRITE]);
3213                 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_PRECACHE);
3214                 up_write(&fi->i_gc_rwsem[WRITE]);
3215                 if (err)
3216                         return err;
3217
3218                 map.m_lblk = m_next_extent;
3219         }
3220
3221         return 0;
3222 }
3223
3224 static int f2fs_ioc_precache_extents(struct file *filp, unsigned long arg)
3225 {
3226         return f2fs_precache_extents(file_inode(filp));
3227 }
3228
3229 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg)
3230 {
3231         struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
3232         __u64 block_count;
3233
3234         if (!capable(CAP_SYS_ADMIN))
3235                 return -EPERM;
3236
3237         if (f2fs_readonly(sbi->sb))
3238                 return -EROFS;
3239
3240         if (copy_from_user(&block_count, (void __user *)arg,
3241                            sizeof(block_count)))
3242                 return -EFAULT;
3243
3244         return f2fs_resize_fs(sbi, block_count);
3245 }
3246
3247 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg)
3248 {
3249         struct inode *inode = file_inode(filp);
3250
3251         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3252
3253         if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) {
3254                 f2fs_warn(F2FS_I_SB(inode),
3255                           "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem",
3256                           inode->i_ino);
3257                 return -EOPNOTSUPP;
3258         }
3259
3260         return fsverity_ioctl_enable(filp, (const void __user *)arg);
3261 }
3262
3263 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg)
3264 {
3265         if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3266                 return -EOPNOTSUPP;
3267
3268         return fsverity_ioctl_measure(filp, (void __user *)arg);
3269 }
3270
3271 static int f2fs_ioc_read_verity_metadata(struct file *filp, unsigned long arg)
3272 {
3273         if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3274                 return -EOPNOTSUPP;
3275
3276         return fsverity_ioctl_read_metadata(filp, (const void __user *)arg);
3277 }
3278
3279 static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg)
3280 {
3281         struct inode *inode = file_inode(filp);
3282         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3283         char *vbuf;
3284         int count;
3285         int err = 0;
3286
3287         vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL);
3288         if (!vbuf)
3289                 return -ENOMEM;
3290
3291         down_read(&sbi->sb_lock);
3292         count = utf16s_to_utf8s(sbi->raw_super->volume_name,
3293                         ARRAY_SIZE(sbi->raw_super->volume_name),
3294                         UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME);
3295         up_read(&sbi->sb_lock);
3296
3297         if (copy_to_user((char __user *)arg, vbuf,
3298                                 min(FSLABEL_MAX, count)))
3299                 err = -EFAULT;
3300
3301         kfree(vbuf);
3302         return err;
3303 }
3304
3305 static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg)
3306 {
3307         struct inode *inode = file_inode(filp);
3308         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3309         char *vbuf;
3310         int err = 0;
3311
3312         if (!capable(CAP_SYS_ADMIN))
3313                 return -EPERM;
3314
3315         vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX);
3316         if (IS_ERR(vbuf))
3317                 return PTR_ERR(vbuf);
3318
3319         err = mnt_want_write_file(filp);
3320         if (err)
3321                 goto out;
3322
3323         down_write(&sbi->sb_lock);
3324
3325         memset(sbi->raw_super->volume_name, 0,
3326                         sizeof(sbi->raw_super->volume_name));
3327         utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN,
3328                         sbi->raw_super->volume_name,
3329                         ARRAY_SIZE(sbi->raw_super->volume_name));
3330
3331         err = f2fs_commit_super(sbi, false);
3332
3333         up_write(&sbi->sb_lock);
3334
3335         mnt_drop_write_file(filp);
3336 out:
3337         kfree(vbuf);
3338         return err;
3339 }
3340
3341 static int f2fs_get_compress_blocks(struct file *filp, unsigned long arg)
3342 {
3343         struct inode *inode = file_inode(filp);
3344         __u64 blocks;
3345
3346         if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3347                 return -EOPNOTSUPP;
3348
3349         if (!f2fs_compressed_file(inode))
3350                 return -EINVAL;
3351
3352         blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks);
3353         return put_user(blocks, (u64 __user *)arg);
3354 }
3355
3356 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3357 {
3358         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3359         unsigned int released_blocks = 0;
3360         int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3361         block_t blkaddr;
3362         int i;
3363
3364         for (i = 0; i < count; i++) {
3365                 blkaddr = data_blkaddr(dn->inode, dn->node_page,
3366                                                 dn->ofs_in_node + i);
3367
3368                 if (!__is_valid_data_blkaddr(blkaddr))
3369                         continue;
3370                 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3371                                         DATA_GENERIC_ENHANCE)))
3372                         return -EFSCORRUPTED;
3373         }
3374
3375         while (count) {
3376                 int compr_blocks = 0;
3377
3378                 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3379                         blkaddr = f2fs_data_blkaddr(dn);
3380
3381                         if (i == 0) {
3382                                 if (blkaddr == COMPRESS_ADDR)
3383                                         continue;
3384                                 dn->ofs_in_node += cluster_size;
3385                                 goto next;
3386                         }
3387
3388                         if (__is_valid_data_blkaddr(blkaddr))
3389                                 compr_blocks++;
3390
3391                         if (blkaddr != NEW_ADDR)
3392                                 continue;
3393
3394                         dn->data_blkaddr = NULL_ADDR;
3395                         f2fs_set_data_blkaddr(dn);
3396                 }
3397
3398                 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false);
3399                 dec_valid_block_count(sbi, dn->inode,
3400                                         cluster_size - compr_blocks);
3401
3402                 released_blocks += cluster_size - compr_blocks;
3403 next:
3404                 count -= cluster_size;
3405         }
3406
3407         return released_blocks;
3408 }
3409
3410 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg)
3411 {
3412         struct inode *inode = file_inode(filp);
3413         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3414         pgoff_t page_idx = 0, last_idx;
3415         unsigned int released_blocks = 0;
3416         int ret;
3417         int writecount;
3418
3419         if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3420                 return -EOPNOTSUPP;
3421
3422         if (!f2fs_compressed_file(inode))
3423                 return -EINVAL;
3424
3425         if (f2fs_readonly(sbi->sb))
3426                 return -EROFS;
3427
3428         ret = mnt_want_write_file(filp);
3429         if (ret)
3430                 return ret;
3431
3432         f2fs_balance_fs(F2FS_I_SB(inode), true);
3433
3434         inode_lock(inode);
3435
3436         writecount = atomic_read(&inode->i_writecount);
3437         if ((filp->f_mode & FMODE_WRITE && writecount != 1) ||
3438                         (!(filp->f_mode & FMODE_WRITE) && writecount)) {
3439                 ret = -EBUSY;
3440                 goto out;
3441         }
3442
3443         if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3444                 ret = -EINVAL;
3445                 goto out;
3446         }
3447
3448         ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
3449         if (ret)
3450                 goto out;
3451
3452         set_inode_flag(inode, FI_COMPRESS_RELEASED);
3453         inode->i_ctime = current_time(inode);
3454         f2fs_mark_inode_dirty_sync(inode, true);
3455
3456         if (!atomic_read(&F2FS_I(inode)->i_compr_blocks))
3457                 goto out;
3458
3459         down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3460         filemap_invalidate_lock(inode->i_mapping);
3461
3462         last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3463
3464         while (page_idx < last_idx) {
3465                 struct dnode_of_data dn;
3466                 pgoff_t end_offset, count;
3467
3468                 set_new_dnode(&dn, inode, NULL, NULL, 0);
3469                 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3470                 if (ret) {
3471                         if (ret == -ENOENT) {
3472                                 page_idx = f2fs_get_next_page_offset(&dn,
3473                                                                 page_idx);
3474                                 ret = 0;
3475                                 continue;
3476                         }
3477                         break;
3478                 }
3479
3480                 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3481                 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3482                 count = round_up(count, F2FS_I(inode)->i_cluster_size);
3483
3484                 ret = release_compress_blocks(&dn, count);
3485
3486                 f2fs_put_dnode(&dn);
3487
3488                 if (ret < 0)
3489                         break;
3490
3491                 page_idx += count;
3492                 released_blocks += ret;
3493         }
3494
3495         filemap_invalidate_unlock(inode->i_mapping);
3496         up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3497 out:
3498         inode_unlock(inode);
3499
3500         mnt_drop_write_file(filp);
3501
3502         if (ret >= 0) {
3503                 ret = put_user(released_blocks, (u64 __user *)arg);
3504         } else if (released_blocks &&
3505                         atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3506                 set_sbi_flag(sbi, SBI_NEED_FSCK);
3507                 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3508                         "iblocks=%llu, released=%u, compr_blocks=%u, "
3509                         "run fsck to fix.",
3510                         __func__, inode->i_ino, inode->i_blocks,
3511                         released_blocks,
3512                         atomic_read(&F2FS_I(inode)->i_compr_blocks));
3513         }
3514
3515         return ret;
3516 }
3517
3518 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3519 {
3520         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3521         unsigned int reserved_blocks = 0;
3522         int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3523         block_t blkaddr;
3524         int i;
3525
3526         for (i = 0; i < count; i++) {
3527                 blkaddr = data_blkaddr(dn->inode, dn->node_page,
3528                                                 dn->ofs_in_node + i);
3529
3530                 if (!__is_valid_data_blkaddr(blkaddr))
3531                         continue;
3532                 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3533                                         DATA_GENERIC_ENHANCE)))
3534                         return -EFSCORRUPTED;
3535         }
3536
3537         while (count) {
3538                 int compr_blocks = 0;
3539                 blkcnt_t reserved;
3540                 int ret;
3541
3542                 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3543                         blkaddr = f2fs_data_blkaddr(dn);
3544
3545                         if (i == 0) {
3546                                 if (blkaddr == COMPRESS_ADDR)
3547                                         continue;
3548                                 dn->ofs_in_node += cluster_size;
3549                                 goto next;
3550                         }
3551
3552                         if (__is_valid_data_blkaddr(blkaddr)) {
3553                                 compr_blocks++;
3554                                 continue;
3555                         }
3556
3557                         dn->data_blkaddr = NEW_ADDR;
3558                         f2fs_set_data_blkaddr(dn);
3559                 }
3560
3561                 reserved = cluster_size - compr_blocks;
3562                 ret = inc_valid_block_count(sbi, dn->inode, &reserved);
3563                 if (ret)
3564                         return ret;
3565
3566                 if (reserved != cluster_size - compr_blocks)
3567                         return -ENOSPC;
3568
3569                 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true);
3570
3571                 reserved_blocks += reserved;
3572 next:
3573                 count -= cluster_size;
3574         }
3575
3576         return reserved_blocks;
3577 }
3578
3579 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg)
3580 {
3581         struct inode *inode = file_inode(filp);
3582         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3583         pgoff_t page_idx = 0, last_idx;
3584         unsigned int reserved_blocks = 0;
3585         int ret;
3586
3587         if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3588                 return -EOPNOTSUPP;
3589
3590         if (!f2fs_compressed_file(inode))
3591                 return -EINVAL;
3592
3593         if (f2fs_readonly(sbi->sb))
3594                 return -EROFS;
3595
3596         ret = mnt_want_write_file(filp);
3597         if (ret)
3598                 return ret;
3599
3600         if (atomic_read(&F2FS_I(inode)->i_compr_blocks))
3601                 goto out;
3602
3603         f2fs_balance_fs(F2FS_I_SB(inode), true);
3604
3605         inode_lock(inode);
3606
3607         if (!is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3608                 ret = -EINVAL;
3609                 goto unlock_inode;
3610         }
3611
3612         down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3613         filemap_invalidate_lock(inode->i_mapping);
3614
3615         last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3616
3617         while (page_idx < last_idx) {
3618                 struct dnode_of_data dn;
3619                 pgoff_t end_offset, count;
3620
3621                 set_new_dnode(&dn, inode, NULL, NULL, 0);
3622                 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3623                 if (ret) {
3624                         if (ret == -ENOENT) {
3625                                 page_idx = f2fs_get_next_page_offset(&dn,
3626                                                                 page_idx);
3627                                 ret = 0;
3628                                 continue;
3629                         }
3630                         break;
3631                 }
3632
3633                 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3634                 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3635                 count = round_up(count, F2FS_I(inode)->i_cluster_size);
3636
3637                 ret = reserve_compress_blocks(&dn, count);
3638
3639                 f2fs_put_dnode(&dn);
3640
3641                 if (ret < 0)
3642                         break;
3643
3644                 page_idx += count;
3645                 reserved_blocks += ret;
3646         }
3647
3648         filemap_invalidate_unlock(inode->i_mapping);
3649         up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3650
3651         if (ret >= 0) {
3652                 clear_inode_flag(inode, FI_COMPRESS_RELEASED);
3653                 inode->i_ctime = current_time(inode);
3654                 f2fs_mark_inode_dirty_sync(inode, true);
3655         }
3656 unlock_inode:
3657         inode_unlock(inode);
3658 out:
3659         mnt_drop_write_file(filp);
3660
3661         if (ret >= 0) {
3662                 ret = put_user(reserved_blocks, (u64 __user *)arg);
3663         } else if (reserved_blocks &&
3664                         atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3665                 set_sbi_flag(sbi, SBI_NEED_FSCK);
3666                 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3667                         "iblocks=%llu, reserved=%u, compr_blocks=%u, "
3668                         "run fsck to fix.",
3669                         __func__, inode->i_ino, inode->i_blocks,
3670                         reserved_blocks,
3671                         atomic_read(&F2FS_I(inode)->i_compr_blocks));
3672         }
3673
3674         return ret;
3675 }
3676
3677 static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode,
3678                 pgoff_t off, block_t block, block_t len, u32 flags)
3679 {
3680         struct request_queue *q = bdev_get_queue(bdev);
3681         sector_t sector = SECTOR_FROM_BLOCK(block);
3682         sector_t nr_sects = SECTOR_FROM_BLOCK(len);
3683         int ret = 0;
3684
3685         if (!q)
3686                 return -ENXIO;
3687
3688         if (flags & F2FS_TRIM_FILE_DISCARD)
3689                 ret = blkdev_issue_discard(bdev, sector, nr_sects, GFP_NOFS,
3690                                                 blk_queue_secure_erase(q) ?
3691                                                 BLKDEV_DISCARD_SECURE : 0);
3692
3693         if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) {
3694                 if (IS_ENCRYPTED(inode))
3695                         ret = fscrypt_zeroout_range(inode, off, block, len);
3696                 else
3697                         ret = blkdev_issue_zeroout(bdev, sector, nr_sects,
3698                                         GFP_NOFS, 0);
3699         }
3700
3701         return ret;
3702 }
3703
3704 static int f2fs_sec_trim_file(struct file *filp, unsigned long arg)
3705 {
3706         struct inode *inode = file_inode(filp);
3707         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3708         struct address_space *mapping = inode->i_mapping;
3709         struct block_device *prev_bdev = NULL;
3710         struct f2fs_sectrim_range range;
3711         pgoff_t index, pg_end, prev_index = 0;
3712         block_t prev_block = 0, len = 0;
3713         loff_t end_addr;
3714         bool to_end = false;
3715         int ret = 0;
3716
3717         if (!(filp->f_mode & FMODE_WRITE))
3718                 return -EBADF;
3719
3720         if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg,
3721                                 sizeof(range)))
3722                 return -EFAULT;
3723
3724         if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) ||
3725                         !S_ISREG(inode->i_mode))
3726                 return -EINVAL;
3727
3728         if (((range.flags & F2FS_TRIM_FILE_DISCARD) &&
3729                         !f2fs_hw_support_discard(sbi)) ||
3730                         ((range.flags & F2FS_TRIM_FILE_ZEROOUT) &&
3731                          IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi)))
3732                 return -EOPNOTSUPP;
3733
3734         file_start_write(filp);
3735         inode_lock(inode);
3736
3737         if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) ||
3738                         range.start >= inode->i_size) {
3739                 ret = -EINVAL;
3740                 goto err;
3741         }
3742
3743         if (range.len == 0)
3744                 goto err;
3745
3746         if (inode->i_size - range.start > range.len) {
3747                 end_addr = range.start + range.len;
3748         } else {
3749                 end_addr = range.len == (u64)-1 ?
3750                         sbi->sb->s_maxbytes : inode->i_size;
3751                 to_end = true;
3752         }
3753
3754         if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) ||
3755                         (!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) {
3756                 ret = -EINVAL;
3757                 goto err;
3758         }
3759
3760         index = F2FS_BYTES_TO_BLK(range.start);
3761         pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE);
3762
3763         ret = f2fs_convert_inline_inode(inode);
3764         if (ret)
3765                 goto err;
3766
3767         down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3768         filemap_invalidate_lock(mapping);
3769
3770         ret = filemap_write_and_wait_range(mapping, range.start,
3771                         to_end ? LLONG_MAX : end_addr - 1);
3772         if (ret)
3773                 goto out;
3774
3775         truncate_inode_pages_range(mapping, range.start,
3776                         to_end ? -1 : end_addr - 1);
3777
3778         while (index < pg_end) {
3779                 struct dnode_of_data dn;
3780                 pgoff_t end_offset, count;
3781                 int i;
3782
3783                 set_new_dnode(&dn, inode, NULL, NULL, 0);
3784                 ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3785                 if (ret) {
3786                         if (ret == -ENOENT) {
3787                                 index = f2fs_get_next_page_offset(&dn, index);
3788                                 continue;
3789                         }
3790                         goto out;
3791                 }
3792
3793                 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3794                 count = min(end_offset - dn.ofs_in_node, pg_end - index);
3795                 for (i = 0; i < count; i++, index++, dn.ofs_in_node++) {
3796                         struct block_device *cur_bdev;
3797                         block_t blkaddr = f2fs_data_blkaddr(&dn);
3798
3799                         if (!__is_valid_data_blkaddr(blkaddr))
3800                                 continue;
3801
3802                         if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3803                                                 DATA_GENERIC_ENHANCE)) {
3804                                 ret = -EFSCORRUPTED;
3805                                 f2fs_put_dnode(&dn);
3806                                 goto out;
3807                         }
3808
3809                         cur_bdev = f2fs_target_device(sbi, blkaddr, NULL);
3810                         if (f2fs_is_multi_device(sbi)) {
3811                                 int di = f2fs_target_device_index(sbi, blkaddr);
3812
3813                                 blkaddr -= FDEV(di).start_blk;
3814                         }
3815
3816                         if (len) {
3817                                 if (prev_bdev == cur_bdev &&
3818                                                 index == prev_index + len &&
3819                                                 blkaddr == prev_block + len) {
3820                                         len++;
3821                                 } else {
3822                                         ret = f2fs_secure_erase(prev_bdev,
3823                                                 inode, prev_index, prev_block,
3824                                                 len, range.flags);
3825                                         if (ret) {
3826                                                 f2fs_put_dnode(&dn);
3827                                                 goto out;
3828                                         }
3829
3830                                         len = 0;
3831                                 }
3832                         }
3833
3834                         if (!len) {
3835                                 prev_bdev = cur_bdev;
3836                                 prev_index = index;
3837                                 prev_block = blkaddr;
3838                                 len = 1;
3839                         }
3840                 }
3841
3842                 f2fs_put_dnode(&dn);
3843
3844                 if (fatal_signal_pending(current)) {
3845                         ret = -EINTR;
3846                         goto out;
3847                 }
3848                 cond_resched();
3849         }
3850
3851         if (len)
3852                 ret = f2fs_secure_erase(prev_bdev, inode, prev_index,
3853                                 prev_block, len, range.flags);
3854 out:
3855         filemap_invalidate_unlock(mapping);
3856         up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3857 err:
3858         inode_unlock(inode);
3859         file_end_write(filp);
3860
3861         return ret;
3862 }
3863
3864 static int f2fs_ioc_get_compress_option(struct file *filp, unsigned long arg)
3865 {
3866         struct inode *inode = file_inode(filp);
3867         struct f2fs_comp_option option;
3868
3869         if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3870                 return -EOPNOTSUPP;
3871
3872         inode_lock_shared(inode);
3873
3874         if (!f2fs_compressed_file(inode)) {
3875                 inode_unlock_shared(inode);
3876                 return -ENODATA;
3877         }
3878
3879         option.algorithm = F2FS_I(inode)->i_compress_algorithm;
3880         option.log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
3881
3882         inode_unlock_shared(inode);
3883
3884         if (copy_to_user((struct f2fs_comp_option __user *)arg, &option,
3885                                 sizeof(option)))
3886                 return -EFAULT;
3887
3888         return 0;
3889 }
3890
3891 static int f2fs_ioc_set_compress_option(struct file *filp, unsigned long arg)
3892 {
3893         struct inode *inode = file_inode(filp);
3894         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3895         struct f2fs_comp_option option;
3896         int ret = 0;
3897
3898         if (!f2fs_sb_has_compression(sbi))
3899                 return -EOPNOTSUPP;
3900
3901         if (!(filp->f_mode & FMODE_WRITE))
3902                 return -EBADF;
3903
3904         if (copy_from_user(&option, (struct f2fs_comp_option __user *)arg,
3905                                 sizeof(option)))
3906                 return -EFAULT;
3907
3908         if (!f2fs_compressed_file(inode) ||
3909                         option.log_cluster_size < MIN_COMPRESS_LOG_SIZE ||
3910                         option.log_cluster_size > MAX_COMPRESS_LOG_SIZE ||
3911                         option.algorithm >= COMPRESS_MAX)
3912                 return -EINVAL;
3913
3914         file_start_write(filp);
3915         inode_lock(inode);
3916
3917         if (f2fs_is_mmap_file(inode) || get_dirty_pages(inode)) {
3918                 ret = -EBUSY;
3919                 goto out;
3920         }
3921
3922         if (inode->i_size != 0) {
3923                 ret = -EFBIG;
3924                 goto out;
3925         }
3926
3927         F2FS_I(inode)->i_compress_algorithm = option.algorithm;
3928         F2FS_I(inode)->i_log_cluster_size = option.log_cluster_size;
3929         F2FS_I(inode)->i_cluster_size = 1 << option.log_cluster_size;
3930         f2fs_mark_inode_dirty_sync(inode, true);
3931
3932         if (!f2fs_is_compress_backend_ready(inode))
3933                 f2fs_warn(sbi, "compression algorithm is successfully set, "
3934                         "but current kernel doesn't support this algorithm.");
3935 out:
3936         inode_unlock(inode);
3937         file_end_write(filp);
3938
3939         return ret;
3940 }
3941
3942 static int redirty_blocks(struct inode *inode, pgoff_t page_idx, int len)
3943 {
3944         DEFINE_READAHEAD(ractl, NULL, NULL, inode->i_mapping, page_idx);
3945         struct address_space *mapping = inode->i_mapping;
3946         struct page *page;
3947         pgoff_t redirty_idx = page_idx;
3948         int i, page_len = 0, ret = 0;
3949
3950         page_cache_ra_unbounded(&ractl, len, 0);
3951
3952         for (i = 0; i < len; i++, page_idx++) {
3953                 page = read_cache_page(mapping, page_idx, NULL, NULL);
3954                 if (IS_ERR(page)) {
3955                         ret = PTR_ERR(page);
3956                         break;
3957                 }
3958                 page_len++;
3959         }
3960
3961         for (i = 0; i < page_len; i++, redirty_idx++) {
3962                 page = find_lock_page(mapping, redirty_idx);
3963                 if (!page) {
3964                         ret = -ENOMEM;
3965                         break;
3966                 }
3967                 set_page_dirty(page);
3968                 f2fs_put_page(page, 1);
3969                 f2fs_put_page(page, 0);
3970         }
3971
3972         return ret;
3973 }
3974
3975 static int f2fs_ioc_decompress_file(struct file *filp, unsigned long arg)
3976 {
3977         struct inode *inode = file_inode(filp);
3978         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3979         struct f2fs_inode_info *fi = F2FS_I(inode);
3980         pgoff_t page_idx = 0, last_idx;
3981         unsigned int blk_per_seg = sbi->blocks_per_seg;
3982         int cluster_size = F2FS_I(inode)->i_cluster_size;
3983         int count, ret;
3984
3985         if (!f2fs_sb_has_compression(sbi) ||
3986                         F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
3987                 return -EOPNOTSUPP;
3988
3989         if (!(filp->f_mode & FMODE_WRITE))
3990                 return -EBADF;
3991
3992         if (!f2fs_compressed_file(inode))
3993                 return -EINVAL;
3994
3995         f2fs_balance_fs(F2FS_I_SB(inode), true);
3996
3997         file_start_write(filp);
3998         inode_lock(inode);
3999
4000         if (!f2fs_is_compress_backend_ready(inode)) {
4001                 ret = -EOPNOTSUPP;
4002                 goto out;
4003         }
4004
4005         if (f2fs_is_mmap_file(inode)) {
4006                 ret = -EBUSY;
4007                 goto out;
4008         }
4009
4010         ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4011         if (ret)
4012                 goto out;
4013
4014         if (!atomic_read(&fi->i_compr_blocks))
4015                 goto out;
4016
4017         last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4018
4019         count = last_idx - page_idx;
4020         while (count) {
4021                 int len = min(cluster_size, count);
4022
4023                 ret = redirty_blocks(inode, page_idx, len);
4024                 if (ret < 0)
4025                         break;
4026
4027                 if (get_dirty_pages(inode) >= blk_per_seg)
4028                         filemap_fdatawrite(inode->i_mapping);
4029
4030                 count -= len;
4031                 page_idx += len;
4032         }
4033
4034         if (!ret)
4035                 ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4036                                                         LLONG_MAX);
4037
4038         if (ret)
4039                 f2fs_warn(sbi, "%s: The file might be partially decompressed (errno=%d). Please delete the file.",
4040                           __func__, ret);
4041 out:
4042         inode_unlock(inode);
4043         file_end_write(filp);
4044
4045         return ret;
4046 }
4047
4048 static int f2fs_ioc_compress_file(struct file *filp, unsigned long arg)
4049 {
4050         struct inode *inode = file_inode(filp);
4051         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4052         pgoff_t page_idx = 0, last_idx;
4053         unsigned int blk_per_seg = sbi->blocks_per_seg;
4054         int cluster_size = F2FS_I(inode)->i_cluster_size;
4055         int count, ret;
4056
4057         if (!f2fs_sb_has_compression(sbi) ||
4058                         F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4059                 return -EOPNOTSUPP;
4060
4061         if (!(filp->f_mode & FMODE_WRITE))
4062                 return -EBADF;
4063
4064         if (!f2fs_compressed_file(inode))
4065                 return -EINVAL;
4066
4067         f2fs_balance_fs(F2FS_I_SB(inode), true);
4068
4069         file_start_write(filp);
4070         inode_lock(inode);
4071
4072         if (!f2fs_is_compress_backend_ready(inode)) {
4073                 ret = -EOPNOTSUPP;
4074                 goto out;
4075         }
4076
4077         if (f2fs_is_mmap_file(inode)) {
4078                 ret = -EBUSY;
4079                 goto out;
4080         }
4081
4082         ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4083         if (ret)
4084                 goto out;
4085
4086         set_inode_flag(inode, FI_ENABLE_COMPRESS);
4087
4088         last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4089
4090         count = last_idx - page_idx;
4091         while (count) {
4092                 int len = min(cluster_size, count);
4093
4094                 ret = redirty_blocks(inode, page_idx, len);
4095                 if (ret < 0)
4096                         break;
4097
4098                 if (get_dirty_pages(inode) >= blk_per_seg)
4099                         filemap_fdatawrite(inode->i_mapping);
4100
4101                 count -= len;
4102                 page_idx += len;
4103         }
4104
4105         if (!ret)
4106                 ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4107                                                         LLONG_MAX);
4108
4109         clear_inode_flag(inode, FI_ENABLE_COMPRESS);
4110
4111         if (ret)
4112                 f2fs_warn(sbi, "%s: The file might be partially compressed (errno=%d). Please delete the file.",
4113                           __func__, ret);
4114 out:
4115         inode_unlock(inode);
4116         file_end_write(filp);
4117
4118         return ret;
4119 }
4120
4121 static long __f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4122 {
4123         switch (cmd) {
4124         case FS_IOC_GETVERSION:
4125                 return f2fs_ioc_getversion(filp, arg);
4126         case F2FS_IOC_START_ATOMIC_WRITE:
4127                 return f2fs_ioc_start_atomic_write(filp);
4128         case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4129                 return f2fs_ioc_commit_atomic_write(filp);
4130         case F2FS_IOC_START_VOLATILE_WRITE:
4131                 return f2fs_ioc_start_volatile_write(filp);
4132         case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4133                 return f2fs_ioc_release_volatile_write(filp);
4134         case F2FS_IOC_ABORT_VOLATILE_WRITE:
4135                 return f2fs_ioc_abort_volatile_write(filp);
4136         case F2FS_IOC_SHUTDOWN:
4137                 return f2fs_ioc_shutdown(filp, arg);
4138         case FITRIM:
4139                 return f2fs_ioc_fitrim(filp, arg);
4140         case FS_IOC_SET_ENCRYPTION_POLICY:
4141                 return f2fs_ioc_set_encryption_policy(filp, arg);
4142         case FS_IOC_GET_ENCRYPTION_POLICY:
4143                 return f2fs_ioc_get_encryption_policy(filp, arg);
4144         case FS_IOC_GET_ENCRYPTION_PWSALT:
4145                 return f2fs_ioc_get_encryption_pwsalt(filp, arg);
4146         case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4147                 return f2fs_ioc_get_encryption_policy_ex(filp, arg);
4148         case FS_IOC_ADD_ENCRYPTION_KEY:
4149                 return f2fs_ioc_add_encryption_key(filp, arg);
4150         case FS_IOC_REMOVE_ENCRYPTION_KEY:
4151                 return f2fs_ioc_remove_encryption_key(filp, arg);
4152         case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4153                 return f2fs_ioc_remove_encryption_key_all_users(filp, arg);
4154         case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4155                 return f2fs_ioc_get_encryption_key_status(filp, arg);
4156         case FS_IOC_GET_ENCRYPTION_NONCE:
4157                 return f2fs_ioc_get_encryption_nonce(filp, arg);
4158         case F2FS_IOC_GARBAGE_COLLECT:
4159                 return f2fs_ioc_gc(filp, arg);
4160         case F2FS_IOC_GARBAGE_COLLECT_RANGE:
4161                 return f2fs_ioc_gc_range(filp, arg);
4162         case F2FS_IOC_WRITE_CHECKPOINT:
4163                 return f2fs_ioc_write_checkpoint(filp, arg);
4164         case F2FS_IOC_DEFRAGMENT:
4165                 return f2fs_ioc_defragment(filp, arg);
4166         case F2FS_IOC_MOVE_RANGE:
4167                 return f2fs_ioc_move_range(filp, arg);
4168         case F2FS_IOC_FLUSH_DEVICE:
4169                 return f2fs_ioc_flush_device(filp, arg);
4170         case F2FS_IOC_GET_FEATURES:
4171                 return f2fs_ioc_get_features(filp, arg);
4172         case F2FS_IOC_GET_PIN_FILE:
4173                 return f2fs_ioc_get_pin_file(filp, arg);
4174         case F2FS_IOC_SET_PIN_FILE:
4175                 return f2fs_ioc_set_pin_file(filp, arg);
4176         case F2FS_IOC_PRECACHE_EXTENTS:
4177                 return f2fs_ioc_precache_extents(filp, arg);
4178         case F2FS_IOC_RESIZE_FS:
4179                 return f2fs_ioc_resize_fs(filp, arg);
4180         case FS_IOC_ENABLE_VERITY:
4181                 return f2fs_ioc_enable_verity(filp, arg);
4182         case FS_IOC_MEASURE_VERITY:
4183                 return f2fs_ioc_measure_verity(filp, arg);
4184         case FS_IOC_READ_VERITY_METADATA:
4185                 return f2fs_ioc_read_verity_metadata(filp, arg);
4186         case FS_IOC_GETFSLABEL:
4187                 return f2fs_ioc_getfslabel(filp, arg);
4188         case FS_IOC_SETFSLABEL:
4189                 return f2fs_ioc_setfslabel(filp, arg);
4190         case F2FS_IOC_GET_COMPRESS_BLOCKS:
4191                 return f2fs_get_compress_blocks(filp, arg);
4192         case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4193                 return f2fs_release_compress_blocks(filp, arg);
4194         case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4195                 return f2fs_reserve_compress_blocks(filp, arg);
4196         case F2FS_IOC_SEC_TRIM_FILE:
4197                 return f2fs_sec_trim_file(filp, arg);
4198         case F2FS_IOC_GET_COMPRESS_OPTION:
4199                 return f2fs_ioc_get_compress_option(filp, arg);
4200         case F2FS_IOC_SET_COMPRESS_OPTION:
4201                 return f2fs_ioc_set_compress_option(filp, arg);
4202         case F2FS_IOC_DECOMPRESS_FILE:
4203                 return f2fs_ioc_decompress_file(filp, arg);
4204         case F2FS_IOC_COMPRESS_FILE:
4205                 return f2fs_ioc_compress_file(filp, arg);
4206         default:
4207                 return -ENOTTY;
4208         }
4209 }
4210
4211 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4212 {
4213         if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
4214                 return -EIO;
4215         if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp))))
4216                 return -ENOSPC;
4217
4218         return __f2fs_ioctl(filp, cmd, arg);
4219 }
4220
4221 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
4222 {
4223         struct file *file = iocb->ki_filp;
4224         struct inode *inode = file_inode(file);
4225         int ret;
4226
4227         if (!f2fs_is_compress_backend_ready(inode))
4228                 return -EOPNOTSUPP;
4229
4230         ret = generic_file_read_iter(iocb, iter);
4231
4232         if (ret > 0)
4233                 f2fs_update_iostat(F2FS_I_SB(inode), APP_READ_IO, ret);
4234
4235         return ret;
4236 }
4237
4238 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4239 {
4240         struct file *file = iocb->ki_filp;
4241         struct inode *inode = file_inode(file);
4242         ssize_t ret;
4243
4244         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
4245                 ret = -EIO;
4246                 goto out;
4247         }
4248
4249         if (!f2fs_is_compress_backend_ready(inode)) {
4250                 ret = -EOPNOTSUPP;
4251                 goto out;
4252         }
4253
4254         if (iocb->ki_flags & IOCB_NOWAIT) {
4255                 if (!inode_trylock(inode)) {
4256                         ret = -EAGAIN;
4257                         goto out;
4258                 }
4259         } else {
4260                 inode_lock(inode);
4261         }
4262
4263         if (unlikely(IS_IMMUTABLE(inode))) {
4264                 ret = -EPERM;
4265                 goto unlock;
4266         }
4267
4268         if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4269                 ret = -EPERM;
4270                 goto unlock;
4271         }
4272
4273         ret = generic_write_checks(iocb, from);
4274         if (ret > 0) {
4275                 bool preallocated = false;
4276                 size_t target_size = 0;
4277                 int err;
4278
4279                 if (iov_iter_fault_in_readable(from, iov_iter_count(from)))
4280                         set_inode_flag(inode, FI_NO_PREALLOC);
4281
4282                 if ((iocb->ki_flags & IOCB_NOWAIT)) {
4283                         if (!f2fs_overwrite_io(inode, iocb->ki_pos,
4284                                                 iov_iter_count(from)) ||
4285                                 f2fs_has_inline_data(inode) ||
4286                                 f2fs_force_buffered_io(inode, iocb, from)) {
4287                                 clear_inode_flag(inode, FI_NO_PREALLOC);
4288                                 inode_unlock(inode);
4289                                 ret = -EAGAIN;
4290                                 goto out;
4291                         }
4292                         goto write;
4293                 }
4294
4295                 if (is_inode_flag_set(inode, FI_NO_PREALLOC))
4296                         goto write;
4297
4298                 if (iocb->ki_flags & IOCB_DIRECT) {
4299                         /*
4300                          * Convert inline data for Direct I/O before entering
4301                          * f2fs_direct_IO().
4302                          */
4303                         err = f2fs_convert_inline_inode(inode);
4304                         if (err)
4305                                 goto out_err;
4306                         /*
4307                          * If force_buffere_io() is true, we have to allocate
4308                          * blocks all the time, since f2fs_direct_IO will fall
4309                          * back to buffered IO.
4310                          */
4311                         if (!f2fs_force_buffered_io(inode, iocb, from) &&
4312                                         f2fs_lfs_mode(F2FS_I_SB(inode)))
4313                                 goto write;
4314                 }
4315                 preallocated = true;
4316                 target_size = iocb->ki_pos + iov_iter_count(from);
4317
4318                 err = f2fs_preallocate_blocks(iocb, from);
4319                 if (err) {
4320 out_err:
4321                         clear_inode_flag(inode, FI_NO_PREALLOC);
4322                         inode_unlock(inode);
4323                         ret = err;
4324                         goto out;
4325                 }
4326 write:
4327                 ret = __generic_file_write_iter(iocb, from);
4328                 clear_inode_flag(inode, FI_NO_PREALLOC);
4329
4330                 /* if we couldn't write data, we should deallocate blocks. */
4331                 if (preallocated && i_size_read(inode) < target_size) {
4332                         down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4333                         filemap_invalidate_lock(inode->i_mapping);
4334                         f2fs_truncate(inode);
4335                         filemap_invalidate_unlock(inode->i_mapping);
4336                         up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4337                 }
4338
4339                 if (ret > 0)
4340                         f2fs_update_iostat(F2FS_I_SB(inode), APP_WRITE_IO, ret);
4341         }
4342 unlock:
4343         inode_unlock(inode);
4344 out:
4345         trace_f2fs_file_write_iter(inode, iocb->ki_pos,
4346                                         iov_iter_count(from), ret);
4347         if (ret > 0)
4348                 ret = generic_write_sync(iocb, ret);
4349         return ret;
4350 }
4351
4352 static int f2fs_file_fadvise(struct file *filp, loff_t offset, loff_t len,
4353                 int advice)
4354 {
4355         struct inode *inode;
4356         struct address_space *mapping;
4357         struct backing_dev_info *bdi;
4358
4359         if (advice == POSIX_FADV_SEQUENTIAL) {
4360                 inode = file_inode(filp);
4361                 if (S_ISFIFO(inode->i_mode))
4362                         return -ESPIPE;
4363
4364                 mapping = filp->f_mapping;
4365                 if (!mapping || len < 0)
4366                         return -EINVAL;
4367
4368                 bdi = inode_to_bdi(mapping->host);
4369                 filp->f_ra.ra_pages = bdi->ra_pages *
4370                         F2FS_I_SB(inode)->seq_file_ra_mul;
4371                 spin_lock(&filp->f_lock);
4372                 filp->f_mode &= ~FMODE_RANDOM;
4373                 spin_unlock(&filp->f_lock);
4374                 return 0;
4375         }
4376
4377         return generic_fadvise(filp, offset, len, advice);
4378 }
4379
4380 #ifdef CONFIG_COMPAT
4381 struct compat_f2fs_gc_range {
4382         u32 sync;
4383         compat_u64 start;
4384         compat_u64 len;
4385 };
4386 #define F2FS_IOC32_GARBAGE_COLLECT_RANGE        _IOW(F2FS_IOCTL_MAGIC, 11,\
4387                                                 struct compat_f2fs_gc_range)
4388
4389 static int f2fs_compat_ioc_gc_range(struct file *file, unsigned long arg)
4390 {
4391         struct compat_f2fs_gc_range __user *urange;
4392         struct f2fs_gc_range range;
4393         int err;
4394
4395         urange = compat_ptr(arg);
4396         err = get_user(range.sync, &urange->sync);
4397         err |= get_user(range.start, &urange->start);
4398         err |= get_user(range.len, &urange->len);
4399         if (err)
4400                 return -EFAULT;
4401
4402         return __f2fs_ioc_gc_range(file, &range);
4403 }
4404
4405 struct compat_f2fs_move_range {
4406         u32 dst_fd;
4407         compat_u64 pos_in;
4408         compat_u64 pos_out;
4409         compat_u64 len;
4410 };
4411 #define F2FS_IOC32_MOVE_RANGE           _IOWR(F2FS_IOCTL_MAGIC, 9,      \
4412                                         struct compat_f2fs_move_range)
4413
4414 static int f2fs_compat_ioc_move_range(struct file *file, unsigned long arg)
4415 {
4416         struct compat_f2fs_move_range __user *urange;
4417         struct f2fs_move_range range;
4418         int err;
4419
4420         urange = compat_ptr(arg);
4421         err = get_user(range.dst_fd, &urange->dst_fd);
4422         err |= get_user(range.pos_in, &urange->pos_in);
4423         err |= get_user(range.pos_out, &urange->pos_out);
4424         err |= get_user(range.len, &urange->len);
4425         if (err)
4426                 return -EFAULT;
4427
4428         return __f2fs_ioc_move_range(file, &range);
4429 }
4430
4431 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4432 {
4433         if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
4434                 return -EIO;
4435         if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(file))))
4436                 return -ENOSPC;
4437
4438         switch (cmd) {
4439         case FS_IOC32_GETVERSION:
4440                 cmd = FS_IOC_GETVERSION;
4441                 break;
4442         case F2FS_IOC32_GARBAGE_COLLECT_RANGE:
4443                 return f2fs_compat_ioc_gc_range(file, arg);
4444         case F2FS_IOC32_MOVE_RANGE:
4445                 return f2fs_compat_ioc_move_range(file, arg);
4446         case F2FS_IOC_START_ATOMIC_WRITE:
4447         case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4448         case F2FS_IOC_START_VOLATILE_WRITE:
4449         case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4450         case F2FS_IOC_ABORT_VOLATILE_WRITE:
4451         case F2FS_IOC_SHUTDOWN:
4452         case FITRIM:
4453         case FS_IOC_SET_ENCRYPTION_POLICY:
4454         case FS_IOC_GET_ENCRYPTION_PWSALT:
4455         case FS_IOC_GET_ENCRYPTION_POLICY:
4456         case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4457         case FS_IOC_ADD_ENCRYPTION_KEY:
4458         case FS_IOC_REMOVE_ENCRYPTION_KEY:
4459         case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4460         case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4461         case FS_IOC_GET_ENCRYPTION_NONCE:
4462         case F2FS_IOC_GARBAGE_COLLECT:
4463         case F2FS_IOC_WRITE_CHECKPOINT:
4464         case F2FS_IOC_DEFRAGMENT:
4465         case F2FS_IOC_FLUSH_DEVICE:
4466         case F2FS_IOC_GET_FEATURES:
4467         case F2FS_IOC_GET_PIN_FILE:
4468         case F2FS_IOC_SET_PIN_FILE:
4469         case F2FS_IOC_PRECACHE_EXTENTS:
4470         case F2FS_IOC_RESIZE_FS:
4471         case FS_IOC_ENABLE_VERITY:
4472         case FS_IOC_MEASURE_VERITY:
4473         case FS_IOC_READ_VERITY_METADATA:
4474         case FS_IOC_GETFSLABEL:
4475         case FS_IOC_SETFSLABEL:
4476         case F2FS_IOC_GET_COMPRESS_BLOCKS:
4477         case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4478         case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4479         case F2FS_IOC_SEC_TRIM_FILE:
4480         case F2FS_IOC_GET_COMPRESS_OPTION:
4481         case F2FS_IOC_SET_COMPRESS_OPTION:
4482         case F2FS_IOC_DECOMPRESS_FILE:
4483         case F2FS_IOC_COMPRESS_FILE:
4484                 break;
4485         default:
4486                 return -ENOIOCTLCMD;
4487         }
4488         return __f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
4489 }
4490 #endif
4491
4492 const struct file_operations f2fs_file_operations = {
4493         .llseek         = f2fs_llseek,
4494         .read_iter      = f2fs_file_read_iter,
4495         .write_iter     = f2fs_file_write_iter,
4496         .open           = f2fs_file_open,
4497         .release        = f2fs_release_file,
4498         .mmap           = f2fs_file_mmap,
4499         .flush          = f2fs_file_flush,
4500         .fsync          = f2fs_sync_file,
4501         .fallocate      = f2fs_fallocate,
4502         .unlocked_ioctl = f2fs_ioctl,
4503 #ifdef CONFIG_COMPAT
4504         .compat_ioctl   = f2fs_compat_ioctl,
4505 #endif
4506         .splice_read    = generic_file_splice_read,
4507         .splice_write   = iter_file_splice_write,
4508         .fadvise        = f2fs_file_fadvise,
4509 };