Merge tag 'hole_punch_for_v5.15-rc1' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / fs / ext2 / inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext2/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  Goal-directed block allocation by Stephen Tweedie
17  *      (sct@dcs.ed.ac.uk), 1993, 1998
18  *  Big-endian to little-endian byte-swapping/bitmaps by
19  *        David S. Miller (davem@caip.rutgers.edu), 1995
20  *  64-bit file support on 64-bit platforms by Jakub Jelinek
21  *      (jj@sunsite.ms.mff.cuni.cz)
22  *
23  *  Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
24  */
25
26 #include <linux/time.h>
27 #include <linux/highuid.h>
28 #include <linux/pagemap.h>
29 #include <linux/dax.h>
30 #include <linux/blkdev.h>
31 #include <linux/quotaops.h>
32 #include <linux/writeback.h>
33 #include <linux/buffer_head.h>
34 #include <linux/mpage.h>
35 #include <linux/fiemap.h>
36 #include <linux/iomap.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include "ext2.h"
40 #include "acl.h"
41 #include "xattr.h"
42
43 static int __ext2_write_inode(struct inode *inode, int do_sync);
44
45 /*
46  * Test whether an inode is a fast symlink.
47  */
48 static inline int ext2_inode_is_fast_symlink(struct inode *inode)
49 {
50         int ea_blocks = EXT2_I(inode)->i_file_acl ?
51                 (inode->i_sb->s_blocksize >> 9) : 0;
52
53         return (S_ISLNK(inode->i_mode) &&
54                 inode->i_blocks - ea_blocks == 0);
55 }
56
57 static void ext2_truncate_blocks(struct inode *inode, loff_t offset);
58
59 static void ext2_write_failed(struct address_space *mapping, loff_t to)
60 {
61         struct inode *inode = mapping->host;
62
63         if (to > inode->i_size) {
64                 truncate_pagecache(inode, inode->i_size);
65                 ext2_truncate_blocks(inode, inode->i_size);
66         }
67 }
68
69 /*
70  * Called at the last iput() if i_nlink is zero.
71  */
72 void ext2_evict_inode(struct inode * inode)
73 {
74         struct ext2_block_alloc_info *rsv;
75         int want_delete = 0;
76
77         if (!inode->i_nlink && !is_bad_inode(inode)) {
78                 want_delete = 1;
79                 dquot_initialize(inode);
80         } else {
81                 dquot_drop(inode);
82         }
83
84         truncate_inode_pages_final(&inode->i_data);
85
86         if (want_delete) {
87                 sb_start_intwrite(inode->i_sb);
88                 /* set dtime */
89                 EXT2_I(inode)->i_dtime  = ktime_get_real_seconds();
90                 mark_inode_dirty(inode);
91                 __ext2_write_inode(inode, inode_needs_sync(inode));
92                 /* truncate to 0 */
93                 inode->i_size = 0;
94                 if (inode->i_blocks)
95                         ext2_truncate_blocks(inode, 0);
96                 ext2_xattr_delete_inode(inode);
97         }
98
99         invalidate_inode_buffers(inode);
100         clear_inode(inode);
101
102         ext2_discard_reservation(inode);
103         rsv = EXT2_I(inode)->i_block_alloc_info;
104         EXT2_I(inode)->i_block_alloc_info = NULL;
105         if (unlikely(rsv))
106                 kfree(rsv);
107
108         if (want_delete) {
109                 ext2_free_inode(inode);
110                 sb_end_intwrite(inode->i_sb);
111         }
112 }
113
114 typedef struct {
115         __le32  *p;
116         __le32  key;
117         struct buffer_head *bh;
118 } Indirect;
119
120 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
121 {
122         p->key = *(p->p = v);
123         p->bh = bh;
124 }
125
126 static inline int verify_chain(Indirect *from, Indirect *to)
127 {
128         while (from <= to && from->key == *from->p)
129                 from++;
130         return (from > to);
131 }
132
133 /**
134  *      ext2_block_to_path - parse the block number into array of offsets
135  *      @inode: inode in question (we are only interested in its superblock)
136  *      @i_block: block number to be parsed
137  *      @offsets: array to store the offsets in
138  *      @boundary: set this non-zero if the referred-to block is likely to be
139  *             followed (on disk) by an indirect block.
140  *      To store the locations of file's data ext2 uses a data structure common
141  *      for UNIX filesystems - tree of pointers anchored in the inode, with
142  *      data blocks at leaves and indirect blocks in intermediate nodes.
143  *      This function translates the block number into path in that tree -
144  *      return value is the path length and @offsets[n] is the offset of
145  *      pointer to (n+1)th node in the nth one. If @block is out of range
146  *      (negative or too large) warning is printed and zero returned.
147  *
148  *      Note: function doesn't find node addresses, so no IO is needed. All
149  *      we need to know is the capacity of indirect blocks (taken from the
150  *      inode->i_sb).
151  */
152
153 /*
154  * Portability note: the last comparison (check that we fit into triple
155  * indirect block) is spelled differently, because otherwise on an
156  * architecture with 32-bit longs and 8Kb pages we might get into trouble
157  * if our filesystem had 8Kb blocks. We might use long long, but that would
158  * kill us on x86. Oh, well, at least the sign propagation does not matter -
159  * i_block would have to be negative in the very beginning, so we would not
160  * get there at all.
161  */
162
163 static int ext2_block_to_path(struct inode *inode,
164                         long i_block, int offsets[4], int *boundary)
165 {
166         int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb);
167         int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb);
168         const long direct_blocks = EXT2_NDIR_BLOCKS,
169                 indirect_blocks = ptrs,
170                 double_blocks = (1 << (ptrs_bits * 2));
171         int n = 0;
172         int final = 0;
173
174         if (i_block < 0) {
175                 ext2_msg(inode->i_sb, KERN_WARNING,
176                         "warning: %s: block < 0", __func__);
177         } else if (i_block < direct_blocks) {
178                 offsets[n++] = i_block;
179                 final = direct_blocks;
180         } else if ( (i_block -= direct_blocks) < indirect_blocks) {
181                 offsets[n++] = EXT2_IND_BLOCK;
182                 offsets[n++] = i_block;
183                 final = ptrs;
184         } else if ((i_block -= indirect_blocks) < double_blocks) {
185                 offsets[n++] = EXT2_DIND_BLOCK;
186                 offsets[n++] = i_block >> ptrs_bits;
187                 offsets[n++] = i_block & (ptrs - 1);
188                 final = ptrs;
189         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
190                 offsets[n++] = EXT2_TIND_BLOCK;
191                 offsets[n++] = i_block >> (ptrs_bits * 2);
192                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
193                 offsets[n++] = i_block & (ptrs - 1);
194                 final = ptrs;
195         } else {
196                 ext2_msg(inode->i_sb, KERN_WARNING,
197                         "warning: %s: block is too big", __func__);
198         }
199         if (boundary)
200                 *boundary = final - 1 - (i_block & (ptrs - 1));
201
202         return n;
203 }
204
205 /**
206  *      ext2_get_branch - read the chain of indirect blocks leading to data
207  *      @inode: inode in question
208  *      @depth: depth of the chain (1 - direct pointer, etc.)
209  *      @offsets: offsets of pointers in inode/indirect blocks
210  *      @chain: place to store the result
211  *      @err: here we store the error value
212  *
213  *      Function fills the array of triples <key, p, bh> and returns %NULL
214  *      if everything went OK or the pointer to the last filled triple
215  *      (incomplete one) otherwise. Upon the return chain[i].key contains
216  *      the number of (i+1)-th block in the chain (as it is stored in memory,
217  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
218  *      number (it points into struct inode for i==0 and into the bh->b_data
219  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
220  *      block for i>0 and NULL for i==0. In other words, it holds the block
221  *      numbers of the chain, addresses they were taken from (and where we can
222  *      verify that chain did not change) and buffer_heads hosting these
223  *      numbers.
224  *
225  *      Function stops when it stumbles upon zero pointer (absent block)
226  *              (pointer to last triple returned, *@err == 0)
227  *      or when it gets an IO error reading an indirect block
228  *              (ditto, *@err == -EIO)
229  *      or when it notices that chain had been changed while it was reading
230  *              (ditto, *@err == -EAGAIN)
231  *      or when it reads all @depth-1 indirect blocks successfully and finds
232  *      the whole chain, all way to the data (returns %NULL, *err == 0).
233  */
234 static Indirect *ext2_get_branch(struct inode *inode,
235                                  int depth,
236                                  int *offsets,
237                                  Indirect chain[4],
238                                  int *err)
239 {
240         struct super_block *sb = inode->i_sb;
241         Indirect *p = chain;
242         struct buffer_head *bh;
243
244         *err = 0;
245         /* i_data is not going away, no lock needed */
246         add_chain (chain, NULL, EXT2_I(inode)->i_data + *offsets);
247         if (!p->key)
248                 goto no_block;
249         while (--depth) {
250                 bh = sb_bread(sb, le32_to_cpu(p->key));
251                 if (!bh)
252                         goto failure;
253                 read_lock(&EXT2_I(inode)->i_meta_lock);
254                 if (!verify_chain(chain, p))
255                         goto changed;
256                 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
257                 read_unlock(&EXT2_I(inode)->i_meta_lock);
258                 if (!p->key)
259                         goto no_block;
260         }
261         return NULL;
262
263 changed:
264         read_unlock(&EXT2_I(inode)->i_meta_lock);
265         brelse(bh);
266         *err = -EAGAIN;
267         goto no_block;
268 failure:
269         *err = -EIO;
270 no_block:
271         return p;
272 }
273
274 /**
275  *      ext2_find_near - find a place for allocation with sufficient locality
276  *      @inode: owner
277  *      @ind: descriptor of indirect block.
278  *
279  *      This function returns the preferred place for block allocation.
280  *      It is used when heuristic for sequential allocation fails.
281  *      Rules are:
282  *        + if there is a block to the left of our position - allocate near it.
283  *        + if pointer will live in indirect block - allocate near that block.
284  *        + if pointer will live in inode - allocate in the same cylinder group.
285  *
286  * In the latter case we colour the starting block by the callers PID to
287  * prevent it from clashing with concurrent allocations for a different inode
288  * in the same block group.   The PID is used here so that functionally related
289  * files will be close-by on-disk.
290  *
291  *      Caller must make sure that @ind is valid and will stay that way.
292  */
293
294 static ext2_fsblk_t ext2_find_near(struct inode *inode, Indirect *ind)
295 {
296         struct ext2_inode_info *ei = EXT2_I(inode);
297         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
298         __le32 *p;
299         ext2_fsblk_t bg_start;
300         ext2_fsblk_t colour;
301
302         /* Try to find previous block */
303         for (p = ind->p - 1; p >= start; p--)
304                 if (*p)
305                         return le32_to_cpu(*p);
306
307         /* No such thing, so let's try location of indirect block */
308         if (ind->bh)
309                 return ind->bh->b_blocknr;
310
311         /*
312          * It is going to be referred from inode itself? OK, just put it into
313          * the same cylinder group then.
314          */
315         bg_start = ext2_group_first_block_no(inode->i_sb, ei->i_block_group);
316         colour = (current->pid % 16) *
317                         (EXT2_BLOCKS_PER_GROUP(inode->i_sb) / 16);
318         return bg_start + colour;
319 }
320
321 /**
322  *      ext2_find_goal - find a preferred place for allocation.
323  *      @inode: owner
324  *      @block:  block we want
325  *      @partial: pointer to the last triple within a chain
326  *
327  *      Returns preferred place for a block (the goal).
328  */
329
330 static inline ext2_fsblk_t ext2_find_goal(struct inode *inode, long block,
331                                           Indirect *partial)
332 {
333         struct ext2_block_alloc_info *block_i;
334
335         block_i = EXT2_I(inode)->i_block_alloc_info;
336
337         /*
338          * try the heuristic for sequential allocation,
339          * failing that at least try to get decent locality.
340          */
341         if (block_i && (block == block_i->last_alloc_logical_block + 1)
342                 && (block_i->last_alloc_physical_block != 0)) {
343                 return block_i->last_alloc_physical_block + 1;
344         }
345
346         return ext2_find_near(inode, partial);
347 }
348
349 /**
350  *      ext2_blks_to_allocate: Look up the block map and count the number
351  *      of direct blocks need to be allocated for the given branch.
352  *
353  *      @branch: chain of indirect blocks
354  *      @k: number of blocks need for indirect blocks
355  *      @blks: number of data blocks to be mapped.
356  *      @blocks_to_boundary:  the offset in the indirect block
357  *
358  *      return the number of direct blocks to allocate.
359  */
360 static int
361 ext2_blks_to_allocate(Indirect * branch, int k, unsigned long blks,
362                 int blocks_to_boundary)
363 {
364         unsigned long count = 0;
365
366         /*
367          * Simple case, [t,d]Indirect block(s) has not allocated yet
368          * then it's clear blocks on that path have not allocated
369          */
370         if (k > 0) {
371                 /* right now don't hanel cross boundary allocation */
372                 if (blks < blocks_to_boundary + 1)
373                         count += blks;
374                 else
375                         count += blocks_to_boundary + 1;
376                 return count;
377         }
378
379         count++;
380         while (count < blks && count <= blocks_to_boundary
381                 && le32_to_cpu(*(branch[0].p + count)) == 0) {
382                 count++;
383         }
384         return count;
385 }
386
387 /**
388  *      ext2_alloc_blocks: multiple allocate blocks needed for a branch
389  *      @indirect_blks: the number of blocks need to allocate for indirect
390  *                      blocks
391  *      @blks: the number of blocks need to allocate for direct blocks
392  *      @new_blocks: on return it will store the new block numbers for
393  *      the indirect blocks(if needed) and the first direct block,
394  */
395 static int ext2_alloc_blocks(struct inode *inode,
396                         ext2_fsblk_t goal, int indirect_blks, int blks,
397                         ext2_fsblk_t new_blocks[4], int *err)
398 {
399         int target, i;
400         unsigned long count = 0;
401         int index = 0;
402         ext2_fsblk_t current_block = 0;
403         int ret = 0;
404
405         /*
406          * Here we try to allocate the requested multiple blocks at once,
407          * on a best-effort basis.
408          * To build a branch, we should allocate blocks for
409          * the indirect blocks(if not allocated yet), and at least
410          * the first direct block of this branch.  That's the
411          * minimum number of blocks need to allocate(required)
412          */
413         target = blks + indirect_blks;
414
415         while (1) {
416                 count = target;
417                 /* allocating blocks for indirect blocks and direct blocks */
418                 current_block = ext2_new_blocks(inode,goal,&count,err);
419                 if (*err)
420                         goto failed_out;
421
422                 target -= count;
423                 /* allocate blocks for indirect blocks */
424                 while (index < indirect_blks && count) {
425                         new_blocks[index++] = current_block++;
426                         count--;
427                 }
428
429                 if (count > 0)
430                         break;
431         }
432
433         /* save the new block number for the first direct block */
434         new_blocks[index] = current_block;
435
436         /* total number of blocks allocated for direct blocks */
437         ret = count;
438         *err = 0;
439         return ret;
440 failed_out:
441         for (i = 0; i <index; i++)
442                 ext2_free_blocks(inode, new_blocks[i], 1);
443         if (index)
444                 mark_inode_dirty(inode);
445         return ret;
446 }
447
448 /**
449  *      ext2_alloc_branch - allocate and set up a chain of blocks.
450  *      @inode: owner
451  *      @indirect_blks: depth of the chain (number of blocks to allocate)
452  *      @blks: number of allocated direct blocks
453  *      @goal: preferred place for allocation
454  *      @offsets: offsets (in the blocks) to store the pointers to next.
455  *      @branch: place to store the chain in.
456  *
457  *      This function allocates @num blocks, zeroes out all but the last one,
458  *      links them into chain and (if we are synchronous) writes them to disk.
459  *      In other words, it prepares a branch that can be spliced onto the
460  *      inode. It stores the information about that chain in the branch[], in
461  *      the same format as ext2_get_branch() would do. We are calling it after
462  *      we had read the existing part of chain and partial points to the last
463  *      triple of that (one with zero ->key). Upon the exit we have the same
464  *      picture as after the successful ext2_get_block(), except that in one
465  *      place chain is disconnected - *branch->p is still zero (we did not
466  *      set the last link), but branch->key contains the number that should
467  *      be placed into *branch->p to fill that gap.
468  *
469  *      If allocation fails we free all blocks we've allocated (and forget
470  *      their buffer_heads) and return the error value the from failed
471  *      ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain
472  *      as described above and return 0.
473  */
474
475 static int ext2_alloc_branch(struct inode *inode,
476                         int indirect_blks, int *blks, ext2_fsblk_t goal,
477                         int *offsets, Indirect *branch)
478 {
479         int blocksize = inode->i_sb->s_blocksize;
480         int i, n = 0;
481         int err = 0;
482         struct buffer_head *bh;
483         int num;
484         ext2_fsblk_t new_blocks[4];
485         ext2_fsblk_t current_block;
486
487         num = ext2_alloc_blocks(inode, goal, indirect_blks,
488                                 *blks, new_blocks, &err);
489         if (err)
490                 return err;
491
492         branch[0].key = cpu_to_le32(new_blocks[0]);
493         /*
494          * metadata blocks and data blocks are allocated.
495          */
496         for (n = 1; n <= indirect_blks;  n++) {
497                 /*
498                  * Get buffer_head for parent block, zero it out
499                  * and set the pointer to new one, then send
500                  * parent to disk.
501                  */
502                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
503                 if (unlikely(!bh)) {
504                         err = -ENOMEM;
505                         goto failed;
506                 }
507                 branch[n].bh = bh;
508                 lock_buffer(bh);
509                 memset(bh->b_data, 0, blocksize);
510                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
511                 branch[n].key = cpu_to_le32(new_blocks[n]);
512                 *branch[n].p = branch[n].key;
513                 if ( n == indirect_blks) {
514                         current_block = new_blocks[n];
515                         /*
516                          * End of chain, update the last new metablock of
517                          * the chain to point to the new allocated
518                          * data blocks numbers
519                          */
520                         for (i=1; i < num; i++)
521                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
522                 }
523                 set_buffer_uptodate(bh);
524                 unlock_buffer(bh);
525                 mark_buffer_dirty_inode(bh, inode);
526                 /* We used to sync bh here if IS_SYNC(inode).
527                  * But we now rely upon generic_write_sync()
528                  * and b_inode_buffers.  But not for directories.
529                  */
530                 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
531                         sync_dirty_buffer(bh);
532         }
533         *blks = num;
534         return err;
535
536 failed:
537         for (i = 1; i < n; i++)
538                 bforget(branch[i].bh);
539         for (i = 0; i < indirect_blks; i++)
540                 ext2_free_blocks(inode, new_blocks[i], 1);
541         ext2_free_blocks(inode, new_blocks[i], num);
542         return err;
543 }
544
545 /**
546  * ext2_splice_branch - splice the allocated branch onto inode.
547  * @inode: owner
548  * @block: (logical) number of block we are adding
549  * @where: location of missing link
550  * @num:   number of indirect blocks we are adding
551  * @blks:  number of direct blocks we are adding
552  *
553  * This function fills the missing link and does all housekeeping needed in
554  * inode (->i_blocks, etc.). In case of success we end up with the full
555  * chain to new block and return 0.
556  */
557 static void ext2_splice_branch(struct inode *inode,
558                         long block, Indirect *where, int num, int blks)
559 {
560         int i;
561         struct ext2_block_alloc_info *block_i;
562         ext2_fsblk_t current_block;
563
564         block_i = EXT2_I(inode)->i_block_alloc_info;
565
566         /* XXX LOCKING probably should have i_meta_lock ?*/
567         /* That's it */
568
569         *where->p = where->key;
570
571         /*
572          * Update the host buffer_head or inode to point to more just allocated
573          * direct blocks blocks
574          */
575         if (num == 0 && blks > 1) {
576                 current_block = le32_to_cpu(where->key) + 1;
577                 for (i = 1; i < blks; i++)
578                         *(where->p + i ) = cpu_to_le32(current_block++);
579         }
580
581         /*
582          * update the most recently allocated logical & physical block
583          * in i_block_alloc_info, to assist find the proper goal block for next
584          * allocation
585          */
586         if (block_i) {
587                 block_i->last_alloc_logical_block = block + blks - 1;
588                 block_i->last_alloc_physical_block =
589                                 le32_to_cpu(where[num].key) + blks - 1;
590         }
591
592         /* We are done with atomic stuff, now do the rest of housekeeping */
593
594         /* had we spliced it onto indirect block? */
595         if (where->bh)
596                 mark_buffer_dirty_inode(where->bh, inode);
597
598         inode->i_ctime = current_time(inode);
599         mark_inode_dirty(inode);
600 }
601
602 /*
603  * Allocation strategy is simple: if we have to allocate something, we will
604  * have to go the whole way to leaf. So let's do it before attaching anything
605  * to tree, set linkage between the newborn blocks, write them if sync is
606  * required, recheck the path, free and repeat if check fails, otherwise
607  * set the last missing link (that will protect us from any truncate-generated
608  * removals - all blocks on the path are immune now) and possibly force the
609  * write on the parent block.
610  * That has a nice additional property: no special recovery from the failed
611  * allocations is needed - we simply release blocks and do not touch anything
612  * reachable from inode.
613  *
614  * `handle' can be NULL if create == 0.
615  *
616  * return > 0, # of blocks mapped or allocated.
617  * return = 0, if plain lookup failed.
618  * return < 0, error case.
619  */
620 static int ext2_get_blocks(struct inode *inode,
621                            sector_t iblock, unsigned long maxblocks,
622                            u32 *bno, bool *new, bool *boundary,
623                            int create)
624 {
625         int err;
626         int offsets[4];
627         Indirect chain[4];
628         Indirect *partial;
629         ext2_fsblk_t goal;
630         int indirect_blks;
631         int blocks_to_boundary = 0;
632         int depth;
633         struct ext2_inode_info *ei = EXT2_I(inode);
634         int count = 0;
635         ext2_fsblk_t first_block = 0;
636
637         BUG_ON(maxblocks == 0);
638
639         depth = ext2_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
640
641         if (depth == 0)
642                 return -EIO;
643
644         partial = ext2_get_branch(inode, depth, offsets, chain, &err);
645         /* Simplest case - block found, no allocation needed */
646         if (!partial) {
647                 first_block = le32_to_cpu(chain[depth - 1].key);
648                 count++;
649                 /*map more blocks*/
650                 while (count < maxblocks && count <= blocks_to_boundary) {
651                         ext2_fsblk_t blk;
652
653                         if (!verify_chain(chain, chain + depth - 1)) {
654                                 /*
655                                  * Indirect block might be removed by
656                                  * truncate while we were reading it.
657                                  * Handling of that case: forget what we've
658                                  * got now, go to reread.
659                                  */
660                                 err = -EAGAIN;
661                                 count = 0;
662                                 partial = chain + depth - 1;
663                                 break;
664                         }
665                         blk = le32_to_cpu(*(chain[depth-1].p + count));
666                         if (blk == first_block + count)
667                                 count++;
668                         else
669                                 break;
670                 }
671                 if (err != -EAGAIN)
672                         goto got_it;
673         }
674
675         /* Next simple case - plain lookup or failed read of indirect block */
676         if (!create || err == -EIO)
677                 goto cleanup;
678
679         mutex_lock(&ei->truncate_mutex);
680         /*
681          * If the indirect block is missing while we are reading
682          * the chain(ext2_get_branch() returns -EAGAIN err), or
683          * if the chain has been changed after we grab the semaphore,
684          * (either because another process truncated this branch, or
685          * another get_block allocated this branch) re-grab the chain to see if
686          * the request block has been allocated or not.
687          *
688          * Since we already block the truncate/other get_block
689          * at this point, we will have the current copy of the chain when we
690          * splice the branch into the tree.
691          */
692         if (err == -EAGAIN || !verify_chain(chain, partial)) {
693                 while (partial > chain) {
694                         brelse(partial->bh);
695                         partial--;
696                 }
697                 partial = ext2_get_branch(inode, depth, offsets, chain, &err);
698                 if (!partial) {
699                         count++;
700                         mutex_unlock(&ei->truncate_mutex);
701                         goto got_it;
702                 }
703
704                 if (err) {
705                         mutex_unlock(&ei->truncate_mutex);
706                         goto cleanup;
707                 }
708         }
709
710         /*
711          * Okay, we need to do block allocation.  Lazily initialize the block
712          * allocation info here if necessary
713         */
714         if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
715                 ext2_init_block_alloc_info(inode);
716
717         goal = ext2_find_goal(inode, iblock, partial);
718
719         /* the number of blocks need to allocate for [d,t]indirect blocks */
720         indirect_blks = (chain + depth) - partial - 1;
721         /*
722          * Next look up the indirect map to count the total number of
723          * direct blocks to allocate for this branch.
724          */
725         count = ext2_blks_to_allocate(partial, indirect_blks,
726                                         maxblocks, blocks_to_boundary);
727         /*
728          * XXX ???? Block out ext2_truncate while we alter the tree
729          */
730         err = ext2_alloc_branch(inode, indirect_blks, &count, goal,
731                                 offsets + (partial - chain), partial);
732
733         if (err) {
734                 mutex_unlock(&ei->truncate_mutex);
735                 goto cleanup;
736         }
737
738         if (IS_DAX(inode)) {
739                 /*
740                  * We must unmap blocks before zeroing so that writeback cannot
741                  * overwrite zeros with stale data from block device page cache.
742                  */
743                 clean_bdev_aliases(inode->i_sb->s_bdev,
744                                    le32_to_cpu(chain[depth-1].key),
745                                    count);
746                 /*
747                  * block must be initialised before we put it in the tree
748                  * so that it's not found by another thread before it's
749                  * initialised
750                  */
751                 err = sb_issue_zeroout(inode->i_sb,
752                                 le32_to_cpu(chain[depth-1].key), count,
753                                 GFP_NOFS);
754                 if (err) {
755                         mutex_unlock(&ei->truncate_mutex);
756                         goto cleanup;
757                 }
758         }
759         *new = true;
760
761         ext2_splice_branch(inode, iblock, partial, indirect_blks, count);
762         mutex_unlock(&ei->truncate_mutex);
763 got_it:
764         if (count > blocks_to_boundary)
765                 *boundary = true;
766         err = count;
767         /* Clean up and exit */
768         partial = chain + depth - 1;    /* the whole chain */
769 cleanup:
770         while (partial > chain) {
771                 brelse(partial->bh);
772                 partial--;
773         }
774         if (err > 0)
775                 *bno = le32_to_cpu(chain[depth-1].key);
776         return err;
777 }
778
779 int ext2_get_block(struct inode *inode, sector_t iblock,
780                 struct buffer_head *bh_result, int create)
781 {
782         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
783         bool new = false, boundary = false;
784         u32 bno;
785         int ret;
786
787         ret = ext2_get_blocks(inode, iblock, max_blocks, &bno, &new, &boundary,
788                         create);
789         if (ret <= 0)
790                 return ret;
791
792         map_bh(bh_result, inode->i_sb, bno);
793         bh_result->b_size = (ret << inode->i_blkbits);
794         if (new)
795                 set_buffer_new(bh_result);
796         if (boundary)
797                 set_buffer_boundary(bh_result);
798         return 0;
799
800 }
801
802 static int ext2_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
803                 unsigned flags, struct iomap *iomap, struct iomap *srcmap)
804 {
805         unsigned int blkbits = inode->i_blkbits;
806         unsigned long first_block = offset >> blkbits;
807         unsigned long max_blocks = (length + (1 << blkbits) - 1) >> blkbits;
808         struct ext2_sb_info *sbi = EXT2_SB(inode->i_sb);
809         bool new = false, boundary = false;
810         u32 bno;
811         int ret;
812
813         ret = ext2_get_blocks(inode, first_block, max_blocks,
814                         &bno, &new, &boundary, flags & IOMAP_WRITE);
815         if (ret < 0)
816                 return ret;
817
818         iomap->flags = 0;
819         iomap->bdev = inode->i_sb->s_bdev;
820         iomap->offset = (u64)first_block << blkbits;
821         iomap->dax_dev = sbi->s_daxdev;
822
823         if (ret == 0) {
824                 iomap->type = IOMAP_HOLE;
825                 iomap->addr = IOMAP_NULL_ADDR;
826                 iomap->length = 1 << blkbits;
827         } else {
828                 iomap->type = IOMAP_MAPPED;
829                 iomap->addr = (u64)bno << blkbits;
830                 iomap->length = (u64)ret << blkbits;
831                 iomap->flags |= IOMAP_F_MERGED;
832         }
833
834         if (new)
835                 iomap->flags |= IOMAP_F_NEW;
836         return 0;
837 }
838
839 static int
840 ext2_iomap_end(struct inode *inode, loff_t offset, loff_t length,
841                 ssize_t written, unsigned flags, struct iomap *iomap)
842 {
843         if (iomap->type == IOMAP_MAPPED &&
844             written < length &&
845             (flags & IOMAP_WRITE))
846                 ext2_write_failed(inode->i_mapping, offset + length);
847         return 0;
848 }
849
850 const struct iomap_ops ext2_iomap_ops = {
851         .iomap_begin            = ext2_iomap_begin,
852         .iomap_end              = ext2_iomap_end,
853 };
854
855 int ext2_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
856                 u64 start, u64 len)
857 {
858         int ret;
859
860         inode_lock(inode);
861         len = min_t(u64, len, i_size_read(inode));
862         ret = iomap_fiemap(inode, fieinfo, start, len, &ext2_iomap_ops);
863         inode_unlock(inode);
864
865         return ret;
866 }
867
868 static int ext2_writepage(struct page *page, struct writeback_control *wbc)
869 {
870         return block_write_full_page(page, ext2_get_block, wbc);
871 }
872
873 static int ext2_readpage(struct file *file, struct page *page)
874 {
875         return mpage_readpage(page, ext2_get_block);
876 }
877
878 static void ext2_readahead(struct readahead_control *rac)
879 {
880         mpage_readahead(rac, ext2_get_block);
881 }
882
883 static int
884 ext2_write_begin(struct file *file, struct address_space *mapping,
885                 loff_t pos, unsigned len, unsigned flags,
886                 struct page **pagep, void **fsdata)
887 {
888         int ret;
889
890         ret = block_write_begin(mapping, pos, len, flags, pagep,
891                                 ext2_get_block);
892         if (ret < 0)
893                 ext2_write_failed(mapping, pos + len);
894         return ret;
895 }
896
897 static int ext2_write_end(struct file *file, struct address_space *mapping,
898                         loff_t pos, unsigned len, unsigned copied,
899                         struct page *page, void *fsdata)
900 {
901         int ret;
902
903         ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
904         if (ret < len)
905                 ext2_write_failed(mapping, pos + len);
906         return ret;
907 }
908
909 static int
910 ext2_nobh_write_begin(struct file *file, struct address_space *mapping,
911                 loff_t pos, unsigned len, unsigned flags,
912                 struct page **pagep, void **fsdata)
913 {
914         int ret;
915
916         ret = nobh_write_begin(mapping, pos, len, flags, pagep, fsdata,
917                                ext2_get_block);
918         if (ret < 0)
919                 ext2_write_failed(mapping, pos + len);
920         return ret;
921 }
922
923 static int ext2_nobh_writepage(struct page *page,
924                         struct writeback_control *wbc)
925 {
926         return nobh_writepage(page, ext2_get_block, wbc);
927 }
928
929 static sector_t ext2_bmap(struct address_space *mapping, sector_t block)
930 {
931         return generic_block_bmap(mapping,block,ext2_get_block);
932 }
933
934 static ssize_t
935 ext2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
936 {
937         struct file *file = iocb->ki_filp;
938         struct address_space *mapping = file->f_mapping;
939         struct inode *inode = mapping->host;
940         size_t count = iov_iter_count(iter);
941         loff_t offset = iocb->ki_pos;
942         ssize_t ret;
943
944         ret = blockdev_direct_IO(iocb, inode, iter, ext2_get_block);
945         if (ret < 0 && iov_iter_rw(iter) == WRITE)
946                 ext2_write_failed(mapping, offset + count);
947         return ret;
948 }
949
950 static int
951 ext2_writepages(struct address_space *mapping, struct writeback_control *wbc)
952 {
953         return mpage_writepages(mapping, wbc, ext2_get_block);
954 }
955
956 static int
957 ext2_dax_writepages(struct address_space *mapping, struct writeback_control *wbc)
958 {
959         struct ext2_sb_info *sbi = EXT2_SB(mapping->host->i_sb);
960
961         return dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
962 }
963
964 const struct address_space_operations ext2_aops = {
965         .set_page_dirty         = __set_page_dirty_buffers,
966         .readpage               = ext2_readpage,
967         .readahead              = ext2_readahead,
968         .writepage              = ext2_writepage,
969         .write_begin            = ext2_write_begin,
970         .write_end              = ext2_write_end,
971         .bmap                   = ext2_bmap,
972         .direct_IO              = ext2_direct_IO,
973         .writepages             = ext2_writepages,
974         .migratepage            = buffer_migrate_page,
975         .is_partially_uptodate  = block_is_partially_uptodate,
976         .error_remove_page      = generic_error_remove_page,
977 };
978
979 const struct address_space_operations ext2_nobh_aops = {
980         .set_page_dirty         = __set_page_dirty_buffers,
981         .readpage               = ext2_readpage,
982         .readahead              = ext2_readahead,
983         .writepage              = ext2_nobh_writepage,
984         .write_begin            = ext2_nobh_write_begin,
985         .write_end              = nobh_write_end,
986         .bmap                   = ext2_bmap,
987         .direct_IO              = ext2_direct_IO,
988         .writepages             = ext2_writepages,
989         .migratepage            = buffer_migrate_page,
990         .error_remove_page      = generic_error_remove_page,
991 };
992
993 static const struct address_space_operations ext2_dax_aops = {
994         .writepages             = ext2_dax_writepages,
995         .direct_IO              = noop_direct_IO,
996         .set_page_dirty         = __set_page_dirty_no_writeback,
997         .invalidatepage         = noop_invalidatepage,
998 };
999
1000 /*
1001  * Probably it should be a library function... search for first non-zero word
1002  * or memcmp with zero_page, whatever is better for particular architecture.
1003  * Linus?
1004  */
1005 static inline int all_zeroes(__le32 *p, __le32 *q)
1006 {
1007         while (p < q)
1008                 if (*p++)
1009                         return 0;
1010         return 1;
1011 }
1012
1013 /**
1014  *      ext2_find_shared - find the indirect blocks for partial truncation.
1015  *      @inode:   inode in question
1016  *      @depth:   depth of the affected branch
1017  *      @offsets: offsets of pointers in that branch (see ext2_block_to_path)
1018  *      @chain:   place to store the pointers to partial indirect blocks
1019  *      @top:     place to the (detached) top of branch
1020  *
1021  *      This is a helper function used by ext2_truncate().
1022  *
1023  *      When we do truncate() we may have to clean the ends of several indirect
1024  *      blocks but leave the blocks themselves alive. Block is partially
1025  *      truncated if some data below the new i_size is referred from it (and
1026  *      it is on the path to the first completely truncated data block, indeed).
1027  *      We have to free the top of that path along with everything to the right
1028  *      of the path. Since no allocation past the truncation point is possible
1029  *      until ext2_truncate() finishes, we may safely do the latter, but top
1030  *      of branch may require special attention - pageout below the truncation
1031  *      point might try to populate it.
1032  *
1033  *      We atomically detach the top of branch from the tree, store the block
1034  *      number of its root in *@top, pointers to buffer_heads of partially
1035  *      truncated blocks - in @chain[].bh and pointers to their last elements
1036  *      that should not be removed - in @chain[].p. Return value is the pointer
1037  *      to last filled element of @chain.
1038  *
1039  *      The work left to caller to do the actual freeing of subtrees:
1040  *              a) free the subtree starting from *@top
1041  *              b) free the subtrees whose roots are stored in
1042  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
1043  *              c) free the subtrees growing from the inode past the @chain[0].p
1044  *                      (no partially truncated stuff there).
1045  */
1046
1047 static Indirect *ext2_find_shared(struct inode *inode,
1048                                 int depth,
1049                                 int offsets[4],
1050                                 Indirect chain[4],
1051                                 __le32 *top)
1052 {
1053         Indirect *partial, *p;
1054         int k, err;
1055
1056         *top = 0;
1057         for (k = depth; k > 1 && !offsets[k-1]; k--)
1058                 ;
1059         partial = ext2_get_branch(inode, k, offsets, chain, &err);
1060         if (!partial)
1061                 partial = chain + k-1;
1062         /*
1063          * If the branch acquired continuation since we've looked at it -
1064          * fine, it should all survive and (new) top doesn't belong to us.
1065          */
1066         write_lock(&EXT2_I(inode)->i_meta_lock);
1067         if (!partial->key && *partial->p) {
1068                 write_unlock(&EXT2_I(inode)->i_meta_lock);
1069                 goto no_top;
1070         }
1071         for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
1072                 ;
1073         /*
1074          * OK, we've found the last block that must survive. The rest of our
1075          * branch should be detached before unlocking. However, if that rest
1076          * of branch is all ours and does not grow immediately from the inode
1077          * it's easier to cheat and just decrement partial->p.
1078          */
1079         if (p == chain + k - 1 && p > chain) {
1080                 p->p--;
1081         } else {
1082                 *top = *p->p;
1083                 *p->p = 0;
1084         }
1085         write_unlock(&EXT2_I(inode)->i_meta_lock);
1086
1087         while(partial > p)
1088         {
1089                 brelse(partial->bh);
1090                 partial--;
1091         }
1092 no_top:
1093         return partial;
1094 }
1095
1096 /**
1097  *      ext2_free_data - free a list of data blocks
1098  *      @inode: inode we are dealing with
1099  *      @p:     array of block numbers
1100  *      @q:     points immediately past the end of array
1101  *
1102  *      We are freeing all blocks referred from that array (numbers are
1103  *      stored as little-endian 32-bit) and updating @inode->i_blocks
1104  *      appropriately.
1105  */
1106 static inline void ext2_free_data(struct inode *inode, __le32 *p, __le32 *q)
1107 {
1108         unsigned long block_to_free = 0, count = 0;
1109         unsigned long nr;
1110
1111         for ( ; p < q ; p++) {
1112                 nr = le32_to_cpu(*p);
1113                 if (nr) {
1114                         *p = 0;
1115                         /* accumulate blocks to free if they're contiguous */
1116                         if (count == 0)
1117                                 goto free_this;
1118                         else if (block_to_free == nr - count)
1119                                 count++;
1120                         else {
1121                                 ext2_free_blocks (inode, block_to_free, count);
1122                                 mark_inode_dirty(inode);
1123                         free_this:
1124                                 block_to_free = nr;
1125                                 count = 1;
1126                         }
1127                 }
1128         }
1129         if (count > 0) {
1130                 ext2_free_blocks (inode, block_to_free, count);
1131                 mark_inode_dirty(inode);
1132         }
1133 }
1134
1135 /**
1136  *      ext2_free_branches - free an array of branches
1137  *      @inode: inode we are dealing with
1138  *      @p:     array of block numbers
1139  *      @q:     pointer immediately past the end of array
1140  *      @depth: depth of the branches to free
1141  *
1142  *      We are freeing all blocks referred from these branches (numbers are
1143  *      stored as little-endian 32-bit) and updating @inode->i_blocks
1144  *      appropriately.
1145  */
1146 static void ext2_free_branches(struct inode *inode, __le32 *p, __le32 *q, int depth)
1147 {
1148         struct buffer_head * bh;
1149         unsigned long nr;
1150
1151         if (depth--) {
1152                 int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1153                 for ( ; p < q ; p++) {
1154                         nr = le32_to_cpu(*p);
1155                         if (!nr)
1156                                 continue;
1157                         *p = 0;
1158                         bh = sb_bread(inode->i_sb, nr);
1159                         /*
1160                          * A read failure? Report error and clear slot
1161                          * (should be rare).
1162                          */ 
1163                         if (!bh) {
1164                                 ext2_error(inode->i_sb, "ext2_free_branches",
1165                                         "Read failure, inode=%ld, block=%ld",
1166                                         inode->i_ino, nr);
1167                                 continue;
1168                         }
1169                         ext2_free_branches(inode,
1170                                            (__le32*)bh->b_data,
1171                                            (__le32*)bh->b_data + addr_per_block,
1172                                            depth);
1173                         bforget(bh);
1174                         ext2_free_blocks(inode, nr, 1);
1175                         mark_inode_dirty(inode);
1176                 }
1177         } else
1178                 ext2_free_data(inode, p, q);
1179 }
1180
1181 /* mapping->invalidate_lock must be held when calling this function */
1182 static void __ext2_truncate_blocks(struct inode *inode, loff_t offset)
1183 {
1184         __le32 *i_data = EXT2_I(inode)->i_data;
1185         struct ext2_inode_info *ei = EXT2_I(inode);
1186         int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1187         int offsets[4];
1188         Indirect chain[4];
1189         Indirect *partial;
1190         __le32 nr = 0;
1191         int n;
1192         long iblock;
1193         unsigned blocksize;
1194         blocksize = inode->i_sb->s_blocksize;
1195         iblock = (offset + blocksize-1) >> EXT2_BLOCK_SIZE_BITS(inode->i_sb);
1196
1197 #ifdef CONFIG_FS_DAX
1198         WARN_ON(!rwsem_is_locked(&inode->i_mapping->invalidate_lock));
1199 #endif
1200
1201         n = ext2_block_to_path(inode, iblock, offsets, NULL);
1202         if (n == 0)
1203                 return;
1204
1205         /*
1206          * From here we block out all ext2_get_block() callers who want to
1207          * modify the block allocation tree.
1208          */
1209         mutex_lock(&ei->truncate_mutex);
1210
1211         if (n == 1) {
1212                 ext2_free_data(inode, i_data+offsets[0],
1213                                         i_data + EXT2_NDIR_BLOCKS);
1214                 goto do_indirects;
1215         }
1216
1217         partial = ext2_find_shared(inode, n, offsets, chain, &nr);
1218         /* Kill the top of shared branch (already detached) */
1219         if (nr) {
1220                 if (partial == chain)
1221                         mark_inode_dirty(inode);
1222                 else
1223                         mark_buffer_dirty_inode(partial->bh, inode);
1224                 ext2_free_branches(inode, &nr, &nr+1, (chain+n-1) - partial);
1225         }
1226         /* Clear the ends of indirect blocks on the shared branch */
1227         while (partial > chain) {
1228                 ext2_free_branches(inode,
1229                                    partial->p + 1,
1230                                    (__le32*)partial->bh->b_data+addr_per_block,
1231                                    (chain+n-1) - partial);
1232                 mark_buffer_dirty_inode(partial->bh, inode);
1233                 brelse (partial->bh);
1234                 partial--;
1235         }
1236 do_indirects:
1237         /* Kill the remaining (whole) subtrees */
1238         switch (offsets[0]) {
1239                 default:
1240                         nr = i_data[EXT2_IND_BLOCK];
1241                         if (nr) {
1242                                 i_data[EXT2_IND_BLOCK] = 0;
1243                                 mark_inode_dirty(inode);
1244                                 ext2_free_branches(inode, &nr, &nr+1, 1);
1245                         }
1246                         fallthrough;
1247                 case EXT2_IND_BLOCK:
1248                         nr = i_data[EXT2_DIND_BLOCK];
1249                         if (nr) {
1250                                 i_data[EXT2_DIND_BLOCK] = 0;
1251                                 mark_inode_dirty(inode);
1252                                 ext2_free_branches(inode, &nr, &nr+1, 2);
1253                         }
1254                         fallthrough;
1255                 case EXT2_DIND_BLOCK:
1256                         nr = i_data[EXT2_TIND_BLOCK];
1257                         if (nr) {
1258                                 i_data[EXT2_TIND_BLOCK] = 0;
1259                                 mark_inode_dirty(inode);
1260                                 ext2_free_branches(inode, &nr, &nr+1, 3);
1261                         }
1262                         break;
1263                 case EXT2_TIND_BLOCK:
1264                         ;
1265         }
1266
1267         ext2_discard_reservation(inode);
1268
1269         mutex_unlock(&ei->truncate_mutex);
1270 }
1271
1272 static void ext2_truncate_blocks(struct inode *inode, loff_t offset)
1273 {
1274         if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1275             S_ISLNK(inode->i_mode)))
1276                 return;
1277         if (ext2_inode_is_fast_symlink(inode))
1278                 return;
1279
1280         filemap_invalidate_lock(inode->i_mapping);
1281         __ext2_truncate_blocks(inode, offset);
1282         filemap_invalidate_unlock(inode->i_mapping);
1283 }
1284
1285 static int ext2_setsize(struct inode *inode, loff_t newsize)
1286 {
1287         int error;
1288
1289         if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1290             S_ISLNK(inode->i_mode)))
1291                 return -EINVAL;
1292         if (ext2_inode_is_fast_symlink(inode))
1293                 return -EINVAL;
1294         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1295                 return -EPERM;
1296
1297         inode_dio_wait(inode);
1298
1299         if (IS_DAX(inode)) {
1300                 error = iomap_zero_range(inode, newsize,
1301                                          PAGE_ALIGN(newsize) - newsize, NULL,
1302                                          &ext2_iomap_ops);
1303         } else if (test_opt(inode->i_sb, NOBH))
1304                 error = nobh_truncate_page(inode->i_mapping,
1305                                 newsize, ext2_get_block);
1306         else
1307                 error = block_truncate_page(inode->i_mapping,
1308                                 newsize, ext2_get_block);
1309         if (error)
1310                 return error;
1311
1312         filemap_invalidate_lock(inode->i_mapping);
1313         truncate_setsize(inode, newsize);
1314         __ext2_truncate_blocks(inode, newsize);
1315         filemap_invalidate_unlock(inode->i_mapping);
1316
1317         inode->i_mtime = inode->i_ctime = current_time(inode);
1318         if (inode_needs_sync(inode)) {
1319                 sync_mapping_buffers(inode->i_mapping);
1320                 sync_inode_metadata(inode, 1);
1321         } else {
1322                 mark_inode_dirty(inode);
1323         }
1324
1325         return 0;
1326 }
1327
1328 static struct ext2_inode *ext2_get_inode(struct super_block *sb, ino_t ino,
1329                                         struct buffer_head **p)
1330 {
1331         struct buffer_head * bh;
1332         unsigned long block_group;
1333         unsigned long block;
1334         unsigned long offset;
1335         struct ext2_group_desc * gdp;
1336
1337         *p = NULL;
1338         if ((ino != EXT2_ROOT_INO && ino < EXT2_FIRST_INO(sb)) ||
1339             ino > le32_to_cpu(EXT2_SB(sb)->s_es->s_inodes_count))
1340                 goto Einval;
1341
1342         block_group = (ino - 1) / EXT2_INODES_PER_GROUP(sb);
1343         gdp = ext2_get_group_desc(sb, block_group, NULL);
1344         if (!gdp)
1345                 goto Egdp;
1346         /*
1347          * Figure out the offset within the block group inode table
1348          */
1349         offset = ((ino - 1) % EXT2_INODES_PER_GROUP(sb)) * EXT2_INODE_SIZE(sb);
1350         block = le32_to_cpu(gdp->bg_inode_table) +
1351                 (offset >> EXT2_BLOCK_SIZE_BITS(sb));
1352         if (!(bh = sb_bread(sb, block)))
1353                 goto Eio;
1354
1355         *p = bh;
1356         offset &= (EXT2_BLOCK_SIZE(sb) - 1);
1357         return (struct ext2_inode *) (bh->b_data + offset);
1358
1359 Einval:
1360         ext2_error(sb, "ext2_get_inode", "bad inode number: %lu",
1361                    (unsigned long) ino);
1362         return ERR_PTR(-EINVAL);
1363 Eio:
1364         ext2_error(sb, "ext2_get_inode",
1365                    "unable to read inode block - inode=%lu, block=%lu",
1366                    (unsigned long) ino, block);
1367 Egdp:
1368         return ERR_PTR(-EIO);
1369 }
1370
1371 void ext2_set_inode_flags(struct inode *inode)
1372 {
1373         unsigned int flags = EXT2_I(inode)->i_flags;
1374
1375         inode->i_flags &= ~(S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME |
1376                                 S_DIRSYNC | S_DAX);
1377         if (flags & EXT2_SYNC_FL)
1378                 inode->i_flags |= S_SYNC;
1379         if (flags & EXT2_APPEND_FL)
1380                 inode->i_flags |= S_APPEND;
1381         if (flags & EXT2_IMMUTABLE_FL)
1382                 inode->i_flags |= S_IMMUTABLE;
1383         if (flags & EXT2_NOATIME_FL)
1384                 inode->i_flags |= S_NOATIME;
1385         if (flags & EXT2_DIRSYNC_FL)
1386                 inode->i_flags |= S_DIRSYNC;
1387         if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode))
1388                 inode->i_flags |= S_DAX;
1389 }
1390
1391 void ext2_set_file_ops(struct inode *inode)
1392 {
1393         inode->i_op = &ext2_file_inode_operations;
1394         inode->i_fop = &ext2_file_operations;
1395         if (IS_DAX(inode))
1396                 inode->i_mapping->a_ops = &ext2_dax_aops;
1397         else if (test_opt(inode->i_sb, NOBH))
1398                 inode->i_mapping->a_ops = &ext2_nobh_aops;
1399         else
1400                 inode->i_mapping->a_ops = &ext2_aops;
1401 }
1402
1403 struct inode *ext2_iget (struct super_block *sb, unsigned long ino)
1404 {
1405         struct ext2_inode_info *ei;
1406         struct buffer_head * bh = NULL;
1407         struct ext2_inode *raw_inode;
1408         struct inode *inode;
1409         long ret = -EIO;
1410         int n;
1411         uid_t i_uid;
1412         gid_t i_gid;
1413
1414         inode = iget_locked(sb, ino);
1415         if (!inode)
1416                 return ERR_PTR(-ENOMEM);
1417         if (!(inode->i_state & I_NEW))
1418                 return inode;
1419
1420         ei = EXT2_I(inode);
1421         ei->i_block_alloc_info = NULL;
1422
1423         raw_inode = ext2_get_inode(inode->i_sb, ino, &bh);
1424         if (IS_ERR(raw_inode)) {
1425                 ret = PTR_ERR(raw_inode);
1426                 goto bad_inode;
1427         }
1428
1429         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
1430         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
1431         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
1432         if (!(test_opt (inode->i_sb, NO_UID32))) {
1433                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
1434                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
1435         }
1436         i_uid_write(inode, i_uid);
1437         i_gid_write(inode, i_gid);
1438         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
1439         inode->i_size = le32_to_cpu(raw_inode->i_size);
1440         inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
1441         inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
1442         inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
1443         inode->i_atime.tv_nsec = inode->i_mtime.tv_nsec = inode->i_ctime.tv_nsec = 0;
1444         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
1445         /* We now have enough fields to check if the inode was active or not.
1446          * This is needed because nfsd might try to access dead inodes
1447          * the test is that same one that e2fsck uses
1448          * NeilBrown 1999oct15
1449          */
1450         if (inode->i_nlink == 0 && (inode->i_mode == 0 || ei->i_dtime)) {
1451                 /* this inode is deleted */
1452                 ret = -ESTALE;
1453                 goto bad_inode;
1454         }
1455         inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
1456         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
1457         ext2_set_inode_flags(inode);
1458         ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
1459         ei->i_frag_no = raw_inode->i_frag;
1460         ei->i_frag_size = raw_inode->i_fsize;
1461         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
1462         ei->i_dir_acl = 0;
1463
1464         if (ei->i_file_acl &&
1465             !ext2_data_block_valid(EXT2_SB(sb), ei->i_file_acl, 1)) {
1466                 ext2_error(sb, "ext2_iget", "bad extended attribute block %u",
1467                            ei->i_file_acl);
1468                 ret = -EFSCORRUPTED;
1469                 goto bad_inode;
1470         }
1471
1472         if (S_ISREG(inode->i_mode))
1473                 inode->i_size |= ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
1474         else
1475                 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
1476         if (i_size_read(inode) < 0) {
1477                 ret = -EFSCORRUPTED;
1478                 goto bad_inode;
1479         }
1480         ei->i_dtime = 0;
1481         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
1482         ei->i_state = 0;
1483         ei->i_block_group = (ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb);
1484         ei->i_dir_start_lookup = 0;
1485
1486         /*
1487          * NOTE! The in-memory inode i_data array is in little-endian order
1488          * even on big-endian machines: we do NOT byteswap the block numbers!
1489          */
1490         for (n = 0; n < EXT2_N_BLOCKS; n++)
1491                 ei->i_data[n] = raw_inode->i_block[n];
1492
1493         if (S_ISREG(inode->i_mode)) {
1494                 ext2_set_file_ops(inode);
1495         } else if (S_ISDIR(inode->i_mode)) {
1496                 inode->i_op = &ext2_dir_inode_operations;
1497                 inode->i_fop = &ext2_dir_operations;
1498                 if (test_opt(inode->i_sb, NOBH))
1499                         inode->i_mapping->a_ops = &ext2_nobh_aops;
1500                 else
1501                         inode->i_mapping->a_ops = &ext2_aops;
1502         } else if (S_ISLNK(inode->i_mode)) {
1503                 if (ext2_inode_is_fast_symlink(inode)) {
1504                         inode->i_link = (char *)ei->i_data;
1505                         inode->i_op = &ext2_fast_symlink_inode_operations;
1506                         nd_terminate_link(ei->i_data, inode->i_size,
1507                                 sizeof(ei->i_data) - 1);
1508                 } else {
1509                         inode->i_op = &ext2_symlink_inode_operations;
1510                         inode_nohighmem(inode);
1511                         if (test_opt(inode->i_sb, NOBH))
1512                                 inode->i_mapping->a_ops = &ext2_nobh_aops;
1513                         else
1514                                 inode->i_mapping->a_ops = &ext2_aops;
1515                 }
1516         } else {
1517                 inode->i_op = &ext2_special_inode_operations;
1518                 if (raw_inode->i_block[0])
1519                         init_special_inode(inode, inode->i_mode,
1520                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
1521                 else 
1522                         init_special_inode(inode, inode->i_mode,
1523                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
1524         }
1525         brelse (bh);
1526         unlock_new_inode(inode);
1527         return inode;
1528         
1529 bad_inode:
1530         brelse(bh);
1531         iget_failed(inode);
1532         return ERR_PTR(ret);
1533 }
1534
1535 static int __ext2_write_inode(struct inode *inode, int do_sync)
1536 {
1537         struct ext2_inode_info *ei = EXT2_I(inode);
1538         struct super_block *sb = inode->i_sb;
1539         ino_t ino = inode->i_ino;
1540         uid_t uid = i_uid_read(inode);
1541         gid_t gid = i_gid_read(inode);
1542         struct buffer_head * bh;
1543         struct ext2_inode * raw_inode = ext2_get_inode(sb, ino, &bh);
1544         int n;
1545         int err = 0;
1546
1547         if (IS_ERR(raw_inode))
1548                 return -EIO;
1549
1550         /* For fields not not tracking in the in-memory inode,
1551          * initialise them to zero for new inodes. */
1552         if (ei->i_state & EXT2_STATE_NEW)
1553                 memset(raw_inode, 0, EXT2_SB(sb)->s_inode_size);
1554
1555         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
1556         if (!(test_opt(sb, NO_UID32))) {
1557                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(uid));
1558                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(gid));
1559 /*
1560  * Fix up interoperability with old kernels. Otherwise, old inodes get
1561  * re-used with the upper 16 bits of the uid/gid intact
1562  */
1563                 if (!ei->i_dtime) {
1564                         raw_inode->i_uid_high = cpu_to_le16(high_16_bits(uid));
1565                         raw_inode->i_gid_high = cpu_to_le16(high_16_bits(gid));
1566                 } else {
1567                         raw_inode->i_uid_high = 0;
1568                         raw_inode->i_gid_high = 0;
1569                 }
1570         } else {
1571                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(uid));
1572                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(gid));
1573                 raw_inode->i_uid_high = 0;
1574                 raw_inode->i_gid_high = 0;
1575         }
1576         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
1577         raw_inode->i_size = cpu_to_le32(inode->i_size);
1578         raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
1579         raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
1580         raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
1581
1582         raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
1583         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1584         raw_inode->i_flags = cpu_to_le32(ei->i_flags);
1585         raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
1586         raw_inode->i_frag = ei->i_frag_no;
1587         raw_inode->i_fsize = ei->i_frag_size;
1588         raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
1589         if (!S_ISREG(inode->i_mode))
1590                 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
1591         else {
1592                 raw_inode->i_size_high = cpu_to_le32(inode->i_size >> 32);
1593                 if (inode->i_size > 0x7fffffffULL) {
1594                         if (!EXT2_HAS_RO_COMPAT_FEATURE(sb,
1595                                         EXT2_FEATURE_RO_COMPAT_LARGE_FILE) ||
1596                             EXT2_SB(sb)->s_es->s_rev_level ==
1597                                         cpu_to_le32(EXT2_GOOD_OLD_REV)) {
1598                                /* If this is the first large file
1599                                 * created, add a flag to the superblock.
1600                                 */
1601                                 spin_lock(&EXT2_SB(sb)->s_lock);
1602                                 ext2_update_dynamic_rev(sb);
1603                                 EXT2_SET_RO_COMPAT_FEATURE(sb,
1604                                         EXT2_FEATURE_RO_COMPAT_LARGE_FILE);
1605                                 spin_unlock(&EXT2_SB(sb)->s_lock);
1606                                 ext2_sync_super(sb, EXT2_SB(sb)->s_es, 1);
1607                         }
1608                 }
1609         }
1610         
1611         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
1612         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1613                 if (old_valid_dev(inode->i_rdev)) {
1614                         raw_inode->i_block[0] =
1615                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
1616                         raw_inode->i_block[1] = 0;
1617                 } else {
1618                         raw_inode->i_block[0] = 0;
1619                         raw_inode->i_block[1] =
1620                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
1621                         raw_inode->i_block[2] = 0;
1622                 }
1623         } else for (n = 0; n < EXT2_N_BLOCKS; n++)
1624                 raw_inode->i_block[n] = ei->i_data[n];
1625         mark_buffer_dirty(bh);
1626         if (do_sync) {
1627                 sync_dirty_buffer(bh);
1628                 if (buffer_req(bh) && !buffer_uptodate(bh)) {
1629                         printk ("IO error syncing ext2 inode [%s:%08lx]\n",
1630                                 sb->s_id, (unsigned long) ino);
1631                         err = -EIO;
1632                 }
1633         }
1634         ei->i_state &= ~EXT2_STATE_NEW;
1635         brelse (bh);
1636         return err;
1637 }
1638
1639 int ext2_write_inode(struct inode *inode, struct writeback_control *wbc)
1640 {
1641         return __ext2_write_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1642 }
1643
1644 int ext2_getattr(struct user_namespace *mnt_userns, const struct path *path,
1645                  struct kstat *stat, u32 request_mask, unsigned int query_flags)
1646 {
1647         struct inode *inode = d_inode(path->dentry);
1648         struct ext2_inode_info *ei = EXT2_I(inode);
1649         unsigned int flags;
1650
1651         flags = ei->i_flags & EXT2_FL_USER_VISIBLE;
1652         if (flags & EXT2_APPEND_FL)
1653                 stat->attributes |= STATX_ATTR_APPEND;
1654         if (flags & EXT2_COMPR_FL)
1655                 stat->attributes |= STATX_ATTR_COMPRESSED;
1656         if (flags & EXT2_IMMUTABLE_FL)
1657                 stat->attributes |= STATX_ATTR_IMMUTABLE;
1658         if (flags & EXT2_NODUMP_FL)
1659                 stat->attributes |= STATX_ATTR_NODUMP;
1660         stat->attributes_mask |= (STATX_ATTR_APPEND |
1661                         STATX_ATTR_COMPRESSED |
1662                         STATX_ATTR_ENCRYPTED |
1663                         STATX_ATTR_IMMUTABLE |
1664                         STATX_ATTR_NODUMP);
1665
1666         generic_fillattr(&init_user_ns, inode, stat);
1667         return 0;
1668 }
1669
1670 int ext2_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
1671                  struct iattr *iattr)
1672 {
1673         struct inode *inode = d_inode(dentry);
1674         int error;
1675
1676         error = setattr_prepare(&init_user_ns, dentry, iattr);
1677         if (error)
1678                 return error;
1679
1680         if (is_quota_modification(inode, iattr)) {
1681                 error = dquot_initialize(inode);
1682                 if (error)
1683                         return error;
1684         }
1685         if ((iattr->ia_valid & ATTR_UID && !uid_eq(iattr->ia_uid, inode->i_uid)) ||
1686             (iattr->ia_valid & ATTR_GID && !gid_eq(iattr->ia_gid, inode->i_gid))) {
1687                 error = dquot_transfer(inode, iattr);
1688                 if (error)
1689                         return error;
1690         }
1691         if (iattr->ia_valid & ATTR_SIZE && iattr->ia_size != inode->i_size) {
1692                 error = ext2_setsize(inode, iattr->ia_size);
1693                 if (error)
1694                         return error;
1695         }
1696         setattr_copy(&init_user_ns, inode, iattr);
1697         if (iattr->ia_valid & ATTR_MODE)
1698                 error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1699         mark_inode_dirty(inode);
1700
1701         return error;
1702 }