Merge tag 'for-linus' of git://github.com/openrisc/linux
[linux-2.6-microblaze.git] / fs / ext4 / super.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/super.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  Big-endian to little-endian byte-swapping/bitmaps by
17  *        David S. Miller (davem@caip.rutgers.edu), 1995
18  */
19
20 #include <linux/module.h>
21 #include <linux/string.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/cleancache.h>
43 #include <linux/uaccess.h>
44 #include <linux/iversion.h>
45 #include <linux/unicode.h>
46 #include <linux/part_stat.h>
47 #include <linux/kthread.h>
48 #include <linux/freezer.h>
49
50 #include "ext4.h"
51 #include "ext4_extents.h"       /* Needed for trace points definition */
52 #include "ext4_jbd2.h"
53 #include "xattr.h"
54 #include "acl.h"
55 #include "mballoc.h"
56 #include "fsmap.h"
57
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/ext4.h>
60
61 static struct ext4_lazy_init *ext4_li_info;
62 static DEFINE_MUTEX(ext4_li_mtx);
63 static struct ratelimit_state ext4_mount_msg_ratelimit;
64
65 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
66                              unsigned long journal_devnum);
67 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
68 static void ext4_update_super(struct super_block *sb);
69 static int ext4_commit_super(struct super_block *sb);
70 static int ext4_mark_recovery_complete(struct super_block *sb,
71                                         struct ext4_super_block *es);
72 static int ext4_clear_journal_err(struct super_block *sb,
73                                   struct ext4_super_block *es);
74 static int ext4_sync_fs(struct super_block *sb, int wait);
75 static int ext4_remount(struct super_block *sb, int *flags, char *data);
76 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
77 static int ext4_unfreeze(struct super_block *sb);
78 static int ext4_freeze(struct super_block *sb);
79 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
80                        const char *dev_name, void *data);
81 static inline int ext2_feature_set_ok(struct super_block *sb);
82 static inline int ext3_feature_set_ok(struct super_block *sb);
83 static void ext4_destroy_lazyinit_thread(void);
84 static void ext4_unregister_li_request(struct super_block *sb);
85 static void ext4_clear_request_list(void);
86 static struct inode *ext4_get_journal_inode(struct super_block *sb,
87                                             unsigned int journal_inum);
88
89 /*
90  * Lock ordering
91  *
92  * page fault path:
93  * mmap_lock -> sb_start_pagefault -> invalidate_lock (r) -> transaction start
94  *   -> page lock -> i_data_sem (rw)
95  *
96  * buffered write path:
97  * sb_start_write -> i_mutex -> mmap_lock
98  * sb_start_write -> i_mutex -> transaction start -> page lock ->
99  *   i_data_sem (rw)
100  *
101  * truncate:
102  * sb_start_write -> i_mutex -> invalidate_lock (w) -> i_mmap_rwsem (w) ->
103  *   page lock
104  * sb_start_write -> i_mutex -> invalidate_lock (w) -> transaction start ->
105  *   i_data_sem (rw)
106  *
107  * direct IO:
108  * sb_start_write -> i_mutex -> mmap_lock
109  * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
110  *
111  * writepages:
112  * transaction start -> page lock(s) -> i_data_sem (rw)
113  */
114
115 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
116 static struct file_system_type ext2_fs_type = {
117         .owner          = THIS_MODULE,
118         .name           = "ext2",
119         .mount          = ext4_mount,
120         .kill_sb        = kill_block_super,
121         .fs_flags       = FS_REQUIRES_DEV,
122 };
123 MODULE_ALIAS_FS("ext2");
124 MODULE_ALIAS("ext2");
125 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
126 #else
127 #define IS_EXT2_SB(sb) (0)
128 #endif
129
130
131 static struct file_system_type ext3_fs_type = {
132         .owner          = THIS_MODULE,
133         .name           = "ext3",
134         .mount          = ext4_mount,
135         .kill_sb        = kill_block_super,
136         .fs_flags       = FS_REQUIRES_DEV,
137 };
138 MODULE_ALIAS_FS("ext3");
139 MODULE_ALIAS("ext3");
140 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
141
142
143 static inline void __ext4_read_bh(struct buffer_head *bh, int op_flags,
144                                   bh_end_io_t *end_io)
145 {
146         /*
147          * buffer's verified bit is no longer valid after reading from
148          * disk again due to write out error, clear it to make sure we
149          * recheck the buffer contents.
150          */
151         clear_buffer_verified(bh);
152
153         bh->b_end_io = end_io ? end_io : end_buffer_read_sync;
154         get_bh(bh);
155         submit_bh(REQ_OP_READ, op_flags, bh);
156 }
157
158 void ext4_read_bh_nowait(struct buffer_head *bh, int op_flags,
159                          bh_end_io_t *end_io)
160 {
161         BUG_ON(!buffer_locked(bh));
162
163         if (ext4_buffer_uptodate(bh)) {
164                 unlock_buffer(bh);
165                 return;
166         }
167         __ext4_read_bh(bh, op_flags, end_io);
168 }
169
170 int ext4_read_bh(struct buffer_head *bh, int op_flags, bh_end_io_t *end_io)
171 {
172         BUG_ON(!buffer_locked(bh));
173
174         if (ext4_buffer_uptodate(bh)) {
175                 unlock_buffer(bh);
176                 return 0;
177         }
178
179         __ext4_read_bh(bh, op_flags, end_io);
180
181         wait_on_buffer(bh);
182         if (buffer_uptodate(bh))
183                 return 0;
184         return -EIO;
185 }
186
187 int ext4_read_bh_lock(struct buffer_head *bh, int op_flags, bool wait)
188 {
189         if (trylock_buffer(bh)) {
190                 if (wait)
191                         return ext4_read_bh(bh, op_flags, NULL);
192                 ext4_read_bh_nowait(bh, op_flags, NULL);
193                 return 0;
194         }
195         if (wait) {
196                 wait_on_buffer(bh);
197                 if (buffer_uptodate(bh))
198                         return 0;
199                 return -EIO;
200         }
201         return 0;
202 }
203
204 /*
205  * This works like __bread_gfp() except it uses ERR_PTR for error
206  * returns.  Currently with sb_bread it's impossible to distinguish
207  * between ENOMEM and EIO situations (since both result in a NULL
208  * return.
209  */
210 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb,
211                                                sector_t block, int op_flags,
212                                                gfp_t gfp)
213 {
214         struct buffer_head *bh;
215         int ret;
216
217         bh = sb_getblk_gfp(sb, block, gfp);
218         if (bh == NULL)
219                 return ERR_PTR(-ENOMEM);
220         if (ext4_buffer_uptodate(bh))
221                 return bh;
222
223         ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true);
224         if (ret) {
225                 put_bh(bh);
226                 return ERR_PTR(ret);
227         }
228         return bh;
229 }
230
231 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block,
232                                    int op_flags)
233 {
234         return __ext4_sb_bread_gfp(sb, block, op_flags, __GFP_MOVABLE);
235 }
236
237 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb,
238                                             sector_t block)
239 {
240         return __ext4_sb_bread_gfp(sb, block, 0, 0);
241 }
242
243 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block)
244 {
245         struct buffer_head *bh = sb_getblk_gfp(sb, block, 0);
246
247         if (likely(bh)) {
248                 ext4_read_bh_lock(bh, REQ_RAHEAD, false);
249                 brelse(bh);
250         }
251 }
252
253 static int ext4_verify_csum_type(struct super_block *sb,
254                                  struct ext4_super_block *es)
255 {
256         if (!ext4_has_feature_metadata_csum(sb))
257                 return 1;
258
259         return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
260 }
261
262 static __le32 ext4_superblock_csum(struct super_block *sb,
263                                    struct ext4_super_block *es)
264 {
265         struct ext4_sb_info *sbi = EXT4_SB(sb);
266         int offset = offsetof(struct ext4_super_block, s_checksum);
267         __u32 csum;
268
269         csum = ext4_chksum(sbi, ~0, (char *)es, offset);
270
271         return cpu_to_le32(csum);
272 }
273
274 static int ext4_superblock_csum_verify(struct super_block *sb,
275                                        struct ext4_super_block *es)
276 {
277         if (!ext4_has_metadata_csum(sb))
278                 return 1;
279
280         return es->s_checksum == ext4_superblock_csum(sb, es);
281 }
282
283 void ext4_superblock_csum_set(struct super_block *sb)
284 {
285         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
286
287         if (!ext4_has_metadata_csum(sb))
288                 return;
289
290         es->s_checksum = ext4_superblock_csum(sb, es);
291 }
292
293 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
294                                struct ext4_group_desc *bg)
295 {
296         return le32_to_cpu(bg->bg_block_bitmap_lo) |
297                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
298                  (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
299 }
300
301 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
302                                struct ext4_group_desc *bg)
303 {
304         return le32_to_cpu(bg->bg_inode_bitmap_lo) |
305                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
306                  (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
307 }
308
309 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
310                               struct ext4_group_desc *bg)
311 {
312         return le32_to_cpu(bg->bg_inode_table_lo) |
313                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
314                  (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
315 }
316
317 __u32 ext4_free_group_clusters(struct super_block *sb,
318                                struct ext4_group_desc *bg)
319 {
320         return le16_to_cpu(bg->bg_free_blocks_count_lo) |
321                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
322                  (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
323 }
324
325 __u32 ext4_free_inodes_count(struct super_block *sb,
326                               struct ext4_group_desc *bg)
327 {
328         return le16_to_cpu(bg->bg_free_inodes_count_lo) |
329                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
330                  (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
331 }
332
333 __u32 ext4_used_dirs_count(struct super_block *sb,
334                               struct ext4_group_desc *bg)
335 {
336         return le16_to_cpu(bg->bg_used_dirs_count_lo) |
337                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
338                  (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
339 }
340
341 __u32 ext4_itable_unused_count(struct super_block *sb,
342                               struct ext4_group_desc *bg)
343 {
344         return le16_to_cpu(bg->bg_itable_unused_lo) |
345                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
346                  (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
347 }
348
349 void ext4_block_bitmap_set(struct super_block *sb,
350                            struct ext4_group_desc *bg, ext4_fsblk_t blk)
351 {
352         bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
353         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
354                 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
355 }
356
357 void ext4_inode_bitmap_set(struct super_block *sb,
358                            struct ext4_group_desc *bg, ext4_fsblk_t blk)
359 {
360         bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
361         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
362                 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
363 }
364
365 void ext4_inode_table_set(struct super_block *sb,
366                           struct ext4_group_desc *bg, ext4_fsblk_t blk)
367 {
368         bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
369         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
370                 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
371 }
372
373 void ext4_free_group_clusters_set(struct super_block *sb,
374                                   struct ext4_group_desc *bg, __u32 count)
375 {
376         bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
377         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
378                 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
379 }
380
381 void ext4_free_inodes_set(struct super_block *sb,
382                           struct ext4_group_desc *bg, __u32 count)
383 {
384         bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
385         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
386                 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
387 }
388
389 void ext4_used_dirs_set(struct super_block *sb,
390                           struct ext4_group_desc *bg, __u32 count)
391 {
392         bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
393         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
394                 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
395 }
396
397 void ext4_itable_unused_set(struct super_block *sb,
398                           struct ext4_group_desc *bg, __u32 count)
399 {
400         bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
401         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
402                 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
403 }
404
405 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now)
406 {
407         now = clamp_val(now, 0, (1ull << 40) - 1);
408
409         *lo = cpu_to_le32(lower_32_bits(now));
410         *hi = upper_32_bits(now);
411 }
412
413 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
414 {
415         return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
416 }
417 #define ext4_update_tstamp(es, tstamp) \
418         __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \
419                              ktime_get_real_seconds())
420 #define ext4_get_tstamp(es, tstamp) \
421         __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
422
423 /*
424  * The del_gendisk() function uninitializes the disk-specific data
425  * structures, including the bdi structure, without telling anyone
426  * else.  Once this happens, any attempt to call mark_buffer_dirty()
427  * (for example, by ext4_commit_super), will cause a kernel OOPS.
428  * This is a kludge to prevent these oops until we can put in a proper
429  * hook in del_gendisk() to inform the VFS and file system layers.
430  */
431 static int block_device_ejected(struct super_block *sb)
432 {
433         struct inode *bd_inode = sb->s_bdev->bd_inode;
434         struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
435
436         return bdi->dev == NULL;
437 }
438
439 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
440 {
441         struct super_block              *sb = journal->j_private;
442         struct ext4_sb_info             *sbi = EXT4_SB(sb);
443         int                             error = is_journal_aborted(journal);
444         struct ext4_journal_cb_entry    *jce;
445
446         BUG_ON(txn->t_state == T_FINISHED);
447
448         ext4_process_freed_data(sb, txn->t_tid);
449
450         spin_lock(&sbi->s_md_lock);
451         while (!list_empty(&txn->t_private_list)) {
452                 jce = list_entry(txn->t_private_list.next,
453                                  struct ext4_journal_cb_entry, jce_list);
454                 list_del_init(&jce->jce_list);
455                 spin_unlock(&sbi->s_md_lock);
456                 jce->jce_func(sb, jce, error);
457                 spin_lock(&sbi->s_md_lock);
458         }
459         spin_unlock(&sbi->s_md_lock);
460 }
461
462 /*
463  * This writepage callback for write_cache_pages()
464  * takes care of a few cases after page cleaning.
465  *
466  * write_cache_pages() already checks for dirty pages
467  * and calls clear_page_dirty_for_io(), which we want,
468  * to write protect the pages.
469  *
470  * However, we may have to redirty a page (see below.)
471  */
472 static int ext4_journalled_writepage_callback(struct page *page,
473                                               struct writeback_control *wbc,
474                                               void *data)
475 {
476         transaction_t *transaction = (transaction_t *) data;
477         struct buffer_head *bh, *head;
478         struct journal_head *jh;
479
480         bh = head = page_buffers(page);
481         do {
482                 /*
483                  * We have to redirty a page in these cases:
484                  * 1) If buffer is dirty, it means the page was dirty because it
485                  * contains a buffer that needs checkpointing. So the dirty bit
486                  * needs to be preserved so that checkpointing writes the buffer
487                  * properly.
488                  * 2) If buffer is not part of the committing transaction
489                  * (we may have just accidentally come across this buffer because
490                  * inode range tracking is not exact) or if the currently running
491                  * transaction already contains this buffer as well, dirty bit
492                  * needs to be preserved so that the buffer gets writeprotected
493                  * properly on running transaction's commit.
494                  */
495                 jh = bh2jh(bh);
496                 if (buffer_dirty(bh) ||
497                     (jh && (jh->b_transaction != transaction ||
498                             jh->b_next_transaction))) {
499                         redirty_page_for_writepage(wbc, page);
500                         goto out;
501                 }
502         } while ((bh = bh->b_this_page) != head);
503
504 out:
505         return AOP_WRITEPAGE_ACTIVATE;
506 }
507
508 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode)
509 {
510         struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
511         struct writeback_control wbc = {
512                 .sync_mode =  WB_SYNC_ALL,
513                 .nr_to_write = LONG_MAX,
514                 .range_start = jinode->i_dirty_start,
515                 .range_end = jinode->i_dirty_end,
516         };
517
518         return write_cache_pages(mapping, &wbc,
519                                  ext4_journalled_writepage_callback,
520                                  jinode->i_transaction);
521 }
522
523 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
524 {
525         int ret;
526
527         if (ext4_should_journal_data(jinode->i_vfs_inode))
528                 ret = ext4_journalled_submit_inode_data_buffers(jinode);
529         else
530                 ret = jbd2_journal_submit_inode_data_buffers(jinode);
531
532         return ret;
533 }
534
535 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
536 {
537         int ret = 0;
538
539         if (!ext4_should_journal_data(jinode->i_vfs_inode))
540                 ret = jbd2_journal_finish_inode_data_buffers(jinode);
541
542         return ret;
543 }
544
545 static bool system_going_down(void)
546 {
547         return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
548                 || system_state == SYSTEM_RESTART;
549 }
550
551 struct ext4_err_translation {
552         int code;
553         int errno;
554 };
555
556 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err }
557
558 static struct ext4_err_translation err_translation[] = {
559         EXT4_ERR_TRANSLATE(EIO),
560         EXT4_ERR_TRANSLATE(ENOMEM),
561         EXT4_ERR_TRANSLATE(EFSBADCRC),
562         EXT4_ERR_TRANSLATE(EFSCORRUPTED),
563         EXT4_ERR_TRANSLATE(ENOSPC),
564         EXT4_ERR_TRANSLATE(ENOKEY),
565         EXT4_ERR_TRANSLATE(EROFS),
566         EXT4_ERR_TRANSLATE(EFBIG),
567         EXT4_ERR_TRANSLATE(EEXIST),
568         EXT4_ERR_TRANSLATE(ERANGE),
569         EXT4_ERR_TRANSLATE(EOVERFLOW),
570         EXT4_ERR_TRANSLATE(EBUSY),
571         EXT4_ERR_TRANSLATE(ENOTDIR),
572         EXT4_ERR_TRANSLATE(ENOTEMPTY),
573         EXT4_ERR_TRANSLATE(ESHUTDOWN),
574         EXT4_ERR_TRANSLATE(EFAULT),
575 };
576
577 static int ext4_errno_to_code(int errno)
578 {
579         int i;
580
581         for (i = 0; i < ARRAY_SIZE(err_translation); i++)
582                 if (err_translation[i].errno == errno)
583                         return err_translation[i].code;
584         return EXT4_ERR_UNKNOWN;
585 }
586
587 static void save_error_info(struct super_block *sb, int error,
588                             __u32 ino, __u64 block,
589                             const char *func, unsigned int line)
590 {
591         struct ext4_sb_info *sbi = EXT4_SB(sb);
592
593         /* We default to EFSCORRUPTED error... */
594         if (error == 0)
595                 error = EFSCORRUPTED;
596
597         spin_lock(&sbi->s_error_lock);
598         sbi->s_add_error_count++;
599         sbi->s_last_error_code = error;
600         sbi->s_last_error_line = line;
601         sbi->s_last_error_ino = ino;
602         sbi->s_last_error_block = block;
603         sbi->s_last_error_func = func;
604         sbi->s_last_error_time = ktime_get_real_seconds();
605         if (!sbi->s_first_error_time) {
606                 sbi->s_first_error_code = error;
607                 sbi->s_first_error_line = line;
608                 sbi->s_first_error_ino = ino;
609                 sbi->s_first_error_block = block;
610                 sbi->s_first_error_func = func;
611                 sbi->s_first_error_time = sbi->s_last_error_time;
612         }
613         spin_unlock(&sbi->s_error_lock);
614 }
615
616 /* Deal with the reporting of failure conditions on a filesystem such as
617  * inconsistencies detected or read IO failures.
618  *
619  * On ext2, we can store the error state of the filesystem in the
620  * superblock.  That is not possible on ext4, because we may have other
621  * write ordering constraints on the superblock which prevent us from
622  * writing it out straight away; and given that the journal is about to
623  * be aborted, we can't rely on the current, or future, transactions to
624  * write out the superblock safely.
625  *
626  * We'll just use the jbd2_journal_abort() error code to record an error in
627  * the journal instead.  On recovery, the journal will complain about
628  * that error until we've noted it down and cleared it.
629  *
630  * If force_ro is set, we unconditionally force the filesystem into an
631  * ABORT|READONLY state, unless the error response on the fs has been set to
632  * panic in which case we take the easy way out and panic immediately. This is
633  * used to deal with unrecoverable failures such as journal IO errors or ENOMEM
634  * at a critical moment in log management.
635  */
636 static void ext4_handle_error(struct super_block *sb, bool force_ro, int error,
637                               __u32 ino, __u64 block,
638                               const char *func, unsigned int line)
639 {
640         journal_t *journal = EXT4_SB(sb)->s_journal;
641         bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT);
642
643         EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
644         if (test_opt(sb, WARN_ON_ERROR))
645                 WARN_ON_ONCE(1);
646
647         if (!continue_fs && !sb_rdonly(sb)) {
648                 ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED);
649                 if (journal)
650                         jbd2_journal_abort(journal, -EIO);
651         }
652
653         if (!bdev_read_only(sb->s_bdev)) {
654                 save_error_info(sb, error, ino, block, func, line);
655                 /*
656                  * In case the fs should keep running, we need to writeout
657                  * superblock through the journal. Due to lock ordering
658                  * constraints, it may not be safe to do it right here so we
659                  * defer superblock flushing to a workqueue.
660                  */
661                 if (continue_fs)
662                         schedule_work(&EXT4_SB(sb)->s_error_work);
663                 else
664                         ext4_commit_super(sb);
665         }
666
667         /*
668          * We force ERRORS_RO behavior when system is rebooting. Otherwise we
669          * could panic during 'reboot -f' as the underlying device got already
670          * disabled.
671          */
672         if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
673                 panic("EXT4-fs (device %s): panic forced after error\n",
674                         sb->s_id);
675         }
676
677         if (sb_rdonly(sb) || continue_fs)
678                 return;
679
680         ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
681         /*
682          * Make sure updated value of ->s_mount_flags will be visible before
683          * ->s_flags update
684          */
685         smp_wmb();
686         sb->s_flags |= SB_RDONLY;
687 }
688
689 static void flush_stashed_error_work(struct work_struct *work)
690 {
691         struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info,
692                                                 s_error_work);
693         journal_t *journal = sbi->s_journal;
694         handle_t *handle;
695
696         /*
697          * If the journal is still running, we have to write out superblock
698          * through the journal to avoid collisions of other journalled sb
699          * updates.
700          *
701          * We use directly jbd2 functions here to avoid recursing back into
702          * ext4 error handling code during handling of previous errors.
703          */
704         if (!sb_rdonly(sbi->s_sb) && journal) {
705                 struct buffer_head *sbh = sbi->s_sbh;
706                 handle = jbd2_journal_start(journal, 1);
707                 if (IS_ERR(handle))
708                         goto write_directly;
709                 if (jbd2_journal_get_write_access(handle, sbh)) {
710                         jbd2_journal_stop(handle);
711                         goto write_directly;
712                 }
713                 ext4_update_super(sbi->s_sb);
714                 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
715                         ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to "
716                                  "superblock detected");
717                         clear_buffer_write_io_error(sbh);
718                         set_buffer_uptodate(sbh);
719                 }
720
721                 if (jbd2_journal_dirty_metadata(handle, sbh)) {
722                         jbd2_journal_stop(handle);
723                         goto write_directly;
724                 }
725                 jbd2_journal_stop(handle);
726                 ext4_notify_error_sysfs(sbi);
727                 return;
728         }
729 write_directly:
730         /*
731          * Write through journal failed. Write sb directly to get error info
732          * out and hope for the best.
733          */
734         ext4_commit_super(sbi->s_sb);
735         ext4_notify_error_sysfs(sbi);
736 }
737
738 #define ext4_error_ratelimit(sb)                                        \
739                 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state),     \
740                              "EXT4-fs error")
741
742 void __ext4_error(struct super_block *sb, const char *function,
743                   unsigned int line, bool force_ro, int error, __u64 block,
744                   const char *fmt, ...)
745 {
746         struct va_format vaf;
747         va_list args;
748
749         if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
750                 return;
751
752         trace_ext4_error(sb, function, line);
753         if (ext4_error_ratelimit(sb)) {
754                 va_start(args, fmt);
755                 vaf.fmt = fmt;
756                 vaf.va = &args;
757                 printk(KERN_CRIT
758                        "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
759                        sb->s_id, function, line, current->comm, &vaf);
760                 va_end(args);
761         }
762         ext4_handle_error(sb, force_ro, error, 0, block, function, line);
763 }
764
765 void __ext4_error_inode(struct inode *inode, const char *function,
766                         unsigned int line, ext4_fsblk_t block, int error,
767                         const char *fmt, ...)
768 {
769         va_list args;
770         struct va_format vaf;
771
772         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
773                 return;
774
775         trace_ext4_error(inode->i_sb, function, line);
776         if (ext4_error_ratelimit(inode->i_sb)) {
777                 va_start(args, fmt);
778                 vaf.fmt = fmt;
779                 vaf.va = &args;
780                 if (block)
781                         printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
782                                "inode #%lu: block %llu: comm %s: %pV\n",
783                                inode->i_sb->s_id, function, line, inode->i_ino,
784                                block, current->comm, &vaf);
785                 else
786                         printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
787                                "inode #%lu: comm %s: %pV\n",
788                                inode->i_sb->s_id, function, line, inode->i_ino,
789                                current->comm, &vaf);
790                 va_end(args);
791         }
792         ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block,
793                           function, line);
794 }
795
796 void __ext4_error_file(struct file *file, const char *function,
797                        unsigned int line, ext4_fsblk_t block,
798                        const char *fmt, ...)
799 {
800         va_list args;
801         struct va_format vaf;
802         struct inode *inode = file_inode(file);
803         char pathname[80], *path;
804
805         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
806                 return;
807
808         trace_ext4_error(inode->i_sb, function, line);
809         if (ext4_error_ratelimit(inode->i_sb)) {
810                 path = file_path(file, pathname, sizeof(pathname));
811                 if (IS_ERR(path))
812                         path = "(unknown)";
813                 va_start(args, fmt);
814                 vaf.fmt = fmt;
815                 vaf.va = &args;
816                 if (block)
817                         printk(KERN_CRIT
818                                "EXT4-fs error (device %s): %s:%d: inode #%lu: "
819                                "block %llu: comm %s: path %s: %pV\n",
820                                inode->i_sb->s_id, function, line, inode->i_ino,
821                                block, current->comm, path, &vaf);
822                 else
823                         printk(KERN_CRIT
824                                "EXT4-fs error (device %s): %s:%d: inode #%lu: "
825                                "comm %s: path %s: %pV\n",
826                                inode->i_sb->s_id, function, line, inode->i_ino,
827                                current->comm, path, &vaf);
828                 va_end(args);
829         }
830         ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block,
831                           function, line);
832 }
833
834 const char *ext4_decode_error(struct super_block *sb, int errno,
835                               char nbuf[16])
836 {
837         char *errstr = NULL;
838
839         switch (errno) {
840         case -EFSCORRUPTED:
841                 errstr = "Corrupt filesystem";
842                 break;
843         case -EFSBADCRC:
844                 errstr = "Filesystem failed CRC";
845                 break;
846         case -EIO:
847                 errstr = "IO failure";
848                 break;
849         case -ENOMEM:
850                 errstr = "Out of memory";
851                 break;
852         case -EROFS:
853                 if (!sb || (EXT4_SB(sb)->s_journal &&
854                             EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
855                         errstr = "Journal has aborted";
856                 else
857                         errstr = "Readonly filesystem";
858                 break;
859         default:
860                 /* If the caller passed in an extra buffer for unknown
861                  * errors, textualise them now.  Else we just return
862                  * NULL. */
863                 if (nbuf) {
864                         /* Check for truncated error codes... */
865                         if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
866                                 errstr = nbuf;
867                 }
868                 break;
869         }
870
871         return errstr;
872 }
873
874 /* __ext4_std_error decodes expected errors from journaling functions
875  * automatically and invokes the appropriate error response.  */
876
877 void __ext4_std_error(struct super_block *sb, const char *function,
878                       unsigned int line, int errno)
879 {
880         char nbuf[16];
881         const char *errstr;
882
883         if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
884                 return;
885
886         /* Special case: if the error is EROFS, and we're not already
887          * inside a transaction, then there's really no point in logging
888          * an error. */
889         if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
890                 return;
891
892         if (ext4_error_ratelimit(sb)) {
893                 errstr = ext4_decode_error(sb, errno, nbuf);
894                 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
895                        sb->s_id, function, line, errstr);
896         }
897
898         ext4_handle_error(sb, false, -errno, 0, 0, function, line);
899 }
900
901 void __ext4_msg(struct super_block *sb,
902                 const char *prefix, const char *fmt, ...)
903 {
904         struct va_format vaf;
905         va_list args;
906
907         atomic_inc(&EXT4_SB(sb)->s_msg_count);
908         if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
909                 return;
910
911         va_start(args, fmt);
912         vaf.fmt = fmt;
913         vaf.va = &args;
914         printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
915         va_end(args);
916 }
917
918 static int ext4_warning_ratelimit(struct super_block *sb)
919 {
920         atomic_inc(&EXT4_SB(sb)->s_warning_count);
921         return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
922                             "EXT4-fs warning");
923 }
924
925 void __ext4_warning(struct super_block *sb, const char *function,
926                     unsigned int line, const char *fmt, ...)
927 {
928         struct va_format vaf;
929         va_list args;
930
931         if (!ext4_warning_ratelimit(sb))
932                 return;
933
934         va_start(args, fmt);
935         vaf.fmt = fmt;
936         vaf.va = &args;
937         printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
938                sb->s_id, function, line, &vaf);
939         va_end(args);
940 }
941
942 void __ext4_warning_inode(const struct inode *inode, const char *function,
943                           unsigned int line, const char *fmt, ...)
944 {
945         struct va_format vaf;
946         va_list args;
947
948         if (!ext4_warning_ratelimit(inode->i_sb))
949                 return;
950
951         va_start(args, fmt);
952         vaf.fmt = fmt;
953         vaf.va = &args;
954         printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
955                "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
956                function, line, inode->i_ino, current->comm, &vaf);
957         va_end(args);
958 }
959
960 void __ext4_grp_locked_error(const char *function, unsigned int line,
961                              struct super_block *sb, ext4_group_t grp,
962                              unsigned long ino, ext4_fsblk_t block,
963                              const char *fmt, ...)
964 __releases(bitlock)
965 __acquires(bitlock)
966 {
967         struct va_format vaf;
968         va_list args;
969
970         if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
971                 return;
972
973         trace_ext4_error(sb, function, line);
974         if (ext4_error_ratelimit(sb)) {
975                 va_start(args, fmt);
976                 vaf.fmt = fmt;
977                 vaf.va = &args;
978                 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
979                        sb->s_id, function, line, grp);
980                 if (ino)
981                         printk(KERN_CONT "inode %lu: ", ino);
982                 if (block)
983                         printk(KERN_CONT "block %llu:",
984                                (unsigned long long) block);
985                 printk(KERN_CONT "%pV\n", &vaf);
986                 va_end(args);
987         }
988
989         if (test_opt(sb, ERRORS_CONT)) {
990                 if (test_opt(sb, WARN_ON_ERROR))
991                         WARN_ON_ONCE(1);
992                 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
993                 if (!bdev_read_only(sb->s_bdev)) {
994                         save_error_info(sb, EFSCORRUPTED, ino, block, function,
995                                         line);
996                         schedule_work(&EXT4_SB(sb)->s_error_work);
997                 }
998                 return;
999         }
1000         ext4_unlock_group(sb, grp);
1001         ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line);
1002         /*
1003          * We only get here in the ERRORS_RO case; relocking the group
1004          * may be dangerous, but nothing bad will happen since the
1005          * filesystem will have already been marked read/only and the
1006          * journal has been aborted.  We return 1 as a hint to callers
1007          * who might what to use the return value from
1008          * ext4_grp_locked_error() to distinguish between the
1009          * ERRORS_CONT and ERRORS_RO case, and perhaps return more
1010          * aggressively from the ext4 function in question, with a
1011          * more appropriate error code.
1012          */
1013         ext4_lock_group(sb, grp);
1014         return;
1015 }
1016
1017 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
1018                                      ext4_group_t group,
1019                                      unsigned int flags)
1020 {
1021         struct ext4_sb_info *sbi = EXT4_SB(sb);
1022         struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1023         struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
1024         int ret;
1025
1026         if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
1027                 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1028                                             &grp->bb_state);
1029                 if (!ret)
1030                         percpu_counter_sub(&sbi->s_freeclusters_counter,
1031                                            grp->bb_free);
1032         }
1033
1034         if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
1035                 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
1036                                             &grp->bb_state);
1037                 if (!ret && gdp) {
1038                         int count;
1039
1040                         count = ext4_free_inodes_count(sb, gdp);
1041                         percpu_counter_sub(&sbi->s_freeinodes_counter,
1042                                            count);
1043                 }
1044         }
1045 }
1046
1047 void ext4_update_dynamic_rev(struct super_block *sb)
1048 {
1049         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
1050
1051         if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
1052                 return;
1053
1054         ext4_warning(sb,
1055                      "updating to rev %d because of new feature flag, "
1056                      "running e2fsck is recommended",
1057                      EXT4_DYNAMIC_REV);
1058
1059         es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
1060         es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
1061         es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
1062         /* leave es->s_feature_*compat flags alone */
1063         /* es->s_uuid will be set by e2fsck if empty */
1064
1065         /*
1066          * The rest of the superblock fields should be zero, and if not it
1067          * means they are likely already in use, so leave them alone.  We
1068          * can leave it up to e2fsck to clean up any inconsistencies there.
1069          */
1070 }
1071
1072 /*
1073  * Open the external journal device
1074  */
1075 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
1076 {
1077         struct block_device *bdev;
1078
1079         bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
1080         if (IS_ERR(bdev))
1081                 goto fail;
1082         return bdev;
1083
1084 fail:
1085         ext4_msg(sb, KERN_ERR,
1086                  "failed to open journal device unknown-block(%u,%u) %ld",
1087                  MAJOR(dev), MINOR(dev), PTR_ERR(bdev));
1088         return NULL;
1089 }
1090
1091 /*
1092  * Release the journal device
1093  */
1094 static void ext4_blkdev_put(struct block_device *bdev)
1095 {
1096         blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1097 }
1098
1099 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
1100 {
1101         struct block_device *bdev;
1102         bdev = sbi->s_journal_bdev;
1103         if (bdev) {
1104                 ext4_blkdev_put(bdev);
1105                 sbi->s_journal_bdev = NULL;
1106         }
1107 }
1108
1109 static inline struct inode *orphan_list_entry(struct list_head *l)
1110 {
1111         return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
1112 }
1113
1114 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
1115 {
1116         struct list_head *l;
1117
1118         ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
1119                  le32_to_cpu(sbi->s_es->s_last_orphan));
1120
1121         printk(KERN_ERR "sb_info orphan list:\n");
1122         list_for_each(l, &sbi->s_orphan) {
1123                 struct inode *inode = orphan_list_entry(l);
1124                 printk(KERN_ERR "  "
1125                        "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
1126                        inode->i_sb->s_id, inode->i_ino, inode,
1127                        inode->i_mode, inode->i_nlink,
1128                        NEXT_ORPHAN(inode));
1129         }
1130 }
1131
1132 #ifdef CONFIG_QUOTA
1133 static int ext4_quota_off(struct super_block *sb, int type);
1134
1135 static inline void ext4_quota_off_umount(struct super_block *sb)
1136 {
1137         int type;
1138
1139         /* Use our quota_off function to clear inode flags etc. */
1140         for (type = 0; type < EXT4_MAXQUOTAS; type++)
1141                 ext4_quota_off(sb, type);
1142 }
1143
1144 /*
1145  * This is a helper function which is used in the mount/remount
1146  * codepaths (which holds s_umount) to fetch the quota file name.
1147  */
1148 static inline char *get_qf_name(struct super_block *sb,
1149                                 struct ext4_sb_info *sbi,
1150                                 int type)
1151 {
1152         return rcu_dereference_protected(sbi->s_qf_names[type],
1153                                          lockdep_is_held(&sb->s_umount));
1154 }
1155 #else
1156 static inline void ext4_quota_off_umount(struct super_block *sb)
1157 {
1158 }
1159 #endif
1160
1161 static void ext4_put_super(struct super_block *sb)
1162 {
1163         struct ext4_sb_info *sbi = EXT4_SB(sb);
1164         struct ext4_super_block *es = sbi->s_es;
1165         struct buffer_head **group_desc;
1166         struct flex_groups **flex_groups;
1167         int aborted = 0;
1168         int i, err;
1169
1170         ext4_unregister_li_request(sb);
1171         ext4_quota_off_umount(sb);
1172
1173         flush_work(&sbi->s_error_work);
1174         destroy_workqueue(sbi->rsv_conversion_wq);
1175         ext4_release_orphan_info(sb);
1176
1177         /*
1178          * Unregister sysfs before destroying jbd2 journal.
1179          * Since we could still access attr_journal_task attribute via sysfs
1180          * path which could have sbi->s_journal->j_task as NULL
1181          */
1182         ext4_unregister_sysfs(sb);
1183
1184         if (sbi->s_journal) {
1185                 aborted = is_journal_aborted(sbi->s_journal);
1186                 err = jbd2_journal_destroy(sbi->s_journal);
1187                 sbi->s_journal = NULL;
1188                 if ((err < 0) && !aborted) {
1189                         ext4_abort(sb, -err, "Couldn't clean up the journal");
1190                 }
1191         }
1192
1193         ext4_es_unregister_shrinker(sbi);
1194         del_timer_sync(&sbi->s_err_report);
1195         ext4_release_system_zone(sb);
1196         ext4_mb_release(sb);
1197         ext4_ext_release(sb);
1198
1199         if (!sb_rdonly(sb) && !aborted) {
1200                 ext4_clear_feature_journal_needs_recovery(sb);
1201                 ext4_clear_feature_orphan_present(sb);
1202                 es->s_state = cpu_to_le16(sbi->s_mount_state);
1203         }
1204         if (!sb_rdonly(sb))
1205                 ext4_commit_super(sb);
1206
1207         rcu_read_lock();
1208         group_desc = rcu_dereference(sbi->s_group_desc);
1209         for (i = 0; i < sbi->s_gdb_count; i++)
1210                 brelse(group_desc[i]);
1211         kvfree(group_desc);
1212         flex_groups = rcu_dereference(sbi->s_flex_groups);
1213         if (flex_groups) {
1214                 for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1215                         kvfree(flex_groups[i]);
1216                 kvfree(flex_groups);
1217         }
1218         rcu_read_unlock();
1219         percpu_counter_destroy(&sbi->s_freeclusters_counter);
1220         percpu_counter_destroy(&sbi->s_freeinodes_counter);
1221         percpu_counter_destroy(&sbi->s_dirs_counter);
1222         percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1223         percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
1224         percpu_free_rwsem(&sbi->s_writepages_rwsem);
1225 #ifdef CONFIG_QUOTA
1226         for (i = 0; i < EXT4_MAXQUOTAS; i++)
1227                 kfree(get_qf_name(sb, sbi, i));
1228 #endif
1229
1230         /* Debugging code just in case the in-memory inode orphan list
1231          * isn't empty.  The on-disk one can be non-empty if we've
1232          * detected an error and taken the fs readonly, but the
1233          * in-memory list had better be clean by this point. */
1234         if (!list_empty(&sbi->s_orphan))
1235                 dump_orphan_list(sb, sbi);
1236         ASSERT(list_empty(&sbi->s_orphan));
1237
1238         sync_blockdev(sb->s_bdev);
1239         invalidate_bdev(sb->s_bdev);
1240         if (sbi->s_journal_bdev && sbi->s_journal_bdev != sb->s_bdev) {
1241                 /*
1242                  * Invalidate the journal device's buffers.  We don't want them
1243                  * floating about in memory - the physical journal device may
1244                  * hotswapped, and it breaks the `ro-after' testing code.
1245                  */
1246                 sync_blockdev(sbi->s_journal_bdev);
1247                 invalidate_bdev(sbi->s_journal_bdev);
1248                 ext4_blkdev_remove(sbi);
1249         }
1250
1251         ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1252         sbi->s_ea_inode_cache = NULL;
1253
1254         ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1255         sbi->s_ea_block_cache = NULL;
1256
1257         ext4_stop_mmpd(sbi);
1258
1259         brelse(sbi->s_sbh);
1260         sb->s_fs_info = NULL;
1261         /*
1262          * Now that we are completely done shutting down the
1263          * superblock, we need to actually destroy the kobject.
1264          */
1265         kobject_put(&sbi->s_kobj);
1266         wait_for_completion(&sbi->s_kobj_unregister);
1267         if (sbi->s_chksum_driver)
1268                 crypto_free_shash(sbi->s_chksum_driver);
1269         kfree(sbi->s_blockgroup_lock);
1270         fs_put_dax(sbi->s_daxdev);
1271         fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
1272 #ifdef CONFIG_UNICODE
1273         utf8_unload(sb->s_encoding);
1274 #endif
1275         kfree(sbi);
1276 }
1277
1278 static struct kmem_cache *ext4_inode_cachep;
1279
1280 /*
1281  * Called inside transaction, so use GFP_NOFS
1282  */
1283 static struct inode *ext4_alloc_inode(struct super_block *sb)
1284 {
1285         struct ext4_inode_info *ei;
1286
1287         ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
1288         if (!ei)
1289                 return NULL;
1290
1291         inode_set_iversion(&ei->vfs_inode, 1);
1292         spin_lock_init(&ei->i_raw_lock);
1293         INIT_LIST_HEAD(&ei->i_prealloc_list);
1294         atomic_set(&ei->i_prealloc_active, 0);
1295         spin_lock_init(&ei->i_prealloc_lock);
1296         ext4_es_init_tree(&ei->i_es_tree);
1297         rwlock_init(&ei->i_es_lock);
1298         INIT_LIST_HEAD(&ei->i_es_list);
1299         ei->i_es_all_nr = 0;
1300         ei->i_es_shk_nr = 0;
1301         ei->i_es_shrink_lblk = 0;
1302         ei->i_reserved_data_blocks = 0;
1303         spin_lock_init(&(ei->i_block_reservation_lock));
1304         ext4_init_pending_tree(&ei->i_pending_tree);
1305 #ifdef CONFIG_QUOTA
1306         ei->i_reserved_quota = 0;
1307         memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1308 #endif
1309         ei->jinode = NULL;
1310         INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1311         spin_lock_init(&ei->i_completed_io_lock);
1312         ei->i_sync_tid = 0;
1313         ei->i_datasync_tid = 0;
1314         atomic_set(&ei->i_unwritten, 0);
1315         INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1316         ext4_fc_init_inode(&ei->vfs_inode);
1317         mutex_init(&ei->i_fc_lock);
1318         return &ei->vfs_inode;
1319 }
1320
1321 static int ext4_drop_inode(struct inode *inode)
1322 {
1323         int drop = generic_drop_inode(inode);
1324
1325         if (!drop)
1326                 drop = fscrypt_drop_inode(inode);
1327
1328         trace_ext4_drop_inode(inode, drop);
1329         return drop;
1330 }
1331
1332 static void ext4_free_in_core_inode(struct inode *inode)
1333 {
1334         fscrypt_free_inode(inode);
1335         if (!list_empty(&(EXT4_I(inode)->i_fc_list))) {
1336                 pr_warn("%s: inode %ld still in fc list",
1337                         __func__, inode->i_ino);
1338         }
1339         kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1340 }
1341
1342 static void ext4_destroy_inode(struct inode *inode)
1343 {
1344         if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1345                 ext4_msg(inode->i_sb, KERN_ERR,
1346                          "Inode %lu (%p): orphan list check failed!",
1347                          inode->i_ino, EXT4_I(inode));
1348                 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1349                                 EXT4_I(inode), sizeof(struct ext4_inode_info),
1350                                 true);
1351                 dump_stack();
1352         }
1353 }
1354
1355 static void init_once(void *foo)
1356 {
1357         struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1358
1359         INIT_LIST_HEAD(&ei->i_orphan);
1360         init_rwsem(&ei->xattr_sem);
1361         init_rwsem(&ei->i_data_sem);
1362         inode_init_once(&ei->vfs_inode);
1363         ext4_fc_init_inode(&ei->vfs_inode);
1364 }
1365
1366 static int __init init_inodecache(void)
1367 {
1368         ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1369                                 sizeof(struct ext4_inode_info), 0,
1370                                 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1371                                         SLAB_ACCOUNT),
1372                                 offsetof(struct ext4_inode_info, i_data),
1373                                 sizeof_field(struct ext4_inode_info, i_data),
1374                                 init_once);
1375         if (ext4_inode_cachep == NULL)
1376                 return -ENOMEM;
1377         return 0;
1378 }
1379
1380 static void destroy_inodecache(void)
1381 {
1382         /*
1383          * Make sure all delayed rcu free inodes are flushed before we
1384          * destroy cache.
1385          */
1386         rcu_barrier();
1387         kmem_cache_destroy(ext4_inode_cachep);
1388 }
1389
1390 void ext4_clear_inode(struct inode *inode)
1391 {
1392         ext4_fc_del(inode);
1393         invalidate_inode_buffers(inode);
1394         clear_inode(inode);
1395         ext4_discard_preallocations(inode, 0);
1396         ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1397         dquot_drop(inode);
1398         if (EXT4_I(inode)->jinode) {
1399                 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1400                                                EXT4_I(inode)->jinode);
1401                 jbd2_free_inode(EXT4_I(inode)->jinode);
1402                 EXT4_I(inode)->jinode = NULL;
1403         }
1404         fscrypt_put_encryption_info(inode);
1405         fsverity_cleanup_inode(inode);
1406 }
1407
1408 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1409                                         u64 ino, u32 generation)
1410 {
1411         struct inode *inode;
1412
1413         /*
1414          * Currently we don't know the generation for parent directory, so
1415          * a generation of 0 means "accept any"
1416          */
1417         inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1418         if (IS_ERR(inode))
1419                 return ERR_CAST(inode);
1420         if (generation && inode->i_generation != generation) {
1421                 iput(inode);
1422                 return ERR_PTR(-ESTALE);
1423         }
1424
1425         return inode;
1426 }
1427
1428 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1429                                         int fh_len, int fh_type)
1430 {
1431         return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1432                                     ext4_nfs_get_inode);
1433 }
1434
1435 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1436                                         int fh_len, int fh_type)
1437 {
1438         return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1439                                     ext4_nfs_get_inode);
1440 }
1441
1442 static int ext4_nfs_commit_metadata(struct inode *inode)
1443 {
1444         struct writeback_control wbc = {
1445                 .sync_mode = WB_SYNC_ALL
1446         };
1447
1448         trace_ext4_nfs_commit_metadata(inode);
1449         return ext4_write_inode(inode, &wbc);
1450 }
1451
1452 #ifdef CONFIG_FS_ENCRYPTION
1453 static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1454 {
1455         return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1456                                  EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1457 }
1458
1459 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1460                                                         void *fs_data)
1461 {
1462         handle_t *handle = fs_data;
1463         int res, res2, credits, retries = 0;
1464
1465         /*
1466          * Encrypting the root directory is not allowed because e2fsck expects
1467          * lost+found to exist and be unencrypted, and encrypting the root
1468          * directory would imply encrypting the lost+found directory as well as
1469          * the filename "lost+found" itself.
1470          */
1471         if (inode->i_ino == EXT4_ROOT_INO)
1472                 return -EPERM;
1473
1474         if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode)))
1475                 return -EINVAL;
1476
1477         if (ext4_test_inode_flag(inode, EXT4_INODE_DAX))
1478                 return -EOPNOTSUPP;
1479
1480         res = ext4_convert_inline_data(inode);
1481         if (res)
1482                 return res;
1483
1484         /*
1485          * If a journal handle was specified, then the encryption context is
1486          * being set on a new inode via inheritance and is part of a larger
1487          * transaction to create the inode.  Otherwise the encryption context is
1488          * being set on an existing inode in its own transaction.  Only in the
1489          * latter case should the "retry on ENOSPC" logic be used.
1490          */
1491
1492         if (handle) {
1493                 res = ext4_xattr_set_handle(handle, inode,
1494                                             EXT4_XATTR_INDEX_ENCRYPTION,
1495                                             EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1496                                             ctx, len, 0);
1497                 if (!res) {
1498                         ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1499                         ext4_clear_inode_state(inode,
1500                                         EXT4_STATE_MAY_INLINE_DATA);
1501                         /*
1502                          * Update inode->i_flags - S_ENCRYPTED will be enabled,
1503                          * S_DAX may be disabled
1504                          */
1505                         ext4_set_inode_flags(inode, false);
1506                 }
1507                 return res;
1508         }
1509
1510         res = dquot_initialize(inode);
1511         if (res)
1512                 return res;
1513 retry:
1514         res = ext4_xattr_set_credits(inode, len, false /* is_create */,
1515                                      &credits);
1516         if (res)
1517                 return res;
1518
1519         handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
1520         if (IS_ERR(handle))
1521                 return PTR_ERR(handle);
1522
1523         res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1524                                     EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1525                                     ctx, len, 0);
1526         if (!res) {
1527                 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1528                 /*
1529                  * Update inode->i_flags - S_ENCRYPTED will be enabled,
1530                  * S_DAX may be disabled
1531                  */
1532                 ext4_set_inode_flags(inode, false);
1533                 res = ext4_mark_inode_dirty(handle, inode);
1534                 if (res)
1535                         EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1536         }
1537         res2 = ext4_journal_stop(handle);
1538
1539         if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1540                 goto retry;
1541         if (!res)
1542                 res = res2;
1543         return res;
1544 }
1545
1546 static const union fscrypt_policy *ext4_get_dummy_policy(struct super_block *sb)
1547 {
1548         return EXT4_SB(sb)->s_dummy_enc_policy.policy;
1549 }
1550
1551 static bool ext4_has_stable_inodes(struct super_block *sb)
1552 {
1553         return ext4_has_feature_stable_inodes(sb);
1554 }
1555
1556 static void ext4_get_ino_and_lblk_bits(struct super_block *sb,
1557                                        int *ino_bits_ret, int *lblk_bits_ret)
1558 {
1559         *ino_bits_ret = 8 * sizeof(EXT4_SB(sb)->s_es->s_inodes_count);
1560         *lblk_bits_ret = 8 * sizeof(ext4_lblk_t);
1561 }
1562
1563 static const struct fscrypt_operations ext4_cryptops = {
1564         .key_prefix             = "ext4:",
1565         .get_context            = ext4_get_context,
1566         .set_context            = ext4_set_context,
1567         .get_dummy_policy       = ext4_get_dummy_policy,
1568         .empty_dir              = ext4_empty_dir,
1569         .max_namelen            = EXT4_NAME_LEN,
1570         .has_stable_inodes      = ext4_has_stable_inodes,
1571         .get_ino_and_lblk_bits  = ext4_get_ino_and_lblk_bits,
1572 };
1573 #endif
1574
1575 #ifdef CONFIG_QUOTA
1576 static const char * const quotatypes[] = INITQFNAMES;
1577 #define QTYPE2NAME(t) (quotatypes[t])
1578
1579 static int ext4_write_dquot(struct dquot *dquot);
1580 static int ext4_acquire_dquot(struct dquot *dquot);
1581 static int ext4_release_dquot(struct dquot *dquot);
1582 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1583 static int ext4_write_info(struct super_block *sb, int type);
1584 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1585                          const struct path *path);
1586 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1587                                size_t len, loff_t off);
1588 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1589                                 const char *data, size_t len, loff_t off);
1590 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1591                              unsigned int flags);
1592
1593 static struct dquot **ext4_get_dquots(struct inode *inode)
1594 {
1595         return EXT4_I(inode)->i_dquot;
1596 }
1597
1598 static const struct dquot_operations ext4_quota_operations = {
1599         .get_reserved_space     = ext4_get_reserved_space,
1600         .write_dquot            = ext4_write_dquot,
1601         .acquire_dquot          = ext4_acquire_dquot,
1602         .release_dquot          = ext4_release_dquot,
1603         .mark_dirty             = ext4_mark_dquot_dirty,
1604         .write_info             = ext4_write_info,
1605         .alloc_dquot            = dquot_alloc,
1606         .destroy_dquot          = dquot_destroy,
1607         .get_projid             = ext4_get_projid,
1608         .get_inode_usage        = ext4_get_inode_usage,
1609         .get_next_id            = dquot_get_next_id,
1610 };
1611
1612 static const struct quotactl_ops ext4_qctl_operations = {
1613         .quota_on       = ext4_quota_on,
1614         .quota_off      = ext4_quota_off,
1615         .quota_sync     = dquot_quota_sync,
1616         .get_state      = dquot_get_state,
1617         .set_info       = dquot_set_dqinfo,
1618         .get_dqblk      = dquot_get_dqblk,
1619         .set_dqblk      = dquot_set_dqblk,
1620         .get_nextdqblk  = dquot_get_next_dqblk,
1621 };
1622 #endif
1623
1624 static const struct super_operations ext4_sops = {
1625         .alloc_inode    = ext4_alloc_inode,
1626         .free_inode     = ext4_free_in_core_inode,
1627         .destroy_inode  = ext4_destroy_inode,
1628         .write_inode    = ext4_write_inode,
1629         .dirty_inode    = ext4_dirty_inode,
1630         .drop_inode     = ext4_drop_inode,
1631         .evict_inode    = ext4_evict_inode,
1632         .put_super      = ext4_put_super,
1633         .sync_fs        = ext4_sync_fs,
1634         .freeze_fs      = ext4_freeze,
1635         .unfreeze_fs    = ext4_unfreeze,
1636         .statfs         = ext4_statfs,
1637         .remount_fs     = ext4_remount,
1638         .show_options   = ext4_show_options,
1639 #ifdef CONFIG_QUOTA
1640         .quota_read     = ext4_quota_read,
1641         .quota_write    = ext4_quota_write,
1642         .get_dquots     = ext4_get_dquots,
1643 #endif
1644 };
1645
1646 static const struct export_operations ext4_export_ops = {
1647         .fh_to_dentry = ext4_fh_to_dentry,
1648         .fh_to_parent = ext4_fh_to_parent,
1649         .get_parent = ext4_get_parent,
1650         .commit_metadata = ext4_nfs_commit_metadata,
1651 };
1652
1653 enum {
1654         Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1655         Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1656         Opt_nouid32, Opt_debug, Opt_removed,
1657         Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1658         Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1659         Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1660         Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1661         Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1662         Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1663         Opt_inlinecrypt,
1664         Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1665         Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1666         Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1667         Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version,
1668         Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
1669         Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1670         Opt_nowarn_on_error, Opt_mblk_io_submit,
1671         Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
1672         Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1673         Opt_inode_readahead_blks, Opt_journal_ioprio,
1674         Opt_dioread_nolock, Opt_dioread_lock,
1675         Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1676         Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1677         Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan,
1678 #ifdef CONFIG_EXT4_DEBUG
1679         Opt_fc_debug_max_replay, Opt_fc_debug_force
1680 #endif
1681 };
1682
1683 static const match_table_t tokens = {
1684         {Opt_bsd_df, "bsddf"},
1685         {Opt_minix_df, "minixdf"},
1686         {Opt_grpid, "grpid"},
1687         {Opt_grpid, "bsdgroups"},
1688         {Opt_nogrpid, "nogrpid"},
1689         {Opt_nogrpid, "sysvgroups"},
1690         {Opt_resgid, "resgid=%u"},
1691         {Opt_resuid, "resuid=%u"},
1692         {Opt_sb, "sb=%u"},
1693         {Opt_err_cont, "errors=continue"},
1694         {Opt_err_panic, "errors=panic"},
1695         {Opt_err_ro, "errors=remount-ro"},
1696         {Opt_nouid32, "nouid32"},
1697         {Opt_debug, "debug"},
1698         {Opt_removed, "oldalloc"},
1699         {Opt_removed, "orlov"},
1700         {Opt_user_xattr, "user_xattr"},
1701         {Opt_nouser_xattr, "nouser_xattr"},
1702         {Opt_acl, "acl"},
1703         {Opt_noacl, "noacl"},
1704         {Opt_noload, "norecovery"},
1705         {Opt_noload, "noload"},
1706         {Opt_removed, "nobh"},
1707         {Opt_removed, "bh"},
1708         {Opt_commit, "commit=%u"},
1709         {Opt_min_batch_time, "min_batch_time=%u"},
1710         {Opt_max_batch_time, "max_batch_time=%u"},
1711         {Opt_journal_dev, "journal_dev=%u"},
1712         {Opt_journal_path, "journal_path=%s"},
1713         {Opt_journal_checksum, "journal_checksum"},
1714         {Opt_nojournal_checksum, "nojournal_checksum"},
1715         {Opt_journal_async_commit, "journal_async_commit"},
1716         {Opt_abort, "abort"},
1717         {Opt_data_journal, "data=journal"},
1718         {Opt_data_ordered, "data=ordered"},
1719         {Opt_data_writeback, "data=writeback"},
1720         {Opt_data_err_abort, "data_err=abort"},
1721         {Opt_data_err_ignore, "data_err=ignore"},
1722         {Opt_offusrjquota, "usrjquota="},
1723         {Opt_usrjquota, "usrjquota=%s"},
1724         {Opt_offgrpjquota, "grpjquota="},
1725         {Opt_grpjquota, "grpjquota=%s"},
1726         {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1727         {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1728         {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1729         {Opt_grpquota, "grpquota"},
1730         {Opt_noquota, "noquota"},
1731         {Opt_quota, "quota"},
1732         {Opt_usrquota, "usrquota"},
1733         {Opt_prjquota, "prjquota"},
1734         {Opt_barrier, "barrier=%u"},
1735         {Opt_barrier, "barrier"},
1736         {Opt_nobarrier, "nobarrier"},
1737         {Opt_i_version, "i_version"},
1738         {Opt_dax, "dax"},
1739         {Opt_dax_always, "dax=always"},
1740         {Opt_dax_inode, "dax=inode"},
1741         {Opt_dax_never, "dax=never"},
1742         {Opt_stripe, "stripe=%u"},
1743         {Opt_delalloc, "delalloc"},
1744         {Opt_warn_on_error, "warn_on_error"},
1745         {Opt_nowarn_on_error, "nowarn_on_error"},
1746         {Opt_lazytime, "lazytime"},
1747         {Opt_nolazytime, "nolazytime"},
1748         {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1749         {Opt_nodelalloc, "nodelalloc"},
1750         {Opt_removed, "mblk_io_submit"},
1751         {Opt_removed, "nomblk_io_submit"},
1752         {Opt_block_validity, "block_validity"},
1753         {Opt_noblock_validity, "noblock_validity"},
1754         {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1755         {Opt_journal_ioprio, "journal_ioprio=%u"},
1756         {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1757         {Opt_auto_da_alloc, "auto_da_alloc"},
1758         {Opt_noauto_da_alloc, "noauto_da_alloc"},
1759         {Opt_dioread_nolock, "dioread_nolock"},
1760         {Opt_dioread_lock, "nodioread_nolock"},
1761         {Opt_dioread_lock, "dioread_lock"},
1762         {Opt_discard, "discard"},
1763         {Opt_nodiscard, "nodiscard"},
1764         {Opt_init_itable, "init_itable=%u"},
1765         {Opt_init_itable, "init_itable"},
1766         {Opt_noinit_itable, "noinit_itable"},
1767 #ifdef CONFIG_EXT4_DEBUG
1768         {Opt_fc_debug_force, "fc_debug_force"},
1769         {Opt_fc_debug_max_replay, "fc_debug_max_replay=%u"},
1770 #endif
1771         {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1772         {Opt_test_dummy_encryption, "test_dummy_encryption=%s"},
1773         {Opt_test_dummy_encryption, "test_dummy_encryption"},
1774         {Opt_inlinecrypt, "inlinecrypt"},
1775         {Opt_nombcache, "nombcache"},
1776         {Opt_nombcache, "no_mbcache"},  /* for backward compatibility */
1777         {Opt_removed, "prefetch_block_bitmaps"},
1778         {Opt_no_prefetch_block_bitmaps, "no_prefetch_block_bitmaps"},
1779         {Opt_mb_optimize_scan, "mb_optimize_scan=%d"},
1780         {Opt_removed, "check=none"},    /* mount option from ext2/3 */
1781         {Opt_removed, "nocheck"},       /* mount option from ext2/3 */
1782         {Opt_removed, "reservation"},   /* mount option from ext2/3 */
1783         {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1784         {Opt_removed, "journal=%u"},    /* mount option from ext2/3 */
1785         {Opt_err, NULL},
1786 };
1787
1788 static ext4_fsblk_t get_sb_block(void **data)
1789 {
1790         ext4_fsblk_t    sb_block;
1791         char            *options = (char *) *data;
1792
1793         if (!options || strncmp(options, "sb=", 3) != 0)
1794                 return 1;       /* Default location */
1795
1796         options += 3;
1797         /* TODO: use simple_strtoll with >32bit ext4 */
1798         sb_block = simple_strtoul(options, &options, 0);
1799         if (*options && *options != ',') {
1800                 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1801                        (char *) *data);
1802                 return 1;
1803         }
1804         if (*options == ',')
1805                 options++;
1806         *data = (void *) options;
1807
1808         return sb_block;
1809 }
1810
1811 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1812 #define DEFAULT_MB_OPTIMIZE_SCAN        (-1)
1813
1814 static const char deprecated_msg[] =
1815         "Mount option \"%s\" will be removed by %s\n"
1816         "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1817
1818 #ifdef CONFIG_QUOTA
1819 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1820 {
1821         struct ext4_sb_info *sbi = EXT4_SB(sb);
1822         char *qname, *old_qname = get_qf_name(sb, sbi, qtype);
1823         int ret = -1;
1824
1825         if (sb_any_quota_loaded(sb) && !old_qname) {
1826                 ext4_msg(sb, KERN_ERR,
1827                         "Cannot change journaled "
1828                         "quota options when quota turned on");
1829                 return -1;
1830         }
1831         if (ext4_has_feature_quota(sb)) {
1832                 ext4_msg(sb, KERN_INFO, "Journaled quota options "
1833                          "ignored when QUOTA feature is enabled");
1834                 return 1;
1835         }
1836         qname = match_strdup(args);
1837         if (!qname) {
1838                 ext4_msg(sb, KERN_ERR,
1839                         "Not enough memory for storing quotafile name");
1840                 return -1;
1841         }
1842         if (old_qname) {
1843                 if (strcmp(old_qname, qname) == 0)
1844                         ret = 1;
1845                 else
1846                         ext4_msg(sb, KERN_ERR,
1847                                  "%s quota file already specified",
1848                                  QTYPE2NAME(qtype));
1849                 goto errout;
1850         }
1851         if (strchr(qname, '/')) {
1852                 ext4_msg(sb, KERN_ERR,
1853                         "quotafile must be on filesystem root");
1854                 goto errout;
1855         }
1856         rcu_assign_pointer(sbi->s_qf_names[qtype], qname);
1857         set_opt(sb, QUOTA);
1858         return 1;
1859 errout:
1860         kfree(qname);
1861         return ret;
1862 }
1863
1864 static int clear_qf_name(struct super_block *sb, int qtype)
1865 {
1866
1867         struct ext4_sb_info *sbi = EXT4_SB(sb);
1868         char *old_qname = get_qf_name(sb, sbi, qtype);
1869
1870         if (sb_any_quota_loaded(sb) && old_qname) {
1871                 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1872                         " when quota turned on");
1873                 return -1;
1874         }
1875         rcu_assign_pointer(sbi->s_qf_names[qtype], NULL);
1876         synchronize_rcu();
1877         kfree(old_qname);
1878         return 1;
1879 }
1880 #endif
1881
1882 #define MOPT_SET        0x0001
1883 #define MOPT_CLEAR      0x0002
1884 #define MOPT_NOSUPPORT  0x0004
1885 #define MOPT_EXPLICIT   0x0008
1886 #define MOPT_CLEAR_ERR  0x0010
1887 #define MOPT_GTE0       0x0020
1888 #ifdef CONFIG_QUOTA
1889 #define MOPT_Q          0
1890 #define MOPT_QFMT       0x0040
1891 #else
1892 #define MOPT_Q          MOPT_NOSUPPORT
1893 #define MOPT_QFMT       MOPT_NOSUPPORT
1894 #endif
1895 #define MOPT_DATAJ      0x0080
1896 #define MOPT_NO_EXT2    0x0100
1897 #define MOPT_NO_EXT3    0x0200
1898 #define MOPT_EXT4_ONLY  (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1899 #define MOPT_STRING     0x0400
1900 #define MOPT_SKIP       0x0800
1901 #define MOPT_2          0x1000
1902
1903 static const struct mount_opts {
1904         int     token;
1905         int     mount_opt;
1906         int     flags;
1907 } ext4_mount_opts[] = {
1908         {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1909         {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1910         {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1911         {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1912         {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1913         {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1914         {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1915          MOPT_EXT4_ONLY | MOPT_SET},
1916         {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1917          MOPT_EXT4_ONLY | MOPT_CLEAR},
1918         {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1919         {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1920         {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1921          MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1922         {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1923          MOPT_EXT4_ONLY | MOPT_CLEAR},
1924         {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1925         {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1926         {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1927          MOPT_EXT4_ONLY | MOPT_CLEAR},
1928         {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1929          MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1930         {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1931                                     EXT4_MOUNT_JOURNAL_CHECKSUM),
1932          MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1933         {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1934         {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1935         {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1936         {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1937         {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1938          MOPT_NO_EXT2},
1939         {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1940          MOPT_NO_EXT2},
1941         {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1942         {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1943         {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1944         {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1945         {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1946         {Opt_commit, 0, MOPT_GTE0},
1947         {Opt_max_batch_time, 0, MOPT_GTE0},
1948         {Opt_min_batch_time, 0, MOPT_GTE0},
1949         {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1950         {Opt_init_itable, 0, MOPT_GTE0},
1951         {Opt_dax, EXT4_MOUNT_DAX_ALWAYS, MOPT_SET | MOPT_SKIP},
1952         {Opt_dax_always, EXT4_MOUNT_DAX_ALWAYS,
1953                 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1954         {Opt_dax_inode, EXT4_MOUNT2_DAX_INODE,
1955                 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1956         {Opt_dax_never, EXT4_MOUNT2_DAX_NEVER,
1957                 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1958         {Opt_stripe, 0, MOPT_GTE0},
1959         {Opt_resuid, 0, MOPT_GTE0},
1960         {Opt_resgid, 0, MOPT_GTE0},
1961         {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1962         {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1963         {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1964         {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1965         {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1966         {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1967          MOPT_NO_EXT2 | MOPT_DATAJ},
1968         {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1969         {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1970 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1971         {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1972         {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1973 #else
1974         {Opt_acl, 0, MOPT_NOSUPPORT},
1975         {Opt_noacl, 0, MOPT_NOSUPPORT},
1976 #endif
1977         {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1978         {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1979         {Opt_debug_want_extra_isize, 0, MOPT_GTE0},
1980         {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1981         {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1982                                                         MOPT_SET | MOPT_Q},
1983         {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1984                                                         MOPT_SET | MOPT_Q},
1985         {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1986                                                         MOPT_SET | MOPT_Q},
1987         {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1988                        EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1989                                                         MOPT_CLEAR | MOPT_Q},
1990         {Opt_usrjquota, 0, MOPT_Q | MOPT_STRING},
1991         {Opt_grpjquota, 0, MOPT_Q | MOPT_STRING},
1992         {Opt_offusrjquota, 0, MOPT_Q},
1993         {Opt_offgrpjquota, 0, MOPT_Q},
1994         {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1995         {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1996         {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1997         {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1998         {Opt_test_dummy_encryption, 0, MOPT_STRING},
1999         {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
2000         {Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS,
2001          MOPT_SET},
2002         {Opt_mb_optimize_scan, EXT4_MOUNT2_MB_OPTIMIZE_SCAN, MOPT_GTE0},
2003 #ifdef CONFIG_EXT4_DEBUG
2004         {Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT,
2005          MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY},
2006         {Opt_fc_debug_max_replay, 0, MOPT_GTE0},
2007 #endif
2008         {Opt_err, 0, 0}
2009 };
2010
2011 #ifdef CONFIG_UNICODE
2012 static const struct ext4_sb_encodings {
2013         __u16 magic;
2014         char *name;
2015         char *version;
2016 } ext4_sb_encoding_map[] = {
2017         {EXT4_ENC_UTF8_12_1, "utf8", "12.1.0"},
2018 };
2019
2020 static int ext4_sb_read_encoding(const struct ext4_super_block *es,
2021                                  const struct ext4_sb_encodings **encoding,
2022                                  __u16 *flags)
2023 {
2024         __u16 magic = le16_to_cpu(es->s_encoding);
2025         int i;
2026
2027         for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
2028                 if (magic == ext4_sb_encoding_map[i].magic)
2029                         break;
2030
2031         if (i >= ARRAY_SIZE(ext4_sb_encoding_map))
2032                 return -EINVAL;
2033
2034         *encoding = &ext4_sb_encoding_map[i];
2035         *flags = le16_to_cpu(es->s_encoding_flags);
2036
2037         return 0;
2038 }
2039 #endif
2040
2041 static int ext4_set_test_dummy_encryption(struct super_block *sb,
2042                                           const char *opt,
2043                                           const substring_t *arg,
2044                                           bool is_remount)
2045 {
2046 #ifdef CONFIG_FS_ENCRYPTION
2047         struct ext4_sb_info *sbi = EXT4_SB(sb);
2048         int err;
2049
2050         /*
2051          * This mount option is just for testing, and it's not worthwhile to
2052          * implement the extra complexity (e.g. RCU protection) that would be
2053          * needed to allow it to be set or changed during remount.  We do allow
2054          * it to be specified during remount, but only if there is no change.
2055          */
2056         if (is_remount && !sbi->s_dummy_enc_policy.policy) {
2057                 ext4_msg(sb, KERN_WARNING,
2058                          "Can't set test_dummy_encryption on remount");
2059                 return -1;
2060         }
2061         err = fscrypt_set_test_dummy_encryption(sb, arg->from,
2062                                                 &sbi->s_dummy_enc_policy);
2063         if (err) {
2064                 if (err == -EEXIST)
2065                         ext4_msg(sb, KERN_WARNING,
2066                                  "Can't change test_dummy_encryption on remount");
2067                 else if (err == -EINVAL)
2068                         ext4_msg(sb, KERN_WARNING,
2069                                  "Value of option \"%s\" is unrecognized", opt);
2070                 else
2071                         ext4_msg(sb, KERN_WARNING,
2072                                  "Error processing option \"%s\" [%d]",
2073                                  opt, err);
2074                 return -1;
2075         }
2076         ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
2077 #else
2078         ext4_msg(sb, KERN_WARNING,
2079                  "Test dummy encryption mount option ignored");
2080 #endif
2081         return 1;
2082 }
2083
2084 struct ext4_parsed_options {
2085         unsigned long journal_devnum;
2086         unsigned int journal_ioprio;
2087         int mb_optimize_scan;
2088 };
2089
2090 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
2091                             substring_t *args, struct ext4_parsed_options *parsed_opts,
2092                             int is_remount)
2093 {
2094         struct ext4_sb_info *sbi = EXT4_SB(sb);
2095         const struct mount_opts *m;
2096         kuid_t uid;
2097         kgid_t gid;
2098         int arg = 0;
2099
2100 #ifdef CONFIG_QUOTA
2101         if (token == Opt_usrjquota)
2102                 return set_qf_name(sb, USRQUOTA, &args[0]);
2103         else if (token == Opt_grpjquota)
2104                 return set_qf_name(sb, GRPQUOTA, &args[0]);
2105         else if (token == Opt_offusrjquota)
2106                 return clear_qf_name(sb, USRQUOTA);
2107         else if (token == Opt_offgrpjquota)
2108                 return clear_qf_name(sb, GRPQUOTA);
2109 #endif
2110         switch (token) {
2111         case Opt_noacl:
2112         case Opt_nouser_xattr:
2113                 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
2114                 break;
2115         case Opt_sb:
2116                 return 1;       /* handled by get_sb_block() */
2117         case Opt_removed:
2118                 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
2119                 return 1;
2120         case Opt_abort:
2121                 ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED);
2122                 return 1;
2123         case Opt_i_version:
2124                 sb->s_flags |= SB_I_VERSION;
2125                 return 1;
2126         case Opt_lazytime:
2127                 sb->s_flags |= SB_LAZYTIME;
2128                 return 1;
2129         case Opt_nolazytime:
2130                 sb->s_flags &= ~SB_LAZYTIME;
2131                 return 1;
2132         case Opt_inlinecrypt:
2133 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
2134                 sb->s_flags |= SB_INLINECRYPT;
2135 #else
2136                 ext4_msg(sb, KERN_ERR, "inline encryption not supported");
2137 #endif
2138                 return 1;
2139         }
2140
2141         for (m = ext4_mount_opts; m->token != Opt_err; m++)
2142                 if (token == m->token)
2143                         break;
2144
2145         if (m->token == Opt_err) {
2146                 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
2147                          "or missing value", opt);
2148                 return -1;
2149         }
2150
2151         if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
2152                 ext4_msg(sb, KERN_ERR,
2153                          "Mount option \"%s\" incompatible with ext2", opt);
2154                 return -1;
2155         }
2156         if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
2157                 ext4_msg(sb, KERN_ERR,
2158                          "Mount option \"%s\" incompatible with ext3", opt);
2159                 return -1;
2160         }
2161
2162         if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
2163                 return -1;
2164         if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
2165                 return -1;
2166         if (m->flags & MOPT_EXPLICIT) {
2167                 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
2168                         set_opt2(sb, EXPLICIT_DELALLOC);
2169                 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
2170                         set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
2171                 } else
2172                         return -1;
2173         }
2174         if (m->flags & MOPT_CLEAR_ERR)
2175                 clear_opt(sb, ERRORS_MASK);
2176         if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
2177                 ext4_msg(sb, KERN_ERR, "Cannot change quota "
2178                          "options when quota turned on");
2179                 return -1;
2180         }
2181
2182         if (m->flags & MOPT_NOSUPPORT) {
2183                 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
2184         } else if (token == Opt_commit) {
2185                 if (arg == 0)
2186                         arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
2187                 else if (arg > INT_MAX / HZ) {
2188                         ext4_msg(sb, KERN_ERR,
2189                                  "Invalid commit interval %d, "
2190                                  "must be smaller than %d",
2191                                  arg, INT_MAX / HZ);
2192                         return -1;
2193                 }
2194                 sbi->s_commit_interval = HZ * arg;
2195         } else if (token == Opt_debug_want_extra_isize) {
2196                 if ((arg & 1) ||
2197                     (arg < 4) ||
2198                     (arg > (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE))) {
2199                         ext4_msg(sb, KERN_ERR,
2200                                  "Invalid want_extra_isize %d", arg);
2201                         return -1;
2202                 }
2203                 sbi->s_want_extra_isize = arg;
2204         } else if (token == Opt_max_batch_time) {
2205                 sbi->s_max_batch_time = arg;
2206         } else if (token == Opt_min_batch_time) {
2207                 sbi->s_min_batch_time = arg;
2208         } else if (token == Opt_inode_readahead_blks) {
2209                 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
2210                         ext4_msg(sb, KERN_ERR,
2211                                  "EXT4-fs: inode_readahead_blks must be "
2212                                  "0 or a power of 2 smaller than 2^31");
2213                         return -1;
2214                 }
2215                 sbi->s_inode_readahead_blks = arg;
2216         } else if (token == Opt_init_itable) {
2217                 set_opt(sb, INIT_INODE_TABLE);
2218                 if (!args->from)
2219                         arg = EXT4_DEF_LI_WAIT_MULT;
2220                 sbi->s_li_wait_mult = arg;
2221         } else if (token == Opt_max_dir_size_kb) {
2222                 sbi->s_max_dir_size_kb = arg;
2223 #ifdef CONFIG_EXT4_DEBUG
2224         } else if (token == Opt_fc_debug_max_replay) {
2225                 sbi->s_fc_debug_max_replay = arg;
2226 #endif
2227         } else if (token == Opt_stripe) {
2228                 sbi->s_stripe = arg;
2229         } else if (token == Opt_resuid) {
2230                 uid = make_kuid(current_user_ns(), arg);
2231                 if (!uid_valid(uid)) {
2232                         ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
2233                         return -1;
2234                 }
2235                 sbi->s_resuid = uid;
2236         } else if (token == Opt_resgid) {
2237                 gid = make_kgid(current_user_ns(), arg);
2238                 if (!gid_valid(gid)) {
2239                         ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
2240                         return -1;
2241                 }
2242                 sbi->s_resgid = gid;
2243         } else if (token == Opt_journal_dev) {
2244                 if (is_remount) {
2245                         ext4_msg(sb, KERN_ERR,
2246                                  "Cannot specify journal on remount");
2247                         return -1;
2248                 }
2249                 parsed_opts->journal_devnum = arg;
2250         } else if (token == Opt_journal_path) {
2251                 char *journal_path;
2252                 struct inode *journal_inode;
2253                 struct path path;
2254                 int error;
2255
2256                 if (is_remount) {
2257                         ext4_msg(sb, KERN_ERR,
2258                                  "Cannot specify journal on remount");
2259                         return -1;
2260                 }
2261                 journal_path = match_strdup(&args[0]);
2262                 if (!journal_path) {
2263                         ext4_msg(sb, KERN_ERR, "error: could not dup "
2264                                 "journal device string");
2265                         return -1;
2266                 }
2267
2268                 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
2269                 if (error) {
2270                         ext4_msg(sb, KERN_ERR, "error: could not find "
2271                                 "journal device path: error %d", error);
2272                         kfree(journal_path);
2273                         return -1;
2274                 }
2275
2276                 journal_inode = d_inode(path.dentry);
2277                 if (!S_ISBLK(journal_inode->i_mode)) {
2278                         ext4_msg(sb, KERN_ERR, "error: journal path %s "
2279                                 "is not a block device", journal_path);
2280                         path_put(&path);
2281                         kfree(journal_path);
2282                         return -1;
2283                 }
2284
2285                 parsed_opts->journal_devnum = new_encode_dev(journal_inode->i_rdev);
2286                 path_put(&path);
2287                 kfree(journal_path);
2288         } else if (token == Opt_journal_ioprio) {
2289                 if (arg > 7) {
2290                         ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
2291                                  " (must be 0-7)");
2292                         return -1;
2293                 }
2294                 parsed_opts->journal_ioprio =
2295                         IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
2296         } else if (token == Opt_test_dummy_encryption) {
2297                 return ext4_set_test_dummy_encryption(sb, opt, &args[0],
2298                                                       is_remount);
2299         } else if (m->flags & MOPT_DATAJ) {
2300                 if (is_remount) {
2301                         if (!sbi->s_journal)
2302                                 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
2303                         else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
2304                                 ext4_msg(sb, KERN_ERR,
2305                                          "Cannot change data mode on remount");
2306                                 return -1;
2307                         }
2308                 } else {
2309                         clear_opt(sb, DATA_FLAGS);
2310                         sbi->s_mount_opt |= m->mount_opt;
2311                 }
2312 #ifdef CONFIG_QUOTA
2313         } else if (m->flags & MOPT_QFMT) {
2314                 if (sb_any_quota_loaded(sb) &&
2315                     sbi->s_jquota_fmt != m->mount_opt) {
2316                         ext4_msg(sb, KERN_ERR, "Cannot change journaled "
2317                                  "quota options when quota turned on");
2318                         return -1;
2319                 }
2320                 if (ext4_has_feature_quota(sb)) {
2321                         ext4_msg(sb, KERN_INFO,
2322                                  "Quota format mount options ignored "
2323                                  "when QUOTA feature is enabled");
2324                         return 1;
2325                 }
2326                 sbi->s_jquota_fmt = m->mount_opt;
2327 #endif
2328         } else if (token == Opt_dax || token == Opt_dax_always ||
2329                    token == Opt_dax_inode || token == Opt_dax_never) {
2330 #ifdef CONFIG_FS_DAX
2331                 switch (token) {
2332                 case Opt_dax:
2333                 case Opt_dax_always:
2334                         if (is_remount &&
2335                             (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2336                              (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
2337                         fail_dax_change_remount:
2338                                 ext4_msg(sb, KERN_ERR, "can't change "
2339                                          "dax mount option while remounting");
2340                                 return -1;
2341                         }
2342                         if (is_remount &&
2343                             (test_opt(sb, DATA_FLAGS) ==
2344                              EXT4_MOUNT_JOURNAL_DATA)) {
2345                                     ext4_msg(sb, KERN_ERR, "can't mount with "
2346                                              "both data=journal and dax");
2347                                     return -1;
2348                         }
2349                         ext4_msg(sb, KERN_WARNING,
2350                                 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
2351                         sbi->s_mount_opt |= EXT4_MOUNT_DAX_ALWAYS;
2352                         sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER;
2353                         break;
2354                 case Opt_dax_never:
2355                         if (is_remount &&
2356                             (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2357                              (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS)))
2358                                 goto fail_dax_change_remount;
2359                         sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER;
2360                         sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2361                         break;
2362                 case Opt_dax_inode:
2363                         if (is_remount &&
2364                             ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2365                              (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2366                              !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE)))
2367                                 goto fail_dax_change_remount;
2368                         sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2369                         sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER;
2370                         /* Strictly for printing options */
2371                         sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_INODE;
2372                         break;
2373                 }
2374 #else
2375                 ext4_msg(sb, KERN_INFO, "dax option not supported");
2376                 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER;
2377                 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2378                 return -1;
2379 #endif
2380         } else if (token == Opt_data_err_abort) {
2381                 sbi->s_mount_opt |= m->mount_opt;
2382         } else if (token == Opt_data_err_ignore) {
2383                 sbi->s_mount_opt &= ~m->mount_opt;
2384         } else if (token == Opt_mb_optimize_scan) {
2385                 if (arg != 0 && arg != 1) {
2386                         ext4_msg(sb, KERN_WARNING,
2387                                  "mb_optimize_scan should be set to 0 or 1.");
2388                         return -1;
2389                 }
2390                 parsed_opts->mb_optimize_scan = arg;
2391         } else {
2392                 if (!args->from)
2393                         arg = 1;
2394                 if (m->flags & MOPT_CLEAR)
2395                         arg = !arg;
2396                 else if (unlikely(!(m->flags & MOPT_SET))) {
2397                         ext4_msg(sb, KERN_WARNING,
2398                                  "buggy handling of option %s", opt);
2399                         WARN_ON(1);
2400                         return -1;
2401                 }
2402                 if (m->flags & MOPT_2) {
2403                         if (arg != 0)
2404                                 sbi->s_mount_opt2 |= m->mount_opt;
2405                         else
2406                                 sbi->s_mount_opt2 &= ~m->mount_opt;
2407                 } else {
2408                         if (arg != 0)
2409                                 sbi->s_mount_opt |= m->mount_opt;
2410                         else
2411                                 sbi->s_mount_opt &= ~m->mount_opt;
2412                 }
2413         }
2414         return 1;
2415 }
2416
2417 static int parse_options(char *options, struct super_block *sb,
2418                          struct ext4_parsed_options *ret_opts,
2419                          int is_remount)
2420 {
2421         struct ext4_sb_info __maybe_unused *sbi = EXT4_SB(sb);
2422         char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name;
2423         substring_t args[MAX_OPT_ARGS];
2424         int token;
2425
2426         if (!options)
2427                 return 1;
2428
2429         while ((p = strsep(&options, ",")) != NULL) {
2430                 if (!*p)
2431                         continue;
2432                 /*
2433                  * Initialize args struct so we know whether arg was
2434                  * found; some options take optional arguments.
2435                  */
2436                 args[0].to = args[0].from = NULL;
2437                 token = match_token(p, tokens, args);
2438                 if (handle_mount_opt(sb, p, token, args, ret_opts,
2439                                      is_remount) < 0)
2440                         return 0;
2441         }
2442 #ifdef CONFIG_QUOTA
2443         /*
2444          * We do the test below only for project quotas. 'usrquota' and
2445          * 'grpquota' mount options are allowed even without quota feature
2446          * to support legacy quotas in quota files.
2447          */
2448         if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
2449                 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
2450                          "Cannot enable project quota enforcement.");
2451                 return 0;
2452         }
2453         usr_qf_name = get_qf_name(sb, sbi, USRQUOTA);
2454         grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA);
2455         if (usr_qf_name || grp_qf_name) {
2456                 if (test_opt(sb, USRQUOTA) && usr_qf_name)
2457                         clear_opt(sb, USRQUOTA);
2458
2459                 if (test_opt(sb, GRPQUOTA) && grp_qf_name)
2460                         clear_opt(sb, GRPQUOTA);
2461
2462                 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
2463                         ext4_msg(sb, KERN_ERR, "old and new quota "
2464                                         "format mixing");
2465                         return 0;
2466                 }
2467
2468                 if (!sbi->s_jquota_fmt) {
2469                         ext4_msg(sb, KERN_ERR, "journaled quota format "
2470                                         "not specified");
2471                         return 0;
2472                 }
2473         }
2474 #endif
2475         if (test_opt(sb, DIOREAD_NOLOCK)) {
2476                 int blocksize =
2477                         BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
2478                 if (blocksize < PAGE_SIZE)
2479                         ext4_msg(sb, KERN_WARNING, "Warning: mounting with an "
2480                                  "experimental mount option 'dioread_nolock' "
2481                                  "for blocksize < PAGE_SIZE");
2482         }
2483         return 1;
2484 }
2485
2486 static inline void ext4_show_quota_options(struct seq_file *seq,
2487                                            struct super_block *sb)
2488 {
2489 #if defined(CONFIG_QUOTA)
2490         struct ext4_sb_info *sbi = EXT4_SB(sb);
2491         char *usr_qf_name, *grp_qf_name;
2492
2493         if (sbi->s_jquota_fmt) {
2494                 char *fmtname = "";
2495
2496                 switch (sbi->s_jquota_fmt) {
2497                 case QFMT_VFS_OLD:
2498                         fmtname = "vfsold";
2499                         break;
2500                 case QFMT_VFS_V0:
2501                         fmtname = "vfsv0";
2502                         break;
2503                 case QFMT_VFS_V1:
2504                         fmtname = "vfsv1";
2505                         break;
2506                 }
2507                 seq_printf(seq, ",jqfmt=%s", fmtname);
2508         }
2509
2510         rcu_read_lock();
2511         usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2512         grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2513         if (usr_qf_name)
2514                 seq_show_option(seq, "usrjquota", usr_qf_name);
2515         if (grp_qf_name)
2516                 seq_show_option(seq, "grpjquota", grp_qf_name);
2517         rcu_read_unlock();
2518 #endif
2519 }
2520
2521 static const char *token2str(int token)
2522 {
2523         const struct match_token *t;
2524
2525         for (t = tokens; t->token != Opt_err; t++)
2526                 if (t->token == token && !strchr(t->pattern, '='))
2527                         break;
2528         return t->pattern;
2529 }
2530
2531 /*
2532  * Show an option if
2533  *  - it's set to a non-default value OR
2534  *  - if the per-sb default is different from the global default
2535  */
2536 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2537                               int nodefs)
2538 {
2539         struct ext4_sb_info *sbi = EXT4_SB(sb);
2540         struct ext4_super_block *es = sbi->s_es;
2541         int def_errors, def_mount_opt = sbi->s_def_mount_opt;
2542         const struct mount_opts *m;
2543         char sep = nodefs ? '\n' : ',';
2544
2545 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2546 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2547
2548         if (sbi->s_sb_block != 1)
2549                 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2550
2551         for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2552                 int want_set = m->flags & MOPT_SET;
2553                 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2554                     (m->flags & MOPT_CLEAR_ERR) || m->flags & MOPT_SKIP)
2555                         continue;
2556                 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2557                         continue; /* skip if same as the default */
2558                 if ((want_set &&
2559                      (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2560                     (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2561                         continue; /* select Opt_noFoo vs Opt_Foo */
2562                 SEQ_OPTS_PRINT("%s", token2str(m->token));
2563         }
2564
2565         if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2566             le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2567                 SEQ_OPTS_PRINT("resuid=%u",
2568                                 from_kuid_munged(&init_user_ns, sbi->s_resuid));
2569         if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2570             le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2571                 SEQ_OPTS_PRINT("resgid=%u",
2572                                 from_kgid_munged(&init_user_ns, sbi->s_resgid));
2573         def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2574         if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2575                 SEQ_OPTS_PUTS("errors=remount-ro");
2576         if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2577                 SEQ_OPTS_PUTS("errors=continue");
2578         if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2579                 SEQ_OPTS_PUTS("errors=panic");
2580         if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2581                 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2582         if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2583                 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2584         if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2585                 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2586         if (sb->s_flags & SB_I_VERSION)
2587                 SEQ_OPTS_PUTS("i_version");
2588         if (nodefs || sbi->s_stripe)
2589                 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2590         if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2591                         (sbi->s_mount_opt ^ def_mount_opt)) {
2592                 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2593                         SEQ_OPTS_PUTS("data=journal");
2594                 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2595                         SEQ_OPTS_PUTS("data=ordered");
2596                 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2597                         SEQ_OPTS_PUTS("data=writeback");
2598         }
2599         if (nodefs ||
2600             sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2601                 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2602                                sbi->s_inode_readahead_blks);
2603
2604         if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
2605                        (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2606                 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2607         if (nodefs || sbi->s_max_dir_size_kb)
2608                 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2609         if (test_opt(sb, DATA_ERR_ABORT))
2610                 SEQ_OPTS_PUTS("data_err=abort");
2611
2612         fscrypt_show_test_dummy_encryption(seq, sep, sb);
2613
2614         if (sb->s_flags & SB_INLINECRYPT)
2615                 SEQ_OPTS_PUTS("inlinecrypt");
2616
2617         if (test_opt(sb, DAX_ALWAYS)) {
2618                 if (IS_EXT2_SB(sb))
2619                         SEQ_OPTS_PUTS("dax");
2620                 else
2621                         SEQ_OPTS_PUTS("dax=always");
2622         } else if (test_opt2(sb, DAX_NEVER)) {
2623                 SEQ_OPTS_PUTS("dax=never");
2624         } else if (test_opt2(sb, DAX_INODE)) {
2625                 SEQ_OPTS_PUTS("dax=inode");
2626         }
2627         ext4_show_quota_options(seq, sb);
2628         return 0;
2629 }
2630
2631 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2632 {
2633         return _ext4_show_options(seq, root->d_sb, 0);
2634 }
2635
2636 int ext4_seq_options_show(struct seq_file *seq, void *offset)
2637 {
2638         struct super_block *sb = seq->private;
2639         int rc;
2640
2641         seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
2642         rc = _ext4_show_options(seq, sb, 1);
2643         seq_puts(seq, "\n");
2644         return rc;
2645 }
2646
2647 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2648                             int read_only)
2649 {
2650         struct ext4_sb_info *sbi = EXT4_SB(sb);
2651         int err = 0;
2652
2653         if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2654                 ext4_msg(sb, KERN_ERR, "revision level too high, "
2655                          "forcing read-only mode");
2656                 err = -EROFS;
2657                 goto done;
2658         }
2659         if (read_only)
2660                 goto done;
2661         if (!(sbi->s_mount_state & EXT4_VALID_FS))
2662                 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2663                          "running e2fsck is recommended");
2664         else if (sbi->s_mount_state & EXT4_ERROR_FS)
2665                 ext4_msg(sb, KERN_WARNING,
2666                          "warning: mounting fs with errors, "
2667                          "running e2fsck is recommended");
2668         else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2669                  le16_to_cpu(es->s_mnt_count) >=
2670                  (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2671                 ext4_msg(sb, KERN_WARNING,
2672                          "warning: maximal mount count reached, "
2673                          "running e2fsck is recommended");
2674         else if (le32_to_cpu(es->s_checkinterval) &&
2675                  (ext4_get_tstamp(es, s_lastcheck) +
2676                   le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
2677                 ext4_msg(sb, KERN_WARNING,
2678                          "warning: checktime reached, "
2679                          "running e2fsck is recommended");
2680         if (!sbi->s_journal)
2681                 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2682         if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2683                 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2684         le16_add_cpu(&es->s_mnt_count, 1);
2685         ext4_update_tstamp(es, s_mtime);
2686         if (sbi->s_journal) {
2687                 ext4_set_feature_journal_needs_recovery(sb);
2688                 if (ext4_has_feature_orphan_file(sb))
2689                         ext4_set_feature_orphan_present(sb);
2690         }
2691
2692         err = ext4_commit_super(sb);
2693 done:
2694         if (test_opt(sb, DEBUG))
2695                 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2696                                 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2697                         sb->s_blocksize,
2698                         sbi->s_groups_count,
2699                         EXT4_BLOCKS_PER_GROUP(sb),
2700                         EXT4_INODES_PER_GROUP(sb),
2701                         sbi->s_mount_opt, sbi->s_mount_opt2);
2702
2703         cleancache_init_fs(sb);
2704         return err;
2705 }
2706
2707 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2708 {
2709         struct ext4_sb_info *sbi = EXT4_SB(sb);
2710         struct flex_groups **old_groups, **new_groups;
2711         int size, i, j;
2712
2713         if (!sbi->s_log_groups_per_flex)
2714                 return 0;
2715
2716         size = ext4_flex_group(sbi, ngroup - 1) + 1;
2717         if (size <= sbi->s_flex_groups_allocated)
2718                 return 0;
2719
2720         new_groups = kvzalloc(roundup_pow_of_two(size *
2721                               sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
2722         if (!new_groups) {
2723                 ext4_msg(sb, KERN_ERR,
2724                          "not enough memory for %d flex group pointers", size);
2725                 return -ENOMEM;
2726         }
2727         for (i = sbi->s_flex_groups_allocated; i < size; i++) {
2728                 new_groups[i] = kvzalloc(roundup_pow_of_two(
2729                                          sizeof(struct flex_groups)),
2730                                          GFP_KERNEL);
2731                 if (!new_groups[i]) {
2732                         for (j = sbi->s_flex_groups_allocated; j < i; j++)
2733                                 kvfree(new_groups[j]);
2734                         kvfree(new_groups);
2735                         ext4_msg(sb, KERN_ERR,
2736                                  "not enough memory for %d flex groups", size);
2737                         return -ENOMEM;
2738                 }
2739         }
2740         rcu_read_lock();
2741         old_groups = rcu_dereference(sbi->s_flex_groups);
2742         if (old_groups)
2743                 memcpy(new_groups, old_groups,
2744                        (sbi->s_flex_groups_allocated *
2745                         sizeof(struct flex_groups *)));
2746         rcu_read_unlock();
2747         rcu_assign_pointer(sbi->s_flex_groups, new_groups);
2748         sbi->s_flex_groups_allocated = size;
2749         if (old_groups)
2750                 ext4_kvfree_array_rcu(old_groups);
2751         return 0;
2752 }
2753
2754 static int ext4_fill_flex_info(struct super_block *sb)
2755 {
2756         struct ext4_sb_info *sbi = EXT4_SB(sb);
2757         struct ext4_group_desc *gdp = NULL;
2758         struct flex_groups *fg;
2759         ext4_group_t flex_group;
2760         int i, err;
2761
2762         sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2763         if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2764                 sbi->s_log_groups_per_flex = 0;
2765                 return 1;
2766         }
2767
2768         err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2769         if (err)
2770                 goto failed;
2771
2772         for (i = 0; i < sbi->s_groups_count; i++) {
2773                 gdp = ext4_get_group_desc(sb, i, NULL);
2774
2775                 flex_group = ext4_flex_group(sbi, i);
2776                 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
2777                 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
2778                 atomic64_add(ext4_free_group_clusters(sb, gdp),
2779                              &fg->free_clusters);
2780                 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
2781         }
2782
2783         return 1;
2784 failed:
2785         return 0;
2786 }
2787
2788 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2789                                    struct ext4_group_desc *gdp)
2790 {
2791         int offset = offsetof(struct ext4_group_desc, bg_checksum);
2792         __u16 crc = 0;
2793         __le32 le_group = cpu_to_le32(block_group);
2794         struct ext4_sb_info *sbi = EXT4_SB(sb);
2795
2796         if (ext4_has_metadata_csum(sbi->s_sb)) {
2797                 /* Use new metadata_csum algorithm */
2798                 __u32 csum32;
2799                 __u16 dummy_csum = 0;
2800
2801                 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2802                                      sizeof(le_group));
2803                 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2804                 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2805                                      sizeof(dummy_csum));
2806                 offset += sizeof(dummy_csum);
2807                 if (offset < sbi->s_desc_size)
2808                         csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2809                                              sbi->s_desc_size - offset);
2810
2811                 crc = csum32 & 0xFFFF;
2812                 goto out;
2813         }
2814
2815         /* old crc16 code */
2816         if (!ext4_has_feature_gdt_csum(sb))
2817                 return 0;
2818
2819         crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2820         crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2821         crc = crc16(crc, (__u8 *)gdp, offset);
2822         offset += sizeof(gdp->bg_checksum); /* skip checksum */
2823         /* for checksum of struct ext4_group_desc do the rest...*/
2824         if (ext4_has_feature_64bit(sb) &&
2825             offset < le16_to_cpu(sbi->s_es->s_desc_size))
2826                 crc = crc16(crc, (__u8 *)gdp + offset,
2827                             le16_to_cpu(sbi->s_es->s_desc_size) -
2828                                 offset);
2829
2830 out:
2831         return cpu_to_le16(crc);
2832 }
2833
2834 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2835                                 struct ext4_group_desc *gdp)
2836 {
2837         if (ext4_has_group_desc_csum(sb) &&
2838             (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2839                 return 0;
2840
2841         return 1;
2842 }
2843
2844 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2845                               struct ext4_group_desc *gdp)
2846 {
2847         if (!ext4_has_group_desc_csum(sb))
2848                 return;
2849         gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2850 }
2851
2852 /* Called at mount-time, super-block is locked */
2853 static int ext4_check_descriptors(struct super_block *sb,
2854                                   ext4_fsblk_t sb_block,
2855                                   ext4_group_t *first_not_zeroed)
2856 {
2857         struct ext4_sb_info *sbi = EXT4_SB(sb);
2858         ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2859         ext4_fsblk_t last_block;
2860         ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
2861         ext4_fsblk_t block_bitmap;
2862         ext4_fsblk_t inode_bitmap;
2863         ext4_fsblk_t inode_table;
2864         int flexbg_flag = 0;
2865         ext4_group_t i, grp = sbi->s_groups_count;
2866
2867         if (ext4_has_feature_flex_bg(sb))
2868                 flexbg_flag = 1;
2869
2870         ext4_debug("Checking group descriptors");
2871
2872         for (i = 0; i < sbi->s_groups_count; i++) {
2873                 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2874
2875                 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2876                         last_block = ext4_blocks_count(sbi->s_es) - 1;
2877                 else
2878                         last_block = first_block +
2879                                 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2880
2881                 if ((grp == sbi->s_groups_count) &&
2882                    !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2883                         grp = i;
2884
2885                 block_bitmap = ext4_block_bitmap(sb, gdp);
2886                 if (block_bitmap == sb_block) {
2887                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2888                                  "Block bitmap for group %u overlaps "
2889                                  "superblock", i);
2890                         if (!sb_rdonly(sb))
2891                                 return 0;
2892                 }
2893                 if (block_bitmap >= sb_block + 1 &&
2894                     block_bitmap <= last_bg_block) {
2895                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2896                                  "Block bitmap for group %u overlaps "
2897                                  "block group descriptors", i);
2898                         if (!sb_rdonly(sb))
2899                                 return 0;
2900                 }
2901                 if (block_bitmap < first_block || block_bitmap > last_block) {
2902                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2903                                "Block bitmap for group %u not in group "
2904                                "(block %llu)!", i, block_bitmap);
2905                         return 0;
2906                 }
2907                 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2908                 if (inode_bitmap == sb_block) {
2909                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2910                                  "Inode bitmap for group %u overlaps "
2911                                  "superblock", i);
2912                         if (!sb_rdonly(sb))
2913                                 return 0;
2914                 }
2915                 if (inode_bitmap >= sb_block + 1 &&
2916                     inode_bitmap <= last_bg_block) {
2917                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2918                                  "Inode bitmap for group %u overlaps "
2919                                  "block group descriptors", i);
2920                         if (!sb_rdonly(sb))
2921                                 return 0;
2922                 }
2923                 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2924                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2925                                "Inode bitmap for group %u not in group "
2926                                "(block %llu)!", i, inode_bitmap);
2927                         return 0;
2928                 }
2929                 inode_table = ext4_inode_table(sb, gdp);
2930                 if (inode_table == sb_block) {
2931                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2932                                  "Inode table for group %u overlaps "
2933                                  "superblock", i);
2934                         if (!sb_rdonly(sb))
2935                                 return 0;
2936                 }
2937                 if (inode_table >= sb_block + 1 &&
2938                     inode_table <= last_bg_block) {
2939                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2940                                  "Inode table for group %u overlaps "
2941                                  "block group descriptors", i);
2942                         if (!sb_rdonly(sb))
2943                                 return 0;
2944                 }
2945                 if (inode_table < first_block ||
2946                     inode_table + sbi->s_itb_per_group - 1 > last_block) {
2947                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2948                                "Inode table for group %u not in group "
2949                                "(block %llu)!", i, inode_table);
2950                         return 0;
2951                 }
2952                 ext4_lock_group(sb, i);
2953                 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2954                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2955                                  "Checksum for group %u failed (%u!=%u)",
2956                                  i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2957                                      gdp)), le16_to_cpu(gdp->bg_checksum));
2958                         if (!sb_rdonly(sb)) {
2959                                 ext4_unlock_group(sb, i);
2960                                 return 0;
2961                         }
2962                 }
2963                 ext4_unlock_group(sb, i);
2964                 if (!flexbg_flag)
2965                         first_block += EXT4_BLOCKS_PER_GROUP(sb);
2966         }
2967         if (NULL != first_not_zeroed)
2968                 *first_not_zeroed = grp;
2969         return 1;
2970 }
2971
2972 /*
2973  * Maximal extent format file size.
2974  * Resulting logical blkno at s_maxbytes must fit in our on-disk
2975  * extent format containers, within a sector_t, and within i_blocks
2976  * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
2977  * so that won't be a limiting factor.
2978  *
2979  * However there is other limiting factor. We do store extents in the form
2980  * of starting block and length, hence the resulting length of the extent
2981  * covering maximum file size must fit into on-disk format containers as
2982  * well. Given that length is always by 1 unit bigger than max unit (because
2983  * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2984  *
2985  * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2986  */
2987 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2988 {
2989         loff_t res;
2990         loff_t upper_limit = MAX_LFS_FILESIZE;
2991
2992         BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
2993
2994         if (!has_huge_files) {
2995                 upper_limit = (1LL << 32) - 1;
2996
2997                 /* total blocks in file system block size */
2998                 upper_limit >>= (blkbits - 9);
2999                 upper_limit <<= blkbits;
3000         }
3001
3002         /*
3003          * 32-bit extent-start container, ee_block. We lower the maxbytes
3004          * by one fs block, so ee_len can cover the extent of maximum file
3005          * size
3006          */
3007         res = (1LL << 32) - 1;
3008         res <<= blkbits;
3009
3010         /* Sanity check against vm- & vfs- imposed limits */
3011         if (res > upper_limit)
3012                 res = upper_limit;
3013
3014         return res;
3015 }
3016
3017 /*
3018  * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
3019  * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
3020  * We need to be 1 filesystem block less than the 2^48 sector limit.
3021  */
3022 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
3023 {
3024         loff_t res = EXT4_NDIR_BLOCKS;
3025         int meta_blocks;
3026         loff_t upper_limit;
3027         /* This is calculated to be the largest file size for a dense, block
3028          * mapped file such that the file's total number of 512-byte sectors,
3029          * including data and all indirect blocks, does not exceed (2^48 - 1).
3030          *
3031          * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
3032          * number of 512-byte sectors of the file.
3033          */
3034
3035         if (!has_huge_files) {
3036                 /*
3037                  * !has_huge_files or implies that the inode i_block field
3038                  * represents total file blocks in 2^32 512-byte sectors ==
3039                  * size of vfs inode i_blocks * 8
3040                  */
3041                 upper_limit = (1LL << 32) - 1;
3042
3043                 /* total blocks in file system block size */
3044                 upper_limit >>= (bits - 9);
3045
3046         } else {
3047                 /*
3048                  * We use 48 bit ext4_inode i_blocks
3049                  * With EXT4_HUGE_FILE_FL set the i_blocks
3050                  * represent total number of blocks in
3051                  * file system block size
3052                  */
3053                 upper_limit = (1LL << 48) - 1;
3054
3055         }
3056
3057         /* indirect blocks */
3058         meta_blocks = 1;
3059         /* double indirect blocks */
3060         meta_blocks += 1 + (1LL << (bits-2));
3061         /* tripple indirect blocks */
3062         meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
3063
3064         upper_limit -= meta_blocks;
3065         upper_limit <<= bits;
3066
3067         res += 1LL << (bits-2);
3068         res += 1LL << (2*(bits-2));
3069         res += 1LL << (3*(bits-2));
3070         res <<= bits;
3071         if (res > upper_limit)
3072                 res = upper_limit;
3073
3074         if (res > MAX_LFS_FILESIZE)
3075                 res = MAX_LFS_FILESIZE;
3076
3077         return res;
3078 }
3079
3080 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
3081                                    ext4_fsblk_t logical_sb_block, int nr)
3082 {
3083         struct ext4_sb_info *sbi = EXT4_SB(sb);
3084         ext4_group_t bg, first_meta_bg;
3085         int has_super = 0;
3086
3087         first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
3088
3089         if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
3090                 return logical_sb_block + nr + 1;
3091         bg = sbi->s_desc_per_block * nr;
3092         if (ext4_bg_has_super(sb, bg))
3093                 has_super = 1;
3094
3095         /*
3096          * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
3097          * block 2, not 1.  If s_first_data_block == 0 (bigalloc is enabled
3098          * on modern mke2fs or blksize > 1k on older mke2fs) then we must
3099          * compensate.
3100          */
3101         if (sb->s_blocksize == 1024 && nr == 0 &&
3102             le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
3103                 has_super++;
3104
3105         return (has_super + ext4_group_first_block_no(sb, bg));
3106 }
3107
3108 /**
3109  * ext4_get_stripe_size: Get the stripe size.
3110  * @sbi: In memory super block info
3111  *
3112  * If we have specified it via mount option, then
3113  * use the mount option value. If the value specified at mount time is
3114  * greater than the blocks per group use the super block value.
3115  * If the super block value is greater than blocks per group return 0.
3116  * Allocator needs it be less than blocks per group.
3117  *
3118  */
3119 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3120 {
3121         unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3122         unsigned long stripe_width =
3123                         le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3124         int ret;
3125
3126         if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3127                 ret = sbi->s_stripe;
3128         else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3129                 ret = stripe_width;
3130         else if (stride && stride <= sbi->s_blocks_per_group)
3131                 ret = stride;
3132         else
3133                 ret = 0;
3134
3135         /*
3136          * If the stripe width is 1, this makes no sense and
3137          * we set it to 0 to turn off stripe handling code.
3138          */
3139         if (ret <= 1)
3140                 ret = 0;
3141
3142         return ret;
3143 }
3144
3145 /*
3146  * Check whether this filesystem can be mounted based on
3147  * the features present and the RDONLY/RDWR mount requested.
3148  * Returns 1 if this filesystem can be mounted as requested,
3149  * 0 if it cannot be.
3150  */
3151 int ext4_feature_set_ok(struct super_block *sb, int readonly)
3152 {
3153         if (ext4_has_unknown_ext4_incompat_features(sb)) {
3154                 ext4_msg(sb, KERN_ERR,
3155                         "Couldn't mount because of "
3156                         "unsupported optional features (%x)",
3157                         (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3158                         ~EXT4_FEATURE_INCOMPAT_SUPP));
3159                 return 0;
3160         }
3161
3162 #ifndef CONFIG_UNICODE
3163         if (ext4_has_feature_casefold(sb)) {
3164                 ext4_msg(sb, KERN_ERR,
3165                          "Filesystem with casefold feature cannot be "
3166                          "mounted without CONFIG_UNICODE");
3167                 return 0;
3168         }
3169 #endif
3170
3171         if (readonly)
3172                 return 1;
3173
3174         if (ext4_has_feature_readonly(sb)) {
3175                 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3176                 sb->s_flags |= SB_RDONLY;
3177                 return 1;
3178         }
3179
3180         /* Check that feature set is OK for a read-write mount */
3181         if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3182                 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3183                          "unsupported optional features (%x)",
3184                          (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3185                                 ~EXT4_FEATURE_RO_COMPAT_SUPP));
3186                 return 0;
3187         }
3188         if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3189                 ext4_msg(sb, KERN_ERR,
3190                          "Can't support bigalloc feature without "
3191                          "extents feature\n");
3192                 return 0;
3193         }
3194
3195 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3196         if (!readonly && (ext4_has_feature_quota(sb) ||
3197                           ext4_has_feature_project(sb))) {
3198                 ext4_msg(sb, KERN_ERR,
3199                          "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
3200                 return 0;
3201         }
3202 #endif  /* CONFIG_QUOTA */
3203         return 1;
3204 }
3205
3206 /*
3207  * This function is called once a day if we have errors logged
3208  * on the file system
3209  */
3210 static void print_daily_error_info(struct timer_list *t)
3211 {
3212         struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
3213         struct super_block *sb = sbi->s_sb;
3214         struct ext4_super_block *es = sbi->s_es;
3215
3216         if (es->s_error_count)
3217                 /* fsck newer than v1.41.13 is needed to clean this condition. */
3218                 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3219                          le32_to_cpu(es->s_error_count));
3220         if (es->s_first_error_time) {
3221                 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3222                        sb->s_id,
3223                        ext4_get_tstamp(es, s_first_error_time),
3224                        (int) sizeof(es->s_first_error_func),
3225                        es->s_first_error_func,
3226                        le32_to_cpu(es->s_first_error_line));
3227                 if (es->s_first_error_ino)
3228                         printk(KERN_CONT ": inode %u",
3229                                le32_to_cpu(es->s_first_error_ino));
3230                 if (es->s_first_error_block)
3231                         printk(KERN_CONT ": block %llu", (unsigned long long)
3232                                le64_to_cpu(es->s_first_error_block));
3233                 printk(KERN_CONT "\n");
3234         }
3235         if (es->s_last_error_time) {
3236                 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3237                        sb->s_id,
3238                        ext4_get_tstamp(es, s_last_error_time),
3239                        (int) sizeof(es->s_last_error_func),
3240                        es->s_last_error_func,
3241                        le32_to_cpu(es->s_last_error_line));
3242                 if (es->s_last_error_ino)
3243                         printk(KERN_CONT ": inode %u",
3244                                le32_to_cpu(es->s_last_error_ino));
3245                 if (es->s_last_error_block)
3246                         printk(KERN_CONT ": block %llu", (unsigned long long)
3247                                le64_to_cpu(es->s_last_error_block));
3248                 printk(KERN_CONT "\n");
3249         }
3250         mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
3251 }
3252
3253 /* Find next suitable group and run ext4_init_inode_table */
3254 static int ext4_run_li_request(struct ext4_li_request *elr)
3255 {
3256         struct ext4_group_desc *gdp = NULL;
3257         struct super_block *sb = elr->lr_super;
3258         ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3259         ext4_group_t group = elr->lr_next_group;
3260         unsigned long timeout = 0;
3261         unsigned int prefetch_ios = 0;
3262         int ret = 0;
3263
3264         if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) {
3265                 elr->lr_next_group = ext4_mb_prefetch(sb, group,
3266                                 EXT4_SB(sb)->s_mb_prefetch, &prefetch_ios);
3267                 if (prefetch_ios)
3268                         ext4_mb_prefetch_fini(sb, elr->lr_next_group,
3269                                               prefetch_ios);
3270                 trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group,
3271                                             prefetch_ios);
3272                 if (group >= elr->lr_next_group) {
3273                         ret = 1;
3274                         if (elr->lr_first_not_zeroed != ngroups &&
3275                             !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) {
3276                                 elr->lr_next_group = elr->lr_first_not_zeroed;
3277                                 elr->lr_mode = EXT4_LI_MODE_ITABLE;
3278                                 ret = 0;
3279                         }
3280                 }
3281                 return ret;
3282         }
3283
3284         for (; group < ngroups; group++) {
3285                 gdp = ext4_get_group_desc(sb, group, NULL);
3286                 if (!gdp) {
3287                         ret = 1;
3288                         break;
3289                 }
3290
3291                 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3292                         break;
3293         }
3294
3295         if (group >= ngroups)
3296                 ret = 1;
3297
3298         if (!ret) {
3299                 timeout = jiffies;
3300                 ret = ext4_init_inode_table(sb, group,
3301                                             elr->lr_timeout ? 0 : 1);
3302                 trace_ext4_lazy_itable_init(sb, group);
3303                 if (elr->lr_timeout == 0) {
3304                         timeout = (jiffies - timeout) *
3305                                 EXT4_SB(elr->lr_super)->s_li_wait_mult;
3306                         elr->lr_timeout = timeout;
3307                 }
3308                 elr->lr_next_sched = jiffies + elr->lr_timeout;
3309                 elr->lr_next_group = group + 1;
3310         }
3311         return ret;
3312 }
3313
3314 /*
3315  * Remove lr_request from the list_request and free the
3316  * request structure. Should be called with li_list_mtx held
3317  */
3318 static void ext4_remove_li_request(struct ext4_li_request *elr)
3319 {
3320         if (!elr)
3321                 return;
3322
3323         list_del(&elr->lr_request);
3324         EXT4_SB(elr->lr_super)->s_li_request = NULL;
3325         kfree(elr);
3326 }
3327
3328 static void ext4_unregister_li_request(struct super_block *sb)
3329 {
3330         mutex_lock(&ext4_li_mtx);
3331         if (!ext4_li_info) {
3332                 mutex_unlock(&ext4_li_mtx);
3333                 return;
3334         }
3335
3336         mutex_lock(&ext4_li_info->li_list_mtx);
3337         ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3338         mutex_unlock(&ext4_li_info->li_list_mtx);
3339         mutex_unlock(&ext4_li_mtx);
3340 }
3341
3342 static struct task_struct *ext4_lazyinit_task;
3343
3344 /*
3345  * This is the function where ext4lazyinit thread lives. It walks
3346  * through the request list searching for next scheduled filesystem.
3347  * When such a fs is found, run the lazy initialization request
3348  * (ext4_rn_li_request) and keep track of the time spend in this
3349  * function. Based on that time we compute next schedule time of
3350  * the request. When walking through the list is complete, compute
3351  * next waking time and put itself into sleep.
3352  */
3353 static int ext4_lazyinit_thread(void *arg)
3354 {
3355         struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
3356         struct list_head *pos, *n;
3357         struct ext4_li_request *elr;
3358         unsigned long next_wakeup, cur;
3359
3360         BUG_ON(NULL == eli);
3361
3362 cont_thread:
3363         while (true) {
3364                 next_wakeup = MAX_JIFFY_OFFSET;
3365
3366                 mutex_lock(&eli->li_list_mtx);
3367                 if (list_empty(&eli->li_request_list)) {
3368                         mutex_unlock(&eli->li_list_mtx);
3369                         goto exit_thread;
3370                 }
3371                 list_for_each_safe(pos, n, &eli->li_request_list) {
3372                         int err = 0;
3373                         int progress = 0;
3374                         elr = list_entry(pos, struct ext4_li_request,
3375                                          lr_request);
3376
3377                         if (time_before(jiffies, elr->lr_next_sched)) {
3378                                 if (time_before(elr->lr_next_sched, next_wakeup))
3379                                         next_wakeup = elr->lr_next_sched;
3380                                 continue;
3381                         }
3382                         if (down_read_trylock(&elr->lr_super->s_umount)) {
3383                                 if (sb_start_write_trylock(elr->lr_super)) {
3384                                         progress = 1;
3385                                         /*
3386                                          * We hold sb->s_umount, sb can not
3387                                          * be removed from the list, it is
3388                                          * now safe to drop li_list_mtx
3389                                          */
3390                                         mutex_unlock(&eli->li_list_mtx);
3391                                         err = ext4_run_li_request(elr);
3392                                         sb_end_write(elr->lr_super);
3393                                         mutex_lock(&eli->li_list_mtx);
3394                                         n = pos->next;
3395                                 }
3396                                 up_read((&elr->lr_super->s_umount));
3397                         }
3398                         /* error, remove the lazy_init job */
3399                         if (err) {
3400                                 ext4_remove_li_request(elr);
3401                                 continue;
3402                         }
3403                         if (!progress) {
3404                                 elr->lr_next_sched = jiffies +
3405                                         (prandom_u32()
3406                                          % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3407                         }
3408                         if (time_before(elr->lr_next_sched, next_wakeup))
3409                                 next_wakeup = elr->lr_next_sched;
3410                 }
3411                 mutex_unlock(&eli->li_list_mtx);
3412
3413                 try_to_freeze();
3414
3415                 cur = jiffies;
3416                 if ((time_after_eq(cur, next_wakeup)) ||
3417                     (MAX_JIFFY_OFFSET == next_wakeup)) {
3418                         cond_resched();
3419                         continue;
3420                 }
3421
3422                 schedule_timeout_interruptible(next_wakeup - cur);
3423
3424                 if (kthread_should_stop()) {
3425                         ext4_clear_request_list();
3426                         goto exit_thread;
3427                 }
3428         }
3429
3430 exit_thread:
3431         /*
3432          * It looks like the request list is empty, but we need
3433          * to check it under the li_list_mtx lock, to prevent any
3434          * additions into it, and of course we should lock ext4_li_mtx
3435          * to atomically free the list and ext4_li_info, because at
3436          * this point another ext4 filesystem could be registering
3437          * new one.
3438          */
3439         mutex_lock(&ext4_li_mtx);
3440         mutex_lock(&eli->li_list_mtx);
3441         if (!list_empty(&eli->li_request_list)) {
3442                 mutex_unlock(&eli->li_list_mtx);
3443                 mutex_unlock(&ext4_li_mtx);
3444                 goto cont_thread;
3445         }
3446         mutex_unlock(&eli->li_list_mtx);
3447         kfree(ext4_li_info);
3448         ext4_li_info = NULL;
3449         mutex_unlock(&ext4_li_mtx);
3450
3451         return 0;
3452 }
3453
3454 static void ext4_clear_request_list(void)
3455 {
3456         struct list_head *pos, *n;
3457         struct ext4_li_request *elr;
3458
3459         mutex_lock(&ext4_li_info->li_list_mtx);
3460         list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3461                 elr = list_entry(pos, struct ext4_li_request,
3462                                  lr_request);
3463                 ext4_remove_li_request(elr);
3464         }
3465         mutex_unlock(&ext4_li_info->li_list_mtx);
3466 }
3467
3468 static int ext4_run_lazyinit_thread(void)
3469 {
3470         ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3471                                          ext4_li_info, "ext4lazyinit");
3472         if (IS_ERR(ext4_lazyinit_task)) {
3473                 int err = PTR_ERR(ext4_lazyinit_task);
3474                 ext4_clear_request_list();
3475                 kfree(ext4_li_info);
3476                 ext4_li_info = NULL;
3477                 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3478                                  "initialization thread\n",
3479                                  err);
3480                 return err;
3481         }
3482         ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3483         return 0;
3484 }
3485
3486 /*
3487  * Check whether it make sense to run itable init. thread or not.
3488  * If there is at least one uninitialized inode table, return
3489  * corresponding group number, else the loop goes through all
3490  * groups and return total number of groups.
3491  */
3492 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3493 {
3494         ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3495         struct ext4_group_desc *gdp = NULL;
3496
3497         if (!ext4_has_group_desc_csum(sb))
3498                 return ngroups;
3499
3500         for (group = 0; group < ngroups; group++) {
3501                 gdp = ext4_get_group_desc(sb, group, NULL);
3502                 if (!gdp)
3503                         continue;
3504
3505                 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3506                         break;
3507         }
3508
3509         return group;
3510 }
3511
3512 static int ext4_li_info_new(void)
3513 {
3514         struct ext4_lazy_init *eli = NULL;
3515
3516         eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3517         if (!eli)
3518                 return -ENOMEM;
3519
3520         INIT_LIST_HEAD(&eli->li_request_list);
3521         mutex_init(&eli->li_list_mtx);
3522
3523         eli->li_state |= EXT4_LAZYINIT_QUIT;
3524
3525         ext4_li_info = eli;
3526
3527         return 0;
3528 }
3529
3530 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3531                                             ext4_group_t start)
3532 {
3533         struct ext4_li_request *elr;
3534
3535         elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3536         if (!elr)
3537                 return NULL;
3538
3539         elr->lr_super = sb;
3540         elr->lr_first_not_zeroed = start;
3541         if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) {
3542                 elr->lr_mode = EXT4_LI_MODE_ITABLE;
3543                 elr->lr_next_group = start;
3544         } else {
3545                 elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP;
3546         }
3547
3548         /*
3549          * Randomize first schedule time of the request to
3550          * spread the inode table initialization requests
3551          * better.
3552          */
3553         elr->lr_next_sched = jiffies + (prandom_u32() %
3554                                 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3555         return elr;
3556 }
3557
3558 int ext4_register_li_request(struct super_block *sb,
3559                              ext4_group_t first_not_zeroed)
3560 {
3561         struct ext4_sb_info *sbi = EXT4_SB(sb);
3562         struct ext4_li_request *elr = NULL;
3563         ext4_group_t ngroups = sbi->s_groups_count;
3564         int ret = 0;
3565
3566         mutex_lock(&ext4_li_mtx);
3567         if (sbi->s_li_request != NULL) {
3568                 /*
3569                  * Reset timeout so it can be computed again, because
3570                  * s_li_wait_mult might have changed.
3571                  */
3572                 sbi->s_li_request->lr_timeout = 0;
3573                 goto out;
3574         }
3575
3576         if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) &&
3577             (first_not_zeroed == ngroups || sb_rdonly(sb) ||
3578              !test_opt(sb, INIT_INODE_TABLE)))
3579                 goto out;
3580
3581         elr = ext4_li_request_new(sb, first_not_zeroed);
3582         if (!elr) {
3583                 ret = -ENOMEM;
3584                 goto out;
3585         }
3586
3587         if (NULL == ext4_li_info) {
3588                 ret = ext4_li_info_new();
3589                 if (ret)
3590                         goto out;
3591         }
3592
3593         mutex_lock(&ext4_li_info->li_list_mtx);
3594         list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3595         mutex_unlock(&ext4_li_info->li_list_mtx);
3596
3597         sbi->s_li_request = elr;
3598         /*
3599          * set elr to NULL here since it has been inserted to
3600          * the request_list and the removal and free of it is
3601          * handled by ext4_clear_request_list from now on.
3602          */
3603         elr = NULL;
3604
3605         if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3606                 ret = ext4_run_lazyinit_thread();
3607                 if (ret)
3608                         goto out;
3609         }
3610 out:
3611         mutex_unlock(&ext4_li_mtx);
3612         if (ret)
3613                 kfree(elr);
3614         return ret;
3615 }
3616
3617 /*
3618  * We do not need to lock anything since this is called on
3619  * module unload.
3620  */
3621 static void ext4_destroy_lazyinit_thread(void)
3622 {
3623         /*
3624          * If thread exited earlier
3625          * there's nothing to be done.
3626          */
3627         if (!ext4_li_info || !ext4_lazyinit_task)
3628                 return;
3629
3630         kthread_stop(ext4_lazyinit_task);
3631 }
3632
3633 static int set_journal_csum_feature_set(struct super_block *sb)
3634 {
3635         int ret = 1;
3636         int compat, incompat;
3637         struct ext4_sb_info *sbi = EXT4_SB(sb);
3638
3639         if (ext4_has_metadata_csum(sb)) {
3640                 /* journal checksum v3 */
3641                 compat = 0;
3642                 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3643         } else {
3644                 /* journal checksum v1 */
3645                 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3646                 incompat = 0;
3647         }
3648
3649         jbd2_journal_clear_features(sbi->s_journal,
3650                         JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3651                         JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3652                         JBD2_FEATURE_INCOMPAT_CSUM_V2);
3653         if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3654                 ret = jbd2_journal_set_features(sbi->s_journal,
3655                                 compat, 0,
3656                                 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3657                                 incompat);
3658         } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3659                 ret = jbd2_journal_set_features(sbi->s_journal,
3660                                 compat, 0,
3661                                 incompat);
3662                 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3663                                 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3664         } else {
3665                 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3666                                 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3667         }
3668
3669         return ret;
3670 }
3671
3672 /*
3673  * Note: calculating the overhead so we can be compatible with
3674  * historical BSD practice is quite difficult in the face of
3675  * clusters/bigalloc.  This is because multiple metadata blocks from
3676  * different block group can end up in the same allocation cluster.
3677  * Calculating the exact overhead in the face of clustered allocation
3678  * requires either O(all block bitmaps) in memory or O(number of block
3679  * groups**2) in time.  We will still calculate the superblock for
3680  * older file systems --- and if we come across with a bigalloc file
3681  * system with zero in s_overhead_clusters the estimate will be close to
3682  * correct especially for very large cluster sizes --- but for newer
3683  * file systems, it's better to calculate this figure once at mkfs
3684  * time, and store it in the superblock.  If the superblock value is
3685  * present (even for non-bigalloc file systems), we will use it.
3686  */
3687 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3688                           char *buf)
3689 {
3690         struct ext4_sb_info     *sbi = EXT4_SB(sb);
3691         struct ext4_group_desc  *gdp;
3692         ext4_fsblk_t            first_block, last_block, b;
3693         ext4_group_t            i, ngroups = ext4_get_groups_count(sb);
3694         int                     s, j, count = 0;
3695
3696         if (!ext4_has_feature_bigalloc(sb))
3697                 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3698                         sbi->s_itb_per_group + 2);
3699
3700         first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3701                 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3702         last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3703         for (i = 0; i < ngroups; i++) {
3704                 gdp = ext4_get_group_desc(sb, i, NULL);
3705                 b = ext4_block_bitmap(sb, gdp);
3706                 if (b >= first_block && b <= last_block) {
3707                         ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3708                         count++;
3709                 }
3710                 b = ext4_inode_bitmap(sb, gdp);
3711                 if (b >= first_block && b <= last_block) {
3712                         ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3713                         count++;
3714                 }
3715                 b = ext4_inode_table(sb, gdp);
3716                 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3717                         for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3718                                 int c = EXT4_B2C(sbi, b - first_block);
3719                                 ext4_set_bit(c, buf);
3720                                 count++;
3721                         }
3722                 if (i != grp)
3723                         continue;
3724                 s = 0;
3725                 if (ext4_bg_has_super(sb, grp)) {
3726                         ext4_set_bit(s++, buf);
3727                         count++;
3728                 }
3729                 j = ext4_bg_num_gdb(sb, grp);
3730                 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3731                         ext4_error(sb, "Invalid number of block group "
3732                                    "descriptor blocks: %d", j);
3733                         j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3734                 }
3735                 count += j;
3736                 for (; j > 0; j--)
3737                         ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3738         }
3739         if (!count)
3740                 return 0;
3741         return EXT4_CLUSTERS_PER_GROUP(sb) -
3742                 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3743 }
3744
3745 /*
3746  * Compute the overhead and stash it in sbi->s_overhead
3747  */
3748 int ext4_calculate_overhead(struct super_block *sb)
3749 {
3750         struct ext4_sb_info *sbi = EXT4_SB(sb);
3751         struct ext4_super_block *es = sbi->s_es;
3752         struct inode *j_inode;
3753         unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3754         ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3755         ext4_fsblk_t overhead = 0;
3756         char *buf = (char *) get_zeroed_page(GFP_NOFS);
3757
3758         if (!buf)
3759                 return -ENOMEM;
3760
3761         /*
3762          * Compute the overhead (FS structures).  This is constant
3763          * for a given filesystem unless the number of block groups
3764          * changes so we cache the previous value until it does.
3765          */
3766
3767         /*
3768          * All of the blocks before first_data_block are overhead
3769          */
3770         overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3771
3772         /*
3773          * Add the overhead found in each block group
3774          */
3775         for (i = 0; i < ngroups; i++) {
3776                 int blks;
3777
3778                 blks = count_overhead(sb, i, buf);
3779                 overhead += blks;
3780                 if (blks)
3781                         memset(buf, 0, PAGE_SIZE);
3782                 cond_resched();
3783         }
3784
3785         /*
3786          * Add the internal journal blocks whether the journal has been
3787          * loaded or not
3788          */
3789         if (sbi->s_journal && !sbi->s_journal_bdev)
3790                 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len);
3791         else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
3792                 /* j_inum for internal journal is non-zero */
3793                 j_inode = ext4_get_journal_inode(sb, j_inum);
3794                 if (j_inode) {
3795                         j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3796                         overhead += EXT4_NUM_B2C(sbi, j_blocks);
3797                         iput(j_inode);
3798                 } else {
3799                         ext4_msg(sb, KERN_ERR, "can't get journal size");
3800                 }
3801         }
3802         sbi->s_overhead = overhead;
3803         smp_wmb();
3804         free_page((unsigned long) buf);
3805         return 0;
3806 }
3807
3808 static void ext4_set_resv_clusters(struct super_block *sb)
3809 {
3810         ext4_fsblk_t resv_clusters;
3811         struct ext4_sb_info *sbi = EXT4_SB(sb);
3812
3813         /*
3814          * There's no need to reserve anything when we aren't using extents.
3815          * The space estimates are exact, there are no unwritten extents,
3816          * hole punching doesn't need new metadata... This is needed especially
3817          * to keep ext2/3 backward compatibility.
3818          */
3819         if (!ext4_has_feature_extents(sb))
3820                 return;
3821         /*
3822          * By default we reserve 2% or 4096 clusters, whichever is smaller.
3823          * This should cover the situations where we can not afford to run
3824          * out of space like for example punch hole, or converting
3825          * unwritten extents in delalloc path. In most cases such
3826          * allocation would require 1, or 2 blocks, higher numbers are
3827          * very rare.
3828          */
3829         resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3830                          sbi->s_cluster_bits);
3831
3832         do_div(resv_clusters, 50);
3833         resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3834
3835         atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3836 }
3837
3838 static const char *ext4_quota_mode(struct super_block *sb)
3839 {
3840 #ifdef CONFIG_QUOTA
3841         if (!ext4_quota_capable(sb))
3842                 return "none";
3843
3844         if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb))
3845                 return "journalled";
3846         else
3847                 return "writeback";
3848 #else
3849         return "disabled";
3850 #endif
3851 }
3852
3853 static void ext4_setup_csum_trigger(struct super_block *sb,
3854                                     enum ext4_journal_trigger_type type,
3855                                     void (*trigger)(
3856                                         struct jbd2_buffer_trigger_type *type,
3857                                         struct buffer_head *bh,
3858                                         void *mapped_data,
3859                                         size_t size))
3860 {
3861         struct ext4_sb_info *sbi = EXT4_SB(sb);
3862
3863         sbi->s_journal_triggers[type].sb = sb;
3864         sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger;
3865 }
3866
3867 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3868 {
3869         struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev);
3870         char *orig_data = kstrdup(data, GFP_KERNEL);
3871         struct buffer_head *bh, **group_desc;
3872         struct ext4_super_block *es = NULL;
3873         struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3874         struct flex_groups **flex_groups;
3875         ext4_fsblk_t block;
3876         ext4_fsblk_t sb_block = get_sb_block(&data);
3877         ext4_fsblk_t logical_sb_block;
3878         unsigned long offset = 0;
3879         unsigned long def_mount_opts;
3880         struct inode *root;
3881         const char *descr;
3882         int ret = -ENOMEM;
3883         int blocksize, clustersize;
3884         unsigned int db_count;
3885         unsigned int i;
3886         int needs_recovery, has_huge_files;
3887         __u64 blocks_count;
3888         int err = 0;
3889         ext4_group_t first_not_zeroed;
3890         struct ext4_parsed_options parsed_opts;
3891
3892         /* Set defaults for the variables that will be set during parsing */
3893         parsed_opts.journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3894         parsed_opts.journal_devnum = 0;
3895         parsed_opts.mb_optimize_scan = DEFAULT_MB_OPTIMIZE_SCAN;
3896
3897         if ((data && !orig_data) || !sbi)
3898                 goto out_free_base;
3899
3900         sbi->s_daxdev = dax_dev;
3901         sbi->s_blockgroup_lock =
3902                 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3903         if (!sbi->s_blockgroup_lock)
3904                 goto out_free_base;
3905
3906         sb->s_fs_info = sbi;
3907         sbi->s_sb = sb;
3908         sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3909         sbi->s_sb_block = sb_block;
3910         sbi->s_sectors_written_start =
3911                 part_stat_read(sb->s_bdev, sectors[STAT_WRITE]);
3912
3913         /* Cleanup superblock name */
3914         strreplace(sb->s_id, '/', '!');
3915
3916         /* -EINVAL is default */
3917         ret = -EINVAL;
3918         blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3919         if (!blocksize) {
3920                 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3921                 goto out_fail;
3922         }
3923
3924         /*
3925          * The ext4 superblock will not be buffer aligned for other than 1kB
3926          * block sizes.  We need to calculate the offset from buffer start.
3927          */
3928         if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3929                 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3930                 offset = do_div(logical_sb_block, blocksize);
3931         } else {
3932                 logical_sb_block = sb_block;
3933         }
3934
3935         bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
3936         if (IS_ERR(bh)) {
3937                 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3938                 ret = PTR_ERR(bh);
3939                 goto out_fail;
3940         }
3941         /*
3942          * Note: s_es must be initialized as soon as possible because
3943          *       some ext4 macro-instructions depend on its value
3944          */
3945         es = (struct ext4_super_block *) (bh->b_data + offset);
3946         sbi->s_es = es;
3947         sb->s_magic = le16_to_cpu(es->s_magic);
3948         if (sb->s_magic != EXT4_SUPER_MAGIC)
3949                 goto cantfind_ext4;
3950         sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3951
3952         /* Warn if metadata_csum and gdt_csum are both set. */
3953         if (ext4_has_feature_metadata_csum(sb) &&
3954             ext4_has_feature_gdt_csum(sb))
3955                 ext4_warning(sb, "metadata_csum and uninit_bg are "
3956                              "redundant flags; please run fsck.");
3957
3958         /* Check for a known checksum algorithm */
3959         if (!ext4_verify_csum_type(sb, es)) {
3960                 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3961                          "unknown checksum algorithm.");
3962                 silent = 1;
3963                 goto cantfind_ext4;
3964         }
3965         ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE,
3966                                 ext4_orphan_file_block_trigger);
3967
3968         /* Load the checksum driver */
3969         sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3970         if (IS_ERR(sbi->s_chksum_driver)) {
3971                 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3972                 ret = PTR_ERR(sbi->s_chksum_driver);
3973                 sbi->s_chksum_driver = NULL;
3974                 goto failed_mount;
3975         }
3976
3977         /* Check superblock checksum */
3978         if (!ext4_superblock_csum_verify(sb, es)) {
3979                 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3980                          "invalid superblock checksum.  Run e2fsck?");
3981                 silent = 1;
3982                 ret = -EFSBADCRC;
3983                 goto cantfind_ext4;
3984         }
3985
3986         /* Precompute checksum seed for all metadata */
3987         if (ext4_has_feature_csum_seed(sb))
3988                 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
3989         else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
3990                 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3991                                                sizeof(es->s_uuid));
3992
3993         /* Set defaults before we parse the mount options */
3994         def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3995         set_opt(sb, INIT_INODE_TABLE);
3996         if (def_mount_opts & EXT4_DEFM_DEBUG)
3997                 set_opt(sb, DEBUG);
3998         if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3999                 set_opt(sb, GRPID);
4000         if (def_mount_opts & EXT4_DEFM_UID16)
4001                 set_opt(sb, NO_UID32);
4002         /* xattr user namespace & acls are now defaulted on */
4003         set_opt(sb, XATTR_USER);
4004 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4005         set_opt(sb, POSIX_ACL);
4006 #endif
4007         if (ext4_has_feature_fast_commit(sb))
4008                 set_opt2(sb, JOURNAL_FAST_COMMIT);
4009         /* don't forget to enable journal_csum when metadata_csum is enabled. */
4010         if (ext4_has_metadata_csum(sb))
4011                 set_opt(sb, JOURNAL_CHECKSUM);
4012
4013         if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
4014                 set_opt(sb, JOURNAL_DATA);
4015         else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
4016                 set_opt(sb, ORDERED_DATA);
4017         else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
4018                 set_opt(sb, WRITEBACK_DATA);
4019
4020         if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
4021                 set_opt(sb, ERRORS_PANIC);
4022         else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
4023                 set_opt(sb, ERRORS_CONT);
4024         else
4025                 set_opt(sb, ERRORS_RO);
4026         /* block_validity enabled by default; disable with noblock_validity */
4027         set_opt(sb, BLOCK_VALIDITY);
4028         if (def_mount_opts & EXT4_DEFM_DISCARD)
4029                 set_opt(sb, DISCARD);
4030
4031         sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
4032         sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
4033         sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
4034         sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
4035         sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
4036
4037         if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
4038                 set_opt(sb, BARRIER);
4039
4040         /*
4041          * enable delayed allocation by default
4042          * Use -o nodelalloc to turn it off
4043          */
4044         if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
4045             ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
4046                 set_opt(sb, DELALLOC);
4047
4048         /*
4049          * set default s_li_wait_mult for lazyinit, for the case there is
4050          * no mount option specified.
4051          */
4052         sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
4053
4054         if (le32_to_cpu(es->s_log_block_size) >
4055             (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4056                 ext4_msg(sb, KERN_ERR,
4057                          "Invalid log block size: %u",
4058                          le32_to_cpu(es->s_log_block_size));
4059                 goto failed_mount;
4060         }
4061         if (le32_to_cpu(es->s_log_cluster_size) >
4062             (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4063                 ext4_msg(sb, KERN_ERR,
4064                          "Invalid log cluster size: %u",
4065                          le32_to_cpu(es->s_log_cluster_size));
4066                 goto failed_mount;
4067         }
4068
4069         blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
4070
4071         if (blocksize == PAGE_SIZE)
4072                 set_opt(sb, DIOREAD_NOLOCK);
4073
4074         if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4075                 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4076                 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4077         } else {
4078                 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4079                 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4080                 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4081                         ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4082                                  sbi->s_first_ino);
4083                         goto failed_mount;
4084                 }
4085                 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4086                     (!is_power_of_2(sbi->s_inode_size)) ||
4087                     (sbi->s_inode_size > blocksize)) {
4088                         ext4_msg(sb, KERN_ERR,
4089                                "unsupported inode size: %d",
4090                                sbi->s_inode_size);
4091                         ext4_msg(sb, KERN_ERR, "blocksize: %d", blocksize);
4092                         goto failed_mount;
4093                 }
4094                 /*
4095                  * i_atime_extra is the last extra field available for
4096                  * [acm]times in struct ext4_inode. Checking for that
4097                  * field should suffice to ensure we have extra space
4098                  * for all three.
4099                  */
4100                 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
4101                         sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
4102                         sb->s_time_gran = 1;
4103                         sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
4104                 } else {
4105                         sb->s_time_gran = NSEC_PER_SEC;
4106                         sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
4107                 }
4108                 sb->s_time_min = EXT4_TIMESTAMP_MIN;
4109         }
4110         if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4111                 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4112                         EXT4_GOOD_OLD_INODE_SIZE;
4113                 if (ext4_has_feature_extra_isize(sb)) {
4114                         unsigned v, max = (sbi->s_inode_size -
4115                                            EXT4_GOOD_OLD_INODE_SIZE);
4116
4117                         v = le16_to_cpu(es->s_want_extra_isize);
4118                         if (v > max) {
4119                                 ext4_msg(sb, KERN_ERR,
4120                                          "bad s_want_extra_isize: %d", v);
4121                                 goto failed_mount;
4122                         }
4123                         if (sbi->s_want_extra_isize < v)
4124                                 sbi->s_want_extra_isize = v;
4125
4126                         v = le16_to_cpu(es->s_min_extra_isize);
4127                         if (v > max) {
4128                                 ext4_msg(sb, KERN_ERR,
4129                                          "bad s_min_extra_isize: %d", v);
4130                                 goto failed_mount;
4131                         }
4132                         if (sbi->s_want_extra_isize < v)
4133                                 sbi->s_want_extra_isize = v;
4134                 }
4135         }
4136
4137         if (sbi->s_es->s_mount_opts[0]) {
4138                 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
4139                                               sizeof(sbi->s_es->s_mount_opts),
4140                                               GFP_KERNEL);
4141                 if (!s_mount_opts)
4142                         goto failed_mount;
4143                 if (!parse_options(s_mount_opts, sb, &parsed_opts, 0)) {
4144                         ext4_msg(sb, KERN_WARNING,
4145                                  "failed to parse options in superblock: %s",
4146                                  s_mount_opts);
4147                 }
4148                 kfree(s_mount_opts);
4149         }
4150         sbi->s_def_mount_opt = sbi->s_mount_opt;
4151         if (!parse_options((char *) data, sb, &parsed_opts, 0))
4152                 goto failed_mount;
4153
4154 #ifdef CONFIG_UNICODE
4155         if (ext4_has_feature_casefold(sb) && !sb->s_encoding) {
4156                 const struct ext4_sb_encodings *encoding_info;
4157                 struct unicode_map *encoding;
4158                 __u16 encoding_flags;
4159
4160                 if (ext4_sb_read_encoding(es, &encoding_info,
4161                                           &encoding_flags)) {
4162                         ext4_msg(sb, KERN_ERR,
4163                                  "Encoding requested by superblock is unknown");
4164                         goto failed_mount;
4165                 }
4166
4167                 encoding = utf8_load(encoding_info->version);
4168                 if (IS_ERR(encoding)) {
4169                         ext4_msg(sb, KERN_ERR,
4170                                  "can't mount with superblock charset: %s-%s "
4171                                  "not supported by the kernel. flags: 0x%x.",
4172                                  encoding_info->name, encoding_info->version,
4173                                  encoding_flags);
4174                         goto failed_mount;
4175                 }
4176                 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4177                          "%s-%s with flags 0x%hx", encoding_info->name,
4178                          encoding_info->version?:"\b", encoding_flags);
4179
4180                 sb->s_encoding = encoding;
4181                 sb->s_encoding_flags = encoding_flags;
4182         }
4183 #endif
4184
4185         if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4186                 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with data=journal disables delayed allocation, dioread_nolock, O_DIRECT and fast_commit support!\n");
4187                 /* can't mount with both data=journal and dioread_nolock. */
4188                 clear_opt(sb, DIOREAD_NOLOCK);
4189                 clear_opt2(sb, JOURNAL_FAST_COMMIT);
4190                 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4191                         ext4_msg(sb, KERN_ERR, "can't mount with "
4192                                  "both data=journal and delalloc");
4193                         goto failed_mount;
4194                 }
4195                 if (test_opt(sb, DAX_ALWAYS)) {
4196                         ext4_msg(sb, KERN_ERR, "can't mount with "
4197                                  "both data=journal and dax");
4198                         goto failed_mount;
4199                 }
4200                 if (ext4_has_feature_encrypt(sb)) {
4201                         ext4_msg(sb, KERN_WARNING,
4202                                  "encrypted files will use data=ordered "
4203                                  "instead of data journaling mode");
4204                 }
4205                 if (test_opt(sb, DELALLOC))
4206                         clear_opt(sb, DELALLOC);
4207         } else {
4208                 sb->s_iflags |= SB_I_CGROUPWB;
4209         }
4210
4211         sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
4212                 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
4213
4214         if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4215             (ext4_has_compat_features(sb) ||
4216              ext4_has_ro_compat_features(sb) ||
4217              ext4_has_incompat_features(sb)))
4218                 ext4_msg(sb, KERN_WARNING,
4219                        "feature flags set on rev 0 fs, "
4220                        "running e2fsck is recommended");
4221
4222         if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4223                 set_opt2(sb, HURD_COMPAT);
4224                 if (ext4_has_feature_64bit(sb)) {
4225                         ext4_msg(sb, KERN_ERR,
4226                                  "The Hurd can't support 64-bit file systems");
4227                         goto failed_mount;
4228                 }
4229
4230                 /*
4231                  * ea_inode feature uses l_i_version field which is not
4232                  * available in HURD_COMPAT mode.
4233                  */
4234                 if (ext4_has_feature_ea_inode(sb)) {
4235                         ext4_msg(sb, KERN_ERR,
4236                                  "ea_inode feature is not supported for Hurd");
4237                         goto failed_mount;
4238                 }
4239         }
4240
4241         if (IS_EXT2_SB(sb)) {
4242                 if (ext2_feature_set_ok(sb))
4243                         ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4244                                  "using the ext4 subsystem");
4245                 else {
4246                         /*
4247                          * If we're probing be silent, if this looks like
4248                          * it's actually an ext[34] filesystem.
4249                          */
4250                         if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4251                                 goto failed_mount;
4252                         ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4253                                  "to feature incompatibilities");
4254                         goto failed_mount;
4255                 }
4256         }
4257
4258         if (IS_EXT3_SB(sb)) {
4259                 if (ext3_feature_set_ok(sb))
4260                         ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4261                                  "using the ext4 subsystem");
4262                 else {
4263                         /*
4264                          * If we're probing be silent, if this looks like
4265                          * it's actually an ext4 filesystem.
4266                          */
4267                         if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4268                                 goto failed_mount;
4269                         ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4270                                  "to feature incompatibilities");
4271                         goto failed_mount;
4272                 }
4273         }
4274
4275         /*
4276          * Check feature flags regardless of the revision level, since we
4277          * previously didn't change the revision level when setting the flags,
4278          * so there is a chance incompat flags are set on a rev 0 filesystem.
4279          */
4280         if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4281                 goto failed_mount;
4282
4283         if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
4284                 ext4_msg(sb, KERN_ERR,
4285                          "Number of reserved GDT blocks insanely large: %d",
4286                          le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
4287                 goto failed_mount;
4288         }
4289
4290         if (bdev_dax_supported(sb->s_bdev, blocksize))
4291                 set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
4292
4293         if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
4294                 if (ext4_has_feature_inline_data(sb)) {
4295                         ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
4296                                         " that may contain inline data");
4297                         goto failed_mount;
4298                 }
4299                 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
4300                         ext4_msg(sb, KERN_ERR,
4301                                 "DAX unsupported by block device.");
4302                         goto failed_mount;
4303                 }
4304         }
4305
4306         if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
4307                 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
4308                          es->s_encryption_level);
4309                 goto failed_mount;
4310         }
4311
4312         if (sb->s_blocksize != blocksize) {
4313                 /*
4314                  * bh must be released before kill_bdev(), otherwise
4315                  * it won't be freed and its page also. kill_bdev()
4316                  * is called by sb_set_blocksize().
4317                  */
4318                 brelse(bh);
4319                 /* Validate the filesystem blocksize */
4320                 if (!sb_set_blocksize(sb, blocksize)) {
4321                         ext4_msg(sb, KERN_ERR, "bad block size %d",
4322                                         blocksize);
4323                         bh = NULL;
4324                         goto failed_mount;
4325                 }
4326
4327                 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
4328                 offset = do_div(logical_sb_block, blocksize);
4329                 bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
4330                 if (IS_ERR(bh)) {
4331                         ext4_msg(sb, KERN_ERR,
4332                                "Can't read superblock on 2nd try");
4333                         ret = PTR_ERR(bh);
4334                         bh = NULL;
4335                         goto failed_mount;
4336                 }
4337                 es = (struct ext4_super_block *)(bh->b_data + offset);
4338                 sbi->s_es = es;
4339                 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
4340                         ext4_msg(sb, KERN_ERR,
4341                                "Magic mismatch, very weird!");
4342                         goto failed_mount;
4343                 }
4344         }
4345
4346         has_huge_files = ext4_has_feature_huge_file(sb);
4347         sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
4348                                                       has_huge_files);
4349         sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
4350
4351         sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
4352         if (ext4_has_feature_64bit(sb)) {
4353                 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
4354                     sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
4355                     !is_power_of_2(sbi->s_desc_size)) {
4356                         ext4_msg(sb, KERN_ERR,
4357                                "unsupported descriptor size %lu",
4358                                sbi->s_desc_size);
4359                         goto failed_mount;
4360                 }
4361         } else
4362                 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
4363
4364         sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
4365         sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
4366
4367         sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
4368         if (sbi->s_inodes_per_block == 0)
4369                 goto cantfind_ext4;
4370         if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
4371             sbi->s_inodes_per_group > blocksize * 8) {
4372                 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
4373                          sbi->s_inodes_per_group);
4374                 goto failed_mount;
4375         }
4376         sbi->s_itb_per_group = sbi->s_inodes_per_group /
4377                                         sbi->s_inodes_per_block;
4378         sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
4379         sbi->s_sbh = bh;
4380         sbi->s_mount_state = le16_to_cpu(es->s_state);
4381         sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
4382         sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
4383
4384         for (i = 0; i < 4; i++)
4385                 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
4386         sbi->s_def_hash_version = es->s_def_hash_version;
4387         if (ext4_has_feature_dir_index(sb)) {
4388                 i = le32_to_cpu(es->s_flags);
4389                 if (i & EXT2_FLAGS_UNSIGNED_HASH)
4390                         sbi->s_hash_unsigned = 3;
4391                 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
4392 #ifdef __CHAR_UNSIGNED__
4393                         if (!sb_rdonly(sb))
4394                                 es->s_flags |=
4395                                         cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
4396                         sbi->s_hash_unsigned = 3;
4397 #else
4398                         if (!sb_rdonly(sb))
4399                                 es->s_flags |=
4400                                         cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
4401 #endif
4402                 }
4403         }
4404
4405         /* Handle clustersize */
4406         clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4407         if (ext4_has_feature_bigalloc(sb)) {
4408                 if (clustersize < blocksize) {
4409                         ext4_msg(sb, KERN_ERR,
4410                                  "cluster size (%d) smaller than "
4411                                  "block size (%d)", clustersize, blocksize);
4412                         goto failed_mount;
4413                 }
4414                 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4415                         le32_to_cpu(es->s_log_block_size);
4416                 sbi->s_clusters_per_group =
4417                         le32_to_cpu(es->s_clusters_per_group);
4418                 if (sbi->s_clusters_per_group > blocksize * 8) {
4419                         ext4_msg(sb, KERN_ERR,
4420                                  "#clusters per group too big: %lu",
4421                                  sbi->s_clusters_per_group);
4422                         goto failed_mount;
4423                 }
4424                 if (sbi->s_blocks_per_group !=
4425                     (sbi->s_clusters_per_group * (clustersize / blocksize))) {
4426                         ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
4427                                  "clusters per group (%lu) inconsistent",
4428                                  sbi->s_blocks_per_group,
4429                                  sbi->s_clusters_per_group);
4430                         goto failed_mount;
4431                 }
4432         } else {
4433                 if (clustersize != blocksize) {
4434                         ext4_msg(sb, KERN_ERR,
4435                                  "fragment/cluster size (%d) != "
4436                                  "block size (%d)", clustersize, blocksize);
4437                         goto failed_mount;
4438                 }
4439                 if (sbi->s_blocks_per_group > blocksize * 8) {
4440                         ext4_msg(sb, KERN_ERR,
4441                                  "#blocks per group too big: %lu",
4442                                  sbi->s_blocks_per_group);
4443                         goto failed_mount;
4444                 }
4445                 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4446                 sbi->s_cluster_bits = 0;
4447         }
4448         sbi->s_cluster_ratio = clustersize / blocksize;
4449
4450         /* Do we have standard group size of clustersize * 8 blocks ? */
4451         if (sbi->s_blocks_per_group == clustersize << 3)
4452                 set_opt2(sb, STD_GROUP_SIZE);
4453
4454         /*
4455          * Test whether we have more sectors than will fit in sector_t,
4456          * and whether the max offset is addressable by the page cache.
4457          */
4458         err = generic_check_addressable(sb->s_blocksize_bits,
4459                                         ext4_blocks_count(es));
4460         if (err) {
4461                 ext4_msg(sb, KERN_ERR, "filesystem"
4462                          " too large to mount safely on this system");
4463                 goto failed_mount;
4464         }
4465
4466         if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
4467                 goto cantfind_ext4;
4468
4469         /* check blocks count against device size */
4470         blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
4471         if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4472                 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4473                        "exceeds size of device (%llu blocks)",
4474                        ext4_blocks_count(es), blocks_count);
4475                 goto failed_mount;
4476         }
4477
4478         /*
4479          * It makes no sense for the first data block to be beyond the end
4480          * of the filesystem.
4481          */
4482         if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4483                 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4484                          "block %u is beyond end of filesystem (%llu)",
4485                          le32_to_cpu(es->s_first_data_block),
4486                          ext4_blocks_count(es));
4487                 goto failed_mount;
4488         }
4489         if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4490             (sbi->s_cluster_ratio == 1)) {
4491                 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4492                          "block is 0 with a 1k block and cluster size");
4493                 goto failed_mount;
4494         }
4495
4496         blocks_count = (ext4_blocks_count(es) -
4497                         le32_to_cpu(es->s_first_data_block) +
4498                         EXT4_BLOCKS_PER_GROUP(sb) - 1);
4499         do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4500         if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4501                 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4502                        "(block count %llu, first data block %u, "
4503                        "blocks per group %lu)", blocks_count,
4504                        ext4_blocks_count(es),
4505                        le32_to_cpu(es->s_first_data_block),
4506                        EXT4_BLOCKS_PER_GROUP(sb));
4507                 goto failed_mount;
4508         }
4509         sbi->s_groups_count = blocks_count;
4510         sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4511                         (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4512         if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4513             le32_to_cpu(es->s_inodes_count)) {
4514                 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4515                          le32_to_cpu(es->s_inodes_count),
4516                          ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4517                 ret = -EINVAL;
4518                 goto failed_mount;
4519         }
4520         db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4521                    EXT4_DESC_PER_BLOCK(sb);
4522         if (ext4_has_feature_meta_bg(sb)) {
4523                 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4524                         ext4_msg(sb, KERN_WARNING,
4525                                  "first meta block group too large: %u "
4526                                  "(group descriptor block count %u)",
4527                                  le32_to_cpu(es->s_first_meta_bg), db_count);
4528                         goto failed_mount;
4529                 }
4530         }
4531         rcu_assign_pointer(sbi->s_group_desc,
4532                            kvmalloc_array(db_count,
4533                                           sizeof(struct buffer_head *),
4534                                           GFP_KERNEL));
4535         if (sbi->s_group_desc == NULL) {
4536                 ext4_msg(sb, KERN_ERR, "not enough memory");
4537                 ret = -ENOMEM;
4538                 goto failed_mount;
4539         }
4540
4541         bgl_lock_init(sbi->s_blockgroup_lock);
4542
4543         /* Pre-read the descriptors into the buffer cache */
4544         for (i = 0; i < db_count; i++) {
4545                 block = descriptor_loc(sb, logical_sb_block, i);
4546                 ext4_sb_breadahead_unmovable(sb, block);
4547         }
4548
4549         for (i = 0; i < db_count; i++) {
4550                 struct buffer_head *bh;
4551
4552                 block = descriptor_loc(sb, logical_sb_block, i);
4553                 bh = ext4_sb_bread_unmovable(sb, block);
4554                 if (IS_ERR(bh)) {
4555                         ext4_msg(sb, KERN_ERR,
4556                                "can't read group descriptor %d", i);
4557                         db_count = i;
4558                         ret = PTR_ERR(bh);
4559                         goto failed_mount2;
4560                 }
4561                 rcu_read_lock();
4562                 rcu_dereference(sbi->s_group_desc)[i] = bh;
4563                 rcu_read_unlock();
4564         }
4565         sbi->s_gdb_count = db_count;
4566         if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
4567                 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4568                 ret = -EFSCORRUPTED;
4569                 goto failed_mount2;
4570         }
4571
4572         timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
4573         spin_lock_init(&sbi->s_error_lock);
4574         INIT_WORK(&sbi->s_error_work, flush_stashed_error_work);
4575
4576         /* Register extent status tree shrinker */
4577         if (ext4_es_register_shrinker(sbi))
4578                 goto failed_mount3;
4579
4580         sbi->s_stripe = ext4_get_stripe_size(sbi);
4581         sbi->s_extent_max_zeroout_kb = 32;
4582
4583         /*
4584          * set up enough so that it can read an inode
4585          */
4586         sb->s_op = &ext4_sops;
4587         sb->s_export_op = &ext4_export_ops;
4588         sb->s_xattr = ext4_xattr_handlers;
4589 #ifdef CONFIG_FS_ENCRYPTION
4590         sb->s_cop = &ext4_cryptops;
4591 #endif
4592 #ifdef CONFIG_FS_VERITY
4593         sb->s_vop = &ext4_verityops;
4594 #endif
4595 #ifdef CONFIG_QUOTA
4596         sb->dq_op = &ext4_quota_operations;
4597         if (ext4_has_feature_quota(sb))
4598                 sb->s_qcop = &dquot_quotactl_sysfile_ops;
4599         else
4600                 sb->s_qcop = &ext4_qctl_operations;
4601         sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4602 #endif
4603         memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
4604
4605         INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
4606         mutex_init(&sbi->s_orphan_lock);
4607
4608         /* Initialize fast commit stuff */
4609         atomic_set(&sbi->s_fc_subtid, 0);
4610         atomic_set(&sbi->s_fc_ineligible_updates, 0);
4611         INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]);
4612         INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]);
4613         INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]);
4614         INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]);
4615         sbi->s_fc_bytes = 0;
4616         ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
4617         ext4_clear_mount_flag(sb, EXT4_MF_FC_COMMITTING);
4618         spin_lock_init(&sbi->s_fc_lock);
4619         memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats));
4620         sbi->s_fc_replay_state.fc_regions = NULL;
4621         sbi->s_fc_replay_state.fc_regions_size = 0;
4622         sbi->s_fc_replay_state.fc_regions_used = 0;
4623         sbi->s_fc_replay_state.fc_regions_valid = 0;
4624         sbi->s_fc_replay_state.fc_modified_inodes = NULL;
4625         sbi->s_fc_replay_state.fc_modified_inodes_size = 0;
4626         sbi->s_fc_replay_state.fc_modified_inodes_used = 0;
4627
4628         sb->s_root = NULL;
4629
4630         needs_recovery = (es->s_last_orphan != 0 ||
4631                           ext4_has_feature_orphan_present(sb) ||
4632                           ext4_has_feature_journal_needs_recovery(sb));
4633
4634         if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb))
4635                 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
4636                         goto failed_mount3a;
4637
4638         /*
4639          * The first inode we look at is the journal inode.  Don't try
4640          * root first: it may be modified in the journal!
4641          */
4642         if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
4643                 err = ext4_load_journal(sb, es, parsed_opts.journal_devnum);
4644                 if (err)
4645                         goto failed_mount3a;
4646         } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
4647                    ext4_has_feature_journal_needs_recovery(sb)) {
4648                 ext4_msg(sb, KERN_ERR, "required journal recovery "
4649                        "suppressed and not mounted read-only");
4650                 goto failed_mount_wq;
4651         } else {
4652                 /* Nojournal mode, all journal mount options are illegal */
4653                 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
4654                         ext4_msg(sb, KERN_ERR, "can't mount with "
4655                                  "journal_checksum, fs mounted w/o journal");
4656                         goto failed_mount_wq;
4657                 }
4658                 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4659                         ext4_msg(sb, KERN_ERR, "can't mount with "
4660                                  "journal_async_commit, fs mounted w/o journal");
4661                         goto failed_mount_wq;
4662                 }
4663                 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
4664                         ext4_msg(sb, KERN_ERR, "can't mount with "
4665                                  "commit=%lu, fs mounted w/o journal",
4666                                  sbi->s_commit_interval / HZ);
4667                         goto failed_mount_wq;
4668                 }
4669                 if (EXT4_MOUNT_DATA_FLAGS &
4670                     (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
4671                         ext4_msg(sb, KERN_ERR, "can't mount with "
4672                                  "data=, fs mounted w/o journal");
4673                         goto failed_mount_wq;
4674                 }
4675                 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
4676                 clear_opt(sb, JOURNAL_CHECKSUM);
4677                 clear_opt(sb, DATA_FLAGS);
4678                 clear_opt2(sb, JOURNAL_FAST_COMMIT);
4679                 sbi->s_journal = NULL;
4680                 needs_recovery = 0;
4681                 goto no_journal;
4682         }
4683
4684         if (ext4_has_feature_64bit(sb) &&
4685             !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4686                                        JBD2_FEATURE_INCOMPAT_64BIT)) {
4687                 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4688                 goto failed_mount_wq;
4689         }
4690
4691         if (!set_journal_csum_feature_set(sb)) {
4692                 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4693                          "feature set");
4694                 goto failed_mount_wq;
4695         }
4696
4697         if (test_opt2(sb, JOURNAL_FAST_COMMIT) &&
4698                 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4699                                           JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) {
4700                 ext4_msg(sb, KERN_ERR,
4701                         "Failed to set fast commit journal feature");
4702                 goto failed_mount_wq;
4703         }
4704
4705         /* We have now updated the journal if required, so we can
4706          * validate the data journaling mode. */
4707         switch (test_opt(sb, DATA_FLAGS)) {
4708         case 0:
4709                 /* No mode set, assume a default based on the journal
4710                  * capabilities: ORDERED_DATA if the journal can
4711                  * cope, else JOURNAL_DATA
4712                  */
4713                 if (jbd2_journal_check_available_features
4714                     (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4715                         set_opt(sb, ORDERED_DATA);
4716                         sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4717                 } else {
4718                         set_opt(sb, JOURNAL_DATA);
4719                         sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4720                 }
4721                 break;
4722
4723         case EXT4_MOUNT_ORDERED_DATA:
4724         case EXT4_MOUNT_WRITEBACK_DATA:
4725                 if (!jbd2_journal_check_available_features
4726                     (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4727                         ext4_msg(sb, KERN_ERR, "Journal does not support "
4728                                "requested data journaling mode");
4729                         goto failed_mount_wq;
4730                 }
4731                 break;
4732         default:
4733                 break;
4734         }
4735
4736         if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4737             test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4738                 ext4_msg(sb, KERN_ERR, "can't mount with "
4739                         "journal_async_commit in data=ordered mode");
4740                 goto failed_mount_wq;
4741         }
4742
4743         set_task_ioprio(sbi->s_journal->j_task, parsed_opts.journal_ioprio);
4744
4745         sbi->s_journal->j_submit_inode_data_buffers =
4746                 ext4_journal_submit_inode_data_buffers;
4747         sbi->s_journal->j_finish_inode_data_buffers =
4748                 ext4_journal_finish_inode_data_buffers;
4749
4750 no_journal:
4751         if (!test_opt(sb, NO_MBCACHE)) {
4752                 sbi->s_ea_block_cache = ext4_xattr_create_cache();
4753                 if (!sbi->s_ea_block_cache) {
4754                         ext4_msg(sb, KERN_ERR,
4755                                  "Failed to create ea_block_cache");
4756                         goto failed_mount_wq;
4757                 }
4758
4759                 if (ext4_has_feature_ea_inode(sb)) {
4760                         sbi->s_ea_inode_cache = ext4_xattr_create_cache();
4761                         if (!sbi->s_ea_inode_cache) {
4762                                 ext4_msg(sb, KERN_ERR,
4763                                          "Failed to create ea_inode_cache");
4764                                 goto failed_mount_wq;
4765                         }
4766                 }
4767         }
4768
4769         if (ext4_has_feature_verity(sb) && blocksize != PAGE_SIZE) {
4770                 ext4_msg(sb, KERN_ERR, "Unsupported blocksize for fs-verity");
4771                 goto failed_mount_wq;
4772         }
4773
4774         if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) &&
4775             !ext4_has_feature_encrypt(sb)) {
4776                 ext4_set_feature_encrypt(sb);
4777                 ext4_commit_super(sb);
4778         }
4779
4780         /*
4781          * Get the # of file system overhead blocks from the
4782          * superblock if present.
4783          */
4784         if (es->s_overhead_clusters)
4785                 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4786         else {
4787                 err = ext4_calculate_overhead(sb);
4788                 if (err)
4789                         goto failed_mount_wq;
4790         }
4791
4792         /*
4793          * The maximum number of concurrent works can be high and
4794          * concurrency isn't really necessary.  Limit it to 1.
4795          */
4796         EXT4_SB(sb)->rsv_conversion_wq =
4797                 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4798         if (!EXT4_SB(sb)->rsv_conversion_wq) {
4799                 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4800                 ret = -ENOMEM;
4801                 goto failed_mount4;
4802         }
4803
4804         /*
4805          * The jbd2_journal_load will have done any necessary log recovery,
4806          * so we can safely mount the rest of the filesystem now.
4807          */
4808
4809         root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
4810         if (IS_ERR(root)) {
4811                 ext4_msg(sb, KERN_ERR, "get root inode failed");
4812                 ret = PTR_ERR(root);
4813                 root = NULL;
4814                 goto failed_mount4;
4815         }
4816         if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4817                 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4818                 iput(root);
4819                 goto failed_mount4;
4820         }
4821
4822         sb->s_root = d_make_root(root);
4823         if (!sb->s_root) {
4824                 ext4_msg(sb, KERN_ERR, "get root dentry failed");
4825                 ret = -ENOMEM;
4826                 goto failed_mount4;
4827         }
4828
4829         ret = ext4_setup_super(sb, es, sb_rdonly(sb));
4830         if (ret == -EROFS) {
4831                 sb->s_flags |= SB_RDONLY;
4832                 ret = 0;
4833         } else if (ret)
4834                 goto failed_mount4a;
4835
4836         ext4_set_resv_clusters(sb);
4837
4838         if (test_opt(sb, BLOCK_VALIDITY)) {
4839                 err = ext4_setup_system_zone(sb);
4840                 if (err) {
4841                         ext4_msg(sb, KERN_ERR, "failed to initialize system "
4842                                  "zone (%d)", err);
4843                         goto failed_mount4a;
4844                 }
4845         }
4846         ext4_fc_replay_cleanup(sb);
4847
4848         ext4_ext_init(sb);
4849
4850         /*
4851          * Enable optimize_scan if number of groups is > threshold. This can be
4852          * turned off by passing "mb_optimize_scan=0". This can also be
4853          * turned on forcefully by passing "mb_optimize_scan=1".
4854          */
4855         if (parsed_opts.mb_optimize_scan == 1)
4856                 set_opt2(sb, MB_OPTIMIZE_SCAN);
4857         else if (parsed_opts.mb_optimize_scan == 0)
4858                 clear_opt2(sb, MB_OPTIMIZE_SCAN);
4859         else if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD)
4860                 set_opt2(sb, MB_OPTIMIZE_SCAN);
4861
4862         err = ext4_mb_init(sb);
4863         if (err) {
4864                 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4865                          err);
4866                 goto failed_mount5;
4867         }
4868
4869         /*
4870          * We can only set up the journal commit callback once
4871          * mballoc is initialized
4872          */
4873         if (sbi->s_journal)
4874                 sbi->s_journal->j_commit_callback =
4875                         ext4_journal_commit_callback;
4876
4877         block = ext4_count_free_clusters(sb);
4878         ext4_free_blocks_count_set(sbi->s_es,
4879                                    EXT4_C2B(sbi, block));
4880         err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4881                                   GFP_KERNEL);
4882         if (!err) {
4883                 unsigned long freei = ext4_count_free_inodes(sb);
4884                 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4885                 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4886                                           GFP_KERNEL);
4887         }
4888         /*
4889          * Update the checksum after updating free space/inode
4890          * counters.  Otherwise the superblock can have an incorrect
4891          * checksum in the buffer cache until it is written out and
4892          * e2fsprogs programs trying to open a file system immediately
4893          * after it is mounted can fail.
4894          */
4895         ext4_superblock_csum_set(sb);
4896         if (!err)
4897                 err = percpu_counter_init(&sbi->s_dirs_counter,
4898                                           ext4_count_dirs(sb), GFP_KERNEL);
4899         if (!err)
4900                 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4901                                           GFP_KERNEL);
4902         if (!err)
4903                 err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0,
4904                                           GFP_KERNEL);
4905         if (!err)
4906                 err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
4907
4908         if (err) {
4909                 ext4_msg(sb, KERN_ERR, "insufficient memory");
4910                 goto failed_mount6;
4911         }
4912
4913         if (ext4_has_feature_flex_bg(sb))
4914                 if (!ext4_fill_flex_info(sb)) {
4915                         ext4_msg(sb, KERN_ERR,
4916                                "unable to initialize "
4917                                "flex_bg meta info!");
4918                         ret = -ENOMEM;
4919                         goto failed_mount6;
4920                 }
4921
4922         err = ext4_register_li_request(sb, first_not_zeroed);
4923         if (err)
4924                 goto failed_mount6;
4925
4926         err = ext4_register_sysfs(sb);
4927         if (err)
4928                 goto failed_mount7;
4929
4930         err = ext4_init_orphan_info(sb);
4931         if (err)
4932                 goto failed_mount8;
4933 #ifdef CONFIG_QUOTA
4934         /* Enable quota usage during mount. */
4935         if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
4936                 err = ext4_enable_quotas(sb);
4937                 if (err)
4938                         goto failed_mount9;
4939         }
4940 #endif  /* CONFIG_QUOTA */
4941
4942         /*
4943          * Save the original bdev mapping's wb_err value which could be
4944          * used to detect the metadata async write error.
4945          */
4946         spin_lock_init(&sbi->s_bdev_wb_lock);
4947         errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err,
4948                                  &sbi->s_bdev_wb_err);
4949         sb->s_bdev->bd_super = sb;
4950         EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4951         ext4_orphan_cleanup(sb, es);
4952         EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4953         if (needs_recovery) {
4954                 ext4_msg(sb, KERN_INFO, "recovery complete");
4955                 err = ext4_mark_recovery_complete(sb, es);
4956                 if (err)
4957                         goto failed_mount9;
4958         }
4959         if (EXT4_SB(sb)->s_journal) {
4960                 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4961                         descr = " journalled data mode";
4962                 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4963                         descr = " ordered data mode";
4964                 else
4965                         descr = " writeback data mode";
4966         } else
4967                 descr = "out journal";
4968
4969         if (test_opt(sb, DISCARD)) {
4970                 struct request_queue *q = bdev_get_queue(sb->s_bdev);
4971                 if (!blk_queue_discard(q))
4972                         ext4_msg(sb, KERN_WARNING,
4973                                  "mounting with \"discard\" option, but "
4974                                  "the device does not support discard");
4975         }
4976
4977         if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
4978                 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4979                          "Opts: %.*s%s%s. Quota mode: %s.", descr,
4980                          (int) sizeof(sbi->s_es->s_mount_opts),
4981                          sbi->s_es->s_mount_opts,
4982                          *sbi->s_es->s_mount_opts ? "; " : "", orig_data,
4983                          ext4_quota_mode(sb));
4984
4985         if (es->s_error_count)
4986                 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4987
4988         /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4989         ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4990         ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4991         ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4992         atomic_set(&sbi->s_warning_count, 0);
4993         atomic_set(&sbi->s_msg_count, 0);
4994
4995         kfree(orig_data);
4996         return 0;
4997
4998 cantfind_ext4:
4999         if (!silent)
5000                 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5001         goto failed_mount;
5002
5003 failed_mount9:
5004         ext4_release_orphan_info(sb);
5005 failed_mount8:
5006         ext4_unregister_sysfs(sb);
5007         kobject_put(&sbi->s_kobj);
5008 failed_mount7:
5009         ext4_unregister_li_request(sb);
5010 failed_mount6:
5011         ext4_mb_release(sb);
5012         rcu_read_lock();
5013         flex_groups = rcu_dereference(sbi->s_flex_groups);
5014         if (flex_groups) {
5015                 for (i = 0; i < sbi->s_flex_groups_allocated; i++)
5016                         kvfree(flex_groups[i]);
5017                 kvfree(flex_groups);
5018         }
5019         rcu_read_unlock();
5020         percpu_counter_destroy(&sbi->s_freeclusters_counter);
5021         percpu_counter_destroy(&sbi->s_freeinodes_counter);
5022         percpu_counter_destroy(&sbi->s_dirs_counter);
5023         percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
5024         percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
5025         percpu_free_rwsem(&sbi->s_writepages_rwsem);
5026 failed_mount5:
5027         ext4_ext_release(sb);
5028         ext4_release_system_zone(sb);
5029 failed_mount4a:
5030         dput(sb->s_root);
5031         sb->s_root = NULL;
5032 failed_mount4:
5033         ext4_msg(sb, KERN_ERR, "mount failed");
5034         if (EXT4_SB(sb)->rsv_conversion_wq)
5035                 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
5036 failed_mount_wq:
5037         ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
5038         sbi->s_ea_inode_cache = NULL;
5039
5040         ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
5041         sbi->s_ea_block_cache = NULL;
5042
5043         if (sbi->s_journal) {
5044                 jbd2_journal_destroy(sbi->s_journal);
5045                 sbi->s_journal = NULL;
5046         }
5047 failed_mount3a:
5048         ext4_es_unregister_shrinker(sbi);
5049 failed_mount3:
5050         flush_work(&sbi->s_error_work);
5051         del_timer_sync(&sbi->s_err_report);
5052         ext4_stop_mmpd(sbi);
5053 failed_mount2:
5054         rcu_read_lock();
5055         group_desc = rcu_dereference(sbi->s_group_desc);
5056         for (i = 0; i < db_count; i++)
5057                 brelse(group_desc[i]);
5058         kvfree(group_desc);
5059         rcu_read_unlock();
5060 failed_mount:
5061         if (sbi->s_chksum_driver)
5062                 crypto_free_shash(sbi->s_chksum_driver);
5063
5064 #ifdef CONFIG_UNICODE
5065         utf8_unload(sb->s_encoding);
5066 #endif
5067
5068 #ifdef CONFIG_QUOTA
5069         for (i = 0; i < EXT4_MAXQUOTAS; i++)
5070                 kfree(get_qf_name(sb, sbi, i));
5071 #endif
5072         fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
5073         /* ext4_blkdev_remove() calls kill_bdev(), release bh before it. */
5074         brelse(bh);
5075         ext4_blkdev_remove(sbi);
5076 out_fail:
5077         sb->s_fs_info = NULL;
5078         kfree(sbi->s_blockgroup_lock);
5079 out_free_base:
5080         kfree(sbi);
5081         kfree(orig_data);
5082         fs_put_dax(dax_dev);
5083         return err ? err : ret;
5084 }
5085
5086 /*
5087  * Setup any per-fs journal parameters now.  We'll do this both on
5088  * initial mount, once the journal has been initialised but before we've
5089  * done any recovery; and again on any subsequent remount.
5090  */
5091 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
5092 {
5093         struct ext4_sb_info *sbi = EXT4_SB(sb);
5094
5095         journal->j_commit_interval = sbi->s_commit_interval;
5096         journal->j_min_batch_time = sbi->s_min_batch_time;
5097         journal->j_max_batch_time = sbi->s_max_batch_time;
5098         ext4_fc_init(sb, journal);
5099
5100         write_lock(&journal->j_state_lock);
5101         if (test_opt(sb, BARRIER))
5102                 journal->j_flags |= JBD2_BARRIER;
5103         else
5104                 journal->j_flags &= ~JBD2_BARRIER;
5105         if (test_opt(sb, DATA_ERR_ABORT))
5106                 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
5107         else
5108                 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
5109         write_unlock(&journal->j_state_lock);
5110 }
5111
5112 static struct inode *ext4_get_journal_inode(struct super_block *sb,
5113                                              unsigned int journal_inum)
5114 {
5115         struct inode *journal_inode;
5116
5117         /*
5118          * Test for the existence of a valid inode on disk.  Bad things
5119          * happen if we iget() an unused inode, as the subsequent iput()
5120          * will try to delete it.
5121          */
5122         journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
5123         if (IS_ERR(journal_inode)) {
5124                 ext4_msg(sb, KERN_ERR, "no journal found");
5125                 return NULL;
5126         }
5127         if (!journal_inode->i_nlink) {
5128                 make_bad_inode(journal_inode);
5129                 iput(journal_inode);
5130                 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
5131                 return NULL;
5132         }
5133
5134         jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
5135                   journal_inode, journal_inode->i_size);
5136         if (!S_ISREG(journal_inode->i_mode)) {
5137                 ext4_msg(sb, KERN_ERR, "invalid journal inode");
5138                 iput(journal_inode);
5139                 return NULL;
5140         }
5141         return journal_inode;
5142 }
5143
5144 static journal_t *ext4_get_journal(struct super_block *sb,
5145                                    unsigned int journal_inum)
5146 {
5147         struct inode *journal_inode;
5148         journal_t *journal;
5149
5150         if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5151                 return NULL;
5152
5153         journal_inode = ext4_get_journal_inode(sb, journal_inum);
5154         if (!journal_inode)
5155                 return NULL;
5156
5157         journal = jbd2_journal_init_inode(journal_inode);
5158         if (!journal) {
5159                 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
5160                 iput(journal_inode);
5161                 return NULL;
5162         }
5163         journal->j_private = sb;
5164         ext4_init_journal_params(sb, journal);
5165         return journal;
5166 }
5167
5168 static journal_t *ext4_get_dev_journal(struct super_block *sb,
5169                                        dev_t j_dev)
5170 {
5171         struct buffer_head *bh;
5172         journal_t *journal;
5173         ext4_fsblk_t start;
5174         ext4_fsblk_t len;
5175         int hblock, blocksize;
5176         ext4_fsblk_t sb_block;
5177         unsigned long offset;
5178         struct ext4_super_block *es;
5179         struct block_device *bdev;
5180
5181         if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5182                 return NULL;
5183
5184         bdev = ext4_blkdev_get(j_dev, sb);
5185         if (bdev == NULL)
5186                 return NULL;
5187
5188         blocksize = sb->s_blocksize;
5189         hblock = bdev_logical_block_size(bdev);
5190         if (blocksize < hblock) {
5191                 ext4_msg(sb, KERN_ERR,
5192                         "blocksize too small for journal device");
5193                 goto out_bdev;
5194         }
5195
5196         sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
5197         offset = EXT4_MIN_BLOCK_SIZE % blocksize;
5198         set_blocksize(bdev, blocksize);
5199         if (!(bh = __bread(bdev, sb_block, blocksize))) {
5200                 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
5201                        "external journal");
5202                 goto out_bdev;
5203         }
5204
5205         es = (struct ext4_super_block *) (bh->b_data + offset);
5206         if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
5207             !(le32_to_cpu(es->s_feature_incompat) &
5208               EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
5209                 ext4_msg(sb, KERN_ERR, "external journal has "
5210                                         "bad superblock");
5211                 brelse(bh);
5212                 goto out_bdev;
5213         }
5214
5215         if ((le32_to_cpu(es->s_feature_ro_compat) &
5216              EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
5217             es->s_checksum != ext4_superblock_csum(sb, es)) {
5218                 ext4_msg(sb, KERN_ERR, "external journal has "
5219                                        "corrupt superblock");
5220                 brelse(bh);
5221                 goto out_bdev;
5222         }
5223
5224         if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
5225                 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
5226                 brelse(bh);
5227                 goto out_bdev;
5228         }
5229
5230         len = ext4_blocks_count(es);
5231         start = sb_block + 1;
5232         brelse(bh);     /* we're done with the superblock */
5233
5234         journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
5235                                         start, len, blocksize);
5236         if (!journal) {
5237                 ext4_msg(sb, KERN_ERR, "failed to create device journal");
5238                 goto out_bdev;
5239         }
5240         journal->j_private = sb;
5241         if (ext4_read_bh_lock(journal->j_sb_buffer, REQ_META | REQ_PRIO, true)) {
5242                 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
5243                 goto out_journal;
5244         }
5245         if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
5246                 ext4_msg(sb, KERN_ERR, "External journal has more than one "
5247                                         "user (unsupported) - %d",
5248                         be32_to_cpu(journal->j_superblock->s_nr_users));
5249                 goto out_journal;
5250         }
5251         EXT4_SB(sb)->s_journal_bdev = bdev;
5252         ext4_init_journal_params(sb, journal);
5253         return journal;
5254
5255 out_journal:
5256         jbd2_journal_destroy(journal);
5257 out_bdev:
5258         ext4_blkdev_put(bdev);
5259         return NULL;
5260 }
5261
5262 static int ext4_load_journal(struct super_block *sb,
5263                              struct ext4_super_block *es,
5264                              unsigned long journal_devnum)
5265 {
5266         journal_t *journal;
5267         unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
5268         dev_t journal_dev;
5269         int err = 0;
5270         int really_read_only;
5271         int journal_dev_ro;
5272
5273         if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5274                 return -EFSCORRUPTED;
5275
5276         if (journal_devnum &&
5277             journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5278                 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
5279                         "numbers have changed");
5280                 journal_dev = new_decode_dev(journal_devnum);
5281         } else
5282                 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
5283
5284         if (journal_inum && journal_dev) {
5285                 ext4_msg(sb, KERN_ERR,
5286                          "filesystem has both journal inode and journal device!");
5287                 return -EINVAL;
5288         }
5289
5290         if (journal_inum) {
5291                 journal = ext4_get_journal(sb, journal_inum);
5292                 if (!journal)
5293                         return -EINVAL;
5294         } else {
5295                 journal = ext4_get_dev_journal(sb, journal_dev);
5296                 if (!journal)
5297                         return -EINVAL;
5298         }
5299
5300         journal_dev_ro = bdev_read_only(journal->j_dev);
5301         really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
5302
5303         if (journal_dev_ro && !sb_rdonly(sb)) {
5304                 ext4_msg(sb, KERN_ERR,
5305                          "journal device read-only, try mounting with '-o ro'");
5306                 err = -EROFS;
5307                 goto err_out;
5308         }
5309
5310         /*
5311          * Are we loading a blank journal or performing recovery after a
5312          * crash?  For recovery, we need to check in advance whether we
5313          * can get read-write access to the device.
5314          */
5315         if (ext4_has_feature_journal_needs_recovery(sb)) {
5316                 if (sb_rdonly(sb)) {
5317                         ext4_msg(sb, KERN_INFO, "INFO: recovery "
5318                                         "required on readonly filesystem");
5319                         if (really_read_only) {
5320                                 ext4_msg(sb, KERN_ERR, "write access "
5321                                         "unavailable, cannot proceed "
5322                                         "(try mounting with noload)");
5323                                 err = -EROFS;
5324                                 goto err_out;
5325                         }
5326                         ext4_msg(sb, KERN_INFO, "write access will "
5327                                "be enabled during recovery");
5328                 }
5329         }
5330
5331         if (!(journal->j_flags & JBD2_BARRIER))
5332                 ext4_msg(sb, KERN_INFO, "barriers disabled");
5333
5334         if (!ext4_has_feature_journal_needs_recovery(sb))
5335                 err = jbd2_journal_wipe(journal, !really_read_only);
5336         if (!err) {
5337                 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
5338                 if (save)
5339                         memcpy(save, ((char *) es) +
5340                                EXT4_S_ERR_START, EXT4_S_ERR_LEN);
5341                 err = jbd2_journal_load(journal);
5342                 if (save)
5343                         memcpy(((char *) es) + EXT4_S_ERR_START,
5344                                save, EXT4_S_ERR_LEN);
5345                 kfree(save);
5346         }
5347
5348         if (err) {
5349                 ext4_msg(sb, KERN_ERR, "error loading journal");
5350                 goto err_out;
5351         }
5352
5353         EXT4_SB(sb)->s_journal = journal;
5354         err = ext4_clear_journal_err(sb, es);
5355         if (err) {
5356                 EXT4_SB(sb)->s_journal = NULL;
5357                 jbd2_journal_destroy(journal);
5358                 return err;
5359         }
5360
5361         if (!really_read_only && journal_devnum &&
5362             journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5363                 es->s_journal_dev = cpu_to_le32(journal_devnum);
5364
5365                 /* Make sure we flush the recovery flag to disk. */
5366                 ext4_commit_super(sb);
5367         }
5368
5369         return 0;
5370
5371 err_out:
5372         jbd2_journal_destroy(journal);
5373         return err;
5374 }
5375
5376 /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */
5377 static void ext4_update_super(struct super_block *sb)
5378 {
5379         struct ext4_sb_info *sbi = EXT4_SB(sb);
5380         struct ext4_super_block *es = sbi->s_es;
5381         struct buffer_head *sbh = sbi->s_sbh;
5382
5383         lock_buffer(sbh);
5384         /*
5385          * If the file system is mounted read-only, don't update the
5386          * superblock write time.  This avoids updating the superblock
5387          * write time when we are mounting the root file system
5388          * read/only but we need to replay the journal; at that point,
5389          * for people who are east of GMT and who make their clock
5390          * tick in localtime for Windows bug-for-bug compatibility,
5391          * the clock is set in the future, and this will cause e2fsck
5392          * to complain and force a full file system check.
5393          */
5394         if (!(sb->s_flags & SB_RDONLY))
5395                 ext4_update_tstamp(es, s_wtime);
5396         es->s_kbytes_written =
5397                 cpu_to_le64(sbi->s_kbytes_written +
5398                     ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
5399                       sbi->s_sectors_written_start) >> 1));
5400         if (percpu_counter_initialized(&sbi->s_freeclusters_counter))
5401                 ext4_free_blocks_count_set(es,
5402                         EXT4_C2B(sbi, percpu_counter_sum_positive(
5403                                 &sbi->s_freeclusters_counter)));
5404         if (percpu_counter_initialized(&sbi->s_freeinodes_counter))
5405                 es->s_free_inodes_count =
5406                         cpu_to_le32(percpu_counter_sum_positive(
5407                                 &sbi->s_freeinodes_counter));
5408         /* Copy error information to the on-disk superblock */
5409         spin_lock(&sbi->s_error_lock);
5410         if (sbi->s_add_error_count > 0) {
5411                 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
5412                 if (!es->s_first_error_time && !es->s_first_error_time_hi) {
5413                         __ext4_update_tstamp(&es->s_first_error_time,
5414                                              &es->s_first_error_time_hi,
5415                                              sbi->s_first_error_time);
5416                         strncpy(es->s_first_error_func, sbi->s_first_error_func,
5417                                 sizeof(es->s_first_error_func));
5418                         es->s_first_error_line =
5419                                 cpu_to_le32(sbi->s_first_error_line);
5420                         es->s_first_error_ino =
5421                                 cpu_to_le32(sbi->s_first_error_ino);
5422                         es->s_first_error_block =
5423                                 cpu_to_le64(sbi->s_first_error_block);
5424                         es->s_first_error_errcode =
5425                                 ext4_errno_to_code(sbi->s_first_error_code);
5426                 }
5427                 __ext4_update_tstamp(&es->s_last_error_time,
5428                                      &es->s_last_error_time_hi,
5429                                      sbi->s_last_error_time);
5430                 strncpy(es->s_last_error_func, sbi->s_last_error_func,
5431                         sizeof(es->s_last_error_func));
5432                 es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line);
5433                 es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino);
5434                 es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block);
5435                 es->s_last_error_errcode =
5436                                 ext4_errno_to_code(sbi->s_last_error_code);
5437                 /*
5438                  * Start the daily error reporting function if it hasn't been
5439                  * started already
5440                  */
5441                 if (!es->s_error_count)
5442                         mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);
5443                 le32_add_cpu(&es->s_error_count, sbi->s_add_error_count);
5444                 sbi->s_add_error_count = 0;
5445         }
5446         spin_unlock(&sbi->s_error_lock);
5447
5448         ext4_superblock_csum_set(sb);
5449         unlock_buffer(sbh);
5450 }
5451
5452 static int ext4_commit_super(struct super_block *sb)
5453 {
5454         struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
5455         int error = 0;
5456
5457         if (!sbh)
5458                 return -EINVAL;
5459         if (block_device_ejected(sb))
5460                 return -ENODEV;
5461
5462         ext4_update_super(sb);
5463
5464         if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
5465                 /*
5466                  * Oh, dear.  A previous attempt to write the
5467                  * superblock failed.  This could happen because the
5468                  * USB device was yanked out.  Or it could happen to
5469                  * be a transient write error and maybe the block will
5470                  * be remapped.  Nothing we can do but to retry the
5471                  * write and hope for the best.
5472                  */
5473                 ext4_msg(sb, KERN_ERR, "previous I/O error to "
5474                        "superblock detected");
5475                 clear_buffer_write_io_error(sbh);
5476                 set_buffer_uptodate(sbh);
5477         }
5478         BUFFER_TRACE(sbh, "marking dirty");
5479         mark_buffer_dirty(sbh);
5480         error = __sync_dirty_buffer(sbh,
5481                 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
5482         if (buffer_write_io_error(sbh)) {
5483                 ext4_msg(sb, KERN_ERR, "I/O error while writing "
5484                        "superblock");
5485                 clear_buffer_write_io_error(sbh);
5486                 set_buffer_uptodate(sbh);
5487         }
5488         return error;
5489 }
5490
5491 /*
5492  * Have we just finished recovery?  If so, and if we are mounting (or
5493  * remounting) the filesystem readonly, then we will end up with a
5494  * consistent fs on disk.  Record that fact.
5495  */
5496 static int ext4_mark_recovery_complete(struct super_block *sb,
5497                                        struct ext4_super_block *es)
5498 {
5499         int err;
5500         journal_t *journal = EXT4_SB(sb)->s_journal;
5501
5502         if (!ext4_has_feature_journal(sb)) {
5503                 if (journal != NULL) {
5504                         ext4_error(sb, "Journal got removed while the fs was "
5505                                    "mounted!");
5506                         return -EFSCORRUPTED;
5507                 }
5508                 return 0;
5509         }
5510         jbd2_journal_lock_updates(journal);
5511         err = jbd2_journal_flush(journal, 0);
5512         if (err < 0)
5513                 goto out;
5514
5515         if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) ||
5516             ext4_has_feature_orphan_present(sb))) {
5517                 if (!ext4_orphan_file_empty(sb)) {
5518                         ext4_error(sb, "Orphan file not empty on read-only fs.");
5519                         err = -EFSCORRUPTED;
5520                         goto out;
5521                 }
5522                 ext4_clear_feature_journal_needs_recovery(sb);
5523                 ext4_clear_feature_orphan_present(sb);
5524                 ext4_commit_super(sb);
5525         }
5526 out:
5527         jbd2_journal_unlock_updates(journal);
5528         return err;
5529 }
5530
5531 /*
5532  * If we are mounting (or read-write remounting) a filesystem whose journal
5533  * has recorded an error from a previous lifetime, move that error to the
5534  * main filesystem now.
5535  */
5536 static int ext4_clear_journal_err(struct super_block *sb,
5537                                    struct ext4_super_block *es)
5538 {
5539         journal_t *journal;
5540         int j_errno;
5541         const char *errstr;
5542
5543         if (!ext4_has_feature_journal(sb)) {
5544                 ext4_error(sb, "Journal got removed while the fs was mounted!");
5545                 return -EFSCORRUPTED;
5546         }
5547
5548         journal = EXT4_SB(sb)->s_journal;
5549
5550         /*
5551          * Now check for any error status which may have been recorded in the
5552          * journal by a prior ext4_error() or ext4_abort()
5553          */
5554
5555         j_errno = jbd2_journal_errno(journal);
5556         if (j_errno) {
5557                 char nbuf[16];
5558
5559                 errstr = ext4_decode_error(sb, j_errno, nbuf);
5560                 ext4_warning(sb, "Filesystem error recorded "
5561                              "from previous mount: %s", errstr);
5562                 ext4_warning(sb, "Marking fs in need of filesystem check.");
5563
5564                 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
5565                 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
5566                 ext4_commit_super(sb);
5567
5568                 jbd2_journal_clear_err(journal);
5569                 jbd2_journal_update_sb_errno(journal);
5570         }
5571         return 0;
5572 }
5573
5574 /*
5575  * Force the running and committing transactions to commit,
5576  * and wait on the commit.
5577  */
5578 int ext4_force_commit(struct super_block *sb)
5579 {
5580         journal_t *journal;
5581
5582         if (sb_rdonly(sb))
5583                 return 0;
5584
5585         journal = EXT4_SB(sb)->s_journal;
5586         return ext4_journal_force_commit(journal);
5587 }
5588
5589 static int ext4_sync_fs(struct super_block *sb, int wait)
5590 {
5591         int ret = 0;
5592         tid_t target;
5593         bool needs_barrier = false;
5594         struct ext4_sb_info *sbi = EXT4_SB(sb);
5595
5596         if (unlikely(ext4_forced_shutdown(sbi)))
5597                 return 0;
5598
5599         trace_ext4_sync_fs(sb, wait);
5600         flush_workqueue(sbi->rsv_conversion_wq);
5601         /*
5602          * Writeback quota in non-journalled quota case - journalled quota has
5603          * no dirty dquots
5604          */
5605         dquot_writeback_dquots(sb, -1);
5606         /*
5607          * Data writeback is possible w/o journal transaction, so barrier must
5608          * being sent at the end of the function. But we can skip it if
5609          * transaction_commit will do it for us.
5610          */
5611         if (sbi->s_journal) {
5612                 target = jbd2_get_latest_transaction(sbi->s_journal);
5613                 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
5614                     !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
5615                         needs_barrier = true;
5616
5617                 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
5618                         if (wait)
5619                                 ret = jbd2_log_wait_commit(sbi->s_journal,
5620                                                            target);
5621                 }
5622         } else if (wait && test_opt(sb, BARRIER))
5623                 needs_barrier = true;
5624         if (needs_barrier) {
5625                 int err;
5626                 err = blkdev_issue_flush(sb->s_bdev);
5627                 if (!ret)
5628                         ret = err;
5629         }
5630
5631         return ret;
5632 }
5633
5634 /*
5635  * LVM calls this function before a (read-only) snapshot is created.  This
5636  * gives us a chance to flush the journal completely and mark the fs clean.
5637  *
5638  * Note that only this function cannot bring a filesystem to be in a clean
5639  * state independently. It relies on upper layer to stop all data & metadata
5640  * modifications.
5641  */
5642 static int ext4_freeze(struct super_block *sb)
5643 {
5644         int error = 0;
5645         journal_t *journal;
5646
5647         if (sb_rdonly(sb))
5648                 return 0;
5649
5650         journal = EXT4_SB(sb)->s_journal;
5651
5652         if (journal) {
5653                 /* Now we set up the journal barrier. */
5654                 jbd2_journal_lock_updates(journal);
5655
5656                 /*
5657                  * Don't clear the needs_recovery flag if we failed to
5658                  * flush the journal.
5659                  */
5660                 error = jbd2_journal_flush(journal, 0);
5661                 if (error < 0)
5662                         goto out;
5663
5664                 /* Journal blocked and flushed, clear needs_recovery flag. */
5665                 ext4_clear_feature_journal_needs_recovery(sb);
5666                 if (ext4_orphan_file_empty(sb))
5667                         ext4_clear_feature_orphan_present(sb);
5668         }
5669
5670         error = ext4_commit_super(sb);
5671 out:
5672         if (journal)
5673                 /* we rely on upper layer to stop further updates */
5674                 jbd2_journal_unlock_updates(journal);
5675         return error;
5676 }
5677
5678 /*
5679  * Called by LVM after the snapshot is done.  We need to reset the RECOVER
5680  * flag here, even though the filesystem is not technically dirty yet.
5681  */
5682 static int ext4_unfreeze(struct super_block *sb)
5683 {
5684         if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
5685                 return 0;
5686
5687         if (EXT4_SB(sb)->s_journal) {
5688                 /* Reset the needs_recovery flag before the fs is unlocked. */
5689                 ext4_set_feature_journal_needs_recovery(sb);
5690                 if (ext4_has_feature_orphan_file(sb))
5691                         ext4_set_feature_orphan_present(sb);
5692         }
5693
5694         ext4_commit_super(sb);
5695         return 0;
5696 }
5697
5698 /*
5699  * Structure to save mount options for ext4_remount's benefit
5700  */
5701 struct ext4_mount_options {
5702         unsigned long s_mount_opt;
5703         unsigned long s_mount_opt2;
5704         kuid_t s_resuid;
5705         kgid_t s_resgid;
5706         unsigned long s_commit_interval;
5707         u32 s_min_batch_time, s_max_batch_time;
5708 #ifdef CONFIG_QUOTA
5709         int s_jquota_fmt;
5710         char *s_qf_names[EXT4_MAXQUOTAS];
5711 #endif
5712 };
5713
5714 static int ext4_remount(struct super_block *sb, int *flags, char *data)
5715 {
5716         struct ext4_super_block *es;
5717         struct ext4_sb_info *sbi = EXT4_SB(sb);
5718         unsigned long old_sb_flags, vfs_flags;
5719         struct ext4_mount_options old_opts;
5720         int enable_quota = 0;
5721         ext4_group_t g;
5722         int err = 0;
5723 #ifdef CONFIG_QUOTA
5724         int i, j;
5725         char *to_free[EXT4_MAXQUOTAS];
5726 #endif
5727         char *orig_data = kstrdup(data, GFP_KERNEL);
5728         struct ext4_parsed_options parsed_opts;
5729
5730         parsed_opts.journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5731         parsed_opts.journal_devnum = 0;
5732
5733         if (data && !orig_data)
5734                 return -ENOMEM;
5735
5736         /* Store the original options */
5737         old_sb_flags = sb->s_flags;
5738         old_opts.s_mount_opt = sbi->s_mount_opt;
5739         old_opts.s_mount_opt2 = sbi->s_mount_opt2;
5740         old_opts.s_resuid = sbi->s_resuid;
5741         old_opts.s_resgid = sbi->s_resgid;
5742         old_opts.s_commit_interval = sbi->s_commit_interval;
5743         old_opts.s_min_batch_time = sbi->s_min_batch_time;
5744         old_opts.s_max_batch_time = sbi->s_max_batch_time;
5745 #ifdef CONFIG_QUOTA
5746         old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
5747         for (i = 0; i < EXT4_MAXQUOTAS; i++)
5748                 if (sbi->s_qf_names[i]) {
5749                         char *qf_name = get_qf_name(sb, sbi, i);
5750
5751                         old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
5752                         if (!old_opts.s_qf_names[i]) {
5753                                 for (j = 0; j < i; j++)
5754                                         kfree(old_opts.s_qf_names[j]);
5755                                 kfree(orig_data);
5756                                 return -ENOMEM;
5757                         }
5758                 } else
5759                         old_opts.s_qf_names[i] = NULL;
5760 #endif
5761         if (sbi->s_journal && sbi->s_journal->j_task->io_context)
5762                 parsed_opts.journal_ioprio =
5763                         sbi->s_journal->j_task->io_context->ioprio;
5764
5765         /*
5766          * Some options can be enabled by ext4 and/or by VFS mount flag
5767          * either way we need to make sure it matches in both *flags and
5768          * s_flags. Copy those selected flags from *flags to s_flags
5769          */
5770         vfs_flags = SB_LAZYTIME | SB_I_VERSION;
5771         sb->s_flags = (sb->s_flags & ~vfs_flags) | (*flags & vfs_flags);
5772
5773         if (!parse_options(data, sb, &parsed_opts, 1)) {
5774                 err = -EINVAL;
5775                 goto restore_opts;
5776         }
5777
5778         if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
5779             test_opt(sb, JOURNAL_CHECKSUM)) {
5780                 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
5781                          "during remount not supported; ignoring");
5782                 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
5783         }
5784
5785         if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
5786                 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5787                         ext4_msg(sb, KERN_ERR, "can't mount with "
5788                                  "both data=journal and delalloc");
5789                         err = -EINVAL;
5790                         goto restore_opts;
5791                 }
5792                 if (test_opt(sb, DIOREAD_NOLOCK)) {
5793                         ext4_msg(sb, KERN_ERR, "can't mount with "
5794                                  "both data=journal and dioread_nolock");
5795                         err = -EINVAL;
5796                         goto restore_opts;
5797                 }
5798         } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
5799                 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5800                         ext4_msg(sb, KERN_ERR, "can't mount with "
5801                                 "journal_async_commit in data=ordered mode");
5802                         err = -EINVAL;
5803                         goto restore_opts;
5804                 }
5805         }
5806
5807         if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
5808                 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
5809                 err = -EINVAL;
5810                 goto restore_opts;
5811         }
5812
5813         if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
5814                 ext4_abort(sb, EXT4_ERR_ESHUTDOWN, "Abort forced by user");
5815
5816         sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5817                 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5818
5819         es = sbi->s_es;
5820
5821         if (sbi->s_journal) {
5822                 ext4_init_journal_params(sb, sbi->s_journal);
5823                 set_task_ioprio(sbi->s_journal->j_task, parsed_opts.journal_ioprio);
5824         }
5825
5826         /* Flush outstanding errors before changing fs state */
5827         flush_work(&sbi->s_error_work);
5828
5829         if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) {
5830                 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) {
5831                         err = -EROFS;
5832                         goto restore_opts;
5833                 }
5834
5835                 if (*flags & SB_RDONLY) {
5836                         err = sync_filesystem(sb);
5837                         if (err < 0)
5838                                 goto restore_opts;
5839                         err = dquot_suspend(sb, -1);
5840                         if (err < 0)
5841                                 goto restore_opts;
5842
5843                         /*
5844                          * First of all, the unconditional stuff we have to do
5845                          * to disable replay of the journal when we next remount
5846                          */
5847                         sb->s_flags |= SB_RDONLY;
5848
5849                         /*
5850                          * OK, test if we are remounting a valid rw partition
5851                          * readonly, and if so set the rdonly flag and then
5852                          * mark the partition as valid again.
5853                          */
5854                         if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5855                             (sbi->s_mount_state & EXT4_VALID_FS))
5856                                 es->s_state = cpu_to_le16(sbi->s_mount_state);
5857
5858                         if (sbi->s_journal) {
5859                                 /*
5860                                  * We let remount-ro finish even if marking fs
5861                                  * as clean failed...
5862                                  */
5863                                 ext4_mark_recovery_complete(sb, es);
5864                         }
5865                 } else {
5866                         /* Make sure we can mount this feature set readwrite */
5867                         if (ext4_has_feature_readonly(sb) ||
5868                             !ext4_feature_set_ok(sb, 0)) {
5869                                 err = -EROFS;
5870                                 goto restore_opts;
5871                         }
5872                         /*
5873                          * Make sure the group descriptor checksums
5874                          * are sane.  If they aren't, refuse to remount r/w.
5875                          */
5876                         for (g = 0; g < sbi->s_groups_count; g++) {
5877                                 struct ext4_group_desc *gdp =
5878                                         ext4_get_group_desc(sb, g, NULL);
5879
5880                                 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
5881                                         ext4_msg(sb, KERN_ERR,
5882                "ext4_remount: Checksum for group %u failed (%u!=%u)",
5883                 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
5884                                                le16_to_cpu(gdp->bg_checksum));
5885                                         err = -EFSBADCRC;
5886                                         goto restore_opts;
5887                                 }
5888                         }
5889
5890                         /*
5891                          * If we have an unprocessed orphan list hanging
5892                          * around from a previously readonly bdev mount,
5893                          * require a full umount/remount for now.
5894                          */
5895                         if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) {
5896                                 ext4_msg(sb, KERN_WARNING, "Couldn't "
5897                                        "remount RDWR because of unprocessed "
5898                                        "orphan inode list.  Please "
5899                                        "umount/remount instead");
5900                                 err = -EINVAL;
5901                                 goto restore_opts;
5902                         }
5903
5904                         /*
5905                          * Mounting a RDONLY partition read-write, so reread
5906                          * and store the current valid flag.  (It may have
5907                          * been changed by e2fsck since we originally mounted
5908                          * the partition.)
5909                          */
5910                         if (sbi->s_journal) {
5911                                 err = ext4_clear_journal_err(sb, es);
5912                                 if (err)
5913                                         goto restore_opts;
5914                         }
5915                         sbi->s_mount_state = le16_to_cpu(es->s_state);
5916
5917                         err = ext4_setup_super(sb, es, 0);
5918                         if (err)
5919                                 goto restore_opts;
5920
5921                         sb->s_flags &= ~SB_RDONLY;
5922                         if (ext4_has_feature_mmp(sb))
5923                                 if (ext4_multi_mount_protect(sb,
5924                                                 le64_to_cpu(es->s_mmp_block))) {
5925                                         err = -EROFS;
5926                                         goto restore_opts;
5927                                 }
5928                         enable_quota = 1;
5929                 }
5930         }
5931
5932         /*
5933          * Reinitialize lazy itable initialization thread based on
5934          * current settings
5935          */
5936         if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
5937                 ext4_unregister_li_request(sb);
5938         else {
5939                 ext4_group_t first_not_zeroed;
5940                 first_not_zeroed = ext4_has_uninit_itable(sb);
5941                 ext4_register_li_request(sb, first_not_zeroed);
5942         }
5943
5944         /*
5945          * Handle creation of system zone data early because it can fail.
5946          * Releasing of existing data is done when we are sure remount will
5947          * succeed.
5948          */
5949         if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) {
5950                 err = ext4_setup_system_zone(sb);
5951                 if (err)
5952                         goto restore_opts;
5953         }
5954
5955         if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
5956                 err = ext4_commit_super(sb);
5957                 if (err)
5958                         goto restore_opts;
5959         }
5960
5961 #ifdef CONFIG_QUOTA
5962         /* Release old quota file names */
5963         for (i = 0; i < EXT4_MAXQUOTAS; i++)
5964                 kfree(old_opts.s_qf_names[i]);
5965         if (enable_quota) {
5966                 if (sb_any_quota_suspended(sb))
5967                         dquot_resume(sb, -1);
5968                 else if (ext4_has_feature_quota(sb)) {
5969                         err = ext4_enable_quotas(sb);
5970                         if (err)
5971                                 goto restore_opts;
5972                 }
5973         }
5974 #endif
5975         if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
5976                 ext4_release_system_zone(sb);
5977
5978         if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
5979                 ext4_stop_mmpd(sbi);
5980
5981         /*
5982          * Some options can be enabled by ext4 and/or by VFS mount flag
5983          * either way we need to make sure it matches in both *flags and
5984          * s_flags. Copy those selected flags from s_flags to *flags
5985          */
5986         *flags = (*flags & ~vfs_flags) | (sb->s_flags & vfs_flags);
5987
5988         ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s. Quota mode: %s.",
5989                  orig_data, ext4_quota_mode(sb));
5990         kfree(orig_data);
5991         return 0;
5992
5993 restore_opts:
5994         sb->s_flags = old_sb_flags;
5995         sbi->s_mount_opt = old_opts.s_mount_opt;
5996         sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5997         sbi->s_resuid = old_opts.s_resuid;
5998         sbi->s_resgid = old_opts.s_resgid;
5999         sbi->s_commit_interval = old_opts.s_commit_interval;
6000         sbi->s_min_batch_time = old_opts.s_min_batch_time;
6001         sbi->s_max_batch_time = old_opts.s_max_batch_time;
6002         if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6003                 ext4_release_system_zone(sb);
6004 #ifdef CONFIG_QUOTA
6005         sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
6006         for (i = 0; i < EXT4_MAXQUOTAS; i++) {
6007                 to_free[i] = get_qf_name(sb, sbi, i);
6008                 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
6009         }
6010         synchronize_rcu();
6011         for (i = 0; i < EXT4_MAXQUOTAS; i++)
6012                 kfree(to_free[i]);
6013 #endif
6014         if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6015                 ext4_stop_mmpd(sbi);
6016         kfree(orig_data);
6017         return err;
6018 }
6019
6020 #ifdef CONFIG_QUOTA
6021 static int ext4_statfs_project(struct super_block *sb,
6022                                kprojid_t projid, struct kstatfs *buf)
6023 {
6024         struct kqid qid;
6025         struct dquot *dquot;
6026         u64 limit;
6027         u64 curblock;
6028
6029         qid = make_kqid_projid(projid);
6030         dquot = dqget(sb, qid);
6031         if (IS_ERR(dquot))
6032                 return PTR_ERR(dquot);
6033         spin_lock(&dquot->dq_dqb_lock);
6034
6035         limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
6036                              dquot->dq_dqb.dqb_bhardlimit);
6037         limit >>= sb->s_blocksize_bits;
6038
6039         if (limit && buf->f_blocks > limit) {
6040                 curblock = (dquot->dq_dqb.dqb_curspace +
6041                             dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
6042                 buf->f_blocks = limit;
6043                 buf->f_bfree = buf->f_bavail =
6044                         (buf->f_blocks > curblock) ?
6045                          (buf->f_blocks - curblock) : 0;
6046         }
6047
6048         limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
6049                              dquot->dq_dqb.dqb_ihardlimit);
6050         if (limit && buf->f_files > limit) {
6051                 buf->f_files = limit;
6052                 buf->f_ffree =
6053                         (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
6054                          (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
6055         }
6056
6057         spin_unlock(&dquot->dq_dqb_lock);
6058         dqput(dquot);
6059         return 0;
6060 }
6061 #endif
6062
6063 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
6064 {
6065         struct super_block *sb = dentry->d_sb;
6066         struct ext4_sb_info *sbi = EXT4_SB(sb);
6067         struct ext4_super_block *es = sbi->s_es;
6068         ext4_fsblk_t overhead = 0, resv_blocks;
6069         s64 bfree;
6070         resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
6071
6072         if (!test_opt(sb, MINIX_DF))
6073                 overhead = sbi->s_overhead;
6074
6075         buf->f_type = EXT4_SUPER_MAGIC;
6076         buf->f_bsize = sb->s_blocksize;
6077         buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
6078         bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
6079                 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
6080         /* prevent underflow in case that few free space is available */
6081         buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
6082         buf->f_bavail = buf->f_bfree -
6083                         (ext4_r_blocks_count(es) + resv_blocks);
6084         if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
6085                 buf->f_bavail = 0;
6086         buf->f_files = le32_to_cpu(es->s_inodes_count);
6087         buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
6088         buf->f_namelen = EXT4_NAME_LEN;
6089         buf->f_fsid = uuid_to_fsid(es->s_uuid);
6090
6091 #ifdef CONFIG_QUOTA
6092         if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
6093             sb_has_quota_limits_enabled(sb, PRJQUOTA))
6094                 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
6095 #endif
6096         return 0;
6097 }
6098
6099
6100 #ifdef CONFIG_QUOTA
6101
6102 /*
6103  * Helper functions so that transaction is started before we acquire dqio_sem
6104  * to keep correct lock ordering of transaction > dqio_sem
6105  */
6106 static inline struct inode *dquot_to_inode(struct dquot *dquot)
6107 {
6108         return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
6109 }
6110
6111 static int ext4_write_dquot(struct dquot *dquot)
6112 {
6113         int ret, err;
6114         handle_t *handle;
6115         struct inode *inode;
6116
6117         inode = dquot_to_inode(dquot);
6118         handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
6119                                     EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
6120         if (IS_ERR(handle))
6121                 return PTR_ERR(handle);
6122         ret = dquot_commit(dquot);
6123         err = ext4_journal_stop(handle);
6124         if (!ret)
6125                 ret = err;
6126         return ret;
6127 }
6128
6129 static int ext4_acquire_dquot(struct dquot *dquot)
6130 {
6131         int ret, err;
6132         handle_t *handle;
6133
6134         handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6135                                     EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
6136         if (IS_ERR(handle))
6137                 return PTR_ERR(handle);
6138         ret = dquot_acquire(dquot);
6139         err = ext4_journal_stop(handle);
6140         if (!ret)
6141                 ret = err;
6142         return ret;
6143 }
6144
6145 static int ext4_release_dquot(struct dquot *dquot)
6146 {
6147         int ret, err;
6148         handle_t *handle;
6149
6150         handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6151                                     EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
6152         if (IS_ERR(handle)) {
6153                 /* Release dquot anyway to avoid endless cycle in dqput() */
6154                 dquot_release(dquot);
6155                 return PTR_ERR(handle);
6156         }
6157         ret = dquot_release(dquot);
6158         err = ext4_journal_stop(handle);
6159         if (!ret)
6160                 ret = err;
6161         return ret;
6162 }
6163
6164 static int ext4_mark_dquot_dirty(struct dquot *dquot)
6165 {
6166         struct super_block *sb = dquot->dq_sb;
6167
6168         if (ext4_is_quota_journalled(sb)) {
6169                 dquot_mark_dquot_dirty(dquot);
6170                 return ext4_write_dquot(dquot);
6171         } else {
6172                 return dquot_mark_dquot_dirty(dquot);
6173         }
6174 }
6175
6176 static int ext4_write_info(struct super_block *sb, int type)
6177 {
6178         int ret, err;
6179         handle_t *handle;
6180
6181         /* Data block + inode block */
6182         handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
6183         if (IS_ERR(handle))
6184                 return PTR_ERR(handle);
6185         ret = dquot_commit_info(sb, type);
6186         err = ext4_journal_stop(handle);
6187         if (!ret)
6188                 ret = err;
6189         return ret;
6190 }
6191
6192 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
6193 {
6194         struct ext4_inode_info *ei = EXT4_I(inode);
6195
6196         /* The first argument of lockdep_set_subclass has to be
6197          * *exactly* the same as the argument to init_rwsem() --- in
6198          * this case, in init_once() --- or lockdep gets unhappy
6199          * because the name of the lock is set using the
6200          * stringification of the argument to init_rwsem().
6201          */
6202         (void) ei;      /* shut up clang warning if !CONFIG_LOCKDEP */
6203         lockdep_set_subclass(&ei->i_data_sem, subclass);
6204 }
6205
6206 /*
6207  * Standard function to be called on quota_on
6208  */
6209 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
6210                          const struct path *path)
6211 {
6212         int err;
6213
6214         if (!test_opt(sb, QUOTA))
6215                 return -EINVAL;
6216
6217         /* Quotafile not on the same filesystem? */
6218         if (path->dentry->d_sb != sb)
6219                 return -EXDEV;
6220
6221         /* Quota already enabled for this file? */
6222         if (IS_NOQUOTA(d_inode(path->dentry)))
6223                 return -EBUSY;
6224
6225         /* Journaling quota? */
6226         if (EXT4_SB(sb)->s_qf_names[type]) {
6227                 /* Quotafile not in fs root? */
6228                 if (path->dentry->d_parent != sb->s_root)
6229                         ext4_msg(sb, KERN_WARNING,
6230                                 "Quota file not on filesystem root. "
6231                                 "Journaled quota will not work");
6232                 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
6233         } else {
6234                 /*
6235                  * Clear the flag just in case mount options changed since
6236                  * last time.
6237                  */
6238                 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
6239         }
6240
6241         /*
6242          * When we journal data on quota file, we have to flush journal to see
6243          * all updates to the file when we bypass pagecache...
6244          */
6245         if (EXT4_SB(sb)->s_journal &&
6246             ext4_should_journal_data(d_inode(path->dentry))) {
6247                 /*
6248                  * We don't need to lock updates but journal_flush() could
6249                  * otherwise be livelocked...
6250                  */
6251                 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
6252                 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal, 0);
6253                 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
6254                 if (err)
6255                         return err;
6256         }
6257
6258         lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
6259         err = dquot_quota_on(sb, type, format_id, path);
6260         if (err) {
6261                 lockdep_set_quota_inode(path->dentry->d_inode,
6262                                              I_DATA_SEM_NORMAL);
6263         } else {
6264                 struct inode *inode = d_inode(path->dentry);
6265                 handle_t *handle;
6266
6267                 /*
6268                  * Set inode flags to prevent userspace from messing with quota
6269                  * files. If this fails, we return success anyway since quotas
6270                  * are already enabled and this is not a hard failure.
6271                  */
6272                 inode_lock(inode);
6273                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6274                 if (IS_ERR(handle))
6275                         goto unlock_inode;
6276                 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
6277                 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
6278                                 S_NOATIME | S_IMMUTABLE);
6279                 err = ext4_mark_inode_dirty(handle, inode);
6280                 ext4_journal_stop(handle);
6281         unlock_inode:
6282                 inode_unlock(inode);
6283         }
6284         return err;
6285 }
6286
6287 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
6288                              unsigned int flags)
6289 {
6290         int err;
6291         struct inode *qf_inode;
6292         unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6293                 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6294                 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6295                 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6296         };
6297
6298         BUG_ON(!ext4_has_feature_quota(sb));
6299
6300         if (!qf_inums[type])
6301                 return -EPERM;
6302
6303         qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
6304         if (IS_ERR(qf_inode)) {
6305                 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
6306                 return PTR_ERR(qf_inode);
6307         }
6308
6309         /* Don't account quota for quota files to avoid recursion */
6310         qf_inode->i_flags |= S_NOQUOTA;
6311         lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
6312         err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
6313         if (err)
6314                 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
6315         iput(qf_inode);
6316
6317         return err;
6318 }
6319
6320 /* Enable usage tracking for all quota types. */
6321 int ext4_enable_quotas(struct super_block *sb)
6322 {
6323         int type, err = 0;
6324         unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6325                 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6326                 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6327                 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6328         };
6329         bool quota_mopt[EXT4_MAXQUOTAS] = {
6330                 test_opt(sb, USRQUOTA),
6331                 test_opt(sb, GRPQUOTA),
6332                 test_opt(sb, PRJQUOTA),
6333         };
6334
6335         sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
6336         for (type = 0; type < EXT4_MAXQUOTAS; type++) {
6337                 if (qf_inums[type]) {
6338                         err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
6339                                 DQUOT_USAGE_ENABLED |
6340                                 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
6341                         if (err) {
6342                                 ext4_warning(sb,
6343                                         "Failed to enable quota tracking "
6344                                         "(type=%d, err=%d). Please run "
6345                                         "e2fsck to fix.", type, err);
6346                                 for (type--; type >= 0; type--)
6347                                         dquot_quota_off(sb, type);
6348
6349                                 return err;
6350                         }
6351                 }
6352         }
6353         return 0;
6354 }
6355
6356 static int ext4_quota_off(struct super_block *sb, int type)
6357 {
6358         struct inode *inode = sb_dqopt(sb)->files[type];
6359         handle_t *handle;
6360         int err;
6361
6362         /* Force all delayed allocation blocks to be allocated.
6363          * Caller already holds s_umount sem */
6364         if (test_opt(sb, DELALLOC))
6365                 sync_filesystem(sb);
6366
6367         if (!inode || !igrab(inode))
6368                 goto out;
6369
6370         err = dquot_quota_off(sb, type);
6371         if (err || ext4_has_feature_quota(sb))
6372                 goto out_put;
6373
6374         inode_lock(inode);
6375         /*
6376          * Update modification times of quota files when userspace can
6377          * start looking at them. If we fail, we return success anyway since
6378          * this is not a hard failure and quotas are already disabled.
6379          */
6380         handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6381         if (IS_ERR(handle)) {
6382                 err = PTR_ERR(handle);
6383                 goto out_unlock;
6384         }
6385         EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
6386         inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
6387         inode->i_mtime = inode->i_ctime = current_time(inode);
6388         err = ext4_mark_inode_dirty(handle, inode);
6389         ext4_journal_stop(handle);
6390 out_unlock:
6391         inode_unlock(inode);
6392 out_put:
6393         lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
6394         iput(inode);
6395         return err;
6396 out:
6397         return dquot_quota_off(sb, type);
6398 }
6399
6400 /* Read data from quotafile - avoid pagecache and such because we cannot afford
6401  * acquiring the locks... As quota files are never truncated and quota code
6402  * itself serializes the operations (and no one else should touch the files)
6403  * we don't have to be afraid of races */
6404 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
6405                                size_t len, loff_t off)
6406 {
6407         struct inode *inode = sb_dqopt(sb)->files[type];
6408         ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6409         int offset = off & (sb->s_blocksize - 1);
6410         int tocopy;
6411         size_t toread;
6412         struct buffer_head *bh;
6413         loff_t i_size = i_size_read(inode);
6414
6415         if (off > i_size)
6416                 return 0;
6417         if (off+len > i_size)
6418                 len = i_size-off;
6419         toread = len;
6420         while (toread > 0) {
6421                 tocopy = sb->s_blocksize - offset < toread ?
6422                                 sb->s_blocksize - offset : toread;
6423                 bh = ext4_bread(NULL, inode, blk, 0);
6424                 if (IS_ERR(bh))
6425                         return PTR_ERR(bh);
6426                 if (!bh)        /* A hole? */
6427                         memset(data, 0, tocopy);
6428                 else
6429                         memcpy(data, bh->b_data+offset, tocopy);
6430                 brelse(bh);
6431                 offset = 0;
6432                 toread -= tocopy;
6433                 data += tocopy;
6434                 blk++;
6435         }
6436         return len;
6437 }
6438
6439 /* Write to quotafile (we know the transaction is already started and has
6440  * enough credits) */
6441 static ssize_t ext4_quota_write(struct super_block *sb, int type,
6442                                 const char *data, size_t len, loff_t off)
6443 {
6444         struct inode *inode = sb_dqopt(sb)->files[type];
6445         ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6446         int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
6447         int retries = 0;
6448         struct buffer_head *bh;
6449         handle_t *handle = journal_current_handle();
6450
6451         if (EXT4_SB(sb)->s_journal && !handle) {
6452                 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6453                         " cancelled because transaction is not started",
6454                         (unsigned long long)off, (unsigned long long)len);
6455                 return -EIO;
6456         }
6457         /*
6458          * Since we account only one data block in transaction credits,
6459          * then it is impossible to cross a block boundary.
6460          */
6461         if (sb->s_blocksize - offset < len) {
6462                 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6463                         " cancelled because not block aligned",
6464                         (unsigned long long)off, (unsigned long long)len);
6465                 return -EIO;
6466         }
6467
6468         do {
6469                 bh = ext4_bread(handle, inode, blk,
6470                                 EXT4_GET_BLOCKS_CREATE |
6471                                 EXT4_GET_BLOCKS_METADATA_NOFAIL);
6472         } while (PTR_ERR(bh) == -ENOSPC &&
6473                  ext4_should_retry_alloc(inode->i_sb, &retries));
6474         if (IS_ERR(bh))
6475                 return PTR_ERR(bh);
6476         if (!bh)
6477                 goto out;
6478         BUFFER_TRACE(bh, "get write access");
6479         err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE);
6480         if (err) {
6481                 brelse(bh);
6482                 return err;
6483         }
6484         lock_buffer(bh);
6485         memcpy(bh->b_data+offset, data, len);
6486         flush_dcache_page(bh->b_page);
6487         unlock_buffer(bh);
6488         err = ext4_handle_dirty_metadata(handle, NULL, bh);
6489         brelse(bh);
6490 out:
6491         if (inode->i_size < off + len) {
6492                 i_size_write(inode, off + len);
6493                 EXT4_I(inode)->i_disksize = inode->i_size;
6494                 err2 = ext4_mark_inode_dirty(handle, inode);
6495                 if (unlikely(err2 && !err))
6496                         err = err2;
6497         }
6498         return err ? err : len;
6499 }
6500 #endif
6501
6502 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
6503                        const char *dev_name, void *data)
6504 {
6505         return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
6506 }
6507
6508 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
6509 static inline void register_as_ext2(void)
6510 {
6511         int err = register_filesystem(&ext2_fs_type);
6512         if (err)
6513                 printk(KERN_WARNING
6514                        "EXT4-fs: Unable to register as ext2 (%d)\n", err);
6515 }
6516
6517 static inline void unregister_as_ext2(void)
6518 {
6519         unregister_filesystem(&ext2_fs_type);
6520 }
6521
6522 static inline int ext2_feature_set_ok(struct super_block *sb)
6523 {
6524         if (ext4_has_unknown_ext2_incompat_features(sb))
6525                 return 0;
6526         if (sb_rdonly(sb))
6527                 return 1;
6528         if (ext4_has_unknown_ext2_ro_compat_features(sb))
6529                 return 0;
6530         return 1;
6531 }
6532 #else
6533 static inline void register_as_ext2(void) { }
6534 static inline void unregister_as_ext2(void) { }
6535 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
6536 #endif
6537
6538 static inline void register_as_ext3(void)
6539 {
6540         int err = register_filesystem(&ext3_fs_type);
6541         if (err)
6542                 printk(KERN_WARNING
6543                        "EXT4-fs: Unable to register as ext3 (%d)\n", err);
6544 }
6545
6546 static inline void unregister_as_ext3(void)
6547 {
6548         unregister_filesystem(&ext3_fs_type);
6549 }
6550
6551 static inline int ext3_feature_set_ok(struct super_block *sb)
6552 {
6553         if (ext4_has_unknown_ext3_incompat_features(sb))
6554                 return 0;
6555         if (!ext4_has_feature_journal(sb))
6556                 return 0;
6557         if (sb_rdonly(sb))
6558                 return 1;
6559         if (ext4_has_unknown_ext3_ro_compat_features(sb))
6560                 return 0;
6561         return 1;
6562 }
6563
6564 static struct file_system_type ext4_fs_type = {
6565         .owner          = THIS_MODULE,
6566         .name           = "ext4",
6567         .mount          = ext4_mount,
6568         .kill_sb        = kill_block_super,
6569         .fs_flags       = FS_REQUIRES_DEV | FS_ALLOW_IDMAP,
6570 };
6571 MODULE_ALIAS_FS("ext4");
6572
6573 /* Shared across all ext4 file systems */
6574 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
6575
6576 static int __init ext4_init_fs(void)
6577 {
6578         int i, err;
6579
6580         ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
6581         ext4_li_info = NULL;
6582
6583         /* Build-time check for flags consistency */
6584         ext4_check_flag_values();
6585
6586         for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
6587                 init_waitqueue_head(&ext4__ioend_wq[i]);
6588
6589         err = ext4_init_es();
6590         if (err)
6591                 return err;
6592
6593         err = ext4_init_pending();
6594         if (err)
6595                 goto out7;
6596
6597         err = ext4_init_post_read_processing();
6598         if (err)
6599                 goto out6;
6600
6601         err = ext4_init_pageio();
6602         if (err)
6603                 goto out5;
6604
6605         err = ext4_init_system_zone();
6606         if (err)
6607                 goto out4;
6608
6609         err = ext4_init_sysfs();
6610         if (err)
6611                 goto out3;
6612
6613         err = ext4_init_mballoc();
6614         if (err)
6615                 goto out2;
6616         err = init_inodecache();
6617         if (err)
6618                 goto out1;
6619
6620         err = ext4_fc_init_dentry_cache();
6621         if (err)
6622                 goto out05;
6623
6624         register_as_ext3();
6625         register_as_ext2();
6626         err = register_filesystem(&ext4_fs_type);
6627         if (err)
6628                 goto out;
6629
6630         return 0;
6631 out:
6632         unregister_as_ext2();
6633         unregister_as_ext3();
6634 out05:
6635         destroy_inodecache();
6636 out1:
6637         ext4_exit_mballoc();
6638 out2:
6639         ext4_exit_sysfs();
6640 out3:
6641         ext4_exit_system_zone();
6642 out4:
6643         ext4_exit_pageio();
6644 out5:
6645         ext4_exit_post_read_processing();
6646 out6:
6647         ext4_exit_pending();
6648 out7:
6649         ext4_exit_es();
6650
6651         return err;
6652 }
6653
6654 static void __exit ext4_exit_fs(void)
6655 {
6656         ext4_destroy_lazyinit_thread();
6657         unregister_as_ext2();
6658         unregister_as_ext3();
6659         unregister_filesystem(&ext4_fs_type);
6660         destroy_inodecache();
6661         ext4_exit_mballoc();
6662         ext4_exit_sysfs();
6663         ext4_exit_system_zone();
6664         ext4_exit_pageio();
6665         ext4_exit_post_read_processing();
6666         ext4_exit_es();
6667         ext4_exit_pending();
6668 }
6669
6670 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
6671 MODULE_DESCRIPTION("Fourth Extended Filesystem");
6672 MODULE_LICENSE("GPL");
6673 MODULE_SOFTDEP("pre: crc32c");
6674 module_init(ext4_init_fs)
6675 module_exit(ext4_exit_fs)