Merge tag 'f2fs-for-5.15-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/jaegeu...
[linux-2.6-microblaze.git] / fs / f2fs / data.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/data.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/buffer_head.h>
11 #include <linux/mpage.h>
12 #include <linux/writeback.h>
13 #include <linux/backing-dev.h>
14 #include <linux/pagevec.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/blk-crypto.h>
18 #include <linux/swap.h>
19 #include <linux/prefetch.h>
20 #include <linux/uio.h>
21 #include <linux/cleancache.h>
22 #include <linux/sched/signal.h>
23 #include <linux/fiemap.h>
24
25 #include "f2fs.h"
26 #include "node.h"
27 #include "segment.h"
28 #include "iostat.h"
29 #include <trace/events/f2fs.h>
30
31 #define NUM_PREALLOC_POST_READ_CTXS     128
32
33 static struct kmem_cache *bio_post_read_ctx_cache;
34 static struct kmem_cache *bio_entry_slab;
35 static mempool_t *bio_post_read_ctx_pool;
36 static struct bio_set f2fs_bioset;
37
38 #define F2FS_BIO_POOL_SIZE      NR_CURSEG_TYPE
39
40 int __init f2fs_init_bioset(void)
41 {
42         if (bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
43                                         0, BIOSET_NEED_BVECS))
44                 return -ENOMEM;
45         return 0;
46 }
47
48 void f2fs_destroy_bioset(void)
49 {
50         bioset_exit(&f2fs_bioset);
51 }
52
53 static bool __is_cp_guaranteed(struct page *page)
54 {
55         struct address_space *mapping = page->mapping;
56         struct inode *inode;
57         struct f2fs_sb_info *sbi;
58
59         if (!mapping)
60                 return false;
61
62         inode = mapping->host;
63         sbi = F2FS_I_SB(inode);
64
65         if (inode->i_ino == F2FS_META_INO(sbi) ||
66                         inode->i_ino == F2FS_NODE_INO(sbi) ||
67                         S_ISDIR(inode->i_mode))
68                 return true;
69
70         if (f2fs_is_compressed_page(page))
71                 return false;
72         if ((S_ISREG(inode->i_mode) &&
73                         (f2fs_is_atomic_file(inode) || IS_NOQUOTA(inode))) ||
74                         page_private_gcing(page))
75                 return true;
76         return false;
77 }
78
79 static enum count_type __read_io_type(struct page *page)
80 {
81         struct address_space *mapping = page_file_mapping(page);
82
83         if (mapping) {
84                 struct inode *inode = mapping->host;
85                 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
86
87                 if (inode->i_ino == F2FS_META_INO(sbi))
88                         return F2FS_RD_META;
89
90                 if (inode->i_ino == F2FS_NODE_INO(sbi))
91                         return F2FS_RD_NODE;
92         }
93         return F2FS_RD_DATA;
94 }
95
96 /* postprocessing steps for read bios */
97 enum bio_post_read_step {
98 #ifdef CONFIG_FS_ENCRYPTION
99         STEP_DECRYPT    = 1 << 0,
100 #else
101         STEP_DECRYPT    = 0,    /* compile out the decryption-related code */
102 #endif
103 #ifdef CONFIG_F2FS_FS_COMPRESSION
104         STEP_DECOMPRESS = 1 << 1,
105 #else
106         STEP_DECOMPRESS = 0,    /* compile out the decompression-related code */
107 #endif
108 #ifdef CONFIG_FS_VERITY
109         STEP_VERITY     = 1 << 2,
110 #else
111         STEP_VERITY     = 0,    /* compile out the verity-related code */
112 #endif
113 };
114
115 struct bio_post_read_ctx {
116         struct bio *bio;
117         struct f2fs_sb_info *sbi;
118         struct work_struct work;
119         unsigned int enabled_steps;
120         block_t fs_blkaddr;
121 };
122
123 static void f2fs_finish_read_bio(struct bio *bio)
124 {
125         struct bio_vec *bv;
126         struct bvec_iter_all iter_all;
127
128         /*
129          * Update and unlock the bio's pagecache pages, and put the
130          * decompression context for any compressed pages.
131          */
132         bio_for_each_segment_all(bv, bio, iter_all) {
133                 struct page *page = bv->bv_page;
134
135                 if (f2fs_is_compressed_page(page)) {
136                         if (bio->bi_status)
137                                 f2fs_end_read_compressed_page(page, true, 0);
138                         f2fs_put_page_dic(page);
139                         continue;
140                 }
141
142                 /* PG_error was set if decryption or verity failed. */
143                 if (bio->bi_status || PageError(page)) {
144                         ClearPageUptodate(page);
145                         /* will re-read again later */
146                         ClearPageError(page);
147                 } else {
148                         SetPageUptodate(page);
149                 }
150                 dec_page_count(F2FS_P_SB(page), __read_io_type(page));
151                 unlock_page(page);
152         }
153
154         if (bio->bi_private)
155                 mempool_free(bio->bi_private, bio_post_read_ctx_pool);
156         bio_put(bio);
157 }
158
159 static void f2fs_verify_bio(struct work_struct *work)
160 {
161         struct bio_post_read_ctx *ctx =
162                 container_of(work, struct bio_post_read_ctx, work);
163         struct bio *bio = ctx->bio;
164         bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS);
165
166         /*
167          * fsverity_verify_bio() may call readpages() again, and while verity
168          * will be disabled for this, decryption and/or decompression may still
169          * be needed, resulting in another bio_post_read_ctx being allocated.
170          * So to prevent deadlocks we need to release the current ctx to the
171          * mempool first.  This assumes that verity is the last post-read step.
172          */
173         mempool_free(ctx, bio_post_read_ctx_pool);
174         bio->bi_private = NULL;
175
176         /*
177          * Verify the bio's pages with fs-verity.  Exclude compressed pages,
178          * as those were handled separately by f2fs_end_read_compressed_page().
179          */
180         if (may_have_compressed_pages) {
181                 struct bio_vec *bv;
182                 struct bvec_iter_all iter_all;
183
184                 bio_for_each_segment_all(bv, bio, iter_all) {
185                         struct page *page = bv->bv_page;
186
187                         if (!f2fs_is_compressed_page(page) &&
188                             !PageError(page) && !fsverity_verify_page(page))
189                                 SetPageError(page);
190                 }
191         } else {
192                 fsverity_verify_bio(bio);
193         }
194
195         f2fs_finish_read_bio(bio);
196 }
197
198 /*
199  * If the bio's data needs to be verified with fs-verity, then enqueue the
200  * verity work for the bio.  Otherwise finish the bio now.
201  *
202  * Note that to avoid deadlocks, the verity work can't be done on the
203  * decryption/decompression workqueue.  This is because verifying the data pages
204  * can involve reading verity metadata pages from the file, and these verity
205  * metadata pages may be encrypted and/or compressed.
206  */
207 static void f2fs_verify_and_finish_bio(struct bio *bio)
208 {
209         struct bio_post_read_ctx *ctx = bio->bi_private;
210
211         if (ctx && (ctx->enabled_steps & STEP_VERITY)) {
212                 INIT_WORK(&ctx->work, f2fs_verify_bio);
213                 fsverity_enqueue_verify_work(&ctx->work);
214         } else {
215                 f2fs_finish_read_bio(bio);
216         }
217 }
218
219 /*
220  * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last
221  * remaining page was read by @ctx->bio.
222  *
223  * Note that a bio may span clusters (even a mix of compressed and uncompressed
224  * clusters) or be for just part of a cluster.  STEP_DECOMPRESS just indicates
225  * that the bio includes at least one compressed page.  The actual decompression
226  * is done on a per-cluster basis, not a per-bio basis.
227  */
228 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx)
229 {
230         struct bio_vec *bv;
231         struct bvec_iter_all iter_all;
232         bool all_compressed = true;
233         block_t blkaddr = ctx->fs_blkaddr;
234
235         bio_for_each_segment_all(bv, ctx->bio, iter_all) {
236                 struct page *page = bv->bv_page;
237
238                 /* PG_error was set if decryption failed. */
239                 if (f2fs_is_compressed_page(page))
240                         f2fs_end_read_compressed_page(page, PageError(page),
241                                                 blkaddr);
242                 else
243                         all_compressed = false;
244
245                 blkaddr++;
246         }
247
248         /*
249          * Optimization: if all the bio's pages are compressed, then scheduling
250          * the per-bio verity work is unnecessary, as verity will be fully
251          * handled at the compression cluster level.
252          */
253         if (all_compressed)
254                 ctx->enabled_steps &= ~STEP_VERITY;
255 }
256
257 static void f2fs_post_read_work(struct work_struct *work)
258 {
259         struct bio_post_read_ctx *ctx =
260                 container_of(work, struct bio_post_read_ctx, work);
261
262         if (ctx->enabled_steps & STEP_DECRYPT)
263                 fscrypt_decrypt_bio(ctx->bio);
264
265         if (ctx->enabled_steps & STEP_DECOMPRESS)
266                 f2fs_handle_step_decompress(ctx);
267
268         f2fs_verify_and_finish_bio(ctx->bio);
269 }
270
271 static void f2fs_read_end_io(struct bio *bio)
272 {
273         struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
274         struct bio_post_read_ctx *ctx;
275
276         iostat_update_and_unbind_ctx(bio, 0);
277         ctx = bio->bi_private;
278
279         if (time_to_inject(sbi, FAULT_READ_IO)) {
280                 f2fs_show_injection_info(sbi, FAULT_READ_IO);
281                 bio->bi_status = BLK_STS_IOERR;
282         }
283
284         if (bio->bi_status) {
285                 f2fs_finish_read_bio(bio);
286                 return;
287         }
288
289         if (ctx && (ctx->enabled_steps & (STEP_DECRYPT | STEP_DECOMPRESS))) {
290                 INIT_WORK(&ctx->work, f2fs_post_read_work);
291                 queue_work(ctx->sbi->post_read_wq, &ctx->work);
292         } else {
293                 f2fs_verify_and_finish_bio(bio);
294         }
295 }
296
297 static void f2fs_write_end_io(struct bio *bio)
298 {
299         struct f2fs_sb_info *sbi;
300         struct bio_vec *bvec;
301         struct bvec_iter_all iter_all;
302
303         iostat_update_and_unbind_ctx(bio, 1);
304         sbi = bio->bi_private;
305
306         if (time_to_inject(sbi, FAULT_WRITE_IO)) {
307                 f2fs_show_injection_info(sbi, FAULT_WRITE_IO);
308                 bio->bi_status = BLK_STS_IOERR;
309         }
310
311         bio_for_each_segment_all(bvec, bio, iter_all) {
312                 struct page *page = bvec->bv_page;
313                 enum count_type type = WB_DATA_TYPE(page);
314
315                 if (page_private_dummy(page)) {
316                         clear_page_private_dummy(page);
317                         unlock_page(page);
318                         mempool_free(page, sbi->write_io_dummy);
319
320                         if (unlikely(bio->bi_status))
321                                 f2fs_stop_checkpoint(sbi, true);
322                         continue;
323                 }
324
325                 fscrypt_finalize_bounce_page(&page);
326
327 #ifdef CONFIG_F2FS_FS_COMPRESSION
328                 if (f2fs_is_compressed_page(page)) {
329                         f2fs_compress_write_end_io(bio, page);
330                         continue;
331                 }
332 #endif
333
334                 if (unlikely(bio->bi_status)) {
335                         mapping_set_error(page->mapping, -EIO);
336                         if (type == F2FS_WB_CP_DATA)
337                                 f2fs_stop_checkpoint(sbi, true);
338                 }
339
340                 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
341                                         page->index != nid_of_node(page));
342
343                 dec_page_count(sbi, type);
344                 if (f2fs_in_warm_node_list(sbi, page))
345                         f2fs_del_fsync_node_entry(sbi, page);
346                 clear_page_private_gcing(page);
347                 end_page_writeback(page);
348         }
349         if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
350                                 wq_has_sleeper(&sbi->cp_wait))
351                 wake_up(&sbi->cp_wait);
352
353         bio_put(bio);
354 }
355
356 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
357                                 block_t blk_addr, struct bio *bio)
358 {
359         struct block_device *bdev = sbi->sb->s_bdev;
360         int i;
361
362         if (f2fs_is_multi_device(sbi)) {
363                 for (i = 0; i < sbi->s_ndevs; i++) {
364                         if (FDEV(i).start_blk <= blk_addr &&
365                             FDEV(i).end_blk >= blk_addr) {
366                                 blk_addr -= FDEV(i).start_blk;
367                                 bdev = FDEV(i).bdev;
368                                 break;
369                         }
370                 }
371         }
372         if (bio) {
373                 bio_set_dev(bio, bdev);
374                 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
375         }
376         return bdev;
377 }
378
379 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
380 {
381         int i;
382
383         if (!f2fs_is_multi_device(sbi))
384                 return 0;
385
386         for (i = 0; i < sbi->s_ndevs; i++)
387                 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
388                         return i;
389         return 0;
390 }
391
392 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
393 {
394         struct f2fs_sb_info *sbi = fio->sbi;
395         struct bio *bio;
396
397         bio = bio_alloc_bioset(GFP_NOIO, npages, &f2fs_bioset);
398
399         f2fs_target_device(sbi, fio->new_blkaddr, bio);
400         if (is_read_io(fio->op)) {
401                 bio->bi_end_io = f2fs_read_end_io;
402                 bio->bi_private = NULL;
403         } else {
404                 bio->bi_end_io = f2fs_write_end_io;
405                 bio->bi_private = sbi;
406                 bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi,
407                                                 fio->type, fio->temp);
408         }
409         iostat_alloc_and_bind_ctx(sbi, bio, NULL);
410
411         if (fio->io_wbc)
412                 wbc_init_bio(fio->io_wbc, bio);
413
414         return bio;
415 }
416
417 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
418                                   pgoff_t first_idx,
419                                   const struct f2fs_io_info *fio,
420                                   gfp_t gfp_mask)
421 {
422         /*
423          * The f2fs garbage collector sets ->encrypted_page when it wants to
424          * read/write raw data without encryption.
425          */
426         if (!fio || !fio->encrypted_page)
427                 fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
428 }
429
430 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
431                                      pgoff_t next_idx,
432                                      const struct f2fs_io_info *fio)
433 {
434         /*
435          * The f2fs garbage collector sets ->encrypted_page when it wants to
436          * read/write raw data without encryption.
437          */
438         if (fio && fio->encrypted_page)
439                 return !bio_has_crypt_ctx(bio);
440
441         return fscrypt_mergeable_bio(bio, inode, next_idx);
442 }
443
444 static inline void __submit_bio(struct f2fs_sb_info *sbi,
445                                 struct bio *bio, enum page_type type)
446 {
447         if (!is_read_io(bio_op(bio))) {
448                 unsigned int start;
449
450                 if (type != DATA && type != NODE)
451                         goto submit_io;
452
453                 if (f2fs_lfs_mode(sbi) && current->plug)
454                         blk_finish_plug(current->plug);
455
456                 if (!F2FS_IO_ALIGNED(sbi))
457                         goto submit_io;
458
459                 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
460                 start %= F2FS_IO_SIZE(sbi);
461
462                 if (start == 0)
463                         goto submit_io;
464
465                 /* fill dummy pages */
466                 for (; start < F2FS_IO_SIZE(sbi); start++) {
467                         struct page *page =
468                                 mempool_alloc(sbi->write_io_dummy,
469                                               GFP_NOIO | __GFP_NOFAIL);
470                         f2fs_bug_on(sbi, !page);
471
472                         lock_page(page);
473
474                         zero_user_segment(page, 0, PAGE_SIZE);
475                         set_page_private_dummy(page);
476
477                         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
478                                 f2fs_bug_on(sbi, 1);
479                 }
480                 /*
481                  * In the NODE case, we lose next block address chain. So, we
482                  * need to do checkpoint in f2fs_sync_file.
483                  */
484                 if (type == NODE)
485                         set_sbi_flag(sbi, SBI_NEED_CP);
486         }
487 submit_io:
488         if (is_read_io(bio_op(bio)))
489                 trace_f2fs_submit_read_bio(sbi->sb, type, bio);
490         else
491                 trace_f2fs_submit_write_bio(sbi->sb, type, bio);
492
493         iostat_update_submit_ctx(bio, type);
494         submit_bio(bio);
495 }
496
497 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
498                                 struct bio *bio, enum page_type type)
499 {
500         __submit_bio(sbi, bio, type);
501 }
502
503 static void __attach_io_flag(struct f2fs_io_info *fio)
504 {
505         struct f2fs_sb_info *sbi = fio->sbi;
506         unsigned int temp_mask = (1 << NR_TEMP_TYPE) - 1;
507         unsigned int io_flag, fua_flag, meta_flag;
508
509         if (fio->type == DATA)
510                 io_flag = sbi->data_io_flag;
511         else if (fio->type == NODE)
512                 io_flag = sbi->node_io_flag;
513         else
514                 return;
515
516         fua_flag = io_flag & temp_mask;
517         meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
518
519         /*
520          * data/node io flag bits per temp:
521          *      REQ_META     |      REQ_FUA      |
522          *    5 |    4 |   3 |    2 |    1 |   0 |
523          * Cold | Warm | Hot | Cold | Warm | Hot |
524          */
525         if ((1 << fio->temp) & meta_flag)
526                 fio->op_flags |= REQ_META;
527         if ((1 << fio->temp) & fua_flag)
528                 fio->op_flags |= REQ_FUA;
529 }
530
531 static void __submit_merged_bio(struct f2fs_bio_info *io)
532 {
533         struct f2fs_io_info *fio = &io->fio;
534
535         if (!io->bio)
536                 return;
537
538         __attach_io_flag(fio);
539         bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
540
541         if (is_read_io(fio->op))
542                 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
543         else
544                 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
545
546         __submit_bio(io->sbi, io->bio, fio->type);
547         io->bio = NULL;
548 }
549
550 static bool __has_merged_page(struct bio *bio, struct inode *inode,
551                                                 struct page *page, nid_t ino)
552 {
553         struct bio_vec *bvec;
554         struct bvec_iter_all iter_all;
555
556         if (!bio)
557                 return false;
558
559         if (!inode && !page && !ino)
560                 return true;
561
562         bio_for_each_segment_all(bvec, bio, iter_all) {
563                 struct page *target = bvec->bv_page;
564
565                 if (fscrypt_is_bounce_page(target)) {
566                         target = fscrypt_pagecache_page(target);
567                         if (IS_ERR(target))
568                                 continue;
569                 }
570                 if (f2fs_is_compressed_page(target)) {
571                         target = f2fs_compress_control_page(target);
572                         if (IS_ERR(target))
573                                 continue;
574                 }
575
576                 if (inode && inode == target->mapping->host)
577                         return true;
578                 if (page && page == target)
579                         return true;
580                 if (ino && ino == ino_of_node(target))
581                         return true;
582         }
583
584         return false;
585 }
586
587 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
588                                 enum page_type type, enum temp_type temp)
589 {
590         enum page_type btype = PAGE_TYPE_OF_BIO(type);
591         struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
592
593         down_write(&io->io_rwsem);
594
595         /* change META to META_FLUSH in the checkpoint procedure */
596         if (type >= META_FLUSH) {
597                 io->fio.type = META_FLUSH;
598                 io->fio.op = REQ_OP_WRITE;
599                 io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC;
600                 if (!test_opt(sbi, NOBARRIER))
601                         io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
602         }
603         __submit_merged_bio(io);
604         up_write(&io->io_rwsem);
605 }
606
607 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
608                                 struct inode *inode, struct page *page,
609                                 nid_t ino, enum page_type type, bool force)
610 {
611         enum temp_type temp;
612         bool ret = true;
613
614         for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
615                 if (!force)     {
616                         enum page_type btype = PAGE_TYPE_OF_BIO(type);
617                         struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
618
619                         down_read(&io->io_rwsem);
620                         ret = __has_merged_page(io->bio, inode, page, ino);
621                         up_read(&io->io_rwsem);
622                 }
623                 if (ret)
624                         __f2fs_submit_merged_write(sbi, type, temp);
625
626                 /* TODO: use HOT temp only for meta pages now. */
627                 if (type >= META)
628                         break;
629         }
630 }
631
632 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
633 {
634         __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
635 }
636
637 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
638                                 struct inode *inode, struct page *page,
639                                 nid_t ino, enum page_type type)
640 {
641         __submit_merged_write_cond(sbi, inode, page, ino, type, false);
642 }
643
644 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
645 {
646         f2fs_submit_merged_write(sbi, DATA);
647         f2fs_submit_merged_write(sbi, NODE);
648         f2fs_submit_merged_write(sbi, META);
649 }
650
651 /*
652  * Fill the locked page with data located in the block address.
653  * A caller needs to unlock the page on failure.
654  */
655 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
656 {
657         struct bio *bio;
658         struct page *page = fio->encrypted_page ?
659                         fio->encrypted_page : fio->page;
660
661         if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
662                         fio->is_por ? META_POR : (__is_meta_io(fio) ?
663                         META_GENERIC : DATA_GENERIC_ENHANCE)))
664                 return -EFSCORRUPTED;
665
666         trace_f2fs_submit_page_bio(page, fio);
667
668         /* Allocate a new bio */
669         bio = __bio_alloc(fio, 1);
670
671         f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
672                                fio->page->index, fio, GFP_NOIO);
673
674         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
675                 bio_put(bio);
676                 return -EFAULT;
677         }
678
679         if (fio->io_wbc && !is_read_io(fio->op))
680                 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
681
682         __attach_io_flag(fio);
683         bio_set_op_attrs(bio, fio->op, fio->op_flags);
684
685         inc_page_count(fio->sbi, is_read_io(fio->op) ?
686                         __read_io_type(page): WB_DATA_TYPE(fio->page));
687
688         __submit_bio(fio->sbi, bio, fio->type);
689         return 0;
690 }
691
692 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
693                                 block_t last_blkaddr, block_t cur_blkaddr)
694 {
695         if (unlikely(sbi->max_io_bytes &&
696                         bio->bi_iter.bi_size >= sbi->max_io_bytes))
697                 return false;
698         if (last_blkaddr + 1 != cur_blkaddr)
699                 return false;
700         return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL);
701 }
702
703 static bool io_type_is_mergeable(struct f2fs_bio_info *io,
704                                                 struct f2fs_io_info *fio)
705 {
706         if (io->fio.op != fio->op)
707                 return false;
708         return io->fio.op_flags == fio->op_flags;
709 }
710
711 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
712                                         struct f2fs_bio_info *io,
713                                         struct f2fs_io_info *fio,
714                                         block_t last_blkaddr,
715                                         block_t cur_blkaddr)
716 {
717         if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) {
718                 unsigned int filled_blocks =
719                                 F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size);
720                 unsigned int io_size = F2FS_IO_SIZE(sbi);
721                 unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt;
722
723                 /* IOs in bio is aligned and left space of vectors is not enough */
724                 if (!(filled_blocks % io_size) && left_vecs < io_size)
725                         return false;
726         }
727         if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
728                 return false;
729         return io_type_is_mergeable(io, fio);
730 }
731
732 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
733                                 struct page *page, enum temp_type temp)
734 {
735         struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
736         struct bio_entry *be;
737
738         be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL);
739         be->bio = bio;
740         bio_get(bio);
741
742         if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
743                 f2fs_bug_on(sbi, 1);
744
745         down_write(&io->bio_list_lock);
746         list_add_tail(&be->list, &io->bio_list);
747         up_write(&io->bio_list_lock);
748 }
749
750 static void del_bio_entry(struct bio_entry *be)
751 {
752         list_del(&be->list);
753         kmem_cache_free(bio_entry_slab, be);
754 }
755
756 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
757                                                         struct page *page)
758 {
759         struct f2fs_sb_info *sbi = fio->sbi;
760         enum temp_type temp;
761         bool found = false;
762         int ret = -EAGAIN;
763
764         for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
765                 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
766                 struct list_head *head = &io->bio_list;
767                 struct bio_entry *be;
768
769                 down_write(&io->bio_list_lock);
770                 list_for_each_entry(be, head, list) {
771                         if (be->bio != *bio)
772                                 continue;
773
774                         found = true;
775
776                         f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
777                                                             *fio->last_block,
778                                                             fio->new_blkaddr));
779                         if (f2fs_crypt_mergeable_bio(*bio,
780                                         fio->page->mapping->host,
781                                         fio->page->index, fio) &&
782                             bio_add_page(*bio, page, PAGE_SIZE, 0) ==
783                                         PAGE_SIZE) {
784                                 ret = 0;
785                                 break;
786                         }
787
788                         /* page can't be merged into bio; submit the bio */
789                         del_bio_entry(be);
790                         __submit_bio(sbi, *bio, DATA);
791                         break;
792                 }
793                 up_write(&io->bio_list_lock);
794         }
795
796         if (ret) {
797                 bio_put(*bio);
798                 *bio = NULL;
799         }
800
801         return ret;
802 }
803
804 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
805                                         struct bio **bio, struct page *page)
806 {
807         enum temp_type temp;
808         bool found = false;
809         struct bio *target = bio ? *bio : NULL;
810
811         for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
812                 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
813                 struct list_head *head = &io->bio_list;
814                 struct bio_entry *be;
815
816                 if (list_empty(head))
817                         continue;
818
819                 down_read(&io->bio_list_lock);
820                 list_for_each_entry(be, head, list) {
821                         if (target)
822                                 found = (target == be->bio);
823                         else
824                                 found = __has_merged_page(be->bio, NULL,
825                                                                 page, 0);
826                         if (found)
827                                 break;
828                 }
829                 up_read(&io->bio_list_lock);
830
831                 if (!found)
832                         continue;
833
834                 found = false;
835
836                 down_write(&io->bio_list_lock);
837                 list_for_each_entry(be, head, list) {
838                         if (target)
839                                 found = (target == be->bio);
840                         else
841                                 found = __has_merged_page(be->bio, NULL,
842                                                                 page, 0);
843                         if (found) {
844                                 target = be->bio;
845                                 del_bio_entry(be);
846                                 break;
847                         }
848                 }
849                 up_write(&io->bio_list_lock);
850         }
851
852         if (found)
853                 __submit_bio(sbi, target, DATA);
854         if (bio && *bio) {
855                 bio_put(*bio);
856                 *bio = NULL;
857         }
858 }
859
860 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
861 {
862         struct bio *bio = *fio->bio;
863         struct page *page = fio->encrypted_page ?
864                         fio->encrypted_page : fio->page;
865
866         if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
867                         __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
868                 return -EFSCORRUPTED;
869
870         trace_f2fs_submit_page_bio(page, fio);
871
872         if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
873                                                 fio->new_blkaddr))
874                 f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
875 alloc_new:
876         if (!bio) {
877                 bio = __bio_alloc(fio, BIO_MAX_VECS);
878                 __attach_io_flag(fio);
879                 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
880                                        fio->page->index, fio, GFP_NOIO);
881                 bio_set_op_attrs(bio, fio->op, fio->op_flags);
882
883                 add_bio_entry(fio->sbi, bio, page, fio->temp);
884         } else {
885                 if (add_ipu_page(fio, &bio, page))
886                         goto alloc_new;
887         }
888
889         if (fio->io_wbc)
890                 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
891
892         inc_page_count(fio->sbi, WB_DATA_TYPE(page));
893
894         *fio->last_block = fio->new_blkaddr;
895         *fio->bio = bio;
896
897         return 0;
898 }
899
900 void f2fs_submit_page_write(struct f2fs_io_info *fio)
901 {
902         struct f2fs_sb_info *sbi = fio->sbi;
903         enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
904         struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
905         struct page *bio_page;
906
907         f2fs_bug_on(sbi, is_read_io(fio->op));
908
909         down_write(&io->io_rwsem);
910 next:
911         if (fio->in_list) {
912                 spin_lock(&io->io_lock);
913                 if (list_empty(&io->io_list)) {
914                         spin_unlock(&io->io_lock);
915                         goto out;
916                 }
917                 fio = list_first_entry(&io->io_list,
918                                                 struct f2fs_io_info, list);
919                 list_del(&fio->list);
920                 spin_unlock(&io->io_lock);
921         }
922
923         verify_fio_blkaddr(fio);
924
925         if (fio->encrypted_page)
926                 bio_page = fio->encrypted_page;
927         else if (fio->compressed_page)
928                 bio_page = fio->compressed_page;
929         else
930                 bio_page = fio->page;
931
932         /* set submitted = true as a return value */
933         fio->submitted = true;
934
935         inc_page_count(sbi, WB_DATA_TYPE(bio_page));
936
937         if (io->bio &&
938             (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
939                               fio->new_blkaddr) ||
940              !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host,
941                                        bio_page->index, fio)))
942                 __submit_merged_bio(io);
943 alloc_new:
944         if (io->bio == NULL) {
945                 if (F2FS_IO_ALIGNED(sbi) &&
946                                 (fio->type == DATA || fio->type == NODE) &&
947                                 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
948                         dec_page_count(sbi, WB_DATA_TYPE(bio_page));
949                         fio->retry = true;
950                         goto skip;
951                 }
952                 io->bio = __bio_alloc(fio, BIO_MAX_VECS);
953                 f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host,
954                                        bio_page->index, fio, GFP_NOIO);
955                 io->fio = *fio;
956         }
957
958         if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
959                 __submit_merged_bio(io);
960                 goto alloc_new;
961         }
962
963         if (fio->io_wbc)
964                 wbc_account_cgroup_owner(fio->io_wbc, bio_page, PAGE_SIZE);
965
966         io->last_block_in_bio = fio->new_blkaddr;
967
968         trace_f2fs_submit_page_write(fio->page, fio);
969 skip:
970         if (fio->in_list)
971                 goto next;
972 out:
973         if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
974                                 !f2fs_is_checkpoint_ready(sbi))
975                 __submit_merged_bio(io);
976         up_write(&io->io_rwsem);
977 }
978
979 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
980                                       unsigned nr_pages, unsigned op_flag,
981                                       pgoff_t first_idx, bool for_write)
982 {
983         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
984         struct bio *bio;
985         struct bio_post_read_ctx *ctx = NULL;
986         unsigned int post_read_steps = 0;
987
988         bio = bio_alloc_bioset(for_write ? GFP_NOIO : GFP_KERNEL,
989                                bio_max_segs(nr_pages), &f2fs_bioset);
990         if (!bio)
991                 return ERR_PTR(-ENOMEM);
992
993         f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
994
995         f2fs_target_device(sbi, blkaddr, bio);
996         bio->bi_end_io = f2fs_read_end_io;
997         bio_set_op_attrs(bio, REQ_OP_READ, op_flag);
998
999         if (fscrypt_inode_uses_fs_layer_crypto(inode))
1000                 post_read_steps |= STEP_DECRYPT;
1001
1002         if (f2fs_need_verity(inode, first_idx))
1003                 post_read_steps |= STEP_VERITY;
1004
1005         /*
1006          * STEP_DECOMPRESS is handled specially, since a compressed file might
1007          * contain both compressed and uncompressed clusters.  We'll allocate a
1008          * bio_post_read_ctx if the file is compressed, but the caller is
1009          * responsible for enabling STEP_DECOMPRESS if it's actually needed.
1010          */
1011
1012         if (post_read_steps || f2fs_compressed_file(inode)) {
1013                 /* Due to the mempool, this never fails. */
1014                 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
1015                 ctx->bio = bio;
1016                 ctx->sbi = sbi;
1017                 ctx->enabled_steps = post_read_steps;
1018                 ctx->fs_blkaddr = blkaddr;
1019                 bio->bi_private = ctx;
1020         }
1021         iostat_alloc_and_bind_ctx(sbi, bio, ctx);
1022
1023         return bio;
1024 }
1025
1026 /* This can handle encryption stuffs */
1027 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
1028                                  block_t blkaddr, int op_flags, bool for_write)
1029 {
1030         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1031         struct bio *bio;
1032
1033         bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags,
1034                                         page->index, for_write);
1035         if (IS_ERR(bio))
1036                 return PTR_ERR(bio);
1037
1038         /* wait for GCed page writeback via META_MAPPING */
1039         f2fs_wait_on_block_writeback(inode, blkaddr);
1040
1041         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1042                 bio_put(bio);
1043                 return -EFAULT;
1044         }
1045         ClearPageError(page);
1046         inc_page_count(sbi, F2FS_RD_DATA);
1047         f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
1048         __submit_bio(sbi, bio, DATA);
1049         return 0;
1050 }
1051
1052 static void __set_data_blkaddr(struct dnode_of_data *dn)
1053 {
1054         struct f2fs_node *rn = F2FS_NODE(dn->node_page);
1055         __le32 *addr_array;
1056         int base = 0;
1057
1058         if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
1059                 base = get_extra_isize(dn->inode);
1060
1061         /* Get physical address of data block */
1062         addr_array = blkaddr_in_node(rn);
1063         addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1064 }
1065
1066 /*
1067  * Lock ordering for the change of data block address:
1068  * ->data_page
1069  *  ->node_page
1070  *    update block addresses in the node page
1071  */
1072 void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
1073 {
1074         f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1075         __set_data_blkaddr(dn);
1076         if (set_page_dirty(dn->node_page))
1077                 dn->node_changed = true;
1078 }
1079
1080 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1081 {
1082         dn->data_blkaddr = blkaddr;
1083         f2fs_set_data_blkaddr(dn);
1084         f2fs_update_extent_cache(dn);
1085 }
1086
1087 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
1088 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1089 {
1090         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1091         int err;
1092
1093         if (!count)
1094                 return 0;
1095
1096         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1097                 return -EPERM;
1098         if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1099                 return err;
1100
1101         trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1102                                                 dn->ofs_in_node, count);
1103
1104         f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1105
1106         for (; count > 0; dn->ofs_in_node++) {
1107                 block_t blkaddr = f2fs_data_blkaddr(dn);
1108
1109                 if (blkaddr == NULL_ADDR) {
1110                         dn->data_blkaddr = NEW_ADDR;
1111                         __set_data_blkaddr(dn);
1112                         count--;
1113                 }
1114         }
1115
1116         if (set_page_dirty(dn->node_page))
1117                 dn->node_changed = true;
1118         return 0;
1119 }
1120
1121 /* Should keep dn->ofs_in_node unchanged */
1122 int f2fs_reserve_new_block(struct dnode_of_data *dn)
1123 {
1124         unsigned int ofs_in_node = dn->ofs_in_node;
1125         int ret;
1126
1127         ret = f2fs_reserve_new_blocks(dn, 1);
1128         dn->ofs_in_node = ofs_in_node;
1129         return ret;
1130 }
1131
1132 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1133 {
1134         bool need_put = dn->inode_page ? false : true;
1135         int err;
1136
1137         err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1138         if (err)
1139                 return err;
1140
1141         if (dn->data_blkaddr == NULL_ADDR)
1142                 err = f2fs_reserve_new_block(dn);
1143         if (err || need_put)
1144                 f2fs_put_dnode(dn);
1145         return err;
1146 }
1147
1148 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
1149 {
1150         struct extent_info ei = {0, };
1151         struct inode *inode = dn->inode;
1152
1153         if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1154                 dn->data_blkaddr = ei.blk + index - ei.fofs;
1155                 return 0;
1156         }
1157
1158         return f2fs_reserve_block(dn, index);
1159 }
1160
1161 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1162                                                 int op_flags, bool for_write)
1163 {
1164         struct address_space *mapping = inode->i_mapping;
1165         struct dnode_of_data dn;
1166         struct page *page;
1167         struct extent_info ei = {0, };
1168         int err;
1169
1170         page = f2fs_grab_cache_page(mapping, index, for_write);
1171         if (!page)
1172                 return ERR_PTR(-ENOMEM);
1173
1174         if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1175                 dn.data_blkaddr = ei.blk + index - ei.fofs;
1176                 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1177                                                 DATA_GENERIC_ENHANCE_READ)) {
1178                         err = -EFSCORRUPTED;
1179                         goto put_err;
1180                 }
1181                 goto got_it;
1182         }
1183
1184         set_new_dnode(&dn, inode, NULL, NULL, 0);
1185         err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1186         if (err)
1187                 goto put_err;
1188         f2fs_put_dnode(&dn);
1189
1190         if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1191                 err = -ENOENT;
1192                 goto put_err;
1193         }
1194         if (dn.data_blkaddr != NEW_ADDR &&
1195                         !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1196                                                 dn.data_blkaddr,
1197                                                 DATA_GENERIC_ENHANCE)) {
1198                 err = -EFSCORRUPTED;
1199                 goto put_err;
1200         }
1201 got_it:
1202         if (PageUptodate(page)) {
1203                 unlock_page(page);
1204                 return page;
1205         }
1206
1207         /*
1208          * A new dentry page is allocated but not able to be written, since its
1209          * new inode page couldn't be allocated due to -ENOSPC.
1210          * In such the case, its blkaddr can be remained as NEW_ADDR.
1211          * see, f2fs_add_link -> f2fs_get_new_data_page ->
1212          * f2fs_init_inode_metadata.
1213          */
1214         if (dn.data_blkaddr == NEW_ADDR) {
1215                 zero_user_segment(page, 0, PAGE_SIZE);
1216                 if (!PageUptodate(page))
1217                         SetPageUptodate(page);
1218                 unlock_page(page);
1219                 return page;
1220         }
1221
1222         err = f2fs_submit_page_read(inode, page, dn.data_blkaddr,
1223                                                 op_flags, for_write);
1224         if (err)
1225                 goto put_err;
1226         return page;
1227
1228 put_err:
1229         f2fs_put_page(page, 1);
1230         return ERR_PTR(err);
1231 }
1232
1233 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index)
1234 {
1235         struct address_space *mapping = inode->i_mapping;
1236         struct page *page;
1237
1238         page = find_get_page(mapping, index);
1239         if (page && PageUptodate(page))
1240                 return page;
1241         f2fs_put_page(page, 0);
1242
1243         page = f2fs_get_read_data_page(inode, index, 0, false);
1244         if (IS_ERR(page))
1245                 return page;
1246
1247         if (PageUptodate(page))
1248                 return page;
1249
1250         wait_on_page_locked(page);
1251         if (unlikely(!PageUptodate(page))) {
1252                 f2fs_put_page(page, 0);
1253                 return ERR_PTR(-EIO);
1254         }
1255         return page;
1256 }
1257
1258 /*
1259  * If it tries to access a hole, return an error.
1260  * Because, the callers, functions in dir.c and GC, should be able to know
1261  * whether this page exists or not.
1262  */
1263 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1264                                                         bool for_write)
1265 {
1266         struct address_space *mapping = inode->i_mapping;
1267         struct page *page;
1268 repeat:
1269         page = f2fs_get_read_data_page(inode, index, 0, for_write);
1270         if (IS_ERR(page))
1271                 return page;
1272
1273         /* wait for read completion */
1274         lock_page(page);
1275         if (unlikely(page->mapping != mapping)) {
1276                 f2fs_put_page(page, 1);
1277                 goto repeat;
1278         }
1279         if (unlikely(!PageUptodate(page))) {
1280                 f2fs_put_page(page, 1);
1281                 return ERR_PTR(-EIO);
1282         }
1283         return page;
1284 }
1285
1286 /*
1287  * Caller ensures that this data page is never allocated.
1288  * A new zero-filled data page is allocated in the page cache.
1289  *
1290  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1291  * f2fs_unlock_op().
1292  * Note that, ipage is set only by make_empty_dir, and if any error occur,
1293  * ipage should be released by this function.
1294  */
1295 struct page *f2fs_get_new_data_page(struct inode *inode,
1296                 struct page *ipage, pgoff_t index, bool new_i_size)
1297 {
1298         struct address_space *mapping = inode->i_mapping;
1299         struct page *page;
1300         struct dnode_of_data dn;
1301         int err;
1302
1303         page = f2fs_grab_cache_page(mapping, index, true);
1304         if (!page) {
1305                 /*
1306                  * before exiting, we should make sure ipage will be released
1307                  * if any error occur.
1308                  */
1309                 f2fs_put_page(ipage, 1);
1310                 return ERR_PTR(-ENOMEM);
1311         }
1312
1313         set_new_dnode(&dn, inode, ipage, NULL, 0);
1314         err = f2fs_reserve_block(&dn, index);
1315         if (err) {
1316                 f2fs_put_page(page, 1);
1317                 return ERR_PTR(err);
1318         }
1319         if (!ipage)
1320                 f2fs_put_dnode(&dn);
1321
1322         if (PageUptodate(page))
1323                 goto got_it;
1324
1325         if (dn.data_blkaddr == NEW_ADDR) {
1326                 zero_user_segment(page, 0, PAGE_SIZE);
1327                 if (!PageUptodate(page))
1328                         SetPageUptodate(page);
1329         } else {
1330                 f2fs_put_page(page, 1);
1331
1332                 /* if ipage exists, blkaddr should be NEW_ADDR */
1333                 f2fs_bug_on(F2FS_I_SB(inode), ipage);
1334                 page = f2fs_get_lock_data_page(inode, index, true);
1335                 if (IS_ERR(page))
1336                         return page;
1337         }
1338 got_it:
1339         if (new_i_size && i_size_read(inode) <
1340                                 ((loff_t)(index + 1) << PAGE_SHIFT))
1341                 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1342         return page;
1343 }
1344
1345 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1346 {
1347         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1348         struct f2fs_summary sum;
1349         struct node_info ni;
1350         block_t old_blkaddr;
1351         blkcnt_t count = 1;
1352         int err;
1353
1354         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1355                 return -EPERM;
1356
1357         err = f2fs_get_node_info(sbi, dn->nid, &ni);
1358         if (err)
1359                 return err;
1360
1361         dn->data_blkaddr = f2fs_data_blkaddr(dn);
1362         if (dn->data_blkaddr != NULL_ADDR)
1363                 goto alloc;
1364
1365         if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1366                 return err;
1367
1368 alloc:
1369         set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1370         old_blkaddr = dn->data_blkaddr;
1371         f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
1372                                 &sum, seg_type, NULL);
1373         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
1374                 invalidate_mapping_pages(META_MAPPING(sbi),
1375                                         old_blkaddr, old_blkaddr);
1376                 f2fs_invalidate_compress_page(sbi, old_blkaddr);
1377         }
1378         f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1379
1380         /*
1381          * i_size will be updated by direct_IO. Otherwise, we'll get stale
1382          * data from unwritten block via dio_read.
1383          */
1384         return 0;
1385 }
1386
1387 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
1388 {
1389         struct inode *inode = file_inode(iocb->ki_filp);
1390         struct f2fs_map_blocks map;
1391         int flag;
1392         int err = 0;
1393         bool direct_io = iocb->ki_flags & IOCB_DIRECT;
1394
1395         map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
1396         map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
1397         if (map.m_len > map.m_lblk)
1398                 map.m_len -= map.m_lblk;
1399         else
1400                 map.m_len = 0;
1401
1402         map.m_next_pgofs = NULL;
1403         map.m_next_extent = NULL;
1404         map.m_seg_type = NO_CHECK_TYPE;
1405         map.m_may_create = true;
1406
1407         if (direct_io) {
1408                 map.m_seg_type = f2fs_rw_hint_to_seg_type(iocb->ki_hint);
1409                 flag = f2fs_force_buffered_io(inode, iocb, from) ?
1410                                         F2FS_GET_BLOCK_PRE_AIO :
1411                                         F2FS_GET_BLOCK_PRE_DIO;
1412                 goto map_blocks;
1413         }
1414         if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) {
1415                 err = f2fs_convert_inline_inode(inode);
1416                 if (err)
1417                         return err;
1418         }
1419         if (f2fs_has_inline_data(inode))
1420                 return err;
1421
1422         flag = F2FS_GET_BLOCK_PRE_AIO;
1423
1424 map_blocks:
1425         err = f2fs_map_blocks(inode, &map, 1, flag);
1426         if (map.m_len > 0 && err == -ENOSPC) {
1427                 if (!direct_io)
1428                         set_inode_flag(inode, FI_NO_PREALLOC);
1429                 err = 0;
1430         }
1431         return err;
1432 }
1433
1434 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
1435 {
1436         if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1437                 if (lock)
1438                         down_read(&sbi->node_change);
1439                 else
1440                         up_read(&sbi->node_change);
1441         } else {
1442                 if (lock)
1443                         f2fs_lock_op(sbi);
1444                 else
1445                         f2fs_unlock_op(sbi);
1446         }
1447 }
1448
1449 /*
1450  * f2fs_map_blocks() tries to find or build mapping relationship which
1451  * maps continuous logical blocks to physical blocks, and return such
1452  * info via f2fs_map_blocks structure.
1453  */
1454 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1455                                                 int create, int flag)
1456 {
1457         unsigned int maxblocks = map->m_len;
1458         struct dnode_of_data dn;
1459         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1460         int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1461         pgoff_t pgofs, end_offset, end;
1462         int err = 0, ofs = 1;
1463         unsigned int ofs_in_node, last_ofs_in_node;
1464         blkcnt_t prealloc;
1465         struct extent_info ei = {0, };
1466         block_t blkaddr;
1467         unsigned int start_pgofs;
1468
1469         if (!maxblocks)
1470                 return 0;
1471
1472         map->m_len = 0;
1473         map->m_flags = 0;
1474
1475         /* it only supports block size == page size */
1476         pgofs = (pgoff_t)map->m_lblk;
1477         end = pgofs + maxblocks;
1478
1479         if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
1480                 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1481                                                         map->m_may_create)
1482                         goto next_dnode;
1483
1484                 map->m_pblk = ei.blk + pgofs - ei.fofs;
1485                 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1486                 map->m_flags = F2FS_MAP_MAPPED;
1487                 if (map->m_next_extent)
1488                         *map->m_next_extent = pgofs + map->m_len;
1489
1490                 /* for hardware encryption, but to avoid potential issue in future */
1491                 if (flag == F2FS_GET_BLOCK_DIO)
1492                         f2fs_wait_on_block_writeback_range(inode,
1493                                                 map->m_pblk, map->m_len);
1494                 goto out;
1495         }
1496
1497 next_dnode:
1498         if (map->m_may_create)
1499                 f2fs_do_map_lock(sbi, flag, true);
1500
1501         /* When reading holes, we need its node page */
1502         set_new_dnode(&dn, inode, NULL, NULL, 0);
1503         err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1504         if (err) {
1505                 if (flag == F2FS_GET_BLOCK_BMAP)
1506                         map->m_pblk = 0;
1507
1508                 if (err == -ENOENT) {
1509                         /*
1510                          * There is one exceptional case that read_node_page()
1511                          * may return -ENOENT due to filesystem has been
1512                          * shutdown or cp_error, so force to convert error
1513                          * number to EIO for such case.
1514                          */
1515                         if (map->m_may_create &&
1516                                 (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1517                                 f2fs_cp_error(sbi))) {
1518                                 err = -EIO;
1519                                 goto unlock_out;
1520                         }
1521
1522                         err = 0;
1523                         if (map->m_next_pgofs)
1524                                 *map->m_next_pgofs =
1525                                         f2fs_get_next_page_offset(&dn, pgofs);
1526                         if (map->m_next_extent)
1527                                 *map->m_next_extent =
1528                                         f2fs_get_next_page_offset(&dn, pgofs);
1529                 }
1530                 goto unlock_out;
1531         }
1532
1533         start_pgofs = pgofs;
1534         prealloc = 0;
1535         last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1536         end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1537
1538 next_block:
1539         blkaddr = f2fs_data_blkaddr(&dn);
1540
1541         if (__is_valid_data_blkaddr(blkaddr) &&
1542                 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1543                 err = -EFSCORRUPTED;
1544                 goto sync_out;
1545         }
1546
1547         if (__is_valid_data_blkaddr(blkaddr)) {
1548                 /* use out-place-update for driect IO under LFS mode */
1549                 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1550                                                         map->m_may_create) {
1551                         err = __allocate_data_block(&dn, map->m_seg_type);
1552                         if (err)
1553                                 goto sync_out;
1554                         blkaddr = dn.data_blkaddr;
1555                         set_inode_flag(inode, FI_APPEND_WRITE);
1556                 }
1557         } else {
1558                 if (create) {
1559                         if (unlikely(f2fs_cp_error(sbi))) {
1560                                 err = -EIO;
1561                                 goto sync_out;
1562                         }
1563                         if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1564                                 if (blkaddr == NULL_ADDR) {
1565                                         prealloc++;
1566                                         last_ofs_in_node = dn.ofs_in_node;
1567                                 }
1568                         } else {
1569                                 WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO &&
1570                                         flag != F2FS_GET_BLOCK_DIO);
1571                                 err = __allocate_data_block(&dn,
1572                                                         map->m_seg_type);
1573                                 if (!err)
1574                                         set_inode_flag(inode, FI_APPEND_WRITE);
1575                         }
1576                         if (err)
1577                                 goto sync_out;
1578                         map->m_flags |= F2FS_MAP_NEW;
1579                         blkaddr = dn.data_blkaddr;
1580                 } else {
1581                         if (f2fs_compressed_file(inode) &&
1582                                         f2fs_sanity_check_cluster(&dn) &&
1583                                         (flag != F2FS_GET_BLOCK_FIEMAP ||
1584                                         IS_ENABLED(CONFIG_F2FS_CHECK_FS))) {
1585                                 err = -EFSCORRUPTED;
1586                                 goto sync_out;
1587                         }
1588                         if (flag == F2FS_GET_BLOCK_BMAP) {
1589                                 map->m_pblk = 0;
1590                                 goto sync_out;
1591                         }
1592                         if (flag == F2FS_GET_BLOCK_PRECACHE)
1593                                 goto sync_out;
1594                         if (flag == F2FS_GET_BLOCK_FIEMAP &&
1595                                                 blkaddr == NULL_ADDR) {
1596                                 if (map->m_next_pgofs)
1597                                         *map->m_next_pgofs = pgofs + 1;
1598                                 goto sync_out;
1599                         }
1600                         if (flag != F2FS_GET_BLOCK_FIEMAP) {
1601                                 /* for defragment case */
1602                                 if (map->m_next_pgofs)
1603                                         *map->m_next_pgofs = pgofs + 1;
1604                                 goto sync_out;
1605                         }
1606                 }
1607         }
1608
1609         if (flag == F2FS_GET_BLOCK_PRE_AIO)
1610                 goto skip;
1611
1612         if (map->m_len == 0) {
1613                 /* preallocated unwritten block should be mapped for fiemap. */
1614                 if (blkaddr == NEW_ADDR)
1615                         map->m_flags |= F2FS_MAP_UNWRITTEN;
1616                 map->m_flags |= F2FS_MAP_MAPPED;
1617
1618                 map->m_pblk = blkaddr;
1619                 map->m_len = 1;
1620         } else if ((map->m_pblk != NEW_ADDR &&
1621                         blkaddr == (map->m_pblk + ofs)) ||
1622                         (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1623                         flag == F2FS_GET_BLOCK_PRE_DIO) {
1624                 ofs++;
1625                 map->m_len++;
1626         } else {
1627                 goto sync_out;
1628         }
1629
1630 skip:
1631         dn.ofs_in_node++;
1632         pgofs++;
1633
1634         /* preallocate blocks in batch for one dnode page */
1635         if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1636                         (pgofs == end || dn.ofs_in_node == end_offset)) {
1637
1638                 dn.ofs_in_node = ofs_in_node;
1639                 err = f2fs_reserve_new_blocks(&dn, prealloc);
1640                 if (err)
1641                         goto sync_out;
1642
1643                 map->m_len += dn.ofs_in_node - ofs_in_node;
1644                 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1645                         err = -ENOSPC;
1646                         goto sync_out;
1647                 }
1648                 dn.ofs_in_node = end_offset;
1649         }
1650
1651         if (pgofs >= end)
1652                 goto sync_out;
1653         else if (dn.ofs_in_node < end_offset)
1654                 goto next_block;
1655
1656         if (flag == F2FS_GET_BLOCK_PRECACHE) {
1657                 if (map->m_flags & F2FS_MAP_MAPPED) {
1658                         unsigned int ofs = start_pgofs - map->m_lblk;
1659
1660                         f2fs_update_extent_cache_range(&dn,
1661                                 start_pgofs, map->m_pblk + ofs,
1662                                 map->m_len - ofs);
1663                 }
1664         }
1665
1666         f2fs_put_dnode(&dn);
1667
1668         if (map->m_may_create) {
1669                 f2fs_do_map_lock(sbi, flag, false);
1670                 f2fs_balance_fs(sbi, dn.node_changed);
1671         }
1672         goto next_dnode;
1673
1674 sync_out:
1675
1676         /* for hardware encryption, but to avoid potential issue in future */
1677         if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED)
1678                 f2fs_wait_on_block_writeback_range(inode,
1679                                                 map->m_pblk, map->m_len);
1680
1681         if (flag == F2FS_GET_BLOCK_PRECACHE) {
1682                 if (map->m_flags & F2FS_MAP_MAPPED) {
1683                         unsigned int ofs = start_pgofs - map->m_lblk;
1684
1685                         f2fs_update_extent_cache_range(&dn,
1686                                 start_pgofs, map->m_pblk + ofs,
1687                                 map->m_len - ofs);
1688                 }
1689                 if (map->m_next_extent)
1690                         *map->m_next_extent = pgofs + 1;
1691         }
1692         f2fs_put_dnode(&dn);
1693 unlock_out:
1694         if (map->m_may_create) {
1695                 f2fs_do_map_lock(sbi, flag, false);
1696                 f2fs_balance_fs(sbi, dn.node_changed);
1697         }
1698 out:
1699         trace_f2fs_map_blocks(inode, map, err);
1700         return err;
1701 }
1702
1703 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1704 {
1705         struct f2fs_map_blocks map;
1706         block_t last_lblk;
1707         int err;
1708
1709         if (pos + len > i_size_read(inode))
1710                 return false;
1711
1712         map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1713         map.m_next_pgofs = NULL;
1714         map.m_next_extent = NULL;
1715         map.m_seg_type = NO_CHECK_TYPE;
1716         map.m_may_create = false;
1717         last_lblk = F2FS_BLK_ALIGN(pos + len);
1718
1719         while (map.m_lblk < last_lblk) {
1720                 map.m_len = last_lblk - map.m_lblk;
1721                 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
1722                 if (err || map.m_len == 0)
1723                         return false;
1724                 map.m_lblk += map.m_len;
1725         }
1726         return true;
1727 }
1728
1729 static inline u64 bytes_to_blks(struct inode *inode, u64 bytes)
1730 {
1731         return (bytes >> inode->i_blkbits);
1732 }
1733
1734 static inline u64 blks_to_bytes(struct inode *inode, u64 blks)
1735 {
1736         return (blks << inode->i_blkbits);
1737 }
1738
1739 static int __get_data_block(struct inode *inode, sector_t iblock,
1740                         struct buffer_head *bh, int create, int flag,
1741                         pgoff_t *next_pgofs, int seg_type, bool may_write)
1742 {
1743         struct f2fs_map_blocks map;
1744         int err;
1745
1746         map.m_lblk = iblock;
1747         map.m_len = bytes_to_blks(inode, bh->b_size);
1748         map.m_next_pgofs = next_pgofs;
1749         map.m_next_extent = NULL;
1750         map.m_seg_type = seg_type;
1751         map.m_may_create = may_write;
1752
1753         err = f2fs_map_blocks(inode, &map, create, flag);
1754         if (!err) {
1755                 map_bh(bh, inode->i_sb, map.m_pblk);
1756                 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
1757                 bh->b_size = blks_to_bytes(inode, map.m_len);
1758         }
1759         return err;
1760 }
1761
1762 static int get_data_block_dio_write(struct inode *inode, sector_t iblock,
1763                         struct buffer_head *bh_result, int create)
1764 {
1765         return __get_data_block(inode, iblock, bh_result, create,
1766                                 F2FS_GET_BLOCK_DIO, NULL,
1767                                 f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1768                                 true);
1769 }
1770
1771 static int get_data_block_dio(struct inode *inode, sector_t iblock,
1772                         struct buffer_head *bh_result, int create)
1773 {
1774         return __get_data_block(inode, iblock, bh_result, create,
1775                                 F2FS_GET_BLOCK_DIO, NULL,
1776                                 f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1777                                 false);
1778 }
1779
1780 static int f2fs_xattr_fiemap(struct inode *inode,
1781                                 struct fiemap_extent_info *fieinfo)
1782 {
1783         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1784         struct page *page;
1785         struct node_info ni;
1786         __u64 phys = 0, len;
1787         __u32 flags;
1788         nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1789         int err = 0;
1790
1791         if (f2fs_has_inline_xattr(inode)) {
1792                 int offset;
1793
1794                 page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1795                                                 inode->i_ino, false);
1796                 if (!page)
1797                         return -ENOMEM;
1798
1799                 err = f2fs_get_node_info(sbi, inode->i_ino, &ni);
1800                 if (err) {
1801                         f2fs_put_page(page, 1);
1802                         return err;
1803                 }
1804
1805                 phys = blks_to_bytes(inode, ni.blk_addr);
1806                 offset = offsetof(struct f2fs_inode, i_addr) +
1807                                         sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1808                                         get_inline_xattr_addrs(inode));
1809
1810                 phys += offset;
1811                 len = inline_xattr_size(inode);
1812
1813                 f2fs_put_page(page, 1);
1814
1815                 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1816
1817                 if (!xnid)
1818                         flags |= FIEMAP_EXTENT_LAST;
1819
1820                 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1821                 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1822                 if (err || err == 1)
1823                         return err;
1824         }
1825
1826         if (xnid) {
1827                 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1828                 if (!page)
1829                         return -ENOMEM;
1830
1831                 err = f2fs_get_node_info(sbi, xnid, &ni);
1832                 if (err) {
1833                         f2fs_put_page(page, 1);
1834                         return err;
1835                 }
1836
1837                 phys = blks_to_bytes(inode, ni.blk_addr);
1838                 len = inode->i_sb->s_blocksize;
1839
1840                 f2fs_put_page(page, 1);
1841
1842                 flags = FIEMAP_EXTENT_LAST;
1843         }
1844
1845         if (phys) {
1846                 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1847                 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1848         }
1849
1850         return (err < 0 ? err : 0);
1851 }
1852
1853 static loff_t max_inode_blocks(struct inode *inode)
1854 {
1855         loff_t result = ADDRS_PER_INODE(inode);
1856         loff_t leaf_count = ADDRS_PER_BLOCK(inode);
1857
1858         /* two direct node blocks */
1859         result += (leaf_count * 2);
1860
1861         /* two indirect node blocks */
1862         leaf_count *= NIDS_PER_BLOCK;
1863         result += (leaf_count * 2);
1864
1865         /* one double indirect node block */
1866         leaf_count *= NIDS_PER_BLOCK;
1867         result += leaf_count;
1868
1869         return result;
1870 }
1871
1872 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1873                 u64 start, u64 len)
1874 {
1875         struct f2fs_map_blocks map;
1876         sector_t start_blk, last_blk;
1877         pgoff_t next_pgofs;
1878         u64 logical = 0, phys = 0, size = 0;
1879         u32 flags = 0;
1880         int ret = 0;
1881         bool compr_cluster = false, compr_appended;
1882         unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1883         unsigned int count_in_cluster = 0;
1884         loff_t maxbytes;
1885
1886         if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1887                 ret = f2fs_precache_extents(inode);
1888                 if (ret)
1889                         return ret;
1890         }
1891
1892         ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1893         if (ret)
1894                 return ret;
1895
1896         inode_lock(inode);
1897
1898         maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
1899         if (start > maxbytes) {
1900                 ret = -EFBIG;
1901                 goto out;
1902         }
1903
1904         if (len > maxbytes || (maxbytes - len) < start)
1905                 len = maxbytes - start;
1906
1907         if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1908                 ret = f2fs_xattr_fiemap(inode, fieinfo);
1909                 goto out;
1910         }
1911
1912         if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1913                 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1914                 if (ret != -EAGAIN)
1915                         goto out;
1916         }
1917
1918         if (bytes_to_blks(inode, len) == 0)
1919                 len = blks_to_bytes(inode, 1);
1920
1921         start_blk = bytes_to_blks(inode, start);
1922         last_blk = bytes_to_blks(inode, start + len - 1);
1923
1924 next:
1925         memset(&map, 0, sizeof(map));
1926         map.m_lblk = start_blk;
1927         map.m_len = bytes_to_blks(inode, len);
1928         map.m_next_pgofs = &next_pgofs;
1929         map.m_seg_type = NO_CHECK_TYPE;
1930
1931         if (compr_cluster) {
1932                 map.m_lblk += 1;
1933                 map.m_len = cluster_size - count_in_cluster;
1934         }
1935
1936         ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP);
1937         if (ret)
1938                 goto out;
1939
1940         /* HOLE */
1941         if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) {
1942                 start_blk = next_pgofs;
1943
1944                 if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode,
1945                                                 max_inode_blocks(inode)))
1946                         goto prep_next;
1947
1948                 flags |= FIEMAP_EXTENT_LAST;
1949         }
1950
1951         compr_appended = false;
1952         /* In a case of compressed cluster, append this to the last extent */
1953         if (compr_cluster && ((map.m_flags & F2FS_MAP_UNWRITTEN) ||
1954                         !(map.m_flags & F2FS_MAP_FLAGS))) {
1955                 compr_appended = true;
1956                 goto skip_fill;
1957         }
1958
1959         if (size) {
1960                 flags |= FIEMAP_EXTENT_MERGED;
1961                 if (IS_ENCRYPTED(inode))
1962                         flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1963
1964                 ret = fiemap_fill_next_extent(fieinfo, logical,
1965                                 phys, size, flags);
1966                 trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
1967                 if (ret)
1968                         goto out;
1969                 size = 0;
1970         }
1971
1972         if (start_blk > last_blk)
1973                 goto out;
1974
1975 skip_fill:
1976         if (map.m_pblk == COMPRESS_ADDR) {
1977                 compr_cluster = true;
1978                 count_in_cluster = 1;
1979         } else if (compr_appended) {
1980                 unsigned int appended_blks = cluster_size -
1981                                                 count_in_cluster + 1;
1982                 size += blks_to_bytes(inode, appended_blks);
1983                 start_blk += appended_blks;
1984                 compr_cluster = false;
1985         } else {
1986                 logical = blks_to_bytes(inode, start_blk);
1987                 phys = __is_valid_data_blkaddr(map.m_pblk) ?
1988                         blks_to_bytes(inode, map.m_pblk) : 0;
1989                 size = blks_to_bytes(inode, map.m_len);
1990                 flags = 0;
1991
1992                 if (compr_cluster) {
1993                         flags = FIEMAP_EXTENT_ENCODED;
1994                         count_in_cluster += map.m_len;
1995                         if (count_in_cluster == cluster_size) {
1996                                 compr_cluster = false;
1997                                 size += blks_to_bytes(inode, 1);
1998                         }
1999                 } else if (map.m_flags & F2FS_MAP_UNWRITTEN) {
2000                         flags = FIEMAP_EXTENT_UNWRITTEN;
2001                 }
2002
2003                 start_blk += bytes_to_blks(inode, size);
2004         }
2005
2006 prep_next:
2007         cond_resched();
2008         if (fatal_signal_pending(current))
2009                 ret = -EINTR;
2010         else
2011                 goto next;
2012 out:
2013         if (ret == 1)
2014                 ret = 0;
2015
2016         inode_unlock(inode);
2017         return ret;
2018 }
2019
2020 static inline loff_t f2fs_readpage_limit(struct inode *inode)
2021 {
2022         if (IS_ENABLED(CONFIG_FS_VERITY) &&
2023             (IS_VERITY(inode) || f2fs_verity_in_progress(inode)))
2024                 return inode->i_sb->s_maxbytes;
2025
2026         return i_size_read(inode);
2027 }
2028
2029 static int f2fs_read_single_page(struct inode *inode, struct page *page,
2030                                         unsigned nr_pages,
2031                                         struct f2fs_map_blocks *map,
2032                                         struct bio **bio_ret,
2033                                         sector_t *last_block_in_bio,
2034                                         bool is_readahead)
2035 {
2036         struct bio *bio = *bio_ret;
2037         const unsigned blocksize = blks_to_bytes(inode, 1);
2038         sector_t block_in_file;
2039         sector_t last_block;
2040         sector_t last_block_in_file;
2041         sector_t block_nr;
2042         int ret = 0;
2043
2044         block_in_file = (sector_t)page_index(page);
2045         last_block = block_in_file + nr_pages;
2046         last_block_in_file = bytes_to_blks(inode,
2047                         f2fs_readpage_limit(inode) + blocksize - 1);
2048         if (last_block > last_block_in_file)
2049                 last_block = last_block_in_file;
2050
2051         /* just zeroing out page which is beyond EOF */
2052         if (block_in_file >= last_block)
2053                 goto zero_out;
2054         /*
2055          * Map blocks using the previous result first.
2056          */
2057         if ((map->m_flags & F2FS_MAP_MAPPED) &&
2058                         block_in_file > map->m_lblk &&
2059                         block_in_file < (map->m_lblk + map->m_len))
2060                 goto got_it;
2061
2062         /*
2063          * Then do more f2fs_map_blocks() calls until we are
2064          * done with this page.
2065          */
2066         map->m_lblk = block_in_file;
2067         map->m_len = last_block - block_in_file;
2068
2069         ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT);
2070         if (ret)
2071                 goto out;
2072 got_it:
2073         if ((map->m_flags & F2FS_MAP_MAPPED)) {
2074                 block_nr = map->m_pblk + block_in_file - map->m_lblk;
2075                 SetPageMappedToDisk(page);
2076
2077                 if (!PageUptodate(page) && (!PageSwapCache(page) &&
2078                                         !cleancache_get_page(page))) {
2079                         SetPageUptodate(page);
2080                         goto confused;
2081                 }
2082
2083                 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2084                                                 DATA_GENERIC_ENHANCE_READ)) {
2085                         ret = -EFSCORRUPTED;
2086                         goto out;
2087                 }
2088         } else {
2089 zero_out:
2090                 zero_user_segment(page, 0, PAGE_SIZE);
2091                 if (f2fs_need_verity(inode, page->index) &&
2092                     !fsverity_verify_page(page)) {
2093                         ret = -EIO;
2094                         goto out;
2095                 }
2096                 if (!PageUptodate(page))
2097                         SetPageUptodate(page);
2098                 unlock_page(page);
2099                 goto out;
2100         }
2101
2102         /*
2103          * This page will go to BIO.  Do we need to send this
2104          * BIO off first?
2105          */
2106         if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
2107                                        *last_block_in_bio, block_nr) ||
2108                     !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2109 submit_and_realloc:
2110                 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2111                 bio = NULL;
2112         }
2113         if (bio == NULL) {
2114                 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2115                                 is_readahead ? REQ_RAHEAD : 0, page->index,
2116                                 false);
2117                 if (IS_ERR(bio)) {
2118                         ret = PTR_ERR(bio);
2119                         bio = NULL;
2120                         goto out;
2121                 }
2122         }
2123
2124         /*
2125          * If the page is under writeback, we need to wait for
2126          * its completion to see the correct decrypted data.
2127          */
2128         f2fs_wait_on_block_writeback(inode, block_nr);
2129
2130         if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2131                 goto submit_and_realloc;
2132
2133         inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2134         f2fs_update_iostat(F2FS_I_SB(inode), FS_DATA_READ_IO, F2FS_BLKSIZE);
2135         ClearPageError(page);
2136         *last_block_in_bio = block_nr;
2137         goto out;
2138 confused:
2139         if (bio) {
2140                 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2141                 bio = NULL;
2142         }
2143         unlock_page(page);
2144 out:
2145         *bio_ret = bio;
2146         return ret;
2147 }
2148
2149 #ifdef CONFIG_F2FS_FS_COMPRESSION
2150 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2151                                 unsigned nr_pages, sector_t *last_block_in_bio,
2152                                 bool is_readahead, bool for_write)
2153 {
2154         struct dnode_of_data dn;
2155         struct inode *inode = cc->inode;
2156         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2157         struct bio *bio = *bio_ret;
2158         unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2159         sector_t last_block_in_file;
2160         const unsigned blocksize = blks_to_bytes(inode, 1);
2161         struct decompress_io_ctx *dic = NULL;
2162         struct extent_info ei = {0, };
2163         bool from_dnode = true;
2164         int i;
2165         int ret = 0;
2166
2167         f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2168
2169         last_block_in_file = bytes_to_blks(inode,
2170                         f2fs_readpage_limit(inode) + blocksize - 1);
2171
2172         /* get rid of pages beyond EOF */
2173         for (i = 0; i < cc->cluster_size; i++) {
2174                 struct page *page = cc->rpages[i];
2175
2176                 if (!page)
2177                         continue;
2178                 if ((sector_t)page->index >= last_block_in_file) {
2179                         zero_user_segment(page, 0, PAGE_SIZE);
2180                         if (!PageUptodate(page))
2181                                 SetPageUptodate(page);
2182                 } else if (!PageUptodate(page)) {
2183                         continue;
2184                 }
2185                 unlock_page(page);
2186                 if (for_write)
2187                         put_page(page);
2188                 cc->rpages[i] = NULL;
2189                 cc->nr_rpages--;
2190         }
2191
2192         /* we are done since all pages are beyond EOF */
2193         if (f2fs_cluster_is_empty(cc))
2194                 goto out;
2195
2196         if (f2fs_lookup_extent_cache(inode, start_idx, &ei))
2197                 from_dnode = false;
2198
2199         if (!from_dnode)
2200                 goto skip_reading_dnode;
2201
2202         set_new_dnode(&dn, inode, NULL, NULL, 0);
2203         ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2204         if (ret)
2205                 goto out;
2206
2207         f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
2208
2209 skip_reading_dnode:
2210         for (i = 1; i < cc->cluster_size; i++) {
2211                 block_t blkaddr;
2212
2213                 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2214                                         dn.ofs_in_node + i) :
2215                                         ei.blk + i - 1;
2216
2217                 if (!__is_valid_data_blkaddr(blkaddr))
2218                         break;
2219
2220                 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2221                         ret = -EFAULT;
2222                         goto out_put_dnode;
2223                 }
2224                 cc->nr_cpages++;
2225
2226                 if (!from_dnode && i >= ei.c_len)
2227                         break;
2228         }
2229
2230         /* nothing to decompress */
2231         if (cc->nr_cpages == 0) {
2232                 ret = 0;
2233                 goto out_put_dnode;
2234         }
2235
2236         dic = f2fs_alloc_dic(cc);
2237         if (IS_ERR(dic)) {
2238                 ret = PTR_ERR(dic);
2239                 goto out_put_dnode;
2240         }
2241
2242         for (i = 0; i < cc->nr_cpages; i++) {
2243                 struct page *page = dic->cpages[i];
2244                 block_t blkaddr;
2245                 struct bio_post_read_ctx *ctx;
2246
2247                 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2248                                         dn.ofs_in_node + i + 1) :
2249                                         ei.blk + i;
2250
2251                 f2fs_wait_on_block_writeback(inode, blkaddr);
2252
2253                 if (f2fs_load_compressed_page(sbi, page, blkaddr)) {
2254                         if (atomic_dec_and_test(&dic->remaining_pages))
2255                                 f2fs_decompress_cluster(dic);
2256                         continue;
2257                 }
2258
2259                 if (bio && (!page_is_mergeable(sbi, bio,
2260                                         *last_block_in_bio, blkaddr) ||
2261                     !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2262 submit_and_realloc:
2263                         __submit_bio(sbi, bio, DATA);
2264                         bio = NULL;
2265                 }
2266
2267                 if (!bio) {
2268                         bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2269                                         is_readahead ? REQ_RAHEAD : 0,
2270                                         page->index, for_write);
2271                         if (IS_ERR(bio)) {
2272                                 ret = PTR_ERR(bio);
2273                                 f2fs_decompress_end_io(dic, ret);
2274                                 f2fs_put_dnode(&dn);
2275                                 *bio_ret = NULL;
2276                                 return ret;
2277                         }
2278                 }
2279
2280                 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2281                         goto submit_and_realloc;
2282
2283                 ctx = get_post_read_ctx(bio);
2284                 ctx->enabled_steps |= STEP_DECOMPRESS;
2285                 refcount_inc(&dic->refcnt);
2286
2287                 inc_page_count(sbi, F2FS_RD_DATA);
2288                 f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
2289                 f2fs_update_iostat(sbi, FS_CDATA_READ_IO, F2FS_BLKSIZE);
2290                 ClearPageError(page);
2291                 *last_block_in_bio = blkaddr;
2292         }
2293
2294         if (from_dnode)
2295                 f2fs_put_dnode(&dn);
2296
2297         *bio_ret = bio;
2298         return 0;
2299
2300 out_put_dnode:
2301         if (from_dnode)
2302                 f2fs_put_dnode(&dn);
2303 out:
2304         for (i = 0; i < cc->cluster_size; i++) {
2305                 if (cc->rpages[i]) {
2306                         ClearPageUptodate(cc->rpages[i]);
2307                         ClearPageError(cc->rpages[i]);
2308                         unlock_page(cc->rpages[i]);
2309                 }
2310         }
2311         *bio_ret = bio;
2312         return ret;
2313 }
2314 #endif
2315
2316 /*
2317  * This function was originally taken from fs/mpage.c, and customized for f2fs.
2318  * Major change was from block_size == page_size in f2fs by default.
2319  */
2320 static int f2fs_mpage_readpages(struct inode *inode,
2321                 struct readahead_control *rac, struct page *page)
2322 {
2323         struct bio *bio = NULL;
2324         sector_t last_block_in_bio = 0;
2325         struct f2fs_map_blocks map;
2326 #ifdef CONFIG_F2FS_FS_COMPRESSION
2327         struct compress_ctx cc = {
2328                 .inode = inode,
2329                 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2330                 .cluster_size = F2FS_I(inode)->i_cluster_size,
2331                 .cluster_idx = NULL_CLUSTER,
2332                 .rpages = NULL,
2333                 .cpages = NULL,
2334                 .nr_rpages = 0,
2335                 .nr_cpages = 0,
2336         };
2337         pgoff_t nc_cluster_idx = NULL_CLUSTER;
2338 #endif
2339         unsigned nr_pages = rac ? readahead_count(rac) : 1;
2340         unsigned max_nr_pages = nr_pages;
2341         int ret = 0;
2342
2343         map.m_pblk = 0;
2344         map.m_lblk = 0;
2345         map.m_len = 0;
2346         map.m_flags = 0;
2347         map.m_next_pgofs = NULL;
2348         map.m_next_extent = NULL;
2349         map.m_seg_type = NO_CHECK_TYPE;
2350         map.m_may_create = false;
2351
2352         for (; nr_pages; nr_pages--) {
2353                 if (rac) {
2354                         page = readahead_page(rac);
2355                         prefetchw(&page->flags);
2356                 }
2357
2358 #ifdef CONFIG_F2FS_FS_COMPRESSION
2359                 if (f2fs_compressed_file(inode)) {
2360                         /* there are remained comressed pages, submit them */
2361                         if (!f2fs_cluster_can_merge_page(&cc, page->index)) {
2362                                 ret = f2fs_read_multi_pages(&cc, &bio,
2363                                                         max_nr_pages,
2364                                                         &last_block_in_bio,
2365                                                         rac != NULL, false);
2366                                 f2fs_destroy_compress_ctx(&cc, false);
2367                                 if (ret)
2368                                         goto set_error_page;
2369                         }
2370                         if (cc.cluster_idx == NULL_CLUSTER) {
2371                                 if (nc_cluster_idx ==
2372                                         page->index >> cc.log_cluster_size) {
2373                                         goto read_single_page;
2374                                 }
2375
2376                                 ret = f2fs_is_compressed_cluster(inode, page->index);
2377                                 if (ret < 0)
2378                                         goto set_error_page;
2379                                 else if (!ret) {
2380                                         nc_cluster_idx =
2381                                                 page->index >> cc.log_cluster_size;
2382                                         goto read_single_page;
2383                                 }
2384
2385                                 nc_cluster_idx = NULL_CLUSTER;
2386                         }
2387                         ret = f2fs_init_compress_ctx(&cc);
2388                         if (ret)
2389                                 goto set_error_page;
2390
2391                         f2fs_compress_ctx_add_page(&cc, page);
2392
2393                         goto next_page;
2394                 }
2395 read_single_page:
2396 #endif
2397
2398                 ret = f2fs_read_single_page(inode, page, max_nr_pages, &map,
2399                                         &bio, &last_block_in_bio, rac);
2400                 if (ret) {
2401 #ifdef CONFIG_F2FS_FS_COMPRESSION
2402 set_error_page:
2403 #endif
2404                         SetPageError(page);
2405                         zero_user_segment(page, 0, PAGE_SIZE);
2406                         unlock_page(page);
2407                 }
2408 #ifdef CONFIG_F2FS_FS_COMPRESSION
2409 next_page:
2410 #endif
2411                 if (rac)
2412                         put_page(page);
2413
2414 #ifdef CONFIG_F2FS_FS_COMPRESSION
2415                 if (f2fs_compressed_file(inode)) {
2416                         /* last page */
2417                         if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2418                                 ret = f2fs_read_multi_pages(&cc, &bio,
2419                                                         max_nr_pages,
2420                                                         &last_block_in_bio,
2421                                                         rac != NULL, false);
2422                                 f2fs_destroy_compress_ctx(&cc, false);
2423                         }
2424                 }
2425 #endif
2426         }
2427         if (bio)
2428                 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2429         return ret;
2430 }
2431
2432 static int f2fs_read_data_page(struct file *file, struct page *page)
2433 {
2434         struct inode *inode = page_file_mapping(page)->host;
2435         int ret = -EAGAIN;
2436
2437         trace_f2fs_readpage(page, DATA);
2438
2439         if (!f2fs_is_compress_backend_ready(inode)) {
2440                 unlock_page(page);
2441                 return -EOPNOTSUPP;
2442         }
2443
2444         /* If the file has inline data, try to read it directly */
2445         if (f2fs_has_inline_data(inode))
2446                 ret = f2fs_read_inline_data(inode, page);
2447         if (ret == -EAGAIN)
2448                 ret = f2fs_mpage_readpages(inode, NULL, page);
2449         return ret;
2450 }
2451
2452 static void f2fs_readahead(struct readahead_control *rac)
2453 {
2454         struct inode *inode = rac->mapping->host;
2455
2456         trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2457
2458         if (!f2fs_is_compress_backend_ready(inode))
2459                 return;
2460
2461         /* If the file has inline data, skip readpages */
2462         if (f2fs_has_inline_data(inode))
2463                 return;
2464
2465         f2fs_mpage_readpages(inode, rac, NULL);
2466 }
2467
2468 int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2469 {
2470         struct inode *inode = fio->page->mapping->host;
2471         struct page *mpage, *page;
2472         gfp_t gfp_flags = GFP_NOFS;
2473
2474         if (!f2fs_encrypted_file(inode))
2475                 return 0;
2476
2477         page = fio->compressed_page ? fio->compressed_page : fio->page;
2478
2479         /* wait for GCed page writeback via META_MAPPING */
2480         f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2481
2482         if (fscrypt_inode_uses_inline_crypto(inode))
2483                 return 0;
2484
2485 retry_encrypt:
2486         fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2487                                         PAGE_SIZE, 0, gfp_flags);
2488         if (IS_ERR(fio->encrypted_page)) {
2489                 /* flush pending IOs and wait for a while in the ENOMEM case */
2490                 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2491                         f2fs_flush_merged_writes(fio->sbi);
2492                         congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2493                         gfp_flags |= __GFP_NOFAIL;
2494                         goto retry_encrypt;
2495                 }
2496                 return PTR_ERR(fio->encrypted_page);
2497         }
2498
2499         mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2500         if (mpage) {
2501                 if (PageUptodate(mpage))
2502                         memcpy(page_address(mpage),
2503                                 page_address(fio->encrypted_page), PAGE_SIZE);
2504                 f2fs_put_page(mpage, 1);
2505         }
2506         return 0;
2507 }
2508
2509 static inline bool check_inplace_update_policy(struct inode *inode,
2510                                 struct f2fs_io_info *fio)
2511 {
2512         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2513         unsigned int policy = SM_I(sbi)->ipu_policy;
2514
2515         if (policy & (0x1 << F2FS_IPU_FORCE))
2516                 return true;
2517         if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi))
2518                 return true;
2519         if (policy & (0x1 << F2FS_IPU_UTIL) &&
2520                         utilization(sbi) > SM_I(sbi)->min_ipu_util)
2521                 return true;
2522         if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) &&
2523                         utilization(sbi) > SM_I(sbi)->min_ipu_util)
2524                 return true;
2525
2526         /*
2527          * IPU for rewrite async pages
2528          */
2529         if (policy & (0x1 << F2FS_IPU_ASYNC) &&
2530                         fio && fio->op == REQ_OP_WRITE &&
2531                         !(fio->op_flags & REQ_SYNC) &&
2532                         !IS_ENCRYPTED(inode))
2533                 return true;
2534
2535         /* this is only set during fdatasync */
2536         if (policy & (0x1 << F2FS_IPU_FSYNC) &&
2537                         is_inode_flag_set(inode, FI_NEED_IPU))
2538                 return true;
2539
2540         if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2541                         !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2542                 return true;
2543
2544         return false;
2545 }
2546
2547 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2548 {
2549         /* swap file is migrating in aligned write mode */
2550         if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2551                 return false;
2552
2553         if (f2fs_is_pinned_file(inode))
2554                 return true;
2555
2556         /* if this is cold file, we should overwrite to avoid fragmentation */
2557         if (file_is_cold(inode))
2558                 return true;
2559
2560         return check_inplace_update_policy(inode, fio);
2561 }
2562
2563 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2564 {
2565         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2566
2567         if (f2fs_lfs_mode(sbi))
2568                 return true;
2569         if (S_ISDIR(inode->i_mode))
2570                 return true;
2571         if (IS_NOQUOTA(inode))
2572                 return true;
2573         if (f2fs_is_atomic_file(inode))
2574                 return true;
2575         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
2576                 return true;
2577
2578         /* swap file is migrating in aligned write mode */
2579         if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2580                 return true;
2581
2582         if (fio) {
2583                 if (page_private_gcing(fio->page))
2584                         return true;
2585                 if (page_private_dummy(fio->page))
2586                         return true;
2587                 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2588                         f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2589                         return true;
2590         }
2591         return false;
2592 }
2593
2594 static inline bool need_inplace_update(struct f2fs_io_info *fio)
2595 {
2596         struct inode *inode = fio->page->mapping->host;
2597
2598         if (f2fs_should_update_outplace(inode, fio))
2599                 return false;
2600
2601         return f2fs_should_update_inplace(inode, fio);
2602 }
2603
2604 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2605 {
2606         struct page *page = fio->page;
2607         struct inode *inode = page->mapping->host;
2608         struct dnode_of_data dn;
2609         struct extent_info ei = {0, };
2610         struct node_info ni;
2611         bool ipu_force = false;
2612         int err = 0;
2613
2614         set_new_dnode(&dn, inode, NULL, NULL, 0);
2615         if (need_inplace_update(fio) &&
2616                         f2fs_lookup_extent_cache(inode, page->index, &ei)) {
2617                 fio->old_blkaddr = ei.blk + page->index - ei.fofs;
2618
2619                 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2620                                                 DATA_GENERIC_ENHANCE))
2621                         return -EFSCORRUPTED;
2622
2623                 ipu_force = true;
2624                 fio->need_lock = LOCK_DONE;
2625                 goto got_it;
2626         }
2627
2628         /* Deadlock due to between page->lock and f2fs_lock_op */
2629         if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2630                 return -EAGAIN;
2631
2632         err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
2633         if (err)
2634                 goto out;
2635
2636         fio->old_blkaddr = dn.data_blkaddr;
2637
2638         /* This page is already truncated */
2639         if (fio->old_blkaddr == NULL_ADDR) {
2640                 ClearPageUptodate(page);
2641                 clear_page_private_gcing(page);
2642                 goto out_writepage;
2643         }
2644 got_it:
2645         if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2646                 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2647                                                 DATA_GENERIC_ENHANCE)) {
2648                 err = -EFSCORRUPTED;
2649                 goto out_writepage;
2650         }
2651         /*
2652          * If current allocation needs SSR,
2653          * it had better in-place writes for updated data.
2654          */
2655         if (ipu_force ||
2656                 (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2657                                         need_inplace_update(fio))) {
2658                 err = f2fs_encrypt_one_page(fio);
2659                 if (err)
2660                         goto out_writepage;
2661
2662                 set_page_writeback(page);
2663                 ClearPageError(page);
2664                 f2fs_put_dnode(&dn);
2665                 if (fio->need_lock == LOCK_REQ)
2666                         f2fs_unlock_op(fio->sbi);
2667                 err = f2fs_inplace_write_data(fio);
2668                 if (err) {
2669                         if (fscrypt_inode_uses_fs_layer_crypto(inode))
2670                                 fscrypt_finalize_bounce_page(&fio->encrypted_page);
2671                         if (PageWriteback(page))
2672                                 end_page_writeback(page);
2673                 } else {
2674                         set_inode_flag(inode, FI_UPDATE_WRITE);
2675                 }
2676                 trace_f2fs_do_write_data_page(fio->page, IPU);
2677                 return err;
2678         }
2679
2680         if (fio->need_lock == LOCK_RETRY) {
2681                 if (!f2fs_trylock_op(fio->sbi)) {
2682                         err = -EAGAIN;
2683                         goto out_writepage;
2684                 }
2685                 fio->need_lock = LOCK_REQ;
2686         }
2687
2688         err = f2fs_get_node_info(fio->sbi, dn.nid, &ni);
2689         if (err)
2690                 goto out_writepage;
2691
2692         fio->version = ni.version;
2693
2694         err = f2fs_encrypt_one_page(fio);
2695         if (err)
2696                 goto out_writepage;
2697
2698         set_page_writeback(page);
2699         ClearPageError(page);
2700
2701         if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2702                 f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2703
2704         /* LFS mode write path */
2705         f2fs_outplace_write_data(&dn, fio);
2706         trace_f2fs_do_write_data_page(page, OPU);
2707         set_inode_flag(inode, FI_APPEND_WRITE);
2708         if (page->index == 0)
2709                 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
2710 out_writepage:
2711         f2fs_put_dnode(&dn);
2712 out:
2713         if (fio->need_lock == LOCK_REQ)
2714                 f2fs_unlock_op(fio->sbi);
2715         return err;
2716 }
2717
2718 int f2fs_write_single_data_page(struct page *page, int *submitted,
2719                                 struct bio **bio,
2720                                 sector_t *last_block,
2721                                 struct writeback_control *wbc,
2722                                 enum iostat_type io_type,
2723                                 int compr_blocks,
2724                                 bool allow_balance)
2725 {
2726         struct inode *inode = page->mapping->host;
2727         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2728         loff_t i_size = i_size_read(inode);
2729         const pgoff_t end_index = ((unsigned long long)i_size)
2730                                                         >> PAGE_SHIFT;
2731         loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
2732         unsigned offset = 0;
2733         bool need_balance_fs = false;
2734         int err = 0;
2735         struct f2fs_io_info fio = {
2736                 .sbi = sbi,
2737                 .ino = inode->i_ino,
2738                 .type = DATA,
2739                 .op = REQ_OP_WRITE,
2740                 .op_flags = wbc_to_write_flags(wbc),
2741                 .old_blkaddr = NULL_ADDR,
2742                 .page = page,
2743                 .encrypted_page = NULL,
2744                 .submitted = false,
2745                 .compr_blocks = compr_blocks,
2746                 .need_lock = LOCK_RETRY,
2747                 .io_type = io_type,
2748                 .io_wbc = wbc,
2749                 .bio = bio,
2750                 .last_block = last_block,
2751         };
2752
2753         trace_f2fs_writepage(page, DATA);
2754
2755         /* we should bypass data pages to proceed the kworkder jobs */
2756         if (unlikely(f2fs_cp_error(sbi))) {
2757                 mapping_set_error(page->mapping, -EIO);
2758                 /*
2759                  * don't drop any dirty dentry pages for keeping lastest
2760                  * directory structure.
2761                  */
2762                 if (S_ISDIR(inode->i_mode))
2763                         goto redirty_out;
2764                 goto out;
2765         }
2766
2767         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2768                 goto redirty_out;
2769
2770         if (page->index < end_index ||
2771                         f2fs_verity_in_progress(inode) ||
2772                         compr_blocks)
2773                 goto write;
2774
2775         /*
2776          * If the offset is out-of-range of file size,
2777          * this page does not have to be written to disk.
2778          */
2779         offset = i_size & (PAGE_SIZE - 1);
2780         if ((page->index >= end_index + 1) || !offset)
2781                 goto out;
2782
2783         zero_user_segment(page, offset, PAGE_SIZE);
2784 write:
2785         if (f2fs_is_drop_cache(inode))
2786                 goto out;
2787         /* we should not write 0'th page having journal header */
2788         if (f2fs_is_volatile_file(inode) && (!page->index ||
2789                         (!wbc->for_reclaim &&
2790                         f2fs_available_free_memory(sbi, BASE_CHECK))))
2791                 goto redirty_out;
2792
2793         /* Dentry/quota blocks are controlled by checkpoint */
2794         if (S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) {
2795                 /*
2796                  * We need to wait for node_write to avoid block allocation during
2797                  * checkpoint. This can only happen to quota writes which can cause
2798                  * the below discard race condition.
2799                  */
2800                 if (IS_NOQUOTA(inode))
2801                         down_read(&sbi->node_write);
2802
2803                 fio.need_lock = LOCK_DONE;
2804                 err = f2fs_do_write_data_page(&fio);
2805
2806                 if (IS_NOQUOTA(inode))
2807                         up_read(&sbi->node_write);
2808
2809                 goto done;
2810         }
2811
2812         if (!wbc->for_reclaim)
2813                 need_balance_fs = true;
2814         else if (has_not_enough_free_secs(sbi, 0, 0))
2815                 goto redirty_out;
2816         else
2817                 set_inode_flag(inode, FI_HOT_DATA);
2818
2819         err = -EAGAIN;
2820         if (f2fs_has_inline_data(inode)) {
2821                 err = f2fs_write_inline_data(inode, page);
2822                 if (!err)
2823                         goto out;
2824         }
2825
2826         if (err == -EAGAIN) {
2827                 err = f2fs_do_write_data_page(&fio);
2828                 if (err == -EAGAIN) {
2829                         fio.need_lock = LOCK_REQ;
2830                         err = f2fs_do_write_data_page(&fio);
2831                 }
2832         }
2833
2834         if (err) {
2835                 file_set_keep_isize(inode);
2836         } else {
2837                 spin_lock(&F2FS_I(inode)->i_size_lock);
2838                 if (F2FS_I(inode)->last_disk_size < psize)
2839                         F2FS_I(inode)->last_disk_size = psize;
2840                 spin_unlock(&F2FS_I(inode)->i_size_lock);
2841         }
2842
2843 done:
2844         if (err && err != -ENOENT)
2845                 goto redirty_out;
2846
2847 out:
2848         inode_dec_dirty_pages(inode);
2849         if (err) {
2850                 ClearPageUptodate(page);
2851                 clear_page_private_gcing(page);
2852         }
2853
2854         if (wbc->for_reclaim) {
2855                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2856                 clear_inode_flag(inode, FI_HOT_DATA);
2857                 f2fs_remove_dirty_inode(inode);
2858                 submitted = NULL;
2859         }
2860         unlock_page(page);
2861         if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2862                         !F2FS_I(inode)->cp_task && allow_balance)
2863                 f2fs_balance_fs(sbi, need_balance_fs);
2864
2865         if (unlikely(f2fs_cp_error(sbi))) {
2866                 f2fs_submit_merged_write(sbi, DATA);
2867                 f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2868                 submitted = NULL;
2869         }
2870
2871         if (submitted)
2872                 *submitted = fio.submitted ? 1 : 0;
2873
2874         return 0;
2875
2876 redirty_out:
2877         redirty_page_for_writepage(wbc, page);
2878         /*
2879          * pageout() in MM traslates EAGAIN, so calls handle_write_error()
2880          * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2881          * file_write_and_wait_range() will see EIO error, which is critical
2882          * to return value of fsync() followed by atomic_write failure to user.
2883          */
2884         if (!err || wbc->for_reclaim)
2885                 return AOP_WRITEPAGE_ACTIVATE;
2886         unlock_page(page);
2887         return err;
2888 }
2889
2890 static int f2fs_write_data_page(struct page *page,
2891                                         struct writeback_control *wbc)
2892 {
2893 #ifdef CONFIG_F2FS_FS_COMPRESSION
2894         struct inode *inode = page->mapping->host;
2895
2896         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2897                 goto out;
2898
2899         if (f2fs_compressed_file(inode)) {
2900                 if (f2fs_is_compressed_cluster(inode, page->index)) {
2901                         redirty_page_for_writepage(wbc, page);
2902                         return AOP_WRITEPAGE_ACTIVATE;
2903                 }
2904         }
2905 out:
2906 #endif
2907
2908         return f2fs_write_single_data_page(page, NULL, NULL, NULL,
2909                                                 wbc, FS_DATA_IO, 0, true);
2910 }
2911
2912 /*
2913  * This function was copied from write_cche_pages from mm/page-writeback.c.
2914  * The major change is making write step of cold data page separately from
2915  * warm/hot data page.
2916  */
2917 static int f2fs_write_cache_pages(struct address_space *mapping,
2918                                         struct writeback_control *wbc,
2919                                         enum iostat_type io_type)
2920 {
2921         int ret = 0;
2922         int done = 0, retry = 0;
2923         struct pagevec pvec;
2924         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2925         struct bio *bio = NULL;
2926         sector_t last_block;
2927 #ifdef CONFIG_F2FS_FS_COMPRESSION
2928         struct inode *inode = mapping->host;
2929         struct compress_ctx cc = {
2930                 .inode = inode,
2931                 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2932                 .cluster_size = F2FS_I(inode)->i_cluster_size,
2933                 .cluster_idx = NULL_CLUSTER,
2934                 .rpages = NULL,
2935                 .nr_rpages = 0,
2936                 .cpages = NULL,
2937                 .rbuf = NULL,
2938                 .cbuf = NULL,
2939                 .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
2940                 .private = NULL,
2941         };
2942 #endif
2943         int nr_pages;
2944         pgoff_t index;
2945         pgoff_t end;            /* Inclusive */
2946         pgoff_t done_index;
2947         int range_whole = 0;
2948         xa_mark_t tag;
2949         int nwritten = 0;
2950         int submitted = 0;
2951         int i;
2952
2953         pagevec_init(&pvec);
2954
2955         if (get_dirty_pages(mapping->host) <=
2956                                 SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
2957                 set_inode_flag(mapping->host, FI_HOT_DATA);
2958         else
2959                 clear_inode_flag(mapping->host, FI_HOT_DATA);
2960
2961         if (wbc->range_cyclic) {
2962                 index = mapping->writeback_index; /* prev offset */
2963                 end = -1;
2964         } else {
2965                 index = wbc->range_start >> PAGE_SHIFT;
2966                 end = wbc->range_end >> PAGE_SHIFT;
2967                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2968                         range_whole = 1;
2969         }
2970         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2971                 tag = PAGECACHE_TAG_TOWRITE;
2972         else
2973                 tag = PAGECACHE_TAG_DIRTY;
2974 retry:
2975         retry = 0;
2976         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2977                 tag_pages_for_writeback(mapping, index, end);
2978         done_index = index;
2979         while (!done && !retry && (index <= end)) {
2980                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2981                                 tag);
2982                 if (nr_pages == 0)
2983                         break;
2984
2985                 for (i = 0; i < nr_pages; i++) {
2986                         struct page *page = pvec.pages[i];
2987                         bool need_readd;
2988 readd:
2989                         need_readd = false;
2990 #ifdef CONFIG_F2FS_FS_COMPRESSION
2991                         if (f2fs_compressed_file(inode)) {
2992                                 ret = f2fs_init_compress_ctx(&cc);
2993                                 if (ret) {
2994                                         done = 1;
2995                                         break;
2996                                 }
2997
2998                                 if (!f2fs_cluster_can_merge_page(&cc,
2999                                                                 page->index)) {
3000                                         ret = f2fs_write_multi_pages(&cc,
3001                                                 &submitted, wbc, io_type);
3002                                         if (!ret)
3003                                                 need_readd = true;
3004                                         goto result;
3005                                 }
3006
3007                                 if (unlikely(f2fs_cp_error(sbi)))
3008                                         goto lock_page;
3009
3010                                 if (f2fs_cluster_is_empty(&cc)) {
3011                                         void *fsdata = NULL;
3012                                         struct page *pagep;
3013                                         int ret2;
3014
3015                                         ret2 = f2fs_prepare_compress_overwrite(
3016                                                         inode, &pagep,
3017                                                         page->index, &fsdata);
3018                                         if (ret2 < 0) {
3019                                                 ret = ret2;
3020                                                 done = 1;
3021                                                 break;
3022                                         } else if (ret2 &&
3023                                                 !f2fs_compress_write_end(inode,
3024                                                                 fsdata, page->index,
3025                                                                 1)) {
3026                                                 retry = 1;
3027                                                 break;
3028                                         }
3029                                 } else {
3030                                         goto lock_page;
3031                                 }
3032                         }
3033 #endif
3034                         /* give a priority to WB_SYNC threads */
3035                         if (atomic_read(&sbi->wb_sync_req[DATA]) &&
3036                                         wbc->sync_mode == WB_SYNC_NONE) {
3037                                 done = 1;
3038                                 break;
3039                         }
3040 #ifdef CONFIG_F2FS_FS_COMPRESSION
3041 lock_page:
3042 #endif
3043                         done_index = page->index;
3044 retry_write:
3045                         lock_page(page);
3046
3047                         if (unlikely(page->mapping != mapping)) {
3048 continue_unlock:
3049                                 unlock_page(page);
3050                                 continue;
3051                         }
3052
3053                         if (!PageDirty(page)) {
3054                                 /* someone wrote it for us */
3055                                 goto continue_unlock;
3056                         }
3057
3058                         if (PageWriteback(page)) {
3059                                 if (wbc->sync_mode != WB_SYNC_NONE)
3060                                         f2fs_wait_on_page_writeback(page,
3061                                                         DATA, true, true);
3062                                 else
3063                                         goto continue_unlock;
3064                         }
3065
3066                         if (!clear_page_dirty_for_io(page))
3067                                 goto continue_unlock;
3068
3069 #ifdef CONFIG_F2FS_FS_COMPRESSION
3070                         if (f2fs_compressed_file(inode)) {
3071                                 get_page(page);
3072                                 f2fs_compress_ctx_add_page(&cc, page);
3073                                 continue;
3074                         }
3075 #endif
3076                         ret = f2fs_write_single_data_page(page, &submitted,
3077                                         &bio, &last_block, wbc, io_type,
3078                                         0, true);
3079                         if (ret == AOP_WRITEPAGE_ACTIVATE)
3080                                 unlock_page(page);
3081 #ifdef CONFIG_F2FS_FS_COMPRESSION
3082 result:
3083 #endif
3084                         nwritten += submitted;
3085                         wbc->nr_to_write -= submitted;
3086
3087                         if (unlikely(ret)) {
3088                                 /*
3089                                  * keep nr_to_write, since vfs uses this to
3090                                  * get # of written pages.
3091                                  */
3092                                 if (ret == AOP_WRITEPAGE_ACTIVATE) {
3093                                         ret = 0;
3094                                         goto next;
3095                                 } else if (ret == -EAGAIN) {
3096                                         ret = 0;
3097                                         if (wbc->sync_mode == WB_SYNC_ALL) {
3098                                                 cond_resched();
3099                                                 congestion_wait(BLK_RW_ASYNC,
3100                                                         DEFAULT_IO_TIMEOUT);
3101                                                 goto retry_write;
3102                                         }
3103                                         goto next;
3104                                 }
3105                                 done_index = page->index + 1;
3106                                 done = 1;
3107                                 break;
3108                         }
3109
3110                         if (wbc->nr_to_write <= 0 &&
3111                                         wbc->sync_mode == WB_SYNC_NONE) {
3112                                 done = 1;
3113                                 break;
3114                         }
3115 next:
3116                         if (need_readd)
3117                                 goto readd;
3118                 }
3119                 pagevec_release(&pvec);
3120                 cond_resched();
3121         }
3122 #ifdef CONFIG_F2FS_FS_COMPRESSION
3123         /* flush remained pages in compress cluster */
3124         if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3125                 ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3126                 nwritten += submitted;
3127                 wbc->nr_to_write -= submitted;
3128                 if (ret) {
3129                         done = 1;
3130                         retry = 0;
3131                 }
3132         }
3133         if (f2fs_compressed_file(inode))
3134                 f2fs_destroy_compress_ctx(&cc, false);
3135 #endif
3136         if (retry) {
3137                 index = 0;
3138                 end = -1;
3139                 goto retry;
3140         }
3141         if (wbc->range_cyclic && !done)
3142                 done_index = 0;
3143         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3144                 mapping->writeback_index = done_index;
3145
3146         if (nwritten)
3147                 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3148                                                                 NULL, 0, DATA);
3149         /* submit cached bio of IPU write */
3150         if (bio)
3151                 f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3152
3153         return ret;
3154 }
3155
3156 static inline bool __should_serialize_io(struct inode *inode,
3157                                         struct writeback_control *wbc)
3158 {
3159         /* to avoid deadlock in path of data flush */
3160         if (F2FS_I(inode)->cp_task)
3161                 return false;
3162
3163         if (!S_ISREG(inode->i_mode))
3164                 return false;
3165         if (IS_NOQUOTA(inode))
3166                 return false;
3167
3168         if (f2fs_need_compress_data(inode))
3169                 return true;
3170         if (wbc->sync_mode != WB_SYNC_ALL)
3171                 return true;
3172         if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3173                 return true;
3174         return false;
3175 }
3176
3177 static int __f2fs_write_data_pages(struct address_space *mapping,
3178                                                 struct writeback_control *wbc,
3179                                                 enum iostat_type io_type)
3180 {
3181         struct inode *inode = mapping->host;
3182         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3183         struct blk_plug plug;
3184         int ret;
3185         bool locked = false;
3186
3187         /* deal with chardevs and other special file */
3188         if (!mapping->a_ops->writepage)
3189                 return 0;
3190
3191         /* skip writing if there is no dirty page in this inode */
3192         if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3193                 return 0;
3194
3195         /* during POR, we don't need to trigger writepage at all. */
3196         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3197                 goto skip_write;
3198
3199         if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3200                         wbc->sync_mode == WB_SYNC_NONE &&
3201                         get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3202                         f2fs_available_free_memory(sbi, DIRTY_DENTS))
3203                 goto skip_write;
3204
3205         /* skip writing during file defragment */
3206         if (is_inode_flag_set(inode, FI_DO_DEFRAG))
3207                 goto skip_write;
3208
3209         trace_f2fs_writepages(mapping->host, wbc, DATA);
3210
3211         /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3212         if (wbc->sync_mode == WB_SYNC_ALL)
3213                 atomic_inc(&sbi->wb_sync_req[DATA]);
3214         else if (atomic_read(&sbi->wb_sync_req[DATA]))
3215                 goto skip_write;
3216
3217         if (__should_serialize_io(inode, wbc)) {
3218                 mutex_lock(&sbi->writepages);
3219                 locked = true;
3220         }
3221
3222         blk_start_plug(&plug);
3223         ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3224         blk_finish_plug(&plug);
3225
3226         if (locked)
3227                 mutex_unlock(&sbi->writepages);
3228
3229         if (wbc->sync_mode == WB_SYNC_ALL)
3230                 atomic_dec(&sbi->wb_sync_req[DATA]);
3231         /*
3232          * if some pages were truncated, we cannot guarantee its mapping->host
3233          * to detect pending bios.
3234          */
3235
3236         f2fs_remove_dirty_inode(inode);
3237         return ret;
3238
3239 skip_write:
3240         wbc->pages_skipped += get_dirty_pages(inode);
3241         trace_f2fs_writepages(mapping->host, wbc, DATA);
3242         return 0;
3243 }
3244
3245 static int f2fs_write_data_pages(struct address_space *mapping,
3246                             struct writeback_control *wbc)
3247 {
3248         struct inode *inode = mapping->host;
3249
3250         return __f2fs_write_data_pages(mapping, wbc,
3251                         F2FS_I(inode)->cp_task == current ?
3252                         FS_CP_DATA_IO : FS_DATA_IO);
3253 }
3254
3255 static void f2fs_write_failed(struct inode *inode, loff_t to)
3256 {
3257         loff_t i_size = i_size_read(inode);
3258
3259         if (IS_NOQUOTA(inode))
3260                 return;
3261
3262         /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3263         if (to > i_size && !f2fs_verity_in_progress(inode)) {
3264                 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3265                 filemap_invalidate_lock(inode->i_mapping);
3266
3267                 truncate_pagecache(inode, i_size);
3268                 f2fs_truncate_blocks(inode, i_size, true);
3269
3270                 filemap_invalidate_unlock(inode->i_mapping);
3271                 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3272         }
3273 }
3274
3275 static int prepare_write_begin(struct f2fs_sb_info *sbi,
3276                         struct page *page, loff_t pos, unsigned len,
3277                         block_t *blk_addr, bool *node_changed)
3278 {
3279         struct inode *inode = page->mapping->host;
3280         pgoff_t index = page->index;
3281         struct dnode_of_data dn;
3282         struct page *ipage;
3283         bool locked = false;
3284         struct extent_info ei = {0, };
3285         int err = 0;
3286         int flag;
3287
3288         /*
3289          * we already allocated all the blocks, so we don't need to get
3290          * the block addresses when there is no need to fill the page.
3291          */
3292         if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
3293             !is_inode_flag_set(inode, FI_NO_PREALLOC) &&
3294             !f2fs_verity_in_progress(inode))
3295                 return 0;
3296
3297         /* f2fs_lock_op avoids race between write CP and convert_inline_page */
3298         if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode))
3299                 flag = F2FS_GET_BLOCK_DEFAULT;
3300         else
3301                 flag = F2FS_GET_BLOCK_PRE_AIO;
3302
3303         if (f2fs_has_inline_data(inode) ||
3304                         (pos & PAGE_MASK) >= i_size_read(inode)) {
3305                 f2fs_do_map_lock(sbi, flag, true);
3306                 locked = true;
3307         }
3308
3309 restart:
3310         /* check inline_data */
3311         ipage = f2fs_get_node_page(sbi, inode->i_ino);
3312         if (IS_ERR(ipage)) {
3313                 err = PTR_ERR(ipage);
3314                 goto unlock_out;
3315         }
3316
3317         set_new_dnode(&dn, inode, ipage, ipage, 0);
3318
3319         if (f2fs_has_inline_data(inode)) {
3320                 if (pos + len <= MAX_INLINE_DATA(inode)) {
3321                         f2fs_do_read_inline_data(page, ipage);
3322                         set_inode_flag(inode, FI_DATA_EXIST);
3323                         if (inode->i_nlink)
3324                                 set_page_private_inline(ipage);
3325                 } else {
3326                         err = f2fs_convert_inline_page(&dn, page);
3327                         if (err)
3328                                 goto out;
3329                         if (dn.data_blkaddr == NULL_ADDR)
3330                                 err = f2fs_get_block(&dn, index);
3331                 }
3332         } else if (locked) {
3333                 err = f2fs_get_block(&dn, index);
3334         } else {
3335                 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
3336                         dn.data_blkaddr = ei.blk + index - ei.fofs;
3337                 } else {
3338                         /* hole case */
3339                         err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3340                         if (err || dn.data_blkaddr == NULL_ADDR) {
3341                                 f2fs_put_dnode(&dn);
3342                                 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
3343                                                                 true);
3344                                 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3345                                 locked = true;
3346                                 goto restart;
3347                         }
3348                 }
3349         }
3350
3351         /* convert_inline_page can make node_changed */
3352         *blk_addr = dn.data_blkaddr;
3353         *node_changed = dn.node_changed;
3354 out:
3355         f2fs_put_dnode(&dn);
3356 unlock_out:
3357         if (locked)
3358                 f2fs_do_map_lock(sbi, flag, false);
3359         return err;
3360 }
3361
3362 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3363                 loff_t pos, unsigned len, unsigned flags,
3364                 struct page **pagep, void **fsdata)
3365 {
3366         struct inode *inode = mapping->host;
3367         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3368         struct page *page = NULL;
3369         pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
3370         bool need_balance = false, drop_atomic = false;
3371         block_t blkaddr = NULL_ADDR;
3372         int err = 0;
3373
3374         trace_f2fs_write_begin(inode, pos, len, flags);
3375
3376         if (!f2fs_is_checkpoint_ready(sbi)) {
3377                 err = -ENOSPC;
3378                 goto fail;
3379         }
3380
3381         if ((f2fs_is_atomic_file(inode) &&
3382                         !f2fs_available_free_memory(sbi, INMEM_PAGES)) ||
3383                         is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
3384                 err = -ENOMEM;
3385                 drop_atomic = true;
3386                 goto fail;
3387         }
3388
3389         /*
3390          * We should check this at this moment to avoid deadlock on inode page
3391          * and #0 page. The locking rule for inline_data conversion should be:
3392          * lock_page(page #0) -> lock_page(inode_page)
3393          */
3394         if (index != 0) {
3395                 err = f2fs_convert_inline_inode(inode);
3396                 if (err)
3397                         goto fail;
3398         }
3399
3400 #ifdef CONFIG_F2FS_FS_COMPRESSION
3401         if (f2fs_compressed_file(inode)) {
3402                 int ret;
3403
3404                 *fsdata = NULL;
3405
3406                 if (len == PAGE_SIZE)
3407                         goto repeat;
3408
3409                 ret = f2fs_prepare_compress_overwrite(inode, pagep,
3410                                                         index, fsdata);
3411                 if (ret < 0) {
3412                         err = ret;
3413                         goto fail;
3414                 } else if (ret) {
3415                         return 0;
3416                 }
3417         }
3418 #endif
3419
3420 repeat:
3421         /*
3422          * Do not use grab_cache_page_write_begin() to avoid deadlock due to
3423          * wait_for_stable_page. Will wait that below with our IO control.
3424          */
3425         page = f2fs_pagecache_get_page(mapping, index,
3426                                 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3427         if (!page) {
3428                 err = -ENOMEM;
3429                 goto fail;
3430         }
3431
3432         /* TODO: cluster can be compressed due to race with .writepage */
3433
3434         *pagep = page;
3435
3436         err = prepare_write_begin(sbi, page, pos, len,
3437                                         &blkaddr, &need_balance);
3438         if (err)
3439                 goto fail;
3440
3441         if (need_balance && !IS_NOQUOTA(inode) &&
3442                         has_not_enough_free_secs(sbi, 0, 0)) {
3443                 unlock_page(page);
3444                 f2fs_balance_fs(sbi, true);
3445                 lock_page(page);
3446                 if (page->mapping != mapping) {
3447                         /* The page got truncated from under us */
3448                         f2fs_put_page(page, 1);
3449                         goto repeat;
3450                 }
3451         }
3452
3453         f2fs_wait_on_page_writeback(page, DATA, false, true);
3454
3455         if (len == PAGE_SIZE || PageUptodate(page))
3456                 return 0;
3457
3458         if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3459             !f2fs_verity_in_progress(inode)) {
3460                 zero_user_segment(page, len, PAGE_SIZE);
3461                 return 0;
3462         }
3463
3464         if (blkaddr == NEW_ADDR) {
3465                 zero_user_segment(page, 0, PAGE_SIZE);
3466                 SetPageUptodate(page);
3467         } else {
3468                 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3469                                 DATA_GENERIC_ENHANCE_READ)) {
3470                         err = -EFSCORRUPTED;
3471                         goto fail;
3472                 }
3473                 err = f2fs_submit_page_read(inode, page, blkaddr, 0, true);
3474                 if (err)
3475                         goto fail;
3476
3477                 lock_page(page);
3478                 if (unlikely(page->mapping != mapping)) {
3479                         f2fs_put_page(page, 1);
3480                         goto repeat;
3481                 }
3482                 if (unlikely(!PageUptodate(page))) {
3483                         err = -EIO;
3484                         goto fail;
3485                 }
3486         }
3487         return 0;
3488
3489 fail:
3490         f2fs_put_page(page, 1);
3491         f2fs_write_failed(inode, pos + len);
3492         if (drop_atomic)
3493                 f2fs_drop_inmem_pages_all(sbi, false);
3494         return err;
3495 }
3496
3497 static int f2fs_write_end(struct file *file,
3498                         struct address_space *mapping,
3499                         loff_t pos, unsigned len, unsigned copied,
3500                         struct page *page, void *fsdata)
3501 {
3502         struct inode *inode = page->mapping->host;
3503
3504         trace_f2fs_write_end(inode, pos, len, copied);
3505
3506         /*
3507          * This should be come from len == PAGE_SIZE, and we expect copied
3508          * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3509          * let generic_perform_write() try to copy data again through copied=0.
3510          */
3511         if (!PageUptodate(page)) {
3512                 if (unlikely(copied != len))
3513                         copied = 0;
3514                 else
3515                         SetPageUptodate(page);
3516         }
3517
3518 #ifdef CONFIG_F2FS_FS_COMPRESSION
3519         /* overwrite compressed file */
3520         if (f2fs_compressed_file(inode) && fsdata) {
3521                 f2fs_compress_write_end(inode, fsdata, page->index, copied);
3522                 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3523
3524                 if (pos + copied > i_size_read(inode) &&
3525                                 !f2fs_verity_in_progress(inode))
3526                         f2fs_i_size_write(inode, pos + copied);
3527                 return copied;
3528         }
3529 #endif
3530
3531         if (!copied)
3532                 goto unlock_out;
3533
3534         set_page_dirty(page);
3535
3536         if (pos + copied > i_size_read(inode) &&
3537             !f2fs_verity_in_progress(inode))
3538                 f2fs_i_size_write(inode, pos + copied);
3539 unlock_out:
3540         f2fs_put_page(page, 1);
3541         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3542         return copied;
3543 }
3544
3545 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
3546                            loff_t offset)
3547 {
3548         unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
3549         unsigned blkbits = i_blkbits;
3550         unsigned blocksize_mask = (1 << blkbits) - 1;
3551         unsigned long align = offset | iov_iter_alignment(iter);
3552         struct block_device *bdev = inode->i_sb->s_bdev;
3553
3554         if (iov_iter_rw(iter) == READ && offset >= i_size_read(inode))
3555                 return 1;
3556
3557         if (align & blocksize_mask) {
3558                 if (bdev)
3559                         blkbits = blksize_bits(bdev_logical_block_size(bdev));
3560                 blocksize_mask = (1 << blkbits) - 1;
3561                 if (align & blocksize_mask)
3562                         return -EINVAL;
3563                 return 1;
3564         }
3565         return 0;
3566 }
3567
3568 static void f2fs_dio_end_io(struct bio *bio)
3569 {
3570         struct f2fs_private_dio *dio = bio->bi_private;
3571
3572         dec_page_count(F2FS_I_SB(dio->inode),
3573                         dio->write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
3574
3575         bio->bi_private = dio->orig_private;
3576         bio->bi_end_io = dio->orig_end_io;
3577
3578         kfree(dio);
3579
3580         bio_endio(bio);
3581 }
3582
3583 static void f2fs_dio_submit_bio(struct bio *bio, struct inode *inode,
3584                                                         loff_t file_offset)
3585 {
3586         struct f2fs_private_dio *dio;
3587         bool write = (bio_op(bio) == REQ_OP_WRITE);
3588
3589         dio = f2fs_kzalloc(F2FS_I_SB(inode),
3590                         sizeof(struct f2fs_private_dio), GFP_NOFS);
3591         if (!dio)
3592                 goto out;
3593
3594         dio->inode = inode;
3595         dio->orig_end_io = bio->bi_end_io;
3596         dio->orig_private = bio->bi_private;
3597         dio->write = write;
3598
3599         bio->bi_end_io = f2fs_dio_end_io;
3600         bio->bi_private = dio;
3601
3602         inc_page_count(F2FS_I_SB(inode),
3603                         write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
3604
3605         submit_bio(bio);
3606         return;
3607 out:
3608         bio->bi_status = BLK_STS_IOERR;
3609         bio_endio(bio);
3610 }
3611
3612 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3613 {
3614         struct address_space *mapping = iocb->ki_filp->f_mapping;
3615         struct inode *inode = mapping->host;
3616         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3617         struct f2fs_inode_info *fi = F2FS_I(inode);
3618         size_t count = iov_iter_count(iter);
3619         loff_t offset = iocb->ki_pos;
3620         int rw = iov_iter_rw(iter);
3621         int err;
3622         enum rw_hint hint = iocb->ki_hint;
3623         int whint_mode = F2FS_OPTION(sbi).whint_mode;
3624         bool do_opu;
3625
3626         err = check_direct_IO(inode, iter, offset);
3627         if (err)
3628                 return err < 0 ? err : 0;
3629
3630         if (f2fs_force_buffered_io(inode, iocb, iter))
3631                 return 0;
3632
3633         do_opu = rw == WRITE && f2fs_lfs_mode(sbi);
3634
3635         trace_f2fs_direct_IO_enter(inode, offset, count, rw);
3636
3637         if (rw == WRITE && whint_mode == WHINT_MODE_OFF)
3638                 iocb->ki_hint = WRITE_LIFE_NOT_SET;
3639
3640         if (iocb->ki_flags & IOCB_NOWAIT) {
3641                 if (!down_read_trylock(&fi->i_gc_rwsem[rw])) {
3642                         iocb->ki_hint = hint;
3643                         err = -EAGAIN;
3644                         goto out;
3645                 }
3646                 if (do_opu && !down_read_trylock(&fi->i_gc_rwsem[READ])) {
3647                         up_read(&fi->i_gc_rwsem[rw]);
3648                         iocb->ki_hint = hint;
3649                         err = -EAGAIN;
3650                         goto out;
3651                 }
3652         } else {
3653                 down_read(&fi->i_gc_rwsem[rw]);
3654                 if (do_opu)
3655                         down_read(&fi->i_gc_rwsem[READ]);
3656         }
3657
3658         err = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3659                         iter, rw == WRITE ? get_data_block_dio_write :
3660                         get_data_block_dio, NULL, f2fs_dio_submit_bio,
3661                         rw == WRITE ? DIO_LOCKING | DIO_SKIP_HOLES :
3662                         DIO_SKIP_HOLES);
3663
3664         if (do_opu)
3665                 up_read(&fi->i_gc_rwsem[READ]);
3666
3667         up_read(&fi->i_gc_rwsem[rw]);
3668
3669         if (rw == WRITE) {
3670                 if (whint_mode == WHINT_MODE_OFF)
3671                         iocb->ki_hint = hint;
3672                 if (err > 0) {
3673                         f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
3674                                                                         err);
3675                         if (!do_opu)
3676                                 set_inode_flag(inode, FI_UPDATE_WRITE);
3677                 } else if (err == -EIOCBQUEUED) {
3678                         f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
3679                                                 count - iov_iter_count(iter));
3680                 } else if (err < 0) {
3681                         f2fs_write_failed(inode, offset + count);
3682                 }
3683         } else {
3684                 if (err > 0)
3685                         f2fs_update_iostat(sbi, APP_DIRECT_READ_IO, err);
3686                 else if (err == -EIOCBQUEUED)
3687                         f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_READ_IO,
3688                                                 count - iov_iter_count(iter));
3689         }
3690
3691 out:
3692         trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
3693
3694         return err;
3695 }
3696
3697 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3698                                                         unsigned int length)
3699 {
3700         struct inode *inode = page->mapping->host;
3701         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3702
3703         if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3704                 (offset % PAGE_SIZE || length != PAGE_SIZE))
3705                 return;
3706
3707         if (PageDirty(page)) {
3708                 if (inode->i_ino == F2FS_META_INO(sbi)) {
3709                         dec_page_count(sbi, F2FS_DIRTY_META);
3710                 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3711                         dec_page_count(sbi, F2FS_DIRTY_NODES);
3712                 } else {
3713                         inode_dec_dirty_pages(inode);
3714                         f2fs_remove_dirty_inode(inode);
3715                 }
3716         }
3717
3718         clear_page_private_gcing(page);
3719
3720         if (test_opt(sbi, COMPRESS_CACHE)) {
3721                 if (f2fs_compressed_file(inode))
3722                         f2fs_invalidate_compress_pages(sbi, inode->i_ino);
3723                 if (inode->i_ino == F2FS_COMPRESS_INO(sbi))
3724                         clear_page_private_data(page);
3725         }
3726
3727         if (page_private_atomic(page))
3728                 return f2fs_drop_inmem_page(inode, page);
3729
3730         detach_page_private(page);
3731         set_page_private(page, 0);
3732 }
3733
3734 int f2fs_release_page(struct page *page, gfp_t wait)
3735 {
3736         /* If this is dirty page, keep PagePrivate */
3737         if (PageDirty(page))
3738                 return 0;
3739
3740         /* This is atomic written page, keep Private */
3741         if (page_private_atomic(page))
3742                 return 0;
3743
3744         if (test_opt(F2FS_P_SB(page), COMPRESS_CACHE)) {
3745                 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3746                 struct inode *inode = page->mapping->host;
3747
3748                 if (f2fs_compressed_file(inode))
3749                         f2fs_invalidate_compress_pages(sbi, inode->i_ino);
3750                 if (inode->i_ino == F2FS_COMPRESS_INO(sbi))
3751                         clear_page_private_data(page);
3752         }
3753
3754         clear_page_private_gcing(page);
3755
3756         detach_page_private(page);
3757         set_page_private(page, 0);
3758         return 1;
3759 }
3760
3761 static int f2fs_set_data_page_dirty(struct page *page)
3762 {
3763         struct inode *inode = page_file_mapping(page)->host;
3764
3765         trace_f2fs_set_page_dirty(page, DATA);
3766
3767         if (!PageUptodate(page))
3768                 SetPageUptodate(page);
3769         if (PageSwapCache(page))
3770                 return __set_page_dirty_nobuffers(page);
3771
3772         if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
3773                 if (!page_private_atomic(page)) {
3774                         f2fs_register_inmem_page(inode, page);
3775                         return 1;
3776                 }
3777                 /*
3778                  * Previously, this page has been registered, we just
3779                  * return here.
3780                  */
3781                 return 0;
3782         }
3783
3784         if (!PageDirty(page)) {
3785                 __set_page_dirty_nobuffers(page);
3786                 f2fs_update_dirty_page(inode, page);
3787                 return 1;
3788         }
3789         return 0;
3790 }
3791
3792
3793 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3794 {
3795 #ifdef CONFIG_F2FS_FS_COMPRESSION
3796         struct dnode_of_data dn;
3797         sector_t start_idx, blknr = 0;
3798         int ret;
3799
3800         start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3801
3802         set_new_dnode(&dn, inode, NULL, NULL, 0);
3803         ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3804         if (ret)
3805                 return 0;
3806
3807         if (dn.data_blkaddr != COMPRESS_ADDR) {
3808                 dn.ofs_in_node += block - start_idx;
3809                 blknr = f2fs_data_blkaddr(&dn);
3810                 if (!__is_valid_data_blkaddr(blknr))
3811                         blknr = 0;
3812         }
3813
3814         f2fs_put_dnode(&dn);
3815         return blknr;
3816 #else
3817         return 0;
3818 #endif
3819 }
3820
3821
3822 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3823 {
3824         struct inode *inode = mapping->host;
3825         sector_t blknr = 0;
3826
3827         if (f2fs_has_inline_data(inode))
3828                 goto out;
3829
3830         /* make sure allocating whole blocks */
3831         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3832                 filemap_write_and_wait(mapping);
3833
3834         /* Block number less than F2FS MAX BLOCKS */
3835         if (unlikely(block >= max_file_blocks(inode)))
3836                 goto out;
3837
3838         if (f2fs_compressed_file(inode)) {
3839                 blknr = f2fs_bmap_compress(inode, block);
3840         } else {
3841                 struct f2fs_map_blocks map;
3842
3843                 memset(&map, 0, sizeof(map));
3844                 map.m_lblk = block;
3845                 map.m_len = 1;
3846                 map.m_next_pgofs = NULL;
3847                 map.m_seg_type = NO_CHECK_TYPE;
3848
3849                 if (!f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_BMAP))
3850                         blknr = map.m_pblk;
3851         }
3852 out:
3853         trace_f2fs_bmap(inode, block, blknr);
3854         return blknr;
3855 }
3856
3857 #ifdef CONFIG_MIGRATION
3858 #include <linux/migrate.h>
3859
3860 int f2fs_migrate_page(struct address_space *mapping,
3861                 struct page *newpage, struct page *page, enum migrate_mode mode)
3862 {
3863         int rc, extra_count;
3864         struct f2fs_inode_info *fi = F2FS_I(mapping->host);
3865         bool atomic_written = page_private_atomic(page);
3866
3867         BUG_ON(PageWriteback(page));
3868
3869         /* migrating an atomic written page is safe with the inmem_lock hold */
3870         if (atomic_written) {
3871                 if (mode != MIGRATE_SYNC)
3872                         return -EBUSY;
3873                 if (!mutex_trylock(&fi->inmem_lock))
3874                         return -EAGAIN;
3875         }
3876
3877         /* one extra reference was held for atomic_write page */
3878         extra_count = atomic_written ? 1 : 0;
3879         rc = migrate_page_move_mapping(mapping, newpage,
3880                                 page, extra_count);
3881         if (rc != MIGRATEPAGE_SUCCESS) {
3882                 if (atomic_written)
3883                         mutex_unlock(&fi->inmem_lock);
3884                 return rc;
3885         }
3886
3887         if (atomic_written) {
3888                 struct inmem_pages *cur;
3889
3890                 list_for_each_entry(cur, &fi->inmem_pages, list)
3891                         if (cur->page == page) {
3892                                 cur->page = newpage;
3893                                 break;
3894                         }
3895                 mutex_unlock(&fi->inmem_lock);
3896                 put_page(page);
3897                 get_page(newpage);
3898         }
3899
3900         /* guarantee to start from no stale private field */
3901         set_page_private(newpage, 0);
3902         if (PagePrivate(page)) {
3903                 set_page_private(newpage, page_private(page));
3904                 SetPagePrivate(newpage);
3905                 get_page(newpage);
3906
3907                 set_page_private(page, 0);
3908                 ClearPagePrivate(page);
3909                 put_page(page);
3910         }
3911
3912         if (mode != MIGRATE_SYNC_NO_COPY)
3913                 migrate_page_copy(newpage, page);
3914         else
3915                 migrate_page_states(newpage, page);
3916
3917         return MIGRATEPAGE_SUCCESS;
3918 }
3919 #endif
3920
3921 #ifdef CONFIG_SWAP
3922 static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk,
3923                                                         unsigned int blkcnt)
3924 {
3925         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3926         unsigned int blkofs;
3927         unsigned int blk_per_sec = BLKS_PER_SEC(sbi);
3928         unsigned int secidx = start_blk / blk_per_sec;
3929         unsigned int end_sec = secidx + blkcnt / blk_per_sec;
3930         int ret = 0;
3931
3932         down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3933         filemap_invalidate_lock(inode->i_mapping);
3934
3935         set_inode_flag(inode, FI_ALIGNED_WRITE);
3936
3937         for (; secidx < end_sec; secidx++) {
3938                 down_write(&sbi->pin_sem);
3939
3940                 f2fs_lock_op(sbi);
3941                 f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
3942                 f2fs_unlock_op(sbi);
3943
3944                 set_inode_flag(inode, FI_DO_DEFRAG);
3945
3946                 for (blkofs = 0; blkofs < blk_per_sec; blkofs++) {
3947                         struct page *page;
3948                         unsigned int blkidx = secidx * blk_per_sec + blkofs;
3949
3950                         page = f2fs_get_lock_data_page(inode, blkidx, true);
3951                         if (IS_ERR(page)) {
3952                                 up_write(&sbi->pin_sem);
3953                                 ret = PTR_ERR(page);
3954                                 goto done;
3955                         }
3956
3957                         set_page_dirty(page);
3958                         f2fs_put_page(page, 1);
3959                 }
3960
3961                 clear_inode_flag(inode, FI_DO_DEFRAG);
3962
3963                 ret = filemap_fdatawrite(inode->i_mapping);
3964
3965                 up_write(&sbi->pin_sem);
3966
3967                 if (ret)
3968                         break;
3969         }
3970
3971 done:
3972         clear_inode_flag(inode, FI_DO_DEFRAG);
3973         clear_inode_flag(inode, FI_ALIGNED_WRITE);
3974
3975         filemap_invalidate_unlock(inode->i_mapping);
3976         up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3977
3978         return ret;
3979 }
3980
3981 static int check_swap_activate(struct swap_info_struct *sis,
3982                                 struct file *swap_file, sector_t *span)
3983 {
3984         struct address_space *mapping = swap_file->f_mapping;
3985         struct inode *inode = mapping->host;
3986         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3987         sector_t cur_lblock;
3988         sector_t last_lblock;
3989         sector_t pblock;
3990         sector_t lowest_pblock = -1;
3991         sector_t highest_pblock = 0;
3992         int nr_extents = 0;
3993         unsigned long nr_pblocks;
3994         unsigned int blks_per_sec = BLKS_PER_SEC(sbi);
3995         unsigned int sec_blks_mask = BLKS_PER_SEC(sbi) - 1;
3996         unsigned int not_aligned = 0;
3997         int ret = 0;
3998
3999         /*
4000          * Map all the blocks into the extent list.  This code doesn't try
4001          * to be very smart.
4002          */
4003         cur_lblock = 0;
4004         last_lblock = bytes_to_blks(inode, i_size_read(inode));
4005
4006         while (cur_lblock < last_lblock && cur_lblock < sis->max) {
4007                 struct f2fs_map_blocks map;
4008 retry:
4009                 cond_resched();
4010
4011                 memset(&map, 0, sizeof(map));
4012                 map.m_lblk = cur_lblock;
4013                 map.m_len = last_lblock - cur_lblock;
4014                 map.m_next_pgofs = NULL;
4015                 map.m_next_extent = NULL;
4016                 map.m_seg_type = NO_CHECK_TYPE;
4017                 map.m_may_create = false;
4018
4019                 ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP);
4020                 if (ret)
4021                         goto out;
4022
4023                 /* hole */
4024                 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
4025                         f2fs_err(sbi, "Swapfile has holes");
4026                         ret = -EINVAL;
4027                         goto out;
4028                 }
4029
4030                 pblock = map.m_pblk;
4031                 nr_pblocks = map.m_len;
4032
4033                 if ((pblock - SM_I(sbi)->main_blkaddr) & sec_blks_mask ||
4034                                 nr_pblocks & sec_blks_mask) {
4035                         not_aligned++;
4036
4037                         nr_pblocks = roundup(nr_pblocks, blks_per_sec);
4038                         if (cur_lblock + nr_pblocks > sis->max)
4039                                 nr_pblocks -= blks_per_sec;
4040
4041                         if (!nr_pblocks) {
4042                                 /* this extent is last one */
4043                                 nr_pblocks = map.m_len;
4044                                 f2fs_warn(sbi, "Swapfile: last extent is not aligned to section");
4045                                 goto next;
4046                         }
4047
4048                         ret = f2fs_migrate_blocks(inode, cur_lblock,
4049                                                         nr_pblocks);
4050                         if (ret)
4051                                 goto out;
4052                         goto retry;
4053                 }
4054 next:
4055                 if (cur_lblock + nr_pblocks >= sis->max)
4056                         nr_pblocks = sis->max - cur_lblock;
4057
4058                 if (cur_lblock) {       /* exclude the header page */
4059                         if (pblock < lowest_pblock)
4060                                 lowest_pblock = pblock;
4061                         if (pblock + nr_pblocks - 1 > highest_pblock)
4062                                 highest_pblock = pblock + nr_pblocks - 1;
4063                 }
4064
4065                 /*
4066                  * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
4067                  */
4068                 ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock);
4069                 if (ret < 0)
4070                         goto out;
4071                 nr_extents += ret;
4072                 cur_lblock += nr_pblocks;
4073         }
4074         ret = nr_extents;
4075         *span = 1 + highest_pblock - lowest_pblock;
4076         if (cur_lblock == 0)
4077                 cur_lblock = 1; /* force Empty message */
4078         sis->max = cur_lblock;
4079         sis->pages = cur_lblock - 1;
4080         sis->highest_bit = cur_lblock - 1;
4081 out:
4082         if (not_aligned)
4083                 f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%u * N)",
4084                           not_aligned, blks_per_sec * F2FS_BLKSIZE);
4085         return ret;
4086 }
4087
4088 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4089                                 sector_t *span)
4090 {
4091         struct inode *inode = file_inode(file);
4092         int ret;
4093
4094         if (!S_ISREG(inode->i_mode))
4095                 return -EINVAL;
4096
4097         if (f2fs_readonly(F2FS_I_SB(inode)->sb))
4098                 return -EROFS;
4099
4100         if (f2fs_lfs_mode(F2FS_I_SB(inode))) {
4101                 f2fs_err(F2FS_I_SB(inode),
4102                         "Swapfile not supported in LFS mode");
4103                 return -EINVAL;
4104         }
4105
4106         ret = f2fs_convert_inline_inode(inode);
4107         if (ret)
4108                 return ret;
4109
4110         if (!f2fs_disable_compressed_file(inode))
4111                 return -EINVAL;
4112
4113         f2fs_precache_extents(inode);
4114
4115         ret = check_swap_activate(sis, file, span);
4116         if (ret < 0)
4117                 return ret;
4118
4119         set_inode_flag(inode, FI_PIN_FILE);
4120         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
4121         return ret;
4122 }
4123
4124 static void f2fs_swap_deactivate(struct file *file)
4125 {
4126         struct inode *inode = file_inode(file);
4127
4128         clear_inode_flag(inode, FI_PIN_FILE);
4129 }
4130 #else
4131 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4132                                 sector_t *span)
4133 {
4134         return -EOPNOTSUPP;
4135 }
4136
4137 static void f2fs_swap_deactivate(struct file *file)
4138 {
4139 }
4140 #endif
4141
4142 const struct address_space_operations f2fs_dblock_aops = {
4143         .readpage       = f2fs_read_data_page,
4144         .readahead      = f2fs_readahead,
4145         .writepage      = f2fs_write_data_page,
4146         .writepages     = f2fs_write_data_pages,
4147         .write_begin    = f2fs_write_begin,
4148         .write_end      = f2fs_write_end,
4149         .set_page_dirty = f2fs_set_data_page_dirty,
4150         .invalidatepage = f2fs_invalidate_page,
4151         .releasepage    = f2fs_release_page,
4152         .direct_IO      = f2fs_direct_IO,
4153         .bmap           = f2fs_bmap,
4154         .swap_activate  = f2fs_swap_activate,
4155         .swap_deactivate = f2fs_swap_deactivate,
4156 #ifdef CONFIG_MIGRATION
4157         .migratepage    = f2fs_migrate_page,
4158 #endif
4159 };
4160
4161 void f2fs_clear_page_cache_dirty_tag(struct page *page)
4162 {
4163         struct address_space *mapping = page_mapping(page);
4164         unsigned long flags;
4165
4166         xa_lock_irqsave(&mapping->i_pages, flags);
4167         __xa_clear_mark(&mapping->i_pages, page_index(page),
4168                                                 PAGECACHE_TAG_DIRTY);
4169         xa_unlock_irqrestore(&mapping->i_pages, flags);
4170 }
4171
4172 int __init f2fs_init_post_read_processing(void)
4173 {
4174         bio_post_read_ctx_cache =
4175                 kmem_cache_create("f2fs_bio_post_read_ctx",
4176                                   sizeof(struct bio_post_read_ctx), 0, 0, NULL);
4177         if (!bio_post_read_ctx_cache)
4178                 goto fail;
4179         bio_post_read_ctx_pool =
4180                 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
4181                                          bio_post_read_ctx_cache);
4182         if (!bio_post_read_ctx_pool)
4183                 goto fail_free_cache;
4184         return 0;
4185
4186 fail_free_cache:
4187         kmem_cache_destroy(bio_post_read_ctx_cache);
4188 fail:
4189         return -ENOMEM;
4190 }
4191
4192 void f2fs_destroy_post_read_processing(void)
4193 {
4194         mempool_destroy(bio_post_read_ctx_pool);
4195         kmem_cache_destroy(bio_post_read_ctx_cache);
4196 }
4197
4198 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
4199 {
4200         if (!f2fs_sb_has_encrypt(sbi) &&
4201                 !f2fs_sb_has_verity(sbi) &&
4202                 !f2fs_sb_has_compression(sbi))
4203                 return 0;
4204
4205         sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
4206                                                  WQ_UNBOUND | WQ_HIGHPRI,
4207                                                  num_online_cpus());
4208         if (!sbi->post_read_wq)
4209                 return -ENOMEM;
4210         return 0;
4211 }
4212
4213 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4214 {
4215         if (sbi->post_read_wq)
4216                 destroy_workqueue(sbi->post_read_wq);
4217 }
4218
4219 int __init f2fs_init_bio_entry_cache(void)
4220 {
4221         bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4222                         sizeof(struct bio_entry));
4223         if (!bio_entry_slab)
4224                 return -ENOMEM;
4225         return 0;
4226 }
4227
4228 void f2fs_destroy_bio_entry_cache(void)
4229 {
4230         kmem_cache_destroy(bio_entry_slab);
4231 }