1 // SPDX-License-Identifier: GPL-2.0
3 * linux/fs/ext4/inode.c
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
12 * linux/fs/minix/inode.c
14 * Copyright (C) 1991, 1992 Linus Torvalds
16 * 64-bit file support on 64-bit platforms by Jakub Jelinek
17 * (jj@sunsite.ms.mff.cuni.cz)
19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 #include <linux/mount.h>
24 #include <linux/time.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/string.h>
30 #include <linux/buffer_head.h>
31 #include <linux/writeback.h>
32 #include <linux/pagevec.h>
33 #include <linux/mpage.h>
34 #include <linux/namei.h>
35 #include <linux/uio.h>
36 #include <linux/bio.h>
37 #include <linux/workqueue.h>
38 #include <linux/kernel.h>
39 #include <linux/printk.h>
40 #include <linux/slab.h>
41 #include <linux/bitops.h>
42 #include <linux/iomap.h>
43 #include <linux/iversion.h>
45 #include "ext4_jbd2.h"
50 #include <trace/events/ext4.h>
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53 struct ext4_inode_info *ei)
55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
58 int offset = offsetof(struct ext4_inode, i_checksum_lo);
59 unsigned int csum_size = sizeof(dummy_csum);
61 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
62 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
64 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
65 EXT4_GOOD_OLD_INODE_SIZE - offset);
67 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
68 offset = offsetof(struct ext4_inode, i_checksum_hi);
69 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
70 EXT4_GOOD_OLD_INODE_SIZE,
71 offset - EXT4_GOOD_OLD_INODE_SIZE);
72 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
73 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
77 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
78 EXT4_INODE_SIZE(inode->i_sb) - offset);
84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
85 struct ext4_inode_info *ei)
87 __u32 provided, calculated;
89 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
90 cpu_to_le32(EXT4_OS_LINUX) ||
91 !ext4_has_metadata_csum(inode->i_sb))
94 provided = le16_to_cpu(raw->i_checksum_lo);
95 calculated = ext4_inode_csum(inode, raw, ei);
96 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
97 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
98 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
100 calculated &= 0xFFFF;
102 return provided == calculated;
105 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
106 struct ext4_inode_info *ei)
110 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
111 cpu_to_le32(EXT4_OS_LINUX) ||
112 !ext4_has_metadata_csum(inode->i_sb))
115 csum = ext4_inode_csum(inode, raw, ei);
116 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
117 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
118 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
119 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
122 static inline int ext4_begin_ordered_truncate(struct inode *inode,
125 trace_ext4_begin_ordered_truncate(inode, new_size);
127 * If jinode is zero, then we never opened the file for
128 * writing, so there's no need to call
129 * jbd2_journal_begin_ordered_truncate() since there's no
130 * outstanding writes we need to flush.
132 if (!EXT4_I(inode)->jinode)
134 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
135 EXT4_I(inode)->jinode,
139 static void ext4_invalidatepage(struct page *page, unsigned int offset,
140 unsigned int length);
141 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
146 * Test whether an inode is a fast symlink.
147 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
149 int ext4_inode_is_fast_symlink(struct inode *inode)
151 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
152 int ea_blocks = EXT4_I(inode)->i_file_acl ?
153 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
155 if (ext4_has_inline_data(inode))
158 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
160 return S_ISLNK(inode->i_mode) && inode->i_size &&
161 (inode->i_size < EXT4_N_BLOCKS * 4);
165 * Called at the last iput() if i_nlink is zero.
167 void ext4_evict_inode(struct inode *inode)
172 * Credits for final inode cleanup and freeing:
173 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
174 * (xattr block freeing), bitmap, group descriptor (inode freeing)
176 int extra_credits = 6;
177 struct ext4_xattr_inode_array *ea_inode_array = NULL;
178 bool freeze_protected = false;
180 trace_ext4_evict_inode(inode);
182 if (inode->i_nlink) {
184 * When journalling data dirty buffers are tracked only in the
185 * journal. So although mm thinks everything is clean and
186 * ready for reaping the inode might still have some pages to
187 * write in the running transaction or waiting to be
188 * checkpointed. Thus calling jbd2_journal_invalidatepage()
189 * (via truncate_inode_pages()) to discard these buffers can
190 * cause data loss. Also even if we did not discard these
191 * buffers, we would have no way to find them after the inode
192 * is reaped and thus user could see stale data if he tries to
193 * read them before the transaction is checkpointed. So be
194 * careful and force everything to disk here... We use
195 * ei->i_datasync_tid to store the newest transaction
196 * containing inode's data.
198 * Note that directories do not have this problem because they
199 * don't use page cache.
201 if (inode->i_ino != EXT4_JOURNAL_INO &&
202 ext4_should_journal_data(inode) &&
203 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
204 inode->i_data.nrpages) {
205 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
206 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
208 jbd2_complete_transaction(journal, commit_tid);
209 filemap_write_and_wait(&inode->i_data);
211 truncate_inode_pages_final(&inode->i_data);
216 if (is_bad_inode(inode))
218 dquot_initialize(inode);
220 if (ext4_should_order_data(inode))
221 ext4_begin_ordered_truncate(inode, 0);
222 truncate_inode_pages_final(&inode->i_data);
225 * For inodes with journalled data, transaction commit could have
226 * dirtied the inode. Flush worker is ignoring it because of I_FREEING
227 * flag but we still need to remove the inode from the writeback lists.
229 if (!list_empty_careful(&inode->i_io_list)) {
230 WARN_ON_ONCE(!ext4_should_journal_data(inode));
231 inode_io_list_del(inode);
235 * Protect us against freezing - iput() caller didn't have to have any
236 * protection against it. When we are in a running transaction though,
237 * we are already protected against freezing and we cannot grab further
238 * protection due to lock ordering constraints.
240 if (!ext4_journal_current_handle()) {
241 sb_start_intwrite(inode->i_sb);
242 freeze_protected = true;
245 if (!IS_NOQUOTA(inode))
246 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
249 * Block bitmap, group descriptor, and inode are accounted in both
250 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
252 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
253 ext4_blocks_for_truncate(inode) + extra_credits - 3);
254 if (IS_ERR(handle)) {
255 ext4_std_error(inode->i_sb, PTR_ERR(handle));
257 * If we're going to skip the normal cleanup, we still need to
258 * make sure that the in-core orphan linked list is properly
261 ext4_orphan_del(NULL, inode);
262 if (freeze_protected)
263 sb_end_intwrite(inode->i_sb);
268 ext4_handle_sync(handle);
271 * Set inode->i_size to 0 before calling ext4_truncate(). We need
272 * special handling of symlinks here because i_size is used to
273 * determine whether ext4_inode_info->i_data contains symlink data or
274 * block mappings. Setting i_size to 0 will remove its fast symlink
275 * status. Erase i_data so that it becomes a valid empty block map.
277 if (ext4_inode_is_fast_symlink(inode))
278 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
280 err = ext4_mark_inode_dirty(handle, inode);
282 ext4_warning(inode->i_sb,
283 "couldn't mark inode dirty (err %d)", err);
286 if (inode->i_blocks) {
287 err = ext4_truncate(inode);
289 ext4_error_err(inode->i_sb, -err,
290 "couldn't truncate inode %lu (err %d)",
296 /* Remove xattr references. */
297 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
300 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
302 ext4_journal_stop(handle);
303 ext4_orphan_del(NULL, inode);
304 if (freeze_protected)
305 sb_end_intwrite(inode->i_sb);
306 ext4_xattr_inode_array_free(ea_inode_array);
311 * Kill off the orphan record which ext4_truncate created.
312 * AKPM: I think this can be inside the above `if'.
313 * Note that ext4_orphan_del() has to be able to cope with the
314 * deletion of a non-existent orphan - this is because we don't
315 * know if ext4_truncate() actually created an orphan record.
316 * (Well, we could do this if we need to, but heck - it works)
318 ext4_orphan_del(handle, inode);
319 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds();
322 * One subtle ordering requirement: if anything has gone wrong
323 * (transaction abort, IO errors, whatever), then we can still
324 * do these next steps (the fs will already have been marked as
325 * having errors), but we can't free the inode if the mark_dirty
328 if (ext4_mark_inode_dirty(handle, inode))
329 /* If that failed, just do the required in-core inode clear. */
330 ext4_clear_inode(inode);
332 ext4_free_inode(handle, inode);
333 ext4_journal_stop(handle);
334 if (freeze_protected)
335 sb_end_intwrite(inode->i_sb);
336 ext4_xattr_inode_array_free(ea_inode_array);
339 if (!list_empty(&EXT4_I(inode)->i_fc_list))
340 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM);
341 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
345 qsize_t *ext4_get_reserved_space(struct inode *inode)
347 return &EXT4_I(inode)->i_reserved_quota;
352 * Called with i_data_sem down, which is important since we can call
353 * ext4_discard_preallocations() from here.
355 void ext4_da_update_reserve_space(struct inode *inode,
356 int used, int quota_claim)
358 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
359 struct ext4_inode_info *ei = EXT4_I(inode);
361 spin_lock(&ei->i_block_reservation_lock);
362 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
363 if (unlikely(used > ei->i_reserved_data_blocks)) {
364 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
365 "with only %d reserved data blocks",
366 __func__, inode->i_ino, used,
367 ei->i_reserved_data_blocks);
369 used = ei->i_reserved_data_blocks;
372 /* Update per-inode reservations */
373 ei->i_reserved_data_blocks -= used;
374 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
376 spin_unlock(&ei->i_block_reservation_lock);
378 /* Update quota subsystem for data blocks */
380 dquot_claim_block(inode, EXT4_C2B(sbi, used));
383 * We did fallocate with an offset that is already delayed
384 * allocated. So on delayed allocated writeback we should
385 * not re-claim the quota for fallocated blocks.
387 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
391 * If we have done all the pending block allocations and if
392 * there aren't any writers on the inode, we can discard the
393 * inode's preallocations.
395 if ((ei->i_reserved_data_blocks == 0) &&
396 !inode_is_open_for_write(inode))
397 ext4_discard_preallocations(inode, 0);
400 static int __check_block_validity(struct inode *inode, const char *func,
402 struct ext4_map_blocks *map)
404 if (ext4_has_feature_journal(inode->i_sb) &&
406 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
408 if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
409 ext4_error_inode(inode, func, line, map->m_pblk,
410 "lblock %lu mapped to illegal pblock %llu "
411 "(length %d)", (unsigned long) map->m_lblk,
412 map->m_pblk, map->m_len);
413 return -EFSCORRUPTED;
418 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
423 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
424 return fscrypt_zeroout_range(inode, lblk, pblk, len);
426 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
433 #define check_block_validity(inode, map) \
434 __check_block_validity((inode), __func__, __LINE__, (map))
436 #ifdef ES_AGGRESSIVE_TEST
437 static void ext4_map_blocks_es_recheck(handle_t *handle,
439 struct ext4_map_blocks *es_map,
440 struct ext4_map_blocks *map,
447 * There is a race window that the result is not the same.
448 * e.g. xfstests #223 when dioread_nolock enables. The reason
449 * is that we lookup a block mapping in extent status tree with
450 * out taking i_data_sem. So at the time the unwritten extent
451 * could be converted.
453 down_read(&EXT4_I(inode)->i_data_sem);
454 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
455 retval = ext4_ext_map_blocks(handle, inode, map, 0);
457 retval = ext4_ind_map_blocks(handle, inode, map, 0);
459 up_read((&EXT4_I(inode)->i_data_sem));
462 * We don't check m_len because extent will be collpased in status
463 * tree. So the m_len might not equal.
465 if (es_map->m_lblk != map->m_lblk ||
466 es_map->m_flags != map->m_flags ||
467 es_map->m_pblk != map->m_pblk) {
468 printk("ES cache assertion failed for inode: %lu "
469 "es_cached ex [%d/%d/%llu/%x] != "
470 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
471 inode->i_ino, es_map->m_lblk, es_map->m_len,
472 es_map->m_pblk, es_map->m_flags, map->m_lblk,
473 map->m_len, map->m_pblk, map->m_flags,
477 #endif /* ES_AGGRESSIVE_TEST */
480 * The ext4_map_blocks() function tries to look up the requested blocks,
481 * and returns if the blocks are already mapped.
483 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
484 * and store the allocated blocks in the result buffer head and mark it
487 * If file type is extents based, it will call ext4_ext_map_blocks(),
488 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
491 * On success, it returns the number of blocks being mapped or allocated. if
492 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
493 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
495 * It returns 0 if plain look up failed (blocks have not been allocated), in
496 * that case, @map is returned as unmapped but we still do fill map->m_len to
497 * indicate the length of a hole starting at map->m_lblk.
499 * It returns the error in case of allocation failure.
501 int ext4_map_blocks(handle_t *handle, struct inode *inode,
502 struct ext4_map_blocks *map, int flags)
504 struct extent_status es;
507 #ifdef ES_AGGRESSIVE_TEST
508 struct ext4_map_blocks orig_map;
510 memcpy(&orig_map, map, sizeof(*map));
514 ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
515 flags, map->m_len, (unsigned long) map->m_lblk);
518 * ext4_map_blocks returns an int, and m_len is an unsigned int
520 if (unlikely(map->m_len > INT_MAX))
521 map->m_len = INT_MAX;
523 /* We can handle the block number less than EXT_MAX_BLOCKS */
524 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
525 return -EFSCORRUPTED;
527 /* Lookup extent status tree firstly */
528 if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
529 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
530 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
531 map->m_pblk = ext4_es_pblock(&es) +
532 map->m_lblk - es.es_lblk;
533 map->m_flags |= ext4_es_is_written(&es) ?
534 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
535 retval = es.es_len - (map->m_lblk - es.es_lblk);
536 if (retval > map->m_len)
539 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
541 retval = es.es_len - (map->m_lblk - es.es_lblk);
542 if (retval > map->m_len)
549 #ifdef ES_AGGRESSIVE_TEST
550 ext4_map_blocks_es_recheck(handle, inode, map,
557 * Try to see if we can get the block without requesting a new
560 down_read(&EXT4_I(inode)->i_data_sem);
561 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
562 retval = ext4_ext_map_blocks(handle, inode, map, 0);
564 retval = ext4_ind_map_blocks(handle, inode, map, 0);
569 if (unlikely(retval != map->m_len)) {
570 ext4_warning(inode->i_sb,
571 "ES len assertion failed for inode "
572 "%lu: retval %d != map->m_len %d",
573 inode->i_ino, retval, map->m_len);
577 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
578 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
579 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
580 !(status & EXTENT_STATUS_WRITTEN) &&
581 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
582 map->m_lblk + map->m_len - 1))
583 status |= EXTENT_STATUS_DELAYED;
584 ret = ext4_es_insert_extent(inode, map->m_lblk,
585 map->m_len, map->m_pblk, status);
589 up_read((&EXT4_I(inode)->i_data_sem));
592 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
593 ret = check_block_validity(inode, map);
598 /* If it is only a block(s) look up */
599 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
603 * Returns if the blocks have already allocated
605 * Note that if blocks have been preallocated
606 * ext4_ext_get_block() returns the create = 0
607 * with buffer head unmapped.
609 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
611 * If we need to convert extent to unwritten
612 * we continue and do the actual work in
613 * ext4_ext_map_blocks()
615 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
619 * Here we clear m_flags because after allocating an new extent,
620 * it will be set again.
622 map->m_flags &= ~EXT4_MAP_FLAGS;
625 * New blocks allocate and/or writing to unwritten extent
626 * will possibly result in updating i_data, so we take
627 * the write lock of i_data_sem, and call get_block()
628 * with create == 1 flag.
630 down_write(&EXT4_I(inode)->i_data_sem);
633 * We need to check for EXT4 here because migrate
634 * could have changed the inode type in between
636 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
637 retval = ext4_ext_map_blocks(handle, inode, map, flags);
639 retval = ext4_ind_map_blocks(handle, inode, map, flags);
641 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
643 * We allocated new blocks which will result in
644 * i_data's format changing. Force the migrate
645 * to fail by clearing migrate flags
647 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
651 * Update reserved blocks/metadata blocks after successful
652 * block allocation which had been deferred till now. We don't
653 * support fallocate for non extent files. So we can update
654 * reserve space here.
657 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
658 ext4_da_update_reserve_space(inode, retval, 1);
664 if (unlikely(retval != map->m_len)) {
665 ext4_warning(inode->i_sb,
666 "ES len assertion failed for inode "
667 "%lu: retval %d != map->m_len %d",
668 inode->i_ino, retval, map->m_len);
673 * We have to zeroout blocks before inserting them into extent
674 * status tree. Otherwise someone could look them up there and
675 * use them before they are really zeroed. We also have to
676 * unmap metadata before zeroing as otherwise writeback can
677 * overwrite zeros with stale data from block device.
679 if (flags & EXT4_GET_BLOCKS_ZERO &&
680 map->m_flags & EXT4_MAP_MAPPED &&
681 map->m_flags & EXT4_MAP_NEW) {
682 ret = ext4_issue_zeroout(inode, map->m_lblk,
683 map->m_pblk, map->m_len);
691 * If the extent has been zeroed out, we don't need to update
692 * extent status tree.
694 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
695 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
696 if (ext4_es_is_written(&es))
699 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
700 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
701 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
702 !(status & EXTENT_STATUS_WRITTEN) &&
703 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
704 map->m_lblk + map->m_len - 1))
705 status |= EXTENT_STATUS_DELAYED;
706 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
707 map->m_pblk, status);
715 up_write((&EXT4_I(inode)->i_data_sem));
716 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
717 ret = check_block_validity(inode, map);
722 * Inodes with freshly allocated blocks where contents will be
723 * visible after transaction commit must be on transaction's
726 if (map->m_flags & EXT4_MAP_NEW &&
727 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
728 !(flags & EXT4_GET_BLOCKS_ZERO) &&
729 !ext4_is_quota_file(inode) &&
730 ext4_should_order_data(inode)) {
732 (loff_t)map->m_lblk << inode->i_blkbits;
733 loff_t length = (loff_t)map->m_len << inode->i_blkbits;
735 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
736 ret = ext4_jbd2_inode_add_wait(handle, inode,
739 ret = ext4_jbd2_inode_add_write(handle, inode,
744 ext4_fc_track_range(handle, inode, map->m_lblk,
745 map->m_lblk + map->m_len - 1);
749 ext_debug(inode, "failed with err %d\n", retval);
754 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
755 * we have to be careful as someone else may be manipulating b_state as well.
757 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
759 unsigned long old_state;
760 unsigned long new_state;
762 flags &= EXT4_MAP_FLAGS;
764 /* Dummy buffer_head? Set non-atomically. */
766 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
770 * Someone else may be modifying b_state. Be careful! This is ugly but
771 * once we get rid of using bh as a container for mapping information
772 * to pass to / from get_block functions, this can go away.
775 old_state = READ_ONCE(bh->b_state);
776 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
778 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
781 static int _ext4_get_block(struct inode *inode, sector_t iblock,
782 struct buffer_head *bh, int flags)
784 struct ext4_map_blocks map;
787 if (ext4_has_inline_data(inode))
791 map.m_len = bh->b_size >> inode->i_blkbits;
793 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
796 map_bh(bh, inode->i_sb, map.m_pblk);
797 ext4_update_bh_state(bh, map.m_flags);
798 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
800 } else if (ret == 0) {
801 /* hole case, need to fill in bh->b_size */
802 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
807 int ext4_get_block(struct inode *inode, sector_t iblock,
808 struct buffer_head *bh, int create)
810 return _ext4_get_block(inode, iblock, bh,
811 create ? EXT4_GET_BLOCKS_CREATE : 0);
815 * Get block function used when preparing for buffered write if we require
816 * creating an unwritten extent if blocks haven't been allocated. The extent
817 * will be converted to written after the IO is complete.
819 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
820 struct buffer_head *bh_result, int create)
822 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
823 inode->i_ino, create);
824 return _ext4_get_block(inode, iblock, bh_result,
825 EXT4_GET_BLOCKS_IO_CREATE_EXT);
828 /* Maximum number of blocks we map for direct IO at once. */
829 #define DIO_MAX_BLOCKS 4096
832 * `handle' can be NULL if create is zero
834 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
835 ext4_lblk_t block, int map_flags)
837 struct ext4_map_blocks map;
838 struct buffer_head *bh;
839 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
842 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
843 || handle != NULL || create == 0);
847 err = ext4_map_blocks(handle, inode, &map, map_flags);
850 return create ? ERR_PTR(-ENOSPC) : NULL;
854 bh = sb_getblk(inode->i_sb, map.m_pblk);
856 return ERR_PTR(-ENOMEM);
857 if (map.m_flags & EXT4_MAP_NEW) {
859 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
860 || (handle != NULL));
863 * Now that we do not always journal data, we should
864 * keep in mind whether this should always journal the
865 * new buffer as metadata. For now, regular file
866 * writes use ext4_get_block instead, so it's not a
870 BUFFER_TRACE(bh, "call get_create_access");
871 err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
877 if (!buffer_uptodate(bh)) {
878 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
879 set_buffer_uptodate(bh);
882 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
883 err = ext4_handle_dirty_metadata(handle, inode, bh);
887 BUFFER_TRACE(bh, "not a new buffer");
894 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
895 ext4_lblk_t block, int map_flags)
897 struct buffer_head *bh;
900 bh = ext4_getblk(handle, inode, block, map_flags);
903 if (!bh || ext4_buffer_uptodate(bh))
906 ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
914 /* Read a contiguous batch of blocks. */
915 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
916 bool wait, struct buffer_head **bhs)
920 for (i = 0; i < bh_count; i++) {
921 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
922 if (IS_ERR(bhs[i])) {
923 err = PTR_ERR(bhs[i]);
929 for (i = 0; i < bh_count; i++)
930 /* Note that NULL bhs[i] is valid because of holes. */
931 if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
932 ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
937 for (i = 0; i < bh_count; i++)
939 wait_on_buffer(bhs[i]);
941 for (i = 0; i < bh_count; i++) {
942 if (bhs[i] && !buffer_uptodate(bhs[i])) {
950 for (i = 0; i < bh_count; i++) {
957 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
958 struct buffer_head *head,
962 int (*fn)(handle_t *handle, struct inode *inode,
963 struct buffer_head *bh))
965 struct buffer_head *bh;
966 unsigned block_start, block_end;
967 unsigned blocksize = head->b_size;
969 struct buffer_head *next;
971 for (bh = head, block_start = 0;
972 ret == 0 && (bh != head || !block_start);
973 block_start = block_end, bh = next) {
974 next = bh->b_this_page;
975 block_end = block_start + blocksize;
976 if (block_end <= from || block_start >= to) {
977 if (partial && !buffer_uptodate(bh))
981 err = (*fn)(handle, inode, bh);
989 * To preserve ordering, it is essential that the hole instantiation and
990 * the data write be encapsulated in a single transaction. We cannot
991 * close off a transaction and start a new one between the ext4_get_block()
992 * and the commit_write(). So doing the jbd2_journal_start at the start of
993 * prepare_write() is the right place.
995 * Also, this function can nest inside ext4_writepage(). In that case, we
996 * *know* that ext4_writepage() has generated enough buffer credits to do the
997 * whole page. So we won't block on the journal in that case, which is good,
998 * because the caller may be PF_MEMALLOC.
1000 * By accident, ext4 can be reentered when a transaction is open via
1001 * quota file writes. If we were to commit the transaction while thus
1002 * reentered, there can be a deadlock - we would be holding a quota
1003 * lock, and the commit would never complete if another thread had a
1004 * transaction open and was blocking on the quota lock - a ranking
1007 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1008 * will _not_ run commit under these circumstances because handle->h_ref
1009 * is elevated. We'll still have enough credits for the tiny quotafile
1012 int do_journal_get_write_access(handle_t *handle, struct inode *inode,
1013 struct buffer_head *bh)
1015 int dirty = buffer_dirty(bh);
1018 if (!buffer_mapped(bh) || buffer_freed(bh))
1021 * __block_write_begin() could have dirtied some buffers. Clean
1022 * the dirty bit as jbd2_journal_get_write_access() could complain
1023 * otherwise about fs integrity issues. Setting of the dirty bit
1024 * by __block_write_begin() isn't a real problem here as we clear
1025 * the bit before releasing a page lock and thus writeback cannot
1026 * ever write the buffer.
1029 clear_buffer_dirty(bh);
1030 BUFFER_TRACE(bh, "get write access");
1031 ret = ext4_journal_get_write_access(handle, inode->i_sb, bh,
1034 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1038 #ifdef CONFIG_FS_ENCRYPTION
1039 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1040 get_block_t *get_block)
1042 unsigned from = pos & (PAGE_SIZE - 1);
1043 unsigned to = from + len;
1044 struct inode *inode = page->mapping->host;
1045 unsigned block_start, block_end;
1048 unsigned blocksize = inode->i_sb->s_blocksize;
1050 struct buffer_head *bh, *head, *wait[2];
1054 BUG_ON(!PageLocked(page));
1055 BUG_ON(from > PAGE_SIZE);
1056 BUG_ON(to > PAGE_SIZE);
1059 if (!page_has_buffers(page))
1060 create_empty_buffers(page, blocksize, 0);
1061 head = page_buffers(page);
1062 bbits = ilog2(blocksize);
1063 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1065 for (bh = head, block_start = 0; bh != head || !block_start;
1066 block++, block_start = block_end, bh = bh->b_this_page) {
1067 block_end = block_start + blocksize;
1068 if (block_end <= from || block_start >= to) {
1069 if (PageUptodate(page)) {
1070 set_buffer_uptodate(bh);
1075 clear_buffer_new(bh);
1076 if (!buffer_mapped(bh)) {
1077 WARN_ON(bh->b_size != blocksize);
1078 err = get_block(inode, block, bh, 1);
1081 if (buffer_new(bh)) {
1082 if (PageUptodate(page)) {
1083 clear_buffer_new(bh);
1084 set_buffer_uptodate(bh);
1085 mark_buffer_dirty(bh);
1088 if (block_end > to || block_start < from)
1089 zero_user_segments(page, to, block_end,
1094 if (PageUptodate(page)) {
1095 set_buffer_uptodate(bh);
1098 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1099 !buffer_unwritten(bh) &&
1100 (block_start < from || block_end > to)) {
1101 ext4_read_bh_lock(bh, 0, false);
1102 wait[nr_wait++] = bh;
1106 * If we issued read requests, let them complete.
1108 for (i = 0; i < nr_wait; i++) {
1109 wait_on_buffer(wait[i]);
1110 if (!buffer_uptodate(wait[i]))
1113 if (unlikely(err)) {
1114 page_zero_new_buffers(page, from, to);
1115 } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1116 for (i = 0; i < nr_wait; i++) {
1119 err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1120 bh_offset(wait[i]));
1122 clear_buffer_uptodate(wait[i]);
1132 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1133 loff_t pos, unsigned len, unsigned flags,
1134 struct page **pagep, void **fsdata)
1136 struct inode *inode = mapping->host;
1137 int ret, needed_blocks;
1144 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1147 trace_ext4_write_begin(inode, pos, len, flags);
1149 * Reserve one block more for addition to orphan list in case
1150 * we allocate blocks but write fails for some reason
1152 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1153 index = pos >> PAGE_SHIFT;
1154 from = pos & (PAGE_SIZE - 1);
1157 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1158 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1167 * grab_cache_page_write_begin() can take a long time if the
1168 * system is thrashing due to memory pressure, or if the page
1169 * is being written back. So grab it first before we start
1170 * the transaction handle. This also allows us to allocate
1171 * the page (if needed) without using GFP_NOFS.
1174 page = grab_cache_page_write_begin(mapping, index, flags);
1180 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1181 if (IS_ERR(handle)) {
1183 return PTR_ERR(handle);
1187 if (page->mapping != mapping) {
1188 /* The page got truncated from under us */
1191 ext4_journal_stop(handle);
1194 /* In case writeback began while the page was unlocked */
1195 wait_for_stable_page(page);
1197 #ifdef CONFIG_FS_ENCRYPTION
1198 if (ext4_should_dioread_nolock(inode))
1199 ret = ext4_block_write_begin(page, pos, len,
1200 ext4_get_block_unwritten);
1202 ret = ext4_block_write_begin(page, pos, len,
1205 if (ext4_should_dioread_nolock(inode))
1206 ret = __block_write_begin(page, pos, len,
1207 ext4_get_block_unwritten);
1209 ret = __block_write_begin(page, pos, len, ext4_get_block);
1211 if (!ret && ext4_should_journal_data(inode)) {
1212 ret = ext4_walk_page_buffers(handle, inode,
1213 page_buffers(page), from, to, NULL,
1214 do_journal_get_write_access);
1218 bool extended = (pos + len > inode->i_size) &&
1219 !ext4_verity_in_progress(inode);
1223 * __block_write_begin may have instantiated a few blocks
1224 * outside i_size. Trim these off again. Don't need
1225 * i_size_read because we hold i_mutex.
1227 * Add inode to orphan list in case we crash before
1230 if (extended && ext4_can_truncate(inode))
1231 ext4_orphan_add(handle, inode);
1233 ext4_journal_stop(handle);
1235 ext4_truncate_failed_write(inode);
1237 * If truncate failed early the inode might
1238 * still be on the orphan list; we need to
1239 * make sure the inode is removed from the
1240 * orphan list in that case.
1243 ext4_orphan_del(NULL, inode);
1246 if (ret == -ENOSPC &&
1247 ext4_should_retry_alloc(inode->i_sb, &retries))
1256 /* For write_end() in data=journal mode */
1257 static int write_end_fn(handle_t *handle, struct inode *inode,
1258 struct buffer_head *bh)
1261 if (!buffer_mapped(bh) || buffer_freed(bh))
1263 set_buffer_uptodate(bh);
1264 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1265 clear_buffer_meta(bh);
1266 clear_buffer_prio(bh);
1271 * We need to pick up the new inode size which generic_commit_write gave us
1272 * `file' can be NULL - eg, when called from page_symlink().
1274 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1275 * buffers are managed internally.
1277 static int ext4_write_end(struct file *file,
1278 struct address_space *mapping,
1279 loff_t pos, unsigned len, unsigned copied,
1280 struct page *page, void *fsdata)
1282 handle_t *handle = ext4_journal_current_handle();
1283 struct inode *inode = mapping->host;
1284 loff_t old_size = inode->i_size;
1286 int i_size_changed = 0;
1287 int inline_data = ext4_has_inline_data(inode);
1288 bool verity = ext4_verity_in_progress(inode);
1290 trace_ext4_write_end(inode, pos, len, copied);
1292 ret = ext4_write_inline_data_end(inode, pos, len,
1301 copied = block_write_end(file, mapping, pos,
1302 len, copied, page, fsdata);
1304 * it's important to update i_size while still holding page lock:
1305 * page writeout could otherwise come in and zero beyond i_size.
1307 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1308 * blocks are being written past EOF, so skip the i_size update.
1311 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1315 if (old_size < pos && !verity)
1316 pagecache_isize_extended(inode, old_size, pos);
1318 * Don't mark the inode dirty under page lock. First, it unnecessarily
1319 * makes the holding time of page lock longer. Second, it forces lock
1320 * ordering of page lock and transaction start for journaling
1323 if (i_size_changed || inline_data)
1324 ret = ext4_mark_inode_dirty(handle, inode);
1326 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1327 /* if we have allocated more blocks and copied
1328 * less. We will have blocks allocated outside
1329 * inode->i_size. So truncate them
1331 ext4_orphan_add(handle, inode);
1333 ret2 = ext4_journal_stop(handle);
1337 if (pos + len > inode->i_size && !verity) {
1338 ext4_truncate_failed_write(inode);
1340 * If truncate failed early the inode might still be
1341 * on the orphan list; we need to make sure the inode
1342 * is removed from the orphan list in that case.
1345 ext4_orphan_del(NULL, inode);
1348 return ret ? ret : copied;
1352 * This is a private version of page_zero_new_buffers() which doesn't
1353 * set the buffer to be dirty, since in data=journalled mode we need
1354 * to call ext4_handle_dirty_metadata() instead.
1356 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1357 struct inode *inode,
1359 unsigned from, unsigned to)
1361 unsigned int block_start = 0, block_end;
1362 struct buffer_head *head, *bh;
1364 bh = head = page_buffers(page);
1366 block_end = block_start + bh->b_size;
1367 if (buffer_new(bh)) {
1368 if (block_end > from && block_start < to) {
1369 if (!PageUptodate(page)) {
1370 unsigned start, size;
1372 start = max(from, block_start);
1373 size = min(to, block_end) - start;
1375 zero_user(page, start, size);
1376 write_end_fn(handle, inode, bh);
1378 clear_buffer_new(bh);
1381 block_start = block_end;
1382 bh = bh->b_this_page;
1383 } while (bh != head);
1386 static int ext4_journalled_write_end(struct file *file,
1387 struct address_space *mapping,
1388 loff_t pos, unsigned len, unsigned copied,
1389 struct page *page, void *fsdata)
1391 handle_t *handle = ext4_journal_current_handle();
1392 struct inode *inode = mapping->host;
1393 loff_t old_size = inode->i_size;
1397 int size_changed = 0;
1398 int inline_data = ext4_has_inline_data(inode);
1399 bool verity = ext4_verity_in_progress(inode);
1401 trace_ext4_journalled_write_end(inode, pos, len, copied);
1402 from = pos & (PAGE_SIZE - 1);
1405 BUG_ON(!ext4_handle_valid(handle));
1408 ret = ext4_write_inline_data_end(inode, pos, len,
1416 } else if (unlikely(copied < len) && !PageUptodate(page)) {
1418 ext4_journalled_zero_new_buffers(handle, inode, page, from, to);
1420 if (unlikely(copied < len))
1421 ext4_journalled_zero_new_buffers(handle, inode, page,
1423 ret = ext4_walk_page_buffers(handle, inode, page_buffers(page),
1424 from, from + copied, &partial,
1427 SetPageUptodate(page);
1430 size_changed = ext4_update_inode_size(inode, pos + copied);
1431 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1432 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1436 if (old_size < pos && !verity)
1437 pagecache_isize_extended(inode, old_size, pos);
1439 if (size_changed || inline_data) {
1440 ret2 = ext4_mark_inode_dirty(handle, inode);
1445 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1446 /* if we have allocated more blocks and copied
1447 * less. We will have blocks allocated outside
1448 * inode->i_size. So truncate them
1450 ext4_orphan_add(handle, inode);
1453 ret2 = ext4_journal_stop(handle);
1456 if (pos + len > inode->i_size && !verity) {
1457 ext4_truncate_failed_write(inode);
1459 * If truncate failed early the inode might still be
1460 * on the orphan list; we need to make sure the inode
1461 * is removed from the orphan list in that case.
1464 ext4_orphan_del(NULL, inode);
1467 return ret ? ret : copied;
1471 * Reserve space for a single cluster
1473 static int ext4_da_reserve_space(struct inode *inode)
1475 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1476 struct ext4_inode_info *ei = EXT4_I(inode);
1480 * We will charge metadata quota at writeout time; this saves
1481 * us from metadata over-estimation, though we may go over by
1482 * a small amount in the end. Here we just reserve for data.
1484 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1488 spin_lock(&ei->i_block_reservation_lock);
1489 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1490 spin_unlock(&ei->i_block_reservation_lock);
1491 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1494 ei->i_reserved_data_blocks++;
1495 trace_ext4_da_reserve_space(inode);
1496 spin_unlock(&ei->i_block_reservation_lock);
1498 return 0; /* success */
1501 void ext4_da_release_space(struct inode *inode, int to_free)
1503 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1504 struct ext4_inode_info *ei = EXT4_I(inode);
1507 return; /* Nothing to release, exit */
1509 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1511 trace_ext4_da_release_space(inode, to_free);
1512 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1514 * if there aren't enough reserved blocks, then the
1515 * counter is messed up somewhere. Since this
1516 * function is called from invalidate page, it's
1517 * harmless to return without any action.
1519 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1520 "ino %lu, to_free %d with only %d reserved "
1521 "data blocks", inode->i_ino, to_free,
1522 ei->i_reserved_data_blocks);
1524 to_free = ei->i_reserved_data_blocks;
1526 ei->i_reserved_data_blocks -= to_free;
1528 /* update fs dirty data blocks counter */
1529 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1531 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1533 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1537 * Delayed allocation stuff
1540 struct mpage_da_data {
1541 struct inode *inode;
1542 struct writeback_control *wbc;
1544 pgoff_t first_page; /* The first page to write */
1545 pgoff_t next_page; /* Current page to examine */
1546 pgoff_t last_page; /* Last page to examine */
1548 * Extent to map - this can be after first_page because that can be
1549 * fully mapped. We somewhat abuse m_flags to store whether the extent
1550 * is delalloc or unwritten.
1552 struct ext4_map_blocks map;
1553 struct ext4_io_submit io_submit; /* IO submission data */
1554 unsigned int do_map:1;
1555 unsigned int scanned_until_end:1;
1558 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1563 struct pagevec pvec;
1564 struct inode *inode = mpd->inode;
1565 struct address_space *mapping = inode->i_mapping;
1567 /* This is necessary when next_page == 0. */
1568 if (mpd->first_page >= mpd->next_page)
1571 mpd->scanned_until_end = 0;
1572 index = mpd->first_page;
1573 end = mpd->next_page - 1;
1575 ext4_lblk_t start, last;
1576 start = index << (PAGE_SHIFT - inode->i_blkbits);
1577 last = end << (PAGE_SHIFT - inode->i_blkbits);
1578 ext4_es_remove_extent(inode, start, last - start + 1);
1581 pagevec_init(&pvec);
1582 while (index <= end) {
1583 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1586 for (i = 0; i < nr_pages; i++) {
1587 struct page *page = pvec.pages[i];
1589 BUG_ON(!PageLocked(page));
1590 BUG_ON(PageWriteback(page));
1592 if (page_mapped(page))
1593 clear_page_dirty_for_io(page);
1594 block_invalidatepage(page, 0, PAGE_SIZE);
1595 ClearPageUptodate(page);
1599 pagevec_release(&pvec);
1603 static void ext4_print_free_blocks(struct inode *inode)
1605 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1606 struct super_block *sb = inode->i_sb;
1607 struct ext4_inode_info *ei = EXT4_I(inode);
1609 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1610 EXT4_C2B(EXT4_SB(inode->i_sb),
1611 ext4_count_free_clusters(sb)));
1612 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1613 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1614 (long long) EXT4_C2B(EXT4_SB(sb),
1615 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1616 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1617 (long long) EXT4_C2B(EXT4_SB(sb),
1618 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1619 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1620 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1621 ei->i_reserved_data_blocks);
1625 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct inode *inode,
1626 struct buffer_head *bh)
1628 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1632 * ext4_insert_delayed_block - adds a delayed block to the extents status
1633 * tree, incrementing the reserved cluster/block
1634 * count or making a pending reservation
1637 * @inode - file containing the newly added block
1638 * @lblk - logical block to be added
1640 * Returns 0 on success, negative error code on failure.
1642 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1644 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1646 bool allocated = false;
1649 * If the cluster containing lblk is shared with a delayed,
1650 * written, or unwritten extent in a bigalloc file system, it's
1651 * already been accounted for and does not need to be reserved.
1652 * A pending reservation must be made for the cluster if it's
1653 * shared with a written or unwritten extent and doesn't already
1654 * have one. Written and unwritten extents can be purged from the
1655 * extents status tree if the system is under memory pressure, so
1656 * it's necessary to examine the extent tree if a search of the
1657 * extents status tree doesn't get a match.
1659 if (sbi->s_cluster_ratio == 1) {
1660 ret = ext4_da_reserve_space(inode);
1661 if (ret != 0) /* ENOSPC */
1663 } else { /* bigalloc */
1664 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1665 if (!ext4_es_scan_clu(inode,
1666 &ext4_es_is_mapped, lblk)) {
1667 ret = ext4_clu_mapped(inode,
1668 EXT4_B2C(sbi, lblk));
1672 ret = ext4_da_reserve_space(inode);
1673 if (ret != 0) /* ENOSPC */
1684 ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1691 * This function is grabs code from the very beginning of
1692 * ext4_map_blocks, but assumes that the caller is from delayed write
1693 * time. This function looks up the requested blocks and sets the
1694 * buffer delay bit under the protection of i_data_sem.
1696 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1697 struct ext4_map_blocks *map,
1698 struct buffer_head *bh)
1700 struct extent_status es;
1702 sector_t invalid_block = ~((sector_t) 0xffff);
1703 #ifdef ES_AGGRESSIVE_TEST
1704 struct ext4_map_blocks orig_map;
1706 memcpy(&orig_map, map, sizeof(*map));
1709 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1713 ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1714 (unsigned long) map->m_lblk);
1716 /* Lookup extent status tree firstly */
1717 if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1718 if (ext4_es_is_hole(&es)) {
1720 down_read(&EXT4_I(inode)->i_data_sem);
1725 * Delayed extent could be allocated by fallocate.
1726 * So we need to check it.
1728 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1729 map_bh(bh, inode->i_sb, invalid_block);
1731 set_buffer_delay(bh);
1735 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1736 retval = es.es_len - (iblock - es.es_lblk);
1737 if (retval > map->m_len)
1738 retval = map->m_len;
1739 map->m_len = retval;
1740 if (ext4_es_is_written(&es))
1741 map->m_flags |= EXT4_MAP_MAPPED;
1742 else if (ext4_es_is_unwritten(&es))
1743 map->m_flags |= EXT4_MAP_UNWRITTEN;
1747 #ifdef ES_AGGRESSIVE_TEST
1748 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1754 * Try to see if we can get the block without requesting a new
1755 * file system block.
1757 down_read(&EXT4_I(inode)->i_data_sem);
1758 if (ext4_has_inline_data(inode))
1760 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1761 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1763 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1770 * XXX: __block_prepare_write() unmaps passed block,
1774 ret = ext4_insert_delayed_block(inode, map->m_lblk);
1780 map_bh(bh, inode->i_sb, invalid_block);
1782 set_buffer_delay(bh);
1783 } else if (retval > 0) {
1785 unsigned int status;
1787 if (unlikely(retval != map->m_len)) {
1788 ext4_warning(inode->i_sb,
1789 "ES len assertion failed for inode "
1790 "%lu: retval %d != map->m_len %d",
1791 inode->i_ino, retval, map->m_len);
1795 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1796 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1797 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1798 map->m_pblk, status);
1804 up_read((&EXT4_I(inode)->i_data_sem));
1810 * This is a special get_block_t callback which is used by
1811 * ext4_da_write_begin(). It will either return mapped block or
1812 * reserve space for a single block.
1814 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1815 * We also have b_blocknr = -1 and b_bdev initialized properly
1817 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1818 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1819 * initialized properly.
1821 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1822 struct buffer_head *bh, int create)
1824 struct ext4_map_blocks map;
1827 BUG_ON(create == 0);
1828 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1830 map.m_lblk = iblock;
1834 * first, we need to know whether the block is allocated already
1835 * preallocated blocks are unmapped but should treated
1836 * the same as allocated blocks.
1838 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1842 map_bh(bh, inode->i_sb, map.m_pblk);
1843 ext4_update_bh_state(bh, map.m_flags);
1845 if (buffer_unwritten(bh)) {
1846 /* A delayed write to unwritten bh should be marked
1847 * new and mapped. Mapped ensures that we don't do
1848 * get_block multiple times when we write to the same
1849 * offset and new ensures that we do proper zero out
1850 * for partial write.
1853 set_buffer_mapped(bh);
1858 static int bget_one(handle_t *handle, struct inode *inode,
1859 struct buffer_head *bh)
1865 static int bput_one(handle_t *handle, struct inode *inode,
1866 struct buffer_head *bh)
1872 static int __ext4_journalled_writepage(struct page *page,
1875 struct address_space *mapping = page->mapping;
1876 struct inode *inode = mapping->host;
1877 struct buffer_head *page_bufs = NULL;
1878 handle_t *handle = NULL;
1879 int ret = 0, err = 0;
1880 int inline_data = ext4_has_inline_data(inode);
1881 struct buffer_head *inode_bh = NULL;
1883 ClearPageChecked(page);
1886 BUG_ON(page->index != 0);
1887 BUG_ON(len > ext4_get_max_inline_size(inode));
1888 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1889 if (inode_bh == NULL)
1892 page_bufs = page_buffers(page);
1897 ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1901 * We need to release the page lock before we start the
1902 * journal, so grab a reference so the page won't disappear
1903 * out from under us.
1908 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1909 ext4_writepage_trans_blocks(inode));
1910 if (IS_ERR(handle)) {
1911 ret = PTR_ERR(handle);
1913 goto out_no_pagelock;
1915 BUG_ON(!ext4_handle_valid(handle));
1919 if (page->mapping != mapping) {
1920 /* The page got truncated from under us */
1921 ext4_journal_stop(handle);
1927 ret = ext4_mark_inode_dirty(handle, inode);
1929 ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1930 NULL, do_journal_get_write_access);
1932 err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1933 NULL, write_end_fn);
1937 err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len);
1940 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1941 err = ext4_journal_stop(handle);
1945 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1949 if (!inline_data && page_bufs)
1950 ext4_walk_page_buffers(NULL, inode, page_bufs, 0, len,
1957 * Note that we don't need to start a transaction unless we're journaling data
1958 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1959 * need to file the inode to the transaction's list in ordered mode because if
1960 * we are writing back data added by write(), the inode is already there and if
1961 * we are writing back data modified via mmap(), no one guarantees in which
1962 * transaction the data will hit the disk. In case we are journaling data, we
1963 * cannot start transaction directly because transaction start ranks above page
1964 * lock so we have to do some magic.
1966 * This function can get called via...
1967 * - ext4_writepages after taking page lock (have journal handle)
1968 * - journal_submit_inode_data_buffers (no journal handle)
1969 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1970 * - grab_page_cache when doing write_begin (have journal handle)
1972 * We don't do any block allocation in this function. If we have page with
1973 * multiple blocks we need to write those buffer_heads that are mapped. This
1974 * is important for mmaped based write. So if we do with blocksize 1K
1975 * truncate(f, 1024);
1976 * a = mmap(f, 0, 4096);
1978 * truncate(f, 4096);
1979 * we have in the page first buffer_head mapped via page_mkwrite call back
1980 * but other buffer_heads would be unmapped but dirty (dirty done via the
1981 * do_wp_page). So writepage should write the first block. If we modify
1982 * the mmap area beyond 1024 we will again get a page_fault and the
1983 * page_mkwrite callback will do the block allocation and mark the
1984 * buffer_heads mapped.
1986 * We redirty the page if we have any buffer_heads that is either delay or
1987 * unwritten in the page.
1989 * We can get recursively called as show below.
1991 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1994 * But since we don't do any block allocation we should not deadlock.
1995 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1997 static int ext4_writepage(struct page *page,
1998 struct writeback_control *wbc)
2003 struct buffer_head *page_bufs = NULL;
2004 struct inode *inode = page->mapping->host;
2005 struct ext4_io_submit io_submit;
2006 bool keep_towrite = false;
2008 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2009 inode->i_mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
2014 trace_ext4_writepage(page);
2015 size = i_size_read(inode);
2016 if (page->index == size >> PAGE_SHIFT &&
2017 !ext4_verity_in_progress(inode))
2018 len = size & ~PAGE_MASK;
2022 page_bufs = page_buffers(page);
2024 * We cannot do block allocation or other extent handling in this
2025 * function. If there are buffers needing that, we have to redirty
2026 * the page. But we may reach here when we do a journal commit via
2027 * journal_submit_inode_data_buffers() and in that case we must write
2028 * allocated buffers to achieve data=ordered mode guarantees.
2030 * Also, if there is only one buffer per page (the fs block
2031 * size == the page size), if one buffer needs block
2032 * allocation or needs to modify the extent tree to clear the
2033 * unwritten flag, we know that the page can't be written at
2034 * all, so we might as well refuse the write immediately.
2035 * Unfortunately if the block size != page size, we can't as
2036 * easily detect this case using ext4_walk_page_buffers(), but
2037 * for the extremely common case, this is an optimization that
2038 * skips a useless round trip through ext4_bio_write_page().
2040 if (ext4_walk_page_buffers(NULL, inode, page_bufs, 0, len, NULL,
2041 ext4_bh_delay_or_unwritten)) {
2042 redirty_page_for_writepage(wbc, page);
2043 if ((current->flags & PF_MEMALLOC) ||
2044 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2046 * For memory cleaning there's no point in writing only
2047 * some buffers. So just bail out. Warn if we came here
2048 * from direct reclaim.
2050 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2055 keep_towrite = true;
2058 if (PageChecked(page) && ext4_should_journal_data(inode))
2060 * It's mmapped pagecache. Add buffers and journal it. There
2061 * doesn't seem much point in redirtying the page here.
2063 return __ext4_journalled_writepage(page, len);
2065 ext4_io_submit_init(&io_submit, wbc);
2066 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2067 if (!io_submit.io_end) {
2068 redirty_page_for_writepage(wbc, page);
2072 ret = ext4_bio_write_page(&io_submit, page, len, keep_towrite);
2073 ext4_io_submit(&io_submit);
2074 /* Drop io_end reference we got from init */
2075 ext4_put_io_end_defer(io_submit.io_end);
2079 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2085 BUG_ON(page->index != mpd->first_page);
2086 clear_page_dirty_for_io(page);
2088 * We have to be very careful here! Nothing protects writeback path
2089 * against i_size changes and the page can be writeably mapped into
2090 * page tables. So an application can be growing i_size and writing
2091 * data through mmap while writeback runs. clear_page_dirty_for_io()
2092 * write-protects our page in page tables and the page cannot get
2093 * written to again until we release page lock. So only after
2094 * clear_page_dirty_for_io() we are safe to sample i_size for
2095 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2096 * on the barrier provided by TestClearPageDirty in
2097 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2098 * after page tables are updated.
2100 size = i_size_read(mpd->inode);
2101 if (page->index == size >> PAGE_SHIFT &&
2102 !ext4_verity_in_progress(mpd->inode))
2103 len = size & ~PAGE_MASK;
2106 err = ext4_bio_write_page(&mpd->io_submit, page, len, false);
2108 mpd->wbc->nr_to_write--;
2114 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
2117 * mballoc gives us at most this number of blocks...
2118 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2119 * The rest of mballoc seems to handle chunks up to full group size.
2121 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2124 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2126 * @mpd - extent of blocks
2127 * @lblk - logical number of the block in the file
2128 * @bh - buffer head we want to add to the extent
2130 * The function is used to collect contig. blocks in the same state. If the
2131 * buffer doesn't require mapping for writeback and we haven't started the
2132 * extent of buffers to map yet, the function returns 'true' immediately - the
2133 * caller can write the buffer right away. Otherwise the function returns true
2134 * if the block has been added to the extent, false if the block couldn't be
2137 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2138 struct buffer_head *bh)
2140 struct ext4_map_blocks *map = &mpd->map;
2142 /* Buffer that doesn't need mapping for writeback? */
2143 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2144 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2145 /* So far no extent to map => we write the buffer right away */
2146 if (map->m_len == 0)
2151 /* First block in the extent? */
2152 if (map->m_len == 0) {
2153 /* We cannot map unless handle is started... */
2158 map->m_flags = bh->b_state & BH_FLAGS;
2162 /* Don't go larger than mballoc is willing to allocate */
2163 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2166 /* Can we merge the block to our big extent? */
2167 if (lblk == map->m_lblk + map->m_len &&
2168 (bh->b_state & BH_FLAGS) == map->m_flags) {
2176 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2178 * @mpd - extent of blocks for mapping
2179 * @head - the first buffer in the page
2180 * @bh - buffer we should start processing from
2181 * @lblk - logical number of the block in the file corresponding to @bh
2183 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2184 * the page for IO if all buffers in this page were mapped and there's no
2185 * accumulated extent of buffers to map or add buffers in the page to the
2186 * extent of buffers to map. The function returns 1 if the caller can continue
2187 * by processing the next page, 0 if it should stop adding buffers to the
2188 * extent to map because we cannot extend it anymore. It can also return value
2189 * < 0 in case of error during IO submission.
2191 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2192 struct buffer_head *head,
2193 struct buffer_head *bh,
2196 struct inode *inode = mpd->inode;
2198 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2199 >> inode->i_blkbits;
2201 if (ext4_verity_in_progress(inode))
2202 blocks = EXT_MAX_BLOCKS;
2205 BUG_ON(buffer_locked(bh));
2207 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2208 /* Found extent to map? */
2211 /* Buffer needs mapping and handle is not started? */
2214 /* Everything mapped so far and we hit EOF */
2217 } while (lblk++, (bh = bh->b_this_page) != head);
2218 /* So far everything mapped? Submit the page for IO. */
2219 if (mpd->map.m_len == 0) {
2220 err = mpage_submit_page(mpd, head->b_page);
2224 if (lblk >= blocks) {
2225 mpd->scanned_until_end = 1;
2232 * mpage_process_page - update page buffers corresponding to changed extent and
2233 * may submit fully mapped page for IO
2235 * @mpd - description of extent to map, on return next extent to map
2236 * @m_lblk - logical block mapping.
2237 * @m_pblk - corresponding physical mapping.
2238 * @map_bh - determines on return whether this page requires any further
2240 * Scan given page buffers corresponding to changed extent and update buffer
2241 * state according to new extent state.
2242 * We map delalloc buffers to their physical location, clear unwritten bits.
2243 * If the given page is not fully mapped, we update @map to the next extent in
2244 * the given page that needs mapping & return @map_bh as true.
2246 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2247 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2250 struct buffer_head *head, *bh;
2251 ext4_io_end_t *io_end = mpd->io_submit.io_end;
2252 ext4_lblk_t lblk = *m_lblk;
2253 ext4_fsblk_t pblock = *m_pblk;
2255 int blkbits = mpd->inode->i_blkbits;
2256 ssize_t io_end_size = 0;
2257 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2259 bh = head = page_buffers(page);
2261 if (lblk < mpd->map.m_lblk)
2263 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2265 * Buffer after end of mapped extent.
2266 * Find next buffer in the page to map.
2269 mpd->map.m_flags = 0;
2270 io_end_vec->size += io_end_size;
2273 err = mpage_process_page_bufs(mpd, head, bh, lblk);
2276 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2277 io_end_vec = ext4_alloc_io_end_vec(io_end);
2278 if (IS_ERR(io_end_vec)) {
2279 err = PTR_ERR(io_end_vec);
2282 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2287 if (buffer_delay(bh)) {
2288 clear_buffer_delay(bh);
2289 bh->b_blocknr = pblock++;
2291 clear_buffer_unwritten(bh);
2292 io_end_size += (1 << blkbits);
2293 } while (lblk++, (bh = bh->b_this_page) != head);
2295 io_end_vec->size += io_end_size;
2305 * mpage_map_buffers - update buffers corresponding to changed extent and
2306 * submit fully mapped pages for IO
2308 * @mpd - description of extent to map, on return next extent to map
2310 * Scan buffers corresponding to changed extent (we expect corresponding pages
2311 * to be already locked) and update buffer state according to new extent state.
2312 * We map delalloc buffers to their physical location, clear unwritten bits,
2313 * and mark buffers as uninit when we perform writes to unwritten extents
2314 * and do extent conversion after IO is finished. If the last page is not fully
2315 * mapped, we update @map to the next extent in the last page that needs
2316 * mapping. Otherwise we submit the page for IO.
2318 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2320 struct pagevec pvec;
2322 struct inode *inode = mpd->inode;
2323 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2326 ext4_fsblk_t pblock;
2328 bool map_bh = false;
2330 start = mpd->map.m_lblk >> bpp_bits;
2331 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2332 lblk = start << bpp_bits;
2333 pblock = mpd->map.m_pblk;
2335 pagevec_init(&pvec);
2336 while (start <= end) {
2337 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2341 for (i = 0; i < nr_pages; i++) {
2342 struct page *page = pvec.pages[i];
2344 err = mpage_process_page(mpd, page, &lblk, &pblock,
2347 * If map_bh is true, means page may require further bh
2348 * mapping, or maybe the page was submitted for IO.
2349 * So we return to call further extent mapping.
2351 if (err < 0 || map_bh)
2353 /* Page fully mapped - let IO run! */
2354 err = mpage_submit_page(mpd, page);
2358 pagevec_release(&pvec);
2360 /* Extent fully mapped and matches with page boundary. We are done. */
2362 mpd->map.m_flags = 0;
2365 pagevec_release(&pvec);
2369 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2371 struct inode *inode = mpd->inode;
2372 struct ext4_map_blocks *map = &mpd->map;
2373 int get_blocks_flags;
2374 int err, dioread_nolock;
2376 trace_ext4_da_write_pages_extent(inode, map);
2378 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2379 * to convert an unwritten extent to be initialized (in the case
2380 * where we have written into one or more preallocated blocks). It is
2381 * possible that we're going to need more metadata blocks than
2382 * previously reserved. However we must not fail because we're in
2383 * writeback and there is nothing we can do about it so it might result
2384 * in data loss. So use reserved blocks to allocate metadata if
2387 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2388 * the blocks in question are delalloc blocks. This indicates
2389 * that the blocks and quotas has already been checked when
2390 * the data was copied into the page cache.
2392 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2393 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2394 EXT4_GET_BLOCKS_IO_SUBMIT;
2395 dioread_nolock = ext4_should_dioread_nolock(inode);
2397 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2398 if (map->m_flags & BIT(BH_Delay))
2399 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2401 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2404 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2405 if (!mpd->io_submit.io_end->handle &&
2406 ext4_handle_valid(handle)) {
2407 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2408 handle->h_rsv_handle = NULL;
2410 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2413 BUG_ON(map->m_len == 0);
2418 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2419 * mpd->len and submit pages underlying it for IO
2421 * @handle - handle for journal operations
2422 * @mpd - extent to map
2423 * @give_up_on_write - we set this to true iff there is a fatal error and there
2424 * is no hope of writing the data. The caller should discard
2425 * dirty pages to avoid infinite loops.
2427 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2428 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2429 * them to initialized or split the described range from larger unwritten
2430 * extent. Note that we need not map all the described range since allocation
2431 * can return less blocks or the range is covered by more unwritten extents. We
2432 * cannot map more because we are limited by reserved transaction credits. On
2433 * the other hand we always make sure that the last touched page is fully
2434 * mapped so that it can be written out (and thus forward progress is
2435 * guaranteed). After mapping we submit all mapped pages for IO.
2437 static int mpage_map_and_submit_extent(handle_t *handle,
2438 struct mpage_da_data *mpd,
2439 bool *give_up_on_write)
2441 struct inode *inode = mpd->inode;
2442 struct ext4_map_blocks *map = &mpd->map;
2446 ext4_io_end_t *io_end = mpd->io_submit.io_end;
2447 struct ext4_io_end_vec *io_end_vec;
2449 io_end_vec = ext4_alloc_io_end_vec(io_end);
2450 if (IS_ERR(io_end_vec))
2451 return PTR_ERR(io_end_vec);
2452 io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2454 err = mpage_map_one_extent(handle, mpd);
2456 struct super_block *sb = inode->i_sb;
2458 if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2459 ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
2460 goto invalidate_dirty_pages;
2462 * Let the uper layers retry transient errors.
2463 * In the case of ENOSPC, if ext4_count_free_blocks()
2464 * is non-zero, a commit should free up blocks.
2466 if ((err == -ENOMEM) ||
2467 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2469 goto update_disksize;
2472 ext4_msg(sb, KERN_CRIT,
2473 "Delayed block allocation failed for "
2474 "inode %lu at logical offset %llu with"
2475 " max blocks %u with error %d",
2477 (unsigned long long)map->m_lblk,
2478 (unsigned)map->m_len, -err);
2479 ext4_msg(sb, KERN_CRIT,
2480 "This should not happen!! Data will "
2483 ext4_print_free_blocks(inode);
2484 invalidate_dirty_pages:
2485 *give_up_on_write = true;
2490 * Update buffer state, submit mapped pages, and get us new
2493 err = mpage_map_and_submit_buffers(mpd);
2495 goto update_disksize;
2496 } while (map->m_len);
2500 * Update on-disk size after IO is submitted. Races with
2501 * truncate are avoided by checking i_size under i_data_sem.
2503 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2504 if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2508 down_write(&EXT4_I(inode)->i_data_sem);
2509 i_size = i_size_read(inode);
2510 if (disksize > i_size)
2512 if (disksize > EXT4_I(inode)->i_disksize)
2513 EXT4_I(inode)->i_disksize = disksize;
2514 up_write(&EXT4_I(inode)->i_data_sem);
2515 err2 = ext4_mark_inode_dirty(handle, inode);
2517 ext4_error_err(inode->i_sb, -err2,
2518 "Failed to mark inode %lu dirty",
2528 * Calculate the total number of credits to reserve for one writepages
2529 * iteration. This is called from ext4_writepages(). We map an extent of
2530 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2531 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2532 * bpp - 1 blocks in bpp different extents.
2534 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2536 int bpp = ext4_journal_blocks_per_page(inode);
2538 return ext4_meta_trans_blocks(inode,
2539 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2543 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2544 * and underlying extent to map
2546 * @mpd - where to look for pages
2548 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2549 * IO immediately. When we find a page which isn't mapped we start accumulating
2550 * extent of buffers underlying these pages that needs mapping (formed by
2551 * either delayed or unwritten buffers). We also lock the pages containing
2552 * these buffers. The extent found is returned in @mpd structure (starting at
2553 * mpd->lblk with length mpd->len blocks).
2555 * Note that this function can attach bios to one io_end structure which are
2556 * neither logically nor physically contiguous. Although it may seem as an
2557 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2558 * case as we need to track IO to all buffers underlying a page in one io_end.
2560 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2562 struct address_space *mapping = mpd->inode->i_mapping;
2563 struct pagevec pvec;
2564 unsigned int nr_pages;
2565 long left = mpd->wbc->nr_to_write;
2566 pgoff_t index = mpd->first_page;
2567 pgoff_t end = mpd->last_page;
2570 int blkbits = mpd->inode->i_blkbits;
2572 struct buffer_head *head;
2574 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2575 tag = PAGECACHE_TAG_TOWRITE;
2577 tag = PAGECACHE_TAG_DIRTY;
2579 pagevec_init(&pvec);
2581 mpd->next_page = index;
2582 while (index <= end) {
2583 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2588 for (i = 0; i < nr_pages; i++) {
2589 struct page *page = pvec.pages[i];
2592 * Accumulated enough dirty pages? This doesn't apply
2593 * to WB_SYNC_ALL mode. For integrity sync we have to
2594 * keep going because someone may be concurrently
2595 * dirtying pages, and we might have synced a lot of
2596 * newly appeared dirty pages, but have not synced all
2597 * of the old dirty pages.
2599 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2602 /* If we can't merge this page, we are done. */
2603 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2608 * If the page is no longer dirty, or its mapping no
2609 * longer corresponds to inode we are writing (which
2610 * means it has been truncated or invalidated), or the
2611 * page is already under writeback and we are not doing
2612 * a data integrity writeback, skip the page
2614 if (!PageDirty(page) ||
2615 (PageWriteback(page) &&
2616 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2617 unlikely(page->mapping != mapping)) {
2622 wait_on_page_writeback(page);
2623 BUG_ON(PageWriteback(page));
2625 if (mpd->map.m_len == 0)
2626 mpd->first_page = page->index;
2627 mpd->next_page = page->index + 1;
2628 /* Add all dirty buffers to mpd */
2629 lblk = ((ext4_lblk_t)page->index) <<
2630 (PAGE_SHIFT - blkbits);
2631 head = page_buffers(page);
2632 err = mpage_process_page_bufs(mpd, head, head, lblk);
2638 pagevec_release(&pvec);
2641 mpd->scanned_until_end = 1;
2644 pagevec_release(&pvec);
2648 static int ext4_writepages(struct address_space *mapping,
2649 struct writeback_control *wbc)
2651 pgoff_t writeback_index = 0;
2652 long nr_to_write = wbc->nr_to_write;
2653 int range_whole = 0;
2655 handle_t *handle = NULL;
2656 struct mpage_da_data mpd;
2657 struct inode *inode = mapping->host;
2658 int needed_blocks, rsv_blocks = 0, ret = 0;
2659 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2660 struct blk_plug plug;
2661 bool give_up_on_write = false;
2663 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2666 percpu_down_read(&sbi->s_writepages_rwsem);
2667 trace_ext4_writepages(inode, wbc);
2670 * No pages to write? This is mainly a kludge to avoid starting
2671 * a transaction for special inodes like journal inode on last iput()
2672 * because that could violate lock ordering on umount
2674 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2675 goto out_writepages;
2677 if (ext4_should_journal_data(inode)) {
2678 ret = generic_writepages(mapping, wbc);
2679 goto out_writepages;
2683 * If the filesystem has aborted, it is read-only, so return
2684 * right away instead of dumping stack traces later on that
2685 * will obscure the real source of the problem. We test
2686 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2687 * the latter could be true if the filesystem is mounted
2688 * read-only, and in that case, ext4_writepages should
2689 * *never* be called, so if that ever happens, we would want
2692 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2693 ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) {
2695 goto out_writepages;
2699 * If we have inline data and arrive here, it means that
2700 * we will soon create the block for the 1st page, so
2701 * we'd better clear the inline data here.
2703 if (ext4_has_inline_data(inode)) {
2704 /* Just inode will be modified... */
2705 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2706 if (IS_ERR(handle)) {
2707 ret = PTR_ERR(handle);
2708 goto out_writepages;
2710 BUG_ON(ext4_test_inode_state(inode,
2711 EXT4_STATE_MAY_INLINE_DATA));
2712 ext4_destroy_inline_data(handle, inode);
2713 ext4_journal_stop(handle);
2716 if (ext4_should_dioread_nolock(inode)) {
2718 * We may need to convert up to one extent per block in
2719 * the page and we may dirty the inode.
2721 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2722 PAGE_SIZE >> inode->i_blkbits);
2725 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2728 if (wbc->range_cyclic) {
2729 writeback_index = mapping->writeback_index;
2730 if (writeback_index)
2732 mpd.first_page = writeback_index;
2735 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2736 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2741 ext4_io_submit_init(&mpd.io_submit, wbc);
2743 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2744 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2745 blk_start_plug(&plug);
2748 * First writeback pages that don't need mapping - we can avoid
2749 * starting a transaction unnecessarily and also avoid being blocked
2750 * in the block layer on device congestion while having transaction
2754 mpd.scanned_until_end = 0;
2755 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2756 if (!mpd.io_submit.io_end) {
2760 ret = mpage_prepare_extent_to_map(&mpd);
2761 /* Unlock pages we didn't use */
2762 mpage_release_unused_pages(&mpd, false);
2763 /* Submit prepared bio */
2764 ext4_io_submit(&mpd.io_submit);
2765 ext4_put_io_end_defer(mpd.io_submit.io_end);
2766 mpd.io_submit.io_end = NULL;
2770 while (!mpd.scanned_until_end && wbc->nr_to_write > 0) {
2771 /* For each extent of pages we use new io_end */
2772 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2773 if (!mpd.io_submit.io_end) {
2779 * We have two constraints: We find one extent to map and we
2780 * must always write out whole page (makes a difference when
2781 * blocksize < pagesize) so that we don't block on IO when we
2782 * try to write out the rest of the page. Journalled mode is
2783 * not supported by delalloc.
2785 BUG_ON(ext4_should_journal_data(inode));
2786 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2788 /* start a new transaction */
2789 handle = ext4_journal_start_with_reserve(inode,
2790 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2791 if (IS_ERR(handle)) {
2792 ret = PTR_ERR(handle);
2793 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2794 "%ld pages, ino %lu; err %d", __func__,
2795 wbc->nr_to_write, inode->i_ino, ret);
2796 /* Release allocated io_end */
2797 ext4_put_io_end(mpd.io_submit.io_end);
2798 mpd.io_submit.io_end = NULL;
2803 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2804 ret = mpage_prepare_extent_to_map(&mpd);
2805 if (!ret && mpd.map.m_len)
2806 ret = mpage_map_and_submit_extent(handle, &mpd,
2809 * Caution: If the handle is synchronous,
2810 * ext4_journal_stop() can wait for transaction commit
2811 * to finish which may depend on writeback of pages to
2812 * complete or on page lock to be released. In that
2813 * case, we have to wait until after we have
2814 * submitted all the IO, released page locks we hold,
2815 * and dropped io_end reference (for extent conversion
2816 * to be able to complete) before stopping the handle.
2818 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2819 ext4_journal_stop(handle);
2823 /* Unlock pages we didn't use */
2824 mpage_release_unused_pages(&mpd, give_up_on_write);
2825 /* Submit prepared bio */
2826 ext4_io_submit(&mpd.io_submit);
2829 * Drop our io_end reference we got from init. We have
2830 * to be careful and use deferred io_end finishing if
2831 * we are still holding the transaction as we can
2832 * release the last reference to io_end which may end
2833 * up doing unwritten extent conversion.
2836 ext4_put_io_end_defer(mpd.io_submit.io_end);
2837 ext4_journal_stop(handle);
2839 ext4_put_io_end(mpd.io_submit.io_end);
2840 mpd.io_submit.io_end = NULL;
2842 if (ret == -ENOSPC && sbi->s_journal) {
2844 * Commit the transaction which would
2845 * free blocks released in the transaction
2848 jbd2_journal_force_commit_nested(sbi->s_journal);
2852 /* Fatal error - ENOMEM, EIO... */
2857 blk_finish_plug(&plug);
2858 if (!ret && !cycled && wbc->nr_to_write > 0) {
2860 mpd.last_page = writeback_index - 1;
2866 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2868 * Set the writeback_index so that range_cyclic
2869 * mode will write it back later
2871 mapping->writeback_index = mpd.first_page;
2874 trace_ext4_writepages_result(inode, wbc, ret,
2875 nr_to_write - wbc->nr_to_write);
2876 percpu_up_read(&sbi->s_writepages_rwsem);
2880 static int ext4_dax_writepages(struct address_space *mapping,
2881 struct writeback_control *wbc)
2884 long nr_to_write = wbc->nr_to_write;
2885 struct inode *inode = mapping->host;
2886 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2888 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2891 percpu_down_read(&sbi->s_writepages_rwsem);
2892 trace_ext4_writepages(inode, wbc);
2894 ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
2895 trace_ext4_writepages_result(inode, wbc, ret,
2896 nr_to_write - wbc->nr_to_write);
2897 percpu_up_read(&sbi->s_writepages_rwsem);
2901 static int ext4_nonda_switch(struct super_block *sb)
2903 s64 free_clusters, dirty_clusters;
2904 struct ext4_sb_info *sbi = EXT4_SB(sb);
2907 * switch to non delalloc mode if we are running low
2908 * on free block. The free block accounting via percpu
2909 * counters can get slightly wrong with percpu_counter_batch getting
2910 * accumulated on each CPU without updating global counters
2911 * Delalloc need an accurate free block accounting. So switch
2912 * to non delalloc when we are near to error range.
2915 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2917 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2919 * Start pushing delalloc when 1/2 of free blocks are dirty.
2921 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2922 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2924 if (2 * free_clusters < 3 * dirty_clusters ||
2925 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2927 * free block count is less than 150% of dirty blocks
2928 * or free blocks is less than watermark
2935 /* We always reserve for an inode update; the superblock could be there too */
2936 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2938 if (likely(ext4_has_feature_large_file(inode->i_sb)))
2941 if (pos + len <= 0x7fffffffULL)
2944 /* We might need to update the superblock to set LARGE_FILE */
2948 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2949 loff_t pos, unsigned len, unsigned flags,
2950 struct page **pagep, void **fsdata)
2952 int ret, retries = 0;
2955 struct inode *inode = mapping->host;
2958 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2961 index = pos >> PAGE_SHIFT;
2963 if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
2964 ext4_verity_in_progress(inode)) {
2965 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2966 return ext4_write_begin(file, mapping, pos,
2967 len, flags, pagep, fsdata);
2969 *fsdata = (void *)0;
2970 trace_ext4_da_write_begin(inode, pos, len, flags);
2972 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2973 ret = ext4_da_write_inline_data_begin(mapping, inode,
2983 * grab_cache_page_write_begin() can take a long time if the
2984 * system is thrashing due to memory pressure, or if the page
2985 * is being written back. So grab it first before we start
2986 * the transaction handle. This also allows us to allocate
2987 * the page (if needed) without using GFP_NOFS.
2990 page = grab_cache_page_write_begin(mapping, index, flags);
2996 * With delayed allocation, we don't log the i_disksize update
2997 * if there is delayed block allocation. But we still need
2998 * to journalling the i_disksize update if writes to the end
2999 * of file which has an already mapped buffer.
3002 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3003 ext4_da_write_credits(inode, pos, len));
3004 if (IS_ERR(handle)) {
3006 return PTR_ERR(handle);
3010 if (page->mapping != mapping) {
3011 /* The page got truncated from under us */
3014 ext4_journal_stop(handle);
3017 /* In case writeback began while the page was unlocked */
3018 wait_for_stable_page(page);
3020 #ifdef CONFIG_FS_ENCRYPTION
3021 ret = ext4_block_write_begin(page, pos, len,
3022 ext4_da_get_block_prep);
3024 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3028 ext4_journal_stop(handle);
3030 * block_write_begin may have instantiated a few blocks
3031 * outside i_size. Trim these off again. Don't need
3032 * i_size_read because we hold i_mutex.
3034 if (pos + len > inode->i_size)
3035 ext4_truncate_failed_write(inode);
3037 if (ret == -ENOSPC &&
3038 ext4_should_retry_alloc(inode->i_sb, &retries))
3050 * Check if we should update i_disksize
3051 * when write to the end of file but not require block allocation
3053 static int ext4_da_should_update_i_disksize(struct page *page,
3054 unsigned long offset)
3056 struct buffer_head *bh;
3057 struct inode *inode = page->mapping->host;
3061 bh = page_buffers(page);
3062 idx = offset >> inode->i_blkbits;
3064 for (i = 0; i < idx; i++)
3065 bh = bh->b_this_page;
3067 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3072 static int ext4_da_write_end(struct file *file,
3073 struct address_space *mapping,
3074 loff_t pos, unsigned len, unsigned copied,
3075 struct page *page, void *fsdata)
3077 struct inode *inode = mapping->host;
3079 handle_t *handle = ext4_journal_current_handle();
3081 unsigned long start, end;
3082 int write_mode = (int)(unsigned long)fsdata;
3084 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3085 return ext4_write_end(file, mapping, pos,
3086 len, copied, page, fsdata);
3088 trace_ext4_da_write_end(inode, pos, len, copied);
3089 start = pos & (PAGE_SIZE - 1);
3090 end = start + copied - 1;
3093 * generic_write_end() will run mark_inode_dirty() if i_size
3094 * changes. So let's piggyback the i_disksize mark_inode_dirty
3097 new_i_size = pos + copied;
3098 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3099 if (ext4_has_inline_data(inode) ||
3100 ext4_da_should_update_i_disksize(page, end)) {
3101 ext4_update_i_disksize(inode, new_i_size);
3102 /* We need to mark inode dirty even if
3103 * new_i_size is less that inode->i_size
3104 * bu greater than i_disksize.(hint delalloc)
3106 ret = ext4_mark_inode_dirty(handle, inode);
3110 if (write_mode != CONVERT_INLINE_DATA &&
3111 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3112 ext4_has_inline_data(inode))
3113 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3116 ret2 = generic_write_end(file, mapping, pos, len, copied,
3122 ret2 = ext4_journal_stop(handle);
3123 if (unlikely(ret2 && !ret))
3126 return ret ? ret : copied;
3130 * Force all delayed allocation blocks to be allocated for a given inode.
3132 int ext4_alloc_da_blocks(struct inode *inode)
3134 trace_ext4_alloc_da_blocks(inode);
3136 if (!EXT4_I(inode)->i_reserved_data_blocks)
3140 * We do something simple for now. The filemap_flush() will
3141 * also start triggering a write of the data blocks, which is
3142 * not strictly speaking necessary (and for users of
3143 * laptop_mode, not even desirable). However, to do otherwise
3144 * would require replicating code paths in:
3146 * ext4_writepages() ->
3147 * write_cache_pages() ---> (via passed in callback function)
3148 * __mpage_da_writepage() -->
3149 * mpage_add_bh_to_extent()
3150 * mpage_da_map_blocks()
3152 * The problem is that write_cache_pages(), located in
3153 * mm/page-writeback.c, marks pages clean in preparation for
3154 * doing I/O, which is not desirable if we're not planning on
3157 * We could call write_cache_pages(), and then redirty all of
3158 * the pages by calling redirty_page_for_writepage() but that
3159 * would be ugly in the extreme. So instead we would need to
3160 * replicate parts of the code in the above functions,
3161 * simplifying them because we wouldn't actually intend to
3162 * write out the pages, but rather only collect contiguous
3163 * logical block extents, call the multi-block allocator, and
3164 * then update the buffer heads with the block allocations.
3166 * For now, though, we'll cheat by calling filemap_flush(),
3167 * which will map the blocks, and start the I/O, but not
3168 * actually wait for the I/O to complete.
3170 return filemap_flush(inode->i_mapping);
3174 * bmap() is special. It gets used by applications such as lilo and by
3175 * the swapper to find the on-disk block of a specific piece of data.
3177 * Naturally, this is dangerous if the block concerned is still in the
3178 * journal. If somebody makes a swapfile on an ext4 data-journaling
3179 * filesystem and enables swap, then they may get a nasty shock when the
3180 * data getting swapped to that swapfile suddenly gets overwritten by
3181 * the original zero's written out previously to the journal and
3182 * awaiting writeback in the kernel's buffer cache.
3184 * So, if we see any bmap calls here on a modified, data-journaled file,
3185 * take extra steps to flush any blocks which might be in the cache.
3187 static sector_t ext4_bmap(struct address_space *mapping, se