Merge tag 'ext4_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso...
[linux-2.6-microblaze.git] / fs / ext4 / inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *      (jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21
22 #include <linux/fs.h>
23 #include <linux/mount.h>
24 #include <linux/time.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/string.h>
30 #include <linux/buffer_head.h>
31 #include <linux/writeback.h>
32 #include <linux/pagevec.h>
33 #include <linux/mpage.h>
34 #include <linux/namei.h>
35 #include <linux/uio.h>
36 #include <linux/bio.h>
37 #include <linux/workqueue.h>
38 #include <linux/kernel.h>
39 #include <linux/printk.h>
40 #include <linux/slab.h>
41 #include <linux/bitops.h>
42 #include <linux/iomap.h>
43 #include <linux/iversion.h>
44
45 #include "ext4_jbd2.h"
46 #include "xattr.h"
47 #include "acl.h"
48 #include "truncate.h"
49
50 #include <trace/events/ext4.h>
51
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53                               struct ext4_inode_info *ei)
54 {
55         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56         __u32 csum;
57         __u16 dummy_csum = 0;
58         int offset = offsetof(struct ext4_inode, i_checksum_lo);
59         unsigned int csum_size = sizeof(dummy_csum);
60
61         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
62         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
63         offset += csum_size;
64         csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
65                            EXT4_GOOD_OLD_INODE_SIZE - offset);
66
67         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
68                 offset = offsetof(struct ext4_inode, i_checksum_hi);
69                 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
70                                    EXT4_GOOD_OLD_INODE_SIZE,
71                                    offset - EXT4_GOOD_OLD_INODE_SIZE);
72                 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
73                         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
74                                            csum_size);
75                         offset += csum_size;
76                 }
77                 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
78                                    EXT4_INODE_SIZE(inode->i_sb) - offset);
79         }
80
81         return csum;
82 }
83
84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
85                                   struct ext4_inode_info *ei)
86 {
87         __u32 provided, calculated;
88
89         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
90             cpu_to_le32(EXT4_OS_LINUX) ||
91             !ext4_has_metadata_csum(inode->i_sb))
92                 return 1;
93
94         provided = le16_to_cpu(raw->i_checksum_lo);
95         calculated = ext4_inode_csum(inode, raw, ei);
96         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
97             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
98                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
99         else
100                 calculated &= 0xFFFF;
101
102         return provided == calculated;
103 }
104
105 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
106                          struct ext4_inode_info *ei)
107 {
108         __u32 csum;
109
110         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
111             cpu_to_le32(EXT4_OS_LINUX) ||
112             !ext4_has_metadata_csum(inode->i_sb))
113                 return;
114
115         csum = ext4_inode_csum(inode, raw, ei);
116         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
117         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
118             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
119                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
120 }
121
122 static inline int ext4_begin_ordered_truncate(struct inode *inode,
123                                               loff_t new_size)
124 {
125         trace_ext4_begin_ordered_truncate(inode, new_size);
126         /*
127          * If jinode is zero, then we never opened the file for
128          * writing, so there's no need to call
129          * jbd2_journal_begin_ordered_truncate() since there's no
130          * outstanding writes we need to flush.
131          */
132         if (!EXT4_I(inode)->jinode)
133                 return 0;
134         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
135                                                    EXT4_I(inode)->jinode,
136                                                    new_size);
137 }
138
139 static void ext4_invalidatepage(struct page *page, unsigned int offset,
140                                 unsigned int length);
141 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143                                   int pextents);
144
145 /*
146  * Test whether an inode is a fast symlink.
147  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
148  */
149 int ext4_inode_is_fast_symlink(struct inode *inode)
150 {
151         if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
152                 int ea_blocks = EXT4_I(inode)->i_file_acl ?
153                                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
154
155                 if (ext4_has_inline_data(inode))
156                         return 0;
157
158                 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
159         }
160         return S_ISLNK(inode->i_mode) && inode->i_size &&
161                (inode->i_size < EXT4_N_BLOCKS * 4);
162 }
163
164 /*
165  * Called at the last iput() if i_nlink is zero.
166  */
167 void ext4_evict_inode(struct inode *inode)
168 {
169         handle_t *handle;
170         int err;
171         /*
172          * Credits for final inode cleanup and freeing:
173          * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
174          * (xattr block freeing), bitmap, group descriptor (inode freeing)
175          */
176         int extra_credits = 6;
177         struct ext4_xattr_inode_array *ea_inode_array = NULL;
178         bool freeze_protected = false;
179
180         trace_ext4_evict_inode(inode);
181
182         if (inode->i_nlink) {
183                 /*
184                  * When journalling data dirty buffers are tracked only in the
185                  * journal. So although mm thinks everything is clean and
186                  * ready for reaping the inode might still have some pages to
187                  * write in the running transaction or waiting to be
188                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
189                  * (via truncate_inode_pages()) to discard these buffers can
190                  * cause data loss. Also even if we did not discard these
191                  * buffers, we would have no way to find them after the inode
192                  * is reaped and thus user could see stale data if he tries to
193                  * read them before the transaction is checkpointed. So be
194                  * careful and force everything to disk here... We use
195                  * ei->i_datasync_tid to store the newest transaction
196                  * containing inode's data.
197                  *
198                  * Note that directories do not have this problem because they
199                  * don't use page cache.
200                  */
201                 if (inode->i_ino != EXT4_JOURNAL_INO &&
202                     ext4_should_journal_data(inode) &&
203                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
204                     inode->i_data.nrpages) {
205                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
206                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
207
208                         jbd2_complete_transaction(journal, commit_tid);
209                         filemap_write_and_wait(&inode->i_data);
210                 }
211                 truncate_inode_pages_final(&inode->i_data);
212
213                 goto no_delete;
214         }
215
216         if (is_bad_inode(inode))
217                 goto no_delete;
218         dquot_initialize(inode);
219
220         if (ext4_should_order_data(inode))
221                 ext4_begin_ordered_truncate(inode, 0);
222         truncate_inode_pages_final(&inode->i_data);
223
224         /*
225          * For inodes with journalled data, transaction commit could have
226          * dirtied the inode. Flush worker is ignoring it because of I_FREEING
227          * flag but we still need to remove the inode from the writeback lists.
228          */
229         if (!list_empty_careful(&inode->i_io_list)) {
230                 WARN_ON_ONCE(!ext4_should_journal_data(inode));
231                 inode_io_list_del(inode);
232         }
233
234         /*
235          * Protect us against freezing - iput() caller didn't have to have any
236          * protection against it. When we are in a running transaction though,
237          * we are already protected against freezing and we cannot grab further
238          * protection due to lock ordering constraints.
239          */
240         if (!ext4_journal_current_handle()) {
241                 sb_start_intwrite(inode->i_sb);
242                 freeze_protected = true;
243         }
244
245         if (!IS_NOQUOTA(inode))
246                 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
247
248         /*
249          * Block bitmap, group descriptor, and inode are accounted in both
250          * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
251          */
252         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
253                          ext4_blocks_for_truncate(inode) + extra_credits - 3);
254         if (IS_ERR(handle)) {
255                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
256                 /*
257                  * If we're going to skip the normal cleanup, we still need to
258                  * make sure that the in-core orphan linked list is properly
259                  * cleaned up.
260                  */
261                 ext4_orphan_del(NULL, inode);
262                 if (freeze_protected)
263                         sb_end_intwrite(inode->i_sb);
264                 goto no_delete;
265         }
266
267         if (IS_SYNC(inode))
268                 ext4_handle_sync(handle);
269
270         /*
271          * Set inode->i_size to 0 before calling ext4_truncate(). We need
272          * special handling of symlinks here because i_size is used to
273          * determine whether ext4_inode_info->i_data contains symlink data or
274          * block mappings. Setting i_size to 0 will remove its fast symlink
275          * status. Erase i_data so that it becomes a valid empty block map.
276          */
277         if (ext4_inode_is_fast_symlink(inode))
278                 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
279         inode->i_size = 0;
280         err = ext4_mark_inode_dirty(handle, inode);
281         if (err) {
282                 ext4_warning(inode->i_sb,
283                              "couldn't mark inode dirty (err %d)", err);
284                 goto stop_handle;
285         }
286         if (inode->i_blocks) {
287                 err = ext4_truncate(inode);
288                 if (err) {
289                         ext4_error_err(inode->i_sb, -err,
290                                        "couldn't truncate inode %lu (err %d)",
291                                        inode->i_ino, err);
292                         goto stop_handle;
293                 }
294         }
295
296         /* Remove xattr references. */
297         err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
298                                       extra_credits);
299         if (err) {
300                 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
301 stop_handle:
302                 ext4_journal_stop(handle);
303                 ext4_orphan_del(NULL, inode);
304                 if (freeze_protected)
305                         sb_end_intwrite(inode->i_sb);
306                 ext4_xattr_inode_array_free(ea_inode_array);
307                 goto no_delete;
308         }
309
310         /*
311          * Kill off the orphan record which ext4_truncate created.
312          * AKPM: I think this can be inside the above `if'.
313          * Note that ext4_orphan_del() has to be able to cope with the
314          * deletion of a non-existent orphan - this is because we don't
315          * know if ext4_truncate() actually created an orphan record.
316          * (Well, we could do this if we need to, but heck - it works)
317          */
318         ext4_orphan_del(handle, inode);
319         EXT4_I(inode)->i_dtime  = (__u32)ktime_get_real_seconds();
320
321         /*
322          * One subtle ordering requirement: if anything has gone wrong
323          * (transaction abort, IO errors, whatever), then we can still
324          * do these next steps (the fs will already have been marked as
325          * having errors), but we can't free the inode if the mark_dirty
326          * fails.
327          */
328         if (ext4_mark_inode_dirty(handle, inode))
329                 /* If that failed, just do the required in-core inode clear. */
330                 ext4_clear_inode(inode);
331         else
332                 ext4_free_inode(handle, inode);
333         ext4_journal_stop(handle);
334         if (freeze_protected)
335                 sb_end_intwrite(inode->i_sb);
336         ext4_xattr_inode_array_free(ea_inode_array);
337         return;
338 no_delete:
339         if (!list_empty(&EXT4_I(inode)->i_fc_list))
340                 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM);
341         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
342 }
343
344 #ifdef CONFIG_QUOTA
345 qsize_t *ext4_get_reserved_space(struct inode *inode)
346 {
347         return &EXT4_I(inode)->i_reserved_quota;
348 }
349 #endif
350
351 /*
352  * Called with i_data_sem down, which is important since we can call
353  * ext4_discard_preallocations() from here.
354  */
355 void ext4_da_update_reserve_space(struct inode *inode,
356                                         int used, int quota_claim)
357 {
358         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
359         struct ext4_inode_info *ei = EXT4_I(inode);
360
361         spin_lock(&ei->i_block_reservation_lock);
362         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
363         if (unlikely(used > ei->i_reserved_data_blocks)) {
364                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
365                          "with only %d reserved data blocks",
366                          __func__, inode->i_ino, used,
367                          ei->i_reserved_data_blocks);
368                 WARN_ON(1);
369                 used = ei->i_reserved_data_blocks;
370         }
371
372         /* Update per-inode reservations */
373         ei->i_reserved_data_blocks -= used;
374         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
375
376         spin_unlock(&ei->i_block_reservation_lock);
377
378         /* Update quota subsystem for data blocks */
379         if (quota_claim)
380                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
381         else {
382                 /*
383                  * We did fallocate with an offset that is already delayed
384                  * allocated. So on delayed allocated writeback we should
385                  * not re-claim the quota for fallocated blocks.
386                  */
387                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
388         }
389
390         /*
391          * If we have done all the pending block allocations and if
392          * there aren't any writers on the inode, we can discard the
393          * inode's preallocations.
394          */
395         if ((ei->i_reserved_data_blocks == 0) &&
396             !inode_is_open_for_write(inode))
397                 ext4_discard_preallocations(inode, 0);
398 }
399
400 static int __check_block_validity(struct inode *inode, const char *func,
401                                 unsigned int line,
402                                 struct ext4_map_blocks *map)
403 {
404         if (ext4_has_feature_journal(inode->i_sb) &&
405             (inode->i_ino ==
406              le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
407                 return 0;
408         if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
409                 ext4_error_inode(inode, func, line, map->m_pblk,
410                                  "lblock %lu mapped to illegal pblock %llu "
411                                  "(length %d)", (unsigned long) map->m_lblk,
412                                  map->m_pblk, map->m_len);
413                 return -EFSCORRUPTED;
414         }
415         return 0;
416 }
417
418 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
419                        ext4_lblk_t len)
420 {
421         int ret;
422
423         if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
424                 return fscrypt_zeroout_range(inode, lblk, pblk, len);
425
426         ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
427         if (ret > 0)
428                 ret = 0;
429
430         return ret;
431 }
432
433 #define check_block_validity(inode, map)        \
434         __check_block_validity((inode), __func__, __LINE__, (map))
435
436 #ifdef ES_AGGRESSIVE_TEST
437 static void ext4_map_blocks_es_recheck(handle_t *handle,
438                                        struct inode *inode,
439                                        struct ext4_map_blocks *es_map,
440                                        struct ext4_map_blocks *map,
441                                        int flags)
442 {
443         int retval;
444
445         map->m_flags = 0;
446         /*
447          * There is a race window that the result is not the same.
448          * e.g. xfstests #223 when dioread_nolock enables.  The reason
449          * is that we lookup a block mapping in extent status tree with
450          * out taking i_data_sem.  So at the time the unwritten extent
451          * could be converted.
452          */
453         down_read(&EXT4_I(inode)->i_data_sem);
454         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
455                 retval = ext4_ext_map_blocks(handle, inode, map, 0);
456         } else {
457                 retval = ext4_ind_map_blocks(handle, inode, map, 0);
458         }
459         up_read((&EXT4_I(inode)->i_data_sem));
460
461         /*
462          * We don't check m_len because extent will be collpased in status
463          * tree.  So the m_len might not equal.
464          */
465         if (es_map->m_lblk != map->m_lblk ||
466             es_map->m_flags != map->m_flags ||
467             es_map->m_pblk != map->m_pblk) {
468                 printk("ES cache assertion failed for inode: %lu "
469                        "es_cached ex [%d/%d/%llu/%x] != "
470                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
471                        inode->i_ino, es_map->m_lblk, es_map->m_len,
472                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
473                        map->m_len, map->m_pblk, map->m_flags,
474                        retval, flags);
475         }
476 }
477 #endif /* ES_AGGRESSIVE_TEST */
478
479 /*
480  * The ext4_map_blocks() function tries to look up the requested blocks,
481  * and returns if the blocks are already mapped.
482  *
483  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
484  * and store the allocated blocks in the result buffer head and mark it
485  * mapped.
486  *
487  * If file type is extents based, it will call ext4_ext_map_blocks(),
488  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
489  * based files
490  *
491  * On success, it returns the number of blocks being mapped or allocated.  if
492  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
493  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
494  *
495  * It returns 0 if plain look up failed (blocks have not been allocated), in
496  * that case, @map is returned as unmapped but we still do fill map->m_len to
497  * indicate the length of a hole starting at map->m_lblk.
498  *
499  * It returns the error in case of allocation failure.
500  */
501 int ext4_map_blocks(handle_t *handle, struct inode *inode,
502                     struct ext4_map_blocks *map, int flags)
503 {
504         struct extent_status es;
505         int retval;
506         int ret = 0;
507 #ifdef ES_AGGRESSIVE_TEST
508         struct ext4_map_blocks orig_map;
509
510         memcpy(&orig_map, map, sizeof(*map));
511 #endif
512
513         map->m_flags = 0;
514         ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
515                   flags, map->m_len, (unsigned long) map->m_lblk);
516
517         /*
518          * ext4_map_blocks returns an int, and m_len is an unsigned int
519          */
520         if (unlikely(map->m_len > INT_MAX))
521                 map->m_len = INT_MAX;
522
523         /* We can handle the block number less than EXT_MAX_BLOCKS */
524         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
525                 return -EFSCORRUPTED;
526
527         /* Lookup extent status tree firstly */
528         if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
529             ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
530                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
531                         map->m_pblk = ext4_es_pblock(&es) +
532                                         map->m_lblk - es.es_lblk;
533                         map->m_flags |= ext4_es_is_written(&es) ?
534                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
535                         retval = es.es_len - (map->m_lblk - es.es_lblk);
536                         if (retval > map->m_len)
537                                 retval = map->m_len;
538                         map->m_len = retval;
539                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
540                         map->m_pblk = 0;
541                         retval = es.es_len - (map->m_lblk - es.es_lblk);
542                         if (retval > map->m_len)
543                                 retval = map->m_len;
544                         map->m_len = retval;
545                         retval = 0;
546                 } else {
547                         BUG();
548                 }
549 #ifdef ES_AGGRESSIVE_TEST
550                 ext4_map_blocks_es_recheck(handle, inode, map,
551                                            &orig_map, flags);
552 #endif
553                 goto found;
554         }
555
556         /*
557          * Try to see if we can get the block without requesting a new
558          * file system block.
559          */
560         down_read(&EXT4_I(inode)->i_data_sem);
561         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
562                 retval = ext4_ext_map_blocks(handle, inode, map, 0);
563         } else {
564                 retval = ext4_ind_map_blocks(handle, inode, map, 0);
565         }
566         if (retval > 0) {
567                 unsigned int status;
568
569                 if (unlikely(retval != map->m_len)) {
570                         ext4_warning(inode->i_sb,
571                                      "ES len assertion failed for inode "
572                                      "%lu: retval %d != map->m_len %d",
573                                      inode->i_ino, retval, map->m_len);
574                         WARN_ON(1);
575                 }
576
577                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
578                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
579                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
580                     !(status & EXTENT_STATUS_WRITTEN) &&
581                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
582                                        map->m_lblk + map->m_len - 1))
583                         status |= EXTENT_STATUS_DELAYED;
584                 ret = ext4_es_insert_extent(inode, map->m_lblk,
585                                             map->m_len, map->m_pblk, status);
586                 if (ret < 0)
587                         retval = ret;
588         }
589         up_read((&EXT4_I(inode)->i_data_sem));
590
591 found:
592         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
593                 ret = check_block_validity(inode, map);
594                 if (ret != 0)
595                         return ret;
596         }
597
598         /* If it is only a block(s) look up */
599         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
600                 return retval;
601
602         /*
603          * Returns if the blocks have already allocated
604          *
605          * Note that if blocks have been preallocated
606          * ext4_ext_get_block() returns the create = 0
607          * with buffer head unmapped.
608          */
609         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
610                 /*
611                  * If we need to convert extent to unwritten
612                  * we continue and do the actual work in
613                  * ext4_ext_map_blocks()
614                  */
615                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
616                         return retval;
617
618         /*
619          * Here we clear m_flags because after allocating an new extent,
620          * it will be set again.
621          */
622         map->m_flags &= ~EXT4_MAP_FLAGS;
623
624         /*
625          * New blocks allocate and/or writing to unwritten extent
626          * will possibly result in updating i_data, so we take
627          * the write lock of i_data_sem, and call get_block()
628          * with create == 1 flag.
629          */
630         down_write(&EXT4_I(inode)->i_data_sem);
631
632         /*
633          * We need to check for EXT4 here because migrate
634          * could have changed the inode type in between
635          */
636         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
637                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
638         } else {
639                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
640
641                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
642                         /*
643                          * We allocated new blocks which will result in
644                          * i_data's format changing.  Force the migrate
645                          * to fail by clearing migrate flags
646                          */
647                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
648                 }
649
650                 /*
651                  * Update reserved blocks/metadata blocks after successful
652                  * block allocation which had been deferred till now. We don't
653                  * support fallocate for non extent files. So we can update
654                  * reserve space here.
655                  */
656                 if ((retval > 0) &&
657                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
658                         ext4_da_update_reserve_space(inode, retval, 1);
659         }
660
661         if (retval > 0) {
662                 unsigned int status;
663
664                 if (unlikely(retval != map->m_len)) {
665                         ext4_warning(inode->i_sb,
666                                      "ES len assertion failed for inode "
667                                      "%lu: retval %d != map->m_len %d",
668                                      inode->i_ino, retval, map->m_len);
669                         WARN_ON(1);
670                 }
671
672                 /*
673                  * We have to zeroout blocks before inserting them into extent
674                  * status tree. Otherwise someone could look them up there and
675                  * use them before they are really zeroed. We also have to
676                  * unmap metadata before zeroing as otherwise writeback can
677                  * overwrite zeros with stale data from block device.
678                  */
679                 if (flags & EXT4_GET_BLOCKS_ZERO &&
680                     map->m_flags & EXT4_MAP_MAPPED &&
681                     map->m_flags & EXT4_MAP_NEW) {
682                         ret = ext4_issue_zeroout(inode, map->m_lblk,
683                                                  map->m_pblk, map->m_len);
684                         if (ret) {
685                                 retval = ret;
686                                 goto out_sem;
687                         }
688                 }
689
690                 /*
691                  * If the extent has been zeroed out, we don't need to update
692                  * extent status tree.
693                  */
694                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
695                     ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
696                         if (ext4_es_is_written(&es))
697                                 goto out_sem;
698                 }
699                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
700                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
701                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
702                     !(status & EXTENT_STATUS_WRITTEN) &&
703                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
704                                        map->m_lblk + map->m_len - 1))
705                         status |= EXTENT_STATUS_DELAYED;
706                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
707                                             map->m_pblk, status);
708                 if (ret < 0) {
709                         retval = ret;
710                         goto out_sem;
711                 }
712         }
713
714 out_sem:
715         up_write((&EXT4_I(inode)->i_data_sem));
716         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
717                 ret = check_block_validity(inode, map);
718                 if (ret != 0)
719                         return ret;
720
721                 /*
722                  * Inodes with freshly allocated blocks where contents will be
723                  * visible after transaction commit must be on transaction's
724                  * ordered data list.
725                  */
726                 if (map->m_flags & EXT4_MAP_NEW &&
727                     !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
728                     !(flags & EXT4_GET_BLOCKS_ZERO) &&
729                     !ext4_is_quota_file(inode) &&
730                     ext4_should_order_data(inode)) {
731                         loff_t start_byte =
732                                 (loff_t)map->m_lblk << inode->i_blkbits;
733                         loff_t length = (loff_t)map->m_len << inode->i_blkbits;
734
735                         if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
736                                 ret = ext4_jbd2_inode_add_wait(handle, inode,
737                                                 start_byte, length);
738                         else
739                                 ret = ext4_jbd2_inode_add_write(handle, inode,
740                                                 start_byte, length);
741                         if (ret)
742                                 return ret;
743                 }
744                 ext4_fc_track_range(handle, inode, map->m_lblk,
745                             map->m_lblk + map->m_len - 1);
746         }
747
748         if (retval < 0)
749                 ext_debug(inode, "failed with err %d\n", retval);
750         return retval;
751 }
752
753 /*
754  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
755  * we have to be careful as someone else may be manipulating b_state as well.
756  */
757 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
758 {
759         unsigned long old_state;
760         unsigned long new_state;
761
762         flags &= EXT4_MAP_FLAGS;
763
764         /* Dummy buffer_head? Set non-atomically. */
765         if (!bh->b_page) {
766                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
767                 return;
768         }
769         /*
770          * Someone else may be modifying b_state. Be careful! This is ugly but
771          * once we get rid of using bh as a container for mapping information
772          * to pass to / from get_block functions, this can go away.
773          */
774         do {
775                 old_state = READ_ONCE(bh->b_state);
776                 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
777         } while (unlikely(
778                  cmpxchg(&bh->b_state, old_state, new_state) != old_state));
779 }
780
781 static int _ext4_get_block(struct inode *inode, sector_t iblock,
782                            struct buffer_head *bh, int flags)
783 {
784         struct ext4_map_blocks map;
785         int ret = 0;
786
787         if (ext4_has_inline_data(inode))
788                 return -ERANGE;
789
790         map.m_lblk = iblock;
791         map.m_len = bh->b_size >> inode->i_blkbits;
792
793         ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
794                               flags);
795         if (ret > 0) {
796                 map_bh(bh, inode->i_sb, map.m_pblk);
797                 ext4_update_bh_state(bh, map.m_flags);
798                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
799                 ret = 0;
800         } else if (ret == 0) {
801                 /* hole case, need to fill in bh->b_size */
802                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
803         }
804         return ret;
805 }
806
807 int ext4_get_block(struct inode *inode, sector_t iblock,
808                    struct buffer_head *bh, int create)
809 {
810         return _ext4_get_block(inode, iblock, bh,
811                                create ? EXT4_GET_BLOCKS_CREATE : 0);
812 }
813
814 /*
815  * Get block function used when preparing for buffered write if we require
816  * creating an unwritten extent if blocks haven't been allocated.  The extent
817  * will be converted to written after the IO is complete.
818  */
819 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
820                              struct buffer_head *bh_result, int create)
821 {
822         ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
823                    inode->i_ino, create);
824         return _ext4_get_block(inode, iblock, bh_result,
825                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
826 }
827
828 /* Maximum number of blocks we map for direct IO at once. */
829 #define DIO_MAX_BLOCKS 4096
830
831 /*
832  * `handle' can be NULL if create is zero
833  */
834 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
835                                 ext4_lblk_t block, int map_flags)
836 {
837         struct ext4_map_blocks map;
838         struct buffer_head *bh;
839         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
840         int err;
841
842         ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
843                     || handle != NULL || create == 0);
844
845         map.m_lblk = block;
846         map.m_len = 1;
847         err = ext4_map_blocks(handle, inode, &map, map_flags);
848
849         if (err == 0)
850                 return create ? ERR_PTR(-ENOSPC) : NULL;
851         if (err < 0)
852                 return ERR_PTR(err);
853
854         bh = sb_getblk(inode->i_sb, map.m_pblk);
855         if (unlikely(!bh))
856                 return ERR_PTR(-ENOMEM);
857         if (map.m_flags & EXT4_MAP_NEW) {
858                 ASSERT(create != 0);
859                 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
860                             || (handle != NULL));
861
862                 /*
863                  * Now that we do not always journal data, we should
864                  * keep in mind whether this should always journal the
865                  * new buffer as metadata.  For now, regular file
866                  * writes use ext4_get_block instead, so it's not a
867                  * problem.
868                  */
869                 lock_buffer(bh);
870                 BUFFER_TRACE(bh, "call get_create_access");
871                 err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
872                                                      EXT4_JTR_NONE);
873                 if (unlikely(err)) {
874                         unlock_buffer(bh);
875                         goto errout;
876                 }
877                 if (!buffer_uptodate(bh)) {
878                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
879                         set_buffer_uptodate(bh);
880                 }
881                 unlock_buffer(bh);
882                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
883                 err = ext4_handle_dirty_metadata(handle, inode, bh);
884                 if (unlikely(err))
885                         goto errout;
886         } else
887                 BUFFER_TRACE(bh, "not a new buffer");
888         return bh;
889 errout:
890         brelse(bh);
891         return ERR_PTR(err);
892 }
893
894 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
895                                ext4_lblk_t block, int map_flags)
896 {
897         struct buffer_head *bh;
898         int ret;
899
900         bh = ext4_getblk(handle, inode, block, map_flags);
901         if (IS_ERR(bh))
902                 return bh;
903         if (!bh || ext4_buffer_uptodate(bh))
904                 return bh;
905
906         ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
907         if (ret) {
908                 put_bh(bh);
909                 return ERR_PTR(ret);
910         }
911         return bh;
912 }
913
914 /* Read a contiguous batch of blocks. */
915 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
916                      bool wait, struct buffer_head **bhs)
917 {
918         int i, err;
919
920         for (i = 0; i < bh_count; i++) {
921                 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
922                 if (IS_ERR(bhs[i])) {
923                         err = PTR_ERR(bhs[i]);
924                         bh_count = i;
925                         goto out_brelse;
926                 }
927         }
928
929         for (i = 0; i < bh_count; i++)
930                 /* Note that NULL bhs[i] is valid because of holes. */
931                 if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
932                         ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
933
934         if (!wait)
935                 return 0;
936
937         for (i = 0; i < bh_count; i++)
938                 if (bhs[i])
939                         wait_on_buffer(bhs[i]);
940
941         for (i = 0; i < bh_count; i++) {
942                 if (bhs[i] && !buffer_uptodate(bhs[i])) {
943                         err = -EIO;
944                         goto out_brelse;
945                 }
946         }
947         return 0;
948
949 out_brelse:
950         for (i = 0; i < bh_count; i++) {
951                 brelse(bhs[i]);
952                 bhs[i] = NULL;
953         }
954         return err;
955 }
956
957 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
958                            struct buffer_head *head,
959                            unsigned from,
960                            unsigned to,
961                            int *partial,
962                            int (*fn)(handle_t *handle, struct inode *inode,
963                                      struct buffer_head *bh))
964 {
965         struct buffer_head *bh;
966         unsigned block_start, block_end;
967         unsigned blocksize = head->b_size;
968         int err, ret = 0;
969         struct buffer_head *next;
970
971         for (bh = head, block_start = 0;
972              ret == 0 && (bh != head || !block_start);
973              block_start = block_end, bh = next) {
974                 next = bh->b_this_page;
975                 block_end = block_start + blocksize;
976                 if (block_end <= from || block_start >= to) {
977                         if (partial && !buffer_uptodate(bh))
978                                 *partial = 1;
979                         continue;
980                 }
981                 err = (*fn)(handle, inode, bh);
982                 if (!ret)
983                         ret = err;
984         }
985         return ret;
986 }
987
988 /*
989  * To preserve ordering, it is essential that the hole instantiation and
990  * the data write be encapsulated in a single transaction.  We cannot
991  * close off a transaction and start a new one between the ext4_get_block()
992  * and the commit_write().  So doing the jbd2_journal_start at the start of
993  * prepare_write() is the right place.
994  *
995  * Also, this function can nest inside ext4_writepage().  In that case, we
996  * *know* that ext4_writepage() has generated enough buffer credits to do the
997  * whole page.  So we won't block on the journal in that case, which is good,
998  * because the caller may be PF_MEMALLOC.
999  *
1000  * By accident, ext4 can be reentered when a transaction is open via
1001  * quota file writes.  If we were to commit the transaction while thus
1002  * reentered, there can be a deadlock - we would be holding a quota
1003  * lock, and the commit would never complete if another thread had a
1004  * transaction open and was blocking on the quota lock - a ranking
1005  * violation.
1006  *
1007  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1008  * will _not_ run commit under these circumstances because handle->h_ref
1009  * is elevated.  We'll still have enough credits for the tiny quotafile
1010  * write.
1011  */
1012 int do_journal_get_write_access(handle_t *handle, struct inode *inode,
1013                                 struct buffer_head *bh)
1014 {
1015         int dirty = buffer_dirty(bh);
1016         int ret;
1017
1018         if (!buffer_mapped(bh) || buffer_freed(bh))
1019                 return 0;
1020         /*
1021          * __block_write_begin() could have dirtied some buffers. Clean
1022          * the dirty bit as jbd2_journal_get_write_access() could complain
1023          * otherwise about fs integrity issues. Setting of the dirty bit
1024          * by __block_write_begin() isn't a real problem here as we clear
1025          * the bit before releasing a page lock and thus writeback cannot
1026          * ever write the buffer.
1027          */
1028         if (dirty)
1029                 clear_buffer_dirty(bh);
1030         BUFFER_TRACE(bh, "get write access");
1031         ret = ext4_journal_get_write_access(handle, inode->i_sb, bh,
1032                                             EXT4_JTR_NONE);
1033         if (!ret && dirty)
1034                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1035         return ret;
1036 }
1037
1038 #ifdef CONFIG_FS_ENCRYPTION
1039 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1040                                   get_block_t *get_block)
1041 {
1042         unsigned from = pos & (PAGE_SIZE - 1);
1043         unsigned to = from + len;
1044         struct inode *inode = page->mapping->host;
1045         unsigned block_start, block_end;
1046         sector_t block;
1047         int err = 0;
1048         unsigned blocksize = inode->i_sb->s_blocksize;
1049         unsigned bbits;
1050         struct buffer_head *bh, *head, *wait[2];
1051         int nr_wait = 0;
1052         int i;
1053
1054         BUG_ON(!PageLocked(page));
1055         BUG_ON(from > PAGE_SIZE);
1056         BUG_ON(to > PAGE_SIZE);
1057         BUG_ON(from > to);
1058
1059         if (!page_has_buffers(page))
1060                 create_empty_buffers(page, blocksize, 0);
1061         head = page_buffers(page);
1062         bbits = ilog2(blocksize);
1063         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1064
1065         for (bh = head, block_start = 0; bh != head || !block_start;
1066             block++, block_start = block_end, bh = bh->b_this_page) {
1067                 block_end = block_start + blocksize;
1068                 if (block_end <= from || block_start >= to) {
1069                         if (PageUptodate(page)) {
1070                                 set_buffer_uptodate(bh);
1071                         }
1072                         continue;
1073                 }
1074                 if (buffer_new(bh))
1075                         clear_buffer_new(bh);
1076                 if (!buffer_mapped(bh)) {
1077                         WARN_ON(bh->b_size != blocksize);
1078                         err = get_block(inode, block, bh, 1);
1079                         if (err)
1080                                 break;
1081                         if (buffer_new(bh)) {
1082                                 if (PageUptodate(page)) {
1083                                         clear_buffer_new(bh);
1084                                         set_buffer_uptodate(bh);
1085                                         mark_buffer_dirty(bh);
1086                                         continue;
1087                                 }
1088                                 if (block_end > to || block_start < from)
1089                                         zero_user_segments(page, to, block_end,
1090                                                            block_start, from);
1091                                 continue;
1092                         }
1093                 }
1094                 if (PageUptodate(page)) {
1095                         set_buffer_uptodate(bh);
1096                         continue;
1097                 }
1098                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1099                     !buffer_unwritten(bh) &&
1100                     (block_start < from || block_end > to)) {
1101                         ext4_read_bh_lock(bh, 0, false);
1102                         wait[nr_wait++] = bh;
1103                 }
1104         }
1105         /*
1106          * If we issued read requests, let them complete.
1107          */
1108         for (i = 0; i < nr_wait; i++) {
1109                 wait_on_buffer(wait[i]);
1110                 if (!buffer_uptodate(wait[i]))
1111                         err = -EIO;
1112         }
1113         if (unlikely(err)) {
1114                 page_zero_new_buffers(page, from, to);
1115         } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1116                 for (i = 0; i < nr_wait; i++) {
1117                         int err2;
1118
1119                         err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1120                                                                 bh_offset(wait[i]));
1121                         if (err2) {
1122                                 clear_buffer_uptodate(wait[i]);
1123                                 err = err2;
1124                         }
1125                 }
1126         }
1127
1128         return err;
1129 }
1130 #endif
1131
1132 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1133                             loff_t pos, unsigned len, unsigned flags,
1134                             struct page **pagep, void **fsdata)
1135 {
1136         struct inode *inode = mapping->host;
1137         int ret, needed_blocks;
1138         handle_t *handle;
1139         int retries = 0;
1140         struct page *page;
1141         pgoff_t index;
1142         unsigned from, to;
1143
1144         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1145                 return -EIO;
1146
1147         trace_ext4_write_begin(inode, pos, len, flags);
1148         /*
1149          * Reserve one block more for addition to orphan list in case
1150          * we allocate blocks but write fails for some reason
1151          */
1152         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1153         index = pos >> PAGE_SHIFT;
1154         from = pos & (PAGE_SIZE - 1);
1155         to = from + len;
1156
1157         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1158                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1159                                                     flags, pagep);
1160                 if (ret < 0)
1161                         return ret;
1162                 if (ret == 1)
1163                         return 0;
1164         }
1165
1166         /*
1167          * grab_cache_page_write_begin() can take a long time if the
1168          * system is thrashing due to memory pressure, or if the page
1169          * is being written back.  So grab it first before we start
1170          * the transaction handle.  This also allows us to allocate
1171          * the page (if needed) without using GFP_NOFS.
1172          */
1173 retry_grab:
1174         page = grab_cache_page_write_begin(mapping, index, flags);
1175         if (!page)
1176                 return -ENOMEM;
1177         unlock_page(page);
1178
1179 retry_journal:
1180         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1181         if (IS_ERR(handle)) {
1182                 put_page(page);
1183                 return PTR_ERR(handle);
1184         }
1185
1186         lock_page(page);
1187         if (page->mapping != mapping) {
1188                 /* The page got truncated from under us */
1189                 unlock_page(page);
1190                 put_page(page);
1191                 ext4_journal_stop(handle);
1192                 goto retry_grab;
1193         }
1194         /* In case writeback began while the page was unlocked */
1195         wait_for_stable_page(page);
1196
1197 #ifdef CONFIG_FS_ENCRYPTION
1198         if (ext4_should_dioread_nolock(inode))
1199                 ret = ext4_block_write_begin(page, pos, len,
1200                                              ext4_get_block_unwritten);
1201         else
1202                 ret = ext4_block_write_begin(page, pos, len,
1203                                              ext4_get_block);
1204 #else
1205         if (ext4_should_dioread_nolock(inode))
1206                 ret = __block_write_begin(page, pos, len,
1207                                           ext4_get_block_unwritten);
1208         else
1209                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1210 #endif
1211         if (!ret && ext4_should_journal_data(inode)) {
1212                 ret = ext4_walk_page_buffers(handle, inode,
1213                                              page_buffers(page), from, to, NULL,
1214                                              do_journal_get_write_access);
1215         }
1216
1217         if (ret) {
1218                 bool extended = (pos + len > inode->i_size) &&
1219                                 !ext4_verity_in_progress(inode);
1220
1221                 unlock_page(page);
1222                 /*
1223                  * __block_write_begin may have instantiated a few blocks
1224                  * outside i_size.  Trim these off again. Don't need
1225                  * i_size_read because we hold i_mutex.
1226                  *
1227                  * Add inode to orphan list in case we crash before
1228                  * truncate finishes
1229                  */
1230                 if (extended && ext4_can_truncate(inode))
1231                         ext4_orphan_add(handle, inode);
1232
1233                 ext4_journal_stop(handle);
1234                 if (extended) {
1235                         ext4_truncate_failed_write(inode);
1236                         /*
1237                          * If truncate failed early the inode might
1238                          * still be on the orphan list; we need to
1239                          * make sure the inode is removed from the
1240                          * orphan list in that case.
1241                          */
1242                         if (inode->i_nlink)
1243                                 ext4_orphan_del(NULL, inode);
1244                 }
1245
1246                 if (ret == -ENOSPC &&
1247                     ext4_should_retry_alloc(inode->i_sb, &retries))
1248                         goto retry_journal;
1249                 put_page(page);
1250                 return ret;
1251         }
1252         *pagep = page;
1253         return ret;
1254 }
1255
1256 /* For write_end() in data=journal mode */
1257 static int write_end_fn(handle_t *handle, struct inode *inode,
1258                         struct buffer_head *bh)
1259 {
1260         int ret;
1261         if (!buffer_mapped(bh) || buffer_freed(bh))
1262                 return 0;
1263         set_buffer_uptodate(bh);
1264         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1265         clear_buffer_meta(bh);
1266         clear_buffer_prio(bh);
1267         return ret;
1268 }
1269
1270 /*
1271  * We need to pick up the new inode size which generic_commit_write gave us
1272  * `file' can be NULL - eg, when called from page_symlink().
1273  *
1274  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1275  * buffers are managed internally.
1276  */
1277 static int ext4_write_end(struct file *file,
1278                           struct address_space *mapping,
1279                           loff_t pos, unsigned len, unsigned copied,
1280                           struct page *page, void *fsdata)
1281 {
1282         handle_t *handle = ext4_journal_current_handle();
1283         struct inode *inode = mapping->host;
1284         loff_t old_size = inode->i_size;
1285         int ret = 0, ret2;
1286         int i_size_changed = 0;
1287         int inline_data = ext4_has_inline_data(inode);
1288         bool verity = ext4_verity_in_progress(inode);
1289
1290         trace_ext4_write_end(inode, pos, len, copied);
1291         if (inline_data) {
1292                 ret = ext4_write_inline_data_end(inode, pos, len,
1293                                                  copied, page);
1294                 if (ret < 0) {
1295                         unlock_page(page);
1296                         put_page(page);
1297                         goto errout;
1298                 }
1299                 copied = ret;
1300         } else
1301                 copied = block_write_end(file, mapping, pos,
1302                                          len, copied, page, fsdata);
1303         /*
1304          * it's important to update i_size while still holding page lock:
1305          * page writeout could otherwise come in and zero beyond i_size.
1306          *
1307          * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1308          * blocks are being written past EOF, so skip the i_size update.
1309          */
1310         if (!verity)
1311                 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1312         unlock_page(page);
1313         put_page(page);
1314
1315         if (old_size < pos && !verity)
1316                 pagecache_isize_extended(inode, old_size, pos);
1317         /*
1318          * Don't mark the inode dirty under page lock. First, it unnecessarily
1319          * makes the holding time of page lock longer. Second, it forces lock
1320          * ordering of page lock and transaction start for journaling
1321          * filesystems.
1322          */
1323         if (i_size_changed || inline_data)
1324                 ret = ext4_mark_inode_dirty(handle, inode);
1325
1326         if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1327                 /* if we have allocated more blocks and copied
1328                  * less. We will have blocks allocated outside
1329                  * inode->i_size. So truncate them
1330                  */
1331                 ext4_orphan_add(handle, inode);
1332 errout:
1333         ret2 = ext4_journal_stop(handle);
1334         if (!ret)
1335                 ret = ret2;
1336
1337         if (pos + len > inode->i_size && !verity) {
1338                 ext4_truncate_failed_write(inode);
1339                 /*
1340                  * If truncate failed early the inode might still be
1341                  * on the orphan list; we need to make sure the inode
1342                  * is removed from the orphan list in that case.
1343                  */
1344                 if (inode->i_nlink)
1345                         ext4_orphan_del(NULL, inode);
1346         }
1347
1348         return ret ? ret : copied;
1349 }
1350
1351 /*
1352  * This is a private version of page_zero_new_buffers() which doesn't
1353  * set the buffer to be dirty, since in data=journalled mode we need
1354  * to call ext4_handle_dirty_metadata() instead.
1355  */
1356 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1357                                             struct inode *inode,
1358                                             struct page *page,
1359                                             unsigned from, unsigned to)
1360 {
1361         unsigned int block_start = 0, block_end;
1362         struct buffer_head *head, *bh;
1363
1364         bh = head = page_buffers(page);
1365         do {
1366                 block_end = block_start + bh->b_size;
1367                 if (buffer_new(bh)) {
1368                         if (block_end > from && block_start < to) {
1369                                 if (!PageUptodate(page)) {
1370                                         unsigned start, size;
1371
1372                                         start = max(from, block_start);
1373                                         size = min(to, block_end) - start;
1374
1375                                         zero_user(page, start, size);
1376                                         write_end_fn(handle, inode, bh);
1377                                 }
1378                                 clear_buffer_new(bh);
1379                         }
1380                 }
1381                 block_start = block_end;
1382                 bh = bh->b_this_page;
1383         } while (bh != head);
1384 }
1385
1386 static int ext4_journalled_write_end(struct file *file,
1387                                      struct address_space *mapping,
1388                                      loff_t pos, unsigned len, unsigned copied,
1389                                      struct page *page, void *fsdata)
1390 {
1391         handle_t *handle = ext4_journal_current_handle();
1392         struct inode *inode = mapping->host;
1393         loff_t old_size = inode->i_size;
1394         int ret = 0, ret2;
1395         int partial = 0;
1396         unsigned from, to;
1397         int size_changed = 0;
1398         int inline_data = ext4_has_inline_data(inode);
1399         bool verity = ext4_verity_in_progress(inode);
1400
1401         trace_ext4_journalled_write_end(inode, pos, len, copied);
1402         from = pos & (PAGE_SIZE - 1);
1403         to = from + len;
1404
1405         BUG_ON(!ext4_handle_valid(handle));
1406
1407         if (inline_data) {
1408                 ret = ext4_write_inline_data_end(inode, pos, len,
1409                                                  copied, page);
1410                 if (ret < 0) {
1411                         unlock_page(page);
1412                         put_page(page);
1413                         goto errout;
1414                 }
1415                 copied = ret;
1416         } else if (unlikely(copied < len) && !PageUptodate(page)) {
1417                 copied = 0;
1418                 ext4_journalled_zero_new_buffers(handle, inode, page, from, to);
1419         } else {
1420                 if (unlikely(copied < len))
1421                         ext4_journalled_zero_new_buffers(handle, inode, page,
1422                                                          from + copied, to);
1423                 ret = ext4_walk_page_buffers(handle, inode, page_buffers(page),
1424                                              from, from + copied, &partial,
1425                                              write_end_fn);
1426                 if (!partial)
1427                         SetPageUptodate(page);
1428         }
1429         if (!verity)
1430                 size_changed = ext4_update_inode_size(inode, pos + copied);
1431         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1432         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1433         unlock_page(page);
1434         put_page(page);
1435
1436         if (old_size < pos && !verity)
1437                 pagecache_isize_extended(inode, old_size, pos);
1438
1439         if (size_changed || inline_data) {
1440                 ret2 = ext4_mark_inode_dirty(handle, inode);
1441                 if (!ret)
1442                         ret = ret2;
1443         }
1444
1445         if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1446                 /* if we have allocated more blocks and copied
1447                  * less. We will have blocks allocated outside
1448                  * inode->i_size. So truncate them
1449                  */
1450                 ext4_orphan_add(handle, inode);
1451
1452 errout:
1453         ret2 = ext4_journal_stop(handle);
1454         if (!ret)
1455                 ret = ret2;
1456         if (pos + len > inode->i_size && !verity) {
1457                 ext4_truncate_failed_write(inode);
1458                 /*
1459                  * If truncate failed early the inode might still be
1460                  * on the orphan list; we need to make sure the inode
1461                  * is removed from the orphan list in that case.
1462                  */
1463                 if (inode->i_nlink)
1464                         ext4_orphan_del(NULL, inode);
1465         }
1466
1467         return ret ? ret : copied;
1468 }
1469
1470 /*
1471  * Reserve space for a single cluster
1472  */
1473 static int ext4_da_reserve_space(struct inode *inode)
1474 {
1475         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1476         struct ext4_inode_info *ei = EXT4_I(inode);
1477         int ret;
1478
1479         /*
1480          * We will charge metadata quota at writeout time; this saves
1481          * us from metadata over-estimation, though we may go over by
1482          * a small amount in the end.  Here we just reserve for data.
1483          */
1484         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1485         if (ret)
1486                 return ret;
1487
1488         spin_lock(&ei->i_block_reservation_lock);
1489         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1490                 spin_unlock(&ei->i_block_reservation_lock);
1491                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1492                 return -ENOSPC;
1493         }
1494         ei->i_reserved_data_blocks++;
1495         trace_ext4_da_reserve_space(inode);
1496         spin_unlock(&ei->i_block_reservation_lock);
1497
1498         return 0;       /* success */
1499 }
1500
1501 void ext4_da_release_space(struct inode *inode, int to_free)
1502 {
1503         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1504         struct ext4_inode_info *ei = EXT4_I(inode);
1505
1506         if (!to_free)
1507                 return;         /* Nothing to release, exit */
1508
1509         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1510
1511         trace_ext4_da_release_space(inode, to_free);
1512         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1513                 /*
1514                  * if there aren't enough reserved blocks, then the
1515                  * counter is messed up somewhere.  Since this
1516                  * function is called from invalidate page, it's
1517                  * harmless to return without any action.
1518                  */
1519                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1520                          "ino %lu, to_free %d with only %d reserved "
1521                          "data blocks", inode->i_ino, to_free,
1522                          ei->i_reserved_data_blocks);
1523                 WARN_ON(1);
1524                 to_free = ei->i_reserved_data_blocks;
1525         }
1526         ei->i_reserved_data_blocks -= to_free;
1527
1528         /* update fs dirty data blocks counter */
1529         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1530
1531         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1532
1533         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1534 }
1535
1536 /*
1537  * Delayed allocation stuff
1538  */
1539
1540 struct mpage_da_data {
1541         struct inode *inode;
1542         struct writeback_control *wbc;
1543
1544         pgoff_t first_page;     /* The first page to write */
1545         pgoff_t next_page;      /* Current page to examine */
1546         pgoff_t last_page;      /* Last page to examine */
1547         /*
1548          * Extent to map - this can be after first_page because that can be
1549          * fully mapped. We somewhat abuse m_flags to store whether the extent
1550          * is delalloc or unwritten.
1551          */
1552         struct ext4_map_blocks map;
1553         struct ext4_io_submit io_submit;        /* IO submission data */
1554         unsigned int do_map:1;
1555         unsigned int scanned_until_end:1;
1556 };
1557
1558 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1559                                        bool invalidate)
1560 {
1561         int nr_pages, i;
1562         pgoff_t index, end;
1563         struct pagevec pvec;
1564         struct inode *inode = mpd->inode;
1565         struct address_space *mapping = inode->i_mapping;
1566
1567         /* This is necessary when next_page == 0. */
1568         if (mpd->first_page >= mpd->next_page)
1569                 return;
1570
1571         mpd->scanned_until_end = 0;
1572         index = mpd->first_page;
1573         end   = mpd->next_page - 1;
1574         if (invalidate) {
1575                 ext4_lblk_t start, last;
1576                 start = index << (PAGE_SHIFT - inode->i_blkbits);
1577                 last = end << (PAGE_SHIFT - inode->i_blkbits);
1578                 ext4_es_remove_extent(inode, start, last - start + 1);
1579         }
1580
1581         pagevec_init(&pvec);
1582         while (index <= end) {
1583                 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1584                 if (nr_pages == 0)
1585                         break;
1586                 for (i = 0; i < nr_pages; i++) {
1587                         struct page *page = pvec.pages[i];
1588
1589                         BUG_ON(!PageLocked(page));
1590                         BUG_ON(PageWriteback(page));
1591                         if (invalidate) {
1592                                 if (page_mapped(page))
1593                                         clear_page_dirty_for_io(page);
1594                                 block_invalidatepage(page, 0, PAGE_SIZE);
1595                                 ClearPageUptodate(page);
1596                         }
1597                         unlock_page(page);
1598                 }
1599                 pagevec_release(&pvec);
1600         }
1601 }
1602
1603 static void ext4_print_free_blocks(struct inode *inode)
1604 {
1605         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1606         struct super_block *sb = inode->i_sb;
1607         struct ext4_inode_info *ei = EXT4_I(inode);
1608
1609         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1610                EXT4_C2B(EXT4_SB(inode->i_sb),
1611                         ext4_count_free_clusters(sb)));
1612         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1613         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1614                (long long) EXT4_C2B(EXT4_SB(sb),
1615                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1616         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1617                (long long) EXT4_C2B(EXT4_SB(sb),
1618                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1619         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1620         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1621                  ei->i_reserved_data_blocks);
1622         return;
1623 }
1624
1625 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct inode *inode,
1626                                       struct buffer_head *bh)
1627 {
1628         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1629 }
1630
1631 /*
1632  * ext4_insert_delayed_block - adds a delayed block to the extents status
1633  *                             tree, incrementing the reserved cluster/block
1634  *                             count or making a pending reservation
1635  *                             where needed
1636  *
1637  * @inode - file containing the newly added block
1638  * @lblk - logical block to be added
1639  *
1640  * Returns 0 on success, negative error code on failure.
1641  */
1642 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1643 {
1644         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1645         int ret;
1646         bool allocated = false;
1647
1648         /*
1649          * If the cluster containing lblk is shared with a delayed,
1650          * written, or unwritten extent in a bigalloc file system, it's
1651          * already been accounted for and does not need to be reserved.
1652          * A pending reservation must be made for the cluster if it's
1653          * shared with a written or unwritten extent and doesn't already
1654          * have one.  Written and unwritten extents can be purged from the
1655          * extents status tree if the system is under memory pressure, so
1656          * it's necessary to examine the extent tree if a search of the
1657          * extents status tree doesn't get a match.
1658          */
1659         if (sbi->s_cluster_ratio == 1) {
1660                 ret = ext4_da_reserve_space(inode);
1661                 if (ret != 0)   /* ENOSPC */
1662                         goto errout;
1663         } else {   /* bigalloc */
1664                 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1665                         if (!ext4_es_scan_clu(inode,
1666                                               &ext4_es_is_mapped, lblk)) {
1667                                 ret = ext4_clu_mapped(inode,
1668                                                       EXT4_B2C(sbi, lblk));
1669                                 if (ret < 0)
1670                                         goto errout;
1671                                 if (ret == 0) {
1672                                         ret = ext4_da_reserve_space(inode);
1673                                         if (ret != 0)   /* ENOSPC */
1674                                                 goto errout;
1675                                 } else {
1676                                         allocated = true;
1677                                 }
1678                         } else {
1679                                 allocated = true;
1680                         }
1681                 }
1682         }
1683
1684         ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1685
1686 errout:
1687         return ret;
1688 }
1689
1690 /*
1691  * This function is grabs code from the very beginning of
1692  * ext4_map_blocks, but assumes that the caller is from delayed write
1693  * time. This function looks up the requested blocks and sets the
1694  * buffer delay bit under the protection of i_data_sem.
1695  */
1696 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1697                               struct ext4_map_blocks *map,
1698                               struct buffer_head *bh)
1699 {
1700         struct extent_status es;
1701         int retval;
1702         sector_t invalid_block = ~((sector_t) 0xffff);
1703 #ifdef ES_AGGRESSIVE_TEST
1704         struct ext4_map_blocks orig_map;
1705
1706         memcpy(&orig_map, map, sizeof(*map));
1707 #endif
1708
1709         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1710                 invalid_block = ~0;
1711
1712         map->m_flags = 0;
1713         ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1714                   (unsigned long) map->m_lblk);
1715
1716         /* Lookup extent status tree firstly */
1717         if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1718                 if (ext4_es_is_hole(&es)) {
1719                         retval = 0;
1720                         down_read(&EXT4_I(inode)->i_data_sem);
1721                         goto add_delayed;
1722                 }
1723
1724                 /*
1725                  * Delayed extent could be allocated by fallocate.
1726                  * So we need to check it.
1727                  */
1728                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1729                         map_bh(bh, inode->i_sb, invalid_block);
1730                         set_buffer_new(bh);
1731                         set_buffer_delay(bh);
1732                         return 0;
1733                 }
1734
1735                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1736                 retval = es.es_len - (iblock - es.es_lblk);
1737                 if (retval > map->m_len)
1738                         retval = map->m_len;
1739                 map->m_len = retval;
1740                 if (ext4_es_is_written(&es))
1741                         map->m_flags |= EXT4_MAP_MAPPED;
1742                 else if (ext4_es_is_unwritten(&es))
1743                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1744                 else
1745                         BUG();
1746
1747 #ifdef ES_AGGRESSIVE_TEST
1748                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1749 #endif
1750                 return retval;
1751         }
1752
1753         /*
1754          * Try to see if we can get the block without requesting a new
1755          * file system block.
1756          */
1757         down_read(&EXT4_I(inode)->i_data_sem);
1758         if (ext4_has_inline_data(inode))
1759                 retval = 0;
1760         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1761                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1762         else
1763                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1764
1765 add_delayed:
1766         if (retval == 0) {
1767                 int ret;
1768
1769                 /*
1770                  * XXX: __block_prepare_write() unmaps passed block,
1771                  * is it OK?
1772                  */
1773
1774                 ret = ext4_insert_delayed_block(inode, map->m_lblk);
1775                 if (ret != 0) {
1776                         retval = ret;
1777                         goto out_unlock;
1778                 }
1779
1780                 map_bh(bh, inode->i_sb, invalid_block);
1781                 set_buffer_new(bh);
1782                 set_buffer_delay(bh);
1783         } else if (retval > 0) {
1784                 int ret;
1785                 unsigned int status;
1786
1787                 if (unlikely(retval != map->m_len)) {
1788                         ext4_warning(inode->i_sb,
1789                                      "ES len assertion failed for inode "
1790                                      "%lu: retval %d != map->m_len %d",
1791                                      inode->i_ino, retval, map->m_len);
1792                         WARN_ON(1);
1793                 }
1794
1795                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1796                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1797                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1798                                             map->m_pblk, status);
1799                 if (ret != 0)
1800                         retval = ret;
1801         }
1802
1803 out_unlock:
1804         up_read((&EXT4_I(inode)->i_data_sem));
1805
1806         return retval;
1807 }
1808
1809 /*
1810  * This is a special get_block_t callback which is used by
1811  * ext4_da_write_begin().  It will either return mapped block or
1812  * reserve space for a single block.
1813  *
1814  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1815  * We also have b_blocknr = -1 and b_bdev initialized properly
1816  *
1817  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1818  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1819  * initialized properly.
1820  */
1821 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1822                            struct buffer_head *bh, int create)
1823 {
1824         struct ext4_map_blocks map;
1825         int ret = 0;
1826
1827         BUG_ON(create == 0);
1828         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1829
1830         map.m_lblk = iblock;
1831         map.m_len = 1;
1832
1833         /*
1834          * first, we need to know whether the block is allocated already
1835          * preallocated blocks are unmapped but should treated
1836          * the same as allocated blocks.
1837          */
1838         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1839         if (ret <= 0)
1840                 return ret;
1841
1842         map_bh(bh, inode->i_sb, map.m_pblk);
1843         ext4_update_bh_state(bh, map.m_flags);
1844
1845         if (buffer_unwritten(bh)) {
1846                 /* A delayed write to unwritten bh should be marked
1847                  * new and mapped.  Mapped ensures that we don't do
1848                  * get_block multiple times when we write to the same
1849                  * offset and new ensures that we do proper zero out
1850                  * for partial write.
1851                  */
1852                 set_buffer_new(bh);
1853                 set_buffer_mapped(bh);
1854         }
1855         return 0;
1856 }
1857
1858 static int bget_one(handle_t *handle, struct inode *inode,
1859                     struct buffer_head *bh)
1860 {
1861         get_bh(bh);
1862         return 0;
1863 }
1864
1865 static int bput_one(handle_t *handle, struct inode *inode,
1866                     struct buffer_head *bh)
1867 {
1868         put_bh(bh);
1869         return 0;
1870 }
1871
1872 static int __ext4_journalled_writepage(struct page *page,
1873                                        unsigned int len)
1874 {
1875         struct address_space *mapping = page->mapping;
1876         struct inode *inode = mapping->host;
1877         struct buffer_head *page_bufs = NULL;
1878         handle_t *handle = NULL;
1879         int ret = 0, err = 0;
1880         int inline_data = ext4_has_inline_data(inode);
1881         struct buffer_head *inode_bh = NULL;
1882
1883         ClearPageChecked(page);
1884
1885         if (inline_data) {
1886                 BUG_ON(page->index != 0);
1887                 BUG_ON(len > ext4_get_max_inline_size(inode));
1888                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1889                 if (inode_bh == NULL)
1890                         goto out;
1891         } else {
1892                 page_bufs = page_buffers(page);
1893                 if (!page_bufs) {
1894                         BUG();
1895                         goto out;
1896                 }
1897                 ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1898                                        NULL, bget_one);
1899         }
1900         /*
1901          * We need to release the page lock before we start the
1902          * journal, so grab a reference so the page won't disappear
1903          * out from under us.
1904          */
1905         get_page(page);
1906         unlock_page(page);
1907
1908         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1909                                     ext4_writepage_trans_blocks(inode));
1910         if (IS_ERR(handle)) {
1911                 ret = PTR_ERR(handle);
1912                 put_page(page);
1913                 goto out_no_pagelock;
1914         }
1915         BUG_ON(!ext4_handle_valid(handle));
1916
1917         lock_page(page);
1918         put_page(page);
1919         if (page->mapping != mapping) {
1920                 /* The page got truncated from under us */
1921                 ext4_journal_stop(handle);
1922                 ret = 0;
1923                 goto out;
1924         }
1925
1926         if (inline_data) {
1927                 ret = ext4_mark_inode_dirty(handle, inode);
1928         } else {
1929                 ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1930                                              NULL, do_journal_get_write_access);
1931
1932                 err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1933                                              NULL, write_end_fn);
1934         }
1935         if (ret == 0)
1936                 ret = err;
1937         err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len);
1938         if (ret == 0)
1939                 ret = err;
1940         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1941         err = ext4_journal_stop(handle);
1942         if (!ret)
1943                 ret = err;
1944
1945         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1946 out:
1947         unlock_page(page);
1948 out_no_pagelock:
1949         if (!inline_data && page_bufs)
1950                 ext4_walk_page_buffers(NULL, inode, page_bufs, 0, len,
1951                                        NULL, bput_one);
1952         brelse(inode_bh);
1953         return ret;
1954 }
1955
1956 /*
1957  * Note that we don't need to start a transaction unless we're journaling data
1958  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1959  * need to file the inode to the transaction's list in ordered mode because if
1960  * we are writing back data added by write(), the inode is already there and if
1961  * we are writing back data modified via mmap(), no one guarantees in which
1962  * transaction the data will hit the disk. In case we are journaling data, we
1963  * cannot start transaction directly because transaction start ranks above page
1964  * lock so we have to do some magic.
1965  *
1966  * This function can get called via...
1967  *   - ext4_writepages after taking page lock (have journal handle)
1968  *   - journal_submit_inode_data_buffers (no journal handle)
1969  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1970  *   - grab_page_cache when doing write_begin (have journal handle)
1971  *
1972  * We don't do any block allocation in this function. If we have page with
1973  * multiple blocks we need to write those buffer_heads that are mapped. This
1974  * is important for mmaped based write. So if we do with blocksize 1K
1975  * truncate(f, 1024);
1976  * a = mmap(f, 0, 4096);
1977  * a[0] = 'a';
1978  * truncate(f, 4096);
1979  * we have in the page first buffer_head mapped via page_mkwrite call back
1980  * but other buffer_heads would be unmapped but dirty (dirty done via the
1981  * do_wp_page). So writepage should write the first block. If we modify
1982  * the mmap area beyond 1024 we will again get a page_fault and the
1983  * page_mkwrite callback will do the block allocation and mark the
1984  * buffer_heads mapped.
1985  *
1986  * We redirty the page if we have any buffer_heads that is either delay or
1987  * unwritten in the page.
1988  *
1989  * We can get recursively called as show below.
1990  *
1991  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1992  *              ext4_writepage()
1993  *
1994  * But since we don't do any block allocation we should not deadlock.
1995  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1996  */
1997 static int ext4_writepage(struct page *page,
1998                           struct writeback_control *wbc)
1999 {
2000         int ret = 0;
2001         loff_t size;
2002         unsigned int len;
2003         struct buffer_head *page_bufs = NULL;
2004         struct inode *inode = page->mapping->host;
2005         struct ext4_io_submit io_submit;
2006         bool keep_towrite = false;
2007
2008         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2009                 inode->i_mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
2010                 unlock_page(page);
2011                 return -EIO;
2012         }
2013
2014         trace_ext4_writepage(page);
2015         size = i_size_read(inode);
2016         if (page->index == size >> PAGE_SHIFT &&
2017             !ext4_verity_in_progress(inode))
2018                 len = size & ~PAGE_MASK;
2019         else
2020                 len = PAGE_SIZE;
2021
2022         page_bufs = page_buffers(page);
2023         /*
2024          * We cannot do block allocation or other extent handling in this
2025          * function. If there are buffers needing that, we have to redirty
2026          * the page. But we may reach here when we do a journal commit via
2027          * journal_submit_inode_data_buffers() and in that case we must write
2028          * allocated buffers to achieve data=ordered mode guarantees.
2029          *
2030          * Also, if there is only one buffer per page (the fs block
2031          * size == the page size), if one buffer needs block
2032          * allocation or needs to modify the extent tree to clear the
2033          * unwritten flag, we know that the page can't be written at
2034          * all, so we might as well refuse the write immediately.
2035          * Unfortunately if the block size != page size, we can't as
2036          * easily detect this case using ext4_walk_page_buffers(), but
2037          * for the extremely common case, this is an optimization that
2038          * skips a useless round trip through ext4_bio_write_page().
2039          */
2040         if (ext4_walk_page_buffers(NULL, inode, page_bufs, 0, len, NULL,
2041                                    ext4_bh_delay_or_unwritten)) {
2042                 redirty_page_for_writepage(wbc, page);
2043                 if ((current->flags & PF_MEMALLOC) ||
2044                     (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2045                         /*
2046                          * For memory cleaning there's no point in writing only
2047                          * some buffers. So just bail out. Warn if we came here
2048                          * from direct reclaim.
2049                          */
2050                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2051                                                         == PF_MEMALLOC);
2052                         unlock_page(page);
2053                         return 0;
2054                 }
2055                 keep_towrite = true;
2056         }
2057
2058         if (PageChecked(page) && ext4_should_journal_data(inode))
2059                 /*
2060                  * It's mmapped pagecache.  Add buffers and journal it.  There
2061                  * doesn't seem much point in redirtying the page here.
2062                  */
2063                 return __ext4_journalled_writepage(page, len);
2064
2065         ext4_io_submit_init(&io_submit, wbc);
2066         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2067         if (!io_submit.io_end) {
2068                 redirty_page_for_writepage(wbc, page);
2069                 unlock_page(page);
2070                 return -ENOMEM;
2071         }
2072         ret = ext4_bio_write_page(&io_submit, page, len, keep_towrite);
2073         ext4_io_submit(&io_submit);
2074         /* Drop io_end reference we got from init */
2075         ext4_put_io_end_defer(io_submit.io_end);
2076         return ret;
2077 }
2078
2079 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2080 {
2081         int len;
2082         loff_t size;
2083         int err;
2084
2085         BUG_ON(page->index != mpd->first_page);
2086         clear_page_dirty_for_io(page);
2087         /*
2088          * We have to be very careful here!  Nothing protects writeback path
2089          * against i_size changes and the page can be writeably mapped into
2090          * page tables. So an application can be growing i_size and writing
2091          * data through mmap while writeback runs. clear_page_dirty_for_io()
2092          * write-protects our page in page tables and the page cannot get
2093          * written to again until we release page lock. So only after
2094          * clear_page_dirty_for_io() we are safe to sample i_size for
2095          * ext4_bio_write_page() to zero-out tail of the written page. We rely
2096          * on the barrier provided by TestClearPageDirty in
2097          * clear_page_dirty_for_io() to make sure i_size is really sampled only
2098          * after page tables are updated.
2099          */
2100         size = i_size_read(mpd->inode);
2101         if (page->index == size >> PAGE_SHIFT &&
2102             !ext4_verity_in_progress(mpd->inode))
2103                 len = size & ~PAGE_MASK;
2104         else
2105                 len = PAGE_SIZE;
2106         err = ext4_bio_write_page(&mpd->io_submit, page, len, false);
2107         if (!err)
2108                 mpd->wbc->nr_to_write--;
2109         mpd->first_page++;
2110
2111         return err;
2112 }
2113
2114 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
2115
2116 /*
2117  * mballoc gives us at most this number of blocks...
2118  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2119  * The rest of mballoc seems to handle chunks up to full group size.
2120  */
2121 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2122
2123 /*
2124  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2125  *
2126  * @mpd - extent of blocks
2127  * @lblk - logical number of the block in the file
2128  * @bh - buffer head we want to add to the extent
2129  *
2130  * The function is used to collect contig. blocks in the same state. If the
2131  * buffer doesn't require mapping for writeback and we haven't started the
2132  * extent of buffers to map yet, the function returns 'true' immediately - the
2133  * caller can write the buffer right away. Otherwise the function returns true
2134  * if the block has been added to the extent, false if the block couldn't be
2135  * added.
2136  */
2137 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2138                                    struct buffer_head *bh)
2139 {
2140         struct ext4_map_blocks *map = &mpd->map;
2141
2142         /* Buffer that doesn't need mapping for writeback? */
2143         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2144             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2145                 /* So far no extent to map => we write the buffer right away */
2146                 if (map->m_len == 0)
2147                         return true;
2148                 return false;
2149         }
2150
2151         /* First block in the extent? */
2152         if (map->m_len == 0) {
2153                 /* We cannot map unless handle is started... */
2154                 if (!mpd->do_map)
2155                         return false;
2156                 map->m_lblk = lblk;
2157                 map->m_len = 1;
2158                 map->m_flags = bh->b_state & BH_FLAGS;
2159                 return true;
2160         }
2161
2162         /* Don't go larger than mballoc is willing to allocate */
2163         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2164                 return false;
2165
2166         /* Can we merge the block to our big extent? */
2167         if (lblk == map->m_lblk + map->m_len &&
2168             (bh->b_state & BH_FLAGS) == map->m_flags) {
2169                 map->m_len++;
2170                 return true;
2171         }
2172         return false;
2173 }
2174
2175 /*
2176  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2177  *
2178  * @mpd - extent of blocks for mapping
2179  * @head - the first buffer in the page
2180  * @bh - buffer we should start processing from
2181  * @lblk - logical number of the block in the file corresponding to @bh
2182  *
2183  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2184  * the page for IO if all buffers in this page were mapped and there's no
2185  * accumulated extent of buffers to map or add buffers in the page to the
2186  * extent of buffers to map. The function returns 1 if the caller can continue
2187  * by processing the next page, 0 if it should stop adding buffers to the
2188  * extent to map because we cannot extend it anymore. It can also return value
2189  * < 0 in case of error during IO submission.
2190  */
2191 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2192                                    struct buffer_head *head,
2193                                    struct buffer_head *bh,
2194                                    ext4_lblk_t lblk)
2195 {
2196         struct inode *inode = mpd->inode;
2197         int err;
2198         ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2199                                                         >> inode->i_blkbits;
2200
2201         if (ext4_verity_in_progress(inode))
2202                 blocks = EXT_MAX_BLOCKS;
2203
2204         do {
2205                 BUG_ON(buffer_locked(bh));
2206
2207                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2208                         /* Found extent to map? */
2209                         if (mpd->map.m_len)
2210                                 return 0;
2211                         /* Buffer needs mapping and handle is not started? */
2212                         if (!mpd->do_map)
2213                                 return 0;
2214                         /* Everything mapped so far and we hit EOF */
2215                         break;
2216                 }
2217         } while (lblk++, (bh = bh->b_this_page) != head);
2218         /* So far everything mapped? Submit the page for IO. */
2219         if (mpd->map.m_len == 0) {
2220                 err = mpage_submit_page(mpd, head->b_page);
2221                 if (err < 0)
2222                         return err;
2223         }
2224         if (lblk >= blocks) {
2225                 mpd->scanned_until_end = 1;
2226                 return 0;
2227         }
2228         return 1;
2229 }
2230
2231 /*
2232  * mpage_process_page - update page buffers corresponding to changed extent and
2233  *                     may submit fully mapped page for IO
2234  *
2235  * @mpd         - description of extent to map, on return next extent to map
2236  * @m_lblk      - logical block mapping.
2237  * @m_pblk      - corresponding physical mapping.
2238  * @map_bh      - determines on return whether this page requires any further
2239  *                mapping or not.
2240  * Scan given page buffers corresponding to changed extent and update buffer
2241  * state according to new extent state.
2242  * We map delalloc buffers to their physical location, clear unwritten bits.
2243  * If the given page is not fully mapped, we update @map to the next extent in
2244  * the given page that needs mapping & return @map_bh as true.
2245  */
2246 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2247                               ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2248                               bool *map_bh)
2249 {
2250         struct buffer_head *head, *bh;
2251         ext4_io_end_t *io_end = mpd->io_submit.io_end;
2252         ext4_lblk_t lblk = *m_lblk;
2253         ext4_fsblk_t pblock = *m_pblk;
2254         int err = 0;
2255         int blkbits = mpd->inode->i_blkbits;
2256         ssize_t io_end_size = 0;
2257         struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2258
2259         bh = head = page_buffers(page);
2260         do {
2261                 if (lblk < mpd->map.m_lblk)
2262                         continue;
2263                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2264                         /*
2265                          * Buffer after end of mapped extent.
2266                          * Find next buffer in the page to map.
2267                          */
2268                         mpd->map.m_len = 0;
2269                         mpd->map.m_flags = 0;
2270                         io_end_vec->size += io_end_size;
2271                         io_end_size = 0;
2272
2273                         err = mpage_process_page_bufs(mpd, head, bh, lblk);
2274                         if (err > 0)
2275                                 err = 0;
2276                         if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2277                                 io_end_vec = ext4_alloc_io_end_vec(io_end);
2278                                 if (IS_ERR(io_end_vec)) {
2279                                         err = PTR_ERR(io_end_vec);
2280                                         goto out;
2281                                 }
2282                                 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2283                         }
2284                         *map_bh = true;
2285                         goto out;
2286                 }
2287                 if (buffer_delay(bh)) {
2288                         clear_buffer_delay(bh);
2289                         bh->b_blocknr = pblock++;
2290                 }
2291                 clear_buffer_unwritten(bh);
2292                 io_end_size += (1 << blkbits);
2293         } while (lblk++, (bh = bh->b_this_page) != head);
2294
2295         io_end_vec->size += io_end_size;
2296         io_end_size = 0;
2297         *map_bh = false;
2298 out:
2299         *m_lblk = lblk;
2300         *m_pblk = pblock;
2301         return err;
2302 }
2303
2304 /*
2305  * mpage_map_buffers - update buffers corresponding to changed extent and
2306  *                     submit fully mapped pages for IO
2307  *
2308  * @mpd - description of extent to map, on return next extent to map
2309  *
2310  * Scan buffers corresponding to changed extent (we expect corresponding pages
2311  * to be already locked) and update buffer state according to new extent state.
2312  * We map delalloc buffers to their physical location, clear unwritten bits,
2313  * and mark buffers as uninit when we perform writes to unwritten extents
2314  * and do extent conversion after IO is finished. If the last page is not fully
2315  * mapped, we update @map to the next extent in the last page that needs
2316  * mapping. Otherwise we submit the page for IO.
2317  */
2318 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2319 {
2320         struct pagevec pvec;
2321         int nr_pages, i;
2322         struct inode *inode = mpd->inode;
2323         int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2324         pgoff_t start, end;
2325         ext4_lblk_t lblk;
2326         ext4_fsblk_t pblock;
2327         int err;
2328         bool map_bh = false;
2329
2330         start = mpd->map.m_lblk >> bpp_bits;
2331         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2332         lblk = start << bpp_bits;
2333         pblock = mpd->map.m_pblk;
2334
2335         pagevec_init(&pvec);
2336         while (start <= end) {
2337                 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2338                                                 &start, end);
2339                 if (nr_pages == 0)
2340                         break;
2341                 for (i = 0; i < nr_pages; i++) {
2342                         struct page *page = pvec.pages[i];
2343
2344                         err = mpage_process_page(mpd, page, &lblk, &pblock,
2345                                                  &map_bh);
2346                         /*
2347                          * If map_bh is true, means page may require further bh
2348                          * mapping, or maybe the page was submitted for IO.
2349                          * So we return to call further extent mapping.
2350                          */
2351                         if (err < 0 || map_bh)
2352                                 goto out;
2353                         /* Page fully mapped - let IO run! */
2354                         err = mpage_submit_page(mpd, page);
2355                         if (err < 0)
2356                                 goto out;
2357                 }
2358                 pagevec_release(&pvec);
2359         }
2360         /* Extent fully mapped and matches with page boundary. We are done. */
2361         mpd->map.m_len = 0;
2362         mpd->map.m_flags = 0;
2363         return 0;
2364 out:
2365         pagevec_release(&pvec);
2366         return err;
2367 }
2368
2369 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2370 {
2371         struct inode *inode = mpd->inode;
2372         struct ext4_map_blocks *map = &mpd->map;
2373         int get_blocks_flags;
2374         int err, dioread_nolock;
2375
2376         trace_ext4_da_write_pages_extent(inode, map);
2377         /*
2378          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2379          * to convert an unwritten extent to be initialized (in the case
2380          * where we have written into one or more preallocated blocks).  It is
2381          * possible that we're going to need more metadata blocks than
2382          * previously reserved. However we must not fail because we're in
2383          * writeback and there is nothing we can do about it so it might result
2384          * in data loss.  So use reserved blocks to allocate metadata if
2385          * possible.
2386          *
2387          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2388          * the blocks in question are delalloc blocks.  This indicates
2389          * that the blocks and quotas has already been checked when
2390          * the data was copied into the page cache.
2391          */
2392         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2393                            EXT4_GET_BLOCKS_METADATA_NOFAIL |
2394                            EXT4_GET_BLOCKS_IO_SUBMIT;
2395         dioread_nolock = ext4_should_dioread_nolock(inode);
2396         if (dioread_nolock)
2397                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2398         if (map->m_flags & BIT(BH_Delay))
2399                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2400
2401         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2402         if (err < 0)
2403                 return err;
2404         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2405                 if (!mpd->io_submit.io_end->handle &&
2406                     ext4_handle_valid(handle)) {
2407                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2408                         handle->h_rsv_handle = NULL;
2409                 }
2410                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2411         }
2412
2413         BUG_ON(map->m_len == 0);
2414         return 0;
2415 }
2416
2417 /*
2418  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2419  *                               mpd->len and submit pages underlying it for IO
2420  *
2421  * @handle - handle for journal operations
2422  * @mpd - extent to map
2423  * @give_up_on_write - we set this to true iff there is a fatal error and there
2424  *                     is no hope of writing the data. The caller should discard
2425  *                     dirty pages to avoid infinite loops.
2426  *
2427  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2428  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2429  * them to initialized or split the described range from larger unwritten
2430  * extent. Note that we need not map all the described range since allocation
2431  * can return less blocks or the range is covered by more unwritten extents. We
2432  * cannot map more because we are limited by reserved transaction credits. On
2433  * the other hand we always make sure that the last touched page is fully
2434  * mapped so that it can be written out (and thus forward progress is
2435  * guaranteed). After mapping we submit all mapped pages for IO.
2436  */
2437 static int mpage_map_and_submit_extent(handle_t *handle,
2438                                        struct mpage_da_data *mpd,
2439                                        bool *give_up_on_write)
2440 {
2441         struct inode *inode = mpd->inode;
2442         struct ext4_map_blocks *map = &mpd->map;
2443         int err;
2444         loff_t disksize;
2445         int progress = 0;
2446         ext4_io_end_t *io_end = mpd->io_submit.io_end;
2447         struct ext4_io_end_vec *io_end_vec;
2448
2449         io_end_vec = ext4_alloc_io_end_vec(io_end);
2450         if (IS_ERR(io_end_vec))
2451                 return PTR_ERR(io_end_vec);
2452         io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2453         do {
2454                 err = mpage_map_one_extent(handle, mpd);
2455                 if (err < 0) {
2456                         struct super_block *sb = inode->i_sb;
2457
2458                         if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2459                             ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
2460                                 goto invalidate_dirty_pages;
2461                         /*
2462                          * Let the uper layers retry transient errors.
2463                          * In the case of ENOSPC, if ext4_count_free_blocks()
2464                          * is non-zero, a commit should free up blocks.
2465                          */
2466                         if ((err == -ENOMEM) ||
2467                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2468                                 if (progress)
2469                                         goto update_disksize;
2470                                 return err;
2471                         }
2472                         ext4_msg(sb, KERN_CRIT,
2473                                  "Delayed block allocation failed for "
2474                                  "inode %lu at logical offset %llu with"
2475                                  " max blocks %u with error %d",
2476                                  inode->i_ino,
2477                                  (unsigned long long)map->m_lblk,
2478                                  (unsigned)map->m_len, -err);
2479                         ext4_msg(sb, KERN_CRIT,
2480                                  "This should not happen!! Data will "
2481                                  "be lost\n");
2482                         if (err == -ENOSPC)
2483                                 ext4_print_free_blocks(inode);
2484                 invalidate_dirty_pages:
2485                         *give_up_on_write = true;
2486                         return err;
2487                 }
2488                 progress = 1;
2489                 /*
2490                  * Update buffer state, submit mapped pages, and get us new
2491                  * extent to map
2492                  */
2493                 err = mpage_map_and_submit_buffers(mpd);
2494                 if (err < 0)
2495                         goto update_disksize;
2496         } while (map->m_len);
2497
2498 update_disksize:
2499         /*
2500          * Update on-disk size after IO is submitted.  Races with
2501          * truncate are avoided by checking i_size under i_data_sem.
2502          */
2503         disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2504         if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2505                 int err2;
2506                 loff_t i_size;
2507
2508                 down_write(&EXT4_I(inode)->i_data_sem);
2509                 i_size = i_size_read(inode);
2510                 if (disksize > i_size)
2511                         disksize = i_size;
2512                 if (disksize > EXT4_I(inode)->i_disksize)
2513                         EXT4_I(inode)->i_disksize = disksize;
2514                 up_write(&EXT4_I(inode)->i_data_sem);
2515                 err2 = ext4_mark_inode_dirty(handle, inode);
2516                 if (err2) {
2517                         ext4_error_err(inode->i_sb, -err2,
2518                                        "Failed to mark inode %lu dirty",
2519                                        inode->i_ino);
2520                 }
2521                 if (!err)
2522                         err = err2;
2523         }
2524         return err;
2525 }
2526
2527 /*
2528  * Calculate the total number of credits to reserve for one writepages
2529  * iteration. This is called from ext4_writepages(). We map an extent of
2530  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2531  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2532  * bpp - 1 blocks in bpp different extents.
2533  */
2534 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2535 {
2536         int bpp = ext4_journal_blocks_per_page(inode);
2537
2538         return ext4_meta_trans_blocks(inode,
2539                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2540 }
2541
2542 /*
2543  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2544  *                               and underlying extent to map
2545  *
2546  * @mpd - where to look for pages
2547  *
2548  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2549  * IO immediately. When we find a page which isn't mapped we start accumulating
2550  * extent of buffers underlying these pages that needs mapping (formed by
2551  * either delayed or unwritten buffers). We also lock the pages containing
2552  * these buffers. The extent found is returned in @mpd structure (starting at
2553  * mpd->lblk with length mpd->len blocks).
2554  *
2555  * Note that this function can attach bios to one io_end structure which are
2556  * neither logically nor physically contiguous. Although it may seem as an
2557  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2558  * case as we need to track IO to all buffers underlying a page in one io_end.
2559  */
2560 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2561 {
2562         struct address_space *mapping = mpd->inode->i_mapping;
2563         struct pagevec pvec;
2564         unsigned int nr_pages;
2565         long left = mpd->wbc->nr_to_write;
2566         pgoff_t index = mpd->first_page;
2567         pgoff_t end = mpd->last_page;
2568         xa_mark_t tag;
2569         int i, err = 0;
2570         int blkbits = mpd->inode->i_blkbits;
2571         ext4_lblk_t lblk;
2572         struct buffer_head *head;
2573
2574         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2575                 tag = PAGECACHE_TAG_TOWRITE;
2576         else
2577                 tag = PAGECACHE_TAG_DIRTY;
2578
2579         pagevec_init(&pvec);
2580         mpd->map.m_len = 0;
2581         mpd->next_page = index;
2582         while (index <= end) {
2583                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2584                                 tag);
2585                 if (nr_pages == 0)
2586                         break;
2587
2588                 for (i = 0; i < nr_pages; i++) {
2589                         struct page *page = pvec.pages[i];
2590
2591                         /*
2592                          * Accumulated enough dirty pages? This doesn't apply
2593                          * to WB_SYNC_ALL mode. For integrity sync we have to
2594                          * keep going because someone may be concurrently
2595                          * dirtying pages, and we might have synced a lot of
2596                          * newly appeared dirty pages, but have not synced all
2597                          * of the old dirty pages.
2598                          */
2599                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2600                                 goto out;
2601
2602                         /* If we can't merge this page, we are done. */
2603                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2604                                 goto out;
2605
2606                         lock_page(page);
2607                         /*
2608                          * If the page is no longer dirty, or its mapping no
2609                          * longer corresponds to inode we are writing (which
2610                          * means it has been truncated or invalidated), or the
2611                          * page is already under writeback and we are not doing
2612                          * a data integrity writeback, skip the page
2613                          */
2614                         if (!PageDirty(page) ||
2615                             (PageWriteback(page) &&
2616                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2617                             unlikely(page->mapping != mapping)) {
2618                                 unlock_page(page);
2619                                 continue;
2620                         }
2621
2622                         wait_on_page_writeback(page);
2623                         BUG_ON(PageWriteback(page));
2624
2625                         if (mpd->map.m_len == 0)
2626                                 mpd->first_page = page->index;
2627                         mpd->next_page = page->index + 1;
2628                         /* Add all dirty buffers to mpd */
2629                         lblk = ((ext4_lblk_t)page->index) <<
2630                                 (PAGE_SHIFT - blkbits);
2631                         head = page_buffers(page);
2632                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2633                         if (err <= 0)
2634                                 goto out;
2635                         err = 0;
2636                         left--;
2637                 }
2638                 pagevec_release(&pvec);
2639                 cond_resched();
2640         }
2641         mpd->scanned_until_end = 1;
2642         return 0;
2643 out:
2644         pagevec_release(&pvec);
2645         return err;
2646 }
2647
2648 static int ext4_writepages(struct address_space *mapping,
2649                            struct writeback_control *wbc)
2650 {
2651         pgoff_t writeback_index = 0;
2652         long nr_to_write = wbc->nr_to_write;
2653         int range_whole = 0;
2654         int cycled = 1;
2655         handle_t *handle = NULL;
2656         struct mpage_da_data mpd;
2657         struct inode *inode = mapping->host;
2658         int needed_blocks, rsv_blocks = 0, ret = 0;
2659         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2660         struct blk_plug plug;
2661         bool give_up_on_write = false;
2662
2663         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2664                 return -EIO;
2665
2666         percpu_down_read(&sbi->s_writepages_rwsem);
2667         trace_ext4_writepages(inode, wbc);
2668
2669         /*
2670          * No pages to write? This is mainly a kludge to avoid starting
2671          * a transaction for special inodes like journal inode on last iput()
2672          * because that could violate lock ordering on umount
2673          */
2674         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2675                 goto out_writepages;
2676
2677         if (ext4_should_journal_data(inode)) {
2678                 ret = generic_writepages(mapping, wbc);
2679                 goto out_writepages;
2680         }
2681
2682         /*
2683          * If the filesystem has aborted, it is read-only, so return
2684          * right away instead of dumping stack traces later on that
2685          * will obscure the real source of the problem.  We test
2686          * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2687          * the latter could be true if the filesystem is mounted
2688          * read-only, and in that case, ext4_writepages should
2689          * *never* be called, so if that ever happens, we would want
2690          * the stack trace.
2691          */
2692         if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2693                      ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) {
2694                 ret = -EROFS;
2695                 goto out_writepages;
2696         }
2697
2698         /*
2699          * If we have inline data and arrive here, it means that
2700          * we will soon create the block for the 1st page, so
2701          * we'd better clear the inline data here.
2702          */
2703         if (ext4_has_inline_data(inode)) {
2704                 /* Just inode will be modified... */
2705                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2706                 if (IS_ERR(handle)) {
2707                         ret = PTR_ERR(handle);
2708                         goto out_writepages;
2709                 }
2710                 BUG_ON(ext4_test_inode_state(inode,
2711                                 EXT4_STATE_MAY_INLINE_DATA));
2712                 ext4_destroy_inline_data(handle, inode);
2713                 ext4_journal_stop(handle);
2714         }
2715
2716         if (ext4_should_dioread_nolock(inode)) {
2717                 /*
2718                  * We may need to convert up to one extent per block in
2719                  * the page and we may dirty the inode.
2720                  */
2721                 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2722                                                 PAGE_SIZE >> inode->i_blkbits);
2723         }
2724
2725         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2726                 range_whole = 1;
2727
2728         if (wbc->range_cyclic) {
2729                 writeback_index = mapping->writeback_index;
2730                 if (writeback_index)
2731                         cycled = 0;
2732                 mpd.first_page = writeback_index;
2733                 mpd.last_page = -1;
2734         } else {
2735                 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2736                 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2737         }
2738
2739         mpd.inode = inode;
2740         mpd.wbc = wbc;
2741         ext4_io_submit_init(&mpd.io_submit, wbc);
2742 retry:
2743         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2744                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2745         blk_start_plug(&plug);
2746
2747         /*
2748          * First writeback pages that don't need mapping - we can avoid
2749          * starting a transaction unnecessarily and also avoid being blocked
2750          * in the block layer on device congestion while having transaction
2751          * started.
2752          */
2753         mpd.do_map = 0;
2754         mpd.scanned_until_end = 0;
2755         mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2756         if (!mpd.io_submit.io_end) {
2757                 ret = -ENOMEM;
2758                 goto unplug;
2759         }
2760         ret = mpage_prepare_extent_to_map(&mpd);
2761         /* Unlock pages we didn't use */
2762         mpage_release_unused_pages(&mpd, false);
2763         /* Submit prepared bio */
2764         ext4_io_submit(&mpd.io_submit);
2765         ext4_put_io_end_defer(mpd.io_submit.io_end);
2766         mpd.io_submit.io_end = NULL;
2767         if (ret < 0)
2768                 goto unplug;
2769
2770         while (!mpd.scanned_until_end && wbc->nr_to_write > 0) {
2771                 /* For each extent of pages we use new io_end */
2772                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2773                 if (!mpd.io_submit.io_end) {
2774                         ret = -ENOMEM;
2775                         break;
2776                 }
2777
2778                 /*
2779                  * We have two constraints: We find one extent to map and we
2780                  * must always write out whole page (makes a difference when
2781                  * blocksize < pagesize) so that we don't block on IO when we
2782                  * try to write out the rest of the page. Journalled mode is
2783                  * not supported by delalloc.
2784                  */
2785                 BUG_ON(ext4_should_journal_data(inode));
2786                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2787
2788                 /* start a new transaction */
2789                 handle = ext4_journal_start_with_reserve(inode,
2790                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2791                 if (IS_ERR(handle)) {
2792                         ret = PTR_ERR(handle);
2793                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2794                                "%ld pages, ino %lu; err %d", __func__,
2795                                 wbc->nr_to_write, inode->i_ino, ret);
2796                         /* Release allocated io_end */
2797                         ext4_put_io_end(mpd.io_submit.io_end);
2798                         mpd.io_submit.io_end = NULL;
2799                         break;
2800                 }
2801                 mpd.do_map = 1;
2802
2803                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2804                 ret = mpage_prepare_extent_to_map(&mpd);
2805                 if (!ret && mpd.map.m_len)
2806                         ret = mpage_map_and_submit_extent(handle, &mpd,
2807                                         &give_up_on_write);
2808                 /*
2809                  * Caution: If the handle is synchronous,
2810                  * ext4_journal_stop() can wait for transaction commit
2811                  * to finish which may depend on writeback of pages to
2812                  * complete or on page lock to be released.  In that
2813                  * case, we have to wait until after we have
2814                  * submitted all the IO, released page locks we hold,
2815                  * and dropped io_end reference (for extent conversion
2816                  * to be able to complete) before stopping the handle.
2817                  */
2818                 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2819                         ext4_journal_stop(handle);
2820                         handle = NULL;
2821                         mpd.do_map = 0;
2822                 }
2823                 /* Unlock pages we didn't use */
2824                 mpage_release_unused_pages(&mpd, give_up_on_write);
2825                 /* Submit prepared bio */
2826                 ext4_io_submit(&mpd.io_submit);
2827
2828                 /*
2829                  * Drop our io_end reference we got from init. We have
2830                  * to be careful and use deferred io_end finishing if
2831                  * we are still holding the transaction as we can
2832                  * release the last reference to io_end which may end
2833                  * up doing unwritten extent conversion.
2834                  */
2835                 if (handle) {
2836                         ext4_put_io_end_defer(mpd.io_submit.io_end);
2837                         ext4_journal_stop(handle);
2838                 } else
2839                         ext4_put_io_end(mpd.io_submit.io_end);
2840                 mpd.io_submit.io_end = NULL;
2841
2842                 if (ret == -ENOSPC && sbi->s_journal) {
2843                         /*
2844                          * Commit the transaction which would
2845                          * free blocks released in the transaction
2846                          * and try again
2847                          */
2848                         jbd2_journal_force_commit_nested(sbi->s_journal);
2849                         ret = 0;
2850                         continue;
2851                 }
2852                 /* Fatal error - ENOMEM, EIO... */
2853                 if (ret)
2854                         break;
2855         }
2856 unplug:
2857         blk_finish_plug(&plug);
2858         if (!ret && !cycled && wbc->nr_to_write > 0) {
2859                 cycled = 1;
2860                 mpd.last_page = writeback_index - 1;
2861                 mpd.first_page = 0;
2862                 goto retry;
2863         }
2864
2865         /* Update index */
2866         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2867                 /*
2868                  * Set the writeback_index so that range_cyclic
2869                  * mode will write it back later
2870                  */
2871                 mapping->writeback_index = mpd.first_page;
2872
2873 out_writepages:
2874         trace_ext4_writepages_result(inode, wbc, ret,
2875                                      nr_to_write - wbc->nr_to_write);
2876         percpu_up_read(&sbi->s_writepages_rwsem);
2877         return ret;
2878 }
2879
2880 static int ext4_dax_writepages(struct address_space *mapping,
2881                                struct writeback_control *wbc)
2882 {
2883         int ret;
2884         long nr_to_write = wbc->nr_to_write;
2885         struct inode *inode = mapping->host;
2886         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2887
2888         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2889                 return -EIO;
2890
2891         percpu_down_read(&sbi->s_writepages_rwsem);
2892         trace_ext4_writepages(inode, wbc);
2893
2894         ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
2895         trace_ext4_writepages_result(inode, wbc, ret,
2896                                      nr_to_write - wbc->nr_to_write);
2897         percpu_up_read(&sbi->s_writepages_rwsem);
2898         return ret;
2899 }
2900
2901 static int ext4_nonda_switch(struct super_block *sb)
2902 {
2903         s64 free_clusters, dirty_clusters;
2904         struct ext4_sb_info *sbi = EXT4_SB(sb);
2905
2906         /*
2907          * switch to non delalloc mode if we are running low
2908          * on free block. The free block accounting via percpu
2909          * counters can get slightly wrong with percpu_counter_batch getting
2910          * accumulated on each CPU without updating global counters
2911          * Delalloc need an accurate free block accounting. So switch
2912          * to non delalloc when we are near to error range.
2913          */
2914         free_clusters =
2915                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2916         dirty_clusters =
2917                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2918         /*
2919          * Start pushing delalloc when 1/2 of free blocks are dirty.
2920          */
2921         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2922                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2923
2924         if (2 * free_clusters < 3 * dirty_clusters ||
2925             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2926                 /*
2927                  * free block count is less than 150% of dirty blocks
2928                  * or free blocks is less than watermark
2929                  */
2930                 return 1;
2931         }
2932         return 0;
2933 }
2934
2935 /* We always reserve for an inode update; the superblock could be there too */
2936 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2937 {
2938         if (likely(ext4_has_feature_large_file(inode->i_sb)))
2939                 return 1;
2940
2941         if (pos + len <= 0x7fffffffULL)
2942                 return 1;
2943
2944         /* We might need to update the superblock to set LARGE_FILE */
2945         return 2;
2946 }
2947
2948 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2949                                loff_t pos, unsigned len, unsigned flags,
2950                                struct page **pagep, void **fsdata)
2951 {
2952         int ret, retries = 0;
2953         struct page *page;
2954         pgoff_t index;
2955         struct inode *inode = mapping->host;
2956         handle_t *handle;
2957
2958         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2959                 return -EIO;
2960
2961         index = pos >> PAGE_SHIFT;
2962
2963         if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
2964             ext4_verity_in_progress(inode)) {
2965                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2966                 return ext4_write_begin(file, mapping, pos,
2967                                         len, flags, pagep, fsdata);
2968         }
2969         *fsdata = (void *)0;
2970         trace_ext4_da_write_begin(inode, pos, len, flags);
2971
2972         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2973                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2974                                                       pos, len, flags,
2975                                                       pagep, fsdata);
2976                 if (ret < 0)
2977                         return ret;
2978                 if (ret == 1)
2979                         return 0;
2980         }
2981
2982         /*
2983          * grab_cache_page_write_begin() can take a long time if the
2984          * system is thrashing due to memory pressure, or if the page
2985          * is being written back.  So grab it first before we start
2986          * the transaction handle.  This also allows us to allocate
2987          * the page (if needed) without using GFP_NOFS.
2988          */
2989 retry_grab:
2990         page = grab_cache_page_write_begin(mapping, index, flags);
2991         if (!page)
2992                 return -ENOMEM;
2993         unlock_page(page);
2994
2995         /*
2996          * With delayed allocation, we don't log the i_disksize update
2997          * if there is delayed block allocation. But we still need
2998          * to journalling the i_disksize update if writes to the end
2999          * of file which has an already mapped buffer.
3000          */
3001 retry_journal:
3002         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3003                                 ext4_da_write_credits(inode, pos, len));
3004         if (IS_ERR(handle)) {
3005                 put_page(page);
3006                 return PTR_ERR(handle);
3007         }
3008
3009         lock_page(page);
3010         if (page->mapping != mapping) {
3011                 /* The page got truncated from under us */
3012                 unlock_page(page);
3013                 put_page(page);
3014                 ext4_journal_stop(handle);
3015                 goto retry_grab;
3016         }
3017         /* In case writeback began while the page was unlocked */
3018         wait_for_stable_page(page);
3019
3020 #ifdef CONFIG_FS_ENCRYPTION
3021         ret = ext4_block_write_begin(page, pos, len,
3022                                      ext4_da_get_block_prep);
3023 #else
3024         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3025 #endif
3026         if (ret < 0) {
3027                 unlock_page(page);
3028                 ext4_journal_stop(handle);
3029                 /*
3030                  * block_write_begin may have instantiated a few blocks
3031                  * outside i_size.  Trim these off again. Don't need
3032                  * i_size_read because we hold i_mutex.
3033                  */
3034                 if (pos + len > inode->i_size)
3035                         ext4_truncate_failed_write(inode);
3036
3037                 if (ret == -ENOSPC &&
3038                     ext4_should_retry_alloc(inode->i_sb, &retries))
3039                         goto retry_journal;
3040
3041                 put_page(page);
3042                 return ret;
3043         }
3044
3045         *pagep = page;
3046         return ret;
3047 }
3048
3049 /*
3050  * Check if we should update i_disksize
3051  * when write to the end of file but not require block allocation
3052  */
3053 static int ext4_da_should_update_i_disksize(struct page *page,
3054                                             unsigned long offset)
3055 {
3056         struct buffer_head *bh;
3057         struct inode *inode = page->mapping->host;
3058         unsigned int idx;
3059         int i;
3060
3061         bh = page_buffers(page);
3062         idx = offset >> inode->i_blkbits;
3063
3064         for (i = 0; i < idx; i++)
3065                 bh = bh->b_this_page;
3066
3067         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3068                 return 0;
3069         return 1;
3070 }
3071
3072 static int ext4_da_write_end(struct file *file,
3073                              struct address_space *mapping,
3074                              loff_t pos, unsigned len, unsigned copied,
3075                              struct page *page, void *fsdata)
3076 {
3077         struct inode *inode = mapping->host;
3078         int ret = 0, ret2;
3079         handle_t *handle = ext4_journal_current_handle();
3080         loff_t new_i_size;
3081         unsigned long start, end;
3082         int write_mode = (int)(unsigned long)fsdata;
3083
3084         if (write_mode == FALL_BACK_TO_NONDELALLOC)
3085                 return ext4_write_end(file, mapping, pos,
3086                                       len, copied, page, fsdata);
3087
3088         trace_ext4_da_write_end(inode, pos, len, copied);
3089         start = pos & (PAGE_SIZE - 1);
3090         end = start + copied - 1;
3091
3092         /*
3093          * generic_write_end() will run mark_inode_dirty() if i_size
3094          * changes.  So let's piggyback the i_disksize mark_inode_dirty
3095          * into that.
3096          */
3097         new_i_size = pos + copied;
3098         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3099                 if (ext4_has_inline_data(inode) ||
3100                     ext4_da_should_update_i_disksize(page, end)) {
3101                         ext4_update_i_disksize(inode, new_i_size);
3102                         /* We need to mark inode dirty even if
3103                          * new_i_size is less that inode->i_size
3104                          * bu greater than i_disksize.(hint delalloc)
3105                          */
3106                         ret = ext4_mark_inode_dirty(handle, inode);
3107                 }
3108         }
3109
3110         if (write_mode != CONVERT_INLINE_DATA &&
3111             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3112             ext4_has_inline_data(inode))
3113                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3114                                                      page);
3115         else
3116                 ret2 = generic_write_end(file, mapping, pos, len, copied,
3117                                                         page, fsdata);
3118
3119         copied = ret2;
3120         if (ret2 < 0)
3121                 ret = ret2;
3122         ret2 = ext4_journal_stop(handle);
3123         if (unlikely(ret2 && !ret))
3124                 ret = ret2;
3125
3126         return ret ? ret : copied;
3127 }
3128
3129 /*
3130  * Force all delayed allocation blocks to be allocated for a given inode.
3131  */
3132 int ext4_alloc_da_blocks(struct inode *inode)
3133 {
3134         trace_ext4_alloc_da_blocks(inode);
3135
3136         if (!EXT4_I(inode)->i_reserved_data_blocks)
3137                 return 0;
3138
3139         /*
3140          * We do something simple for now.  The filemap_flush() will
3141          * also start triggering a write of the data blocks, which is
3142          * not strictly speaking necessary (and for users of
3143          * laptop_mode, not even desirable).  However, to do otherwise
3144          * would require replicating code paths in:
3145          *
3146          * ext4_writepages() ->
3147          *    write_cache_pages() ---> (via passed in callback function)
3148          *        __mpage_da_writepage() -->
3149          *           mpage_add_bh_to_extent()
3150          *           mpage_da_map_blocks()
3151          *
3152          * The problem is that write_cache_pages(), located in
3153          * mm/page-writeback.c, marks pages clean in preparation for
3154          * doing I/O, which is not desirable if we're not planning on
3155          * doing I/O at all.
3156          *
3157          * We could call write_cache_pages(), and then redirty all of
3158          * the pages by calling redirty_page_for_writepage() but that
3159          * would be ugly in the extreme.  So instead we would need to
3160          * replicate parts of the code in the above functions,
3161          * simplifying them because we wouldn't actually intend to
3162          * write out the pages, but rather only collect contiguous
3163          * logical block extents, call the multi-block allocator, and
3164          * then update the buffer heads with the block allocations.
3165          *
3166          * For now, though, we'll cheat by calling filemap_flush(),
3167          * which will map the blocks, and start the I/O, but not
3168          * actually wait for the I/O to complete.
3169          */
3170         return filemap_flush(inode->i_mapping);
3171 }
3172
3173 /*
3174  * bmap() is special.  It gets used by applications such as lilo and by
3175  * the swapper to find the on-disk block of a specific piece of data.
3176  *
3177  * Naturally, this is dangerous if the block concerned is still in the
3178  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3179  * filesystem and enables swap, then they may get a nasty shock when the
3180  * data getting swapped to that swapfile suddenly gets overwritten by
3181  * the original zero's written out previously to the journal and
3182  * awaiting writeback in the kernel's buffer cache.
3183  *
3184  * So, if we see any bmap calls here on a modified, data-journaled file,
3185  * take extra steps to flush any blocks which might be in the cache.
3186  */
3187 static sector_t ext4_bmap(struct address_space *mapping, se