local64.h: make <asm/local64.h> mandatory
[linux-2.6-microblaze.git] / fs / dcache.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/dcache.c
4  *
5  * Complete reimplementation
6  * (C) 1997 Thomas Schoebel-Theuer,
7  * with heavy changes by Linus Torvalds
8  */
9
10 /*
11  * Notes on the allocation strategy:
12  *
13  * The dcache is a master of the icache - whenever a dcache entry
14  * exists, the inode will always exist. "iput()" is done either when
15  * the dcache entry is deleted or garbage collected.
16  */
17
18 #include <linux/ratelimit.h>
19 #include <linux/string.h>
20 #include <linux/mm.h>
21 #include <linux/fs.h>
22 #include <linux/fscrypt.h>
23 #include <linux/fsnotify.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/hash.h>
27 #include <linux/cache.h>
28 #include <linux/export.h>
29 #include <linux/security.h>
30 #include <linux/seqlock.h>
31 #include <linux/memblock.h>
32 #include <linux/bit_spinlock.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/list_lru.h>
35 #include "internal.h"
36 #include "mount.h"
37
38 /*
39  * Usage:
40  * dcache->d_inode->i_lock protects:
41  *   - i_dentry, d_u.d_alias, d_inode of aliases
42  * dcache_hash_bucket lock protects:
43  *   - the dcache hash table
44  * s_roots bl list spinlock protects:
45  *   - the s_roots list (see __d_drop)
46  * dentry->d_sb->s_dentry_lru_lock protects:
47  *   - the dcache lru lists and counters
48  * d_lock protects:
49  *   - d_flags
50  *   - d_name
51  *   - d_lru
52  *   - d_count
53  *   - d_unhashed()
54  *   - d_parent and d_subdirs
55  *   - childrens' d_child and d_parent
56  *   - d_u.d_alias, d_inode
57  *
58  * Ordering:
59  * dentry->d_inode->i_lock
60  *   dentry->d_lock
61  *     dentry->d_sb->s_dentry_lru_lock
62  *     dcache_hash_bucket lock
63  *     s_roots lock
64  *
65  * If there is an ancestor relationship:
66  * dentry->d_parent->...->d_parent->d_lock
67  *   ...
68  *     dentry->d_parent->d_lock
69  *       dentry->d_lock
70  *
71  * If no ancestor relationship:
72  * arbitrary, since it's serialized on rename_lock
73  */
74 int sysctl_vfs_cache_pressure __read_mostly = 100;
75 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
76
77 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
78
79 EXPORT_SYMBOL(rename_lock);
80
81 static struct kmem_cache *dentry_cache __read_mostly;
82
83 const struct qstr empty_name = QSTR_INIT("", 0);
84 EXPORT_SYMBOL(empty_name);
85 const struct qstr slash_name = QSTR_INIT("/", 1);
86 EXPORT_SYMBOL(slash_name);
87
88 /*
89  * This is the single most critical data structure when it comes
90  * to the dcache: the hashtable for lookups. Somebody should try
91  * to make this good - I've just made it work.
92  *
93  * This hash-function tries to avoid losing too many bits of hash
94  * information, yet avoid using a prime hash-size or similar.
95  */
96
97 static unsigned int d_hash_shift __read_mostly;
98
99 static struct hlist_bl_head *dentry_hashtable __read_mostly;
100
101 static inline struct hlist_bl_head *d_hash(unsigned int hash)
102 {
103         return dentry_hashtable + (hash >> d_hash_shift);
104 }
105
106 #define IN_LOOKUP_SHIFT 10
107 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
108
109 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
110                                         unsigned int hash)
111 {
112         hash += (unsigned long) parent / L1_CACHE_BYTES;
113         return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
114 }
115
116
117 /* Statistics gathering. */
118 struct dentry_stat_t dentry_stat = {
119         .age_limit = 45,
120 };
121
122 static DEFINE_PER_CPU(long, nr_dentry);
123 static DEFINE_PER_CPU(long, nr_dentry_unused);
124 static DEFINE_PER_CPU(long, nr_dentry_negative);
125
126 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
127
128 /*
129  * Here we resort to our own counters instead of using generic per-cpu counters
130  * for consistency with what the vfs inode code does. We are expected to harvest
131  * better code and performance by having our own specialized counters.
132  *
133  * Please note that the loop is done over all possible CPUs, not over all online
134  * CPUs. The reason for this is that we don't want to play games with CPUs going
135  * on and off. If one of them goes off, we will just keep their counters.
136  *
137  * glommer: See cffbc8a for details, and if you ever intend to change this,
138  * please update all vfs counters to match.
139  */
140 static long get_nr_dentry(void)
141 {
142         int i;
143         long sum = 0;
144         for_each_possible_cpu(i)
145                 sum += per_cpu(nr_dentry, i);
146         return sum < 0 ? 0 : sum;
147 }
148
149 static long get_nr_dentry_unused(void)
150 {
151         int i;
152         long sum = 0;
153         for_each_possible_cpu(i)
154                 sum += per_cpu(nr_dentry_unused, i);
155         return sum < 0 ? 0 : sum;
156 }
157
158 static long get_nr_dentry_negative(void)
159 {
160         int i;
161         long sum = 0;
162
163         for_each_possible_cpu(i)
164                 sum += per_cpu(nr_dentry_negative, i);
165         return sum < 0 ? 0 : sum;
166 }
167
168 int proc_nr_dentry(struct ctl_table *table, int write, void *buffer,
169                    size_t *lenp, loff_t *ppos)
170 {
171         dentry_stat.nr_dentry = get_nr_dentry();
172         dentry_stat.nr_unused = get_nr_dentry_unused();
173         dentry_stat.nr_negative = get_nr_dentry_negative();
174         return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
175 }
176 #endif
177
178 /*
179  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
180  * The strings are both count bytes long, and count is non-zero.
181  */
182 #ifdef CONFIG_DCACHE_WORD_ACCESS
183
184 #include <asm/word-at-a-time.h>
185 /*
186  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
187  * aligned allocation for this particular component. We don't
188  * strictly need the load_unaligned_zeropad() safety, but it
189  * doesn't hurt either.
190  *
191  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
192  * need the careful unaligned handling.
193  */
194 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
195 {
196         unsigned long a,b,mask;
197
198         for (;;) {
199                 a = read_word_at_a_time(cs);
200                 b = load_unaligned_zeropad(ct);
201                 if (tcount < sizeof(unsigned long))
202                         break;
203                 if (unlikely(a != b))
204                         return 1;
205                 cs += sizeof(unsigned long);
206                 ct += sizeof(unsigned long);
207                 tcount -= sizeof(unsigned long);
208                 if (!tcount)
209                         return 0;
210         }
211         mask = bytemask_from_count(tcount);
212         return unlikely(!!((a ^ b) & mask));
213 }
214
215 #else
216
217 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
218 {
219         do {
220                 if (*cs != *ct)
221                         return 1;
222                 cs++;
223                 ct++;
224                 tcount--;
225         } while (tcount);
226         return 0;
227 }
228
229 #endif
230
231 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
232 {
233         /*
234          * Be careful about RCU walk racing with rename:
235          * use 'READ_ONCE' to fetch the name pointer.
236          *
237          * NOTE! Even if a rename will mean that the length
238          * was not loaded atomically, we don't care. The
239          * RCU walk will check the sequence count eventually,
240          * and catch it. And we won't overrun the buffer,
241          * because we're reading the name pointer atomically,
242          * and a dentry name is guaranteed to be properly
243          * terminated with a NUL byte.
244          *
245          * End result: even if 'len' is wrong, we'll exit
246          * early because the data cannot match (there can
247          * be no NUL in the ct/tcount data)
248          */
249         const unsigned char *cs = READ_ONCE(dentry->d_name.name);
250
251         return dentry_string_cmp(cs, ct, tcount);
252 }
253
254 struct external_name {
255         union {
256                 atomic_t count;
257                 struct rcu_head head;
258         } u;
259         unsigned char name[];
260 };
261
262 static inline struct external_name *external_name(struct dentry *dentry)
263 {
264         return container_of(dentry->d_name.name, struct external_name, name[0]);
265 }
266
267 static void __d_free(struct rcu_head *head)
268 {
269         struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
270
271         kmem_cache_free(dentry_cache, dentry); 
272 }
273
274 static void __d_free_external(struct rcu_head *head)
275 {
276         struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
277         kfree(external_name(dentry));
278         kmem_cache_free(dentry_cache, dentry);
279 }
280
281 static inline int dname_external(const struct dentry *dentry)
282 {
283         return dentry->d_name.name != dentry->d_iname;
284 }
285
286 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
287 {
288         spin_lock(&dentry->d_lock);
289         name->name = dentry->d_name;
290         if (unlikely(dname_external(dentry))) {
291                 atomic_inc(&external_name(dentry)->u.count);
292         } else {
293                 memcpy(name->inline_name, dentry->d_iname,
294                        dentry->d_name.len + 1);
295                 name->name.name = name->inline_name;
296         }
297         spin_unlock(&dentry->d_lock);
298 }
299 EXPORT_SYMBOL(take_dentry_name_snapshot);
300
301 void release_dentry_name_snapshot(struct name_snapshot *name)
302 {
303         if (unlikely(name->name.name != name->inline_name)) {
304                 struct external_name *p;
305                 p = container_of(name->name.name, struct external_name, name[0]);
306                 if (unlikely(atomic_dec_and_test(&p->u.count)))
307                         kfree_rcu(p, u.head);
308         }
309 }
310 EXPORT_SYMBOL(release_dentry_name_snapshot);
311
312 static inline void __d_set_inode_and_type(struct dentry *dentry,
313                                           struct inode *inode,
314                                           unsigned type_flags)
315 {
316         unsigned flags;
317
318         dentry->d_inode = inode;
319         flags = READ_ONCE(dentry->d_flags);
320         flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
321         flags |= type_flags;
322         smp_store_release(&dentry->d_flags, flags);
323 }
324
325 static inline void __d_clear_type_and_inode(struct dentry *dentry)
326 {
327         unsigned flags = READ_ONCE(dentry->d_flags);
328
329         flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
330         WRITE_ONCE(dentry->d_flags, flags);
331         dentry->d_inode = NULL;
332         if (dentry->d_flags & DCACHE_LRU_LIST)
333                 this_cpu_inc(nr_dentry_negative);
334 }
335
336 static void dentry_free(struct dentry *dentry)
337 {
338         WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
339         if (unlikely(dname_external(dentry))) {
340                 struct external_name *p = external_name(dentry);
341                 if (likely(atomic_dec_and_test(&p->u.count))) {
342                         call_rcu(&dentry->d_u.d_rcu, __d_free_external);
343                         return;
344                 }
345         }
346         /* if dentry was never visible to RCU, immediate free is OK */
347         if (dentry->d_flags & DCACHE_NORCU)
348                 __d_free(&dentry->d_u.d_rcu);
349         else
350                 call_rcu(&dentry->d_u.d_rcu, __d_free);
351 }
352
353 /*
354  * Release the dentry's inode, using the filesystem
355  * d_iput() operation if defined.
356  */
357 static void dentry_unlink_inode(struct dentry * dentry)
358         __releases(dentry->d_lock)
359         __releases(dentry->d_inode->i_lock)
360 {
361         struct inode *inode = dentry->d_inode;
362
363         raw_write_seqcount_begin(&dentry->d_seq);
364         __d_clear_type_and_inode(dentry);
365         hlist_del_init(&dentry->d_u.d_alias);
366         raw_write_seqcount_end(&dentry->d_seq);
367         spin_unlock(&dentry->d_lock);
368         spin_unlock(&inode->i_lock);
369         if (!inode->i_nlink)
370                 fsnotify_inoderemove(inode);
371         if (dentry->d_op && dentry->d_op->d_iput)
372                 dentry->d_op->d_iput(dentry, inode);
373         else
374                 iput(inode);
375 }
376
377 /*
378  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
379  * is in use - which includes both the "real" per-superblock
380  * LRU list _and_ the DCACHE_SHRINK_LIST use.
381  *
382  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
383  * on the shrink list (ie not on the superblock LRU list).
384  *
385  * The per-cpu "nr_dentry_unused" counters are updated with
386  * the DCACHE_LRU_LIST bit.
387  *
388  * The per-cpu "nr_dentry_negative" counters are only updated
389  * when deleted from or added to the per-superblock LRU list, not
390  * from/to the shrink list. That is to avoid an unneeded dec/inc
391  * pair when moving from LRU to shrink list in select_collect().
392  *
393  * These helper functions make sure we always follow the
394  * rules. d_lock must be held by the caller.
395  */
396 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
397 static void d_lru_add(struct dentry *dentry)
398 {
399         D_FLAG_VERIFY(dentry, 0);
400         dentry->d_flags |= DCACHE_LRU_LIST;
401         this_cpu_inc(nr_dentry_unused);
402         if (d_is_negative(dentry))
403                 this_cpu_inc(nr_dentry_negative);
404         WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
405 }
406
407 static void d_lru_del(struct dentry *dentry)
408 {
409         D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
410         dentry->d_flags &= ~DCACHE_LRU_LIST;
411         this_cpu_dec(nr_dentry_unused);
412         if (d_is_negative(dentry))
413                 this_cpu_dec(nr_dentry_negative);
414         WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
415 }
416
417 static void d_shrink_del(struct dentry *dentry)
418 {
419         D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
420         list_del_init(&dentry->d_lru);
421         dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
422         this_cpu_dec(nr_dentry_unused);
423 }
424
425 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
426 {
427         D_FLAG_VERIFY(dentry, 0);
428         list_add(&dentry->d_lru, list);
429         dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
430         this_cpu_inc(nr_dentry_unused);
431 }
432
433 /*
434  * These can only be called under the global LRU lock, ie during the
435  * callback for freeing the LRU list. "isolate" removes it from the
436  * LRU lists entirely, while shrink_move moves it to the indicated
437  * private list.
438  */
439 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
440 {
441         D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
442         dentry->d_flags &= ~DCACHE_LRU_LIST;
443         this_cpu_dec(nr_dentry_unused);
444         if (d_is_negative(dentry))
445                 this_cpu_dec(nr_dentry_negative);
446         list_lru_isolate(lru, &dentry->d_lru);
447 }
448
449 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
450                               struct list_head *list)
451 {
452         D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
453         dentry->d_flags |= DCACHE_SHRINK_LIST;
454         if (d_is_negative(dentry))
455                 this_cpu_dec(nr_dentry_negative);
456         list_lru_isolate_move(lru, &dentry->d_lru, list);
457 }
458
459 /**
460  * d_drop - drop a dentry
461  * @dentry: dentry to drop
462  *
463  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
464  * be found through a VFS lookup any more. Note that this is different from
465  * deleting the dentry - d_delete will try to mark the dentry negative if
466  * possible, giving a successful _negative_ lookup, while d_drop will
467  * just make the cache lookup fail.
468  *
469  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
470  * reason (NFS timeouts or autofs deletes).
471  *
472  * __d_drop requires dentry->d_lock
473  * ___d_drop doesn't mark dentry as "unhashed"
474  *   (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
475  */
476 static void ___d_drop(struct dentry *dentry)
477 {
478         struct hlist_bl_head *b;
479         /*
480          * Hashed dentries are normally on the dentry hashtable,
481          * with the exception of those newly allocated by
482          * d_obtain_root, which are always IS_ROOT:
483          */
484         if (unlikely(IS_ROOT(dentry)))
485                 b = &dentry->d_sb->s_roots;
486         else
487                 b = d_hash(dentry->d_name.hash);
488
489         hlist_bl_lock(b);
490         __hlist_bl_del(&dentry->d_hash);
491         hlist_bl_unlock(b);
492 }
493
494 void __d_drop(struct dentry *dentry)
495 {
496         if (!d_unhashed(dentry)) {
497                 ___d_drop(dentry);
498                 dentry->d_hash.pprev = NULL;
499                 write_seqcount_invalidate(&dentry->d_seq);
500         }
501 }
502 EXPORT_SYMBOL(__d_drop);
503
504 void d_drop(struct dentry *dentry)
505 {
506         spin_lock(&dentry->d_lock);
507         __d_drop(dentry);
508         spin_unlock(&dentry->d_lock);
509 }
510 EXPORT_SYMBOL(d_drop);
511
512 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
513 {
514         struct dentry *next;
515         /*
516          * Inform d_walk() and shrink_dentry_list() that we are no longer
517          * attached to the dentry tree
518          */
519         dentry->d_flags |= DCACHE_DENTRY_KILLED;
520         if (unlikely(list_empty(&dentry->d_child)))
521                 return;
522         __list_del_entry(&dentry->d_child);
523         /*
524          * Cursors can move around the list of children.  While we'd been
525          * a normal list member, it didn't matter - ->d_child.next would've
526          * been updated.  However, from now on it won't be and for the
527          * things like d_walk() it might end up with a nasty surprise.
528          * Normally d_walk() doesn't care about cursors moving around -
529          * ->d_lock on parent prevents that and since a cursor has no children
530          * of its own, we get through it without ever unlocking the parent.
531          * There is one exception, though - if we ascend from a child that
532          * gets killed as soon as we unlock it, the next sibling is found
533          * using the value left in its ->d_child.next.  And if _that_
534          * pointed to a cursor, and cursor got moved (e.g. by lseek())
535          * before d_walk() regains parent->d_lock, we'll end up skipping
536          * everything the cursor had been moved past.
537          *
538          * Solution: make sure that the pointer left behind in ->d_child.next
539          * points to something that won't be moving around.  I.e. skip the
540          * cursors.
541          */
542         while (dentry->d_child.next != &parent->d_subdirs) {
543                 next = list_entry(dentry->d_child.next, struct dentry, d_child);
544                 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
545                         break;
546                 dentry->d_child.next = next->d_child.next;
547         }
548 }
549
550 static void __dentry_kill(struct dentry *dentry)
551 {
552         struct dentry *parent = NULL;
553         bool can_free = true;
554         if (!IS_ROOT(dentry))
555                 parent = dentry->d_parent;
556
557         /*
558          * The dentry is now unrecoverably dead to the world.
559          */
560         lockref_mark_dead(&dentry->d_lockref);
561
562         /*
563          * inform the fs via d_prune that this dentry is about to be
564          * unhashed and destroyed.
565          */
566         if (dentry->d_flags & DCACHE_OP_PRUNE)
567                 dentry->d_op->d_prune(dentry);
568
569         if (dentry->d_flags & DCACHE_LRU_LIST) {
570                 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
571                         d_lru_del(dentry);
572         }
573         /* if it was on the hash then remove it */
574         __d_drop(dentry);
575         dentry_unlist(dentry, parent);
576         if (parent)
577                 spin_unlock(&parent->d_lock);
578         if (dentry->d_inode)
579                 dentry_unlink_inode(dentry);
580         else
581                 spin_unlock(&dentry->d_lock);
582         this_cpu_dec(nr_dentry);
583         if (dentry->d_op && dentry->d_op->d_release)
584                 dentry->d_op->d_release(dentry);
585
586         spin_lock(&dentry->d_lock);
587         if (dentry->d_flags & DCACHE_SHRINK_LIST) {
588                 dentry->d_flags |= DCACHE_MAY_FREE;
589                 can_free = false;
590         }
591         spin_unlock(&dentry->d_lock);
592         if (likely(can_free))
593                 dentry_free(dentry);
594         cond_resched();
595 }
596
597 static struct dentry *__lock_parent(struct dentry *dentry)
598 {
599         struct dentry *parent;
600         rcu_read_lock();
601         spin_unlock(&dentry->d_lock);
602 again:
603         parent = READ_ONCE(dentry->d_parent);
604         spin_lock(&parent->d_lock);
605         /*
606          * We can't blindly lock dentry until we are sure
607          * that we won't violate the locking order.
608          * Any changes of dentry->d_parent must have
609          * been done with parent->d_lock held, so
610          * spin_lock() above is enough of a barrier
611          * for checking if it's still our child.
612          */
613         if (unlikely(parent != dentry->d_parent)) {
614                 spin_unlock(&parent->d_lock);
615                 goto again;
616         }
617         rcu_read_unlock();
618         if (parent != dentry)
619                 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
620         else
621                 parent = NULL;
622         return parent;
623 }
624
625 static inline struct dentry *lock_parent(struct dentry *dentry)
626 {
627         struct dentry *parent = dentry->d_parent;
628         if (IS_ROOT(dentry))
629                 return NULL;
630         if (likely(spin_trylock(&parent->d_lock)))
631                 return parent;
632         return __lock_parent(dentry);
633 }
634
635 static inline bool retain_dentry(struct dentry *dentry)
636 {
637         WARN_ON(d_in_lookup(dentry));
638
639         /* Unreachable? Get rid of it */
640         if (unlikely(d_unhashed(dentry)))
641                 return false;
642
643         if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
644                 return false;
645
646         if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
647                 if (dentry->d_op->d_delete(dentry))
648                         return false;
649         }
650
651         if (unlikely(dentry->d_flags & DCACHE_DONTCACHE))
652                 return false;
653
654         /* retain; LRU fodder */
655         dentry->d_lockref.count--;
656         if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
657                 d_lru_add(dentry);
658         else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
659                 dentry->d_flags |= DCACHE_REFERENCED;
660         return true;
661 }
662
663 void d_mark_dontcache(struct inode *inode)
664 {
665         struct dentry *de;
666
667         spin_lock(&inode->i_lock);
668         hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) {
669                 spin_lock(&de->d_lock);
670                 de->d_flags |= DCACHE_DONTCACHE;
671                 spin_unlock(&de->d_lock);
672         }
673         inode->i_state |= I_DONTCACHE;
674         spin_unlock(&inode->i_lock);
675 }
676 EXPORT_SYMBOL(d_mark_dontcache);
677
678 /*
679  * Finish off a dentry we've decided to kill.
680  * dentry->d_lock must be held, returns with it unlocked.
681  * Returns dentry requiring refcount drop, or NULL if we're done.
682  */
683 static struct dentry *dentry_kill(struct dentry *dentry)
684         __releases(dentry->d_lock)
685 {
686         struct inode *inode = dentry->d_inode;
687         struct dentry *parent = NULL;
688
689         if (inode && unlikely(!spin_trylock(&inode->i_lock)))
690                 goto slow_positive;
691
692         if (!IS_ROOT(dentry)) {
693                 parent = dentry->d_parent;
694                 if (unlikely(!spin_trylock(&parent->d_lock))) {
695                         parent = __lock_parent(dentry);
696                         if (likely(inode || !dentry->d_inode))
697                                 goto got_locks;
698                         /* negative that became positive */
699                         if (parent)
700                                 spin_unlock(&parent->d_lock);
701                         inode = dentry->d_inode;
702                         goto slow_positive;
703                 }
704         }
705         __dentry_kill(dentry);
706         return parent;
707
708 slow_positive:
709         spin_unlock(&dentry->d_lock);
710         spin_lock(&inode->i_lock);
711         spin_lock(&dentry->d_lock);
712         parent = lock_parent(dentry);
713 got_locks:
714         if (unlikely(dentry->d_lockref.count != 1)) {
715                 dentry->d_lockref.count--;
716         } else if (likely(!retain_dentry(dentry))) {
717                 __dentry_kill(dentry);
718                 return parent;
719         }
720         /* we are keeping it, after all */
721         if (inode)
722                 spin_unlock(&inode->i_lock);
723         if (parent)
724                 spin_unlock(&parent->d_lock);
725         spin_unlock(&dentry->d_lock);
726         return NULL;
727 }
728
729 /*
730  * Try to do a lockless dput(), and return whether that was successful.
731  *
732  * If unsuccessful, we return false, having already taken the dentry lock.
733  *
734  * The caller needs to hold the RCU read lock, so that the dentry is
735  * guaranteed to stay around even if the refcount goes down to zero!
736  */
737 static inline bool fast_dput(struct dentry *dentry)
738 {
739         int ret;
740         unsigned int d_flags;
741
742         /*
743          * If we have a d_op->d_delete() operation, we sould not
744          * let the dentry count go to zero, so use "put_or_lock".
745          */
746         if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
747                 return lockref_put_or_lock(&dentry->d_lockref);
748
749         /*
750          * .. otherwise, we can try to just decrement the
751          * lockref optimistically.
752          */
753         ret = lockref_put_return(&dentry->d_lockref);
754
755         /*
756          * If the lockref_put_return() failed due to the lock being held
757          * by somebody else, the fast path has failed. We will need to
758          * get the lock, and then check the count again.
759          */
760         if (unlikely(ret < 0)) {
761                 spin_lock(&dentry->d_lock);
762                 if (dentry->d_lockref.count > 1) {
763                         dentry->d_lockref.count--;
764                         spin_unlock(&dentry->d_lock);
765                         return true;
766                 }
767                 return false;
768         }
769
770         /*
771          * If we weren't the last ref, we're done.
772          */
773         if (ret)
774                 return true;
775
776         /*
777          * Careful, careful. The reference count went down
778          * to zero, but we don't hold the dentry lock, so
779          * somebody else could get it again, and do another
780          * dput(), and we need to not race with that.
781          *
782          * However, there is a very special and common case
783          * where we don't care, because there is nothing to
784          * do: the dentry is still hashed, it does not have
785          * a 'delete' op, and it's referenced and already on
786          * the LRU list.
787          *
788          * NOTE! Since we aren't locked, these values are
789          * not "stable". However, it is sufficient that at
790          * some point after we dropped the reference the
791          * dentry was hashed and the flags had the proper
792          * value. Other dentry users may have re-gotten
793          * a reference to the dentry and change that, but
794          * our work is done - we can leave the dentry
795          * around with a zero refcount.
796          *
797          * Nevertheless, there are two cases that we should kill
798          * the dentry anyway.
799          * 1. free disconnected dentries as soon as their refcount
800          *    reached zero.
801          * 2. free dentries if they should not be cached.
802          */
803         smp_rmb();
804         d_flags = READ_ONCE(dentry->d_flags);
805         d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST |
806                         DCACHE_DISCONNECTED | DCACHE_DONTCACHE;
807
808         /* Nothing to do? Dropping the reference was all we needed? */
809         if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
810                 return true;
811
812         /*
813          * Not the fast normal case? Get the lock. We've already decremented
814          * the refcount, but we'll need to re-check the situation after
815          * getting the lock.
816          */
817         spin_lock(&dentry->d_lock);
818
819         /*
820          * Did somebody else grab a reference to it in the meantime, and
821          * we're no longer the last user after all? Alternatively, somebody
822          * else could have killed it and marked it dead. Either way, we
823          * don't need to do anything else.
824          */
825         if (dentry->d_lockref.count) {
826                 spin_unlock(&dentry->d_lock);
827                 return true;
828         }
829
830         /*
831          * Re-get the reference we optimistically dropped. We hold the
832          * lock, and we just tested that it was zero, so we can just
833          * set it to 1.
834          */
835         dentry->d_lockref.count = 1;
836         return false;
837 }
838
839
840 /* 
841  * This is dput
842  *
843  * This is complicated by the fact that we do not want to put
844  * dentries that are no longer on any hash chain on the unused
845  * list: we'd much rather just get rid of them immediately.
846  *
847  * However, that implies that we have to traverse the dentry
848  * tree upwards to the parents which might _also_ now be
849  * scheduled for deletion (it may have been only waiting for
850  * its last child to go away).
851  *
852  * This tail recursion is done by hand as we don't want to depend
853  * on the compiler to always get this right (gcc generally doesn't).
854  * Real recursion would eat up our stack space.
855  */
856
857 /*
858  * dput - release a dentry
859  * @dentry: dentry to release 
860  *
861  * Release a dentry. This will drop the usage count and if appropriate
862  * call the dentry unlink method as well as removing it from the queues and
863  * releasing its resources. If the parent dentries were scheduled for release
864  * they too may now get deleted.
865  */
866 void dput(struct dentry *dentry)
867 {
868         while (dentry) {
869                 might_sleep();
870
871                 rcu_read_lock();
872                 if (likely(fast_dput(dentry))) {
873                         rcu_read_unlock();
874                         return;
875                 }
876
877                 /* Slow case: now with the dentry lock held */
878                 rcu_read_unlock();
879
880                 if (likely(retain_dentry(dentry))) {
881                         spin_unlock(&dentry->d_lock);
882                         return;
883                 }
884
885                 dentry = dentry_kill(dentry);
886         }
887 }
888 EXPORT_SYMBOL(dput);
889
890 static void __dput_to_list(struct dentry *dentry, struct list_head *list)
891 __must_hold(&dentry->d_lock)
892 {
893         if (dentry->d_flags & DCACHE_SHRINK_LIST) {
894                 /* let the owner of the list it's on deal with it */
895                 --dentry->d_lockref.count;
896         } else {
897                 if (dentry->d_flags & DCACHE_LRU_LIST)
898                         d_lru_del(dentry);
899                 if (!--dentry->d_lockref.count)
900                         d_shrink_add(dentry, list);
901         }
902 }
903
904 void dput_to_list(struct dentry *dentry, struct list_head *list)
905 {
906         rcu_read_lock();
907         if (likely(fast_dput(dentry))) {
908                 rcu_read_unlock();
909                 return;
910         }
911         rcu_read_unlock();
912         if (!retain_dentry(dentry))
913                 __dput_to_list(dentry, list);
914         spin_unlock(&dentry->d_lock);
915 }
916
917 /* This must be called with d_lock held */
918 static inline void __dget_dlock(struct dentry *dentry)
919 {
920         dentry->d_lockref.count++;
921 }
922
923 static inline void __dget(struct dentry *dentry)
924 {
925         lockref_get(&dentry->d_lockref);
926 }
927
928 struct dentry *dget_parent(struct dentry *dentry)
929 {
930         int gotref;
931         struct dentry *ret;
932         unsigned seq;
933
934         /*
935          * Do optimistic parent lookup without any
936          * locking.
937          */
938         rcu_read_lock();
939         seq = raw_seqcount_begin(&dentry->d_seq);
940         ret = READ_ONCE(dentry->d_parent);
941         gotref = lockref_get_not_zero(&ret->d_lockref);
942         rcu_read_unlock();
943         if (likely(gotref)) {
944                 if (!read_seqcount_retry(&dentry->d_seq, seq))
945                         return ret;
946                 dput(ret);
947         }
948
949 repeat:
950         /*
951          * Don't need rcu_dereference because we re-check it was correct under
952          * the lock.
953          */
954         rcu_read_lock();
955         ret = dentry->d_parent;
956         spin_lock(&ret->d_lock);
957         if (unlikely(ret != dentry->d_parent)) {
958                 spin_unlock(&ret->d_lock);
959                 rcu_read_unlock();
960                 goto repeat;
961         }
962         rcu_read_unlock();
963         BUG_ON(!ret->d_lockref.count);
964         ret->d_lockref.count++;
965         spin_unlock(&ret->d_lock);
966         return ret;
967 }
968 EXPORT_SYMBOL(dget_parent);
969
970 static struct dentry * __d_find_any_alias(struct inode *inode)
971 {
972         struct dentry *alias;
973
974         if (hlist_empty(&inode->i_dentry))
975                 return NULL;
976         alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
977         __dget(alias);
978         return alias;
979 }
980
981 /**
982  * d_find_any_alias - find any alias for a given inode
983  * @inode: inode to find an alias for
984  *
985  * If any aliases exist for the given inode, take and return a
986  * reference for one of them.  If no aliases exist, return %NULL.
987  */
988 struct dentry *d_find_any_alias(struct inode *inode)
989 {
990         struct dentry *de;
991
992         spin_lock(&inode->i_lock);
993         de = __d_find_any_alias(inode);
994         spin_unlock(&inode->i_lock);
995         return de;
996 }
997 EXPORT_SYMBOL(d_find_any_alias);
998
999 /**
1000  * d_find_alias - grab a hashed alias of inode
1001  * @inode: inode in question
1002  *
1003  * If inode has a hashed alias, or is a directory and has any alias,
1004  * acquire the reference to alias and return it. Otherwise return NULL.
1005  * Notice that if inode is a directory there can be only one alias and
1006  * it can be unhashed only if it has no children, or if it is the root
1007  * of a filesystem, or if the directory was renamed and d_revalidate
1008  * was the first vfs operation to notice.
1009  *
1010  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
1011  * any other hashed alias over that one.
1012  */
1013 static struct dentry *__d_find_alias(struct inode *inode)
1014 {
1015         struct dentry *alias;
1016
1017         if (S_ISDIR(inode->i_mode))
1018                 return __d_find_any_alias(inode);
1019
1020         hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1021                 spin_lock(&alias->d_lock);
1022                 if (!d_unhashed(alias)) {
1023                         __dget_dlock(alias);
1024                         spin_unlock(&alias->d_lock);
1025                         return alias;
1026                 }
1027                 spin_unlock(&alias->d_lock);
1028         }
1029         return NULL;
1030 }
1031
1032 struct dentry *d_find_alias(struct inode *inode)
1033 {
1034         struct dentry *de = NULL;
1035
1036         if (!hlist_empty(&inode->i_dentry)) {
1037                 spin_lock(&inode->i_lock);
1038                 de = __d_find_alias(inode);
1039                 spin_unlock(&inode->i_lock);
1040         }
1041         return de;
1042 }
1043 EXPORT_SYMBOL(d_find_alias);
1044
1045 /*
1046  *      Try to kill dentries associated with this inode.
1047  * WARNING: you must own a reference to inode.
1048  */
1049 void d_prune_aliases(struct inode *inode)
1050 {
1051         struct dentry *dentry;
1052 restart:
1053         spin_lock(&inode->i_lock);
1054         hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1055                 spin_lock(&dentry->d_lock);
1056                 if (!dentry->d_lockref.count) {
1057                         struct dentry *parent = lock_parent(dentry);
1058                         if (likely(!dentry->d_lockref.count)) {
1059                                 __dentry_kill(dentry);
1060                                 dput(parent);
1061                                 goto restart;
1062                         }
1063                         if (parent)
1064                                 spin_unlock(&parent->d_lock);
1065                 }
1066                 spin_unlock(&dentry->d_lock);
1067         }
1068         spin_unlock(&inode->i_lock);
1069 }
1070 EXPORT_SYMBOL(d_prune_aliases);
1071
1072 /*
1073  * Lock a dentry from shrink list.
1074  * Called under rcu_read_lock() and dentry->d_lock; the former
1075  * guarantees that nothing we access will be freed under us.
1076  * Note that dentry is *not* protected from concurrent dentry_kill(),
1077  * d_delete(), etc.
1078  *
1079  * Return false if dentry has been disrupted or grabbed, leaving
1080  * the caller to kick it off-list.  Otherwise, return true and have
1081  * that dentry's inode and parent both locked.
1082  */
1083 static bool shrink_lock_dentry(struct dentry *dentry)
1084 {
1085         struct inode *inode;
1086         struct dentry *parent;
1087
1088         if (dentry->d_lockref.count)
1089                 return false;
1090
1091         inode = dentry->d_inode;
1092         if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1093                 spin_unlock(&dentry->d_lock);
1094                 spin_lock(&inode->i_lock);
1095                 spin_lock(&dentry->d_lock);
1096                 if (unlikely(dentry->d_lockref.count))
1097                         goto out;
1098                 /* changed inode means that somebody had grabbed it */
1099                 if (unlikely(inode != dentry->d_inode))
1100                         goto out;
1101         }
1102
1103         parent = dentry->d_parent;
1104         if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
1105                 return true;
1106
1107         spin_unlock(&dentry->d_lock);
1108         spin_lock(&parent->d_lock);
1109         if (unlikely(parent != dentry->d_parent)) {
1110                 spin_unlock(&parent->d_lock);
1111                 spin_lock(&dentry->d_lock);
1112                 goto out;
1113         }
1114         spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1115         if (likely(!dentry->d_lockref.count))
1116                 return true;
1117         spin_unlock(&parent->d_lock);
1118 out:
1119         if (inode)
1120                 spin_unlock(&inode->i_lock);
1121         return false;
1122 }
1123
1124 void shrink_dentry_list(struct list_head *list)
1125 {
1126         while (!list_empty(list)) {
1127                 struct dentry *dentry, *parent;
1128
1129                 dentry = list_entry(list->prev, struct dentry, d_lru);
1130                 spin_lock(&dentry->d_lock);
1131                 rcu_read_lock();
1132                 if (!shrink_lock_dentry(dentry)) {
1133                         bool can_free = false;
1134                         rcu_read_unlock();
1135                         d_shrink_del(dentry);
1136                         if (dentry->d_lockref.count < 0)
1137                                 can_free = dentry->d_flags & DCACHE_MAY_FREE;
1138                         spin_unlock(&dentry->d_lock);
1139                         if (can_free)
1140                                 dentry_free(dentry);
1141                         continue;
1142                 }
1143                 rcu_read_unlock();
1144                 d_shrink_del(dentry);
1145                 parent = dentry->d_parent;
1146                 if (parent != dentry)
1147                         __dput_to_list(parent, list);
1148                 __dentry_kill(dentry);
1149         }
1150 }
1151
1152 static enum lru_status dentry_lru_isolate(struct list_head *item,
1153                 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1154 {
1155         struct list_head *freeable = arg;
1156         struct dentry   *dentry = container_of(item, struct dentry, d_lru);
1157
1158
1159         /*
1160          * we are inverting the lru lock/dentry->d_lock here,
1161          * so use a trylock. If we fail to get the lock, just skip
1162          * it
1163          */
1164         if (!spin_trylock(&dentry->d_lock))
1165                 return LRU_SKIP;
1166
1167         /*
1168          * Referenced dentries are still in use. If they have active
1169          * counts, just remove them from the LRU. Otherwise give them
1170          * another pass through the LRU.
1171          */
1172         if (dentry->d_lockref.count) {
1173                 d_lru_isolate(lru, dentry);
1174                 spin_unlock(&dentry->d_lock);
1175                 return LRU_REMOVED;
1176         }
1177
1178         if (dentry->d_flags & DCACHE_REFERENCED) {
1179                 dentry->d_flags &= ~DCACHE_REFERENCED;
1180                 spin_unlock(&dentry->d_lock);
1181
1182                 /*
1183                  * The list move itself will be made by the common LRU code. At
1184                  * this point, we've dropped the dentry->d_lock but keep the
1185                  * lru lock. This is safe to do, since every list movement is
1186                  * protected by the lru lock even if both locks are held.
1187                  *
1188                  * This is guaranteed by the fact that all LRU management
1189                  * functions are intermediated by the LRU API calls like
1190                  * list_lru_add and list_lru_del. List movement in this file
1191                  * only ever occur through this functions or through callbacks
1192                  * like this one, that are called from the LRU API.
1193                  *
1194                  * The only exceptions to this are functions like
1195                  * shrink_dentry_list, and code that first checks for the
1196                  * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1197                  * operating only with stack provided lists after they are
1198                  * properly isolated from the main list.  It is thus, always a
1199                  * local access.
1200                  */
1201                 return LRU_ROTATE;
1202         }
1203
1204         d_lru_shrink_move(lru, dentry, freeable);
1205         spin_unlock(&dentry->d_lock);
1206
1207         return LRU_REMOVED;
1208 }
1209
1210 /**
1211  * prune_dcache_sb - shrink the dcache
1212  * @sb: superblock
1213  * @sc: shrink control, passed to list_lru_shrink_walk()
1214  *
1215  * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1216  * is done when we need more memory and called from the superblock shrinker
1217  * function.
1218  *
1219  * This function may fail to free any resources if all the dentries are in
1220  * use.
1221  */
1222 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1223 {
1224         LIST_HEAD(dispose);
1225         long freed;
1226
1227         freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1228                                      dentry_lru_isolate, &dispose);
1229         shrink_dentry_list(&dispose);
1230         return freed;
1231 }
1232
1233 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1234                 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1235 {
1236         struct list_head *freeable = arg;
1237         struct dentry   *dentry = container_of(item, struct dentry, d_lru);
1238
1239         /*
1240          * we are inverting the lru lock/dentry->d_lock here,
1241          * so use a trylock. If we fail to get the lock, just skip
1242          * it
1243          */
1244         if (!spin_trylock(&dentry->d_lock))
1245                 return LRU_SKIP;
1246
1247         d_lru_shrink_move(lru, dentry, freeable);
1248         spin_unlock(&dentry->d_lock);
1249
1250         return LRU_REMOVED;
1251 }
1252
1253
1254 /**
1255  * shrink_dcache_sb - shrink dcache for a superblock
1256  * @sb: superblock
1257  *
1258  * Shrink the dcache for the specified super block. This is used to free
1259  * the dcache before unmounting a file system.
1260  */
1261 void shrink_dcache_sb(struct super_block *sb)
1262 {
1263         do {
1264                 LIST_HEAD(dispose);
1265
1266                 list_lru_walk(&sb->s_dentry_lru,
1267                         dentry_lru_isolate_shrink, &dispose, 1024);
1268                 shrink_dentry_list(&dispose);
1269         } while (list_lru_count(&sb->s_dentry_lru) > 0);
1270 }
1271 EXPORT_SYMBOL(shrink_dcache_sb);
1272
1273 /**
1274  * enum d_walk_ret - action to talke during tree walk
1275  * @D_WALK_CONTINUE:    contrinue walk
1276  * @D_WALK_QUIT:        quit walk
1277  * @D_WALK_NORETRY:     quit when retry is needed
1278  * @D_WALK_SKIP:        skip this dentry and its children
1279  */
1280 enum d_walk_ret {
1281         D_WALK_CONTINUE,
1282         D_WALK_QUIT,
1283         D_WALK_NORETRY,
1284         D_WALK_SKIP,
1285 };
1286
1287 /**
1288  * d_walk - walk the dentry tree
1289  * @parent:     start of walk
1290  * @data:       data passed to @enter() and @finish()
1291  * @enter:      callback when first entering the dentry
1292  *
1293  * The @enter() callbacks are called with d_lock held.
1294  */
1295 static void d_walk(struct dentry *parent, void *data,
1296                    enum d_walk_ret (*enter)(void *, struct dentry *))
1297 {
1298         struct dentry *this_parent;
1299         struct list_head *next;
1300         unsigned seq = 0;
1301         enum d_walk_ret ret;
1302         bool retry = true;
1303
1304 again:
1305         read_seqbegin_or_lock(&rename_lock, &seq);
1306         this_parent = parent;
1307         spin_lock(&this_parent->d_lock);
1308
1309         ret = enter(data, this_parent);
1310         switch (ret) {
1311         case D_WALK_CONTINUE:
1312                 break;
1313         case D_WALK_QUIT:
1314         case D_WALK_SKIP:
1315                 goto out_unlock;
1316         case D_WALK_NORETRY:
1317                 retry = false;
1318                 break;
1319         }
1320 repeat:
1321         next = this_parent->d_subdirs.next;
1322 resume:
1323         while (next != &this_parent->d_subdirs) {
1324                 struct list_head *tmp = next;
1325                 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1326                 next = tmp->next;
1327
1328                 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1329                         continue;
1330
1331                 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1332
1333                 ret = enter(data, dentry);
1334                 switch (ret) {
1335                 case D_WALK_CONTINUE:
1336                         break;
1337                 case D_WALK_QUIT:
1338                         spin_unlock(&dentry->d_lock);
1339                         goto out_unlock;
1340                 case D_WALK_NORETRY:
1341                         retry = false;
1342                         break;
1343                 case D_WALK_SKIP:
1344                         spin_unlock(&dentry->d_lock);
1345                         continue;
1346                 }
1347
1348                 if (!list_empty(&dentry->d_subdirs)) {
1349                         spin_unlock(&this_parent->d_lock);
1350                         spin_release(&dentry->d_lock.dep_map, _RET_IP_);
1351                         this_parent = dentry;
1352                         spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1353                         goto repeat;
1354                 }
1355                 spin_unlock(&dentry->d_lock);
1356         }
1357         /*
1358          * All done at this level ... ascend and resume the search.
1359          */
1360         rcu_read_lock();
1361 ascend:
1362         if (this_parent != parent) {
1363                 struct dentry *child = this_parent;
1364                 this_parent = child->d_parent;
1365
1366                 spin_unlock(&child->d_lock);
1367                 spin_lock(&this_parent->d_lock);
1368
1369                 /* might go back up the wrong parent if we have had a rename. */
1370                 if (need_seqretry(&rename_lock, seq))
1371                         goto rename_retry;
1372                 /* go into the first sibling still alive */
1373                 do {
1374                         next = child->d_child.next;
1375                         if (next == &this_parent->d_subdirs)
1376                                 goto ascend;
1377                         child = list_entry(next, struct dentry, d_child);
1378                 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1379                 rcu_read_unlock();
1380                 goto resume;
1381         }
1382         if (need_seqretry(&rename_lock, seq))
1383                 goto rename_retry;
1384         rcu_read_unlock();
1385
1386 out_unlock:
1387         spin_unlock(&this_parent->d_lock);
1388         done_seqretry(&rename_lock, seq);
1389         return;
1390
1391 rename_retry:
1392         spin_unlock(&this_parent->d_lock);
1393         rcu_read_unlock();
1394         BUG_ON(seq & 1);
1395         if (!retry)
1396                 return;
1397         seq = 1;
1398         goto again;
1399 }
1400
1401 struct check_mount {
1402         struct vfsmount *mnt;
1403         unsigned int mounted;
1404 };
1405
1406 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1407 {
1408         struct check_mount *info = data;
1409         struct path path = { .mnt = info->mnt, .dentry = dentry };
1410
1411         if (likely(!d_mountpoint(dentry)))
1412                 return D_WALK_CONTINUE;
1413         if (__path_is_mountpoint(&path)) {
1414                 info->mounted = 1;
1415                 return D_WALK_QUIT;
1416         }
1417         return D_WALK_CONTINUE;
1418 }
1419
1420 /**
1421  * path_has_submounts - check for mounts over a dentry in the
1422  *                      current namespace.
1423  * @parent: path to check.
1424  *
1425  * Return true if the parent or its subdirectories contain
1426  * a mount point in the current namespace.
1427  */
1428 int path_has_submounts(const struct path *parent)
1429 {
1430         struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1431
1432         read_seqlock_excl(&mount_lock);
1433         d_walk(parent->dentry, &data, path_check_mount);
1434         read_sequnlock_excl(&mount_lock);
1435
1436         return data.mounted;
1437 }
1438 EXPORT_SYMBOL(path_has_submounts);
1439
1440 /*
1441  * Called by mount code to set a mountpoint and check if the mountpoint is
1442  * reachable (e.g. NFS can unhash a directory dentry and then the complete
1443  * subtree can become unreachable).
1444  *
1445  * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1446  * this reason take rename_lock and d_lock on dentry and ancestors.
1447  */
1448 int d_set_mounted(struct dentry *dentry)
1449 {
1450         struct dentry *p;
1451         int ret = -ENOENT;
1452         write_seqlock(&rename_lock);
1453         for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1454                 /* Need exclusion wrt. d_invalidate() */
1455                 spin_lock(&p->d_lock);
1456                 if (unlikely(d_unhashed(p))) {
1457                         spin_unlock(&p->d_lock);
1458                         goto out;
1459                 }
1460                 spin_unlock(&p->d_lock);
1461         }
1462         spin_lock(&dentry->d_lock);
1463         if (!d_unlinked(dentry)) {
1464                 ret = -EBUSY;
1465                 if (!d_mountpoint(dentry)) {
1466                         dentry->d_flags |= DCACHE_MOUNTED;
1467                         ret = 0;
1468                 }
1469         }
1470         spin_unlock(&dentry->d_lock);
1471 out:
1472         write_sequnlock(&rename_lock);
1473         return ret;
1474 }
1475
1476 /*
1477  * Search the dentry child list of the specified parent,
1478  * and move any unused dentries to the end of the unused
1479  * list for prune_dcache(). We descend to the next level
1480  * whenever the d_subdirs list is non-empty and continue
1481  * searching.
1482  *
1483  * It returns zero iff there are no unused children,
1484  * otherwise  it returns the number of children moved to
1485  * the end of the unused list. This may not be the total
1486  * number of unused children, because select_parent can
1487  * drop the lock and return early due to latency
1488  * constraints.
1489  */
1490
1491 struct select_data {
1492         struct dentry *start;
1493         union {
1494                 long found;
1495                 struct dentry *victim;
1496         };
1497         struct list_head dispose;
1498 };
1499
1500 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1501 {
1502         struct select_data *data = _data;
1503         enum d_walk_ret ret = D_WALK_CONTINUE;
1504
1505         if (data->start == dentry)
1506                 goto out;
1507
1508         if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1509                 data->found++;
1510         } else {
1511                 if (dentry->d_flags & DCACHE_LRU_LIST)
1512                         d_lru_del(dentry);
1513                 if (!dentry->d_lockref.count) {
1514                         d_shrink_add(dentry, &data->dispose);
1515                         data->found++;
1516                 }
1517         }
1518         /*
1519          * We can return to the caller if we have found some (this
1520          * ensures forward progress). We'll be coming back to find
1521          * the rest.
1522          */
1523         if (!list_empty(&data->dispose))
1524                 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1525 out:
1526         return ret;
1527 }
1528
1529 static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry)
1530 {
1531         struct select_data *data = _data;
1532         enum d_walk_ret ret = D_WALK_CONTINUE;
1533
1534         if (data->start == dentry)
1535                 goto out;
1536
1537         if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1538                 if (!dentry->d_lockref.count) {
1539                         rcu_read_lock();
1540                         data->victim = dentry;
1541                         return D_WALK_QUIT;
1542                 }
1543         } else {
1544                 if (dentry->d_flags & DCACHE_LRU_LIST)
1545                         d_lru_del(dentry);
1546                 if (!dentry->d_lockref.count)
1547                         d_shrink_add(dentry, &data->dispose);
1548         }
1549         /*
1550          * We can return to the caller if we have found some (this
1551          * ensures forward progress). We'll be coming back to find
1552          * the rest.
1553          */
1554         if (!list_empty(&data->dispose))
1555                 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1556 out:
1557         return ret;
1558 }
1559
1560 /**
1561  * shrink_dcache_parent - prune dcache
1562  * @parent: parent of entries to prune
1563  *
1564  * Prune the dcache to remove unused children of the parent dentry.
1565  */
1566 void shrink_dcache_parent(struct dentry *parent)
1567 {
1568         for (;;) {
1569                 struct select_data data = {.start = parent};
1570
1571                 INIT_LIST_HEAD(&data.dispose);
1572                 d_walk(parent, &data, select_collect);
1573
1574                 if (!list_empty(&data.dispose)) {
1575                         shrink_dentry_list(&data.dispose);
1576                         continue;
1577                 }
1578
1579                 cond_resched();
1580                 if (!data.found)
1581                         break;
1582                 data.victim = NULL;
1583                 d_walk(parent, &data, select_collect2);
1584                 if (data.victim) {
1585                         struct dentry *parent;
1586                         spin_lock(&data.victim->d_lock);
1587                         if (!shrink_lock_dentry(data.victim)) {
1588                                 spin_unlock(&data.victim->d_lock);
1589                                 rcu_read_unlock();
1590                         } else {
1591                                 rcu_read_unlock();
1592                                 parent = data.victim->d_parent;
1593                                 if (parent != data.victim)
1594                                         __dput_to_list(parent, &data.dispose);
1595                                 __dentry_kill(data.victim);
1596                         }
1597                 }
1598                 if (!list_empty(&data.dispose))
1599                         shrink_dentry_list(&data.dispose);
1600         }
1601 }
1602 EXPORT_SYMBOL(shrink_dcache_parent);
1603
1604 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1605 {
1606         /* it has busy descendents; complain about those instead */
1607         if (!list_empty(&dentry->d_subdirs))
1608                 return D_WALK_CONTINUE;
1609
1610         /* root with refcount 1 is fine */
1611         if (dentry == _data && dentry->d_lockref.count == 1)
1612                 return D_WALK_CONTINUE;
1613
1614         printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1615                         " still in use (%d) [unmount of %s %s]\n",
1616                        dentry,
1617                        dentry->d_inode ?
1618                        dentry->d_inode->i_ino : 0UL,
1619                        dentry,
1620                        dentry->d_lockref.count,
1621                        dentry->d_sb->s_type->name,
1622                        dentry->d_sb->s_id);
1623         WARN_ON(1);
1624         return D_WALK_CONTINUE;
1625 }
1626
1627 static void do_one_tree(struct dentry *dentry)
1628 {
1629         shrink_dcache_parent(dentry);
1630         d_walk(dentry, dentry, umount_check);
1631         d_drop(dentry);
1632         dput(dentry);
1633 }
1634
1635 /*
1636  * destroy the dentries attached to a superblock on unmounting
1637  */
1638 void shrink_dcache_for_umount(struct super_block *sb)
1639 {
1640         struct dentry *dentry;
1641
1642         WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1643
1644         dentry = sb->s_root;
1645         sb->s_root = NULL;
1646         do_one_tree(dentry);
1647
1648         while (!hlist_bl_empty(&sb->s_roots)) {
1649                 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1650                 do_one_tree(dentry);
1651         }
1652 }
1653
1654 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
1655 {
1656         struct dentry **victim = _data;
1657         if (d_mountpoint(dentry)) {
1658                 __dget_dlock(dentry);
1659                 *victim = dentry;
1660                 return D_WALK_QUIT;
1661         }
1662         return D_WALK_CONTINUE;
1663 }
1664
1665 /**
1666  * d_invalidate - detach submounts, prune dcache, and drop
1667  * @dentry: dentry to invalidate (aka detach, prune and drop)
1668  */
1669 void d_invalidate(struct dentry *dentry)
1670 {
1671         bool had_submounts = false;
1672         spin_lock(&dentry->d_lock);
1673         if (d_unhashed(dentry)) {
1674                 spin_unlock(&dentry->d_lock);
1675                 return;
1676         }
1677         __d_drop(dentry);
1678         spin_unlock(&dentry->d_lock);
1679
1680         /* Negative dentries can be dropped without further checks */
1681         if (!dentry->d_inode)
1682                 return;
1683
1684         shrink_dcache_parent(dentry);
1685         for (;;) {
1686                 struct dentry *victim = NULL;
1687                 d_walk(dentry, &victim, find_submount);
1688                 if (!victim) {
1689                         if (had_submounts)
1690                                 shrink_dcache_parent(dentry);
1691                         return;
1692                 }
1693                 had_submounts = true;
1694                 detach_mounts(victim);
1695                 dput(victim);
1696         }
1697 }
1698 EXPORT_SYMBOL(d_invalidate);
1699
1700 /**
1701  * __d_alloc    -       allocate a dcache entry
1702  * @sb: filesystem it will belong to
1703  * @name: qstr of the name
1704  *
1705  * Allocates a dentry. It returns %NULL if there is insufficient memory
1706  * available. On a success the dentry is returned. The name passed in is
1707  * copied and the copy passed in may be reused after this call.
1708  */
1709  
1710 static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1711 {
1712         struct dentry *dentry;
1713         char *dname;
1714         int err;
1715
1716         dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1717         if (!dentry)
1718                 return NULL;
1719
1720         /*
1721          * We guarantee that the inline name is always NUL-terminated.
1722          * This way the memcpy() done by the name switching in rename
1723          * will still always have a NUL at the end, even if we might
1724          * be overwriting an internal NUL character
1725          */
1726         dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1727         if (unlikely(!name)) {
1728                 name = &slash_name;
1729                 dname = dentry->d_iname;
1730         } else if (name->len > DNAME_INLINE_LEN-1) {
1731                 size_t size = offsetof(struct external_name, name[1]);
1732                 struct external_name *p = kmalloc(size + name->len,
1733                                                   GFP_KERNEL_ACCOUNT |
1734                                                   __GFP_RECLAIMABLE);
1735                 if (!p) {
1736                         kmem_cache_free(dentry_cache, dentry); 
1737                         return NULL;
1738                 }
1739                 atomic_set(&p->u.count, 1);
1740                 dname = p->name;
1741         } else  {
1742                 dname = dentry->d_iname;
1743         }       
1744
1745         dentry->d_name.len = name->len;
1746         dentry->d_name.hash = name->hash;
1747         memcpy(dname, name->name, name->len);
1748         dname[name->len] = 0;
1749
1750         /* Make sure we always see the terminating NUL character */
1751         smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1752
1753         dentry->d_lockref.count = 1;
1754         dentry->d_flags = 0;
1755         spin_lock_init(&dentry->d_lock);
1756         seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock);
1757         dentry->d_inode = NULL;
1758         dentry->d_parent = dentry;
1759         dentry->d_sb = sb;
1760         dentry->d_op = NULL;
1761         dentry->d_fsdata = NULL;
1762         INIT_HLIST_BL_NODE(&dentry->d_hash);
1763         INIT_LIST_HEAD(&dentry->d_lru);
1764         INIT_LIST_HEAD(&dentry->d_subdirs);
1765         INIT_HLIST_NODE(&dentry->d_u.d_alias);
1766         INIT_LIST_HEAD(&dentry->d_child);
1767         d_set_d_op(dentry, dentry->d_sb->s_d_op);
1768
1769         if (dentry->d_op && dentry->d_op->d_init) {
1770                 err = dentry->d_op->d_init(dentry);
1771                 if (err) {
1772                         if (dname_external(dentry))
1773                                 kfree(external_name(dentry));
1774                         kmem_cache_free(dentry_cache, dentry);
1775                         return NULL;
1776                 }
1777         }
1778
1779         this_cpu_inc(nr_dentry);
1780
1781         return dentry;
1782 }
1783
1784 /**
1785  * d_alloc      -       allocate a dcache entry
1786  * @parent: parent of entry to allocate
1787  * @name: qstr of the name
1788  *
1789  * Allocates a dentry. It returns %NULL if there is insufficient memory
1790  * available. On a success the dentry is returned. The name passed in is
1791  * copied and the copy passed in may be reused after this call.
1792  */
1793 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1794 {
1795         struct dentry *dentry = __d_alloc(parent->d_sb, name);
1796         if (!dentry)
1797                 return NULL;
1798         spin_lock(&parent->d_lock);
1799         /*
1800          * don't need child lock because it is not subject
1801          * to concurrency here
1802          */
1803         __dget_dlock(parent);
1804         dentry->d_parent = parent;
1805         list_add(&dentry->d_child, &parent->d_subdirs);
1806         spin_unlock(&parent->d_lock);
1807
1808         return dentry;
1809 }
1810 EXPORT_SYMBOL(d_alloc);
1811
1812 struct dentry *d_alloc_anon(struct super_block *sb)
1813 {
1814         return __d_alloc(sb, NULL);
1815 }
1816 EXPORT_SYMBOL(d_alloc_anon);
1817
1818 struct dentry *d_alloc_cursor(struct dentry * parent)
1819 {
1820         struct dentry *dentry = d_alloc_anon(parent->d_sb);
1821         if (dentry) {
1822                 dentry->d_flags |= DCACHE_DENTRY_CURSOR;
1823                 dentry->d_parent = dget(parent);
1824         }
1825         return dentry;
1826 }
1827
1828 /**
1829  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1830  * @sb: the superblock
1831  * @name: qstr of the name
1832  *
1833  * For a filesystem that just pins its dentries in memory and never
1834  * performs lookups at all, return an unhashed IS_ROOT dentry.
1835  * This is used for pipes, sockets et.al. - the stuff that should
1836  * never be anyone's children or parents.  Unlike all other
1837  * dentries, these will not have RCU delay between dropping the
1838  * last reference and freeing them.
1839  *
1840  * The only user is alloc_file_pseudo() and that's what should
1841  * be considered a public interface.  Don't use directly.
1842  */
1843 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1844 {
1845         struct dentry *dentry = __d_alloc(sb, name);
1846         if (likely(dentry))
1847                 dentry->d_flags |= DCACHE_NORCU;
1848         return dentry;
1849 }
1850
1851 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1852 {
1853         struct qstr q;
1854
1855         q.name = name;
1856         q.hash_len = hashlen_string(parent, name);
1857         return d_alloc(parent, &q);
1858 }
1859 EXPORT_SYMBOL(d_alloc_name);
1860
1861 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1862 {
1863         WARN_ON_ONCE(dentry->d_op);
1864         WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH  |
1865                                 DCACHE_OP_COMPARE       |
1866                                 DCACHE_OP_REVALIDATE    |
1867                                 DCACHE_OP_WEAK_REVALIDATE       |
1868                                 DCACHE_OP_DELETE        |
1869                                 DCACHE_OP_REAL));
1870         dentry->d_op = op;
1871         if (!op)
1872                 return;
1873         if (op->d_hash)
1874                 dentry->d_flags |= DCACHE_OP_HASH;
1875         if (op->d_compare)
1876                 dentry->d_flags |= DCACHE_OP_COMPARE;
1877         if (op->d_revalidate)
1878                 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1879         if (op->d_weak_revalidate)
1880                 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1881         if (op->d_delete)
1882                 dentry->d_flags |= DCACHE_OP_DELETE;
1883         if (op->d_prune)
1884                 dentry->d_flags |= DCACHE_OP_PRUNE;
1885         if (op->d_real)
1886                 dentry->d_flags |= DCACHE_OP_REAL;
1887
1888 }
1889 EXPORT_SYMBOL(d_set_d_op);
1890
1891
1892 /*
1893  * d_set_fallthru - Mark a dentry as falling through to a lower layer
1894  * @dentry - The dentry to mark
1895  *
1896  * Mark a dentry as falling through to the lower layer (as set with
1897  * d_pin_lower()).  This flag may be recorded on the medium.
1898  */
1899 void d_set_fallthru(struct dentry *dentry)
1900 {
1901         spin_lock(&dentry->d_lock);
1902         dentry->d_flags |= DCACHE_FALLTHRU;
1903         spin_unlock(&dentry->d_lock);
1904 }
1905 EXPORT_SYMBOL(d_set_fallthru);
1906
1907 static unsigned d_flags_for_inode(struct inode *inode)
1908 {
1909         unsigned add_flags = DCACHE_REGULAR_TYPE;
1910
1911         if (!inode)
1912                 return DCACHE_MISS_TYPE;
1913
1914         if (S_ISDIR(inode->i_mode)) {
1915                 add_flags = DCACHE_DIRECTORY_TYPE;
1916                 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1917                         if (unlikely(!inode->i_op->lookup))
1918                                 add_flags = DCACHE_AUTODIR_TYPE;
1919                         else
1920                                 inode->i_opflags |= IOP_LOOKUP;
1921                 }
1922                 goto type_determined;
1923         }
1924
1925         if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1926                 if (unlikely(inode->i_op->get_link)) {
1927                         add_flags = DCACHE_SYMLINK_TYPE;
1928                         goto type_determined;
1929                 }
1930                 inode->i_opflags |= IOP_NOFOLLOW;
1931         }
1932
1933         if (unlikely(!S_ISREG(inode->i_mode)))
1934                 add_flags = DCACHE_SPECIAL_TYPE;
1935
1936 type_determined:
1937         if (unlikely(IS_AUTOMOUNT(inode)))
1938                 add_flags |= DCACHE_NEED_AUTOMOUNT;
1939         return add_flags;
1940 }
1941
1942 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1943 {
1944         unsigned add_flags = d_flags_for_inode(inode);
1945         WARN_ON(d_in_lookup(dentry));
1946
1947         spin_lock(&dentry->d_lock);
1948         /*
1949          * Decrement negative dentry count if it was in the LRU list.
1950          */
1951         if (dentry->d_flags & DCACHE_LRU_LIST)
1952                 this_cpu_dec(nr_dentry_negative);
1953         hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1954         raw_write_seqcount_begin(&dentry->d_seq);
1955         __d_set_inode_and_type(dentry, inode, add_flags);
1956         raw_write_seqcount_end(&dentry->d_seq);
1957         fsnotify_update_flags(dentry);
1958         spin_unlock(&dentry->d_lock);
1959 }
1960
1961 /**
1962  * d_instantiate - fill in inode information for a dentry
1963  * @entry: dentry to complete
1964  * @inode: inode to attach to this dentry
1965  *
1966  * Fill in inode information in the entry.
1967  *
1968  * This turns negative dentries into productive full members
1969  * of society.
1970  *
1971  * NOTE! This assumes that the inode count has been incremented
1972  * (or otherwise set) by the caller to indicate that it is now
1973  * in use by the dcache.
1974  */
1975  
1976 void d_instantiate(struct dentry *entry, struct inode * inode)
1977 {
1978         BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1979         if (inode) {
1980                 security_d_instantiate(entry, inode);
1981                 spin_lock(&inode->i_lock);
1982                 __d_instantiate(entry, inode);
1983                 spin_unlock(&inode->i_lock);
1984         }
1985 }
1986 EXPORT_SYMBOL(d_instantiate);
1987
1988 /*
1989  * This should be equivalent to d_instantiate() + unlock_new_inode(),
1990  * with lockdep-related part of unlock_new_inode() done before
1991  * anything else.  Use that instead of open-coding d_instantiate()/
1992  * unlock_new_inode() combinations.
1993  */
1994 void d_instantiate_new(struct dentry *entry, struct inode *inode)
1995 {
1996         BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1997         BUG_ON(!inode);
1998         lockdep_annotate_inode_mutex_key(inode);
1999         security_d_instantiate(entry, inode);
2000         spin_lock(&inode->i_lock);
2001         __d_instantiate(entry, inode);
2002         WARN_ON(!(inode->i_state & I_NEW));
2003         inode->i_state &= ~I_NEW & ~I_CREATING;
2004         smp_mb();
2005         wake_up_bit(&inode->i_state, __I_NEW);
2006         spin_unlock(&inode->i_lock);
2007 }
2008 EXPORT_SYMBOL(d_instantiate_new);
2009
2010 struct dentry *d_make_root(struct inode *root_inode)
2011 {
2012         struct dentry *res = NULL;
2013
2014         if (root_inode) {
2015                 res = d_alloc_anon(root_inode->i_sb);
2016                 if (res)
2017                         d_instantiate(res, root_inode);
2018                 else
2019                         iput(root_inode);
2020         }
2021         return res;
2022 }
2023 EXPORT_SYMBOL(d_make_root);
2024
2025 static struct dentry *__d_instantiate_anon(struct dentry *dentry,
2026                                            struct inode *inode,
2027                                            bool disconnected)
2028 {
2029         struct dentry *res;
2030         unsigned add_flags;
2031
2032         security_d_instantiate(dentry, inode);
2033         spin_lock(&inode->i_lock);
2034         res = __d_find_any_alias(inode);
2035         if (res) {
2036                 spin_unlock(&inode->i_lock);
2037                 dput(dentry);
2038                 goto out_iput;
2039         }
2040
2041         /* attach a disconnected dentry */
2042         add_flags = d_flags_for_inode(inode);
2043
2044         if (disconnected)
2045                 add_flags |= DCACHE_DISCONNECTED;
2046
2047         spin_lock(&dentry->d_lock);
2048         __d_set_inode_and_type(dentry, inode, add_flags);
2049         hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2050         if (!disconnected) {
2051                 hlist_bl_lock(&dentry->d_sb->s_roots);
2052                 hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
2053                 hlist_bl_unlock(&dentry->d_sb->s_roots);
2054         }
2055         spin_unlock(&dentry->d_lock);
2056         spin_unlock(&inode->i_lock);
2057
2058         return dentry;
2059
2060  out_iput:
2061         iput(inode);
2062         return res;
2063 }
2064
2065 struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
2066 {
2067         return __d_instantiate_anon(dentry, inode, true);
2068 }
2069 EXPORT_SYMBOL(d_instantiate_anon);
2070
2071 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
2072 {
2073         struct dentry *tmp;
2074         struct dentry *res;
2075
2076         if (!inode)
2077                 return ERR_PTR(-ESTALE);
2078         if (IS_ERR(inode))
2079                 return ERR_CAST(inode);
2080
2081         res = d_find_any_alias(inode);
2082         if (res)
2083                 goto out_iput;
2084
2085         tmp = d_alloc_anon(inode->i_sb);
2086         if (!tmp) {
2087                 res = ERR_PTR(-ENOMEM);
2088                 goto out_iput;
2089         }
2090
2091         return __d_instantiate_anon(tmp, inode, disconnected);
2092
2093 out_iput:
2094         iput(inode);
2095         return res;
2096 }
2097
2098 /**
2099  * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2100  * @inode: inode to allocate the dentry for
2101  *
2102  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2103  * similar open by handle operations.  The returned dentry may be anonymous,
2104  * or may have a full name (if the inode was already in the cache).
2105  *
2106  * When called on a directory inode, we must ensure that the inode only ever
2107  * has one dentry.  If a dentry is found, that is returned instead of
2108  * allocating a new one.
2109  *
2110  * On successful return, the reference to the inode has been transferred
2111  * to the dentry.  In case of an error the reference on the inode is released.
2112  * To make it easier to use in export operations a %NULL or IS_ERR inode may
2113  * be passed in and the error will be propagated to the return value,
2114  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2115  */
2116 struct dentry *d_obtain_alias(struct inode *inode)
2117 {
2118         return __d_obtain_alias(inode, true);
2119 }
2120 EXPORT_SYMBOL(d_obtain_alias);
2121
2122 /**
2123  * d_obtain_root - find or allocate a dentry for a given inode
2124  * @inode: inode to allocate the dentry for
2125  *
2126  * Obtain an IS_ROOT dentry for the root of a filesystem.
2127  *
2128  * We must ensure that directory inodes only ever have one dentry.  If a
2129  * dentry is found, that is returned instead of allocating a new one.
2130  *
2131  * On successful return, the reference to the inode has been transferred
2132  * to the dentry.  In case of an error the reference on the inode is
2133  * released.  A %NULL or IS_ERR inode may be passed in and will be the
2134  * error will be propagate to the return value, with a %NULL @inode
2135  * replaced by ERR_PTR(-ESTALE).
2136  */
2137 struct dentry *d_obtain_root(struct inode *inode)
2138 {
2139         return __d_obtain_alias(inode, false);
2140 }
2141 EXPORT_SYMBOL(d_obtain_root);
2142
2143 /**
2144  * d_add_ci - lookup or allocate new dentry with case-exact name
2145  * @inode:  the inode case-insensitive lookup has found
2146  * @dentry: the negative dentry that was passed to the parent's lookup func
2147  * @name:   the case-exact name to be associated with the returned dentry
2148  *
2149  * This is to avoid filling the dcache with case-insensitive names to the
2150  * same inode, only the actual correct case is stored in the dcache for
2151  * case-insensitive filesystems.
2152  *
2153  * For a case-insensitive lookup match and if the the case-exact dentry
2154  * already exists in in the dcache, use it and return it.
2155  *
2156  * If no entry exists with the exact case name, allocate new dentry with
2157  * the exact case, and return the spliced entry.
2158  */
2159 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2160                         struct qstr *name)
2161 {
2162         struct dentry *found, *res;
2163
2164         /*
2165          * First check if a dentry matching the name already exists,
2166          * if not go ahead and create it now.
2167          */
2168         found = d_hash_and_lookup(dentry->d_parent, name);
2169         if (found) {
2170                 iput(inode);
2171                 return found;
2172         }
2173         if (d_in_lookup(dentry)) {
2174                 found = d_alloc_parallel(dentry->d_parent, name,
2175                                         dentry->d_wait);
2176                 if (IS_ERR(found) || !d_in_lookup(found)) {
2177                         iput(inode);
2178                         return found;
2179                 }
2180         } else {
2181                 found = d_alloc(dentry->d_parent, name);
2182                 if (!found) {
2183                         iput(inode);
2184                         return ERR_PTR(-ENOMEM);
2185                 } 
2186         }
2187         res = d_splice_alias(inode, found);
2188         if (res) {
2189                 dput(found);
2190                 return res;
2191         }
2192         return found;
2193 }
2194 EXPORT_SYMBOL(d_add_ci);
2195
2196
2197 static inline bool d_same_name(const struct dentry *dentry,
2198                                 const struct dentry *parent,
2199                                 const struct qstr *name)
2200 {
2201         if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2202                 if (dentry->d_name.len != name->len)
2203                         return false;
2204                 return dentry_cmp(dentry, name->name, name->len) == 0;
2205         }
2206         return parent->d_op->d_compare(dentry,
2207                                        dentry->d_name.len, dentry->d_name.name,
2208                                        name) == 0;
2209 }
2210
2211 /**
2212  * __d_lookup_rcu - search for a dentry (racy, store-free)
2213  * @parent: parent dentry
2214  * @name: qstr of name we wish to find
2215  * @seqp: returns d_seq value at the point where the dentry was found
2216  * Returns: dentry, or NULL
2217  *
2218  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2219  * resolution (store-free path walking) design described in
2220  * Documentation/filesystems/path-lookup.txt.
2221  *
2222  * This is not to be used outside core vfs.
2223  *
2224  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2225  * held, and rcu_read_lock held. The returned dentry must not be stored into
2226  * without taking d_lock and checking d_seq sequence count against @seq
2227  * returned here.
2228  *
2229  * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2230  * function.
2231  *
2232  * Alternatively, __d_lookup_rcu may be called again to look up the child of
2233  * the returned dentry, so long as its parent's seqlock is checked after the
2234  * child is looked up. Thus, an interlocking stepping of sequence lock checks
2235  * is formed, giving integrity down the path walk.
2236  *
2237  * NOTE! The caller *has* to check the resulting dentry against the sequence
2238  * number we've returned before using any of the resulting dentry state!
2239  */
2240 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2241                                 const struct qstr *name,
2242                                 unsigned *seqp)
2243 {
2244         u64 hashlen = name->hash_len;
2245         const unsigned char *str = name->name;
2246         struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2247         struct hlist_bl_node *node;
2248         struct dentry *dentry;
2249
2250         /*
2251          * Note: There is significant duplication with __d_lookup_rcu which is
2252          * required to prevent single threaded performance regressions
2253          * especially on architectures where smp_rmb (in seqcounts) are costly.
2254          * Keep the two functions in sync.
2255          */
2256
2257         /*
2258          * The hash list is protected using RCU.
2259          *
2260          * Carefully use d_seq when comparing a candidate dentry, to avoid
2261          * races with d_move().
2262          *
2263          * It is possible that concurrent renames can mess up our list
2264          * walk here and result in missing our dentry, resulting in the
2265          * false-negative result. d_lookup() protects against concurrent
2266          * renames using rename_lock seqlock.
2267          *
2268          * See Documentation/filesystems/path-lookup.txt for more details.
2269          */
2270         hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2271                 unsigned seq;
2272
2273 seqretry:
2274                 /*
2275                  * The dentry sequence count protects us from concurrent
2276                  * renames, and thus protects parent and name fields.
2277                  *
2278                  * The caller must perform a seqcount check in order
2279                  * to do anything useful with the returned dentry.
2280                  *
2281                  * NOTE! We do a "raw" seqcount_begin here. That means that
2282                  * we don't wait for the sequence count to stabilize if it
2283                  * is in the middle of a sequence change. If we do the slow
2284                  * dentry compare, we will do seqretries until it is stable,
2285                  * and if we end up with a successful lookup, we actually
2286                  * want to exit RCU lookup anyway.
2287                  *
2288                  * Note that raw_seqcount_begin still *does* smp_rmb(), so
2289                  * we are still guaranteed NUL-termination of ->d_name.name.
2290                  */
2291                 seq = raw_seqcount_begin(&dentry->d_seq);
2292                 if (dentry->d_parent != parent)
2293                         continue;
2294                 if (d_unhashed(dentry))
2295                         continue;
2296
2297                 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2298                         int tlen;
2299                         const char *tname;
2300                         if (dentry->d_name.hash != hashlen_hash(hashlen))
2301                                 continue;
2302                         tlen = dentry->d_name.len;
2303                         tname = dentry->d_name.name;
2304                         /* we want a consistent (name,len) pair */
2305                         if (read_seqcount_retry(&dentry->d_seq, seq)) {
2306                                 cpu_relax();
2307                                 goto seqretry;
2308                         }
2309                         if (parent->d_op->d_compare(dentry,
2310                                                     tlen, tname, name) != 0)
2311                                 continue;
2312                 } else {
2313                         if (dentry->d_name.hash_len != hashlen)
2314                                 continue;
2315                         if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2316                                 continue;
2317                 }
2318                 *seqp = seq;
2319                 return dentry;
2320         }
2321         return NULL;
2322 }
2323
2324 /**
2325  * d_lookup - search for a dentry
2326  * @parent: parent dentry
2327  * @name: qstr of name we wish to find
2328  * Returns: dentry, or NULL
2329  *
2330  * d_lookup searches the children of the parent dentry for the name in
2331  * question. If the dentry is found its reference count is incremented and the
2332  * dentry is returned. The caller must use dput to free the entry when it has
2333  * finished using it. %NULL is returned if the dentry does not exist.
2334  */
2335 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2336 {
2337         struct dentry *dentry;
2338         unsigned seq;
2339
2340         do {
2341                 seq = read_seqbegin(&rename_lock);
2342                 dentry = __d_lookup(parent, name);
2343                 if (dentry)
2344                         break;
2345         } while (read_seqretry(&rename_lock, seq));
2346         return dentry;
2347 }
2348 EXPORT_SYMBOL(d_lookup);
2349
2350 /**
2351  * __d_lookup - search for a dentry (racy)
2352  * @parent: parent dentry
2353  * @name: qstr of name we wish to find
2354  * Returns: dentry, or NULL
2355  *
2356  * __d_lookup is like d_lookup, however it may (rarely) return a
2357  * false-negative result due to unrelated rename activity.
2358  *
2359  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2360  * however it must be used carefully, eg. with a following d_lookup in
2361  * the case of failure.
2362  *
2363  * __d_lookup callers must be commented.
2364  */
2365 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2366 {
2367         unsigned int hash = name->hash;
2368         struct hlist_bl_head *b = d_hash(hash);
2369         struct hlist_bl_node *node;
2370         struct dentry *found = NULL;
2371         struct dentry *dentry;
2372
2373         /*
2374          * Note: There is significant duplication with __d_lookup_rcu which is
2375          * required to prevent single threaded performance regressions
2376          * especially on architectures where smp_rmb (in seqcounts) are costly.
2377          * Keep the two functions in sync.
2378          */
2379
2380         /*
2381          * The hash list is protected using RCU.
2382          *
2383          * Take d_lock when comparing a candidate dentry, to avoid races
2384          * with d_move().
2385          *
2386          * It is possible that concurrent renames can mess up our list
2387          * walk here and result in missing our dentry, resulting in the
2388          * false-negative result. d_lookup() protects against concurrent
2389          * renames using rename_lock seqlock.
2390          *
2391          * See Documentation/filesystems/path-lookup.txt for more details.
2392          */
2393         rcu_read_lock();
2394         
2395         hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2396
2397                 if (dentry->d_name.hash != hash)
2398                         continue;
2399
2400                 spin_lock(&dentry->d_lock);
2401                 if (dentry->d_parent != parent)
2402                         goto next;
2403                 if (d_unhashed(dentry))
2404                         goto next;
2405
2406                 if (!d_same_name(dentry, parent, name))
2407                         goto next;
2408
2409                 dentry->d_lockref.count++;
2410                 found = dentry;
2411                 spin_unlock(&dentry->d_lock);
2412                 break;
2413 next:
2414                 spin_unlock(&dentry->d_lock);
2415         }
2416         rcu_read_unlock();
2417
2418         return found;
2419 }
2420
2421 /**
2422  * d_hash_and_lookup - hash the qstr then search for a dentry
2423  * @dir: Directory to search in
2424  * @name: qstr of name we wish to find
2425  *
2426  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2427  */
2428 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2429 {
2430         /*
2431          * Check for a fs-specific hash function. Note that we must
2432          * calculate the standard hash first, as the d_op->d_hash()
2433          * routine may choose to leave the hash value unchanged.
2434          */
2435         name->hash = full_name_hash(dir, name->name, name->len);
2436         if (dir->d_flags & DCACHE_OP_HASH) {
2437                 int err = dir->d_op->d_hash(dir, name);
2438                 if (unlikely(err < 0))
2439                         return ERR_PTR(err);
2440         }
2441         return d_lookup(dir, name);
2442 }
2443 EXPORT_SYMBOL(d_hash_and_lookup);
2444
2445 /*
2446  * When a file is deleted, we have two options:
2447  * - turn this dentry into a negative dentry
2448  * - unhash this dentry and free it.
2449  *
2450  * Usually, we want to just turn this into
2451  * a negative dentry, but if anybody else is
2452  * currently using the dentry or the inode
2453  * we can't do that and we fall back on removing
2454  * it from the hash queues and waiting for
2455  * it to be deleted later when it has no users
2456  */
2457  
2458 /**
2459  * d_delete - delete a dentry
2460  * @dentry: The dentry to delete
2461  *
2462  * Turn the dentry into a negative dentry if possible, otherwise
2463  * remove it from the hash queues so it can be deleted later
2464  */
2465  
2466 void d_delete(struct dentry * dentry)
2467 {
2468         struct inode *inode = dentry->d_inode;
2469
2470         spin_lock(&inode->i_lock);
2471         spin_lock(&dentry->d_lock);
2472         /*
2473          * Are we the only user?
2474          */
2475         if (dentry->d_lockref.count == 1) {
2476                 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2477                 dentry_unlink_inode(dentry);
2478         } else {
2479                 __d_drop(dentry);
2480                 spin_unlock(&dentry->d_lock);
2481                 spin_unlock(&inode->i_lock);
2482         }
2483 }
2484 EXPORT_SYMBOL(d_delete);
2485
2486 static void __d_rehash(struct dentry *entry)
2487 {
2488         struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2489
2490         hlist_bl_lock(b);
2491         hlist_bl_add_head_rcu(&entry->d_hash, b);
2492         hlist_bl_unlock(b);
2493 }
2494
2495 /**
2496  * d_rehash     - add an entry back to the hash
2497  * @entry: dentry to add to the hash
2498  *
2499  * Adds a dentry to the hash according to its name.
2500  */
2501  
2502 void d_rehash(struct dentry * entry)
2503 {
2504         spin_lock(&entry->d_lock);
2505         __d_rehash(entry);
2506         spin_unlock(&entry->d_lock);
2507 }
2508 EXPORT_SYMBOL(d_rehash);
2509
2510 static inline unsigned start_dir_add(struct inode *dir)
2511 {
2512
2513         for (;;) {
2514                 unsigned n = dir->i_dir_seq;
2515                 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2516                         return n;
2517                 cpu_relax();
2518         }
2519 }
2520
2521 static inline void end_dir_add(struct inode *dir, unsigned n)
2522 {
2523         smp_store_release(&dir->i_dir_seq, n + 2);
2524 }
2525
2526 static void d_wait_lookup(struct dentry *dentry)
2527 {
2528         if (d_in_lookup(dentry)) {
2529                 DECLARE_WAITQUEUE(wait, current);
2530                 add_wait_queue(dentry->d_wait, &wait);
2531                 do {
2532                         set_current_state(TASK_UNINTERRUPTIBLE);
2533                         spin_unlock(&dentry->d_lock);
2534                         schedule();
2535                         spin_lock(&dentry->d_lock);
2536                 } while (d_in_lookup(dentry));
2537         }
2538 }
2539
2540 struct dentry *d_alloc_parallel(struct dentry *parent,
2541                                 const struct qstr *name,
2542                                 wait_queue_head_t *wq)
2543 {
2544         unsigned int hash = name->hash;
2545         struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2546         struct hlist_bl_node *node;
2547         struct dentry *new = d_alloc(parent, name);
2548         struct dentry *dentry;
2549         unsigned seq, r_seq, d_seq;
2550
2551         if (unlikely(!new))
2552                 return ERR_PTR(-ENOMEM);
2553
2554 retry:
2555         rcu_read_lock();
2556         seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2557         r_seq = read_seqbegin(&rename_lock);
2558         dentry = __d_lookup_rcu(parent, name, &d_seq);
2559         if (unlikely(dentry)) {
2560                 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2561                         rcu_read_unlock();
2562                         goto retry;
2563                 }
2564                 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2565                         rcu_read_unlock();
2566                         dput(dentry);
2567                         goto retry;
2568                 }
2569                 rcu_read_unlock();
2570                 dput(new);
2571                 return dentry;
2572         }
2573         if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2574                 rcu_read_unlock();
2575                 goto retry;
2576         }
2577
2578         if (unlikely(seq & 1)) {
2579                 rcu_read_unlock();
2580                 goto retry;
2581         }
2582
2583         hlist_bl_lock(b);
2584         if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2585                 hlist_bl_unlock(b);
2586                 rcu_read_unlock();
2587                 goto retry;
2588         }
2589         /*
2590          * No changes for the parent since the beginning of d_lookup().
2591          * Since all removals from the chain happen with hlist_bl_lock(),
2592          * any potential in-lookup matches are going to stay here until
2593          * we unlock the chain.  All fields are stable in everything
2594          * we encounter.
2595          */
2596         hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2597                 if (dentry->d_name.hash != hash)
2598                         continue;
2599                 if (dentry->d_parent != parent)
2600                         continue;
2601                 if (!d_same_name(dentry, parent, name))
2602                         continue;
2603                 hlist_bl_unlock(b);
2604                 /* now we can try to grab a reference */
2605                 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2606                         rcu_read_unlock();
2607                         goto retry;
2608                 }
2609
2610                 rcu_read_unlock();
2611                 /*
2612                  * somebody is likely to be still doing lookup for it;
2613                  * wait for them to finish
2614                  */
2615                 spin_lock(&dentry->d_lock);
2616                 d_wait_lookup(dentry);
2617                 /*
2618                  * it's not in-lookup anymore; in principle we should repeat
2619                  * everything from dcache lookup, but it's likely to be what
2620                  * d_lookup() would've found anyway.  If it is, just return it;
2621                  * otherwise we really have to repeat the whole thing.
2622                  */
2623                 if (unlikely(dentry->d_name.hash != hash))
2624                         goto mismatch;
2625                 if (unlikely(dentry->d_parent != parent))
2626                         goto mismatch;
2627                 if (unlikely(d_unhashed(dentry)))
2628                         goto mismatch;
2629                 if (unlikely(!d_same_name(dentry, parent, name)))
2630                         goto mismatch;
2631                 /* OK, it *is* a hashed match; return it */
2632                 spin_unlock(&dentry->d_lock);
2633                 dput(new);
2634                 return dentry;
2635         }
2636         rcu_read_unlock();
2637         /* we can't take ->d_lock here; it's OK, though. */
2638         new->d_flags |= DCACHE_PAR_LOOKUP;
2639         new->d_wait = wq;
2640         hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2641         hlist_bl_unlock(b);
2642         return new;
2643 mismatch:
2644         spin_unlock(&dentry->d_lock);
2645         dput(dentry);
2646         goto retry;
2647 }
2648 EXPORT_SYMBOL(d_alloc_parallel);
2649
2650 void __d_lookup_done(struct dentry *dentry)
2651 {
2652         struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2653                                                  dentry->d_name.hash);
2654         hlist_bl_lock(b);
2655         dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2656         __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2657         wake_up_all(dentry->d_wait);
2658         dentry->d_wait = NULL;
2659         hlist_bl_unlock(b);
2660         INIT_HLIST_NODE(&dentry->d_u.d_alias);
2661         INIT_LIST_HEAD(&dentry->d_lru);
2662 }
2663 EXPORT_SYMBOL(__d_lookup_done);
2664
2665 /* inode->i_lock held if inode is non-NULL */
2666
2667 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2668 {
2669         struct inode *dir = NULL;
2670         unsigned n;
2671         spin_lock(&dentry->d_lock);
2672         if (unlikely(d_in_lookup(dentry))) {
2673                 dir = dentry->d_parent->d_inode;
2674                 n = start_dir_add(dir);
2675                 __d_lookup_done(dentry);
2676         }
2677         if (inode) {
2678                 unsigned add_flags = d_flags_for_inode(inode);
2679                 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2680                 raw_write_seqcount_begin(&dentry->d_seq);
2681                 __d_set_inode_and_type(dentry, inode, add_flags);
2682                 raw_write_seqcount_end(&dentry->d_seq);
2683                 fsnotify_update_flags(dentry);
2684         }
2685         __d_rehash(dentry);
2686         if (dir)
2687                 end_dir_add(dir, n);
2688         spin_unlock(&dentry->d_lock);
2689         if (inode)
2690                 spin_unlock(&inode->i_lock);
2691 }
2692
2693 /**
2694  * d_add - add dentry to hash queues
2695  * @entry: dentry to add
2696  * @inode: The inode to attach to this dentry
2697  *
2698  * This adds the entry to the hash queues and initializes @inode.
2699  * The entry was actually filled in earlier during d_alloc().
2700  */
2701
2702 void d_add(struct dentry *entry, struct inode *inode)
2703 {
2704         if (inode) {
2705                 security_d_instantiate(entry, inode);
2706                 spin_lock(&inode->i_lock);
2707         }
2708         __d_add(entry, inode);
2709 }
2710 EXPORT_SYMBOL(d_add);
2711
2712 /**
2713  * d_exact_alias - find and hash an exact unhashed alias
2714  * @entry: dentry to add
2715  * @inode: The inode to go with this dentry
2716  *
2717  * If an unhashed dentry with the same name/parent and desired
2718  * inode already exists, hash and return it.  Otherwise, return
2719  * NULL.
2720  *
2721  * Parent directory should be locked.
2722  */
2723 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2724 {
2725         struct dentry *alias;
2726         unsigned int hash = entry->d_name.hash;
2727
2728         spin_lock(&inode->i_lock);
2729         hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2730                 /*
2731                  * Don't need alias->d_lock here, because aliases with
2732                  * d_parent == entry->d_parent are not subject to name or
2733                  * parent changes, because the parent inode i_mutex is held.
2734                  */
2735                 if (alias->d_name.hash != hash)
2736                         continue;
2737                 if (alias->d_parent != entry->d_parent)
2738                         continue;
2739                 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2740                         continue;
2741                 spin_lock(&alias->d_lock);
2742                 if (!d_unhashed(alias)) {
2743                         spin_unlock(&alias->d_lock);
2744                         alias = NULL;
2745                 } else {
2746                         __dget_dlock(alias);
2747                         __d_rehash(alias);
2748                         spin_unlock(&alias->d_lock);
2749                 }
2750                 spin_unlock(&inode->i_lock);
2751                 return alias;
2752         }
2753         spin_unlock(&inode->i_lock);
2754         return NULL;
2755 }
2756 EXPORT_SYMBOL(d_exact_alias);
2757
2758 static void swap_names(struct dentry *dentry, struct dentry *target)
2759 {
2760         if (unlikely(dname_external(target))) {
2761                 if (unlikely(dname_external(dentry))) {
2762                         /*
2763                          * Both external: swap the pointers
2764                          */
2765                         swap(target->d_name.name, dentry->d_name.name);
2766                 } else {
2767                         /*
2768                          * dentry:internal, target:external.  Steal target's
2769                          * storage and make target internal.
2770                          */
2771                         memcpy(target->d_iname, dentry->d_name.name,
2772                                         dentry->d_name.len + 1);
2773                         dentry->d_name.name = target->d_name.name;
2774                         target->d_name.name = target->d_iname;
2775                 }
2776         } else {
2777                 if (unlikely(dname_external(dentry))) {
2778                         /*
2779                          * dentry:external, target:internal.  Give dentry's
2780                          * storage to target and make dentry internal
2781                          */
2782                         memcpy(dentry->d_iname, target->d_name.name,
2783                                         target->d_name.len + 1);
2784                         target->d_name.name = dentry->d_name.name;
2785                         dentry->d_name.name = dentry->d_iname;
2786                 } else {
2787                         /*
2788                          * Both are internal.
2789                          */
2790                         unsigned int i;
2791                         BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2792                         for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2793                                 swap(((long *) &dentry->d_iname)[i],
2794                                      ((long *) &target->d_iname)[i]);
2795                         }
2796                 }
2797         }
2798         swap(dentry->d_name.hash_len, target->d_name.hash_len);
2799 }
2800
2801 static void copy_name(struct dentry *dentry, struct dentry *target)
2802 {
2803         struct external_name *old_name = NULL;
2804         if (unlikely(dname_external(dentry)))
2805                 old_name = external_name(dentry);
2806         if (unlikely(dname_external(target))) {
2807                 atomic_inc(&external_name(target)->u.count);
2808                 dentry->d_name = target->d_name;
2809         } else {
2810                 memcpy(dentry->d_iname, target->d_name.name,
2811                                 target->d_name.len + 1);
2812                 dentry->d_name.name = dentry->d_iname;
2813                 dentry->d_name.hash_len = target->d_name.hash_len;
2814         }
2815         if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2816                 kfree_rcu(old_name, u.head);
2817 }
2818
2819 /*
2820  * __d_move - move a dentry
2821  * @dentry: entry to move
2822  * @target: new dentry
2823  * @exchange: exchange the two dentries
2824  *
2825  * Update the dcache to reflect the move of a file name. Negative
2826  * dcache entries should not be moved in this way. Caller must hold
2827  * rename_lock, the i_mutex of the source and target directories,
2828  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2829  */
2830 static void __d_move(struct dentry *dentry, struct dentry *target,
2831                      bool exchange)
2832 {
2833         struct dentry *old_parent, *p;
2834         struct inode *dir = NULL;
2835         unsigned n;
2836
2837         WARN_ON(!dentry->d_inode);
2838         if (WARN_ON(dentry == target))
2839                 return;
2840
2841         BUG_ON(d_ancestor(target, dentry));
2842         old_parent = dentry->d_parent;
2843         p = d_ancestor(old_parent, target);
2844         if (IS_ROOT(dentry)) {
2845                 BUG_ON(p);
2846                 spin_lock(&target->d_parent->d_lock);
2847         } else if (!p) {
2848                 /* target is not a descendent of dentry->d_parent */
2849                 spin_lock(&target->d_parent->d_lock);
2850                 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2851         } else {
2852                 BUG_ON(p == dentry);
2853                 spin_lock(&old_parent->d_lock);
2854                 if (p != target)
2855                         spin_lock_nested(&target->d_parent->d_lock,
2856                                         DENTRY_D_LOCK_NESTED);
2857         }
2858         spin_lock_nested(&dentry->d_lock, 2);
2859         spin_lock_nested(&target->d_lock, 3);
2860
2861         if (unlikely(d_in_lookup(target))) {
2862                 dir = target->d_parent->d_inode;
2863                 n = start_dir_add(dir);
2864                 __d_lookup_done(target);
2865         }
2866
2867         write_seqcount_begin(&dentry->d_seq);
2868         write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2869
2870         /* unhash both */
2871         if (!d_unhashed(dentry))
2872                 ___d_drop(dentry);
2873         if (!d_unhashed(target))
2874                 ___d_drop(target);
2875
2876         /* ... and switch them in the tree */
2877         dentry->d_parent = target->d_parent;
2878         if (!exchange) {
2879                 copy_name(dentry, target);
2880                 target->d_hash.pprev = NULL;
2881                 dentry->d_parent->d_lockref.count++;
2882                 if (dentry != old_parent) /* wasn't IS_ROOT */
2883                         WARN_ON(!--old_parent->d_lockref.count);
2884         } else {
2885                 target->d_parent = old_parent;
2886                 swap_names(dentry, target);
2887                 list_move(&target->d_child, &target->d_parent->d_subdirs);
2888                 __d_rehash(target);
2889                 fsnotify_update_flags(target);
2890         }
2891         list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2892         __d_rehash(dentry);
2893         fsnotify_update_flags(dentry);
2894         fscrypt_handle_d_move(dentry);
2895
2896         write_seqcount_end(&target->d_seq);
2897         write_seqcount_end(&dentry->d_seq);
2898
2899         if (dir)
2900                 end_dir_add(dir, n);
2901
2902         if (dentry->d_parent != old_parent)
2903                 spin_unlock(&dentry->d_parent->d_lock);
2904         if (dentry != old_parent)
2905                 spin_unlock(&old_parent->d_lock);
2906         spin_unlock(&target->d_lock);
2907         spin_unlock(&dentry->d_lock);
2908 }
2909
2910 /*
2911  * d_move - move a dentry
2912  * @dentry: entry to move
2913  * @target: new dentry
2914  *
2915  * Update the dcache to reflect the move of a file name. Negative
2916  * dcache entries should not be moved in this way. See the locking
2917  * requirements for __d_move.
2918  */
2919 void d_move(struct dentry *dentry, struct dentry *target)
2920 {
2921         write_seqlock(&rename_lock);
2922         __d_move(dentry, target, false);
2923         write_sequnlock(&rename_lock);
2924 }
2925 EXPORT_SYMBOL(d_move);
2926
2927 /*
2928  * d_exchange - exchange two dentries
2929  * @dentry1: first dentry
2930  * @dentry2: second dentry
2931  */
2932 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2933 {
2934         write_seqlock(&rename_lock);
2935
2936         WARN_ON(!dentry1->d_inode);
2937         WARN_ON(!dentry2->d_inode);
2938         WARN_ON(IS_ROOT(dentry1));
2939         WARN_ON(IS_ROOT(dentry2));
2940
2941         __d_move(dentry1, dentry2, true);
2942
2943         write_sequnlock(&rename_lock);
2944 }
2945
2946 /**
2947  * d_ancestor - search for an ancestor
2948  * @p1: ancestor dentry
2949  * @p2: child dentry
2950  *
2951  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2952  * an ancestor of p2, else NULL.
2953  */
2954 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2955 {
2956         struct dentry *p;
2957
2958         for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2959                 if (p->d_parent == p1)
2960                         return p;
2961         }
2962         return NULL;
2963 }
2964
2965 /*
2966  * This helper attempts to cope with remotely renamed directories
2967  *
2968  * It assumes that the caller is already holding
2969  * dentry->d_parent->d_inode->i_mutex, and rename_lock
2970  *
2971  * Note: If ever the locking in lock_rename() changes, then please
2972  * remember to update this too...
2973  */
2974 static int __d_unalias(struct inode *inode,
2975                 struct dentry *dentry, struct dentry *alias)
2976 {
2977         struct mutex *m1 = NULL;
2978         struct rw_semaphore *m2 = NULL;
2979         int ret = -ESTALE;
2980
2981         /* If alias and dentry share a parent, then no extra locks required */
2982         if (alias->d_parent == dentry->d_parent)
2983                 goto out_unalias;
2984
2985         /* See lock_rename() */
2986         if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2987                 goto out_err;
2988         m1 = &dentry->d_sb->s_vfs_rename_mutex;
2989         if (!inode_trylock_shared(alias->d_parent->d_inode))
2990                 goto out_err;
2991         m2 = &alias->d_parent->d_inode->i_rwsem;
2992 out_unalias:
2993         __d_move(alias, dentry, false);
2994         ret = 0;
2995 out_err:
2996         if (m2)
2997                 up_read(m2);
2998         if (m1)
2999                 mutex_unlock(m1);
3000         return ret;
3001 }
3002
3003 /**
3004  * d_splice_alias - splice a disconnected dentry into the tree if one exists
3005  * @inode:  the inode which may have a disconnected dentry
3006  * @dentry: a negative dentry which we want to point to the inode.
3007  *
3008  * If inode is a directory and has an IS_ROOT alias, then d_move that in
3009  * place of the given dentry and return it, else simply d_add the inode
3010  * to the dentry and return NULL.
3011  *
3012  * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
3013  * we should error out: directories can't have multiple aliases.
3014  *
3015  * This is needed in the lookup routine of any filesystem that is exportable
3016  * (via knfsd) so that we can build dcache paths to directories effectively.
3017  *
3018  * If a dentry was found and moved, then it is returned.  Otherwise NULL
3019  * is returned.  This matches the expected return value of ->lookup.
3020  *
3021  * Cluster filesystems may call this function with a negative, hashed dentry.
3022  * In that case, we know that the inode will be a regular file, and also this
3023  * will only occur during atomic_open. So we need to check for the dentry
3024  * being already hashed only in the final case.
3025  */
3026 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
3027 {
3028         if (IS_ERR(inode))
3029                 return ERR_CAST(inode);
3030
3031         BUG_ON(!d_unhashed(dentry));
3032
3033         if (!inode)
3034                 goto out;
3035
3036         security_d_instantiate(dentry, inode);
3037         spin_lock(&inode->i_lock);
3038         if (S_ISDIR(inode->i_mode)) {
3039                 struct dentry *new = __d_find_any_alias(inode);
3040                 if (unlikely(new)) {
3041                         /* The reference to new ensures it remains an alias */
3042                         spin_unlock(&inode->i_lock);
3043                         write_seqlock(&rename_lock);
3044                         if (unlikely(d_ancestor(new, dentry))) {
3045                                 write_sequnlock(&rename_lock);
3046                                 dput(new);
3047                                 new = ERR_PTR(-ELOOP);
3048                                 pr_warn_ratelimited(
3049                                         "VFS: Lookup of '%s' in %s %s"
3050                                         " would have caused loop\n",
3051                                         dentry->d_name.name,
3052                                         inode->i_sb->s_type->name,
3053                                         inode->i_sb->s_id);
3054                         } else if (!IS_ROOT(new)) {
3055                                 struct dentry *old_parent = dget(new->d_parent);
3056                                 int err = __d_unalias(inode, dentry, new);
3057                                 write_sequnlock(&rename_lock);
3058                                 if (err) {
3059                                         dput(new);
3060                                         new = ERR_PTR(err);
3061                                 }
3062                                 dput(old_parent);
3063                         } else {
3064                                 __d_move(new, dentry, false);
3065                                 write_sequnlock(&rename_lock);
3066                         }
3067                         iput(inode);
3068                         return new;
3069                 }
3070         }
3071 out:
3072         __d_add(dentry, inode);
3073         return NULL;
3074 }
3075 EXPORT_SYMBOL(d_splice_alias);
3076
3077 /*
3078  * Test whether new_dentry is a subdirectory of old_dentry.
3079  *
3080  * Trivially implemented using the dcache structure
3081  */
3082
3083 /**
3084  * is_subdir - is new dentry a subdirectory of old_dentry
3085  * @new_dentry: new dentry
3086  * @old_dentry: old dentry
3087  *
3088  * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3089  * Returns false otherwise.
3090  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3091  */
3092   
3093 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3094 {
3095         bool result;
3096         unsigned seq;
3097
3098         if (new_dentry == old_dentry)
3099                 return true;
3100
3101         do {
3102                 /* for restarting inner loop in case of seq retry */
3103                 seq = read_seqbegin(&rename_lock);
3104                 /*
3105                  * Need rcu_readlock to protect against the d_parent trashing
3106                  * due to d_move
3107                  */
3108                 rcu_read_lock();
3109                 if (d_ancestor(old_dentry, new_dentry))
3110                         result = true;
3111                 else
3112                         result = false;
3113                 rcu_read_unlock();
3114         } while (read_seqretry(&rename_lock, seq));
3115
3116         return result;
3117 }
3118 EXPORT_SYMBOL(is_subdir);
3119
3120 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3121 {
3122         struct dentry *root = data;
3123         if (dentry != root) {
3124                 if (d_unhashed(dentry) || !dentry->d_inode)
3125                         return D_WALK_SKIP;
3126
3127                 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3128                         dentry->d_flags |= DCACHE_GENOCIDE;
3129                         dentry->d_lockref.count--;
3130                 }
3131         }
3132         return D_WALK_CONTINUE;
3133 }
3134
3135 void d_genocide(struct dentry *parent)
3136 {
3137         d_walk(parent, parent, d_genocide_kill);
3138 }
3139
3140 EXPORT_SYMBOL(d_genocide);
3141
3142 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3143 {
3144         inode_dec_link_count(inode);
3145         BUG_ON(dentry->d_name.name != dentry->d_iname ||
3146                 !hlist_unhashed(&dentry->d_u.d_alias) ||
3147                 !d_unlinked(dentry));
3148         spin_lock(&dentry->d_parent->d_lock);
3149         spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3150         dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3151                                 (unsigned long long)inode->i_ino);
3152         spin_unlock(&dentry->d_lock);
3153         spin_unlock(&dentry->d_parent->d_lock);
3154         d_instantiate(dentry, inode);
3155 }
3156 EXPORT_SYMBOL(d_tmpfile);
3157
3158 static __initdata unsigned long dhash_entries;
3159 static int __init set_dhash_entries(char *str)
3160 {
3161         if (!str)
3162                 return 0;
3163         dhash_entries = simple_strtoul(str, &str, 0);
3164         return 1;
3165 }
3166 __setup("dhash_entries=", set_dhash_entries);
3167
3168 static void __init dcache_init_early(void)
3169 {
3170         /* If hashes are distributed across NUMA nodes, defer
3171          * hash allocation until vmalloc space is available.
3172          */
3173         if (hashdist)
3174                 return;
3175
3176         dentry_hashtable =
3177                 alloc_large_system_hash("Dentry cache",
3178                                         sizeof(struct hlist_bl_head),
3179                                         dhash_entries,
3180                                         13,
3181                                         HASH_EARLY | HASH_ZERO,
3182                                         &d_hash_shift,
3183                                         NULL,
3184                                         0,
3185                                         0);
3186         d_hash_shift = 32 - d_hash_shift;
3187 }
3188
3189 static void __init dcache_init(void)
3190 {
3191         /*
3192          * A constructor could be added for stable state like the lists,
3193          * but it is probably not worth it because of the cache nature
3194          * of the dcache.
3195          */
3196         dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3197                 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3198                 d_iname);
3199
3200         /* Hash may have been set up in dcache_init_early */
3201         if (!hashdist)
3202                 return;
3203
3204         dentry_hashtable =
3205                 alloc_large_system_hash("Dentry cache",
3206                                         sizeof(struct hlist_bl_head),
3207                                         dhash_entries,
3208                                         13,
3209                                         HASH_ZERO,
3210                                         &d_hash_shift,
3211                                         NULL,
3212                                         0,
3213                                         0);
3214         d_hash_shift = 32 - d_hash_shift;
3215 }
3216
3217 /* SLAB cache for __getname() consumers */
3218 struct kmem_cache *names_cachep __read_mostly;
3219 EXPORT_SYMBOL(names_cachep);
3220
3221 void __init vfs_caches_init_early(void)
3222 {
3223         int i;
3224
3225         for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3226                 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3227
3228         dcache_init_early();
3229         inode_init_early();
3230 }
3231
3232 void __init vfs_caches_init(void)
3233 {
3234         names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3235                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3236
3237         dcache_init();
3238         inode_init();
3239         files_init();
3240         files_maxfiles_init();
3241         mnt_init();
3242         bdev_cache_init();
3243         chrdev_init();
3244 }