tools headers UAPI: Sync openat2.h with the kernel sources
[linux-2.6-microblaze.git] / fs / dcache.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/dcache.c
4  *
5  * Complete reimplementation
6  * (C) 1997 Thomas Schoebel-Theuer,
7  * with heavy changes by Linus Torvalds
8  */
9
10 /*
11  * Notes on the allocation strategy:
12  *
13  * The dcache is a master of the icache - whenever a dcache entry
14  * exists, the inode will always exist. "iput()" is done either when
15  * the dcache entry is deleted or garbage collected.
16  */
17
18 #include <linux/ratelimit.h>
19 #include <linux/string.h>
20 #include <linux/mm.h>
21 #include <linux/fs.h>
22 #include <linux/fscrypt.h>
23 #include <linux/fsnotify.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/hash.h>
27 #include <linux/cache.h>
28 #include <linux/export.h>
29 #include <linux/security.h>
30 #include <linux/seqlock.h>
31 #include <linux/memblock.h>
32 #include <linux/bit_spinlock.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/list_lru.h>
35 #include "internal.h"
36 #include "mount.h"
37
38 /*
39  * Usage:
40  * dcache->d_inode->i_lock protects:
41  *   - i_dentry, d_u.d_alias, d_inode of aliases
42  * dcache_hash_bucket lock protects:
43  *   - the dcache hash table
44  * s_roots bl list spinlock protects:
45  *   - the s_roots list (see __d_drop)
46  * dentry->d_sb->s_dentry_lru_lock protects:
47  *   - the dcache lru lists and counters
48  * d_lock protects:
49  *   - d_flags
50  *   - d_name
51  *   - d_lru
52  *   - d_count
53  *   - d_unhashed()
54  *   - d_parent and d_subdirs
55  *   - childrens' d_child and d_parent
56  *   - d_u.d_alias, d_inode
57  *
58  * Ordering:
59  * dentry->d_inode->i_lock
60  *   dentry->d_lock
61  *     dentry->d_sb->s_dentry_lru_lock
62  *     dcache_hash_bucket lock
63  *     s_roots lock
64  *
65  * If there is an ancestor relationship:
66  * dentry->d_parent->...->d_parent->d_lock
67  *   ...
68  *     dentry->d_parent->d_lock
69  *       dentry->d_lock
70  *
71  * If no ancestor relationship:
72  * arbitrary, since it's serialized on rename_lock
73  */
74 int sysctl_vfs_cache_pressure __read_mostly = 100;
75 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
76
77 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
78
79 EXPORT_SYMBOL(rename_lock);
80
81 static struct kmem_cache *dentry_cache __read_mostly;
82
83 const struct qstr empty_name = QSTR_INIT("", 0);
84 EXPORT_SYMBOL(empty_name);
85 const struct qstr slash_name = QSTR_INIT("/", 1);
86 EXPORT_SYMBOL(slash_name);
87
88 /*
89  * This is the single most critical data structure when it comes
90  * to the dcache: the hashtable for lookups. Somebody should try
91  * to make this good - I've just made it work.
92  *
93  * This hash-function tries to avoid losing too many bits of hash
94  * information, yet avoid using a prime hash-size or similar.
95  */
96
97 static unsigned int d_hash_shift __read_mostly;
98
99 static struct hlist_bl_head *dentry_hashtable __read_mostly;
100
101 static inline struct hlist_bl_head *d_hash(unsigned int hash)
102 {
103         return dentry_hashtable + (hash >> d_hash_shift);
104 }
105
106 #define IN_LOOKUP_SHIFT 10
107 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
108
109 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
110                                         unsigned int hash)
111 {
112         hash += (unsigned long) parent / L1_CACHE_BYTES;
113         return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
114 }
115
116
117 /* Statistics gathering. */
118 struct dentry_stat_t dentry_stat = {
119         .age_limit = 45,
120 };
121
122 static DEFINE_PER_CPU(long, nr_dentry);
123 static DEFINE_PER_CPU(long, nr_dentry_unused);
124 static DEFINE_PER_CPU(long, nr_dentry_negative);
125
126 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
127
128 /*
129  * Here we resort to our own counters instead of using generic per-cpu counters
130  * for consistency with what the vfs inode code does. We are expected to harvest
131  * better code and performance by having our own specialized counters.
132  *
133  * Please note that the loop is done over all possible CPUs, not over all online
134  * CPUs. The reason for this is that we don't want to play games with CPUs going
135  * on and off. If one of them goes off, we will just keep their counters.
136  *
137  * glommer: See cffbc8a for details, and if you ever intend to change this,
138  * please update all vfs counters to match.
139  */
140 static long get_nr_dentry(void)
141 {
142         int i;
143         long sum = 0;
144         for_each_possible_cpu(i)
145                 sum += per_cpu(nr_dentry, i);
146         return sum < 0 ? 0 : sum;
147 }
148
149 static long get_nr_dentry_unused(void)
150 {
151         int i;
152         long sum = 0;
153         for_each_possible_cpu(i)
154                 sum += per_cpu(nr_dentry_unused, i);
155         return sum < 0 ? 0 : sum;
156 }
157
158 static long get_nr_dentry_negative(void)
159 {
160         int i;
161         long sum = 0;
162
163         for_each_possible_cpu(i)
164                 sum += per_cpu(nr_dentry_negative, i);
165         return sum < 0 ? 0 : sum;
166 }
167
168 int proc_nr_dentry(struct ctl_table *table, int write, void *buffer,
169                    size_t *lenp, loff_t *ppos)
170 {
171         dentry_stat.nr_dentry = get_nr_dentry();
172         dentry_stat.nr_unused = get_nr_dentry_unused();
173         dentry_stat.nr_negative = get_nr_dentry_negative();
174         return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
175 }
176 #endif
177
178 /*
179  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
180  * The strings are both count bytes long, and count is non-zero.
181  */
182 #ifdef CONFIG_DCACHE_WORD_ACCESS
183
184 #include <asm/word-at-a-time.h>
185 /*
186  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
187  * aligned allocation for this particular component. We don't
188  * strictly need the load_unaligned_zeropad() safety, but it
189  * doesn't hurt either.
190  *
191  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
192  * need the careful unaligned handling.
193  */
194 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
195 {
196         unsigned long a,b,mask;
197
198         for (;;) {
199                 a = read_word_at_a_time(cs);
200                 b = load_unaligned_zeropad(ct);
201                 if (tcount < sizeof(unsigned long))
202                         break;
203                 if (unlikely(a != b))
204                         return 1;
205                 cs += sizeof(unsigned long);
206                 ct += sizeof(unsigned long);
207                 tcount -= sizeof(unsigned long);
208                 if (!tcount)
209                         return 0;
210         }
211         mask = bytemask_from_count(tcount);
212         return unlikely(!!((a ^ b) & mask));
213 }
214
215 #else
216
217 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
218 {
219         do {
220                 if (*cs != *ct)
221                         return 1;
222                 cs++;
223                 ct++;
224                 tcount--;
225         } while (tcount);
226         return 0;
227 }
228
229 #endif
230
231 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
232 {
233         /*
234          * Be careful about RCU walk racing with rename:
235          * use 'READ_ONCE' to fetch the name pointer.
236          *
237          * NOTE! Even if a rename will mean that the length
238          * was not loaded atomically, we don't care. The
239          * RCU walk will check the sequence count eventually,
240          * and catch it. And we won't overrun the buffer,
241          * because we're reading the name pointer atomically,
242          * and a dentry name is guaranteed to be properly
243          * terminated with a NUL byte.
244          *
245          * End result: even if 'len' is wrong, we'll exit
246          * early because the data cannot match (there can
247          * be no NUL in the ct/tcount data)
248          */
249         const unsigned char *cs = READ_ONCE(dentry->d_name.name);
250
251         return dentry_string_cmp(cs, ct, tcount);
252 }
253
254 struct external_name {
255         union {
256                 atomic_t count;
257                 struct rcu_head head;
258         } u;
259         unsigned char name[];
260 };
261
262 static inline struct external_name *external_name(struct dentry *dentry)
263 {
264         return container_of(dentry->d_name.name, struct external_name, name[0]);
265 }
266
267 static void __d_free(struct rcu_head *head)
268 {
269         struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
270
271         kmem_cache_free(dentry_cache, dentry); 
272 }
273
274 static void __d_free_external(struct rcu_head *head)
275 {
276         struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
277         kfree(external_name(dentry));
278         kmem_cache_free(dentry_cache, dentry);
279 }
280
281 static inline int dname_external(const struct dentry *dentry)
282 {
283         return dentry->d_name.name != dentry->d_iname;
284 }
285
286 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
287 {
288         spin_lock(&dentry->d_lock);
289         name->name = dentry->d_name;
290         if (unlikely(dname_external(dentry))) {
291                 atomic_inc(&external_name(dentry)->u.count);
292         } else {
293                 memcpy(name->inline_name, dentry->d_iname,
294                        dentry->d_name.len + 1);
295                 name->name.name = name->inline_name;
296         }
297         spin_unlock(&dentry->d_lock);
298 }
299 EXPORT_SYMBOL(take_dentry_name_snapshot);
300
301 void release_dentry_name_snapshot(struct name_snapshot *name)
302 {
303         if (unlikely(name->name.name != name->inline_name)) {
304                 struct external_name *p;
305                 p = container_of(name->name.name, struct external_name, name[0]);
306                 if (unlikely(atomic_dec_and_test(&p->u.count)))
307                         kfree_rcu(p, u.head);
308         }
309 }
310 EXPORT_SYMBOL(release_dentry_name_snapshot);
311
312 static inline void __d_set_inode_and_type(struct dentry *dentry,
313                                           struct inode *inode,
314                                           unsigned type_flags)
315 {
316         unsigned flags;
317
318         dentry->d_inode = inode;
319         flags = READ_ONCE(dentry->d_flags);
320         flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
321         flags |= type_flags;
322         smp_store_release(&dentry->d_flags, flags);
323 }
324
325 static inline void __d_clear_type_and_inode(struct dentry *dentry)
326 {
327         unsigned flags = READ_ONCE(dentry->d_flags);
328
329         flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
330         WRITE_ONCE(dentry->d_flags, flags);
331         dentry->d_inode = NULL;
332         if (dentry->d_flags & DCACHE_LRU_LIST)
333                 this_cpu_inc(nr_dentry_negative);
334 }
335
336 static void dentry_free(struct dentry *dentry)
337 {
338         WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
339         if (unlikely(dname_external(dentry))) {
340                 struct external_name *p = external_name(dentry);
341                 if (likely(atomic_dec_and_test(&p->u.count))) {
342                         call_rcu(&dentry->d_u.d_rcu, __d_free_external);
343                         return;
344                 }
345         }
346         /* if dentry was never visible to RCU, immediate free is OK */
347         if (dentry->d_flags & DCACHE_NORCU)
348                 __d_free(&dentry->d_u.d_rcu);
349         else
350                 call_rcu(&dentry->d_u.d_rcu, __d_free);
351 }
352
353 /*
354  * Release the dentry's inode, using the filesystem
355  * d_iput() operation if defined.
356  */
357 static void dentry_unlink_inode(struct dentry * dentry)
358         __releases(dentry->d_lock)
359         __releases(dentry->d_inode->i_lock)
360 {
361         struct inode *inode = dentry->d_inode;
362
363         raw_write_seqcount_begin(&dentry->d_seq);
364         __d_clear_type_and_inode(dentry);
365         hlist_del_init(&dentry->d_u.d_alias);
366         raw_write_seqcount_end(&dentry->d_seq);
367         spin_unlock(&dentry->d_lock);
368         spin_unlock(&inode->i_lock);
369         if (!inode->i_nlink)
370                 fsnotify_inoderemove(inode);
371         if (dentry->d_op && dentry->d_op->d_iput)
372                 dentry->d_op->d_iput(dentry, inode);
373         else
374                 iput(inode);
375 }
376
377 /*
378  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
379  * is in use - which includes both the "real" per-superblock
380  * LRU list _and_ the DCACHE_SHRINK_LIST use.
381  *
382  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
383  * on the shrink list (ie not on the superblock LRU list).
384  *
385  * The per-cpu "nr_dentry_unused" counters are updated with
386  * the DCACHE_LRU_LIST bit.
387  *
388  * The per-cpu "nr_dentry_negative" counters are only updated
389  * when deleted from or added to the per-superblock LRU list, not
390  * from/to the shrink list. That is to avoid an unneeded dec/inc
391  * pair when moving from LRU to shrink list in select_collect().
392  *
393  * These helper functions make sure we always follow the
394  * rules. d_lock must be held by the caller.
395  */
396 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
397 static void d_lru_add(struct dentry *dentry)
398 {
399         D_FLAG_VERIFY(dentry, 0);
400         dentry->d_flags |= DCACHE_LRU_LIST;
401         this_cpu_inc(nr_dentry_unused);
402         if (d_is_negative(dentry))
403                 this_cpu_inc(nr_dentry_negative);
404         WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
405 }
406
407 static void d_lru_del(struct dentry *dentry)
408 {
409         D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
410         dentry->d_flags &= ~DCACHE_LRU_LIST;
411         this_cpu_dec(nr_dentry_unused);
412         if (d_is_negative(dentry))
413                 this_cpu_dec(nr_dentry_negative);
414         WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
415 }
416
417 static void d_shrink_del(struct dentry *dentry)
418 {
419         D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
420         list_del_init(&dentry->d_lru);
421         dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
422         this_cpu_dec(nr_dentry_unused);
423 }
424
425 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
426 {
427         D_FLAG_VERIFY(dentry, 0);
428         list_add(&dentry->d_lru, list);
429         dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
430         this_cpu_inc(nr_dentry_unused);
431 }
432
433 /*
434  * These can only be called under the global LRU lock, ie during the
435  * callback for freeing the LRU list. "isolate" removes it from the
436  * LRU lists entirely, while shrink_move moves it to the indicated
437  * private list.
438  */
439 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
440 {
441         D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
442         dentry->d_flags &= ~DCACHE_LRU_LIST;
443         this_cpu_dec(nr_dentry_unused);
444         if (d_is_negative(dentry))
445                 this_cpu_dec(nr_dentry_negative);
446         list_lru_isolate(lru, &dentry->d_lru);
447 }
448
449 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
450                               struct list_head *list)
451 {
452         D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
453         dentry->d_flags |= DCACHE_SHRINK_LIST;
454         if (d_is_negative(dentry))
455                 this_cpu_dec(nr_dentry_negative);
456         list_lru_isolate_move(lru, &dentry->d_lru, list);
457 }
458
459 static void ___d_drop(struct dentry *dentry)
460 {
461         struct hlist_bl_head *b;
462         /*
463          * Hashed dentries are normally on the dentry hashtable,
464          * with the exception of those newly allocated by
465          * d_obtain_root, which are always IS_ROOT:
466          */
467         if (unlikely(IS_ROOT(dentry)))
468                 b = &dentry->d_sb->s_roots;
469         else
470                 b = d_hash(dentry->d_name.hash);
471
472         hlist_bl_lock(b);
473         __hlist_bl_del(&dentry->d_hash);
474         hlist_bl_unlock(b);
475 }
476
477 void __d_drop(struct dentry *dentry)
478 {
479         if (!d_unhashed(dentry)) {
480                 ___d_drop(dentry);
481                 dentry->d_hash.pprev = NULL;
482                 write_seqcount_invalidate(&dentry->d_seq);
483         }
484 }
485 EXPORT_SYMBOL(__d_drop);
486
487 /**
488  * d_drop - drop a dentry
489  * @dentry: dentry to drop
490  *
491  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
492  * be found through a VFS lookup any more. Note that this is different from
493  * deleting the dentry - d_delete will try to mark the dentry negative if
494  * possible, giving a successful _negative_ lookup, while d_drop will
495  * just make the cache lookup fail.
496  *
497  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
498  * reason (NFS timeouts or autofs deletes).
499  *
500  * __d_drop requires dentry->d_lock
501  *
502  * ___d_drop doesn't mark dentry as "unhashed"
503  * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
504  */
505 void d_drop(struct dentry *dentry)
506 {
507         spin_lock(&dentry->d_lock);
508         __d_drop(dentry);
509         spin_unlock(&dentry->d_lock);
510 }
511 EXPORT_SYMBOL(d_drop);
512
513 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
514 {
515         struct dentry *next;
516         /*
517          * Inform d_walk() and shrink_dentry_list() that we are no longer
518          * attached to the dentry tree
519          */
520         dentry->d_flags |= DCACHE_DENTRY_KILLED;
521         if (unlikely(list_empty(&dentry->d_child)))
522                 return;
523         __list_del_entry(&dentry->d_child);
524         /*
525          * Cursors can move around the list of children.  While we'd been
526          * a normal list member, it didn't matter - ->d_child.next would've
527          * been updated.  However, from now on it won't be and for the
528          * things like d_walk() it might end up with a nasty surprise.
529          * Normally d_walk() doesn't care about cursors moving around -
530          * ->d_lock on parent prevents that and since a cursor has no children
531          * of its own, we get through it without ever unlocking the parent.
532          * There is one exception, though - if we ascend from a child that
533          * gets killed as soon as we unlock it, the next sibling is found
534          * using the value left in its ->d_child.next.  And if _that_
535          * pointed to a cursor, and cursor got moved (e.g. by lseek())
536          * before d_walk() regains parent->d_lock, we'll end up skipping
537          * everything the cursor had been moved past.
538          *
539          * Solution: make sure that the pointer left behind in ->d_child.next
540          * points to something that won't be moving around.  I.e. skip the
541          * cursors.
542          */
543         while (dentry->d_child.next != &parent->d_subdirs) {
544                 next = list_entry(dentry->d_child.next, struct dentry, d_child);
545                 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
546                         break;
547                 dentry->d_child.next = next->d_child.next;
548         }
549 }
550
551 static void __dentry_kill(struct dentry *dentry)
552 {
553         struct dentry *parent = NULL;
554         bool can_free = true;
555         if (!IS_ROOT(dentry))
556                 parent = dentry->d_parent;
557
558         /*
559          * The dentry is now unrecoverably dead to the world.
560          */
561         lockref_mark_dead(&dentry->d_lockref);
562
563         /*
564          * inform the fs via d_prune that this dentry is about to be
565          * unhashed and destroyed.
566          */
567         if (dentry->d_flags & DCACHE_OP_PRUNE)
568                 dentry->d_op->d_prune(dentry);
569
570         if (dentry->d_flags & DCACHE_LRU_LIST) {
571                 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
572                         d_lru_del(dentry);
573         }
574         /* if it was on the hash then remove it */
575         __d_drop(dentry);
576         dentry_unlist(dentry, parent);
577         if (parent)
578                 spin_unlock(&parent->d_lock);
579         if (dentry->d_inode)
580                 dentry_unlink_inode(dentry);
581         else
582                 spin_unlock(&dentry->d_lock);
583         this_cpu_dec(nr_dentry);
584         if (dentry->d_op && dentry->d_op->d_release)
585                 dentry->d_op->d_release(dentry);
586
587         spin_lock(&dentry->d_lock);
588         if (dentry->d_flags & DCACHE_SHRINK_LIST) {
589                 dentry->d_flags |= DCACHE_MAY_FREE;
590                 can_free = false;
591         }
592         spin_unlock(&dentry->d_lock);
593         if (likely(can_free))
594                 dentry_free(dentry);
595         cond_resched();
596 }
597
598 static struct dentry *__lock_parent(struct dentry *dentry)
599 {
600         struct dentry *parent;
601         rcu_read_lock();
602         spin_unlock(&dentry->d_lock);
603 again:
604         parent = READ_ONCE(dentry->d_parent);
605         spin_lock(&parent->d_lock);
606         /*
607          * We can't blindly lock dentry until we are sure
608          * that we won't violate the locking order.
609          * Any changes of dentry->d_parent must have
610          * been done with parent->d_lock held, so
611          * spin_lock() above is enough of a barrier
612          * for checking if it's still our child.
613          */
614         if (unlikely(parent != dentry->d_parent)) {
615                 spin_unlock(&parent->d_lock);
616                 goto again;
617         }
618         rcu_read_unlock();
619         if (parent != dentry)
620                 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
621         else
622                 parent = NULL;
623         return parent;
624 }
625
626 static inline struct dentry *lock_parent(struct dentry *dentry)
627 {
628         struct dentry *parent = dentry->d_parent;
629         if (IS_ROOT(dentry))
630                 return NULL;
631         if (likely(spin_trylock(&parent->d_lock)))
632                 return parent;
633         return __lock_parent(dentry);
634 }
635
636 static inline bool retain_dentry(struct dentry *dentry)
637 {
638         WARN_ON(d_in_lookup(dentry));
639
640         /* Unreachable? Get rid of it */
641         if (unlikely(d_unhashed(dentry)))
642                 return false;
643
644         if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
645                 return false;
646
647         if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
648                 if (dentry->d_op->d_delete(dentry))
649                         return false;
650         }
651
652         if (unlikely(dentry->d_flags & DCACHE_DONTCACHE))
653                 return false;
654
655         /* retain; LRU fodder */
656         dentry->d_lockref.count--;
657         if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
658                 d_lru_add(dentry);
659         else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
660                 dentry->d_flags |= DCACHE_REFERENCED;
661         return true;
662 }
663
664 void d_mark_dontcache(struct inode *inode)
665 {
666         struct dentry *de;
667
668         spin_lock(&inode->i_lock);
669         hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) {
670                 spin_lock(&de->d_lock);
671                 de->d_flags |= DCACHE_DONTCACHE;
672                 spin_unlock(&de->d_lock);
673         }
674         inode->i_state |= I_DONTCACHE;
675         spin_unlock(&inode->i_lock);
676 }
677 EXPORT_SYMBOL(d_mark_dontcache);
678
679 /*
680  * Finish off a dentry we've decided to kill.
681  * dentry->d_lock must be held, returns with it unlocked.
682  * Returns dentry requiring refcount drop, or NULL if we're done.
683  */
684 static struct dentry *dentry_kill(struct dentry *dentry)
685         __releases(dentry->d_lock)
686 {
687         struct inode *inode = dentry->d_inode;
688         struct dentry *parent = NULL;
689
690         if (inode && unlikely(!spin_trylock(&inode->i_lock)))
691                 goto slow_positive;
692
693         if (!IS_ROOT(dentry)) {
694                 parent = dentry->d_parent;
695                 if (unlikely(!spin_trylock(&parent->d_lock))) {
696                         parent = __lock_parent(dentry);
697                         if (likely(inode || !dentry->d_inode))
698                                 goto got_locks;
699                         /* negative that became positive */
700                         if (parent)
701                                 spin_unlock(&parent->d_lock);
702                         inode = dentry->d_inode;
703                         goto slow_positive;
704                 }
705         }
706         __dentry_kill(dentry);
707         return parent;
708
709 slow_positive:
710         spin_unlock(&dentry->d_lock);
711         spin_lock(&inode->i_lock);
712         spin_lock(&dentry->d_lock);
713         parent = lock_parent(dentry);
714 got_locks:
715         if (unlikely(dentry->d_lockref.count != 1)) {
716                 dentry->d_lockref.count--;
717         } else if (likely(!retain_dentry(dentry))) {
718                 __dentry_kill(dentry);
719                 return parent;
720         }
721         /* we are keeping it, after all */
722         if (inode)
723                 spin_unlock(&inode->i_lock);
724         if (parent)
725                 spin_unlock(&parent->d_lock);
726         spin_unlock(&dentry->d_lock);
727         return NULL;
728 }
729
730 /*
731  * Try to do a lockless dput(), and return whether that was successful.
732  *
733  * If unsuccessful, we return false, having already taken the dentry lock.
734  *
735  * The caller needs to hold the RCU read lock, so that the dentry is
736  * guaranteed to stay around even if the refcount goes down to zero!
737  */
738 static inline bool fast_dput(struct dentry *dentry)
739 {
740         int ret;
741         unsigned int d_flags;
742
743         /*
744          * If we have a d_op->d_delete() operation, we sould not
745          * let the dentry count go to zero, so use "put_or_lock".
746          */
747         if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
748                 return lockref_put_or_lock(&dentry->d_lockref);
749
750         /*
751          * .. otherwise, we can try to just decrement the
752          * lockref optimistically.
753          */
754         ret = lockref_put_return(&dentry->d_lockref);
755
756         /*
757          * If the lockref_put_return() failed due to the lock being held
758          * by somebody else, the fast path has failed. We will need to
759          * get the lock, and then check the count again.
760          */
761         if (unlikely(ret < 0)) {
762                 spin_lock(&dentry->d_lock);
763                 if (dentry->d_lockref.count > 1) {
764                         dentry->d_lockref.count--;
765                         spin_unlock(&dentry->d_lock);
766                         return true;
767                 }
768                 return false;
769         }
770
771         /*
772          * If we weren't the last ref, we're done.
773          */
774         if (ret)
775                 return true;
776
777         /*
778          * Careful, careful. The reference count went down
779          * to zero, but we don't hold the dentry lock, so
780          * somebody else could get it again, and do another
781          * dput(), and we need to not race with that.
782          *
783          * However, there is a very special and common case
784          * where we don't care, because there is nothing to
785          * do: the dentry is still hashed, it does not have
786          * a 'delete' op, and it's referenced and already on
787          * the LRU list.
788          *
789          * NOTE! Since we aren't locked, these values are
790          * not "stable". However, it is sufficient that at
791          * some point after we dropped the reference the
792          * dentry was hashed and the flags had the proper
793          * value. Other dentry users may have re-gotten
794          * a reference to the dentry and change that, but
795          * our work is done - we can leave the dentry
796          * around with a zero refcount.
797          *
798          * Nevertheless, there are two cases that we should kill
799          * the dentry anyway.
800          * 1. free disconnected dentries as soon as their refcount
801          *    reached zero.
802          * 2. free dentries if they should not be cached.
803          */
804         smp_rmb();
805         d_flags = READ_ONCE(dentry->d_flags);
806         d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST |
807                         DCACHE_DISCONNECTED | DCACHE_DONTCACHE;
808
809         /* Nothing to do? Dropping the reference was all we needed? */
810         if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
811                 return true;
812
813         /*
814          * Not the fast normal case? Get the lock. We've already decremented
815          * the refcount, but we'll need to re-check the situation after
816          * getting the lock.
817          */
818         spin_lock(&dentry->d_lock);
819
820         /*
821          * Did somebody else grab a reference to it in the meantime, and
822          * we're no longer the last user after all? Alternatively, somebody
823          * else could have killed it and marked it dead. Either way, we
824          * don't need to do anything else.
825          */
826         if (dentry->d_lockref.count) {
827                 spin_unlock(&dentry->d_lock);
828                 return true;
829         }
830
831         /*
832          * Re-get the reference we optimistically dropped. We hold the
833          * lock, and we just tested that it was zero, so we can just
834          * set it to 1.
835          */
836         dentry->d_lockref.count = 1;
837         return false;
838 }
839
840
841 /* 
842  * This is dput
843  *
844  * This is complicated by the fact that we do not want to put
845  * dentries that are no longer on any hash chain on the unused
846  * list: we'd much rather just get rid of them immediately.
847  *
848  * However, that implies that we have to traverse the dentry
849  * tree upwards to the parents which might _also_ now be
850  * scheduled for deletion (it may have been only waiting for
851  * its last child to go away).
852  *
853  * This tail recursion is done by hand as we don't want to depend
854  * on the compiler to always get this right (gcc generally doesn't).
855  * Real recursion would eat up our stack space.
856  */
857
858 /*
859  * dput - release a dentry
860  * @dentry: dentry to release 
861  *
862  * Release a dentry. This will drop the usage count and if appropriate
863  * call the dentry unlink method as well as removing it from the queues and
864  * releasing its resources. If the parent dentries were scheduled for release
865  * they too may now get deleted.
866  */
867 void dput(struct dentry *dentry)
868 {
869         while (dentry) {
870                 might_sleep();
871
872                 rcu_read_lock();
873                 if (likely(fast_dput(dentry))) {
874                         rcu_read_unlock();
875                         return;
876                 }
877
878                 /* Slow case: now with the dentry lock held */
879                 rcu_read_unlock();
880
881                 if (likely(retain_dentry(dentry))) {
882                         spin_unlock(&dentry->d_lock);
883                         return;
884                 }
885
886                 dentry = dentry_kill(dentry);
887         }
888 }
889 EXPORT_SYMBOL(dput);
890
891 static void __dput_to_list(struct dentry *dentry, struct list_head *list)
892 __must_hold(&dentry->d_lock)
893 {
894         if (dentry->d_flags & DCACHE_SHRINK_LIST) {
895                 /* let the owner of the list it's on deal with it */
896                 --dentry->d_lockref.count;
897         } else {
898                 if (dentry->d_flags & DCACHE_LRU_LIST)
899                         d_lru_del(dentry);
900                 if (!--dentry->d_lockref.count)
901                         d_shrink_add(dentry, list);
902         }
903 }
904
905 void dput_to_list(struct dentry *dentry, struct list_head *list)
906 {
907         rcu_read_lock();
908         if (likely(fast_dput(dentry))) {
909                 rcu_read_unlock();
910                 return;
911         }
912         rcu_read_unlock();
913         if (!retain_dentry(dentry))
914                 __dput_to_list(dentry, list);
915         spin_unlock(&dentry->d_lock);
916 }
917
918 /* This must be called with d_lock held */
919 static inline void __dget_dlock(struct dentry *dentry)
920 {
921         dentry->d_lockref.count++;
922 }
923
924 static inline void __dget(struct dentry *dentry)
925 {
926         lockref_get(&dentry->d_lockref);
927 }
928
929 struct dentry *dget_parent(struct dentry *dentry)
930 {
931         int gotref;
932         struct dentry *ret;
933         unsigned seq;
934
935         /*
936          * Do optimistic parent lookup without any
937          * locking.
938          */
939         rcu_read_lock();
940         seq = raw_seqcount_begin(&dentry->d_seq);
941         ret = READ_ONCE(dentry->d_parent);
942         gotref = lockref_get_not_zero(&ret->d_lockref);
943         rcu_read_unlock();
944         if (likely(gotref)) {
945                 if (!read_seqcount_retry(&dentry->d_seq, seq))
946                         return ret;
947                 dput(ret);
948         }
949
950 repeat:
951         /*
952          * Don't need rcu_dereference because we re-check it was correct under
953          * the lock.
954          */
955         rcu_read_lock();
956         ret = dentry->d_parent;
957         spin_lock(&ret->d_lock);
958         if (unlikely(ret != dentry->d_parent)) {
959                 spin_unlock(&ret->d_lock);
960                 rcu_read_unlock();
961                 goto repeat;
962         }
963         rcu_read_unlock();
964         BUG_ON(!ret->d_lockref.count);
965         ret->d_lockref.count++;
966         spin_unlock(&ret->d_lock);
967         return ret;
968 }
969 EXPORT_SYMBOL(dget_parent);
970
971 static struct dentry * __d_find_any_alias(struct inode *inode)
972 {
973         struct dentry *alias;
974
975         if (hlist_empty(&inode->i_dentry))
976                 return NULL;
977         alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
978         __dget(alias);
979         return alias;
980 }
981
982 /**
983  * d_find_any_alias - find any alias for a given inode
984  * @inode: inode to find an alias for
985  *
986  * If any aliases exist for the given inode, take and return a
987  * reference for one of them.  If no aliases exist, return %NULL.
988  */
989 struct dentry *d_find_any_alias(struct inode *inode)
990 {
991         struct dentry *de;
992
993         spin_lock(&inode->i_lock);
994         de = __d_find_any_alias(inode);
995         spin_unlock(&inode->i_lock);
996         return de;
997 }
998 EXPORT_SYMBOL(d_find_any_alias);
999
1000 static struct dentry *__d_find_alias(struct inode *inode)
1001 {
1002         struct dentry *alias;
1003
1004         if (S_ISDIR(inode->i_mode))
1005                 return __d_find_any_alias(inode);
1006
1007         hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1008                 spin_lock(&alias->d_lock);
1009                 if (!d_unhashed(alias)) {
1010                         __dget_dlock(alias);
1011                         spin_unlock(&alias->d_lock);
1012                         return alias;
1013                 }
1014                 spin_unlock(&alias->d_lock);
1015         }
1016         return NULL;
1017 }
1018
1019 /**
1020  * d_find_alias - grab a hashed alias of inode
1021  * @inode: inode in question
1022  *
1023  * If inode has a hashed alias, or is a directory and has any alias,
1024  * acquire the reference to alias and return it. Otherwise return NULL.
1025  * Notice that if inode is a directory there can be only one alias and
1026  * it can be unhashed only if it has no children, or if it is the root
1027  * of a filesystem, or if the directory was renamed and d_revalidate
1028  * was the first vfs operation to notice.
1029  *
1030  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
1031  * any other hashed alias over that one.
1032  */
1033 struct dentry *d_find_alias(struct inode *inode)
1034 {
1035         struct dentry *de = NULL;
1036
1037         if (!hlist_empty(&inode->i_dentry)) {
1038                 spin_lock(&inode->i_lock);
1039                 de = __d_find_alias(inode);
1040                 spin_unlock(&inode->i_lock);
1041         }
1042         return de;
1043 }
1044 EXPORT_SYMBOL(d_find_alias);
1045
1046 /*
1047  *  Caller MUST be holding rcu_read_lock() and be guaranteed
1048  *  that inode won't get freed until rcu_read_unlock().
1049  */
1050 struct dentry *d_find_alias_rcu(struct inode *inode)
1051 {
1052         struct hlist_head *l = &inode->i_dentry;
1053         struct dentry *de = NULL;
1054
1055         spin_lock(&inode->i_lock);
1056         // ->i_dentry and ->i_rcu are colocated, but the latter won't be
1057         // used without having I_FREEING set, which means no aliases left
1058         if (likely(!(inode->i_state & I_FREEING) && !hlist_empty(l))) {
1059                 if (S_ISDIR(inode->i_mode)) {
1060                         de = hlist_entry(l->first, struct dentry, d_u.d_alias);
1061                 } else {
1062                         hlist_for_each_entry(de, l, d_u.d_alias)
1063                                 if (!d_unhashed(de))
1064                                         break;
1065                 }
1066         }
1067         spin_unlock(&inode->i_lock);
1068         return de;
1069 }
1070
1071 /*
1072  *      Try to kill dentries associated with this inode.
1073  * WARNING: you must own a reference to inode.
1074  */
1075 void d_prune_aliases(struct inode *inode)
1076 {
1077         struct dentry *dentry;
1078 restart:
1079         spin_lock(&inode->i_lock);
1080         hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1081                 spin_lock(&dentry->d_lock);
1082                 if (!dentry->d_lockref.count) {
1083                         struct dentry *parent = lock_parent(dentry);
1084                         if (likely(!dentry->d_lockref.count)) {
1085                                 __dentry_kill(dentry);
1086                                 dput(parent);
1087                                 goto restart;
1088                         }
1089                         if (parent)
1090                                 spin_unlock(&parent->d_lock);
1091                 }
1092                 spin_unlock(&dentry->d_lock);
1093         }
1094         spin_unlock(&inode->i_lock);
1095 }
1096 EXPORT_SYMBOL(d_prune_aliases);
1097
1098 /*
1099  * Lock a dentry from shrink list.
1100  * Called under rcu_read_lock() and dentry->d_lock; the former
1101  * guarantees that nothing we access will be freed under us.
1102  * Note that dentry is *not* protected from concurrent dentry_kill(),
1103  * d_delete(), etc.
1104  *
1105  * Return false if dentry has been disrupted or grabbed, leaving
1106  * the caller to kick it off-list.  Otherwise, return true and have
1107  * that dentry's inode and parent both locked.
1108  */
1109 static bool shrink_lock_dentry(struct dentry *dentry)
1110 {
1111         struct inode *inode;
1112         struct dentry *parent;
1113
1114         if (dentry->d_lockref.count)
1115                 return false;
1116
1117         inode = dentry->d_inode;
1118         if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1119                 spin_unlock(&dentry->d_lock);
1120                 spin_lock(&inode->i_lock);
1121                 spin_lock(&dentry->d_lock);
1122                 if (unlikely(dentry->d_lockref.count))
1123                         goto out;
1124                 /* changed inode means that somebody had grabbed it */
1125                 if (unlikely(inode != dentry->d_inode))
1126                         goto out;
1127         }
1128
1129         parent = dentry->d_parent;
1130         if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
1131                 return true;
1132
1133         spin_unlock(&dentry->d_lock);
1134         spin_lock(&parent->d_lock);
1135         if (unlikely(parent != dentry->d_parent)) {
1136                 spin_unlock(&parent->d_lock);
1137                 spin_lock(&dentry->d_lock);
1138                 goto out;
1139         }
1140         spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1141         if (likely(!dentry->d_lockref.count))
1142                 return true;
1143         spin_unlock(&parent->d_lock);
1144 out:
1145         if (inode)
1146                 spin_unlock(&inode->i_lock);
1147         return false;
1148 }
1149
1150 void shrink_dentry_list(struct list_head *list)
1151 {
1152         while (!list_empty(list)) {
1153                 struct dentry *dentry, *parent;
1154
1155                 dentry = list_entry(list->prev, struct dentry, d_lru);
1156                 spin_lock(&dentry->d_lock);
1157                 rcu_read_lock();
1158                 if (!shrink_lock_dentry(dentry)) {
1159                         bool can_free = false;
1160                         rcu_read_unlock();
1161                         d_shrink_del(dentry);
1162                         if (dentry->d_lockref.count < 0)
1163                                 can_free = dentry->d_flags & DCACHE_MAY_FREE;
1164                         spin_unlock(&dentry->d_lock);
1165                         if (can_free)
1166                                 dentry_free(dentry);
1167                         continue;
1168                 }
1169                 rcu_read_unlock();
1170                 d_shrink_del(dentry);
1171                 parent = dentry->d_parent;
1172                 if (parent != dentry)
1173                         __dput_to_list(parent, list);
1174                 __dentry_kill(dentry);
1175         }
1176 }
1177
1178 static enum lru_status dentry_lru_isolate(struct list_head *item,
1179                 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1180 {
1181         struct list_head *freeable = arg;
1182         struct dentry   *dentry = container_of(item, struct dentry, d_lru);
1183
1184
1185         /*
1186          * we are inverting the lru lock/dentry->d_lock here,
1187          * so use a trylock. If we fail to get the lock, just skip
1188          * it
1189          */
1190         if (!spin_trylock(&dentry->d_lock))
1191                 return LRU_SKIP;
1192
1193         /*
1194          * Referenced dentries are still in use. If they have active
1195          * counts, just remove them from the LRU. Otherwise give them
1196          * another pass through the LRU.
1197          */
1198         if (dentry->d_lockref.count) {
1199                 d_lru_isolate(lru, dentry);
1200                 spin_unlock(&dentry->d_lock);
1201                 return LRU_REMOVED;
1202         }
1203
1204         if (dentry->d_flags & DCACHE_REFERENCED) {
1205                 dentry->d_flags &= ~DCACHE_REFERENCED;
1206                 spin_unlock(&dentry->d_lock);
1207
1208                 /*
1209                  * The list move itself will be made by the common LRU code. At
1210                  * this point, we've dropped the dentry->d_lock but keep the
1211                  * lru lock. This is safe to do, since every list movement is
1212                  * protected by the lru lock even if both locks are held.
1213                  *
1214                  * This is guaranteed by the fact that all LRU management
1215                  * functions are intermediated by the LRU API calls like
1216                  * list_lru_add and list_lru_del. List movement in this file
1217                  * only ever occur through this functions or through callbacks
1218                  * like this one, that are called from the LRU API.
1219                  *
1220                  * The only exceptions to this are functions like
1221                  * shrink_dentry_list, and code that first checks for the
1222                  * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1223                  * operating only with stack provided lists after they are
1224                  * properly isolated from the main list.  It is thus, always a
1225                  * local access.
1226                  */
1227                 return LRU_ROTATE;
1228         }
1229
1230         d_lru_shrink_move(lru, dentry, freeable);
1231         spin_unlock(&dentry->d_lock);
1232
1233         return LRU_REMOVED;
1234 }
1235
1236 /**
1237  * prune_dcache_sb - shrink the dcache
1238  * @sb: superblock
1239  * @sc: shrink control, passed to list_lru_shrink_walk()
1240  *
1241  * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1242  * is done when we need more memory and called from the superblock shrinker
1243  * function.
1244  *
1245  * This function may fail to free any resources if all the dentries are in
1246  * use.
1247  */
1248 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1249 {
1250         LIST_HEAD(dispose);
1251         long freed;
1252
1253         freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1254                                      dentry_lru_isolate, &dispose);
1255         shrink_dentry_list(&dispose);
1256         return freed;
1257 }
1258
1259 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1260                 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1261 {
1262         struct list_head *freeable = arg;
1263         struct dentry   *dentry = container_of(item, struct dentry, d_lru);
1264
1265         /*
1266          * we are inverting the lru lock/dentry->d_lock here,
1267          * so use a trylock. If we fail to get the lock, just skip
1268          * it
1269          */
1270         if (!spin_trylock(&dentry->d_lock))
1271                 return LRU_SKIP;
1272
1273         d_lru_shrink_move(lru, dentry, freeable);
1274         spin_unlock(&dentry->d_lock);
1275
1276         return LRU_REMOVED;
1277 }
1278
1279
1280 /**
1281  * shrink_dcache_sb - shrink dcache for a superblock
1282  * @sb: superblock
1283  *
1284  * Shrink the dcache for the specified super block. This is used to free
1285  * the dcache before unmounting a file system.
1286  */
1287 void shrink_dcache_sb(struct super_block *sb)
1288 {
1289         do {
1290                 LIST_HEAD(dispose);
1291
1292                 list_lru_walk(&sb->s_dentry_lru,
1293                         dentry_lru_isolate_shrink, &dispose, 1024);
1294                 shrink_dentry_list(&dispose);
1295         } while (list_lru_count(&sb->s_dentry_lru) > 0);
1296 }
1297 EXPORT_SYMBOL(shrink_dcache_sb);
1298
1299 /**
1300  * enum d_walk_ret - action to talke during tree walk
1301  * @D_WALK_CONTINUE:    contrinue walk
1302  * @D_WALK_QUIT:        quit walk
1303  * @D_WALK_NORETRY:     quit when retry is needed
1304  * @D_WALK_SKIP:        skip this dentry and its children
1305  */
1306 enum d_walk_ret {
1307         D_WALK_CONTINUE,
1308         D_WALK_QUIT,
1309         D_WALK_NORETRY,
1310         D_WALK_SKIP,
1311 };
1312
1313 /**
1314  * d_walk - walk the dentry tree
1315  * @parent:     start of walk
1316  * @data:       data passed to @enter() and @finish()
1317  * @enter:      callback when first entering the dentry
1318  *
1319  * The @enter() callbacks are called with d_lock held.
1320  */
1321 static void d_walk(struct dentry *parent, void *data,
1322                    enum d_walk_ret (*enter)(void *, struct dentry *))
1323 {
1324         struct dentry *this_parent;
1325         struct list_head *next;
1326         unsigned seq = 0;
1327         enum d_walk_ret ret;
1328         bool retry = true;
1329
1330 again:
1331         read_seqbegin_or_lock(&rename_lock, &seq);
1332         this_parent = parent;
1333         spin_lock(&this_parent->d_lock);
1334
1335         ret = enter(data, this_parent);
1336         switch (ret) {
1337         case D_WALK_CONTINUE:
1338                 break;
1339         case D_WALK_QUIT:
1340         case D_WALK_SKIP:
1341                 goto out_unlock;
1342         case D_WALK_NORETRY:
1343                 retry = false;
1344                 break;
1345         }
1346 repeat:
1347         next = this_parent->d_subdirs.next;
1348 resume:
1349         while (next != &this_parent->d_subdirs) {
1350                 struct list_head *tmp = next;
1351                 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1352                 next = tmp->next;
1353
1354                 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1355                         continue;
1356
1357                 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1358
1359                 ret = enter(data, dentry);
1360                 switch (ret) {
1361                 case D_WALK_CONTINUE:
1362                         break;
1363                 case D_WALK_QUIT:
1364                         spin_unlock(&dentry->d_lock);
1365                         goto out_unlock;
1366                 case D_WALK_NORETRY:
1367                         retry = false;
1368                         break;
1369                 case D_WALK_SKIP:
1370                         spin_unlock(&dentry->d_lock);
1371                         continue;
1372                 }
1373
1374                 if (!list_empty(&dentry->d_subdirs)) {
1375                         spin_unlock(&this_parent->d_lock);
1376                         spin_release(&dentry->d_lock.dep_map, _RET_IP_);
1377                         this_parent = dentry;
1378                         spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1379                         goto repeat;
1380                 }
1381                 spin_unlock(&dentry->d_lock);
1382         }
1383         /*
1384          * All done at this level ... ascend and resume the search.
1385          */
1386         rcu_read_lock();
1387 ascend:
1388         if (this_parent != parent) {
1389                 struct dentry *child = this_parent;
1390                 this_parent = child->d_parent;
1391
1392                 spin_unlock(&child->d_lock);
1393                 spin_lock(&this_parent->d_lock);
1394
1395                 /* might go back up the wrong parent if we have had a rename. */
1396                 if (need_seqretry(&rename_lock, seq))
1397                         goto rename_retry;
1398                 /* go into the first sibling still alive */
1399                 do {
1400                         next = child->d_child.next;
1401                         if (next == &this_parent->d_subdirs)
1402                                 goto ascend;
1403                         child = list_entry(next, struct dentry, d_child);
1404                 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1405                 rcu_read_unlock();
1406                 goto resume;
1407         }
1408         if (need_seqretry(&rename_lock, seq))
1409                 goto rename_retry;
1410         rcu_read_unlock();
1411
1412 out_unlock:
1413         spin_unlock(&this_parent->d_lock);
1414         done_seqretry(&rename_lock, seq);
1415         return;
1416
1417 rename_retry:
1418         spin_unlock(&this_parent->d_lock);
1419         rcu_read_unlock();
1420         BUG_ON(seq & 1);
1421         if (!retry)
1422                 return;
1423         seq = 1;
1424         goto again;
1425 }
1426
1427 struct check_mount {
1428         struct vfsmount *mnt;
1429         unsigned int mounted;
1430 };
1431
1432 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1433 {
1434         struct check_mount *info = data;
1435         struct path path = { .mnt = info->mnt, .dentry = dentry };
1436
1437         if (likely(!d_mountpoint(dentry)))
1438                 return D_WALK_CONTINUE;
1439         if (__path_is_mountpoint(&path)) {
1440                 info->mounted = 1;
1441                 return D_WALK_QUIT;
1442         }
1443         return D_WALK_CONTINUE;
1444 }
1445
1446 /**
1447  * path_has_submounts - check for mounts over a dentry in the
1448  *                      current namespace.
1449  * @parent: path to check.
1450  *
1451  * Return true if the parent or its subdirectories contain
1452  * a mount point in the current namespace.
1453  */
1454 int path_has_submounts(const struct path *parent)
1455 {
1456         struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1457
1458         read_seqlock_excl(&mount_lock);
1459         d_walk(parent->dentry, &data, path_check_mount);
1460         read_sequnlock_excl(&mount_lock);
1461
1462         return data.mounted;
1463 }
1464 EXPORT_SYMBOL(path_has_submounts);
1465
1466 /*
1467  * Called by mount code to set a mountpoint and check if the mountpoint is
1468  * reachable (e.g. NFS can unhash a directory dentry and then the complete
1469  * subtree can become unreachable).
1470  *
1471  * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1472  * this reason take rename_lock and d_lock on dentry and ancestors.
1473  */
1474 int d_set_mounted(struct dentry *dentry)
1475 {
1476         struct dentry *p;
1477         int ret = -ENOENT;
1478         write_seqlock(&rename_lock);
1479         for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1480                 /* Need exclusion wrt. d_invalidate() */
1481                 spin_lock(&p->d_lock);
1482                 if (unlikely(d_unhashed(p))) {
1483                         spin_unlock(&p->d_lock);
1484                         goto out;
1485                 }
1486                 spin_unlock(&p->d_lock);
1487         }
1488         spin_lock(&dentry->d_lock);
1489         if (!d_unlinked(dentry)) {
1490                 ret = -EBUSY;
1491                 if (!d_mountpoint(dentry)) {
1492                         dentry->d_flags |= DCACHE_MOUNTED;
1493                         ret = 0;
1494                 }
1495         }
1496         spin_unlock(&dentry->d_lock);
1497 out:
1498         write_sequnlock(&rename_lock);
1499         return ret;
1500 }
1501
1502 /*
1503  * Search the dentry child list of the specified parent,
1504  * and move any unused dentries to the end of the unused
1505  * list for prune_dcache(). We descend to the next level
1506  * whenever the d_subdirs list is non-empty and continue
1507  * searching.
1508  *
1509  * It returns zero iff there are no unused children,
1510  * otherwise  it returns the number of children moved to
1511  * the end of the unused list. This may not be the total
1512  * number of unused children, because select_parent can
1513  * drop the lock and return early due to latency
1514  * constraints.
1515  */
1516
1517 struct select_data {
1518         struct dentry *start;
1519         union {
1520                 long found;
1521                 struct dentry *victim;
1522         };
1523         struct list_head dispose;
1524 };
1525
1526 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1527 {
1528         struct select_data *data = _data;
1529         enum d_walk_ret ret = D_WALK_CONTINUE;
1530
1531         if (data->start == dentry)
1532                 goto out;
1533
1534         if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1535                 data->found++;
1536         } else {
1537                 if (dentry->d_flags & DCACHE_LRU_LIST)
1538                         d_lru_del(dentry);
1539                 if (!dentry->d_lockref.count) {
1540                         d_shrink_add(dentry, &data->dispose);
1541                         data->found++;
1542                 }
1543         }
1544         /*
1545          * We can return to the caller if we have found some (this
1546          * ensures forward progress). We'll be coming back to find
1547          * the rest.
1548          */
1549         if (!list_empty(&data->dispose))
1550                 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1551 out:
1552         return ret;
1553 }
1554
1555 static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry)
1556 {
1557         struct select_data *data = _data;
1558         enum d_walk_ret ret = D_WALK_CONTINUE;
1559
1560         if (data->start == dentry)
1561                 goto out;
1562
1563         if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1564                 if (!dentry->d_lockref.count) {
1565                         rcu_read_lock();
1566                         data->victim = dentry;
1567                         return D_WALK_QUIT;
1568                 }
1569         } else {
1570                 if (dentry->d_flags & DCACHE_LRU_LIST)
1571                         d_lru_del(dentry);
1572                 if (!dentry->d_lockref.count)
1573                         d_shrink_add(dentry, &data->dispose);
1574         }
1575         /*
1576          * We can return to the caller if we have found some (this
1577          * ensures forward progress). We'll be coming back to find
1578          * the rest.
1579          */
1580         if (!list_empty(&data->dispose))
1581                 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1582 out:
1583         return ret;
1584 }
1585
1586 /**
1587  * shrink_dcache_parent - prune dcache
1588  * @parent: parent of entries to prune
1589  *
1590  * Prune the dcache to remove unused children of the parent dentry.
1591  */
1592 void shrink_dcache_parent(struct dentry *parent)
1593 {
1594         for (;;) {
1595                 struct select_data data = {.start = parent};
1596
1597                 INIT_LIST_HEAD(&data.dispose);
1598                 d_walk(parent, &data, select_collect);
1599
1600                 if (!list_empty(&data.dispose)) {
1601                         shrink_dentry_list(&data.dispose);
1602                         continue;
1603                 }
1604
1605                 cond_resched();
1606                 if (!data.found)
1607                         break;
1608                 data.victim = NULL;
1609                 d_walk(parent, &data, select_collect2);
1610                 if (data.victim) {
1611                         struct dentry *parent;
1612                         spin_lock(&data.victim->d_lock);
1613                         if (!shrink_lock_dentry(data.victim)) {
1614                                 spin_unlock(&data.victim->d_lock);
1615                                 rcu_read_unlock();
1616                         } else {
1617                                 rcu_read_unlock();
1618                                 parent = data.victim->d_parent;
1619                                 if (parent != data.victim)
1620                                         __dput_to_list(parent, &data.dispose);
1621                                 __dentry_kill(data.victim);
1622                         }
1623                 }
1624                 if (!list_empty(&data.dispose))
1625                         shrink_dentry_list(&data.dispose);
1626         }
1627 }
1628 EXPORT_SYMBOL(shrink_dcache_parent);
1629
1630 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1631 {
1632         /* it has busy descendents; complain about those instead */
1633         if (!list_empty(&dentry->d_subdirs))
1634                 return D_WALK_CONTINUE;
1635
1636         /* root with refcount 1 is fine */
1637         if (dentry == _data && dentry->d_lockref.count == 1)
1638                 return D_WALK_CONTINUE;
1639
1640         printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1641                         " still in use (%d) [unmount of %s %s]\n",
1642                        dentry,
1643                        dentry->d_inode ?
1644                        dentry->d_inode->i_ino : 0UL,
1645                        dentry,
1646                        dentry->d_lockref.count,
1647                        dentry->d_sb->s_type->name,
1648                        dentry->d_sb->s_id);
1649         WARN_ON(1);
1650         return D_WALK_CONTINUE;
1651 }
1652
1653 static void do_one_tree(struct dentry *dentry)
1654 {
1655         shrink_dcache_parent(dentry);
1656         d_walk(dentry, dentry, umount_check);
1657         d_drop(dentry);
1658         dput(dentry);
1659 }
1660
1661 /*
1662  * destroy the dentries attached to a superblock on unmounting
1663  */
1664 void shrink_dcache_for_umount(struct super_block *sb)
1665 {
1666         struct dentry *dentry;
1667
1668         WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1669
1670         dentry = sb->s_root;
1671         sb->s_root = NULL;
1672         do_one_tree(dentry);
1673
1674         while (!hlist_bl_empty(&sb->s_roots)) {
1675                 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1676                 do_one_tree(dentry);
1677         }
1678 }
1679
1680 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
1681 {
1682         struct dentry **victim = _data;
1683         if (d_mountpoint(dentry)) {
1684                 __dget_dlock(dentry);
1685                 *victim = dentry;
1686                 return D_WALK_QUIT;
1687         }
1688         return D_WALK_CONTINUE;
1689 }
1690
1691 /**
1692  * d_invalidate - detach submounts, prune dcache, and drop
1693  * @dentry: dentry to invalidate (aka detach, prune and drop)
1694  */
1695 void d_invalidate(struct dentry *dentry)
1696 {
1697         bool had_submounts = false;
1698         spin_lock(&dentry->d_lock);
1699         if (d_unhashed(dentry)) {
1700                 spin_unlock(&dentry->d_lock);
1701                 return;
1702         }
1703         __d_drop(dentry);
1704         spin_unlock(&dentry->d_lock);
1705
1706         /* Negative dentries can be dropped without further checks */
1707         if (!dentry->d_inode)
1708                 return;
1709
1710         shrink_dcache_parent(dentry);
1711         for (;;) {
1712                 struct dentry *victim = NULL;
1713                 d_walk(dentry, &victim, find_submount);
1714                 if (!victim) {
1715                         if (had_submounts)
1716                                 shrink_dcache_parent(dentry);
1717                         return;
1718                 }
1719                 had_submounts = true;
1720                 detach_mounts(victim);
1721                 dput(victim);
1722         }
1723 }
1724 EXPORT_SYMBOL(d_invalidate);
1725
1726 /**
1727  * __d_alloc    -       allocate a dcache entry
1728  * @sb: filesystem it will belong to
1729  * @name: qstr of the name
1730  *
1731  * Allocates a dentry. It returns %NULL if there is insufficient memory
1732  * available. On a success the dentry is returned. The name passed in is
1733  * copied and the copy passed in may be reused after this call.
1734  */
1735  
1736 static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1737 {
1738         struct dentry *dentry;
1739         char *dname;
1740         int err;
1741
1742         dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1743         if (!dentry)
1744                 return NULL;
1745
1746         /*
1747          * We guarantee that the inline name is always NUL-terminated.
1748          * This way the memcpy() done by the name switching in rename
1749          * will still always have a NUL at the end, even if we might
1750          * be overwriting an internal NUL character
1751          */
1752         dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1753         if (unlikely(!name)) {
1754                 name = &slash_name;
1755                 dname = dentry->d_iname;
1756         } else if (name->len > DNAME_INLINE_LEN-1) {
1757                 size_t size = offsetof(struct external_name, name[1]);
1758                 struct external_name *p = kmalloc(size + name->len,
1759                                                   GFP_KERNEL_ACCOUNT |
1760                                                   __GFP_RECLAIMABLE);
1761                 if (!p) {
1762                         kmem_cache_free(dentry_cache, dentry); 
1763                         return NULL;
1764                 }
1765                 atomic_set(&p->u.count, 1);
1766                 dname = p->name;
1767         } else  {
1768                 dname = dentry->d_iname;
1769         }       
1770
1771         dentry->d_name.len = name->len;
1772         dentry->d_name.hash = name->hash;
1773         memcpy(dname, name->name, name->len);
1774         dname[name->len] = 0;
1775
1776         /* Make sure we always see the terminating NUL character */
1777         smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1778
1779         dentry->d_lockref.count = 1;
1780         dentry->d_flags = 0;
1781         spin_lock_init(&dentry->d_lock);
1782         seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock);
1783         dentry->d_inode = NULL;
1784         dentry->d_parent = dentry;
1785         dentry->d_sb = sb;
1786         dentry->d_op = NULL;
1787         dentry->d_fsdata = NULL;
1788         INIT_HLIST_BL_NODE(&dentry->d_hash);
1789         INIT_LIST_HEAD(&dentry->d_lru);
1790         INIT_LIST_HEAD(&dentry->d_subdirs);
1791         INIT_HLIST_NODE(&dentry->d_u.d_alias);
1792         INIT_LIST_HEAD(&dentry->d_child);
1793         d_set_d_op(dentry, dentry->d_sb->s_d_op);
1794
1795         if (dentry->d_op && dentry->d_op->d_init) {
1796                 err = dentry->d_op->d_init(dentry);
1797                 if (err) {
1798                         if (dname_external(dentry))
1799                                 kfree(external_name(dentry));
1800                         kmem_cache_free(dentry_cache, dentry);
1801                         return NULL;
1802                 }
1803         }
1804
1805         this_cpu_inc(nr_dentry);
1806
1807         return dentry;
1808 }
1809
1810 /**
1811  * d_alloc      -       allocate a dcache entry
1812  * @parent: parent of entry to allocate
1813  * @name: qstr of the name
1814  *
1815  * Allocates a dentry. It returns %NULL if there is insufficient memory
1816  * available. On a success the dentry is returned. The name passed in is
1817  * copied and the copy passed in may be reused after this call.
1818  */
1819 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1820 {
1821         struct dentry *dentry = __d_alloc(parent->d_sb, name);
1822         if (!dentry)
1823                 return NULL;
1824         spin_lock(&parent->d_lock);
1825         /*
1826          * don't need child lock because it is not subject
1827          * to concurrency here
1828          */
1829         __dget_dlock(parent);
1830         dentry->d_parent = parent;
1831         list_add(&dentry->d_child, &parent->d_subdirs);
1832         spin_unlock(&parent->d_lock);
1833
1834         return dentry;
1835 }
1836 EXPORT_SYMBOL(d_alloc);
1837
1838 struct dentry *d_alloc_anon(struct super_block *sb)
1839 {
1840         return __d_alloc(sb, NULL);
1841 }
1842 EXPORT_SYMBOL(d_alloc_anon);
1843
1844 struct dentry *d_alloc_cursor(struct dentry * parent)
1845 {
1846         struct dentry *dentry = d_alloc_anon(parent->d_sb);
1847         if (dentry) {
1848                 dentry->d_flags |= DCACHE_DENTRY_CURSOR;
1849                 dentry->d_parent = dget(parent);
1850         }
1851         return dentry;
1852 }
1853
1854 /**
1855  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1856  * @sb: the superblock
1857  * @name: qstr of the name
1858  *
1859  * For a filesystem that just pins its dentries in memory and never
1860  * performs lookups at all, return an unhashed IS_ROOT dentry.
1861  * This is used for pipes, sockets et.al. - the stuff that should
1862  * never be anyone's children or parents.  Unlike all other
1863  * dentries, these will not have RCU delay between dropping the
1864  * last reference and freeing them.
1865  *
1866  * The only user is alloc_file_pseudo() and that's what should
1867  * be considered a public interface.  Don't use directly.
1868  */
1869 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1870 {
1871         struct dentry *dentry = __d_alloc(sb, name);
1872         if (likely(dentry))
1873                 dentry->d_flags |= DCACHE_NORCU;
1874         return dentry;
1875 }
1876
1877 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1878 {
1879         struct qstr q;
1880
1881         q.name = name;
1882         q.hash_len = hashlen_string(parent, name);
1883         return d_alloc(parent, &q);
1884 }
1885 EXPORT_SYMBOL(d_alloc_name);
1886
1887 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1888 {
1889         WARN_ON_ONCE(dentry->d_op);
1890         WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH  |
1891                                 DCACHE_OP_COMPARE       |
1892                                 DCACHE_OP_REVALIDATE    |
1893                                 DCACHE_OP_WEAK_REVALIDATE       |
1894                                 DCACHE_OP_DELETE        |
1895                                 DCACHE_OP_REAL));
1896         dentry->d_op = op;
1897         if (!op)
1898                 return;
1899         if (op->d_hash)
1900                 dentry->d_flags |= DCACHE_OP_HASH;
1901         if (op->d_compare)
1902                 dentry->d_flags |= DCACHE_OP_COMPARE;
1903         if (op->d_revalidate)
1904                 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1905         if (op->d_weak_revalidate)
1906                 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1907         if (op->d_delete)
1908                 dentry->d_flags |= DCACHE_OP_DELETE;
1909         if (op->d_prune)
1910                 dentry->d_flags |= DCACHE_OP_PRUNE;
1911         if (op->d_real)
1912                 dentry->d_flags |= DCACHE_OP_REAL;
1913
1914 }
1915 EXPORT_SYMBOL(d_set_d_op);
1916
1917
1918 /*
1919  * d_set_fallthru - Mark a dentry as falling through to a lower layer
1920  * @dentry - The dentry to mark
1921  *
1922  * Mark a dentry as falling through to the lower layer (as set with
1923  * d_pin_lower()).  This flag may be recorded on the medium.
1924  */
1925 void d_set_fallthru(struct dentry *dentry)
1926 {
1927         spin_lock(&dentry->d_lock);
1928         dentry->d_flags |= DCACHE_FALLTHRU;
1929         spin_unlock(&dentry->d_lock);
1930 }
1931 EXPORT_SYMBOL(d_set_fallthru);
1932
1933 static unsigned d_flags_for_inode(struct inode *inode)
1934 {
1935         unsigned add_flags = DCACHE_REGULAR_TYPE;
1936
1937         if (!inode)
1938                 return DCACHE_MISS_TYPE;
1939
1940         if (S_ISDIR(inode->i_mode)) {
1941                 add_flags = DCACHE_DIRECTORY_TYPE;
1942                 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1943                         if (unlikely(!inode->i_op->lookup))
1944                                 add_flags = DCACHE_AUTODIR_TYPE;
1945                         else
1946                                 inode->i_opflags |= IOP_LOOKUP;
1947                 }
1948                 goto type_determined;
1949         }
1950
1951         if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1952                 if (unlikely(inode->i_op->get_link)) {
1953                         add_flags = DCACHE_SYMLINK_TYPE;
1954                         goto type_determined;
1955                 }
1956                 inode->i_opflags |= IOP_NOFOLLOW;
1957         }
1958
1959         if (unlikely(!S_ISREG(inode->i_mode)))
1960                 add_flags = DCACHE_SPECIAL_TYPE;
1961
1962 type_determined:
1963         if (unlikely(IS_AUTOMOUNT(inode)))
1964                 add_flags |= DCACHE_NEED_AUTOMOUNT;
1965         return add_flags;
1966 }
1967
1968 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1969 {
1970         unsigned add_flags = d_flags_for_inode(inode);
1971         WARN_ON(d_in_lookup(dentry));
1972
1973         spin_lock(&dentry->d_lock);
1974         /*
1975          * Decrement negative dentry count if it was in the LRU list.
1976          */
1977         if (dentry->d_flags & DCACHE_LRU_LIST)
1978                 this_cpu_dec(nr_dentry_negative);
1979         hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1980         raw_write_seqcount_begin(&dentry->d_seq);
1981         __d_set_inode_and_type(dentry, inode, add_flags);
1982         raw_write_seqcount_end(&dentry->d_seq);
1983         fsnotify_update_flags(dentry);
1984         spin_unlock(&dentry->d_lock);
1985 }
1986
1987 /**
1988  * d_instantiate - fill in inode information for a dentry
1989  * @entry: dentry to complete
1990  * @inode: inode to attach to this dentry
1991  *
1992  * Fill in inode information in the entry.
1993  *
1994  * This turns negative dentries into productive full members
1995  * of society.
1996  *
1997  * NOTE! This assumes that the inode count has been incremented
1998  * (or otherwise set) by the caller to indicate that it is now
1999  * in use by the dcache.
2000  */
2001  
2002 void d_instantiate(struct dentry *entry, struct inode * inode)
2003 {
2004         BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
2005         if (inode) {
2006                 security_d_instantiate(entry, inode);
2007                 spin_lock(&inode->i_lock);
2008                 __d_instantiate(entry, inode);
2009                 spin_unlock(&inode->i_lock);
2010         }
2011 }
2012 EXPORT_SYMBOL(d_instantiate);
2013
2014 /*
2015  * This should be equivalent to d_instantiate() + unlock_new_inode(),
2016  * with lockdep-related part of unlock_new_inode() done before
2017  * anything else.  Use that instead of open-coding d_instantiate()/
2018  * unlock_new_inode() combinations.
2019  */
2020 void d_instantiate_new(struct dentry *entry, struct inode *inode)
2021 {
2022         BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
2023         BUG_ON(!inode);
2024         lockdep_annotate_inode_mutex_key(inode);
2025         security_d_instantiate(entry, inode);
2026         spin_lock(&inode->i_lock);
2027         __d_instantiate(entry, inode);
2028         WARN_ON(!(inode->i_state & I_NEW));
2029         inode->i_state &= ~I_NEW & ~I_CREATING;
2030         smp_mb();
2031         wake_up_bit(&inode->i_state, __I_NEW);
2032         spin_unlock(&inode->i_lock);
2033 }
2034 EXPORT_SYMBOL(d_instantiate_new);
2035
2036 struct dentry *d_make_root(struct inode *root_inode)
2037 {
2038         struct dentry *res = NULL;
2039
2040         if (root_inode) {
2041                 res = d_alloc_anon(root_inode->i_sb);
2042                 if (res)
2043                         d_instantiate(res, root_inode);
2044                 else
2045                         iput(root_inode);
2046         }
2047         return res;
2048 }
2049 EXPORT_SYMBOL(d_make_root);
2050
2051 static struct dentry *__d_instantiate_anon(struct dentry *dentry,
2052                                            struct inode *inode,
2053                                            bool disconnected)
2054 {
2055         struct dentry *res;
2056         unsigned add_flags;
2057
2058         security_d_instantiate(dentry, inode);
2059         spin_lock(&inode->i_lock);
2060         res = __d_find_any_alias(inode);
2061         if (res) {
2062                 spin_unlock(&inode->i_lock);
2063                 dput(dentry);
2064                 goto out_iput;
2065         }
2066
2067         /* attach a disconnected dentry */
2068         add_flags = d_flags_for_inode(inode);
2069
2070         if (disconnected)
2071                 add_flags |= DCACHE_DISCONNECTED;
2072
2073         spin_lock(&dentry->d_lock);
2074         __d_set_inode_and_type(dentry, inode, add_flags);
2075         hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2076         if (!disconnected) {
2077                 hlist_bl_lock(&dentry->d_sb->s_roots);
2078                 hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
2079                 hlist_bl_unlock(&dentry->d_sb->s_roots);
2080         }
2081         spin_unlock(&dentry->d_lock);
2082         spin_unlock(&inode->i_lock);
2083
2084         return dentry;
2085
2086  out_iput:
2087         iput(inode);
2088         return res;
2089 }
2090
2091 struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
2092 {
2093         return __d_instantiate_anon(dentry, inode, true);
2094 }
2095 EXPORT_SYMBOL(d_instantiate_anon);
2096
2097 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
2098 {
2099         struct dentry *tmp;
2100         struct dentry *res;
2101
2102         if (!inode)
2103                 return ERR_PTR(-ESTALE);
2104         if (IS_ERR(inode))
2105                 return ERR_CAST(inode);
2106
2107         res = d_find_any_alias(inode);
2108         if (res)
2109                 goto out_iput;
2110
2111         tmp = d_alloc_anon(inode->i_sb);
2112         if (!tmp) {
2113                 res = ERR_PTR(-ENOMEM);
2114                 goto out_iput;
2115         }
2116
2117         return __d_instantiate_anon(tmp, inode, disconnected);
2118
2119 out_iput:
2120         iput(inode);
2121         return res;
2122 }
2123
2124 /**
2125  * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2126  * @inode: inode to allocate the dentry for
2127  *
2128  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2129  * similar open by handle operations.  The returned dentry may be anonymous,
2130  * or may have a full name (if the inode was already in the cache).
2131  *
2132  * When called on a directory inode, we must ensure that the inode only ever
2133  * has one dentry.  If a dentry is found, that is returned instead of
2134  * allocating a new one.
2135  *
2136  * On successful return, the reference to the inode has been transferred
2137  * to the dentry.  In case of an error the reference on the inode is released.
2138  * To make it easier to use in export operations a %NULL or IS_ERR inode may
2139  * be passed in and the error will be propagated to the return value,
2140  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2141  */
2142 struct dentry *d_obtain_alias(struct inode *inode)
2143 {
2144         return __d_obtain_alias(inode, true);
2145 }
2146 EXPORT_SYMBOL(d_obtain_alias);
2147
2148 /**
2149  * d_obtain_root - find or allocate a dentry for a given inode
2150  * @inode: inode to allocate the dentry for
2151  *
2152  * Obtain an IS_ROOT dentry for the root of a filesystem.
2153  *
2154  * We must ensure that directory inodes only ever have one dentry.  If a
2155  * dentry is found, that is returned instead of allocating a new one.
2156  *
2157  * On successful return, the reference to the inode has been transferred
2158  * to the dentry.  In case of an error the reference on the inode is
2159  * released.  A %NULL or IS_ERR inode may be passed in and will be the
2160  * error will be propagate to the return value, with a %NULL @inode
2161  * replaced by ERR_PTR(-ESTALE).
2162  */
2163 struct dentry *d_obtain_root(struct inode *inode)
2164 {
2165         return __d_obtain_alias(inode, false);
2166 }
2167 EXPORT_SYMBOL(d_obtain_root);
2168
2169 /**
2170  * d_add_ci - lookup or allocate new dentry with case-exact name
2171  * @inode:  the inode case-insensitive lookup has found
2172  * @dentry: the negative dentry that was passed to the parent's lookup func
2173  * @name:   the case-exact name to be associated with the returned dentry
2174  *
2175  * This is to avoid filling the dcache with case-insensitive names to the
2176  * same inode, only the actual correct case is stored in the dcache for
2177  * case-insensitive filesystems.
2178  *
2179  * For a case-insensitive lookup match and if the case-exact dentry
2180  * already exists in the dcache, use it and return it.
2181  *
2182  * If no entry exists with the exact case name, allocate new dentry with
2183  * the exact case, and return the spliced entry.
2184  */
2185 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2186                         struct qstr *name)
2187 {
2188         struct dentry *found, *res;
2189
2190         /*
2191          * First check if a dentry matching the name already exists,
2192          * if not go ahead and create it now.
2193          */
2194         found = d_hash_and_lookup(dentry->d_parent, name);
2195         if (found) {
2196                 iput(inode);
2197                 return found;
2198         }
2199         if (d_in_lookup(dentry)) {
2200                 found = d_alloc_parallel(dentry->d_parent, name,
2201                                         dentry->d_wait);
2202                 if (IS_ERR(found) || !d_in_lookup(found)) {
2203                         iput(inode);
2204                         return found;
2205                 }
2206         } else {
2207                 found = d_alloc(dentry->d_parent, name);
2208                 if (!found) {
2209                         iput(inode);
2210                         return ERR_PTR(-ENOMEM);
2211                 } 
2212         }
2213         res = d_splice_alias(inode, found);
2214         if (res) {
2215                 dput(found);
2216                 return res;
2217         }
2218         return found;
2219 }
2220 EXPORT_SYMBOL(d_add_ci);
2221
2222
2223 static inline bool d_same_name(const struct dentry *dentry,
2224                                 const struct dentry *parent,
2225                                 const struct qstr *name)
2226 {
2227         if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2228                 if (dentry->d_name.len != name->len)
2229                         return false;
2230                 return dentry_cmp(dentry, name->name, name->len) == 0;
2231         }
2232         return parent->d_op->d_compare(dentry,
2233                                        dentry->d_name.len, dentry->d_name.name,
2234                                        name) == 0;
2235 }
2236
2237 /**
2238  * __d_lookup_rcu - search for a dentry (racy, store-free)
2239  * @parent: parent dentry
2240  * @name: qstr of name we wish to find
2241  * @seqp: returns d_seq value at the point where the dentry was found
2242  * Returns: dentry, or NULL
2243  *
2244  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2245  * resolution (store-free path walking) design described in
2246  * Documentation/filesystems/path-lookup.txt.
2247  *
2248  * This is not to be used outside core vfs.
2249  *
2250  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2251  * held, and rcu_read_lock held. The returned dentry must not be stored into
2252  * without taking d_lock and checking d_seq sequence count against @seq
2253  * returned here.
2254  *
2255  * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2256  * function.
2257  *
2258  * Alternatively, __d_lookup_rcu may be called again to look up the child of
2259  * the returned dentry, so long as its parent's seqlock is checked after the
2260  * child is looked up. Thus, an interlocking stepping of sequence lock checks
2261  * is formed, giving integrity down the path walk.
2262  *
2263  * NOTE! The caller *has* to check the resulting dentry against the sequence
2264  * number we've returned before using any of the resulting dentry state!
2265  */
2266 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2267                                 const struct qstr *name,
2268                                 unsigned *seqp)
2269 {
2270         u64 hashlen = name->hash_len;
2271         const unsigned char *str = name->name;
2272         struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2273         struct hlist_bl_node *node;
2274         struct dentry *dentry;
2275
2276         /*
2277          * Note: There is significant duplication with __d_lookup_rcu which is
2278          * required to prevent single threaded performance regressions
2279          * especially on architectures where smp_rmb (in seqcounts) are costly.
2280          * Keep the two functions in sync.
2281          */
2282
2283         /*
2284          * The hash list is protected using RCU.
2285          *
2286          * Carefully use d_seq when comparing a candidate dentry, to avoid
2287          * races with d_move().
2288          *
2289          * It is possible that concurrent renames can mess up our list
2290          * walk here and result in missing our dentry, resulting in the
2291          * false-negative result. d_lookup() protects against concurrent
2292          * renames using rename_lock seqlock.
2293          *
2294          * See Documentation/filesystems/path-lookup.txt for more details.
2295          */
2296         hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2297                 unsigned seq;
2298
2299 seqretry:
2300                 /*
2301                  * The dentry sequence count protects us from concurrent
2302                  * renames, and thus protects parent and name fields.
2303                  *
2304                  * The caller must perform a seqcount check in order
2305                  * to do anything useful with the returned dentry.
2306                  *
2307                  * NOTE! We do a "raw" seqcount_begin here. That means that
2308                  * we don't wait for the sequence count to stabilize if it
2309                  * is in the middle of a sequence change. If we do the slow
2310                  * dentry compare, we will do seqretries until it is stable,
2311                  * and if we end up with a successful lookup, we actually
2312                  * want to exit RCU lookup anyway.
2313                  *
2314                  * Note that raw_seqcount_begin still *does* smp_rmb(), so
2315                  * we are still guaranteed NUL-termination of ->d_name.name.
2316                  */
2317                 seq = raw_seqcount_begin(&dentry->d_seq);
2318                 if (dentry->d_parent != parent)
2319                         continue;
2320                 if (d_unhashed(dentry))
2321                         continue;
2322
2323                 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2324                         int tlen;
2325                         const char *tname;
2326                         if (dentry->d_name.hash != hashlen_hash(hashlen))
2327                                 continue;
2328                         tlen = dentry->d_name.len;
2329                         tname = dentry->d_name.name;
2330                         /* we want a consistent (name,len) pair */
2331                         if (read_seqcount_retry(&dentry->d_seq, seq)) {
2332                                 cpu_relax();
2333                                 goto seqretry;
2334                         }
2335                         if (parent->d_op->d_compare(dentry,
2336                                                     tlen, tname, name) != 0)
2337                                 continue;
2338                 } else {
2339                         if (dentry->d_name.hash_len != hashlen)
2340                                 continue;
2341                         if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2342                                 continue;
2343                 }
2344                 *seqp = seq;
2345                 return dentry;
2346         }
2347         return NULL;
2348 }
2349
2350 /**
2351  * d_lookup - search for a dentry
2352  * @parent: parent dentry
2353  * @name: qstr of name we wish to find
2354  * Returns: dentry, or NULL
2355  *
2356  * d_lookup searches the children of the parent dentry for the name in
2357  * question. If the dentry is found its reference count is incremented and the
2358  * dentry is returned. The caller must use dput to free the entry when it has
2359  * finished using it. %NULL is returned if the dentry does not exist.
2360  */
2361 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2362 {
2363         struct dentry *dentry;
2364         unsigned seq;
2365
2366         do {
2367                 seq = read_seqbegin(&rename_lock);
2368                 dentry = __d_lookup(parent, name);
2369                 if (dentry)
2370                         break;
2371         } while (read_seqretry(&rename_lock, seq));
2372         return dentry;
2373 }
2374 EXPORT_SYMBOL(d_lookup);
2375
2376 /**
2377  * __d_lookup - search for a dentry (racy)
2378  * @parent: parent dentry
2379  * @name: qstr of name we wish to find
2380  * Returns: dentry, or NULL
2381  *
2382  * __d_lookup is like d_lookup, however it may (rarely) return a
2383  * false-negative result due to unrelated rename activity.
2384  *
2385  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2386  * however it must be used carefully, eg. with a following d_lookup in
2387  * the case of failure.
2388  *
2389  * __d_lookup callers must be commented.
2390  */
2391 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2392 {
2393         unsigned int hash = name->hash;
2394         struct hlist_bl_head *b = d_hash(hash);
2395         struct hlist_bl_node *node;
2396         struct dentry *found = NULL;
2397         struct dentry *dentry;
2398
2399         /*
2400          * Note: There is significant duplication with __d_lookup_rcu which is
2401          * required to prevent single threaded performance regressions
2402          * especially on architectures where smp_rmb (in seqcounts) are costly.
2403          * Keep the two functions in sync.
2404          */
2405
2406         /*
2407          * The hash list is protected using RCU.
2408          *
2409          * Take d_lock when comparing a candidate dentry, to avoid races
2410          * with d_move().
2411          *
2412          * It is possible that concurrent renames can mess up our list
2413          * walk here and result in missing our dentry, resulting in the
2414          * false-negative result. d_lookup() protects against concurrent
2415          * renames using rename_lock seqlock.
2416          *
2417          * See Documentation/filesystems/path-lookup.txt for more details.
2418          */
2419         rcu_read_lock();
2420         
2421         hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2422
2423                 if (dentry->d_name.hash != hash)
2424                         continue;
2425
2426                 spin_lock(&dentry->d_lock);
2427                 if (dentry->d_parent != parent)
2428                         goto next;
2429                 if (d_unhashed(dentry))
2430                         goto next;
2431
2432                 if (!d_same_name(dentry, parent, name))
2433                         goto next;
2434
2435                 dentry->d_lockref.count++;
2436                 found = dentry;
2437                 spin_unlock(&dentry->d_lock);
2438                 break;
2439 next:
2440                 spin_unlock(&dentry->d_lock);
2441         }
2442         rcu_read_unlock();
2443
2444         return found;
2445 }
2446
2447 /**
2448  * d_hash_and_lookup - hash the qstr then search for a dentry
2449  * @dir: Directory to search in
2450  * @name: qstr of name we wish to find
2451  *
2452  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2453  */
2454 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2455 {
2456         /*
2457          * Check for a fs-specific hash function. Note that we must
2458          * calculate the standard hash first, as the d_op->d_hash()
2459          * routine may choose to leave the hash value unchanged.
2460          */
2461         name->hash = full_name_hash(dir, name->name, name->len);
2462         if (dir->d_flags & DCACHE_OP_HASH) {
2463                 int err = dir->d_op->d_hash(dir, name);
2464                 if (unlikely(err < 0))
2465                         return ERR_PTR(err);
2466         }
2467         return d_lookup(dir, name);
2468 }
2469 EXPORT_SYMBOL(d_hash_and_lookup);
2470
2471 /*
2472  * When a file is deleted, we have two options:
2473  * - turn this dentry into a negative dentry
2474  * - unhash this dentry and free it.
2475  *
2476  * Usually, we want to just turn this into
2477  * a negative dentry, but if anybody else is
2478  * currently using the dentry or the inode
2479  * we can't do that and we fall back on removing
2480  * it from the hash queues and waiting for
2481  * it to be deleted later when it has no users
2482  */
2483  
2484 /**
2485  * d_delete - delete a dentry
2486  * @dentry: The dentry to delete
2487  *
2488  * Turn the dentry into a negative dentry if possible, otherwise
2489  * remove it from the hash queues so it can be deleted later
2490  */
2491  
2492 void d_delete(struct dentry * dentry)
2493 {
2494         struct inode *inode = dentry->d_inode;
2495
2496         spin_lock(&inode->i_lock);
2497         spin_lock(&dentry->d_lock);
2498         /*
2499          * Are we the only user?
2500          */
2501         if (dentry->d_lockref.count == 1) {
2502                 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2503                 dentry_unlink_inode(dentry);
2504         } else {
2505                 __d_drop(dentry);
2506                 spin_unlock(&dentry->d_lock);
2507                 spin_unlock(&inode->i_lock);
2508         }
2509 }
2510 EXPORT_SYMBOL(d_delete);
2511
2512 static void __d_rehash(struct dentry *entry)
2513 {
2514         struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2515
2516         hlist_bl_lock(b);
2517         hlist_bl_add_head_rcu(&entry->d_hash, b);
2518         hlist_bl_unlock(b);
2519 }
2520
2521 /**
2522  * d_rehash     - add an entry back to the hash
2523  * @entry: dentry to add to the hash
2524  *
2525  * Adds a dentry to the hash according to its name.
2526  */
2527  
2528 void d_rehash(struct dentry * entry)
2529 {
2530         spin_lock(&entry->d_lock);
2531         __d_rehash(entry);
2532         spin_unlock(&entry->d_lock);
2533 }
2534 EXPORT_SYMBOL(d_rehash);
2535
2536 static inline unsigned start_dir_add(struct inode *dir)
2537 {
2538
2539         for (;;) {
2540                 unsigned n = dir->i_dir_seq;
2541                 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2542                         return n;
2543                 cpu_relax();
2544         }
2545 }
2546
2547 static inline void end_dir_add(struct inode *dir, unsigned n)
2548 {
2549         smp_store_release(&dir->i_dir_seq, n + 2);
2550 }
2551
2552 static void d_wait_lookup(struct dentry *dentry)
2553 {
2554         if (d_in_lookup(dentry)) {
2555                 DECLARE_WAITQUEUE(wait, current);
2556                 add_wait_queue(dentry->d_wait, &wait);
2557                 do {
2558                         set_current_state(TASK_UNINTERRUPTIBLE);
2559                         spin_unlock(&dentry->d_lock);
2560                         schedule();
2561                         spin_lock(&dentry->d_lock);
2562                 } while (d_in_lookup(dentry));
2563         }
2564 }
2565
2566 struct dentry *d_alloc_parallel(struct dentry *parent,
2567                                 const struct qstr *name,
2568                                 wait_queue_head_t *wq)
2569 {
2570         unsigned int hash = name->hash;
2571         struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2572         struct hlist_bl_node *node;
2573         struct dentry *new = d_alloc(parent, name);
2574         struct dentry *dentry;
2575         unsigned seq, r_seq, d_seq;
2576
2577         if (unlikely(!new))
2578                 return ERR_PTR(-ENOMEM);
2579
2580 retry:
2581         rcu_read_lock();
2582         seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2583         r_seq = read_seqbegin(&rename_lock);
2584         dentry = __d_lookup_rcu(parent, name, &d_seq);
2585         if (unlikely(dentry)) {
2586                 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2587                         rcu_read_unlock();
2588                         goto retry;
2589                 }
2590                 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2591                         rcu_read_unlock();
2592                         dput(dentry);
2593                         goto retry;
2594                 }
2595                 rcu_read_unlock();
2596                 dput(new);
2597                 return dentry;
2598         }
2599         if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2600                 rcu_read_unlock();
2601                 goto retry;
2602         }
2603
2604         if (unlikely(seq & 1)) {
2605                 rcu_read_unlock();
2606                 goto retry;
2607         }
2608
2609         hlist_bl_lock(b);
2610         if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2611                 hlist_bl_unlock(b);
2612                 rcu_read_unlock();
2613                 goto retry;
2614         }
2615         /*
2616          * No changes for the parent since the beginning of d_lookup().
2617          * Since all removals from the chain happen with hlist_bl_lock(),
2618          * any potential in-lookup matches are going to stay here until
2619          * we unlock the chain.  All fields are stable in everything
2620          * we encounter.
2621          */
2622         hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2623                 if (dentry->d_name.hash != hash)
2624                         continue;
2625                 if (dentry->d_parent != parent)
2626                         continue;
2627                 if (!d_same_name(dentry, parent, name))
2628                         continue;
2629                 hlist_bl_unlock(b);
2630                 /* now we can try to grab a reference */
2631                 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2632                         rcu_read_unlock();
2633                         goto retry;
2634                 }
2635
2636                 rcu_read_unlock();
2637                 /*
2638                  * somebody is likely to be still doing lookup for it;
2639                  * wait for them to finish
2640                  */
2641                 spin_lock(&dentry->d_lock);
2642                 d_wait_lookup(dentry);
2643                 /*
2644                  * it's not in-lookup anymore; in principle we should repeat
2645                  * everything from dcache lookup, but it's likely to be what
2646                  * d_lookup() would've found anyway.  If it is, just return it;
2647                  * otherwise we really have to repeat the whole thing.
2648                  */
2649                 if (unlikely(dentry->d_name.hash != hash))
2650                         goto mismatch;
2651                 if (unlikely(dentry->d_parent != parent))
2652                         goto mismatch;
2653                 if (unlikely(d_unhashed(dentry)))
2654                         goto mismatch;
2655                 if (unlikely(!d_same_name(dentry, parent, name)))
2656                         goto mismatch;
2657                 /* OK, it *is* a hashed match; return it */
2658                 spin_unlock(&dentry->d_lock);
2659                 dput(new);
2660                 return dentry;
2661         }
2662         rcu_read_unlock();
2663         /* we can't take ->d_lock here; it's OK, though. */
2664         new->d_flags |= DCACHE_PAR_LOOKUP;
2665         new->d_wait = wq;
2666         hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2667         hlist_bl_unlock(b);
2668         return new;
2669 mismatch:
2670         spin_unlock(&dentry->d_lock);
2671         dput(dentry);
2672         goto retry;
2673 }
2674 EXPORT_SYMBOL(d_alloc_parallel);
2675
2676 void __d_lookup_done(struct dentry *dentry)
2677 {
2678         struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2679                                                  dentry->d_name.hash);
2680         hlist_bl_lock(b);
2681         dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2682         __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2683         wake_up_all(dentry->d_wait);
2684         dentry->d_wait = NULL;
2685         hlist_bl_unlock(b);
2686         INIT_HLIST_NODE(&dentry->d_u.d_alias);
2687         INIT_LIST_HEAD(&dentry->d_lru);
2688 }
2689 EXPORT_SYMBOL(__d_lookup_done);
2690
2691 /* inode->i_lock held if inode is non-NULL */
2692
2693 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2694 {
2695         struct inode *dir = NULL;
2696         unsigned n;
2697         spin_lock(&dentry->d_lock);
2698         if (unlikely(d_in_lookup(dentry))) {
2699                 dir = dentry->d_parent->d_inode;
2700                 n = start_dir_add(dir);
2701                 __d_lookup_done(dentry);
2702         }
2703         if (inode) {
2704                 unsigned add_flags = d_flags_for_inode(inode);
2705                 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2706                 raw_write_seqcount_begin(&dentry->d_seq);
2707                 __d_set_inode_and_type(dentry, inode, add_flags);
2708                 raw_write_seqcount_end(&dentry->d_seq);
2709                 fsnotify_update_flags(dentry);
2710         }
2711         __d_rehash(dentry);
2712         if (dir)
2713                 end_dir_add(dir, n);
2714         spin_unlock(&dentry->d_lock);
2715         if (inode)
2716                 spin_unlock(&inode->i_lock);
2717 }
2718
2719 /**
2720  * d_add - add dentry to hash queues
2721  * @entry: dentry to add
2722  * @inode: The inode to attach to this dentry
2723  *
2724  * This adds the entry to the hash queues and initializes @inode.
2725  * The entry was actually filled in earlier during d_alloc().
2726  */
2727
2728 void d_add(struct dentry *entry, struct inode *inode)
2729 {
2730         if (inode) {
2731                 security_d_instantiate(entry, inode);
2732                 spin_lock(&inode->i_lock);
2733         }
2734         __d_add(entry, inode);
2735 }
2736 EXPORT_SYMBOL(d_add);
2737
2738 /**
2739  * d_exact_alias - find and hash an exact unhashed alias
2740  * @entry: dentry to add
2741  * @inode: The inode to go with this dentry
2742  *
2743  * If an unhashed dentry with the same name/parent and desired
2744  * inode already exists, hash and return it.  Otherwise, return
2745  * NULL.
2746  *
2747  * Parent directory should be locked.
2748  */
2749 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2750 {
2751         struct dentry *alias;
2752         unsigned int hash = entry->d_name.hash;
2753
2754         spin_lock(&inode->i_lock);
2755         hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2756                 /*
2757                  * Don't need alias->d_lock here, because aliases with
2758                  * d_parent == entry->d_parent are not subject to name or
2759                  * parent changes, because the parent inode i_mutex is held.
2760                  */
2761                 if (alias->d_name.hash != hash)
2762                         continue;
2763                 if (alias->d_parent != entry->d_parent)
2764                         continue;
2765                 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2766                         continue;
2767                 spin_lock(&alias->d_lock);
2768                 if (!d_unhashed(alias)) {
2769                         spin_unlock(&alias->d_lock);
2770                         alias = NULL;
2771                 } else {
2772                         __dget_dlock(alias);
2773                         __d_rehash(alias);
2774                         spin_unlock(&alias->d_lock);
2775                 }
2776                 spin_unlock(&inode->i_lock);
2777                 return alias;
2778         }
2779         spin_unlock(&inode->i_lock);
2780         return NULL;
2781 }
2782 EXPORT_SYMBOL(d_exact_alias);
2783
2784 static void swap_names(struct dentry *dentry, struct dentry *target)
2785 {
2786         if (unlikely(dname_external(target))) {
2787                 if (unlikely(dname_external(dentry))) {
2788                         /*
2789                          * Both external: swap the pointers
2790                          */
2791                         swap(target->d_name.name, dentry->d_name.name);
2792                 } else {
2793                         /*
2794                          * dentry:internal, target:external.  Steal target's
2795                          * storage and make target internal.
2796                          */
2797                         memcpy(target->d_iname, dentry->d_name.name,
2798                                         dentry->d_name.len + 1);
2799                         dentry->d_name.name = target->d_name.name;
2800                         target->d_name.name = target->d_iname;
2801                 }
2802         } else {
2803                 if (unlikely(dname_external(dentry))) {
2804                         /*
2805                          * dentry:external, target:internal.  Give dentry's
2806                          * storage to target and make dentry internal
2807                          */
2808                         memcpy(dentry->d_iname, target->d_name.name,
2809                                         target->d_name.len + 1);
2810                         target->d_name.name = dentry->d_name.name;
2811                         dentry->d_name.name = dentry->d_iname;
2812                 } else {
2813                         /*
2814                          * Both are internal.
2815                          */
2816                         unsigned int i;
2817                         BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2818                         for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2819                                 swap(((long *) &dentry->d_iname)[i],
2820                                      ((long *) &target->d_iname)[i]);
2821                         }
2822                 }
2823         }
2824         swap(dentry->d_name.hash_len, target->d_name.hash_len);
2825 }
2826
2827 static void copy_name(struct dentry *dentry, struct dentry *target)
2828 {
2829         struct external_name *old_name = NULL;
2830         if (unlikely(dname_external(dentry)))
2831                 old_name = external_name(dentry);
2832         if (unlikely(dname_external(target))) {
2833                 atomic_inc(&external_name(target)->u.count);
2834                 dentry->d_name = target->d_name;
2835         } else {
2836                 memcpy(dentry->d_iname, target->d_name.name,
2837                                 target->d_name.len + 1);
2838                 dentry->d_name.name = dentry->d_iname;
2839                 dentry->d_name.hash_len = target->d_name.hash_len;
2840         }
2841         if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2842                 kfree_rcu(old_name, u.head);
2843 }
2844
2845 /*
2846  * __d_move - move a dentry
2847  * @dentry: entry to move
2848  * @target: new dentry
2849  * @exchange: exchange the two dentries
2850  *
2851  * Update the dcache to reflect the move of a file name. Negative
2852  * dcache entries should not be moved in this way. Caller must hold
2853  * rename_lock, the i_mutex of the source and target directories,
2854  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2855  */
2856 static void __d_move(struct dentry *dentry, struct dentry *target,
2857                      bool exchange)
2858 {
2859         struct dentry *old_parent, *p;
2860         struct inode *dir = NULL;
2861         unsigned n;
2862
2863         WARN_ON(!dentry->d_inode);
2864         if (WARN_ON(dentry == target))
2865                 return;
2866
2867         BUG_ON(d_ancestor(target, dentry));
2868         old_parent = dentry->d_parent;
2869         p = d_ancestor(old_parent, target);
2870         if (IS_ROOT(dentry)) {
2871                 BUG_ON(p);
2872                 spin_lock(&target->d_parent->d_lock);
2873         } else if (!p) {
2874                 /* target is not a descendent of dentry->d_parent */
2875                 spin_lock(&target->d_parent->d_lock);
2876                 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2877         } else {
2878                 BUG_ON(p == dentry);
2879                 spin_lock(&old_parent->d_lock);
2880                 if (p != target)
2881                         spin_lock_nested(&target->d_parent->d_lock,
2882                                         DENTRY_D_LOCK_NESTED);
2883         }
2884         spin_lock_nested(&dentry->d_lock, 2);
2885         spin_lock_nested(&target->d_lock, 3);
2886
2887         if (unlikely(d_in_lookup(target))) {
2888                 dir = target->d_parent->d_inode;
2889                 n = start_dir_add(dir);
2890                 __d_lookup_done(target);
2891         }
2892
2893         write_seqcount_begin(&dentry->d_seq);
2894         write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2895
2896         /* unhash both */
2897         if (!d_unhashed(dentry))
2898                 ___d_drop(dentry);
2899         if (!d_unhashed(target))
2900                 ___d_drop(target);
2901
2902         /* ... and switch them in the tree */
2903         dentry->d_parent = target->d_parent;
2904         if (!exchange) {
2905                 copy_name(dentry, target);
2906                 target->d_hash.pprev = NULL;
2907                 dentry->d_parent->d_lockref.count++;
2908                 if (dentry != old_parent) /* wasn't IS_ROOT */
2909                         WARN_ON(!--old_parent->d_lockref.count);
2910         } else {
2911                 target->d_parent = old_parent;
2912                 swap_names(dentry, target);
2913                 list_move(&target->d_child, &target->d_parent->d_subdirs);
2914                 __d_rehash(target);
2915                 fsnotify_update_flags(target);
2916         }
2917         list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2918         __d_rehash(dentry);
2919         fsnotify_update_flags(dentry);
2920         fscrypt_handle_d_move(dentry);
2921
2922         write_seqcount_end(&target->d_seq);
2923         write_seqcount_end(&dentry->d_seq);
2924
2925         if (dir)
2926                 end_dir_add(dir, n);
2927
2928         if (dentry->d_parent != old_parent)
2929                 spin_unlock(&dentry->d_parent->d_lock);
2930         if (dentry != old_parent)
2931                 spin_unlock(&old_parent->d_lock);
2932         spin_unlock(&target->d_lock);
2933         spin_unlock(&dentry->d_lock);
2934 }
2935
2936 /*
2937  * d_move - move a dentry
2938  * @dentry: entry to move
2939  * @target: new dentry
2940  *
2941  * Update the dcache to reflect the move of a file name. Negative
2942  * dcache entries should not be moved in this way. See the locking
2943  * requirements for __d_move.
2944  */
2945 void d_move(struct dentry *dentry, struct dentry *target)
2946 {
2947         write_seqlock(&rename_lock);
2948         __d_move(dentry, target, false);
2949         write_sequnlock(&rename_lock);
2950 }
2951 EXPORT_SYMBOL(d_move);
2952
2953 /*
2954  * d_exchange - exchange two dentries
2955  * @dentry1: first dentry
2956  * @dentry2: second dentry
2957  */
2958 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2959 {
2960         write_seqlock(&rename_lock);
2961
2962         WARN_ON(!dentry1->d_inode);
2963         WARN_ON(!dentry2->d_inode);
2964         WARN_ON(IS_ROOT(dentry1));
2965         WARN_ON(IS_ROOT(dentry2));
2966
2967         __d_move(dentry1, dentry2, true);
2968
2969         write_sequnlock(&rename_lock);
2970 }
2971
2972 /**
2973  * d_ancestor - search for an ancestor
2974  * @p1: ancestor dentry
2975  * @p2: child dentry
2976  *
2977  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2978  * an ancestor of p2, else NULL.
2979  */
2980 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2981 {
2982         struct dentry *p;
2983
2984         for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2985                 if (p->d_parent == p1)
2986                         return p;
2987         }
2988         return NULL;
2989 }
2990
2991 /*
2992  * This helper attempts to cope with remotely renamed directories
2993  *
2994  * It assumes that the caller is already holding
2995  * dentry->d_parent->d_inode->i_mutex, and rename_lock
2996  *
2997  * Note: If ever the locking in lock_rename() changes, then please
2998  * remember to update this too...
2999  */
3000 static int __d_unalias(struct inode *inode,
3001                 struct dentry *dentry, struct dentry *alias)
3002 {
3003         struct mutex *m1 = NULL;
3004         struct rw_semaphore *m2 = NULL;
3005         int ret = -ESTALE;
3006
3007         /* If alias and dentry share a parent, then no extra locks required */
3008         if (alias->d_parent == dentry->d_parent)
3009                 goto out_unalias;
3010
3011         /* See lock_rename() */
3012         if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
3013                 goto out_err;
3014         m1 = &dentry->d_sb->s_vfs_rename_mutex;
3015         if (!inode_trylock_shared(alias->d_parent->d_inode))
3016                 goto out_err;
3017         m2 = &alias->d_parent->d_inode->i_rwsem;
3018 out_unalias:
3019         __d_move(alias, dentry, false);
3020         ret = 0;
3021 out_err:
3022         if (m2)
3023                 up_read(m2);
3024         if (m1)
3025                 mutex_unlock(m1);
3026         return ret;
3027 }
3028
3029 /**
3030  * d_splice_alias - splice a disconnected dentry into the tree if one exists
3031  * @inode:  the inode which may have a disconnected dentry
3032  * @dentry: a negative dentry which we want to point to the inode.
3033  *
3034  * If inode is a directory and has an IS_ROOT alias, then d_move that in
3035  * place of the given dentry and return it, else simply d_add the inode
3036  * to the dentry and return NULL.
3037  *
3038  * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
3039  * we should error out: directories can't have multiple aliases.
3040  *
3041  * This is needed in the lookup routine of any filesystem that is exportable
3042  * (via knfsd) so that we can build dcache paths to directories effectively.
3043  *
3044  * If a dentry was found and moved, then it is returned.  Otherwise NULL
3045  * is returned.  This matches the expected return value of ->lookup.
3046  *
3047  * Cluster filesystems may call this function with a negative, hashed dentry.
3048  * In that case, we know that the inode will be a regular file, and also this
3049  * will only occur during atomic_open. So we need to check for the dentry
3050  * being already hashed only in the final case.
3051  */
3052 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
3053 {
3054         if (IS_ERR(inode))
3055                 return ERR_CAST(inode);
3056
3057         BUG_ON(!d_unhashed(dentry));
3058
3059         if (!inode)
3060                 goto out;
3061
3062         security_d_instantiate(dentry, inode);
3063         spin_lock(&inode->i_lock);
3064         if (S_ISDIR(inode->i_mode)) {
3065                 struct dentry *new = __d_find_any_alias(inode);
3066                 if (unlikely(new)) {
3067                         /* The reference to new ensures it remains an alias */
3068                         spin_unlock(&inode->i_lock);
3069                         write_seqlock(&rename_lock);
3070                         if (unlikely(d_ancestor(new, dentry))) {
3071                                 write_sequnlock(&rename_lock);
3072                                 dput(new);
3073                                 new = ERR_PTR(-ELOOP);
3074                                 pr_warn_ratelimited(
3075                                         "VFS: Lookup of '%s' in %s %s"
3076                                         " would have caused loop\n",
3077                                         dentry->d_name.name,
3078                                         inode->i_sb->s_type->name,
3079                                         inode->i_sb->s_id);
3080                         } else if (!IS_ROOT(new)) {
3081                                 struct dentry *old_parent = dget(new->d_parent);
3082                                 int err = __d_unalias(inode, dentry, new);
3083                                 write_sequnlock(&rename_lock);
3084                                 if (err) {
3085                                         dput(new);
3086                                         new = ERR_PTR(err);
3087                                 }
3088                                 dput(old_parent);
3089                         } else {
3090                                 __d_move(new, dentry, false);
3091                                 write_sequnlock(&rename_lock);
3092                         }
3093                         iput(inode);
3094                         return new;
3095                 }
3096         }
3097 out:
3098         __d_add(dentry, inode);
3099         return NULL;
3100 }
3101 EXPORT_SYMBOL(d_splice_alias);
3102
3103 /*
3104  * Test whether new_dentry is a subdirectory of old_dentry.
3105  *
3106  * Trivially implemented using the dcache structure
3107  */
3108
3109 /**
3110  * is_subdir - is new dentry a subdirectory of old_dentry
3111  * @new_dentry: new dentry
3112  * @old_dentry: old dentry
3113  *
3114  * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3115  * Returns false otherwise.
3116  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3117  */
3118   
3119 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3120 {
3121         bool result;
3122         unsigned seq;
3123
3124         if (new_dentry == old_dentry)
3125                 return true;
3126
3127         do {
3128                 /* for restarting inner loop in case of seq retry */
3129                 seq = read_seqbegin(&rename_lock);
3130                 /*
3131                  * Need rcu_readlock to protect against the d_parent trashing
3132                  * due to d_move
3133                  */
3134                 rcu_read_lock();
3135                 if (d_ancestor(old_dentry, new_dentry))
3136                         result = true;
3137                 else
3138                         result = false;
3139                 rcu_read_unlock();
3140         } while (read_seqretry(&rename_lock, seq));
3141
3142         return result;
3143 }
3144 EXPORT_SYMBOL(is_subdir);
3145
3146 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3147 {
3148         struct dentry *root = data;
3149         if (dentry != root) {
3150                 if (d_unhashed(dentry) || !dentry->d_inode)
3151                         return D_WALK_SKIP;
3152
3153                 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3154                         dentry->d_flags |= DCACHE_GENOCIDE;
3155                         dentry->d_lockref.count--;
3156                 }
3157         }
3158         return D_WALK_CONTINUE;
3159 }
3160
3161 void d_genocide(struct dentry *parent)
3162 {
3163         d_walk(parent, parent, d_genocide_kill);
3164 }
3165
3166 EXPORT_SYMBOL(d_genocide);
3167
3168 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3169 {
3170         inode_dec_link_count(inode);
3171         BUG_ON(dentry->d_name.name != dentry->d_iname ||
3172                 !hlist_unhashed(&dentry->d_u.d_alias) ||
3173                 !d_unlinked(dentry));
3174         spin_lock(&dentry->d_parent->d_lock);
3175         spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3176         dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3177                                 (unsigned long long)inode->i_ino);
3178         spin_unlock(&dentry->d_lock);
3179         spin_unlock(&dentry->d_parent->d_lock);
3180         d_instantiate(dentry, inode);
3181 }
3182 EXPORT_SYMBOL(d_tmpfile);
3183
3184 static __initdata unsigned long dhash_entries;
3185 static int __init set_dhash_entries(char *str)
3186 {
3187         if (!str)
3188                 return 0;
3189         dhash_entries = simple_strtoul(str, &str, 0);
3190         return 1;
3191 }
3192 __setup("dhash_entries=", set_dhash_entries);
3193
3194 static void __init dcache_init_early(void)
3195 {
3196         /* If hashes are distributed across NUMA nodes, defer
3197          * hash allocation until vmalloc space is available.
3198          */
3199         if (hashdist)
3200                 return;
3201
3202         dentry_hashtable =
3203                 alloc_large_system_hash("Dentry cache",
3204                                         sizeof(struct hlist_bl_head),
3205                                         dhash_entries,
3206                                         13,
3207                                         HASH_EARLY | HASH_ZERO,
3208                                         &d_hash_shift,
3209                                         NULL,
3210                                         0,
3211                                         0);
3212         d_hash_shift = 32 - d_hash_shift;
3213 }
3214
3215 static void __init dcache_init(void)
3216 {
3217         /*
3218          * A constructor could be added for stable state like the lists,
3219          * but it is probably not worth it because of the cache nature
3220          * of the dcache.
3221          */
3222         dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3223                 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3224                 d_iname);
3225
3226         /* Hash may have been set up in dcache_init_early */
3227         if (!hashdist)
3228                 return;
3229
3230         dentry_hashtable =
3231                 alloc_large_system_hash("Dentry cache",
3232                                         sizeof(struct hlist_bl_head),
3233                                         dhash_entries,
3234                                         13,
3235                                         HASH_ZERO,
3236                                         &d_hash_shift,
3237                                         NULL,
3238                                         0,
3239                                         0);
3240         d_hash_shift = 32 - d_hash_shift;
3241 }
3242
3243 /* SLAB cache for __getname() consumers */
3244 struct kmem_cache *names_cachep __read_mostly;
3245 EXPORT_SYMBOL(names_cachep);
3246
3247 void __init vfs_caches_init_early(void)
3248 {
3249         int i;
3250
3251         for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3252                 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3253
3254         dcache_init_early();
3255         inode_init_early();
3256 }
3257
3258 void __init vfs_caches_init(void)
3259 {
3260         names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3261                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3262
3263         dcache_init();
3264         inode_init();
3265         files_init();
3266         files_maxfiles_init();
3267         mnt_init();
3268         bdev_cache_init();
3269         chrdev_init();
3270 }