ab786123a022ed63a1cc05ff252a2b050f0b158d
[linux-2.6-microblaze.git] / fs / ext4 / inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *      (jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/dax.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/bitops.h>
41 #include <linux/iomap.h>
42 #include <linux/iversion.h>
43
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "truncate.h"
48
49 #include <trace/events/ext4.h>
50
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52                               struct ext4_inode_info *ei)
53 {
54         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55         __u32 csum;
56         __u16 dummy_csum = 0;
57         int offset = offsetof(struct ext4_inode, i_checksum_lo);
58         unsigned int csum_size = sizeof(dummy_csum);
59
60         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
61         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
62         offset += csum_size;
63         csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
64                            EXT4_GOOD_OLD_INODE_SIZE - offset);
65
66         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
67                 offset = offsetof(struct ext4_inode, i_checksum_hi);
68                 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
69                                    EXT4_GOOD_OLD_INODE_SIZE,
70                                    offset - EXT4_GOOD_OLD_INODE_SIZE);
71                 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
72                         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
73                                            csum_size);
74                         offset += csum_size;
75                 }
76                 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
77                                    EXT4_INODE_SIZE(inode->i_sb) - offset);
78         }
79
80         return csum;
81 }
82
83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
84                                   struct ext4_inode_info *ei)
85 {
86         __u32 provided, calculated;
87
88         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
89             cpu_to_le32(EXT4_OS_LINUX) ||
90             !ext4_has_metadata_csum(inode->i_sb))
91                 return 1;
92
93         provided = le16_to_cpu(raw->i_checksum_lo);
94         calculated = ext4_inode_csum(inode, raw, ei);
95         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
96             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
97                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
98         else
99                 calculated &= 0xFFFF;
100
101         return provided == calculated;
102 }
103
104 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
105                          struct ext4_inode_info *ei)
106 {
107         __u32 csum;
108
109         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
110             cpu_to_le32(EXT4_OS_LINUX) ||
111             !ext4_has_metadata_csum(inode->i_sb))
112                 return;
113
114         csum = ext4_inode_csum(inode, raw, ei);
115         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
116         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
117             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
118                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
119 }
120
121 static inline int ext4_begin_ordered_truncate(struct inode *inode,
122                                               loff_t new_size)
123 {
124         trace_ext4_begin_ordered_truncate(inode, new_size);
125         /*
126          * If jinode is zero, then we never opened the file for
127          * writing, so there's no need to call
128          * jbd2_journal_begin_ordered_truncate() since there's no
129          * outstanding writes we need to flush.
130          */
131         if (!EXT4_I(inode)->jinode)
132                 return 0;
133         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
134                                                    EXT4_I(inode)->jinode,
135                                                    new_size);
136 }
137
138 static void ext4_invalidatepage(struct page *page, unsigned int offset,
139                                 unsigned int length);
140 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143                                   int pextents);
144
145 /*
146  * Test whether an inode is a fast symlink.
147  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
148  */
149 int ext4_inode_is_fast_symlink(struct inode *inode)
150 {
151         if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
152                 int ea_blocks = EXT4_I(inode)->i_file_acl ?
153                                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
154
155                 if (ext4_has_inline_data(inode))
156                         return 0;
157
158                 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
159         }
160         return S_ISLNK(inode->i_mode) && inode->i_size &&
161                (inode->i_size < EXT4_N_BLOCKS * 4);
162 }
163
164 /*
165  * Called at the last iput() if i_nlink is zero.
166  */
167 void ext4_evict_inode(struct inode *inode)
168 {
169         handle_t *handle;
170         int err;
171         /*
172          * Credits for final inode cleanup and freeing:
173          * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
174          * (xattr block freeing), bitmap, group descriptor (inode freeing)
175          */
176         int extra_credits = 6;
177         struct ext4_xattr_inode_array *ea_inode_array = NULL;
178         bool freeze_protected = false;
179
180         trace_ext4_evict_inode(inode);
181
182         if (inode->i_nlink) {
183                 /*
184                  * When journalling data dirty buffers are tracked only in the
185                  * journal. So although mm thinks everything is clean and
186                  * ready for reaping the inode might still have some pages to
187                  * write in the running transaction or waiting to be
188                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
189                  * (via truncate_inode_pages()) to discard these buffers can
190                  * cause data loss. Also even if we did not discard these
191                  * buffers, we would have no way to find them after the inode
192                  * is reaped and thus user could see stale data if he tries to
193                  * read them before the transaction is checkpointed. So be
194                  * careful and force everything to disk here... We use
195                  * ei->i_datasync_tid to store the newest transaction
196                  * containing inode's data.
197                  *
198                  * Note that directories do not have this problem because they
199                  * don't use page cache.
200                  */
201                 if (inode->i_ino != EXT4_JOURNAL_INO &&
202                     ext4_should_journal_data(inode) &&
203                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
204                     inode->i_data.nrpages) {
205                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
206                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
207
208                         jbd2_complete_transaction(journal, commit_tid);
209                         filemap_write_and_wait(&inode->i_data);
210                 }
211                 truncate_inode_pages_final(&inode->i_data);
212
213                 goto no_delete;
214         }
215
216         if (is_bad_inode(inode))
217                 goto no_delete;
218         dquot_initialize(inode);
219
220         if (ext4_should_order_data(inode))
221                 ext4_begin_ordered_truncate(inode, 0);
222         truncate_inode_pages_final(&inode->i_data);
223
224         /*
225          * For inodes with journalled data, transaction commit could have
226          * dirtied the inode. Flush worker is ignoring it because of I_FREEING
227          * flag but we still need to remove the inode from the writeback lists.
228          */
229         if (!list_empty_careful(&inode->i_io_list)) {
230                 WARN_ON_ONCE(!ext4_should_journal_data(inode));
231                 inode_io_list_del(inode);
232         }
233
234         /*
235          * Protect us against freezing - iput() caller didn't have to have any
236          * protection against it. When we are in a running transaction though,
237          * we are already protected against freezing and we cannot grab further
238          * protection due to lock ordering constraints.
239          */
240         if (!ext4_journal_current_handle()) {
241                 sb_start_intwrite(inode->i_sb);
242                 freeze_protected = true;
243         }
244
245         if (!IS_NOQUOTA(inode))
246                 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
247
248         /*
249          * Block bitmap, group descriptor, and inode are accounted in both
250          * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
251          */
252         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
253                          ext4_blocks_for_truncate(inode) + extra_credits - 3);
254         if (IS_ERR(handle)) {
255                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
256                 /*
257                  * If we're going to skip the normal cleanup, we still need to
258                  * make sure that the in-core orphan linked list is properly
259                  * cleaned up.
260                  */
261                 ext4_orphan_del(NULL, inode);
262                 if (freeze_protected)
263                         sb_end_intwrite(inode->i_sb);
264                 goto no_delete;
265         }
266
267         if (IS_SYNC(inode))
268                 ext4_handle_sync(handle);
269
270         /*
271          * Set inode->i_size to 0 before calling ext4_truncate(). We need
272          * special handling of symlinks here because i_size is used to
273          * determine whether ext4_inode_info->i_data contains symlink data or
274          * block mappings. Setting i_size to 0 will remove its fast symlink
275          * status. Erase i_data so that it becomes a valid empty block map.
276          */
277         if (ext4_inode_is_fast_symlink(inode))
278                 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
279         inode->i_size = 0;
280         err = ext4_mark_inode_dirty(handle, inode);
281         if (err) {
282                 ext4_warning(inode->i_sb,
283                              "couldn't mark inode dirty (err %d)", err);
284                 goto stop_handle;
285         }
286         if (inode->i_blocks) {
287                 err = ext4_truncate(inode);
288                 if (err) {
289                         ext4_error_err(inode->i_sb, -err,
290                                        "couldn't truncate inode %lu (err %d)",
291                                        inode->i_ino, err);
292                         goto stop_handle;
293                 }
294         }
295
296         /* Remove xattr references. */
297         err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
298                                       extra_credits);
299         if (err) {
300                 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
301 stop_handle:
302                 ext4_journal_stop(handle);
303                 ext4_orphan_del(NULL, inode);
304                 if (freeze_protected)
305                         sb_end_intwrite(inode->i_sb);
306                 ext4_xattr_inode_array_free(ea_inode_array);
307                 goto no_delete;
308         }
309
310         /*
311          * Kill off the orphan record which ext4_truncate created.
312          * AKPM: I think this can be inside the above `if'.
313          * Note that ext4_orphan_del() has to be able to cope with the
314          * deletion of a non-existent orphan - this is because we don't
315          * know if ext4_truncate() actually created an orphan record.
316          * (Well, we could do this if we need to, but heck - it works)
317          */
318         ext4_orphan_del(handle, inode);
319         EXT4_I(inode)->i_dtime  = (__u32)ktime_get_real_seconds();
320
321         /*
322          * One subtle ordering requirement: if anything has gone wrong
323          * (transaction abort, IO errors, whatever), then we can still
324          * do these next steps (the fs will already have been marked as
325          * having errors), but we can't free the inode if the mark_dirty
326          * fails.
327          */
328         if (ext4_mark_inode_dirty(handle, inode))
329                 /* If that failed, just do the required in-core inode clear. */
330                 ext4_clear_inode(inode);
331         else
332                 ext4_free_inode(handle, inode);
333         ext4_journal_stop(handle);
334         if (freeze_protected)
335                 sb_end_intwrite(inode->i_sb);
336         ext4_xattr_inode_array_free(ea_inode_array);
337         return;
338 no_delete:
339         if (!list_empty(&EXT4_I(inode)->i_fc_list))
340                 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM);
341         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
342 }
343
344 #ifdef CONFIG_QUOTA
345 qsize_t *ext4_get_reserved_space(struct inode *inode)
346 {
347         return &EXT4_I(inode)->i_reserved_quota;
348 }
349 #endif
350
351 /*
352  * Called with i_data_sem down, which is important since we can call
353  * ext4_discard_preallocations() from here.
354  */
355 void ext4_da_update_reserve_space(struct inode *inode,
356                                         int used, int quota_claim)
357 {
358         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
359         struct ext4_inode_info *ei = EXT4_I(inode);
360
361         spin_lock(&ei->i_block_reservation_lock);
362         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
363         if (unlikely(used > ei->i_reserved_data_blocks)) {
364                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
365                          "with only %d reserved data blocks",
366                          __func__, inode->i_ino, used,
367                          ei->i_reserved_data_blocks);
368                 WARN_ON(1);
369                 used = ei->i_reserved_data_blocks;
370         }
371
372         /* Update per-inode reservations */
373         ei->i_reserved_data_blocks -= used;
374         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
375
376         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
377
378         /* Update quota subsystem for data blocks */
379         if (quota_claim)
380                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
381         else {
382                 /*
383                  * We did fallocate with an offset that is already delayed
384                  * allocated. So on delayed allocated writeback we should
385                  * not re-claim the quota for fallocated blocks.
386                  */
387                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
388         }
389
390         /*
391          * If we have done all the pending block allocations and if
392          * there aren't any writers on the inode, we can discard the
393          * inode's preallocations.
394          */
395         if ((ei->i_reserved_data_blocks == 0) &&
396             !inode_is_open_for_write(inode))
397                 ext4_discard_preallocations(inode, 0);
398 }
399
400 static int __check_block_validity(struct inode *inode, const char *func,
401                                 unsigned int line,
402                                 struct ext4_map_blocks *map)
403 {
404         if (ext4_has_feature_journal(inode->i_sb) &&
405             (inode->i_ino ==
406              le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
407                 return 0;
408         if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
409                 ext4_error_inode(inode, func, line, map->m_pblk,
410                                  "lblock %lu mapped to illegal pblock %llu "
411                                  "(length %d)", (unsigned long) map->m_lblk,
412                                  map->m_pblk, map->m_len);
413                 return -EFSCORRUPTED;
414         }
415         return 0;
416 }
417
418 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
419                        ext4_lblk_t len)
420 {
421         int ret;
422
423         if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
424                 return fscrypt_zeroout_range(inode, lblk, pblk, len);
425
426         ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
427         if (ret > 0)
428                 ret = 0;
429
430         return ret;
431 }
432
433 #define check_block_validity(inode, map)        \
434         __check_block_validity((inode), __func__, __LINE__, (map))
435
436 #ifdef ES_AGGRESSIVE_TEST
437 static void ext4_map_blocks_es_recheck(handle_t *handle,
438                                        struct inode *inode,
439                                        struct ext4_map_blocks *es_map,
440                                        struct ext4_map_blocks *map,
441                                        int flags)
442 {
443         int retval;
444
445         map->m_flags = 0;
446         /*
447          * There is a race window that the result is not the same.
448          * e.g. xfstests #223 when dioread_nolock enables.  The reason
449          * is that we lookup a block mapping in extent status tree with
450          * out taking i_data_sem.  So at the time the unwritten extent
451          * could be converted.
452          */
453         down_read(&EXT4_I(inode)->i_data_sem);
454         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
455                 retval = ext4_ext_map_blocks(handle, inode, map, 0);
456         } else {
457                 retval = ext4_ind_map_blocks(handle, inode, map, 0);
458         }
459         up_read((&EXT4_I(inode)->i_data_sem));
460
461         /*
462          * We don't check m_len because extent will be collpased in status
463          * tree.  So the m_len might not equal.
464          */
465         if (es_map->m_lblk != map->m_lblk ||
466             es_map->m_flags != map->m_flags ||
467             es_map->m_pblk != map->m_pblk) {
468                 printk("ES cache assertion failed for inode: %lu "
469                        "es_cached ex [%d/%d/%llu/%x] != "
470                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
471                        inode->i_ino, es_map->m_lblk, es_map->m_len,
472                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
473                        map->m_len, map->m_pblk, map->m_flags,
474                        retval, flags);
475         }
476 }
477 #endif /* ES_AGGRESSIVE_TEST */
478
479 /*
480  * The ext4_map_blocks() function tries to look up the requested blocks,
481  * and returns if the blocks are already mapped.
482  *
483  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
484  * and store the allocated blocks in the result buffer head and mark it
485  * mapped.
486  *
487  * If file type is extents based, it will call ext4_ext_map_blocks(),
488  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
489  * based files
490  *
491  * On success, it returns the number of blocks being mapped or allocated.  if
492  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
493  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
494  *
495  * It returns 0 if plain look up failed (blocks have not been allocated), in
496  * that case, @map is returned as unmapped but we still do fill map->m_len to
497  * indicate the length of a hole starting at map->m_lblk.
498  *
499  * It returns the error in case of allocation failure.
500  */
501 int ext4_map_blocks(handle_t *handle, struct inode *inode,
502                     struct ext4_map_blocks *map, int flags)
503 {
504         struct extent_status es;
505         int retval;
506         int ret = 0;
507 #ifdef ES_AGGRESSIVE_TEST
508         struct ext4_map_blocks orig_map;
509
510         memcpy(&orig_map, map, sizeof(*map));
511 #endif
512
513         map->m_flags = 0;
514         ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
515                   flags, map->m_len, (unsigned long) map->m_lblk);
516
517         /*
518          * ext4_map_blocks returns an int, and m_len is an unsigned int
519          */
520         if (unlikely(map->m_len > INT_MAX))
521                 map->m_len = INT_MAX;
522
523         /* We can handle the block number less than EXT_MAX_BLOCKS */
524         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
525                 return -EFSCORRUPTED;
526
527         /* Lookup extent status tree firstly */
528         if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
529             ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
530                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
531                         map->m_pblk = ext4_es_pblock(&es) +
532                                         map->m_lblk - es.es_lblk;
533                         map->m_flags |= ext4_es_is_written(&es) ?
534                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
535                         retval = es.es_len - (map->m_lblk - es.es_lblk);
536                         if (retval > map->m_len)
537                                 retval = map->m_len;
538                         map->m_len = retval;
539                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
540                         map->m_pblk = 0;
541                         retval = es.es_len - (map->m_lblk - es.es_lblk);
542                         if (retval > map->m_len)
543                                 retval = map->m_len;
544                         map->m_len = retval;
545                         retval = 0;
546                 } else {
547                         BUG();
548                 }
549 #ifdef ES_AGGRESSIVE_TEST
550                 ext4_map_blocks_es_recheck(handle, inode, map,
551                                            &orig_map, flags);
552 #endif
553                 goto found;
554         }
555
556         /*
557          * Try to see if we can get the block without requesting a new
558          * file system block.
559          */
560         down_read(&EXT4_I(inode)->i_data_sem);
561         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
562                 retval = ext4_ext_map_blocks(handle, inode, map, 0);
563         } else {
564                 retval = ext4_ind_map_blocks(handle, inode, map, 0);
565         }
566         if (retval > 0) {
567                 unsigned int status;
568
569                 if (unlikely(retval != map->m_len)) {
570                         ext4_warning(inode->i_sb,
571                                      "ES len assertion failed for inode "
572                                      "%lu: retval %d != map->m_len %d",
573                                      inode->i_ino, retval, map->m_len);
574                         WARN_ON(1);
575                 }
576
577                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
578                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
579                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
580                     !(status & EXTENT_STATUS_WRITTEN) &&
581                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
582                                        map->m_lblk + map->m_len - 1))
583                         status |= EXTENT_STATUS_DELAYED;
584                 ret = ext4_es_insert_extent(inode, map->m_lblk,
585                                             map->m_len, map->m_pblk, status);
586                 if (ret < 0)
587                         retval = ret;
588         }
589         up_read((&EXT4_I(inode)->i_data_sem));
590
591 found:
592         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
593                 ret = check_block_validity(inode, map);
594                 if (ret != 0)
595                         return ret;
596         }
597
598         /* If it is only a block(s) look up */
599         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
600                 return retval;
601
602         /*
603          * Returns if the blocks have already allocated
604          *
605          * Note that if blocks have been preallocated
606          * ext4_ext_get_block() returns the create = 0
607          * with buffer head unmapped.
608          */
609         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
610                 /*
611                  * If we need to convert extent to unwritten
612                  * we continue and do the actual work in
613                  * ext4_ext_map_blocks()
614                  */
615                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
616                         return retval;
617
618         /*
619          * Here we clear m_flags because after allocating an new extent,
620          * it will be set again.
621          */
622         map->m_flags &= ~EXT4_MAP_FLAGS;
623
624         /*
625          * New blocks allocate and/or writing to unwritten extent
626          * will possibly result in updating i_data, so we take
627          * the write lock of i_data_sem, and call get_block()
628          * with create == 1 flag.
629          */
630         down_write(&EXT4_I(inode)->i_data_sem);
631
632         /*
633          * We need to check for EXT4 here because migrate
634          * could have changed the inode type in between
635          */
636         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
637                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
638         } else {
639                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
640
641                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
642                         /*
643                          * We allocated new blocks which will result in
644                          * i_data's format changing.  Force the migrate
645                          * to fail by clearing migrate flags
646                          */
647                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
648                 }
649
650                 /*
651                  * Update reserved blocks/metadata blocks after successful
652                  * block allocation which had been deferred till now. We don't
653                  * support fallocate for non extent files. So we can update
654                  * reserve space here.
655                  */
656                 if ((retval > 0) &&
657                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
658                         ext4_da_update_reserve_space(inode, retval, 1);
659         }
660
661         if (retval > 0) {
662                 unsigned int status;
663
664                 if (unlikely(retval != map->m_len)) {
665                         ext4_warning(inode->i_sb,
666                                      "ES len assertion failed for inode "
667                                      "%lu: retval %d != map->m_len %d",
668                                      inode->i_ino, retval, map->m_len);
669                         WARN_ON(1);
670                 }
671
672                 /*
673                  * We have to zeroout blocks before inserting them into extent
674                  * status tree. Otherwise someone could look them up there and
675                  * use them before they are really zeroed. We also have to
676                  * unmap metadata before zeroing as otherwise writeback can
677                  * overwrite zeros with stale data from block device.
678                  */
679                 if (flags & EXT4_GET_BLOCKS_ZERO &&
680                     map->m_flags & EXT4_MAP_MAPPED &&
681                     map->m_flags & EXT4_MAP_NEW) {
682                         ret = ext4_issue_zeroout(inode, map->m_lblk,
683                                                  map->m_pblk, map->m_len);
684                         if (ret) {
685                                 retval = ret;
686                                 goto out_sem;
687                         }
688                 }
689
690                 /*
691                  * If the extent has been zeroed out, we don't need to update
692                  * extent status tree.
693                  */
694                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
695                     ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
696                         if (ext4_es_is_written(&es))
697                                 goto out_sem;
698                 }
699                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
700                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
701                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
702                     !(status & EXTENT_STATUS_WRITTEN) &&
703                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
704                                        map->m_lblk + map->m_len - 1))
705                         status |= EXTENT_STATUS_DELAYED;
706                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
707                                             map->m_pblk, status);
708                 if (ret < 0) {
709                         retval = ret;
710                         goto out_sem;
711                 }
712         }
713
714 out_sem:
715         up_write((&EXT4_I(inode)->i_data_sem));
716         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
717                 ret = check_block_validity(inode, map);
718                 if (ret != 0)
719                         return ret;
720
721                 /*
722                  * Inodes with freshly allocated blocks where contents will be
723                  * visible after transaction commit must be on transaction's
724                  * ordered data list.
725                  */
726                 if (map->m_flags & EXT4_MAP_NEW &&
727                     !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
728                     !(flags & EXT4_GET_BLOCKS_ZERO) &&
729                     !ext4_is_quota_file(inode) &&
730                     ext4_should_order_data(inode)) {
731                         loff_t start_byte =
732                                 (loff_t)map->m_lblk << inode->i_blkbits;
733                         loff_t length = (loff_t)map->m_len << inode->i_blkbits;
734
735                         if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
736                                 ret = ext4_jbd2_inode_add_wait(handle, inode,
737                                                 start_byte, length);
738                         else
739                                 ret = ext4_jbd2_inode_add_write(handle, inode,
740                                                 start_byte, length);
741                         if (ret)
742                                 return ret;
743                 }
744                 ext4_fc_track_range(handle, inode, map->m_lblk,
745                             map->m_lblk + map->m_len - 1);
746         }
747
748         if (retval < 0)
749                 ext_debug(inode, "failed with err %d\n", retval);
750         return retval;
751 }
752
753 /*
754  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
755  * we have to be careful as someone else may be manipulating b_state as well.
756  */
757 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
758 {
759         unsigned long old_state;
760         unsigned long new_state;
761
762         flags &= EXT4_MAP_FLAGS;
763
764         /* Dummy buffer_head? Set non-atomically. */
765         if (!bh->b_page) {
766                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
767                 return;
768         }
769         /*
770          * Someone else may be modifying b_state. Be careful! This is ugly but
771          * once we get rid of using bh as a container for mapping information
772          * to pass to / from get_block functions, this can go away.
773          */
774         do {
775                 old_state = READ_ONCE(bh->b_state);
776                 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
777         } while (unlikely(
778                  cmpxchg(&bh->b_state, old_state, new_state) != old_state));
779 }
780
781 static int _ext4_get_block(struct inode *inode, sector_t iblock,
782                            struct buffer_head *bh, int flags)
783 {
784         struct ext4_map_blocks map;
785         int ret = 0;
786
787         if (ext4_has_inline_data(inode))
788                 return -ERANGE;
789
790         map.m_lblk = iblock;
791         map.m_len = bh->b_size >> inode->i_blkbits;
792
793         ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
794                               flags);
795         if (ret > 0) {
796                 map_bh(bh, inode->i_sb, map.m_pblk);
797                 ext4_update_bh_state(bh, map.m_flags);
798                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
799                 ret = 0;
800         } else if (ret == 0) {
801                 /* hole case, need to fill in bh->b_size */
802                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
803         }
804         return ret;
805 }
806
807 int ext4_get_block(struct inode *inode, sector_t iblock,
808                    struct buffer_head *bh, int create)
809 {
810         return _ext4_get_block(inode, iblock, bh,
811                                create ? EXT4_GET_BLOCKS_CREATE : 0);
812 }
813
814 /*
815  * Get block function used when preparing for buffered write if we require
816  * creating an unwritten extent if blocks haven't been allocated.  The extent
817  * will be converted to written after the IO is complete.
818  */
819 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
820                              struct buffer_head *bh_result, int create)
821 {
822         ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
823                    inode->i_ino, create);
824         return _ext4_get_block(inode, iblock, bh_result,
825                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
826 }
827
828 /* Maximum number of blocks we map for direct IO at once. */
829 #define DIO_MAX_BLOCKS 4096
830
831 /*
832  * `handle' can be NULL if create is zero
833  */
834 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
835                                 ext4_lblk_t block, int map_flags)
836 {
837         struct ext4_map_blocks map;
838         struct buffer_head *bh;
839         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
840         int err;
841
842         ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
843                     || handle != NULL || create == 0);
844
845         map.m_lblk = block;
846         map.m_len = 1;
847         err = ext4_map_blocks(handle, inode, &map, map_flags);
848
849         if (err == 0)
850                 return create ? ERR_PTR(-ENOSPC) : NULL;
851         if (err < 0)
852                 return ERR_PTR(err);
853
854         bh = sb_getblk(inode->i_sb, map.m_pblk);
855         if (unlikely(!bh))
856                 return ERR_PTR(-ENOMEM);
857         if (map.m_flags & EXT4_MAP_NEW) {
858                 ASSERT(create != 0);
859                 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
860                             || (handle != NULL));
861
862                 /*
863                  * Now that we do not always journal data, we should
864                  * keep in mind whether this should always journal the
865                  * new buffer as metadata.  For now, regular file
866                  * writes use ext4_get_block instead, so it's not a
867                  * problem.
868                  */
869                 lock_buffer(bh);
870                 BUFFER_TRACE(bh, "call get_create_access");
871                 err = ext4_journal_get_create_access(handle, bh);
872                 if (unlikely(err)) {
873                         unlock_buffer(bh);
874                         goto errout;
875                 }
876                 if (!buffer_uptodate(bh)) {
877                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
878                         set_buffer_uptodate(bh);
879                 }
880                 unlock_buffer(bh);
881                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
882                 err = ext4_handle_dirty_metadata(handle, inode, bh);
883                 if (unlikely(err))
884                         goto errout;
885         } else
886                 BUFFER_TRACE(bh, "not a new buffer");
887         return bh;
888 errout:
889         brelse(bh);
890         return ERR_PTR(err);
891 }
892
893 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
894                                ext4_lblk_t block, int map_flags)
895 {
896         struct buffer_head *bh;
897         int ret;
898
899         bh = ext4_getblk(handle, inode, block, map_flags);
900         if (IS_ERR(bh))
901                 return bh;
902         if (!bh || ext4_buffer_uptodate(bh))
903                 return bh;
904
905         ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
906         if (ret) {
907                 put_bh(bh);
908                 return ERR_PTR(ret);
909         }
910         return bh;
911 }
912
913 /* Read a contiguous batch of blocks. */
914 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
915                      bool wait, struct buffer_head **bhs)
916 {
917         int i, err;
918
919         for (i = 0; i < bh_count; i++) {
920                 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
921                 if (IS_ERR(bhs[i])) {
922                         err = PTR_ERR(bhs[i]);
923                         bh_count = i;
924                         goto out_brelse;
925                 }
926         }
927
928         for (i = 0; i < bh_count; i++)
929                 /* Note that NULL bhs[i] is valid because of holes. */
930                 if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
931                         ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
932
933         if (!wait)
934                 return 0;
935
936         for (i = 0; i < bh_count; i++)
937                 if (bhs[i])
938                         wait_on_buffer(bhs[i]);
939
940         for (i = 0; i < bh_count; i++) {
941                 if (bhs[i] && !buffer_uptodate(bhs[i])) {
942                         err = -EIO;
943                         goto out_brelse;
944                 }
945         }
946         return 0;
947
948 out_brelse:
949         for (i = 0; i < bh_count; i++) {
950                 brelse(bhs[i]);
951                 bhs[i] = NULL;
952         }
953         return err;
954 }
955
956 int ext4_walk_page_buffers(handle_t *handle,
957                            struct buffer_head *head,
958                            unsigned from,
959                            unsigned to,
960                            int *partial,
961                            int (*fn)(handle_t *handle,
962                                      struct buffer_head *bh))
963 {
964         struct buffer_head *bh;
965         unsigned block_start, block_end;
966         unsigned blocksize = head->b_size;
967         int err, ret = 0;
968         struct buffer_head *next;
969
970         for (bh = head, block_start = 0;
971              ret == 0 && (bh != head || !block_start);
972              block_start = block_end, bh = next) {
973                 next = bh->b_this_page;
974                 block_end = block_start + blocksize;
975                 if (block_end <= from || block_start >= to) {
976                         if (partial && !buffer_uptodate(bh))
977                                 *partial = 1;
978                         continue;
979                 }
980                 err = (*fn)(handle, bh);
981                 if (!ret)
982                         ret = err;
983         }
984         return ret;
985 }
986
987 /*
988  * To preserve ordering, it is essential that the hole instantiation and
989  * the data write be encapsulated in a single transaction.  We cannot
990  * close off a transaction and start a new one between the ext4_get_block()
991  * and the commit_write().  So doing the jbd2_journal_start at the start of
992  * prepare_write() is the right place.
993  *
994  * Also, this function can nest inside ext4_writepage().  In that case, we
995  * *know* that ext4_writepage() has generated enough buffer credits to do the
996  * whole page.  So we won't block on the journal in that case, which is good,
997  * because the caller may be PF_MEMALLOC.
998  *
999  * By accident, ext4 can be reentered when a transaction is open via
1000  * quota file writes.  If we were to commit the transaction while thus
1001  * reentered, there can be a deadlock - we would be holding a quota
1002  * lock, and the commit would never complete if another thread had a
1003  * transaction open and was blocking on the quota lock - a ranking
1004  * violation.
1005  *
1006  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1007  * will _not_ run commit under these circumstances because handle->h_ref
1008  * is elevated.  We'll still have enough credits for the tiny quotafile
1009  * write.
1010  */
1011 int do_journal_get_write_access(handle_t *handle,
1012                                 struct buffer_head *bh)
1013 {
1014         int dirty = buffer_dirty(bh);
1015         int ret;
1016
1017         if (!buffer_mapped(bh) || buffer_freed(bh))
1018                 return 0;
1019         /*
1020          * __block_write_begin() could have dirtied some buffers. Clean
1021          * the dirty bit as jbd2_journal_get_write_access() could complain
1022          * otherwise about fs integrity issues. Setting of the dirty bit
1023          * by __block_write_begin() isn't a real problem here as we clear
1024          * the bit before releasing a page lock and thus writeback cannot
1025          * ever write the buffer.
1026          */
1027         if (dirty)
1028                 clear_buffer_dirty(bh);
1029         BUFFER_TRACE(bh, "get write access");
1030         ret = ext4_journal_get_write_access(handle, bh);
1031         if (!ret && dirty)
1032                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1033         return ret;
1034 }
1035
1036 #ifdef CONFIG_FS_ENCRYPTION
1037 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1038                                   get_block_t *get_block)
1039 {
1040         unsigned from = pos & (PAGE_SIZE - 1);
1041         unsigned to = from + len;
1042         struct inode *inode = page->mapping->host;
1043         unsigned block_start, block_end;
1044         sector_t block;
1045         int err = 0;
1046         unsigned blocksize = inode->i_sb->s_blocksize;
1047         unsigned bbits;
1048         struct buffer_head *bh, *head, *wait[2];
1049         int nr_wait = 0;
1050         int i;
1051
1052         BUG_ON(!PageLocked(page));
1053         BUG_ON(from > PAGE_SIZE);
1054         BUG_ON(to > PAGE_SIZE);
1055         BUG_ON(from > to);
1056
1057         if (!page_has_buffers(page))
1058                 create_empty_buffers(page, blocksize, 0);
1059         head = page_buffers(page);
1060         bbits = ilog2(blocksize);
1061         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1062
1063         for (bh = head, block_start = 0; bh != head || !block_start;
1064             block++, block_start = block_end, bh = bh->b_this_page) {
1065                 block_end = block_start + blocksize;
1066                 if (block_end <= from || block_start >= to) {
1067                         if (PageUptodate(page)) {
1068                                 if (!buffer_uptodate(bh))
1069                                         set_buffer_uptodate(bh);
1070                         }
1071                         continue;
1072                 }
1073                 if (buffer_new(bh))
1074                         clear_buffer_new(bh);
1075                 if (!buffer_mapped(bh)) {
1076                         WARN_ON(bh->b_size != blocksize);
1077                         err = get_block(inode, block, bh, 1);
1078                         if (err)
1079                                 break;
1080                         if (buffer_new(bh)) {
1081                                 if (PageUptodate(page)) {
1082                                         clear_buffer_new(bh);
1083                                         set_buffer_uptodate(bh);
1084                                         mark_buffer_dirty(bh);
1085                                         continue;
1086                                 }
1087                                 if (block_end > to || block_start < from)
1088                                         zero_user_segments(page, to, block_end,
1089                                                            block_start, from);
1090                                 continue;
1091                         }
1092                 }
1093                 if (PageUptodate(page)) {
1094                         if (!buffer_uptodate(bh))
1095                                 set_buffer_uptodate(bh);
1096                         continue;
1097                 }
1098                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1099                     !buffer_unwritten(bh) &&
1100                     (block_start < from || block_end > to)) {
1101                         ext4_read_bh_lock(bh, 0, false);
1102                         wait[nr_wait++] = bh;
1103                 }
1104         }
1105         /*
1106          * If we issued read requests, let them complete.
1107          */
1108         for (i = 0; i < nr_wait; i++) {
1109                 wait_on_buffer(wait[i]);
1110                 if (!buffer_uptodate(wait[i]))
1111                         err = -EIO;
1112         }
1113         if (unlikely(err)) {
1114                 page_zero_new_buffers(page, from, to);
1115         } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1116                 for (i = 0; i < nr_wait; i++) {
1117                         int err2;
1118
1119                         err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1120                                                                 bh_offset(wait[i]));
1121                         if (err2) {
1122                                 clear_buffer_uptodate(wait[i]);
1123                                 err = err2;
1124                         }
1125                 }
1126         }
1127
1128         return err;
1129 }
1130 #endif
1131
1132 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1133                             loff_t pos, unsigned len, unsigned flags,
1134                             struct page **pagep, void **fsdata)
1135 {
1136         struct inode *inode = mapping->host;
1137         int ret, needed_blocks;
1138         handle_t *handle;
1139         int retries = 0;
1140         struct page *page;
1141         pgoff_t index;
1142         unsigned from, to;
1143
1144         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1145                 return -EIO;
1146
1147         trace_ext4_write_begin(inode, pos, len, flags);
1148         /*
1149          * Reserve one block more for addition to orphan list in case
1150          * we allocate blocks but write fails for some reason
1151          */
1152         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1153         index = pos >> PAGE_SHIFT;
1154         from = pos & (PAGE_SIZE - 1);
1155         to = from + len;
1156
1157         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1158                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1159                                                     flags, pagep);
1160                 if (ret < 0)
1161                         return ret;
1162                 if (ret == 1)
1163                         return 0;
1164         }
1165
1166         /*
1167          * grab_cache_page_write_begin() can take a long time if the
1168          * system is thrashing due to memory pressure, or if the page
1169          * is being written back.  So grab it first before we start
1170          * the transaction handle.  This also allows us to allocate
1171          * the page (if needed) without using GFP_NOFS.
1172          */
1173 retry_grab:
1174         page = grab_cache_page_write_begin(mapping, index, flags);
1175         if (!page)
1176                 return -ENOMEM;
1177         unlock_page(page);
1178
1179 retry_journal:
1180         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1181         if (IS_ERR(handle)) {
1182                 put_page(page);
1183                 return PTR_ERR(handle);
1184         }
1185
1186         lock_page(page);
1187         if (page->mapping != mapping) {
1188                 /* The page got truncated from under us */
1189                 unlock_page(page);
1190                 put_page(page);
1191                 ext4_journal_stop(handle);
1192                 goto retry_grab;
1193         }
1194         /* In case writeback began while the page was unlocked */
1195         wait_for_stable_page(page);
1196
1197 #ifdef CONFIG_FS_ENCRYPTION
1198         if (ext4_should_dioread_nolock(inode))
1199                 ret = ext4_block_write_begin(page, pos, len,
1200                                              ext4_get_block_unwritten);
1201         else
1202                 ret = ext4_block_write_begin(page, pos, len,
1203                                              ext4_get_block);
1204 #else
1205         if (ext4_should_dioread_nolock(inode))
1206                 ret = __block_write_begin(page, pos, len,
1207                                           ext4_get_block_unwritten);
1208         else
1209                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1210 #endif
1211         if (!ret && ext4_should_journal_data(inode)) {
1212                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1213                                              from, to, NULL,
1214                                              do_journal_get_write_access);
1215         }
1216
1217         if (ret) {
1218                 bool extended = (pos + len > inode->i_size) &&
1219                                 !ext4_verity_in_progress(inode);
1220
1221                 unlock_page(page);
1222                 /*
1223                  * __block_write_begin may have instantiated a few blocks
1224                  * outside i_size.  Trim these off again. Don't need
1225                  * i_size_read because we hold i_mutex.
1226                  *
1227                  * Add inode to orphan list in case we crash before
1228                  * truncate finishes
1229                  */
1230                 if (extended && ext4_can_truncate(inode))
1231                         ext4_orphan_add(handle, inode);
1232
1233                 ext4_journal_stop(handle);
1234                 if (extended) {
1235                         ext4_truncate_failed_write(inode);
1236                         /*
1237                          * If truncate failed early the inode might
1238                          * still be on the orphan list; we need to
1239                          * make sure the inode is removed from the
1240                          * orphan list in that case.
1241                          */
1242                         if (inode->i_nlink)
1243                                 ext4_orphan_del(NULL, inode);
1244                 }
1245
1246                 if (ret == -ENOSPC &&
1247                     ext4_should_retry_alloc(inode->i_sb, &retries))
1248                         goto retry_journal;
1249                 put_page(page);
1250                 return ret;
1251         }
1252         *pagep = page;
1253         return ret;
1254 }
1255
1256 /* For write_end() in data=journal mode */
1257 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1258 {
1259         int ret;
1260         if (!buffer_mapped(bh) || buffer_freed(bh))
1261                 return 0;
1262         set_buffer_uptodate(bh);
1263         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1264         clear_buffer_meta(bh);
1265         clear_buffer_prio(bh);
1266         return ret;
1267 }
1268
1269 /*
1270  * We need to pick up the new inode size which generic_commit_write gave us
1271  * `file' can be NULL - eg, when called from page_symlink().
1272  *
1273  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1274  * buffers are managed internally.
1275  */
1276 static int ext4_write_end(struct file *file,
1277                           struct address_space *mapping,
1278                           loff_t pos, unsigned len, unsigned copied,
1279                           struct page *page, void *fsdata)
1280 {
1281         handle_t *handle = ext4_journal_current_handle();
1282         struct inode *inode = mapping->host;
1283         loff_t old_size = inode->i_size;
1284         int ret = 0, ret2;
1285         int i_size_changed = 0;
1286         int inline_data = ext4_has_inline_data(inode);
1287         bool verity = ext4_verity_in_progress(inode);
1288
1289         trace_ext4_write_end(inode, pos, len, copied);
1290         if (inline_data) {
1291                 ret = ext4_write_inline_data_end(inode, pos, len,
1292                                                  copied, page);
1293                 if (ret < 0) {
1294                         unlock_page(page);
1295                         put_page(page);
1296                         goto errout;
1297                 }
1298                 copied = ret;
1299         } else
1300                 copied = block_write_end(file, mapping, pos,
1301                                          len, copied, page, fsdata);
1302         /*
1303          * it's important to update i_size while still holding page lock:
1304          * page writeout could otherwise come in and zero beyond i_size.
1305          *
1306          * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1307          * blocks are being written past EOF, so skip the i_size update.
1308          */
1309         if (!verity)
1310                 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1311         unlock_page(page);
1312         put_page(page);
1313
1314         if (old_size < pos && !verity)
1315                 pagecache_isize_extended(inode, old_size, pos);
1316         /*
1317          * Don't mark the inode dirty under page lock. First, it unnecessarily
1318          * makes the holding time of page lock longer. Second, it forces lock
1319          * ordering of page lock and transaction start for journaling
1320          * filesystems.
1321          */
1322         if (i_size_changed || inline_data)
1323                 ret = ext4_mark_inode_dirty(handle, inode);
1324
1325         if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1326                 /* if we have allocated more blocks and copied
1327                  * less. We will have blocks allocated outside
1328                  * inode->i_size. So truncate them
1329                  */
1330                 ext4_orphan_add(handle, inode);
1331 errout:
1332         ret2 = ext4_journal_stop(handle);
1333         if (!ret)
1334                 ret = ret2;
1335
1336         if (pos + len > inode->i_size && !verity) {
1337                 ext4_truncate_failed_write(inode);
1338                 /*
1339                  * If truncate failed early the inode might still be
1340                  * on the orphan list; we need to make sure the inode
1341                  * is removed from the orphan list in that case.
1342                  */
1343                 if (inode->i_nlink)
1344                         ext4_orphan_del(NULL, inode);
1345         }
1346
1347         return ret ? ret : copied;
1348 }
1349
1350 /*
1351  * This is a private version of page_zero_new_buffers() which doesn't
1352  * set the buffer to be dirty, since in data=journalled mode we need
1353  * to call ext4_handle_dirty_metadata() instead.
1354  */
1355 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1356                                             struct page *page,
1357                                             unsigned from, unsigned to)
1358 {
1359         unsigned int block_start = 0, block_end;
1360         struct buffer_head *head, *bh;
1361
1362         bh = head = page_buffers(page);
1363         do {
1364                 block_end = block_start + bh->b_size;
1365                 if (buffer_new(bh)) {
1366                         if (block_end > from && block_start < to) {
1367                                 if (!PageUptodate(page)) {
1368                                         unsigned start, size;
1369
1370                                         start = max(from, block_start);
1371                                         size = min(to, block_end) - start;
1372
1373                                         zero_user(page, start, size);
1374                                         write_end_fn(handle, bh);
1375                                 }
1376                                 clear_buffer_new(bh);
1377                         }
1378                 }
1379                 block_start = block_end;
1380                 bh = bh->b_this_page;
1381         } while (bh != head);
1382 }
1383
1384 static int ext4_journalled_write_end(struct file *file,
1385                                      struct address_space *mapping,
1386                                      loff_t pos, unsigned len, unsigned copied,
1387                                      struct page *page, void *fsdata)
1388 {
1389         handle_t *handle = ext4_journal_current_handle();
1390         struct inode *inode = mapping->host;
1391         loff_t old_size = inode->i_size;
1392         int ret = 0, ret2;
1393         int partial = 0;
1394         unsigned from, to;
1395         int size_changed = 0;
1396         int inline_data = ext4_has_inline_data(inode);
1397         bool verity = ext4_verity_in_progress(inode);
1398
1399         trace_ext4_journalled_write_end(inode, pos, len, copied);
1400         from = pos & (PAGE_SIZE - 1);
1401         to = from + len;
1402
1403         BUG_ON(!ext4_handle_valid(handle));
1404
1405         if (inline_data) {
1406                 ret = ext4_write_inline_data_end(inode, pos, len,
1407                                                  copied, page);
1408                 if (ret < 0) {
1409                         unlock_page(page);
1410                         put_page(page);
1411                         goto errout;
1412                 }
1413                 copied = ret;
1414         } else if (unlikely(copied < len) && !PageUptodate(page)) {
1415                 copied = 0;
1416                 ext4_journalled_zero_new_buffers(handle, page, from, to);
1417         } else {
1418                 if (unlikely(copied < len))
1419                         ext4_journalled_zero_new_buffers(handle, page,
1420                                                          from + copied, to);
1421                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1422                                              from + copied, &partial,
1423                                              write_end_fn);
1424                 if (!partial)
1425                         SetPageUptodate(page);
1426         }
1427         if (!verity)
1428                 size_changed = ext4_update_inode_size(inode, pos + copied);
1429         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1430         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1431         unlock_page(page);
1432         put_page(page);
1433
1434         if (old_size < pos && !verity)
1435                 pagecache_isize_extended(inode, old_size, pos);
1436
1437         if (size_changed || inline_data) {
1438                 ret2 = ext4_mark_inode_dirty(handle, inode);
1439                 if (!ret)
1440                         ret = ret2;
1441         }
1442
1443         if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1444                 /* if we have allocated more blocks and copied
1445                  * less. We will have blocks allocated outside
1446                  * inode->i_size. So truncate them
1447                  */
1448                 ext4_orphan_add(handle, inode);
1449
1450 errout:
1451         ret2 = ext4_journal_stop(handle);
1452         if (!ret)
1453                 ret = ret2;
1454         if (pos + len > inode->i_size && !verity) {
1455                 ext4_truncate_failed_write(inode);
1456                 /*
1457                  * If truncate failed early the inode might still be
1458                  * on the orphan list; we need to make sure the inode
1459                  * is removed from the orphan list in that case.
1460                  */
1461                 if (inode->i_nlink)
1462                         ext4_orphan_del(NULL, inode);
1463         }
1464
1465         return ret ? ret : copied;
1466 }
1467
1468 /*
1469  * Reserve space for a single cluster
1470  */
1471 static int ext4_da_reserve_space(struct inode *inode)
1472 {
1473         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1474         struct ext4_inode_info *ei = EXT4_I(inode);
1475         int ret;
1476
1477         /*
1478          * We will charge metadata quota at writeout time; this saves
1479          * us from metadata over-estimation, though we may go over by
1480          * a small amount in the end.  Here we just reserve for data.
1481          */
1482         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1483         if (ret)
1484                 return ret;
1485
1486         spin_lock(&ei->i_block_reservation_lock);
1487         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1488                 spin_unlock(&ei->i_block_reservation_lock);
1489                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1490                 return -ENOSPC;
1491         }
1492         ei->i_reserved_data_blocks++;
1493         trace_ext4_da_reserve_space(inode);
1494         spin_unlock(&ei->i_block_reservation_lock);
1495
1496         return 0;       /* success */
1497 }
1498
1499 void ext4_da_release_space(struct inode *inode, int to_free)
1500 {
1501         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1502         struct ext4_inode_info *ei = EXT4_I(inode);
1503
1504         if (!to_free)
1505                 return;         /* Nothing to release, exit */
1506
1507         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1508
1509         trace_ext4_da_release_space(inode, to_free);
1510         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1511                 /*
1512                  * if there aren't enough reserved blocks, then the
1513                  * counter is messed up somewhere.  Since this
1514                  * function is called from invalidate page, it's
1515                  * harmless to return without any action.
1516                  */
1517                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1518                          "ino %lu, to_free %d with only %d reserved "
1519                          "data blocks", inode->i_ino, to_free,
1520                          ei->i_reserved_data_blocks);
1521                 WARN_ON(1);
1522                 to_free = ei->i_reserved_data_blocks;
1523         }
1524         ei->i_reserved_data_blocks -= to_free;
1525
1526         /* update fs dirty data blocks counter */
1527         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1528
1529         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1530
1531         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1532 }
1533
1534 /*
1535  * Delayed allocation stuff
1536  */
1537
1538 struct mpage_da_data {
1539         struct inode *inode;
1540         struct writeback_control *wbc;
1541
1542         pgoff_t first_page;     /* The first page to write */
1543         pgoff_t next_page;      /* Current page to examine */
1544         pgoff_t last_page;      /* Last page to examine */
1545         /*
1546          * Extent to map - this can be after first_page because that can be
1547          * fully mapped. We somewhat abuse m_flags to store whether the extent
1548          * is delalloc or unwritten.
1549          */
1550         struct ext4_map_blocks map;
1551         struct ext4_io_submit io_submit;        /* IO submission data */
1552         unsigned int do_map:1;
1553         unsigned int scanned_until_end:1;
1554 };
1555
1556 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1557                                        bool invalidate)
1558 {
1559         int nr_pages, i;
1560         pgoff_t index, end;
1561         struct pagevec pvec;
1562         struct inode *inode = mpd->inode;
1563         struct address_space *mapping = inode->i_mapping;
1564
1565         /* This is necessary when next_page == 0. */
1566         if (mpd->first_page >= mpd->next_page)
1567                 return;
1568
1569         mpd->scanned_until_end = 0;
1570         index = mpd->first_page;
1571         end   = mpd->next_page - 1;
1572         if (invalidate) {
1573                 ext4_lblk_t start, last;
1574                 start = index << (PAGE_SHIFT - inode->i_blkbits);
1575                 last = end << (PAGE_SHIFT - inode->i_blkbits);
1576                 ext4_es_remove_extent(inode, start, last - start + 1);
1577         }
1578
1579         pagevec_init(&pvec);
1580         while (index <= end) {
1581                 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1582                 if (nr_pages == 0)
1583                         break;
1584                 for (i = 0; i < nr_pages; i++) {
1585                         struct page *page = pvec.pages[i];
1586
1587                         BUG_ON(!PageLocked(page));
1588                         BUG_ON(PageWriteback(page));
1589                         if (invalidate) {
1590                                 if (page_mapped(page))
1591                                         clear_page_dirty_for_io(page);
1592                                 block_invalidatepage(page, 0, PAGE_SIZE);
1593                                 ClearPageUptodate(page);
1594                         }
1595                         unlock_page(page);
1596                 }
1597                 pagevec_release(&pvec);
1598         }
1599 }
1600
1601 static void ext4_print_free_blocks(struct inode *inode)
1602 {
1603         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1604         struct super_block *sb = inode->i_sb;
1605         struct ext4_inode_info *ei = EXT4_I(inode);
1606
1607         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1608                EXT4_C2B(EXT4_SB(inode->i_sb),
1609                         ext4_count_free_clusters(sb)));
1610         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1611         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1612                (long long) EXT4_C2B(EXT4_SB(sb),
1613                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1614         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1615                (long long) EXT4_C2B(EXT4_SB(sb),
1616                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1617         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1618         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1619                  ei->i_reserved_data_blocks);
1620         return;
1621 }
1622
1623 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1624 {
1625         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1626 }
1627
1628 /*
1629  * ext4_insert_delayed_block - adds a delayed block to the extents status
1630  *                             tree, incrementing the reserved cluster/block
1631  *                             count or making a pending reservation
1632  *                             where needed
1633  *
1634  * @inode - file containing the newly added block
1635  * @lblk - logical block to be added
1636  *
1637  * Returns 0 on success, negative error code on failure.
1638  */
1639 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1640 {
1641         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1642         int ret;
1643         bool allocated = false;
1644
1645         /*
1646          * If the cluster containing lblk is shared with a delayed,
1647          * written, or unwritten extent in a bigalloc file system, it's
1648          * already been accounted for and does not need to be reserved.
1649          * A pending reservation must be made for the cluster if it's
1650          * shared with a written or unwritten extent and doesn't already
1651          * have one.  Written and unwritten extents can be purged from the
1652          * extents status tree if the system is under memory pressure, so
1653          * it's necessary to examine the extent tree if a search of the
1654          * extents status tree doesn't get a match.
1655          */
1656         if (sbi->s_cluster_ratio == 1) {
1657                 ret = ext4_da_reserve_space(inode);
1658                 if (ret != 0)   /* ENOSPC */
1659                         goto errout;
1660         } else {   /* bigalloc */
1661                 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1662                         if (!ext4_es_scan_clu(inode,
1663                                               &ext4_es_is_mapped, lblk)) {
1664                                 ret = ext4_clu_mapped(inode,
1665                                                       EXT4_B2C(sbi, lblk));
1666                                 if (ret < 0)
1667                                         goto errout;
1668                                 if (ret == 0) {
1669                                         ret = ext4_da_reserve_space(inode);
1670                                         if (ret != 0)   /* ENOSPC */
1671                                                 goto errout;
1672                                 } else {
1673                                         allocated = true;
1674                                 }
1675                         } else {
1676                                 allocated = true;
1677                         }
1678                 }
1679         }
1680
1681         ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1682
1683 errout:
1684         return ret;
1685 }
1686
1687 /*
1688  * This function is grabs code from the very beginning of
1689  * ext4_map_blocks, but assumes that the caller is from delayed write
1690  * time. This function looks up the requested blocks and sets the
1691  * buffer delay bit under the protection of i_data_sem.
1692  */
1693 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1694                               struct ext4_map_blocks *map,
1695                               struct buffer_head *bh)
1696 {
1697         struct extent_status es;
1698         int retval;
1699         sector_t invalid_block = ~((sector_t) 0xffff);
1700 #ifdef ES_AGGRESSIVE_TEST
1701         struct ext4_map_blocks orig_map;
1702
1703         memcpy(&orig_map, map, sizeof(*map));
1704 #endif
1705
1706         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1707                 invalid_block = ~0;
1708
1709         map->m_flags = 0;
1710         ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1711                   (unsigned long) map->m_lblk);
1712
1713         /* Lookup extent status tree firstly */
1714         if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1715                 if (ext4_es_is_hole(&es)) {
1716                         retval = 0;
1717                         down_read(&EXT4_I(inode)->i_data_sem);
1718                         goto add_delayed;
1719                 }
1720
1721                 /*
1722                  * Delayed extent could be allocated by fallocate.
1723                  * So we need to check it.
1724                  */
1725                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1726                         map_bh(bh, inode->i_sb, invalid_block);
1727                         set_buffer_new(bh);
1728                         set_buffer_delay(bh);
1729                         return 0;
1730                 }
1731
1732                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1733                 retval = es.es_len - (iblock - es.es_lblk);
1734                 if (retval > map->m_len)
1735                         retval = map->m_len;
1736                 map->m_len = retval;
1737                 if (ext4_es_is_written(&es))
1738                         map->m_flags |= EXT4_MAP_MAPPED;
1739                 else if (ext4_es_is_unwritten(&es))
1740                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1741                 else
1742                         BUG();
1743
1744 #ifdef ES_AGGRESSIVE_TEST
1745                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1746 #endif
1747                 return retval;
1748         }
1749
1750         /*
1751          * Try to see if we can get the block without requesting a new
1752          * file system block.
1753          */
1754         down_read(&EXT4_I(inode)->i_data_sem);
1755         if (ext4_has_inline_data(inode))
1756                 retval = 0;
1757         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1758                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1759         else
1760                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1761
1762 add_delayed:
1763         if (retval == 0) {
1764                 int ret;
1765
1766                 /*
1767                  * XXX: __block_prepare_write() unmaps passed block,
1768                  * is it OK?
1769                  */
1770
1771                 ret = ext4_insert_delayed_block(inode, map->m_lblk);
1772                 if (ret != 0) {
1773                         retval = ret;
1774                         goto out_unlock;
1775                 }
1776
1777                 map_bh(bh, inode->i_sb, invalid_block);
1778                 set_buffer_new(bh);
1779                 set_buffer_delay(bh);
1780         } else if (retval > 0) {
1781                 int ret;
1782                 unsigned int status;
1783
1784                 if (unlikely(retval != map->m_len)) {
1785                         ext4_warning(inode->i_sb,
1786                                      "ES len assertion failed for inode "
1787                                      "%lu: retval %d != map->m_len %d",
1788                                      inode->i_ino, retval, map->m_len);
1789                         WARN_ON(1);
1790                 }
1791
1792                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1793                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1794                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1795                                             map->m_pblk, status);
1796                 if (ret != 0)
1797                         retval = ret;
1798         }
1799
1800 out_unlock:
1801         up_read((&EXT4_I(inode)->i_data_sem));
1802
1803         return retval;
1804 }
1805
1806 /*
1807  * This is a special get_block_t callback which is used by
1808  * ext4_da_write_begin().  It will either return mapped block or
1809  * reserve space for a single block.
1810  *
1811  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1812  * We also have b_blocknr = -1 and b_bdev initialized properly
1813  *
1814  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1815  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1816  * initialized properly.
1817  */
1818 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1819                            struct buffer_head *bh, int create)
1820 {
1821         struct ext4_map_blocks map;
1822         int ret = 0;
1823
1824         BUG_ON(create == 0);
1825         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1826
1827         map.m_lblk = iblock;
1828         map.m_len = 1;
1829
1830         /*
1831          * first, we need to know whether the block is allocated already
1832          * preallocated blocks are unmapped but should treated
1833          * the same as allocated blocks.
1834          */
1835         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1836         if (ret <= 0)
1837                 return ret;
1838
1839         map_bh(bh, inode->i_sb, map.m_pblk);
1840         ext4_update_bh_state(bh, map.m_flags);
1841
1842         if (buffer_unwritten(bh)) {
1843                 /* A delayed write to unwritten bh should be marked
1844                  * new and mapped.  Mapped ensures that we don't do
1845                  * get_block multiple times when we write to the same
1846                  * offset and new ensures that we do proper zero out
1847                  * for partial write.
1848                  */
1849                 set_buffer_new(bh);
1850                 set_buffer_mapped(bh);
1851         }
1852         return 0;
1853 }
1854
1855 static int bget_one(handle_t *handle, struct buffer_head *bh)
1856 {
1857         get_bh(bh);
1858         return 0;
1859 }
1860
1861 static int bput_one(handle_t *handle, struct buffer_head *bh)
1862 {
1863         put_bh(bh);
1864         return 0;
1865 }
1866
1867 static int __ext4_journalled_writepage(struct page *page,
1868                                        unsigned int len)
1869 {
1870         struct address_space *mapping = page->mapping;
1871         struct inode *inode = mapping->host;
1872         struct buffer_head *page_bufs = NULL;
1873         handle_t *handle = NULL;
1874         int ret = 0, err = 0;
1875         int inline_data = ext4_has_inline_data(inode);
1876         struct buffer_head *inode_bh = NULL;
1877
1878         ClearPageChecked(page);
1879
1880         if (inline_data) {
1881                 BUG_ON(page->index != 0);
1882                 BUG_ON(len > ext4_get_max_inline_size(inode));
1883                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1884                 if (inode_bh == NULL)
1885                         goto out;
1886         } else {
1887                 page_bufs = page_buffers(page);
1888                 if (!page_bufs) {
1889                         BUG();
1890                         goto out;
1891                 }
1892                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1893                                        NULL, bget_one);
1894         }
1895         /*
1896          * We need to release the page lock before we start the
1897          * journal, so grab a reference so the page won't disappear
1898          * out from under us.
1899          */
1900         get_page(page);
1901         unlock_page(page);
1902
1903         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1904                                     ext4_writepage_trans_blocks(inode));
1905         if (IS_ERR(handle)) {
1906                 ret = PTR_ERR(handle);
1907                 put_page(page);
1908                 goto out_no_pagelock;
1909         }
1910         BUG_ON(!ext4_handle_valid(handle));
1911
1912         lock_page(page);
1913         put_page(page);
1914         if (page->mapping != mapping) {
1915                 /* The page got truncated from under us */
1916                 ext4_journal_stop(handle);
1917                 ret = 0;
1918                 goto out;
1919         }
1920
1921         if (inline_data) {
1922                 ret = ext4_mark_inode_dirty(handle, inode);
1923         } else {
1924                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1925                                              do_journal_get_write_access);
1926
1927                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1928                                              write_end_fn);
1929         }
1930         if (ret == 0)
1931                 ret = err;
1932         err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len);
1933         if (ret == 0)
1934                 ret = err;
1935         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1936         err = ext4_journal_stop(handle);
1937         if (!ret)
1938                 ret = err;
1939
1940         if (!ext4_has_inline_data(inode))
1941                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1942                                        NULL, bput_one);
1943         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1944 out:
1945         unlock_page(page);
1946 out_no_pagelock:
1947         brelse(inode_bh);
1948         return ret;
1949 }
1950
1951 /*
1952  * Note that we don't need to start a transaction unless we're journaling data
1953  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1954  * need to file the inode to the transaction's list in ordered mode because if
1955  * we are writing back data added by write(), the inode is already there and if
1956  * we are writing back data modified via mmap(), no one guarantees in which
1957  * transaction the data will hit the disk. In case we are journaling data, we
1958  * cannot start transaction directly because transaction start ranks above page
1959  * lock so we have to do some magic.
1960  *
1961  * This function can get called via...
1962  *   - ext4_writepages after taking page lock (have journal handle)
1963  *   - journal_submit_inode_data_buffers (no journal handle)
1964  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1965  *   - grab_page_cache when doing write_begin (have journal handle)
1966  *
1967  * We don't do any block allocation in this function. If we have page with
1968  * multiple blocks we need to write those buffer_heads that are mapped. This
1969  * is important for mmaped based write. So if we do with blocksize 1K
1970  * truncate(f, 1024);
1971  * a = mmap(f, 0, 4096);
1972  * a[0] = 'a';
1973  * truncate(f, 4096);
1974  * we have in the page first buffer_head mapped via page_mkwrite call back
1975  * but other buffer_heads would be unmapped but dirty (dirty done via the
1976  * do_wp_page). So writepage should write the first block. If we modify
1977  * the mmap area beyond 1024 we will again get a page_fault and the
1978  * page_mkwrite callback will do the block allocation and mark the
1979  * buffer_heads mapped.
1980  *
1981  * We redirty the page if we have any buffer_heads that is either delay or
1982  * unwritten in the page.
1983  *
1984  * We can get recursively called as show below.
1985  *
1986  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1987  *              ext4_writepage()
1988  *
1989  * But since we don't do any block allocation we should not deadlock.
1990  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1991  */
1992 static int ext4_writepage(struct page *page,
1993                           struct writeback_control *wbc)
1994 {
1995         int ret = 0;
1996         loff_t size;
1997         unsigned int len;
1998         struct buffer_head *page_bufs = NULL;
1999         struct inode *inode = page->mapping->host;
2000         struct ext4_io_submit io_submit;
2001         bool keep_towrite = false;
2002
2003         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2004                 inode->i_mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
2005                 unlock_page(page);
2006                 return -EIO;
2007         }
2008
2009         trace_ext4_writepage(page);
2010         size = i_size_read(inode);
2011         if (page->index == size >> PAGE_SHIFT &&
2012             !ext4_verity_in_progress(inode))
2013                 len = size & ~PAGE_MASK;
2014         else
2015                 len = PAGE_SIZE;
2016
2017         page_bufs = page_buffers(page);
2018         /*
2019          * We cannot do block allocation or other extent handling in this
2020          * function. If there are buffers needing that, we have to redirty
2021          * the page. But we may reach here when we do a journal commit via
2022          * journal_submit_inode_data_buffers() and in that case we must write
2023          * allocated buffers to achieve data=ordered mode guarantees.
2024          *
2025          * Also, if there is only one buffer per page (the fs block
2026          * size == the page size), if one buffer needs block
2027          * allocation or needs to modify the extent tree to clear the
2028          * unwritten flag, we know that the page can't be written at
2029          * all, so we might as well refuse the write immediately.
2030          * Unfortunately if the block size != page size, we can't as
2031          * easily detect this case using ext4_walk_page_buffers(), but
2032          * for the extremely common case, this is an optimization that
2033          * skips a useless round trip through ext4_bio_write_page().
2034          */
2035         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2036                                    ext4_bh_delay_or_unwritten)) {
2037                 redirty_page_for_writepage(wbc, page);
2038                 if ((current->flags & PF_MEMALLOC) ||
2039                     (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2040                         /*
2041                          * For memory cleaning there's no point in writing only
2042                          * some buffers. So just bail out. Warn if we came here
2043                          * from direct reclaim.
2044                          */
2045                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2046                                                         == PF_MEMALLOC);
2047                         unlock_page(page);
2048                         return 0;
2049                 }
2050                 keep_towrite = true;
2051         }
2052
2053         if (PageChecked(page) && ext4_should_journal_data(inode))
2054                 /*
2055                  * It's mmapped pagecache.  Add buffers and journal it.  There
2056                  * doesn't seem much point in redirtying the page here.
2057                  */
2058                 return __ext4_journalled_writepage(page, len);
2059
2060         ext4_io_submit_init(&io_submit, wbc);
2061         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2062         if (!io_submit.io_end) {
2063                 redirty_page_for_writepage(wbc, page);
2064                 unlock_page(page);
2065                 return -ENOMEM;
2066         }
2067         ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2068         ext4_io_submit(&io_submit);
2069         /* Drop io_end reference we got from init */
2070         ext4_put_io_end_defer(io_submit.io_end);
2071         return ret;
2072 }
2073
2074 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2075 {
2076         int len;
2077         loff_t size;
2078         int err;
2079
2080         BUG_ON(page->index != mpd->first_page);
2081         clear_page_dirty_for_io(page);
2082         /*
2083          * We have to be very careful here!  Nothing protects writeback path
2084          * against i_size changes and the page can be writeably mapped into
2085          * page tables. So an application can be growing i_size and writing
2086          * data through mmap while writeback runs. clear_page_dirty_for_io()
2087          * write-protects our page in page tables and the page cannot get
2088          * written to again until we release page lock. So only after
2089          * clear_page_dirty_for_io() we are safe to sample i_size for
2090          * ext4_bio_write_page() to zero-out tail of the written page. We rely
2091          * on the barrier provided by TestClearPageDirty in
2092          * clear_page_dirty_for_io() to make sure i_size is really sampled only
2093          * after page tables are updated.
2094          */
2095         size = i_size_read(mpd->inode);
2096         if (page->index == size >> PAGE_SHIFT &&
2097             !ext4_verity_in_progress(mpd->inode))
2098                 len = size & ~PAGE_MASK;
2099         else
2100                 len = PAGE_SIZE;
2101         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2102         if (!err)
2103                 mpd->wbc->nr_to_write--;
2104         mpd->first_page++;
2105
2106         return err;
2107 }
2108
2109 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
2110
2111 /*
2112  * mballoc gives us at most this number of blocks...
2113  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2114  * The rest of mballoc seems to handle chunks up to full group size.
2115  */
2116 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2117
2118 /*
2119  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2120  *
2121  * @mpd - extent of blocks
2122  * @lblk - logical number of the block in the file
2123  * @bh - buffer head we want to add to the extent
2124  *
2125  * The function is used to collect contig. blocks in the same state. If the
2126  * buffer doesn't require mapping for writeback and we haven't started the
2127  * extent of buffers to map yet, the function returns 'true' immediately - the
2128  * caller can write the buffer right away. Otherwise the function returns true
2129  * if the block has been added to the extent, false if the block couldn't be
2130  * added.
2131  */
2132 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2133                                    struct buffer_head *bh)
2134 {
2135         struct ext4_map_blocks *map = &mpd->map;
2136
2137         /* Buffer that doesn't need mapping for writeback? */
2138         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2139             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2140                 /* So far no extent to map => we write the buffer right away */
2141                 if (map->m_len == 0)
2142                         return true;
2143                 return false;
2144         }
2145
2146         /* First block in the extent? */
2147         if (map->m_len == 0) {
2148                 /* We cannot map unless handle is started... */
2149                 if (!mpd->do_map)
2150                         return false;
2151                 map->m_lblk = lblk;
2152                 map->m_len = 1;
2153                 map->m_flags = bh->b_state & BH_FLAGS;
2154                 return true;
2155         }
2156
2157         /* Don't go larger than mballoc is willing to allocate */
2158         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2159                 return false;
2160
2161         /* Can we merge the block to our big extent? */
2162         if (lblk == map->m_lblk + map->m_len &&
2163             (bh->b_state & BH_FLAGS) == map->m_flags) {
2164                 map->m_len++;
2165                 return true;
2166         }
2167         return false;
2168 }
2169
2170 /*
2171  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2172  *
2173  * @mpd - extent of blocks for mapping
2174  * @head - the first buffer in the page
2175  * @bh - buffer we should start processing from
2176  * @lblk - logical number of the block in the file corresponding to @bh
2177  *
2178  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2179  * the page for IO if all buffers in this page were mapped and there's no
2180  * accumulated extent of buffers to map or add buffers in the page to the
2181  * extent of buffers to map. The function returns 1 if the caller can continue
2182  * by processing the next page, 0 if it should stop adding buffers to the
2183  * extent to map because we cannot extend it anymore. It can also return value
2184  * < 0 in case of error during IO submission.
2185  */
2186 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2187                                    struct buffer_head *head,
2188                                    struct buffer_head *bh,
2189                                    ext4_lblk_t lblk)
2190 {
2191         struct inode *inode = mpd->inode;
2192         int err;
2193         ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2194                                                         >> inode->i_blkbits;
2195
2196         if (ext4_verity_in_progress(inode))
2197                 blocks = EXT_MAX_BLOCKS;
2198
2199         do {
2200                 BUG_ON(buffer_locked(bh));
2201
2202                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2203                         /* Found extent to map? */
2204                         if (mpd->map.m_len)
2205                                 return 0;
2206                         /* Buffer needs mapping and handle is not started? */
2207                         if (!mpd->do_map)
2208                                 return 0;
2209                         /* Everything mapped so far and we hit EOF */
2210                         break;
2211                 }
2212         } while (lblk++, (bh = bh->b_this_page) != head);
2213         /* So far everything mapped? Submit the page for IO. */
2214         if (mpd->map.m_len == 0) {
2215                 err = mpage_submit_page(mpd, head->b_page);
2216                 if (err < 0)
2217                         return err;
2218         }
2219         if (lblk >= blocks) {
2220                 mpd->scanned_until_end = 1;
2221                 return 0;
2222         }
2223         return 1;
2224 }
2225
2226 /*
2227  * mpage_process_page - update page buffers corresponding to changed extent and
2228  *                     may submit fully mapped page for IO
2229  *
2230  * @mpd         - description of extent to map, on return next extent to map
2231  * @m_lblk      - logical block mapping.
2232  * @m_pblk      - corresponding physical mapping.
2233  * @map_bh      - determines on return whether this page requires any further
2234  *                mapping or not.
2235  * Scan given page buffers corresponding to changed extent and update buffer
2236  * state according to new extent state.
2237  * We map delalloc buffers to their physical location, clear unwritten bits.
2238  * If the given page is not fully mapped, we update @map to the next extent in
2239  * the given page that needs mapping & return @map_bh as true.
2240  */
2241 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2242                               ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2243                               bool *map_bh)
2244 {
2245         struct buffer_head *head, *bh;
2246         ext4_io_end_t *io_end = mpd->io_submit.io_end;
2247         ext4_lblk_t lblk = *m_lblk;
2248         ext4_fsblk_t pblock = *m_pblk;
2249         int err = 0;
2250         int blkbits = mpd->inode->i_blkbits;
2251         ssize_t io_end_size = 0;
2252         struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2253
2254         bh = head = page_buffers(page);
2255         do {
2256                 if (lblk < mpd->map.m_lblk)
2257                         continue;
2258                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2259                         /*
2260                          * Buffer after end of mapped extent.
2261                          * Find next buffer in the page to map.
2262                          */
2263                         mpd->map.m_len = 0;
2264                         mpd->map.m_flags = 0;
2265                         io_end_vec->size += io_end_size;
2266                         io_end_size = 0;
2267
2268                         err = mpage_process_page_bufs(mpd, head, bh, lblk);
2269                         if (err > 0)
2270                                 err = 0;
2271                         if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2272                                 io_end_vec = ext4_alloc_io_end_vec(io_end);
2273                                 if (IS_ERR(io_end_vec)) {
2274                                         err = PTR_ERR(io_end_vec);
2275                                         goto out;
2276                                 }
2277                                 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2278                         }
2279                         *map_bh = true;
2280                         goto out;
2281                 }
2282                 if (buffer_delay(bh)) {
2283                         clear_buffer_delay(bh);
2284                         bh->b_blocknr = pblock++;
2285                 }
2286                 clear_buffer_unwritten(bh);
2287                 io_end_size += (1 << blkbits);
2288         } while (lblk++, (bh = bh->b_this_page) != head);
2289
2290         io_end_vec->size += io_end_size;
2291         io_end_size = 0;
2292         *map_bh = false;
2293 out:
2294         *m_lblk = lblk;
2295         *m_pblk = pblock;
2296         return err;
2297 }
2298
2299 /*
2300  * mpage_map_buffers - update buffers corresponding to changed extent and
2301  *                     submit fully mapped pages for IO
2302  *
2303  * @mpd - description of extent to map, on return next extent to map
2304  *
2305  * Scan buffers corresponding to changed extent (we expect corresponding pages
2306  * to be already locked) and update buffer state according to new extent state.
2307  * We map delalloc buffers to their physical location, clear unwritten bits,
2308  * and mark buffers as uninit when we perform writes to unwritten extents
2309  * and do extent conversion after IO is finished. If the last page is not fully
2310  * mapped, we update @map to the next extent in the last page that needs
2311  * mapping. Otherwise we submit the page for IO.
2312  */
2313 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2314 {
2315         struct pagevec pvec;
2316         int nr_pages, i;
2317         struct inode *inode = mpd->inode;
2318         int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2319         pgoff_t start, end;
2320         ext4_lblk_t lblk;
2321         ext4_fsblk_t pblock;
2322         int err;
2323         bool map_bh = false;
2324
2325         start = mpd->map.m_lblk >> bpp_bits;
2326         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2327         lblk = start << bpp_bits;
2328         pblock = mpd->map.m_pblk;
2329
2330         pagevec_init(&pvec);
2331         while (start <= end) {
2332                 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2333                                                 &start, end);
2334                 if (nr_pages == 0)
2335                         break;
2336                 for (i = 0; i < nr_pages; i++) {
2337                         struct page *page = pvec.pages[i];
2338
2339                         err = mpage_process_page(mpd, page, &lblk, &pblock,
2340                                                  &map_bh);
2341                         /*
2342                          * If map_bh is true, means page may require further bh
2343                          * mapping, or maybe the page was submitted for IO.
2344                          * So we return to call further extent mapping.
2345                          */
2346                         if (err < 0 || map_bh)
2347                                 goto out;
2348                         /* Page fully mapped - let IO run! */
2349                         err = mpage_submit_page(mpd, page);
2350                         if (err < 0)
2351                                 goto out;
2352                 }
2353                 pagevec_release(&pvec);
2354         }
2355         /* Extent fully mapped and matches with page boundary. We are done. */
2356         mpd->map.m_len = 0;
2357         mpd->map.m_flags = 0;
2358         return 0;
2359 out:
2360         pagevec_release(&pvec);
2361         return err;
2362 }
2363
2364 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2365 {
2366         struct inode *inode = mpd->inode;
2367         struct ext4_map_blocks *map = &mpd->map;
2368         int get_blocks_flags;
2369         int err, dioread_nolock;
2370
2371         trace_ext4_da_write_pages_extent(inode, map);
2372         /*
2373          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2374          * to convert an unwritten extent to be initialized (in the case
2375          * where we have written into one or more preallocated blocks).  It is
2376          * possible that we're going to need more metadata blocks than
2377          * previously reserved. However we must not fail because we're in
2378          * writeback and there is nothing we can do about it so it might result
2379          * in data loss.  So use reserved blocks to allocate metadata if
2380          * possible.
2381          *
2382          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2383          * the blocks in question are delalloc blocks.  This indicates
2384          * that the blocks and quotas has already been checked when
2385          * the data was copied into the page cache.
2386          */
2387         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2388                            EXT4_GET_BLOCKS_METADATA_NOFAIL |
2389                            EXT4_GET_BLOCKS_IO_SUBMIT;
2390         dioread_nolock = ext4_should_dioread_nolock(inode);
2391         if (dioread_nolock)
2392                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2393         if (map->m_flags & BIT(BH_Delay))
2394                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2395
2396         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2397         if (err < 0)
2398                 return err;
2399         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2400                 if (!mpd->io_submit.io_end->handle &&
2401                     ext4_handle_valid(handle)) {
2402                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2403                         handle->h_rsv_handle = NULL;
2404                 }
2405                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2406         }
2407
2408         BUG_ON(map->m_len == 0);
2409         return 0;
2410 }
2411
2412 /*
2413  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2414  *                               mpd->len and submit pages underlying it for IO
2415  *
2416  * @handle - handle for journal operations
2417  * @mpd - extent to map
2418  * @give_up_on_write - we set this to true iff there is a fatal error and there
2419  *                     is no hope of writing the data. The caller should discard
2420  *                     dirty pages to avoid infinite loops.
2421  *
2422  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2423  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2424  * them to initialized or split the described range from larger unwritten
2425  * extent. Note that we need not map all the described range since allocation
2426  * can return less blocks or the range is covered by more unwritten extents. We
2427  * cannot map more because we are limited by reserved transaction credits. On
2428  * the other hand we always make sure that the last touched page is fully
2429  * mapped so that it can be written out (and thus forward progress is
2430  * guaranteed). After mapping we submit all mapped pages for IO.
2431  */
2432 static int mpage_map_and_submit_extent(handle_t *handle,
2433                                        struct mpage_da_data *mpd,
2434                                        bool *give_up_on_write)
2435 {
2436         struct inode *inode = mpd->inode;
2437         struct ext4_map_blocks *map = &mpd->map;
2438         int err;
2439         loff_t disksize;
2440         int progress = 0;
2441         ext4_io_end_t *io_end = mpd->io_submit.io_end;
2442         struct ext4_io_end_vec *io_end_vec;
2443
2444         io_end_vec = ext4_alloc_io_end_vec(io_end);
2445         if (IS_ERR(io_end_vec))
2446                 return PTR_ERR(io_end_vec);
2447         io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2448         do {
2449                 err = mpage_map_one_extent(handle, mpd);
2450                 if (err < 0) {
2451                         struct super_block *sb = inode->i_sb;
2452
2453                         if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2454                             ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
2455                                 goto invalidate_dirty_pages;
2456                         /*
2457                          * Let the uper layers retry transient errors.
2458                          * In the case of ENOSPC, if ext4_count_free_blocks()
2459                          * is non-zero, a commit should free up blocks.
2460                          */
2461                         if ((err == -ENOMEM) ||
2462                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2463                                 if (progress)
2464                                         goto update_disksize;
2465                                 return err;
2466                         }
2467                         ext4_msg(sb, KERN_CRIT,
2468                                  "Delayed block allocation failed for "
2469                                  "inode %lu at logical offset %llu with"
2470                                  " max blocks %u with error %d",
2471                                  inode->i_ino,
2472                                  (unsigned long long)map->m_lblk,
2473                                  (unsigned)map->m_len, -err);
2474                         ext4_msg(sb, KERN_CRIT,
2475                                  "This should not happen!! Data will "
2476                                  "be lost\n");
2477                         if (err == -ENOSPC)
2478                                 ext4_print_free_blocks(inode);
2479                 invalidate_dirty_pages:
2480                         *give_up_on_write = true;
2481                         return err;
2482                 }
2483                 progress = 1;
2484                 /*
2485                  * Update buffer state, submit mapped pages, and get us new
2486                  * extent to map
2487                  */
2488                 err = mpage_map_and_submit_buffers(mpd);
2489                 if (err < 0)
2490                         goto update_disksize;
2491         } while (map->m_len);
2492
2493 update_disksize:
2494         /*
2495          * Update on-disk size after IO is submitted.  Races with
2496          * truncate are avoided by checking i_size under i_data_sem.
2497          */
2498         disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2499         if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2500                 int err2;
2501                 loff_t i_size;
2502
2503                 down_write(&EXT4_I(inode)->i_data_sem);
2504                 i_size = i_size_read(inode);
2505                 if (disksize > i_size)
2506                         disksize = i_size;
2507                 if (disksize > EXT4_I(inode)->i_disksize)
2508                         EXT4_I(inode)->i_disksize = disksize;
2509                 up_write(&EXT4_I(inode)->i_data_sem);
2510                 err2 = ext4_mark_inode_dirty(handle, inode);
2511                 if (err2) {
2512                         ext4_error_err(inode->i_sb, -err2,
2513                                        "Failed to mark inode %lu dirty",
2514                                        inode->i_ino);
2515                 }
2516                 if (!err)
2517                         err = err2;
2518         }
2519         return err;
2520 }
2521
2522 /*
2523  * Calculate the total number of credits to reserve for one writepages
2524  * iteration. This is called from ext4_writepages(). We map an extent of
2525  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2526  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2527  * bpp - 1 blocks in bpp different extents.
2528  */
2529 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2530 {
2531         int bpp = ext4_journal_blocks_per_page(inode);
2532
2533         return ext4_meta_trans_blocks(inode,
2534                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2535 }
2536
2537 /*
2538  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2539  *                               and underlying extent to map
2540  *
2541  * @mpd - where to look for pages
2542  *
2543  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2544  * IO immediately. When we find a page which isn't mapped we start accumulating
2545  * extent of buffers underlying these pages that needs mapping (formed by
2546  * either delayed or unwritten buffers). We also lock the pages containing
2547  * these buffers. The extent found is returned in @mpd structure (starting at
2548  * mpd->lblk with length mpd->len blocks).
2549  *
2550  * Note that this function can attach bios to one io_end structure which are
2551  * neither logically nor physically contiguous. Although it may seem as an
2552  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2553  * case as we need to track IO to all buffers underlying a page in one io_end.
2554  */
2555 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2556 {
2557         struct address_space *mapping = mpd->inode->i_mapping;
2558         struct pagevec pvec;
2559         unsigned int nr_pages;
2560         long left = mpd->wbc->nr_to_write;
2561         pgoff_t index = mpd->first_page;
2562         pgoff_t end = mpd->last_page;
2563         xa_mark_t tag;
2564         int i, err = 0;
2565         int blkbits = mpd->inode->i_blkbits;
2566         ext4_lblk_t lblk;
2567         struct buffer_head *head;
2568
2569         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2570                 tag = PAGECACHE_TAG_TOWRITE;
2571         else
2572                 tag = PAGECACHE_TAG_DIRTY;
2573
2574         pagevec_init(&pvec);
2575         mpd->map.m_len = 0;
2576         mpd->next_page = index;
2577         while (index <= end) {
2578                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2579                                 tag);
2580                 if (nr_pages == 0)
2581                         break;
2582
2583                 for (i = 0; i < nr_pages; i++) {
2584                         struct page *page = pvec.pages[i];
2585
2586                         /*
2587                          * Accumulated enough dirty pages? This doesn't apply
2588                          * to WB_SYNC_ALL mode. For integrity sync we have to
2589                          * keep going because someone may be concurrently
2590                          * dirtying pages, and we might have synced a lot of
2591                          * newly appeared dirty pages, but have not synced all
2592                          * of the old dirty pages.
2593                          */
2594                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2595                                 goto out;
2596
2597                         /* If we can't merge this page, we are done. */
2598                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2599                                 goto out;
2600
2601                         lock_page(page);
2602                         /*
2603                          * If the page is no longer dirty, or its mapping no
2604                          * longer corresponds to inode we are writing (which
2605                          * means it has been truncated or invalidated), or the
2606                          * page is already under writeback and we are not doing
2607                          * a data integrity writeback, skip the page
2608                          */
2609                         if (!PageDirty(page) ||
2610                             (PageWriteback(page) &&
2611                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2612                             unlikely(page->mapping != mapping)) {
2613                                 unlock_page(page);
2614                                 continue;
2615                         }
2616
2617                         wait_on_page_writeback(page);
2618                         BUG_ON(PageWriteback(page));
2619
2620                         if (mpd->map.m_len == 0)
2621                                 mpd->first_page = page->index;
2622                         mpd->next_page = page->index + 1;
2623                         /* Add all dirty buffers to mpd */
2624                         lblk = ((ext4_lblk_t)page->index) <<
2625                                 (PAGE_SHIFT - blkbits);
2626                         head = page_buffers(page);
2627                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2628                         if (err <= 0)
2629                                 goto out;
2630                         err = 0;
2631                         left--;
2632                 }
2633                 pagevec_release(&pvec);
2634                 cond_resched();
2635         }
2636         mpd->scanned_until_end = 1;
2637         return 0;
2638 out:
2639         pagevec_release(&pvec);
2640         return err;
2641 }
2642
2643 static int ext4_writepages(struct address_space *mapping,
2644                            struct writeback_control *wbc)
2645 {
2646         pgoff_t writeback_index = 0;
2647         long nr_to_write = wbc->nr_to_write;
2648         int range_whole = 0;
2649         int cycled = 1;
2650         handle_t *handle = NULL;
2651         struct mpage_da_data mpd;
2652         struct inode *inode = mapping->host;
2653         int needed_blocks, rsv_blocks = 0, ret = 0;
2654         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2655         struct blk_plug plug;
2656         bool give_up_on_write = false;
2657
2658         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2659                 return -EIO;
2660
2661         percpu_down_read(&sbi->s_writepages_rwsem);
2662         trace_ext4_writepages(inode, wbc);
2663
2664         /*
2665          * No pages to write? This is mainly a kludge to avoid starting
2666          * a transaction for special inodes like journal inode on last iput()
2667          * because that could violate lock ordering on umount
2668          */
2669         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2670                 goto out_writepages;
2671
2672         if (ext4_should_journal_data(inode)) {
2673                 ret = generic_writepages(mapping, wbc);
2674                 goto out_writepages;
2675         }
2676
2677         /*
2678          * If the filesystem has aborted, it is read-only, so return
2679          * right away instead of dumping stack traces later on that
2680          * will obscure the real source of the problem.  We test
2681          * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2682          * the latter could be true if the filesystem is mounted
2683          * read-only, and in that case, ext4_writepages should
2684          * *never* be called, so if that ever happens, we would want
2685          * the stack trace.
2686          */
2687         if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2688                      ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) {
2689                 ret = -EROFS;
2690                 goto out_writepages;
2691         }
2692
2693         /*
2694          * If we have inline data and arrive here, it means that
2695          * we will soon create the block for the 1st page, so
2696          * we'd better clear the inline data here.
2697          */
2698         if (ext4_has_inline_data(inode)) {
2699                 /* Just inode will be modified... */
2700                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2701                 if (IS_ERR(handle)) {
2702                         ret = PTR_ERR(handle);
2703                         goto out_writepages;
2704                 }
2705                 BUG_ON(ext4_test_inode_state(inode,
2706                                 EXT4_STATE_MAY_INLINE_DATA));
2707                 ext4_destroy_inline_data(handle, inode);
2708                 ext4_journal_stop(handle);
2709         }
2710
2711         if (ext4_should_dioread_nolock(inode)) {
2712                 /*
2713                  * We may need to convert up to one extent per block in
2714                  * the page and we may dirty the inode.
2715                  */
2716                 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2717                                                 PAGE_SIZE >> inode->i_blkbits);
2718         }
2719
2720         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2721                 range_whole = 1;
2722
2723         if (wbc->range_cyclic) {
2724                 writeback_index = mapping->writeback_index;
2725                 if (writeback_index)
2726                         cycled = 0;
2727                 mpd.first_page = writeback_index;
2728                 mpd.last_page = -1;
2729         } else {
2730                 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2731                 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2732         }
2733
2734         mpd.inode = inode;
2735         mpd.wbc = wbc;
2736         ext4_io_submit_init(&mpd.io_submit, wbc);
2737 retry:
2738         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2739                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2740         blk_start_plug(&plug);
2741
2742         /*
2743          * First writeback pages that don't need mapping - we can avoid
2744          * starting a transaction unnecessarily and also avoid being blocked
2745          * in the block layer on device congestion while having transaction
2746          * started.
2747          */
2748         mpd.do_map = 0;
2749         mpd.scanned_until_end = 0;
2750         mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2751         if (!mpd.io_submit.io_end) {
2752                 ret = -ENOMEM;
2753                 goto unplug;
2754         }
2755         ret = mpage_prepare_extent_to_map(&mpd);
2756         /* Unlock pages we didn't use */
2757         mpage_release_unused_pages(&mpd, false);
2758         /* Submit prepared bio */
2759         ext4_io_submit(&mpd.io_submit);
2760         ext4_put_io_end_defer(mpd.io_submit.io_end);
2761         mpd.io_submit.io_end = NULL;
2762         if (ret < 0)
2763                 goto unplug;
2764
2765         while (!mpd.scanned_until_end && wbc->nr_to_write > 0) {
2766                 /* For each extent of pages we use new io_end */
2767                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2768                 if (!mpd.io_submit.io_end) {
2769                         ret = -ENOMEM;
2770                         break;
2771                 }
2772
2773                 /*
2774                  * We have two constraints: We find one extent to map and we
2775                  * must always write out whole page (makes a difference when
2776                  * blocksize < pagesize) so that we don't block on IO when we
2777                  * try to write out the rest of the page. Journalled mode is
2778                  * not supported by delalloc.
2779                  */
2780                 BUG_ON(ext4_should_journal_data(inode));
2781                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2782
2783                 /* start a new transaction */
2784                 handle = ext4_journal_start_with_reserve(inode,
2785                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2786                 if (IS_ERR(handle)) {
2787                         ret = PTR_ERR(handle);
2788                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2789                                "%ld pages, ino %lu; err %d", __func__,
2790                                 wbc->nr_to_write, inode->i_ino, ret);
2791                         /* Release allocated io_end */
2792                         ext4_put_io_end(mpd.io_submit.io_end);
2793                         mpd.io_submit.io_end = NULL;
2794                         break;
2795                 }
2796                 mpd.do_map = 1;
2797
2798                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2799                 ret = mpage_prepare_extent_to_map(&mpd);
2800                 if (!ret && mpd.map.m_len)
2801                         ret = mpage_map_and_submit_extent(handle, &mpd,
2802                                         &give_up_on_write);
2803                 /*
2804                  * Caution: If the handle is synchronous,
2805                  * ext4_journal_stop() can wait for transaction commit
2806                  * to finish which may depend on writeback of pages to
2807                  * complete or on page lock to be released.  In that
2808                  * case, we have to wait until after we have
2809                  * submitted all the IO, released page locks we hold,
2810                  * and dropped io_end reference (for extent conversion
2811                  * to be able to complete) before stopping the handle.
2812                  */
2813                 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2814                         ext4_journal_stop(handle);
2815                         handle = NULL;
2816                         mpd.do_map = 0;
2817                 }
2818                 /* Unlock pages we didn't use */
2819                 mpage_release_unused_pages(&mpd, give_up_on_write);
2820                 /* Submit prepared bio */
2821                 ext4_io_submit(&mpd.io_submit);
2822
2823                 /*
2824                  * Drop our io_end reference we got from init. We have
2825                  * to be careful and use deferred io_end finishing if
2826                  * we are still holding the transaction as we can
2827                  * release the last reference to io_end which may end
2828                  * up doing unwritten extent conversion.
2829                  */
2830                 if (handle) {
2831                         ext4_put_io_end_defer(mpd.io_submit.io_end);
2832                         ext4_journal_stop(handle);
2833                 } else
2834                         ext4_put_io_end(mpd.io_submit.io_end);
2835                 mpd.io_submit.io_end = NULL;
2836
2837                 if (ret == -ENOSPC && sbi->s_journal) {
2838                         /*
2839                          * Commit the transaction which would
2840                          * free blocks released in the transaction
2841                          * and try again
2842                          */
2843                         jbd2_journal_force_commit_nested(sbi->s_journal);
2844                         ret = 0;
2845                         continue;
2846                 }
2847                 /* Fatal error - ENOMEM, EIO... */
2848                 if (ret)
2849                         break;
2850         }
2851 unplug:
2852         blk_finish_plug(&plug);
2853         if (!ret && !cycled && wbc->nr_to_write > 0) {
2854                 cycled = 1;
2855                 mpd.last_page = writeback_index - 1;
2856                 mpd.first_page = 0;
2857                 goto retry;
2858         }
2859
2860         /* Update index */
2861         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2862                 /*
2863                  * Set the writeback_index so that range_cyclic
2864                  * mode will write it back later
2865                  */
2866                 mapping->writeback_index = mpd.first_page;
2867
2868 out_writepages:
2869         trace_ext4_writepages_result(inode, wbc, ret,
2870                                      nr_to_write - wbc->nr_to_write);
2871         percpu_up_read(&sbi->s_writepages_rwsem);
2872         return ret;
2873 }
2874
2875 static int ext4_dax_writepages(struct address_space *mapping,
2876                                struct writeback_control *wbc)
2877 {
2878         int ret;
2879         long nr_to_write = wbc->nr_to_write;
2880         struct inode *inode = mapping->host;
2881         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2882
2883         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2884                 return -EIO;
2885
2886         percpu_down_read(&sbi->s_writepages_rwsem);
2887         trace_ext4_writepages(inode, wbc);
2888
2889         ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
2890         trace_ext4_writepages_result(inode, wbc, ret,
2891                                      nr_to_write - wbc->nr_to_write);
2892         percpu_up_read(&sbi->s_writepages_rwsem);
2893         return ret;
2894 }
2895
2896 static int ext4_nonda_switch(struct super_block *sb)
2897 {
2898         s64 free_clusters, dirty_clusters;
2899         struct ext4_sb_info *sbi = EXT4_SB(sb);
2900
2901         /*
2902          * switch to non delalloc mode if we are running low
2903          * on free block. The free block accounting via percpu
2904          * counters can get slightly wrong with percpu_counter_batch getting
2905          * accumulated on each CPU without updating global counters
2906          * Delalloc need an accurate free block accounting. So switch
2907          * to non delalloc when we are near to error range.
2908          */
2909         free_clusters =
2910                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2911         dirty_clusters =
2912                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2913         /*
2914          * Start pushing delalloc when 1/2 of free blocks are dirty.
2915          */
2916         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2917                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2918
2919         if (2 * free_clusters < 3 * dirty_clusters ||
2920             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2921                 /*
2922                  * free block count is less than 150% of dirty blocks
2923                  * or free blocks is less than watermark
2924                  */
2925                 return 1;
2926         }
2927         return 0;
2928 }
2929
2930 /* We always reserve for an inode update; the superblock could be there too */
2931 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2932 {
2933         if (likely(ext4_has_feature_large_file(inode->i_sb)))
2934                 return 1;
2935
2936         if (pos + len <= 0x7fffffffULL)
2937                 return 1;
2938
2939         /* We might need to update the superblock to set LARGE_FILE */
2940         return 2;
2941 }
2942
2943 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2944                                loff_t pos, unsigned len, unsigned flags,
2945                                struct page **pagep, void **fsdata)
2946 {
2947         int ret, retries = 0;
2948         struct page *page;
2949         pgoff_t index;
2950         struct inode *inode = mapping->host;
2951         handle_t *handle;
2952
2953         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2954                 return -EIO;
2955
2956         index = pos >> PAGE_SHIFT;
2957
2958         if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
2959             ext4_verity_in_progress(inode)) {
2960                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2961                 return ext4_write_begin(file, mapping, pos,
2962                                         len, flags, pagep, fsdata);
2963         }
2964         *fsdata = (void *)0;
2965         trace_ext4_da_write_begin(inode, pos, len, flags);
2966
2967         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2968                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2969                                                       pos, len, flags,
2970                                                       pagep, fsdata);
2971                 if (ret < 0)
2972                         return ret;
2973                 if (ret == 1)
2974                         return 0;
2975         }
2976
2977         /*
2978          * grab_cache_page_write_begin() can take a long time if the
2979          * system is thrashing due to memory pressure, or if the page
2980          * is being written back.  So grab it first before we start
2981          * the transaction handle.  This also allows us to allocate
2982          * the page (if needed) without using GFP_NOFS.
2983          */
2984 retry_grab:
2985         page = grab_cache_page_write_begin(mapping, index, flags);
2986         if (!page)
2987                 return -ENOMEM;
2988         unlock_page(page);
2989
2990         /*
2991          * With delayed allocation, we don't log the i_disksize update
2992          * if there is delayed block allocation. But we still need
2993          * to journalling the i_disksize update if writes to the end
2994          * of file which has an already mapped buffer.
2995          */
2996 retry_journal:
2997         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2998                                 ext4_da_write_credits(inode, pos, len));
2999         if (IS_ERR(handle)) {
3000                 put_page(page);
3001                 return PTR_ERR(handle);
3002         }
3003
3004         lock_page(page);
3005         if (page->mapping != mapping) {
3006                 /* The page got truncated from under us */
3007                 unlock_page(page);
3008                 put_page(page);
3009                 ext4_journal_stop(handle);
3010                 goto retry_grab;
3011         }
3012         /* In case writeback began while the page was unlocked */
3013         wait_for_stable_page(page);
3014
3015 #ifdef CONFIG_FS_ENCRYPTION
3016         ret = ext4_block_write_begin(page, pos, len,
3017                                      ext4_da_get_block_prep);
3018 #else
3019         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3020 #endif
3021         if (ret < 0) {
3022                 unlock_page(page);
3023                 ext4_journal_stop(handle);
3024                 /*
3025                  * block_write_begin may have instantiated a few blocks
3026                  * outside i_size.  Trim these off again. Don't need
3027                  * i_size_read because we hold i_mutex.
3028                  */
3029                 if (pos + len > inode->i_size)
3030                         ext4_truncate_failed_write(inode);
3031
3032                 if (ret == -ENOSPC &&
3033                     ext4_should_retry_alloc(inode->i_sb, &retries))
3034                         goto retry_journal;
3035
3036                 put_page(page);
3037                 return ret;
3038         }
3039
3040         *pagep = page;
3041         return ret;
3042 }
3043
3044 /*
3045  * Check if we should update i_disksize
3046  * when write to the end of file but not require block allocation
3047  */
3048 static int ext4_da_should_update_i_disksize(struct page *page,
3049                                             unsigned long offset)
3050 {
3051         struct buffer_head *bh;
3052         struct inode *inode = page->mapping->host;
3053         unsigned int idx;
3054         int i;
3055
3056         bh = page_buffers(page);
3057         idx = offset >> inode->i_blkbits;
3058
3059         for (i = 0; i < idx; i++)
3060                 bh = bh->b_this_page;
3061
3062         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3063                 return 0;
3064         return 1;
3065 }
3066
3067 static int ext4_da_write_end(struct file *file,
3068                              struct address_space *mapping,
3069                              loff_t pos, unsigned len, unsigned copied,
3070                              struct page *page, void *fsdata)
3071 {
3072         struct inode *inode = mapping->host;
3073         int ret = 0, ret2;
3074         handle_t *handle = ext4_journal_current_handle();
3075         loff_t new_i_size;
3076         unsigned long start, end;
3077         int write_mode = (int)(unsigned long)fsdata;
3078
3079         if (write_mode == FALL_BACK_TO_NONDELALLOC)
3080                 return ext4_write_end(file, mapping, pos,
3081                                       len, copied, page, fsdata);
3082
3083         trace_ext4_da_write_end(inode, pos, len, copied);
3084         start = pos & (PAGE_SIZE - 1);
3085         end = start + copied - 1;
3086
3087         /*
3088          * generic_write_end() will run mark_inode_dirty() if i_size
3089          * changes.  So let's piggyback the i_disksize mark_inode_dirty
3090          * into that.
3091          */
3092         new_i_size = pos + copied;
3093         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3094                 if (ext4_has_inline_data(inode) ||
3095                     ext4_da_should_update_i_disksize(page, end)) {
3096                         ext4_update_i_disksize(inode, new_i_size);
3097                         /* We need to mark inode dirty even if
3098                          * new_i_size is less that inode->i_size
3099                          * bu greater than i_disksize.(hint delalloc)
3100                          */
3101                         ret = ext4_mark_inode_dirty(handle, inode);
3102                 }
3103         }
3104
3105         if (write_mode != CONVERT_INLINE_DATA &&
3106             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3107             ext4_has_inline_data(inode))
3108                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3109                                                      page);
3110         else
3111                 ret2 = generic_write_end(file, mapping, pos, len, copied,
3112                                                         page, fsdata);
3113
3114         copied = ret2;
3115         if (ret2 < 0)
3116                 ret = ret2;
3117         ret2 = ext4_journal_stop(handle);
3118         if (unlikely(ret2 && !ret))
3119                 ret = ret2;
3120
3121         return ret ? ret : copied;
3122 }
3123
3124 /*
3125  * Force all delayed allocation blocks to be allocated for a given inode.
3126  */
3127 int ext4_alloc_da_blocks(struct inode *inode)
3128 {
3129         trace_ext4_alloc_da_blocks(inode);
3130
3131         if (!EXT4_I(inode)->i_reserved_data_blocks)
3132                 return 0;
3133
3134         /*
3135          * We do something simple for now.  The filemap_flush() will
3136          * also start triggering a write of the data blocks, which is
3137          * not strictly speaking necessary (and for users of
3138          * laptop_mode, not even desirable).  However, to do otherwise
3139          * would require replicating code paths in:
3140          *
3141          * ext4_writepages() ->
3142          *    write_cache_pages() ---> (via passed in callback function)
3143          *        __mpage_da_writepage() -->
3144          *           mpage_add_bh_to_extent()
3145          *           mpage_da_map_blocks()
3146          *
3147          * The problem is that write_cache_pages(), located in
3148          * mm/page-writeback.c, marks pages clean in preparation for
3149          * doing I/O, which is not desirable if we're not planning on
3150          * doing I/O at all.
3151          *
3152          * We could call write_cache_pages(), and then redirty all of
3153          * the pages by calling redirty_page_for_writepage() but that
3154          * would be ugly in the extreme.  So instead we would need to
3155          * replicate parts of the code in the above functions,
3156          * simplifying them because we wouldn't actually intend to
3157          * write out the pages, but rather only collect contiguous
3158          * logical block extents, call the multi-block allocator, and
3159          * then update the buffer heads with the block allocations.
3160          *
3161          * For now, though, we'll cheat by calling filemap_flush(),
3162          * which will map the blocks, and start the I/O, but not
3163          * actually wait for the I/O to complete.
3164          */
3165         return filemap_flush(inode->i_mapping);
3166 }
3167
3168 /*
3169  * bmap() is special.  It gets used by applications such as lilo and by
3170  * the swapper to find the on-disk block of a specific piece of data.
3171  *
3172  * Naturally, this is dangerous if the block concerned is still in the
3173  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3174  * filesystem and enables swap, then they may get a nasty shock when the
3175  * data getting swapped to that swapfile suddenly gets overwritten by
3176  * the original zero's written out previously to the journal and
3177  * awaiting writeback in the kernel's buffer cache.
3178  *
3179  * So, if we see any bmap calls here on a modified, data-journaled file,
3180  * take extra steps to flush any blocks which might be in the cache.
3181  */
3182 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3183 {
3184         struct inode *inode = mapping->host;
3185         journal_t *journal;
3186         int err;
3187
3188         /*
3189          * We can get here for an inline file via the FIBMAP ioctl
3190          */
3191         if (ext4_has_inline_data(inode))
3192                 return 0;
3193
3194         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3195                         test_opt(inode->i_sb, DELALLOC)) {
3196                 /*
3197                  * With delalloc we want to sync the file
3198                  * so that we can make sure we allocate
3199                  * blocks for file
3200                  */
3201                 filemap_write_and_wait(mapping);
3202         }
3203
3204         if (EXT4_JOURNAL(inode) &&
3205             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3206                 /*
3207                  * This is a REALLY heavyweight approach, but the use of
3208                  * bmap on dirty files is expected to be extremely rare:
3209                  * only if we run lilo or swapon on a freshly made file
3210                  * do we expect this to happen.
3211                  *
3212                  * (bmap requires CAP_SYS_RAWIO so this does not
3213                  * represent an unprivileged user DOS attack --- we'd be
3214                  * in trouble if mortal users could trigger this path at
3215                  * will.)
3216                  *
3217                  * NB. EXT4_STATE_JDATA is not set on files other than
3218                  * regular files.  If somebody wants to bmap a directory
3219                  * or symlink and gets confused because the buffer
3220                  * hasn't yet been flushed to disk, they deserve
3221                  * everything they get.
3222                  */
3223
3224                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3225                 journal = EXT4_JOURNAL(inode);
3226                 jbd2_journal_lock_updates(journal);
3227                 err = jbd2_journal_flush(journal);
3228                 jbd2_journal_unlock_updates(journal);
3229
3230                 if (err)
3231                         return 0;
3232         }
3233
3234         return iomap_bmap(mapping, block, &ext4_iomap_ops);
3235 }
3236
3237 static int ext4_readpage(struct file *file, struct page *page)
3238 {
3239         int ret = -EAGAIN;
3240         struct inode *inode = page->mapping->host;
3241
3242         trace_ext4_readpage(page);
3243
3244         if (ext4_has_inline_data(inode))
3245                 ret = ext4_readpage_inline(inode, page);
3246
3247         if (ret == -EAGAIN)
3248                 return ext4_mpage_readpages(inode, NULL, page);
3249
3250         return ret;
3251 }
3252
3253 static void ext4_readahead(struct readahead_control *rac)
3254 {
3255         struct inode *inode = rac->mapping->host;
3256
3257         /* If the file has inline data, no need to do readahead. */
3258         if (ext4_has_inline_data(inode))
3259                 return;
3260
3261         ext4_mpage_readpages(inode, rac, NULL);
3262 }
3263
3264 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3265                                 unsigned int length)
3266 {
3267         trace_ext4_invalidatepage(page, offset, length);
3268
3269         /* No journalling happens on data buffers when this function is used */
3270         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3271
3272         block_invalidatepage(page, offset, length);
3273 }
3274
3275 static int __ext4_journalled_invalidatepage(struct page *page,
3276                                             unsigned int offset,
3277                                             unsigned int length)
3278 {
3279         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3280
3281         trace_ext4_journalled_invalidatepage(page, offset, length);
3282
3283         /*
3284          * If it's a full truncate we just forget about the pending dirtying
3285          */
3286         if (offset == 0 && length == PAGE_SIZE)
3287                 ClearPageChecked(page);
3288
3289         return jbd2_journal_invalidatepage(journal, page, offset, length);
3290 }
3291
3292 /* Wrapper for aops... */
3293 static void ext4_journalled_invalidatepage(struct page *page,
3294                                            unsigned int offset,
3295                                            unsigned int length)
3296 {
3297         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3298 }
3299
3300 static int ext4_releasepage(struct page *page, gfp_t wait)
3301 {
3302         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3303
3304         trace_ext4_releasepage(page);
3305
3306         /* Page has dirty journalled data -> cannot release */
3307         if (PageChecked(page))
3308                 return 0;
3309         if (journal)
3310                 return jbd2_journal_try_to_free_buffers(journal, page);
3311         else
3312                 return try_to_free_buffers(page);
3313 }
3314
3315 static bool ext4_inode_datasync_dirty(struct inode *inode)
3316 {
3317         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3318
3319         if (journal) {
3320                 if (jbd2_transaction_committed(journal,
3321                         EXT4_I(inode)->i_datasync_tid))
3322                         return false;
3323                 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3324                         return !list_empty(&EXT4_I(inode)->i_fc_list);
3325                 return true;
3326         }
3327
3328         /* Any metadata buffers to write? */
3329         if (!list_empty(&inode->i_mapping->private_list))
3330                 return true;
3331         return inode->i_state & I_DIRTY_DATASYNC;
3332 }
3333
3334 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3335                            struct ext4_map_blocks *map, loff_t offset,
3336                            loff_t length)
3337 {
3338         u8 blkbits = inode->i_blkbits;
3339
3340         /*
3341          * Writes that span EOF might trigger an I/O size update on completion,
3342          * so consider them to be dirty for the purpose of O_DSYNC, even if
3343          * there is no other metadata changes being made or are pending.
3344          */
3345         iomap->flags = 0;
3346         if (ext4_inode_datasync_dirty(inode) ||
3347             offset + length > i_size_read(inode))
3348                 iomap->flags |= IOMAP_F_DIRTY;
3349
3350         if (map->m_flags & EXT4_MAP_NEW)
3351                 iomap->flags |= IOMAP_F_NEW;
3352
3353         iomap->bdev = inode->i_sb->s_bdev;
3354         iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3355         iomap->offset = (u64) map->m_lblk << blkbits;
3356         iomap->length = (u64) map->m_len << blkbits;
3357
3358         if ((map->m_flags & EXT4_MAP_MAPPED) &&
3359             !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3360                 iomap->flags |= IOMAP_F_MERGED;
3361
3362         /*
3363          * Flags passed to ext4_map_blocks() for direct I/O writes can result
3364          * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3365          * set. In order for any allocated unwritten extents to be converted
3366          * into written extents correctly within the ->end_io() handler, we
3367          * need to ensure that the iomap->type is set appropriately. Hence, the
3368          * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3369          * been set first.
3370          */
3371         if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3372                 iomap->type = IOMAP_UNWRITTEN;
3373                 iomap->addr = (u64) map->m_pblk << blkbits;
3374         } else if (map->m_flags & EXT4_MAP_MAPPED) {
3375                 iomap->type = IOMAP_MAPPED;
3376                 iomap->addr = (u64) map->m_pblk << blkbits;
3377         } else {
3378                 iomap->type = IOMAP_HOLE;
3379                 iomap->addr = IOMAP_NULL_ADDR;
3380         }
3381 }
3382
3383 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3384                             unsigned int flags)
3385 {
3386         handle_t *handle;
3387         u8 blkbits = inode->i_blkbits;
3388         int ret, dio_credits, m_flags = 0, retries = 0;
3389
3390         /*
3391          * Trim the mapping request to the maximum value that we can map at
3392          * once for direct I/O.
3393          */
3394         if (map->m_len > DIO_MAX_BLOCKS)
3395                 map->m_len = DIO_MAX_BLOCKS;
3396         dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3397
3398 retry:
3399         /*
3400          * Either we allocate blocks and then don't get an unwritten extent, so
3401          * in that case we have reserved enough credits. Or, the blocks are
3402          * already allocated and unwritten. In that case, the extent conversion
3403          * fits into the credits as well.
3404          */
3405         handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3406         if (IS_ERR(handle))
3407                 return PTR_ERR(handle);
3408
3409         /*
3410          * DAX and direct I/O are the only two operations that are currently
3411          * supported with IOMAP_WRITE.
3412          */
3413         WARN_ON(!IS_DAX(inode) && !(flags & IOMAP_DIRECT));
3414         if (IS_DAX(inode))
3415                 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3416         /*
3417          * We use i_size instead of i_disksize here because delalloc writeback
3418          * can complete at any point during the I/O and subsequently push the
3419          * i_disksize out to i_size. This could be beyond where direct I/O is
3420          * happening and thus expose allocated blocks to direct I/O reads.
3421          */
3422         else if ((map->m_lblk * (1 << blkbits)) >= i_size_read(inode))
3423                 m_flags = EXT4_GET_BLOCKS_CREATE;
3424         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3425                 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3426
3427         ret = ext4_map_blocks(handle, inode, map, m_flags);
3428
3429         /*
3430          * We cannot fill holes in indirect tree based inodes as that could
3431          * expose stale data in the case of a crash. Use the magic error code
3432          * to fallback to buffered I/O.
3433          */
3434         if (!m_flags && !ret)
3435                 ret = -ENOTBLK;
3436
3437         ext4_journal_stop(handle);
3438         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3439                 goto retry;
3440
3441         return ret;
3442 }
3443
3444
3445 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3446                 unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3447 {
3448         int ret;
3449         struct ext4_map_blocks map;
3450         u8 blkbits = inode->i_blkbits;
3451
3452         if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3453                 return -EINVAL;
3454
3455         if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3456                 return -ERANGE;
3457
3458         /*
3459          * Calculate the first and last logical blocks respectively.
3460          */
3461         map.m_lblk = offset >> blkbits;
3462         map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3463                           EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3464
3465         if (flags & IOMAP_WRITE) {
3466                 /*
3467                  * We check here if the blocks are already allocated, then we
3468                  * don't need to start a journal txn and we can directly return
3469                  * the mapping information. This could boost performance
3470                  * especially in multi-threaded overwrite requests.
3471                  */
3472                 if (offset + length <= i_size_read(inode)) {
3473                         ret = ext4_map_blocks(NULL, inode, &map, 0);
3474                         if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3475                                 goto out;
3476                 }
3477                 ret = ext4_iomap_alloc(inode, &map, flags);
3478         } else {
3479                 ret = ext4_map_blocks(NULL, inode, &map, 0);
3480         }
3481
3482         if (ret < 0)
3483                 return ret;
3484 out:
3485         ext4_set_iomap(inode, iomap, &map, offset, length);
3486
3487         return 0;
3488 }
3489
3490 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3491                 loff_t length, unsigned flags, struct iomap *iomap,
3492                 struct iomap *srcmap)
3493 {
3494         int ret;
3495
3496         /*
3497          * Even for writes we don't need to allocate blocks, so just pretend
3498          * we are reading to save overhead of starting a transaction.
3499          */
3500         flags &= ~IOMAP_WRITE;
3501         ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3502         WARN_ON_ONCE(iomap->type != IOMAP_MAPPED);
3503         return ret;
3504 }
3505
3506 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3507                           ssize_t written, unsigned flags, struct iomap *iomap)
3508 {
3509         /*
3510          * Check to see whether an error occurred while writing out the data to
3511          * the allocated blocks. If so, return the magic error code so that we
3512          * fallback to buffered I/O and attempt to complete the remainder of
3513          * the I/O. Any blocks that may have been allocated in preparation for
3514          * the direct I/O will be reused during buffered I/O.
3515          */
3516         if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3517                 return -ENOTBLK;
3518
3519         return 0;
3520 }
3521
3522 const struct iomap_ops ext4_iomap_ops = {
3523         .iomap_begin            = ext4_iomap_begin,
3524         .iomap_end              = ext4_iomap_end,
3525 };
3526
3527 const struct iomap_ops ext4_iomap_overwrite_ops = {
3528         .iomap_begin            = ext4_iomap_overwrite_begin,
3529         .iomap_end              = ext4_iomap_end,
3530 };
3531
3532 static bool ext4_iomap_is_delalloc(struct inode *inode,
3533                                    struct ext4_map_blocks *map)
3534 {
3535         struct extent_status es;
3536         ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3537
3538         ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3539                                   map->m_lblk, end, &es);
3540
3541         if (!es.es_len || es.es_lblk > end)
3542                 return false;
3543
3544         if (es.es_lblk > map->m_lblk) {
3545                 map->m_len = es.es_lblk - map->m_lblk;
3546                 return false;
3547         }
3548
3549         offset = map->m_lblk - es.es_lblk;
3550         map->m_len = es.es_len - offset;
3551
3552         return true;
3553 }
3554
3555 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3556                                    loff_t length, unsigned int flags,
3557                                    struct iomap *iomap, struct iomap *srcmap)
3558 {
3559         int ret;
3560         bool delalloc = false;
3561         struct ext4_map_blocks map;
3562         u8 blkbits = inode->i_blkbits;
3563
3564         if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3565                 return -EINVAL;
3566
3567         if (ext4_has_inline_data(inode)) {
3568                 ret = ext4_inline_data_iomap(inode, iomap);
3569                 if (ret != -EAGAIN) {
3570                         if (ret == 0 && offset >= iomap->length)
3571                                 ret = -ENOENT;
3572                         return ret;
3573                 }
3574         }
3575
3576         /*
3577          * Calculate the first and last logical block respectively.
3578          */
3579         map.m_lblk = offset >> blkbits;
3580         map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3581                           EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3582
3583         /*
3584          * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3585          * So handle it here itself instead of querying ext4_map_blocks().
3586          * Since ext4_map_blocks() will warn about it and will return
3587          * -EIO error.
3588          */
3589         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3590                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3591
3592                 if (offset >= sbi->s_bitmap_maxbytes) {
3593                         map.m_flags = 0;
3594                         goto set_iomap;
3595                 }
3596         }
3597
3598         ret = ext4_map_blocks(NULL, inode, &map, 0);
3599         if (ret < 0)
3600                 return ret;
3601         if (ret == 0)
3602                 delalloc = ext4_iomap_is_delalloc(inode, &map);
3603
3604 set_iomap:
3605         ext4_set_iomap(inode, iomap, &map, offset, length);
3606         if (delalloc && iomap->type == IOMAP_HOLE)
3607                 iomap->type = IOMAP_DELALLOC;
3608
3609         return 0;
3610 }
3611
3612 const struct iomap_ops ext4_iomap_report_ops = {
3613         .iomap_begin = ext4_iomap_begin_report,
3614 };
3615
3616 /*
3617  * Pages can be marked dirty completely asynchronously from ext4's journalling
3618  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3619  * much here because ->set_page_dirty is called under VFS locks.  The page is
3620  * not necessarily locked.
3621  *
3622  * We cannot just dirty the page and leave attached buffers clean, because the
3623  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3624  * or jbddirty because all the journalling code will explode.
3625  *
3626  * So what we do is to mark the page "pending dirty" and next time writepage
3627  * is called, propagate that into the buffers appropriately.
3628  */
3629 static int ext4_journalled_set_page_dirty(struct page *page)
3630 {
3631         SetPageChecked(page);
3632         return __set_page_dirty_nobuffers(page);
3633 }
3634
3635 static int ext4_set_page_dirty(struct page *page)
3636 {
3637         WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3638         WARN_ON_ONCE(!page_has_buffers(page));
3639         return __set_page_dirty_buffers(page);
3640 }
3641
3642 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3643                                     struct file *file, sector_t *span)
3644 {
3645         return iomap_swapfile_activate(sis, file, span,
3646                                        &ext4_iomap_report_ops);
3647 }
3648
3649 static const struct address_space_operations ext4_aops = {
3650         .readpage               = ext4_readpage,
3651         .readahead              = ext4_readahead,
3652         .writepage              = ext4_writepage,
3653         .writepages             = ext4_writepages,
3654         .write_begin            = ext4_write_begin,
3655         .write_end              = ext4_write_end,
3656         .set_page_dirty         = ext4_set_page_dirty,
3657         .bmap                   = ext4_bmap,
3658         .invalidatepage         = ext4_invalidatepage,
3659         .releasepage            = ext4_releasepage,
3660         .direct_IO              = noop_direct_IO,
3661         .migratepage            = buffer_migrate_page,
3662         .is_partially_uptodate  = block_is_partially_uptodate,
3663         .error_remove_page      = generic_error_remove_page,
3664         .swap_activate          = ext4_iomap_swap_activate,
3665 };
3666
3667 static const struct address_space_operations ext4_journalled_aops = {
3668         .readpage               = ext4_readpage,
3669         .readahead              = ext4_readahead,
3670         .writepage              = ext4_writepage,
3671         .writepages             = ext4_writepages,
3672         .write_begin            = ext4_write_begin,
3673         .write_end              = ext4_journalled_write_end,
3674         .set_page_dirty         = ext4_journalled_set_page_dirty,
3675         .bmap                   = ext4_bmap,
3676         .invalidatepage         = ext4_journalled_invalidatepage,
3677         .releasepage            = ext4_releasepage,
3678         .direct_IO              = noop_direct_IO,
3679         .is_partially_uptodate  = block_is_partially_uptodate,
3680         .error_remove_page      = generic_error_remove_page,
3681         .swap_activate          = ext4_iomap_swap_activate,
3682 };
3683
3684 static const struct address_space_operations ext4_da_aops = {
3685         .readpage               = ext4_readpage,
3686         .readahead              = ext4_readahead,
3687         .writepage              = ext4_writepage,
3688         .writepages             = ext4_writepages,
3689         .write_begin            = ext4_da_write_begin,
3690         .write_end              = ext4_da_write_end,
3691         .set_page_dirty         = ext4_set_page_dirty,
3692         .bmap                   = ext4_bmap,
3693         .invalidatepage         = ext4_invalidatepage,
3694         .releasepage            = ext4_releasepage,
3695         .direct_IO              = noop_direct_IO,
3696         .migratepage            = buffer_migrate_page,
3697         .is_partially_uptodate  = block_is_partially_uptodate,
3698         .error_remove_page      = generic_error_remove_page,
3699         .swap_activate          = ext4_iomap_swap_activate,
3700 };
3701
3702 static const struct address_space_operations ext4_dax_aops = {
3703         .writepages             = ext4_dax_writepages,
3704         .direct_IO              = noop_direct_IO,
3705         .set_page_dirty         = noop_set_page_dirty,
3706         .bmap                   = ext4_bmap,
3707         .invalidatepage         = noop_invalidatepage,
3708         .swap_activate          = ext4_iomap_swap_activate,
3709 };
3710
3711 void ext4_set_aops(struct inode *inode)
3712 {
3713         switch (ext4_inode_journal_mode(inode)) {
3714         case EXT4_INODE_ORDERED_DATA_MODE:
3715         case EXT4_INODE_WRITEBACK_DATA_MODE:
3716                 break;
3717         case EXT4_INODE_JOURNAL_DATA_MODE:
3718                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3719                 return;
3720         default:
3721                 BUG();
3722         }
3723         if (IS_DAX(inode))
3724                 inode->i_mapping->a_ops = &ext4_dax_aops;
3725         else if (test_opt(inode->i_sb, DELALLOC))
3726                 inode->i_mapping->a_ops = &ext4_da_aops;
3727         else
3728                 inode->i_mapping->a_ops = &ext4_aops;
3729 }
3730
3731 static int __ext4_block_zero_page_range(handle_t *handle,
3732                 struct address_space *mapping, loff_t from, loff_t length)
3733 {
3734         ext4_fsblk_t index = from >> PAGE_SHIFT;
3735         unsigned offset = from & (PAGE_SIZE-1);
3736         unsigned blocksize, pos;
3737         ext4_lblk_t iblock;
3738         struct inode *inode = mapping->host;
3739         struct buffer_head *bh;
3740         struct page *page;
3741         int err = 0;
3742
3743         page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3744                                    mapping_gfp_constraint(mapping, ~__GFP_FS));
3745         if (!page)
3746                 return -ENOMEM;
3747
3748         blocksize = inode->i_sb->s_blocksize;
3749
3750         iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3751
3752         if (!page_has_buffers(page))
3753                 create_empty_buffers(page, blocksize, 0);
3754
3755         /* Find the buffer that contains "offset" */
3756         bh = page_buffers(page);
3757         pos = blocksize;
3758         while (offset >= pos) {
3759                 bh = bh->b_this_page;
3760                 iblock++;
3761                 pos += blocksize;
3762         }
3763         if (buffer_freed(bh)) {
3764                 BUFFER_TRACE(bh, "freed: skip");
3765                 goto unlock;
3766         }
3767         if (!buffer_mapped(bh)) {
3768                 BUFFER_TRACE(bh, "unmapped");
3769                 ext4_get_block(inode, iblock, bh, 0);
3770                 /* unmapped? It's a hole - nothing to do */
3771                 if (!buffer_mapped(bh)) {
3772                         BUFFER_TRACE(bh, "still unmapped");
3773                         goto unlock;
3774                 }
3775         }
3776
3777         /* Ok, it's mapped. Make sure it's up-to-date */
3778         if (PageUptodate(page))
3779                 set_buffer_uptodate(bh);
3780
3781         if (!buffer_uptodate(bh)) {
3782                 err = ext4_read_bh_lock(bh, 0, true);
3783                 if (err)
3784                         goto unlock;
3785                 if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3786                         /* We expect the key to be set. */
3787                         BUG_ON(!fscrypt_has_encryption_key(inode));
3788                         err = fscrypt_decrypt_pagecache_blocks(page, blocksize,
3789                                                                bh_offset(bh));
3790                         if (err) {
3791                                 clear_buffer_uptodate(bh);
3792                                 goto unlock;
3793                         }
3794                 }
3795         }
3796         if (ext4_should_journal_data(inode)) {
3797                 BUFFER_TRACE(bh, "get write access");
3798                 err = ext4_journal_get_write_access(handle, bh);
3799                 if (err)
3800                         goto unlock;
3801         }
3802         zero_user(page, offset, length);
3803         BUFFER_TRACE(bh, "zeroed end of block");
3804
3805         if (ext4_should_journal_data(inode)) {
3806                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3807         } else {
3808                 err = 0;
3809                 mark_buffer_dirty(bh);
3810                 if (ext4_should_order_data(inode))
3811                         err = ext4_jbd2_inode_add_write(handle, inode, from,
3812                                         length);
3813         }
3814
3815 unlock:
3816         unlock_page(page);
3817         put_page(page);
3818         return err;
3819 }
3820
3821 /*
3822  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3823  * starting from file offset 'from'.  The range to be zero'd must
3824  * be contained with in one block.  If the specified range exceeds
3825  * the end of the block it will be shortened to end of the block
3826  * that cooresponds to 'from'
3827  */
3828 static int ext4_block_zero_page_range(handle_t *handle,
3829                 struct address_space *mapping, loff_t from, loff_t length)
3830 {
3831         struct inode *inode = mapping->host;
3832         unsigned offset = from & (PAGE_SIZE-1);
3833         unsigned blocksize = inode->i_sb->s_blocksize;
3834         unsigned max = blocksize - (offset & (blocksize - 1));
3835
3836         /*
3837          * correct length if it does not fall between
3838          * 'from' and the end of the block
3839          */
3840         if (length > max || length < 0)
3841                 length = max;
3842
3843         if (IS_DAX(inode)) {
3844                 return iomap_zero_range(inode, from, length, NULL,
3845                                         &ext4_iomap_ops);
3846         }
3847         return __ext4_block_zero_page_range(handle, mapping, from, length);
3848 }
3849
3850 /*
3851  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3852  * up to the end of the block which corresponds to `from'.
3853  * This required during truncate. We need to physically zero the tail end
3854  * of that block so it doesn't yield old data if the file is later grown.
3855  */
3856 static int ext4_block_truncate_page(handle_t *handle,
3857                 struct address_space *mapping, loff_t from)
3858 {
3859         unsigned offset = from & (PAGE_SIZE-1);
3860         unsigned length;
3861         unsigned blocksize;
3862         struct inode *inode = mapping->host;
3863
3864         /* If we are processing an encrypted inode during orphan list handling */
3865         if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3866                 return 0;
3867
3868         blocksize = inode->i_sb->s_blocksize;
3869         length = blocksize - (offset & (blocksize - 1));
3870
3871         return ext4_block_zero_page_range(handle, mapping, from, length);
3872 }
3873
3874 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3875                              loff_t lstart, loff_t length)
3876 {
3877         struct super_block *sb = inode->i_sb;
3878         struct address_space *mapping = inode->i_mapping;
3879         unsigned partial_start, partial_end;
3880         ext4_fsblk_t start, end;
3881         loff_t byte_end = (lstart + length - 1);
3882         int err = 0;
3883
3884         partial_start = lstart & (sb->s_blocksize - 1);
3885         partial_end = byte_end & (sb->s_blocksize - 1);
3886
3887         start = lstart >> sb->s_blocksize_bits;
3888         end = byte_end >> sb->s_blocksize_bits;
3889
3890         /* Handle partial zero within the single block */
3891         if (start == end &&
3892             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3893                 err = ext4_block_zero_page_range(handle, mapping,
3894                                                  lstart, length);
3895                 return err;
3896         }
3897         /* Handle partial zero out on the start of the range */
3898         if (partial_start) {
3899                 err = ext4_block_zero_page_range(handle, mapping,
3900                                                  lstart, sb->s_blocksize);
3901                 if (err)
3902                         return err;
3903         }
3904         /* Handle partial zero out on the end of the range */
3905         if (partial_end != sb->s_blocksize - 1)
3906                 err = ext4_block_zero_page_range(handle, mapping,
3907                                                  byte_end - partial_end,
3908                                                  partial_end + 1);
3909         return err;
3910 }
3911
3912 int ext4_can_truncate(struct inode *inode)
3913 {
3914         if (S_ISREG(inode->i_mode))
3915                 return 1;
3916         if (S_ISDIR(inode->i_mode))
3917                 return 1;
3918         if (S_ISLNK(inode->i_mode))
3919                 return !ext4_inode_is_fast_symlink(inode);
3920         return 0;
3921 }
3922
3923 /*
3924  * We have to make sure i_disksize gets properly updated before we truncate
3925  * page cache due to hole punching or zero range. Otherwise i_disksize update
3926  * can get lost as it may have been postponed to submission of writeback but
3927  * that will never happen after we truncate page cache.
3928  */
3929 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3930                                       loff_t len)
3931 {
3932         handle_t *handle;
3933         int ret;
3934
3935         loff_t size = i_size_read(inode);
3936
3937         WARN_ON(!inode_is_locked(inode));
3938         if (offset > size || offset + len < size)
3939                 return 0;
3940
3941         if (EXT4_I(inode)->i_disksize >= size)
3942                 return 0;
3943
3944         handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3945         if (IS_ERR(handle))
3946                 return PTR_ERR(handle);
3947         ext4_update_i_disksize(inode, size);
3948         ret = ext4_mark_inode_dirty(handle, inode);
3949         ext4_journal_stop(handle);
3950
3951         return ret;
3952 }
3953
3954 static void ext4_wait_dax_page(struct ext4_inode_info *ei)
3955 {
3956         up_write(&ei->i_mmap_sem);
3957         schedule();
3958         down_write(&ei->i_mmap_sem);
3959 }
3960
3961 int ext4_break_layouts(struct inode *inode)
3962 {
3963         struct ext4_inode_info *ei = EXT4_I(inode);
3964         struct page *page;
3965         int error;
3966
3967         if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem)))
3968                 return -EINVAL;
3969
3970         do {
3971                 page = dax_layout_busy_page(inode->i_mapping);
3972                 if (!page)
3973                         return 0;
3974
3975                 error = ___wait_var_event(&page->_refcount,
3976                                 atomic_read(&page->_refcount) == 1,
3977                                 TASK_INTERRUPTIBLE, 0, 0,
3978                                 ext4_wait_dax_page(ei));
3979         } while (error == 0);
3980
3981         return error;
3982 }
3983
3984 /*
3985  * ext4_punch_hole: punches a hole in a file by releasing the blocks
3986  * associated with the given offset and length
3987  *
3988  * @inode:  File inode
3989  * @offset: The offset where the hole will begin
3990  * @len:    The length of the hole
3991  *
3992  * Returns: 0 on success or negative on failure
3993  */
3994
3995 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3996 {
3997         struct super_block *sb = inode->i_sb;
3998         ext4_lblk_t first_block, stop_block;
3999         struct address_space *mapping = inode->i_mapping;
4000         loff_t first_block_offset, last_block_offset;
4001         handle_t *handle;
4002         unsigned int credits;
4003         int ret = 0, ret2 = 0;
4004
4005         trace_ext4_punch_hole(inode, offset, length, 0);
4006
4007         ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4008         if (ext4_has_inline_data(inode)) {
4009                 down_write(&EXT4_I(inode)->i_mmap_sem);
4010                 ret = ext4_convert_inline_data(inode);
4011                 up_write(&EXT4_I(inode)->i_mmap_sem);
4012                 if (ret)
4013                         return ret;
4014         }
4015
4016         /*
4017          * Write out all dirty pages to avoid race conditions
4018          * Then release them.
4019          */
4020         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4021                 ret = filemap_write_and_wait_range(mapping, offset,
4022                                                    offset + length - 1);
4023                 if (ret)
4024                         return ret;
4025         }
4026
4027         inode_lock(inode);
4028
4029         /* No need to punch hole beyond i_size */
4030         if (offset >= inode->i_size)
4031                 goto out_mutex;
4032
4033         /*
4034          * If the hole extends beyond i_size, set the hole
4035          * to end after the page that contains i_size
4036          */
4037         if (offset + length > inode->i_size) {
4038                 length = inode->i_size +
4039                    PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4040                    offset;
4041         }
4042
4043         if (offset & (sb->s_blocksize - 1) ||
4044             (offset + length) & (sb->s_blocksize - 1)) {
4045                 /*
4046                  * Attach jinode to inode for jbd2 if we do any zeroing of
4047                  * partial block
4048                  */
4049                 ret = ext4_inode_attach_jinode(inode);
4050                 if (ret < 0)
4051                         goto out_mutex;
4052
4053         }
4054
4055         /* Wait all existing dio workers, newcomers will block on i_mutex */
4056         inode_dio_wait(inode);
4057
4058         /*
4059          * Prevent page faults from reinstantiating pages we have released from
4060          * page cache.
4061          */
4062         down_write(&EXT4_I(inode)->i_mmap_sem);
4063
4064         ret = ext4_break_layouts(inode);
4065         if (ret)
4066                 goto out_dio;
4067
4068         first_block_offset = round_up(offset, sb->s_blocksize);
4069         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4070
4071         /* Now release the pages and zero block aligned part of pages*/
4072         if (last_block_offset > first_block_offset) {
4073                 ret = ext4_update_disksize_before_punch(inode, offset, length);
4074                 if (ret)
4075                         goto out_dio;
4076                 truncate_pagecache_range(inode, first_block_offset,
4077                                          last_block_offset);
4078         }
4079
4080         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4081                 credits = ext4_writepage_trans_blocks(inode);
4082         else
4083                 credits = ext4_blocks_for_truncate(inode);
4084         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4085         if (IS_ERR(handle)) {
4086                 ret = PTR_ERR(handle);
4087                 ext4_std_error(sb, ret);
4088                 goto out_dio;
4089         }
4090
4091         ret = ext4_zero_partial_blocks(handle, inode, offset,
4092                                        length);
4093         if (ret)
4094                 goto out_stop;
4095
4096         first_block = (offset + sb->s_blocksize - 1) >>
4097                 EXT4_BLOCK_SIZE_BITS(sb);
4098         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4099
4100         /* If there are blocks to remove, do it */
4101         if (stop_block > first_block) {
4102
4103                 down_write(&EXT4_I(inode)->i_data_sem);
4104                 ext4_discard_preallocations(inode, 0);
4105
4106                 ret = ext4_es_remove_extent(inode, first_block,
4107                                             stop_block - first_block);
4108                 if (ret) {
4109                         up_write(&EXT4_I(inode)->i_data_sem);
4110                         goto out_stop;
4111                 }
4112
4113                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4114                         ret = ext4_ext_remove_space(inode, first_block,
4115                                                     stop_block - 1);
4116                 else
4117                         ret = ext4_ind_remove_space(handle, inode, first_block,
4118                                                     stop_block);
4119
4120                 up_write(&EXT4_I(inode)->i_data_sem);
4121         }
4122         ext4_fc_track_range(handle, inode, first_block, stop_block);
4123         if (IS_SYNC(inode))
4124                 ext4_handle_sync(handle);
4125
4126         inode->i_mtime = inode->i_ctime = current_time(inode);
4127         ret2 = ext4_mark_inode_dirty(handle, inode);
4128         if (unlikely(ret2))
4129                 ret = ret2;
4130         if (ret >= 0)
4131                 ext4_update_inode_fsync_trans(handle, inode, 1);
4132 out_stop:
4133         ext4_journal_stop(handle);
4134 out_dio:
4135         up_write(&EXT4_I(inode)->i_mmap_sem);
4136 out_mutex:
4137         inode_unlock(inode);
4138         return ret;
4139 }
4140
4141 int ext4_inode_attach_jinode(struct inode *inode)
4142 {
4143         struct ext4_inode_info *ei = EXT4_I(inode);
4144         struct jbd2_inode *jinode;
4145
4146         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4147                 return 0;
4148
4149         jinode = jbd2_alloc_inode(GFP_KERNEL);
4150         spin_lock(&inode->i_lock);
4151         if (!ei->jinode) {
4152                 if (!jinode) {
4153                         spin_unlock(&inode->i_lock);
4154                         return -ENOMEM;
4155                 }
4156                 ei->jinode = jinode;
4157                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4158                 jinode = NULL;
4159         }
4160         spin_unlock(&inode->i_lock);
4161         if (unlikely(jinode != NULL))
4162                 jbd2_free_inode(jinode);
4163         return 0;
4164 }
4165
4166 /*
4167  * ext4_truncate()
4168  *
4169  * We block out ext4_get_block() block instantiations across the entire
4170  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4171  * simultaneously on behalf of the same inode.
4172  *
4173  * As we work through the truncate and commit bits of it to the journal there
4174  * is one core, guiding principle: the file's tree must always be consistent on
4175  * disk.  We must be able to restart the truncate after a crash.
4176  *
4177  * The file's tree may be transiently inconsistent in memory (although it
4178  * probably isn't), but whenever we close off and commit a journal transaction,
4179  * the contents of (the filesystem + the journal) must be consistent and
4180  * restartable.  It's pretty simple, really: bottom up, right to left (although
4181  * left-to-right works OK too).
4182  *
4183  * Note that at recovery time, journal replay occurs *before* the restart of
4184  * truncate against the orphan inode list.
4185  *
4186  * The committed inode has the new, desired i_size (which is the same as
4187  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4188  * that this inode's truncate did not complete and it will again call
4189  * ext4_truncate() to have another go.  So there will be instantiated blocks
4190  * to the right of the truncation point in a crashed ext4 filesystem.  But
4191  * that's fine - as long as they are linked from the inode, the post-crash
4192  * ext4_truncate() run will find them and release them.
4193  */
4194 int ext4_truncate(struct inode *inode)
4195 {
4196         struct ext4_inode_info *ei = EXT4_I(inode);
4197         unsigned int credits;
4198         int err = 0, err2;
4199         handle_t *handle;
4200         struct address_space *mapping = inode->i_mapping;
4201
4202         /*
4203          * There is a possibility that we're either freeing the inode
4204          * or it's a completely new inode. In those cases we might not
4205          * have i_mutex locked because it's not necessary.
4206          */
4207         if (!(inode->i_state & (I_NEW|I_FREEING)))
4208                 WARN_ON(!inode_is_locked(inode));
4209         trace_ext4_truncate_enter(inode);
4210
4211         if (!ext4_can_truncate(inode))
4212                 goto out_trace;
4213
4214         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4215                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4216
4217         if (ext4_has_inline_data(inode)) {
4218                 int has_inline = 1;
4219
4220                 err = ext4_inline_data_truncate(inode, &has_inline);
4221                 if (err || has_inline)
4222                         goto out_trace;
4223         }
4224
4225         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4226         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4227                 if (ext4_inode_attach_jinode(inode) < 0)
4228                         goto out_trace;
4229         }
4230
4231         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4232                 credits = ext4_writepage_trans_blocks(inode);
4233         else
4234                 credits = ext4_blocks_for_truncate(inode);
4235
4236         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4237         if (IS_ERR(handle)) {
4238                 err = PTR_ERR(handle);
4239                 goto out_trace;
4240         }
4241
4242         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4243                 ext4_block_truncate_page(handle, mapping, inode->i_size);
4244
4245         /*
4246          * We add the inode to the orphan list, so that if this
4247          * truncate spans multiple transactions, and we crash, we will
4248          * resume the truncate when the filesystem recovers.  It also
4249          * marks the inode dirty, to catch the new size.
4250          *
4251          * Implication: the file must always be in a sane, consistent
4252          * truncatable state while each transaction commits.
4253          */
4254         err = ext4_orphan_add(handle, inode);
4255         if (err)
4256                 goto out_stop;
4257
4258         down_write(&EXT4_I(inode)->i_data_sem);
4259
4260         ext4_discard_preallocations(inode, 0);
4261
4262         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4263                 err = ext4_ext_truncate(handle, inode);
4264         else
4265                 ext4_ind_truncate(handle, inode);
4266
4267         up_write(&ei->i_data_sem);
4268         if (err)
4269                 goto out_stop;
4270
4271         if (IS_SYNC(inode))
4272                 ext4_handle_sync(handle);
4273
4274 out_stop:
4275         /*
4276          * If this was a simple ftruncate() and the file will remain alive,
4277          * then we need to clear up the orphan record which we created above.
4278          * However, if this was a real unlink then we were called by
4279          * ext4_evict_inode(), and we allow that function to clean up the
4280          * orphan info for us.
4281          */
4282         if (inode->i_nlink)
4283                 ext4_orphan_del(handle, inode);
4284
4285         inode->i_mtime = inode->i_ctime = current_time(inode);
4286         err2 = ext4_mark_inode_dirty(handle, inode);
4287         if (unlikely(err2 && !err))
4288                 err = err2;
4289         ext4_journal_stop(handle);
4290
4291 out_trace:
4292         trace_ext4_truncate_exit(inode);
4293         return err;
4294 }
4295
4296 /*
4297  * ext4_get_inode_loc returns with an extra refcount against the inode's
4298  * underlying buffer_head on success. If 'in_mem' is true, we have all
4299  * data in memory that is needed to recreate the on-disk version of this
4300  * inode.
4301  */
4302 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4303                                 struct ext4_iloc *iloc, int in_mem,
4304                                 ext4_fsblk_t *ret_block)
4305 {
4306         struct ext4_group_desc  *gdp;
4307         struct buffer_head      *bh;
4308         ext4_fsblk_t            block;
4309         struct blk_plug         plug;
4310         int                     inodes_per_block, inode_offset;
4311
4312         iloc->bh = NULL;
4313         if (ino < EXT4_ROOT_INO ||
4314             ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4315                 return -EFSCORRUPTED;
4316
4317         iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4318         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4319         if (!gdp)
4320                 return -EIO;
4321
4322         /*
4323          * Figure out the offset within the block group inode table
4324          */
4325         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4326         inode_offset = ((ino - 1) %
4327                         EXT4_INODES_PER_GROUP(sb));
4328         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4329         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4330
4331         bh = sb_getblk(sb, block);
4332         if (unlikely(!bh))
4333                 return -ENOMEM;
4334         if (ext4_simulate_fail(sb, EXT4_SIM_INODE_EIO))
4335                 goto simulate_eio;
4336         if (!buffer_uptodate(bh)) {
4337                 lock_buffer(bh);
4338
4339                 if (ext4_buffer_uptodate(bh)) {
4340                         /* someone brought it uptodate while we waited */
4341                         unlock_buffer(bh);
4342                         goto has_buffer;
4343                 }
4344
4345                 /*
4346                  * If we have all information of the inode in memory and this
4347                  * is the only valid inode in the block, we need not read the
4348                  * block.
4349                  */
4350                 if (in_mem) {
4351                         struct buffer_head *bitmap_bh;
4352                         int i, start;
4353
4354                         start = inode_offset & ~(inodes_per_block - 1);
4355
4356                         /* Is the inode bitmap in cache? */
4357                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4358                         if (unlikely(!bitmap_bh))
4359                                 goto make_io;
4360
4361                         /*
4362                          * If the inode bitmap isn't in cache then the
4363                          * optimisation may end up performing two reads instead
4364                          * of one, so skip it.
4365                          */
4366                         if (!buffer_uptodate(bitmap_bh)) {
4367                                 brelse(bitmap_bh);
4368                                 goto make_io;
4369                         }
4370                         for (i = start; i < start + inodes_per_block; i++) {
4371                                 if (i == inode_offset)
4372                                         continue;
4373                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4374                                         break;
4375                         }
4376                         brelse(bitmap_bh);
4377                         if (i == start + inodes_per_block) {
4378                                 /* all other inodes are free, so skip I/O */
4379                                 memset(bh->b_data, 0, bh->b_size);
4380                                 set_buffer_uptodate(bh);
4381                                 unlock_buffer(bh);
4382                                 goto has_buffer;
4383                         }
4384                 }
4385
4386 make_io:
4387                 /*
4388                  * If we need to do any I/O, try to pre-readahead extra
4389                  * blocks from the inode table.
4390                  */
4391                 blk_start_plug(&plug);
4392                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4393                         ext4_fsblk_t b, end, table;
4394                         unsigned num;
4395                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4396
4397                         table = ext4_inode_table(sb, gdp);
4398                         /* s_inode_readahead_blks is always a power of 2 */
4399                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
4400                         if (table > b)
4401                                 b = table;
4402                         end = b + ra_blks;
4403                         num = EXT4_INODES_PER_GROUP(sb);
4404                         if (ext4_has_group_desc_csum(sb))
4405                                 num -= ext4_itable_unused_count(sb, gdp);
4406                         table += num / inodes_per_block;
4407                         if (end > table)
4408                                 end = table;
4409                         while (b <= end)
4410                                 ext4_sb_breadahead_unmovable(sb, b++);
4411                 }
4412
4413                 /*
4414                  * There are other valid inodes in the buffer, this inode
4415                  * has in-inode xattrs, or we don't have this inode in memory.
4416                  * Read the block from disk.
4417                  */
4418                 trace_ext4_load_inode(sb, ino);
4419                 ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4420                 blk_finish_plug(&plug);
4421                 wait_on_buffer(bh);
4422                 if (!buffer_uptodate(bh)) {
4423                 simulate_eio:
4424                         if (ret_block)
4425                                 *ret_block = block;
4426                         brelse(bh);
4427                         return -EIO;
4428                 }
4429         }
4430 has_buffer:
4431         iloc->bh = bh;
4432         return 0;
4433 }
4434
4435 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4436                                         struct ext4_iloc *iloc)
4437 {
4438         ext4_fsblk_t err_blk;
4439         int ret;
4440
4441         ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, iloc, 0,
4442                                         &err_blk);
4443
4444         if (ret == -EIO)
4445                 ext4_error_inode_block(inode, err_blk, EIO,
4446                                         "unable to read itable block");
4447
4448         return ret;
4449 }
4450
4451 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4452 {
4453         ext4_fsblk_t err_blk;
4454         int ret;
4455
4456         /* We have all inode data except xattrs in memory here. */
4457         ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, iloc,
4458                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR), &err_blk);
4459
4460         if (ret == -EIO)
4461                 ext4_error_inode_block(inode, err_blk, EIO,
4462                                         "unable to read itable block");
4463
4464         return ret;
4465 }
4466
4467
4468 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4469                           struct ext4_iloc *iloc)
4470 {
4471         return __ext4_get_inode_loc(sb, ino, iloc, 0, NULL);
4472 }
4473
4474 static bool ext4_should_enable_dax(struct inode *inode)
4475 {
4476         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4477
4478         if (test_opt2(inode->i_sb, DAX_NEVER))
4479                 return false;
4480         if (!S_ISREG(inode->i_mode))
4481                 return false;
4482         if (ext4_should_journal_data(inode))
4483                 return false;
4484         if (ext4_has_inline_data(inode))
4485                 return false;
4486         if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4487                 return false;
4488         if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4489                 return false;
4490         if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4491                 return false;
4492         if (test_opt(inode->i_sb, DAX_ALWAYS))
4493                 return true;
4494
4495         return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4496 }
4497
4498 void ext4_set_inode_flags(struct inode *inode, bool init)
4499 {
4500         unsigned int flags = EXT4_I(inode)->i_flags;
4501         unsigned int new_fl = 0;
4502
4503         WARN_ON_ONCE(IS_DAX(inode) && init);
4504
4505         if (flags & EXT4_SYNC_FL)
4506                 new_fl |= S_SYNC;
4507         if (flags & EXT4_APPEND_FL)
4508                 new_fl |= S_APPEND;
4509         if (flags & EXT4_IMMUTABLE_FL)
4510                 new_fl |= S_IMMUTABLE;
4511         if (flags & EXT4_NOATIME_FL)
4512                 new_fl |= S_NOATIME;
4513         if (flags & EXT4_DIRSYNC_FL)
4514                 new_fl |= S_DIRSYNC;
4515
4516         /* Because of the way inode_set_flags() works we must preserve S_DAX
4517          * here if already set. */
4518         new_fl |= (inode->i_flags & S_DAX);
4519         if (init && ext4_should_enable_dax(inode))
4520                 new_fl |= S_DAX;
4521
4522         if (flags & EXT4_ENCRYPT_FL)
4523                 new_fl |= S_ENCRYPTED;
4524         if (flags & EXT4_CASEFOLD_FL)
4525                 new_fl |= S_CASEFOLD;
4526         if (flags & EXT4_VERITY_FL)
4527                 new_fl |= S_VERITY;
4528         inode_set_flags(inode, new_fl,
4529                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4530                         S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4531 }
4532
4533 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4534                                   struct ext4_inode_info *ei)
4535 {
4536         blkcnt_t i_blocks ;
4537         struct inode *inode = &(ei->vfs_inode);
4538         struct super_block *sb = inode->i_sb;
4539
4540         if (ext4_has_feature_huge_file(sb)) {
4541                 /* we are using combined 48 bit field */
4542                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4543                                         le32_to_cpu(raw_inode->i_blocks_lo);
4544                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4545                         /* i_blocks represent file system block size */
4546                         return i_blocks  << (inode->i_blkbits - 9);
4547                 } else {
4548                         return i_blocks;
4549                 }
4550         } else {
4551                 return le32_to_cpu(raw_inode->i_blocks_lo);
4552         }
4553 }
4554
4555 static inline int ext4_iget_extra_inode(struct inode *inode,
4556                                          struct ext4_inode *raw_inode,
4557                                          struct ext4_inode_info *ei)
4558 {
4559         __le32 *magic = (void *)raw_inode +
4560                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4561
4562         if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4563             EXT4_INODE_SIZE(inode->i_sb) &&
4564             *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4565                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4566                 return ext4_find_inline_data_nolock(inode);
4567         } else
4568                 EXT4_I(inode)->i_inline_off = 0;
4569         return 0;
4570 }
4571
4572 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4573 {
4574         if (!ext4_has_feature_project(inode->i_sb))
4575                 return -EOPNOTSUPP;
4576         *projid = EXT4_I(inode)->i_projid;
4577         return 0;
4578 }
4579
4580 /*
4581  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4582  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4583  * set.
4584  */
4585 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4586 {
4587         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4588                 inode_set_iversion_raw(inode, val);
4589         else
4590                 inode_set_iversion_queried(inode, val);
4591 }
4592 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4593 {
4594         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4595                 return inode_peek_iversion_raw(inode);
4596         else
4597                 return inode_peek_iversion(inode);
4598 }
4599
4600 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4601                           ext4_iget_flags flags, const char *function,
4602                           unsigned int line)
4603 {
4604         struct ext4_iloc iloc;
4605         struct ext4_inode *raw_inode;
4606         struct ext4_inode_info *ei;
4607         struct inode *inode;
4608         journal_t *journal = EXT4_SB(sb)->s_journal;
4609         long ret;
4610         loff_t size;
4611         int block;
4612         uid_t i_uid;
4613         gid_t i_gid;
4614         projid_t i_projid;
4615
4616         if ((!(flags & EXT4_IGET_SPECIAL) &&
4617              (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
4618             (ino < EXT4_ROOT_INO) ||
4619             (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
4620                 if (flags & EXT4_IGET_HANDLE)
4621                         return ERR_PTR(-ESTALE);
4622                 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4623                              "inode #%lu: comm %s: iget: illegal inode #",
4624                              ino, current->comm);
4625                 return ERR_PTR(-EFSCORRUPTED);
4626         }
4627
4628         inode = iget_locked(sb, ino);
4629         if (!inode)
4630                 return ERR_PTR(-ENOMEM);
4631         if (!(inode->i_state & I_NEW))
4632                 return inode;
4633
4634         ei = EXT4_I(inode);
4635         iloc.bh = NULL;
4636
4637         ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4638         if (ret < 0)
4639                 goto bad_inode;
4640         raw_inode = ext4_raw_inode(&iloc);
4641
4642         if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4643                 ext4_error_inode(inode, function, line, 0,
4644                                  "iget: root inode unallocated");
4645                 ret = -EFSCORRUPTED;
4646                 goto bad_inode;
4647         }
4648
4649         if ((flags & EXT4_IGET_HANDLE) &&
4650             (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4651                 ret = -ESTALE;
4652                 goto bad_inode;
4653         }
4654
4655         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4656                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4657                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4658                         EXT4_INODE_SIZE(inode->i_sb) ||
4659                     (ei->i_extra_isize & 3)) {
4660                         ext4_error_inode(inode, function, line, 0,
4661                                          "iget: bad extra_isize %u "
4662                                          "(inode size %u)",
4663                                          ei->i_extra_isize,
4664                                          EXT4_INODE_SIZE(inode->i_sb));
4665                         ret = -EFSCORRUPTED;
4666                         goto bad_inode;
4667                 }
4668         } else
4669                 ei->i_extra_isize = 0;
4670
4671         /* Precompute checksum seed for inode metadata */
4672         if (ext4_has_metadata_csum(sb)) {
4673                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4674                 __u32 csum;
4675                 __le32 inum = cpu_to_le32(inode->i_ino);
4676                 __le32 gen = raw_inode->i_generation;
4677                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4678                                    sizeof(inum));
4679                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4680                                               sizeof(gen));
4681         }
4682
4683         if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4684             ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4685              (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4686                 ext4_error_inode_err(inode, function, line, 0,
4687                                 EFSBADCRC, "iget: checksum invalid");
4688                 ret = -EFSBADCRC;
4689                 goto bad_inode;
4690         }
4691
4692         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4693         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4694         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4695         if (ext4_has_feature_project(sb) &&
4696             EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4697             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4698                 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4699         else
4700                 i_projid = EXT4_DEF_PROJID;
4701
4702         if (!(test_opt(inode->i_sb, NO_UID32))) {
4703                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4704                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4705         }
4706         i_uid_write(inode, i_uid);
4707         i_gid_write(inode, i_gid);
4708         ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4709         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4710
4711         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4712         ei->i_inline_off = 0;
4713         ei->i_dir_start_lookup = 0;
4714         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4715         /* We now have enough fields to check if the inode was active or not.
4716          * This is needed because nfsd might try to access dead inodes
4717          * the test is that same one that e2fsck uses
4718          * NeilBrown 1999oct15
4719          */
4720         if (inode->i_nlink == 0) {
4721                 if ((inode->i_mode == 0 ||
4722                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4723                     ino != EXT4_BOOT_LOADER_INO) {
4724                         /* this inode is deleted */
4725                         ret = -ESTALE;
4726                         goto bad_inode;
4727                 }
4728                 /* The only unlinked inodes we let through here have
4729                  * valid i_mode and are being read by the orphan
4730                  * recovery code: that's fine, we're about to complete
4731                  * the process of deleting those.
4732                  * OR it is the EXT4_BOOT_LOADER_INO which is
4733                  * not initialized on a new filesystem. */
4734         }
4735         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4736         ext4_set_inode_flags(inode, true);
4737         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4738         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4739         if (ext4_has_feature_64bit(sb))
4740                 ei->i_file_acl |=
4741                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4742         inode->i_size = ext4_isize(sb, raw_inode);
4743         if ((size = i_size_read(inode)) < 0) {
4744                 ext4_error_inode(inode, function, line, 0,
4745                                  "iget: bad i_size value: %lld", size);
4746                 ret = -EFSCORRUPTED;
4747                 goto bad_inode;
4748         }
4749         /*
4750          * If dir_index is not enabled but there's dir with INDEX flag set,
4751          * we'd normally treat htree data as empty space. But with metadata
4752          * checksumming that corrupts checksums so forbid that.
4753          */
4754         if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4755             ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4756                 ext4_error_inode(inode, function, line, 0,
4757                          "iget: Dir with htree data on filesystem without dir_index feature.");
4758                 ret = -EFSCORRUPTED;
4759                 goto bad_inode;
4760         }
4761         ei->i_disksize = inode->i_size;
4762 #ifdef CONFIG_QUOTA
4763         ei->i_reserved_quota = 0;
4764 #endif
4765         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4766         ei->i_block_group = iloc.block_group;
4767         ei->i_last_alloc_group = ~0;
4768         /*
4769          * NOTE! The in-memory inode i_data array is in little-endian order
4770          * even on big-endian machines: we do NOT byteswap the block numbers!
4771          */
4772         for (block = 0; block < EXT4_N_BLOCKS; block++)
4773                 ei->i_data[block] = raw_inode->i_block[block];
4774         INIT_LIST_HEAD(&ei->i_orphan);
4775         ext4_fc_init_inode(&ei->vfs_inode);
4776
4777         /*
4778          * Set transaction id's of transactions that have to be committed
4779          * to finish f[data]sync. We set them to currently running transaction
4780          * as we cannot be sure that the inode or some of its metadata isn't
4781          * part of the transaction - the inode could have been reclaimed and
4782          * now it is reread from disk.
4783          */
4784         if (journal) {
4785                 transaction_t *transaction;
4786                 tid_t tid;
4787
4788                 read_lock(&journal->j_state_lock);
4789                 if (journal->j_running_transaction)
4790                         transaction = journal->j_running_transaction;
4791                 else
4792                         transaction = journal->j_committing_transaction;
4793                 if (transaction)
4794                         tid = transaction->t_tid;
4795                 else
4796                         tid = journal->j_commit_sequence;
4797                 read_unlock(&journal->j_state_lock);
4798                 ei->i_sync_tid = tid;
4799                 ei->i_datasync_tid = tid;
4800         }
4801
4802         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4803                 if (ei->i_extra_isize == 0) {
4804                         /* The extra space is currently unused. Use it. */
4805                         BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4806                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4807                                             EXT4_GOOD_OLD_INODE_SIZE;
4808                 } else {
4809                         ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4810                         if (ret)
4811                                 goto bad_inode;
4812                 }
4813         }
4814
4815         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4816         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4817         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4818         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4819
4820         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4821                 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4822
4823                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4824                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4825                                 ivers |=
4826                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4827                 }
4828                 ext4_inode_set_iversion_queried(inode, ivers);
4829         }
4830
4831         ret = 0;
4832         if (ei->i_file_acl &&
4833             !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4834                 ext4_error_inode(inode, function, line, 0,
4835                                  "iget: bad extended attribute block %llu",
4836                                  ei->i_file_acl);
4837                 ret = -EFSCORRUPTED;
4838                 goto bad_inode;
4839         } else if (!ext4_has_inline_data(inode)) {
4840                 /* validate the block references in the inode */
4841                 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4842                         (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4843                         (S_ISLNK(inode->i_mode) &&
4844                         !ext4_inode_is_fast_symlink(inode)))) {
4845                         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4846                                 ret = ext4_ext_check_inode(inode);
4847                         else
4848                                 ret = ext4_ind_check_inode(inode);
4849                 }
4850         }
4851         if (ret)
4852                 goto bad_inode;
4853
4854         if (S_ISREG(inode->i_mode)) {
4855                 inode->i_op = &ext4_file_inode_operations;
4856                 inode->i_fop = &ext4_file_operations;
4857                 ext4_set_aops(inode);
4858         } else if (S_ISDIR(inode->i_mode)) {
4859                 inode->i_op = &ext4_dir_inode_operations;
4860                 inode->i_fop = &ext4_dir_operations;
4861         } else if (S_ISLNK(inode->i_mode)) {
4862                 /* VFS does not allow setting these so must be corruption */
4863                 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4864                         ext4_error_inode(inode, function, line, 0,
4865                                          "iget: immutable or append flags "
4866                                          "not allowed on symlinks");
4867                         ret = -EFSCORRUPTED;
4868                         goto bad_inode;
4869                 }
4870                 if (IS_ENCRYPTED(inode)) {
4871                         inode->i_op = &ext4_encrypted_symlink_inode_operations;
4872                         ext4_set_aops(inode);
4873                 } else if (ext4_inode_is_fast_symlink(inode)) {
4874                         inode->i_link = (char *)ei->i_data;
4875                         inode->i_op = &ext4_fast_symlink_inode_operations;
4876                         nd_terminate_link(ei->i_data, inode->i_size,
4877                                 sizeof(ei->i_data) - 1);
4878                 } else {
4879                         inode->i_op = &ext4_symlink_inode_operations;
4880                         ext4_set_aops(inode);
4881                 }
4882                 inode_nohighmem(inode);
4883         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4884               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4885                 inode->i_op = &ext4_special_inode_operations;
4886                 if (raw_inode->i_block[0])
4887                         init_special_inode(inode, inode->i_mode,
4888                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4889                 else
4890                         init_special_inode(inode, inode->i_mode,
4891                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4892         } else if (ino == EXT4_BOOT_LOADER_INO) {
4893                 make_bad_inode(inode);
4894         } else {
4895                 ret = -EFSCORRUPTED;
4896                 ext4_error_inode(inode, function, line, 0,
4897                                  "iget: bogus i_mode (%o)", inode->i_mode);
4898                 goto bad_inode;
4899         }
4900         if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
4901                 ext4_error_inode(inode, function, line, 0,
4902                                  "casefold flag without casefold feature");
4903         brelse(iloc.bh);
4904
4905         unlock_new_inode(inode);
4906         return inode;
4907
4908 bad_inode:
4909         brelse(iloc.bh);
4910         iget_failed(inode);
4911         return ERR_PTR(ret);
4912 }
4913
4914 static int ext4_inode_blocks_set(handle_t *handle,
4915                                 struct ext4_inode *raw_inode,
4916                                 struct ext4_inode_info *ei)
4917 {
4918         struct inode *inode = &(ei->vfs_inode);
4919         u64 i_blocks = READ_ONCE(inode->i_blocks);
4920         struct super_block *sb = inode->i_sb;
4921
4922         if (i_blocks <= ~0U) {
4923                 /*
4924                  * i_blocks can be represented in a 32 bit variable
4925                  * as multiple of 512 bytes
4926                  */
4927                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4928                 raw_inode->i_blocks_high = 0;
4929                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4930                 return 0;
4931         }
4932         if (!ext4_has_feature_huge_file(sb))
4933                 return -EFBIG;
4934
4935         if (i_blocks <= 0xffffffffffffULL) {
4936                 /*
4937                  * i_blocks can be represented in a 48 bit variable
4938                  * as multiple of 512 bytes
4939                  */
4940                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4941                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4942                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4943         } else {
4944                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4945                 /* i_block is stored in file system block size */
4946                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4947                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4948                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4949         }
4950         return 0;
4951 }
4952
4953 static void __ext4_update_other_inode_time(struct super_block *sb,
4954                                            unsigned long orig_ino,
4955                                            unsigned long ino,
4956                                            struct ext4_inode *raw_inode)
4957 {
4958         struct inode *inode;
4959
4960         inode = find_inode_by_ino_rcu(sb, ino);
4961         if (!inode)
4962                 return;
4963
4964         if ((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4965                                I_DIRTY_INODE)) ||
4966             ((inode->i_state & I_DIRTY_TIME) == 0))
4967                 return;
4968
4969         spin_lock(&inode->i_lock);
4970         if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4971                                 I_DIRTY_INODE)) == 0) &&
4972             (inode->i_state & I_DIRTY_TIME)) {
4973                 struct ext4_inode_info  *ei = EXT4_I(inode);
4974
4975                 inode->i_state &= ~I_DIRTY_TIME;
4976                 spin_unlock(&inode->i_lock);
4977
4978                 spin_lock(&ei->i_raw_lock);
4979                 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4980                 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4981                 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4982                 ext4_inode_csum_set(inode, raw_inode, ei);
4983                 spin_unlock(&ei->i_raw_lock);
4984                 trace_ext4_other_inode_update_time(inode, orig_ino);
4985                 return;
4986         }
4987         spin_unlock(&inode->i_lock);
4988 }
4989
4990 /*
4991  * Opportunistically update the other time fields for other inodes in
4992  * the same inode table block.
4993  */
4994 static void ext4_update_other_inodes_time(struct super_block *sb,
4995                                           unsigned long orig_ino, char *buf)
4996 {
4997         unsigned long ino;
4998         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4999         int inode_size = EXT4_INODE_SIZE(sb);
5000
5001         /*
5002          * Calculate the first inode in the inode table block.  Inode
5003          * numbers are one-based.  That is, the first inode in a block
5004          * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5005          */
5006         ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5007         rcu_read_lock();
5008         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5009                 if (ino == orig_ino)
5010                         continue;
5011                 __ext4_update_other_inode_time(sb, orig_ino, ino,
5012                                                (struct ext4_inode *)buf);
5013         }
5014         rcu_read_unlock();
5015 }
5016
5017 /*
5018  * Post the struct inode info into an on-disk inode location in the
5019  * buffer-cache.  This gobbles the caller's reference to the
5020  * buffer_head in the inode location struct.
5021  *
5022  * The caller must have write access to iloc->bh.
5023  */
5024 static int ext4_do_update_inode(handle_t *handle,
5025                                 struct inode *inode,
5026                                 struct ext4_iloc *iloc)
5027 {
5028         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5029         struct ext4_inode_info *ei = EXT4_I(inode);
5030         struct buffer_head *bh = iloc->bh;
5031         struct super_block *sb = inode->i_sb;
5032         int err = 0, rc, block;
5033         int need_datasync = 0, set_large_file = 0;
5034         uid_t i_uid;
5035         gid_t i_gid;
5036         projid_t i_projid;
5037
5038         spin_lock(&ei->i_raw_lock);
5039
5040         /* For fields not tracked in the in-memory inode,
5041          * initialise them to zero for new inodes. */
5042         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5043                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5044
5045         err = ext4_inode_blocks_set(handle, raw_inode, ei);
5046         if (err) {
5047                 spin_unlock(&ei->i_raw_lock);
5048                 goto out_brelse;
5049         }
5050
5051         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5052         i_uid = i_uid_read(inode);
5053         i_gid = i_gid_read(inode);
5054         i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5055         if (!(test_opt(inode->i_sb, NO_UID32))) {
5056                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5057                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5058 /*
5059  * Fix up interoperability with old kernels. Otherwise, old inodes get
5060  * re-used with the upper 16 bits of the uid/gid intact
5061  */
5062                 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5063                         raw_inode->i_uid_high = 0;
5064                         raw_inode->i_gid_high = 0;
5065                 } else {
5066                         raw_inode->i_uid_high =
5067                                 cpu_to_le16(high_16_bits(i_uid));
5068                         raw_inode->i_gid_high =
5069                                 cpu_to_le16(high_16_bits(i_gid));
5070                 }
5071         } else {
5072                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5073                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5074                 raw_inode->i_uid_high = 0;
5075                 raw_inode->i_gid_high = 0;
5076         }
5077         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5078
5079         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5080         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5081         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5082         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5083
5084         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5085         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5086         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5087                 raw_inode->i_file_acl_high =
5088                         cpu_to_le16(ei->i_file_acl >> 32);
5089         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5090         if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) {
5091                 ext4_isize_set(raw_inode, ei->i_disksize);
5092                 need_datasync = 1;
5093         }
5094         if (ei->i_disksize > 0x7fffffffULL) {
5095                 if (!ext4_has_feature_large_file(sb) ||
5096                                 EXT4_SB(sb)->s_es->s_rev_level ==
5097                     cpu_to_le32(EXT4_GOOD_OLD_REV))
5098                         set_large_file = 1;
5099         }
5100         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5101         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5102                 if (old_valid_dev(inode->i_rdev)) {
5103                         raw_inode->i_block[0] =
5104                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
5105                         raw_inode->i_block[1] = 0;
5106                 } else {
5107                         raw_inode->i_block[0] = 0;
5108                         raw_inode->i_block[1] =
5109                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
5110                         raw_inode->i_block[2] = 0;
5111                 }
5112         } else if (!ext4_has_inline_data(inode)) {
5113                 for (block = 0; block < EXT4_N_BLOCKS; block++)
5114                         raw_inode->i_block[block] = ei->i_data[block];
5115         }
5116
5117         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5118                 u64 ivers = ext4_inode_peek_iversion(inode);
5119
5120                 raw_inode->i_disk_version = cpu_to_le32(ivers);
5121                 if (ei->i_extra_isize) {
5122                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5123                                 raw_inode->i_version_hi =
5124                                         cpu_to_le32(ivers >> 32);
5125                         raw_inode->i_extra_isize =
5126                                 cpu_to_le16(ei->i_extra_isize);
5127                 }
5128         }
5129
5130         BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5131                i_projid != EXT4_DEF_PROJID);
5132
5133         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5134             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5135                 raw_inode->i_projid = cpu_to_le32(i_projid);
5136
5137         ext4_inode_csum_set(inode, raw_inode, ei);
5138         spin_unlock(&ei->i_raw_lock);
5139         if (inode->i_sb->s_flags & SB_LAZYTIME)
5140                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5141                                               bh->b_data);
5142
5143         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5144         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5145         if (!err)
5146                 err = rc;
5147         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5148         if (set_large_file) {
5149                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5150                 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5151                 if (err)
5152                         goto out_brelse;
5153                 ext4_set_feature_large_file(sb);
5154                 ext4_handle_sync(handle);
5155                 err = ext4_handle_dirty_super(handle, sb);
5156         }
5157         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5158 out_brelse:
5159         brelse(bh);
5160         ext4_std_error(inode->i_sb, err);
5161         return err;
5162 }
5163
5164 /*
5165  * ext4_write_inode()
5166  *
5167  * We are called from a few places:
5168  *
5169  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5170  *   Here, there will be no transaction running. We wait for any running
5171  *   transaction to commit.
5172  *
5173  * - Within flush work (sys_sync(), kupdate and such).
5174  *   We wait on commit, if told to.
5175  *
5176  * - Within iput_final() -> write_inode_now()
5177  *   We wait on commit, if told to.
5178  *
5179  * In all cases it is actually safe for us to return without doing anything,
5180  * because the inode has been copied into a raw inode buffer in
5181  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5182  * writeback.
5183  *
5184  * Note that we are absolutely dependent upon all inode dirtiers doing the
5185  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5186  * which we are interested.
5187  *
5188  * It would be a bug for them to not do this.  The code:
5189  *
5190  *      mark_inode_dirty(inode)
5191  *      stuff();
5192  *      inode->i_size = expr;
5193  *
5194  * is in error because write_inode() could occur while `stuff()' is running,
5195  * and the new i_size will be lost.  Plus the inode will no longer be on the
5196  * superblock's dirty inode list.
5197  */
5198 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5199 {
5200         int err;
5201
5202         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5203             sb_rdonly(inode->i_sb))
5204                 return 0;
5205
5206         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5207                 return -EIO;
5208
5209         if (EXT4_SB(inode->i_sb)->s_journal) {
5210                 if (ext4_journal_current_handle()) {
5211                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5212                         dump_stack();
5213                         return -EIO;
5214                 }
5215
5216                 /*
5217                  * No need to force transaction in WB_SYNC_NONE mode. Also
5218                  * ext4_sync_fs() will force the commit after everything is
5219                  * written.
5220                  */
5221                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5222                         return 0;
5223
5224                 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5225                                                 EXT4_I(inode)->i_sync_tid);
5226         } else {
5227                 struct ext4_iloc iloc;
5228
5229                 err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5230                 if (err)
5231                         return err;
5232                 /*
5233                  * sync(2) will flush the whole buffer cache. No need to do
5234                  * it here separately for each inode.
5235                  */
5236                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5237                         sync_dirty_buffer(iloc.bh);
5238                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5239                         ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5240                                                "IO error syncing inode");
5241                         err = -EIO;
5242                 }
5243                 brelse(iloc.bh);
5244         }
5245         return err;
5246 }
5247
5248 /*
5249  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5250  * buffers that are attached to a page stradding i_size and are undergoing
5251  * commit. In that case we have to wait for commit to finish and try again.
5252  */
5253 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5254 {
5255         struct page *page;
5256         unsigned offset;
5257         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5258         tid_t commit_tid = 0;
5259         int ret;
5260
5261         offset = inode->i_size & (PAGE_SIZE - 1);
5262         /*
5263          * If the page is fully truncated, we don't need to wait for any commit
5264          * (and we even should not as __ext4_journalled_invalidatepage() may
5265          * strip all buffers from the page but keep the page dirty which can then
5266          * confuse e.g. concurrent ext4_writepage() seeing dirty page without
5267          * buffers). Also we don't need to wait for any commit if all buffers in
5268          * the page remain valid. This is most beneficial for the common case of
5269          * blocksize == PAGESIZE.
5270          */
5271         if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5272                 return;
5273         while (1) {
5274                 page = find_lock_page(inode->i_mapping,
5275                                       inode->i_size >> PAGE_SHIFT);
5276                 if (!page)
5277                         return;
5278                 ret = __ext4_journalled_invalidatepage(page, offset,
5279                                                 PAGE_SIZE - offset);
5280                 unlock_page(page);
5281                 put_page(page);
5282                 if (ret != -EBUSY)
5283                         return;
5284                 commit_tid = 0;
5285                 read_lock(&journal->j_state_lock);
5286                 if (journal->j_committing_transaction)
5287                         commit_tid = journal->j_committing_transaction->t_tid;
5288                 read_unlock(&journal->j_state_lock);
5289                 if (commit_tid)
5290                         jbd2_log_wait_commit(journal, commit_tid);
5291         }
5292 }
5293
5294 /*
5295  * ext4_setattr()
5296  *
5297  * Called from notify_change.
5298  *
5299  * We want to trap VFS attempts to truncate the file as soon as
5300  * possible.  In particular, we want to make sure that when the VFS
5301  * shrinks i_size, we put the inode on the orphan list and modify
5302  * i_disksize immediately, so that during the subsequent flushing of
5303  * dirty pages and freeing of disk blocks, we can guarantee that any
5304  * commit will leave the blocks being flushed in an unused state on
5305  * disk.  (On recovery, the inode will get truncated and the blocks will
5306  * be freed, so we have a strong guarantee that no future commit will
5307  * leave these blocks visible to the user.)
5308  *
5309  * Another thing we have to assure is that if we are in ordered mode
5310  * and inode is still attached to the committing transaction, we must
5311  * we start writeout of all the dirty pages which are being truncated.
5312  * This way we are sure that all the data written in the previous
5313  * transaction are already on disk (truncate waits for pages under
5314  * writeback).
5315  *
5316  * Called with inode->i_mutex down.
5317  */
5318 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5319 {
5320         struct inode *inode = d_inode(dentry);
5321         int error, rc = 0;
5322         int orphan = 0;
5323         const unsigned int ia_valid = attr->ia_valid;
5324
5325         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5326                 return -EIO;
5327
5328         if (unlikely(IS_IMMUTABLE(inode)))
5329                 return -EPERM;
5330
5331         if (unlikely(IS_APPEND(inode) &&
5332                      (ia_valid & (ATTR_MODE | ATTR_UID |
5333                                   ATTR_GID | ATTR_TIMES_SET))))
5334                 return -EPERM;
5335
5336         error = setattr_prepare(dentry, attr);
5337         if (error)
5338                 return error;
5339
5340         error = fscrypt_prepare_setattr(dentry, attr);
5341         if (error)
5342                 return error;
5343
5344         error = fsverity_prepare_setattr(dentry, attr);
5345         if (error)
5346                 return error;
5347
5348         if (is_quota_modification(inode, attr)) {
5349                 error = dquot_initialize(inode);
5350                 if (error)
5351                         return error;
5352         }
5353         ext4_fc_start_update(inode);
5354         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5355             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5356                 handle_t *handle;
5357
5358                 /* (user+group)*(old+new) structure, inode write (sb,
5359                  * inode block, ? - but truncate inode update has it) */
5360                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5361                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5362                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5363                 if (IS_ERR(handle)) {
5364                         error = PTR_ERR(handle);
5365                         goto err_out;
5366                 }
5367
5368                 /* dquot_transfer() calls back ext4_get_inode_usage() which
5369                  * counts xattr inode references.
5370                  */
5371                 down_read(&EXT4_I(inode)->xattr_sem);
5372                 error = dquot_transfer(inode, attr);
5373                 up_read(&EXT4_I(inode)->xattr_sem);
5374
5375                 if (error) {
5376                         ext4_journal_stop(handle);
5377                         ext4_fc_stop_update(inode);
5378                         return error;
5379                 }
5380                 /* Update corresponding info in inode so that everything is in
5381                  * one transaction */
5382                 if (attr->ia_valid & ATTR_UID)
5383                         inode->i_uid = attr->ia_uid;
5384                 if (attr->ia_valid & ATTR_GID)
5385                         inode->i_gid = attr->ia_gid;
5386                 error = ext4_mark_inode_dirty(handle, inode);
5387                 ext4_journal_stop(handle);
5388                 if (unlikely(error))
5389                         return error;
5390         }
5391
5392         if (attr->ia_valid & ATTR_SIZE) {
5393                 handle_t *handle;
5394                 loff_t oldsize = inode->i_size;
5395                 int shrink = (attr->ia_size < inode->i_size);
5396
5397                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5398                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5399
5400                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5401                                 ext4_fc_stop_update(inode);
5402                                 return -EFBIG;
5403                         }
5404                 }
5405                 if (!S_ISREG(inode->i_mode)) {
5406                         ext4_fc_stop_update(inode);
5407                         return -EINVAL;
5408                 }
5409
5410                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5411                         inode_inc_iversion(inode);
5412
5413                 if (shrink) {
5414                         if (ext4_should_order_data(inode)) {
5415                                 error = ext4_begin_ordered_truncate(inode,
5416                                                             attr->ia_size);
5417                                 if (error)
5418                                         goto err_out;
5419                         }
5420                         /*
5421                          * Blocks are going to be removed from the inode. Wait
5422                          * for dio in flight.
5423                          */
5424                         inode_dio_wait(inode);
5425                 }
5426
5427                 down_write(&EXT4_I(inode)->i_mmap_sem);
5428
5429                 rc = ext4_break_layouts(inode);
5430                 if (rc) {
5431                         up_write(&EXT4_I(inode)->i_mmap_sem);
5432                         goto err_out;
5433                 }
5434
5435                 if (attr->ia_size != inode->i_size) {
5436                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5437                         if (IS_ERR(handle)) {
5438                                 error = PTR_ERR(handle);
5439                                 goto out_mmap_sem;
5440                         }
5441                         if (ext4_handle_valid(handle) && shrink) {
5442                                 error = ext4_orphan_add(handle, inode);
5443                                 orphan = 1;
5444                         }
5445                         /*
5446                          * Update c/mtime on truncate up, ext4_truncate() will
5447                          * update c/mtime in shrink case below
5448                          */
5449                         if (!shrink) {
5450                                 inode->i_mtime = current_time(inode);
5451                                 inode->i_ctime = inode->i_mtime;
5452                         }
5453
5454                         if (shrink)
5455                                 ext4_fc_track_range(handle, inode,
5456                                         (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5457                                         inode->i_sb->s_blocksize_bits,
5458                                         (oldsize > 0 ? oldsize - 1 : 0) >>
5459                                         inode->i_sb->s_blocksize_bits);
5460                         else
5461                                 ext4_fc_track_range(
5462                                         handle, inode,
5463                                         (oldsize > 0 ? oldsize - 1 : oldsize) >>
5464                                         inode->i_sb->s_blocksize_bits,
5465                                         (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5466                                         inode->i_sb->s_blocksize_bits);
5467
5468                         down_write(&EXT4_I(inode)->i_data_sem);
5469                         EXT4_I(inode)->i_disksize = attr->ia_size;
5470                         rc = ext4_mark_inode_dirty(handle, inode);
5471                         if (!error)
5472                                 error = rc;
5473                         /*
5474                          * We have to update i_size under i_data_sem together
5475                          * with i_disksize to avoid races with writeback code
5476                          * running ext4_wb_update_i_disksize().
5477                          */
5478                         if (!error)
5479                                 i_size_write(inode, attr->ia_size);
5480                         up_write(&EXT4_I(inode)->i_data_sem);
5481                         ext4_journal_stop(handle);
5482                         if (error)
5483                                 goto out_mmap_sem;
5484                         if (!shrink) {
5485                                 pagecache_isize_extended(inode, oldsize,
5486                                                          inode->i_size);
5487                         } else if (ext4_should_journal_data(inode)) {
5488                                 ext4_wait_for_tail_page_commit(inode);
5489                         }
5490                 }
5491
5492                 /*
5493                  * Truncate pagecache after we've waited for commit
5494                  * in data=journal mode to make pages freeable.
5495                  */
5496                 truncate_pagecache(inode, inode->i_size);
5497                 /*
5498                  * Call ext4_truncate() even if i_size didn't change to
5499                  * truncate possible preallocated blocks.
5500                  */
5501                 if (attr->ia_size <= oldsize) {
5502                         rc = ext4_truncate(inode);
5503                         if (rc)
5504                                 error = rc;
5505                 }
5506 out_mmap_sem:
5507                 up_write(&EXT4_I(inode)->i_mmap_sem);
5508         }
5509
5510         if (!error) {
5511                 setattr_copy(inode, attr);
5512                 mark_inode_dirty(inode);
5513         }
5514
5515         /*
5516          * If the call to ext4_truncate failed to get a transaction handle at
5517          * all, we need to clean up the in-core orphan list manually.
5518          */
5519         if (orphan && inode->i_nlink)
5520                 ext4_orphan_del(NULL, inode);
5521
5522         if (!error && (ia_valid & ATTR_MODE))
5523                 rc = posix_acl_chmod(inode, inode->i_mode);
5524
5525 err_out:
5526         if  (error)
5527                 ext4_std_error(inode->i_sb, error);
5528         if (!error)
5529                 error = rc;
5530         ext4_fc_stop_update(inode);
5531         return error;
5532 }
5533
5534 int ext4_getattr(const struct path *path, struct kstat *stat,
5535                  u32 request_mask, unsigned int query_flags)
5536 {
5537         struct inode *inode = d_inode(path->dentry);
5538         struct ext4_inode *raw_inode;
5539         struct ext4_inode_info *ei = EXT4_I(inode);
5540         unsigned int flags;
5541
5542         if ((request_mask & STATX_BTIME) &&
5543             EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5544                 stat->result_mask |= STATX_BTIME;
5545                 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5546                 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5547         }
5548
5549         flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5550         if (flags & EXT4_APPEND_FL)
5551                 stat->attributes |= STATX_ATTR_APPEND;
5552         if (flags & EXT4_COMPR_FL)
5553                 stat->attributes |= STATX_ATTR_COMPRESSED;
5554         if (flags & EXT4_ENCRYPT_FL)
5555                 stat->attributes |= STATX_ATTR_ENCRYPTED;
5556         if (flags & EXT4_IMMUTABLE_FL)
5557                 stat->attributes |= STATX_ATTR_IMMUTABLE;
5558         if (flags & EXT4_NODUMP_FL)
5559                 stat->attributes |= STATX_ATTR_NODUMP;
5560         if (flags & EXT4_VERITY_FL)
5561                 stat->attributes |= STATX_ATTR_VERITY;
5562
5563         stat->attributes_mask |= (STATX_ATTR_APPEND |
5564                                   STATX_ATTR_COMPRESSED |
5565                                   STATX_ATTR_ENCRYPTED |
5566                                   STATX_ATTR_IMMUTABLE |
5567                                   STATX_ATTR_NODUMP |
5568                                   STATX_ATTR_VERITY);
5569
5570         generic_fillattr(inode, stat);
5571         return 0;
5572 }
5573
5574 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5575                       u32 request_mask, unsigned int query_flags)
5576 {
5577         struct inode *inode = d_inode(path->dentry);
5578         u64 delalloc_blocks;
5579
5580         ext4_getattr(path, stat, request_mask, query_flags);
5581
5582         /*
5583          * If there is inline data in the inode, the inode will normally not
5584          * have data blocks allocated (it may have an external xattr block).
5585          * Report at least one sector for such files, so tools like tar, rsync,
5586          * others don't incorrectly think the file is completely sparse.
5587          */
5588         if (unlikely(ext4_has_inline_data(inode)))
5589                 stat->blocks += (stat->size + 511) >> 9;
5590
5591         /*
5592          * We can't update i_blocks if the block allocation is delayed
5593          * otherwise in the case of system crash before the real block
5594          * allocation is done, we will have i_blocks inconsistent with
5595          * on-disk file blocks.
5596          * We always keep i_blocks updated together with real
5597          * allocation. But to not confuse with user, stat
5598          * will return the blocks that include the delayed allocation
5599          * blocks for this file.
5600          */
5601         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5602                                    EXT4_I(inode)->i_reserved_data_blocks);
5603         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5604         return 0;
5605 }
5606
5607 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5608                                    int pextents)
5609 {
5610         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5611                 return ext4_ind_trans_blocks(inode, lblocks);
5612         return ext4_ext_index_trans_blocks(inode, pextents);
5613 }
5614
5615 /*
5616  * Account for index blocks, block groups bitmaps and block group
5617  * descriptor blocks if modify datablocks and index blocks
5618  * worse case, the indexs blocks spread over different block groups
5619  *
5620  * If datablocks are discontiguous, they are possible to spread over
5621  * different block groups too. If they are contiguous, with flexbg,
5622  * they could still across block group boundary.
5623  *
5624  * Also account for superblock, inode, quota and xattr blocks
5625  */
5626 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5627                                   int pextents)
5628 {
5629         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5630         int gdpblocks;
5631         int idxblocks;
5632         int ret = 0;
5633
5634         /*
5635          * How many index blocks need to touch to map @lblocks logical blocks
5636          * to @pextents physical extents?
5637          */
5638         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5639
5640         ret = idxblocks;
5641
5642         /*
5643          * Now let's see how many group bitmaps and group descriptors need
5644          * to account
5645          */
5646         groups = idxblocks + pextents;
5647         gdpblocks = groups;
5648         if (groups > ngroups)
5649                 groups = ngroups;
5650         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5651                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5652
5653         /* bitmaps and block group descriptor blocks */
5654         ret += groups + gdpblocks;
5655
5656         /* Blocks for super block, inode, quota and xattr blocks */
5657         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5658
5659         return ret;
5660 }
5661
5662 /*
5663  * Calculate the total number of credits to reserve to fit
5664  * the modification of a single pages into a single transaction,
5665  * which may include multiple chunks of block allocations.
5666  *
5667  * This could be called via ext4_write_begin()
5668  *
5669  * We need to consider the worse case, when
5670  * one new block per extent.
5671  */
5672 int ext4_writepage_trans_blocks(struct inode *inode)
5673 {
5674         int bpp = ext4_journal_blocks_per_page(inode);
5675         int ret;
5676
5677         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5678
5679         /* Account for data blocks for journalled mode */
5680         if (ext4_should_journal_data(inode))
5681                 ret += bpp;
5682         return ret;
5683 }
5684
5685 /*
5686  * Calculate the journal credits for a chunk of data modification.
5687  *
5688  * This is called from DIO, fallocate or whoever calling
5689  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5690  *
5691  * journal buffers for data blocks are not included here, as DIO
5692  * and fallocate do no need to journal data buffers.
5693  */
5694 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5695 {
5696         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5697 }
5698
5699 /*
5700  * The caller must have previously called ext4_reserve_inode_write().
5701  * Give this, we know that the caller already has write access to iloc->bh.
5702  */
5703 int ext4_mark_iloc_dirty(handle_t *handle,
5704                          struct inode *inode, struct ext4_iloc *iloc)
5705 {
5706         int err = 0;
5707
5708         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5709                 put_bh(iloc->bh);
5710                 return -EIO;
5711         }
5712         ext4_fc_track_inode(handle, inode);
5713
5714         if (IS_I_VERSION(inode))
5715                 inode_inc_iversion(inode);
5716
5717         /* the do_update_inode consumes one bh->b_count */
5718         get_bh(iloc->bh);
5719
5720         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5721         err = ext4_do_update_inode(handle, inode, iloc);
5722         put_bh(iloc->bh);
5723         return err;
5724 }
5725
5726 /*
5727  * On success, We end up with an outstanding reference count against
5728  * iloc->bh.  This _must_ be cleaned up later.
5729  */
5730
5731 int
5732 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5733                          struct ext4_iloc *iloc)
5734 {
5735         int err;
5736
5737         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5738                 return -EIO;
5739
5740         err = ext4_get_inode_loc(inode, iloc);
5741         if (!err) {
5742                 BUFFER_TRACE(iloc->bh, "get_write_access");
5743                 err = ext4_journal_get_write_access(handle, iloc->bh);
5744                 if (err) {
5745                         brelse(iloc->bh);
5746                         iloc->bh = NULL;
5747                 }
5748         }
5749         ext4_std_error(inode->i_sb, err);
5750         return err;
5751 }
5752
5753 static int __ext4_expand_extra_isize(struct inode *inode,
5754                                      unsigned int new_extra_isize,
5755                                      struct ext4_iloc *iloc,
5756                                      handle_t *handle, int *no_expand)
5757 {
5758         struct ext4_inode *raw_inode;
5759         struct ext4_xattr_ibody_header *header;
5760         unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5761         struct ext4_inode_info *ei = EXT4_I(inode);
5762         int error;
5763
5764         /* this was checked at iget time, but double check for good measure */
5765         if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5766             (ei->i_extra_isize & 3)) {
5767                 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5768                                  ei->i_extra_isize,
5769                                  EXT4_INODE_SIZE(inode->i_sb));
5770                 return -EFSCORRUPTED;
5771         }
5772         if ((new_extra_isize < ei->i_extra_isize) ||
5773             (new_extra_isize < 4) ||
5774             (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5775                 return -EINVAL; /* Should never happen */
5776
5777         raw_inode = ext4_raw_inode(iloc);
5778
5779         header = IHDR(inode, raw_inode);
5780
5781         /* No extended attributes present */
5782         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5783             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5784                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5785                        EXT4_I(inode)->i_extra_isize, 0,
5786                        new_extra_isize - EXT4_I(inode)->i_extra_isize);
5787                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5788                 return 0;
5789         }
5790
5791         /* try to expand with EAs present */
5792         error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5793                                            raw_inode, handle);
5794         if (error) {
5795                 /*
5796                  * Inode size expansion failed; don't try again
5797                  */
5798                 *no_expand = 1;
5799         }
5800
5801         return error;
5802 }
5803
5804 /*
5805  * Expand an inode by new_extra_isize bytes.
5806  * Returns 0 on success or negative error number on failure.
5807  */
5808 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5809                                           unsigned int new_extra_isize,
5810                                           struct ext4_iloc iloc,
5811                                           handle_t *handle)
5812 {
5813         int no_expand;
5814         int error;
5815
5816         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5817                 return -EOVERFLOW;
5818
5819         /*
5820          * In nojournal mode, we can immediately attempt to expand
5821          * the inode.  When journaled, we first need to obtain extra
5822          * buffer credits since we may write into the EA block
5823          * with this same handle. If journal_extend fails, then it will
5824          * only result in a minor loss of functionality for that inode.
5825          * If this is felt to be critical, then e2fsck should be run to
5826          * force a large enough s_min_extra_isize.
5827          */
5828         if (ext4_journal_extend(handle,
5829                                 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5830                 return -ENOSPC;
5831
5832         if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5833                 return -EBUSY;
5834
5835         error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5836                                           handle, &no_expand);
5837         ext4_write_unlock_xattr(inode, &no_expand);
5838
5839         return error;
5840 }
5841
5842 int ext4_expand_extra_isize(struct inode *inode,
5843                             unsigned int new_extra_isize,
5844                             struct ext4_iloc *iloc)
5845 {
5846         handle_t *handle;
5847         int no_expand;
5848         int error, rc;
5849
5850         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5851                 brelse(iloc->bh);
5852                 return -EOVERFLOW;
5853         }
5854
5855         handle = ext4_journal_start(inode, EXT4_HT_INODE,
5856                                     EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5857         if (IS_ERR(handle)) {
5858                 error = PTR_ERR(handle);
5859                 brelse(iloc->bh);
5860                 return error;
5861         }
5862
5863         ext4_write_lock_xattr(inode, &no_expand);
5864
5865         BUFFER_TRACE(iloc->bh, "get_write_access");
5866         error = ext4_journal_get_write_access(handle, iloc->bh);
5867         if (error) {
5868                 brelse(iloc->bh);
5869                 goto out_unlock;
5870         }
5871
5872         error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5873                                           handle, &no_expand);
5874
5875         rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5876         if (!error)
5877                 error = rc;
5878
5879 out_unlock:
5880         ext4_write_unlock_xattr(inode, &no_expand);
5881         ext4_journal_stop(handle);
5882         return error;
5883 }
5884
5885 /*
5886  * What we do here is to mark the in-core inode as clean with respect to inode
5887  * dirtiness (it may still be data-dirty).
5888  * This means that the in-core inode may be reaped by prune_icache
5889  * without having to perform any I/O.  This is a very good thing,
5890  * because *any* task may call prune_icache - even ones which
5891  * have a transaction open against a different journal.
5892  *
5893  * Is this cheating?  Not really.  Sure, we haven't written the
5894  * inode out, but prune_icache isn't a user-visible syncing function.
5895  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5896  * we start and wait on commits.
5897  */
5898 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5899                                 const char *func, unsigned int line)
5900 {
5901         struct ext4_iloc iloc;
5902         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5903         int err;
5904
5905         might_sleep();
5906         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5907         err = ext4_reserve_inode_write(handle, inode, &iloc);
5908         if (err)
5909                 goto out;
5910
5911         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5912                 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5913                                                iloc, handle);
5914
5915         err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5916 out:
5917         if (unlikely(err))
5918                 ext4_error_inode_err(inode, func, line, 0, err,
5919                                         "mark_inode_dirty error");
5920         return err;
5921 }
5922
5923 /*
5924  * ext4_dirty_inode() is called from __mark_inode_dirty()
5925  *
5926  * We're really interested in the case where a file is being extended.
5927  * i_size has been changed by generic_commit_write() and we thus need
5928  * to include the updated inode in the current transaction.
5929  *
5930  * Also, dquot_alloc_block() will always dirty the inode when blocks
5931  * are allocated to the file.
5932  *
5933  * If the inode is marked synchronous, we don't honour that here - doing
5934  * so would cause a commit on atime updates, which we don't bother doing.
5935  * We handle synchronous inodes at the highest possible level.
5936  *
5937  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5938  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5939  * to copy into the on-disk inode structure are the timestamp files.
5940  */
5941 void ext4_dirty_inode(struct inode *inode, int flags)
5942 {
5943         handle_t *handle;
5944
5945         if (flags == I_DIRTY_TIME)
5946                 return;
5947         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5948         if (IS_ERR(handle))
5949                 goto out;
5950
5951         ext4_mark_inode_dirty(handle, inode);
5952
5953         ext4_journal_stop(handle);
5954 out:
5955         return;
5956 }
5957
5958 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5959 {
5960         journal_t *journal;
5961         handle_t *handle;
5962         int err;
5963         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5964
5965         /*
5966          * We have to be very careful here: changing a data block's
5967          * journaling status dynamically is dangerous.  If we write a
5968          * data block to the journal, change the status and then delete
5969          * that block, we risk forgetting to revoke the old log record
5970          * from the journal and so a subsequent replay can corrupt data.
5971          * So, first we make sure that the journal is empty and that
5972          * nobody is changing anything.
5973          */
5974
5975         journal = EXT4_JOURNAL(inode);
5976         if (!journal)
5977                 return 0;
5978         if (is_journal_aborted(journal))
5979                 return -EROFS;
5980
5981         /* Wait for all existing dio workers */
5982         inode_dio_wait(inode);
5983
5984         /*
5985          * Before flushing the journal and switching inode's aops, we have
5986          * to flush all dirty data the inode has. There can be outstanding
5987          * delayed allocations, there can be unwritten extents created by
5988          * fallocate or buffered writes in dioread_nolock mode covered by
5989          * dirty data which can be converted only after flushing the dirty
5990          * data (and journalled aops don't know how to handle these cases).
5991          */
5992         if (val) {
5993                 down_write(&EXT4_I(inode)->i_mmap_sem);
5994                 err = filemap_write_and_wait(inode->i_mapping);
5995                 if (err < 0) {
5996                         up_write(&EXT4_I(inode)->i_mmap_sem);
5997                         return err;
5998                 }
5999         }
6000
6001         percpu_down_write(&sbi->s_writepages_rwsem);
6002         jbd2_journal_lock_updates(journal);
6003
6004         /*
6005          * OK, there are no updates running now, and all cached data is
6006          * synced to disk.  We are now in a completely consistent state
6007          * which doesn't have anything in the journal, and we know that
6008          * no filesystem updates are running, so it is safe to modify
6009          * the inode's in-core data-journaling state flag now.
6010          */
6011
6012         if (val)
6013                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6014         else {
6015                 err = jbd2_journal_flush(journal);
6016                 if (err < 0) {
6017                         jbd2_journal_unlock_updates(journal);
6018                         percpu_up_write(&sbi->s_writepages_rwsem);
6019                         return err;
6020                 }
6021                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6022         }
6023         ext4_set_aops(inode);
6024
6025         jbd2_journal_unlock_updates(journal);
6026         percpu_up_write(&sbi->s_writepages_rwsem);
6027
6028         if (val)
6029                 up_write(&EXT4_I(inode)->i_mmap_sem);
6030
6031         /* Finally we can mark the inode as dirty. */
6032
6033         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6034         if (IS_ERR(handle))
6035                 return PTR_ERR(handle);
6036
6037         ext4_fc_mark_ineligible(inode->i_sb,
6038                 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE);
6039         err = ext4_mark_inode_dirty(handle, inode);
6040         ext4_handle_sync(handle);
6041         ext4_journal_stop(handle);
6042         ext4_std_error(inode->i_sb, err);
6043
6044         return err;
6045 }
6046
6047 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6048 {
6049         return !buffer_mapped(bh);
6050 }
6051
6052 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6053 {
6054         struct vm_area_struct *vma = vmf->vma;
6055         struct page *page = vmf->page;
6056         loff_t size;
6057         unsigned long len;
6058         int err;
6059         vm_fault_t ret;
6060         struct file *file = vma->vm_file;
6061         struct inode *inode = file_inode(file);
6062         struct address_space *mapping = inode->i_mapping;
6063         handle_t *handle;
6064         get_block_t *get_block;
6065         int retries = 0;
6066
6067         if (unlikely(IS_IMMUTABLE(inode)))
6068                 return VM_FAULT_SIGBUS;
6069
6070         sb_start_pagefault(inode->i_sb);
6071         file_update_time(vma->vm_file);
6072
6073         down_read(&EXT4_I(inode)->i_mmap_sem);
6074
6075         err = ext4_convert_inline_data(inode);
6076         if (err)
6077                 goto out_ret;
6078
6079         /*
6080          * On data journalling we skip straight to the transaction handle:
6081          * there's no delalloc; page truncated will be checked later; the
6082          * early return w/ all buffers mapped (calculates size/len) can't
6083          * be used; and there's no dioread_nolock, so only ext4_get_block.
6084          */
6085         if (ext4_should_journal_data(inode))
6086                 goto retry_alloc;
6087
6088         /* Delalloc case is easy... */
6089         if (test_opt(inode->i_sb, DELALLOC) &&
6090             !ext4_nonda_switch(inode->i_sb)) {
6091                 do {
6092                         err = block_page_mkwrite(vma, vmf,
6093                                                    ext4_da_get_block_prep);
6094                 } while (err == -ENOSPC &&
6095                        ext4_should_retry_alloc(inode->i_sb, &retries));
6096                 goto out_ret;
6097         }
6098
6099         lock_page(page);
6100         size = i_size_read(inode);
6101         /* Page got truncated from under us? */
6102         if (page->mapping != mapping || page_offset(page) > size) {
6103                 unlock_page(page);
6104                 ret = VM_FAULT_NOPAGE;
6105                 goto out;
6106         }
6107
6108         if (page->index == size >> PAGE_SHIFT)
6109                 len = size & ~PAGE_MASK;
6110         else
6111                 len = PAGE_SIZE;
6112         /*
6113          * Return if we have all the buffers mapped. This avoids the need to do
6114          * journal_start/journal_stop which can block and take a long time
6115          *
6116          * This cannot be done for data journalling, as we have to add the
6117          * inode to the transaction's list to writeprotect pages on commit.
6118          */
6119         if (page_has_buffers(page)) {
6120                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6121                                             0, len, NULL,
6122                                             ext4_bh_unmapped)) {
6123                         /* Wait so that we don't change page under IO */
6124                         wait_for_stable_page(page);
6125                         ret = VM_FAULT_LOCKED;
6126                         goto out;
6127                 }
6128         }
6129         unlock_page(page);
6130         /* OK, we need to fill the hole... */
6131         if (ext4_should_dioread_nolock(inode))
6132                 get_block = ext4_get_block_unwritten;
6133         else
6134                 get_block = ext4_get_block;
6135 retry_alloc:
6136         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6137                                     ext4_writepage_trans_blocks(inode));
6138         if (IS_ERR(handle)) {
6139                 ret = VM_FAULT_SIGBUS;
6140                 goto out;
6141         }
6142         /*
6143          * Data journalling can't use block_page_mkwrite() because it
6144          * will set_buffer_dirty() before do_journal_get_write_access()
6145          * thus might hit warning messages for dirty metadata buffers.
6146          */
6147         if (!ext4_should_journal_data(inode)) {
6148                 err = block_page_mkwrite(vma, vmf, get_block);
6149         } else {
6150                 lock_page(page);
6151                 size = i_size_read(inode);
6152                 /* Page got truncated from under us? */
6153                 if (page->mapping != mapping || page_offset(page) > size) {
6154                         ret = VM_FAULT_NOPAGE;
6155                         goto out_error;
6156                 }
6157
6158                 if (page->index == size >> PAGE_SHIFT)
6159                         len = size & ~PAGE_MASK;
6160                 else
6161                         len = PAGE_SIZE;
6162
6163                 err = __block_write_begin(page, 0, len, ext4_get_block);
6164                 if (!err) {
6165                         ret = VM_FAULT_SIGBUS;
6166                         if (ext4_walk_page_buffers(handle, page_buffers(page),
6167                                         0, len, NULL, do_journal_get_write_access))
6168                                 goto out_error;
6169                         if (ext4_walk_page_buffers(handle, page_buffers(page),
6170                                         0, len, NULL, write_end_fn))
6171                                 goto out_error;
6172                         if (ext4_jbd2_inode_add_write(handle, inode,
6173                                                       page_offset(page), len))
6174                                 goto out_error;
6175                         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6176                 } else {
6177                         unlock_page(page);
6178                 }
6179         }
6180         ext4_journal_stop(handle);
6181         if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6182                 goto retry_alloc;
6183 out_ret:
6184         ret = block_page_mkwrite_return(err);
6185 out:
6186         up_read(&EXT4_I(inode)->i_mmap_sem);
6187         sb_end_pagefault(inode->i_sb);
6188         return ret;
6189 out_error:
6190         unlock_page(page);
6191         ext4_journal_stop(handle);
6192         goto out;
6193 }
6194
6195 vm_fault_t ext4_filemap_fault(struct vm_fault *vmf)
6196 {
6197         struct inode *inode = file_inode(vmf->vma->vm_file);
6198         vm_fault_t ret;
6199
6200         down_read(&EXT4_I(inode)->i_mmap_sem);
6201         ret = filemap_fault(vmf);
6202         up_read(&EXT4_I(inode)->i_mmap_sem);
6203
6204         return ret;
6205 }