Merge tag 'pci-v5.11-fixes-1' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaa...
[linux-2.6-microblaze.git] / fs / dax.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/dax.c - Direct Access filesystem code
4  * Copyright (c) 2013-2014 Intel Corporation
5  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
6  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
7  */
8
9 #include <linux/atomic.h>
10 #include <linux/blkdev.h>
11 #include <linux/buffer_head.h>
12 #include <linux/dax.h>
13 #include <linux/fs.h>
14 #include <linux/genhd.h>
15 #include <linux/highmem.h>
16 #include <linux/memcontrol.h>
17 #include <linux/mm.h>
18 #include <linux/mutex.h>
19 #include <linux/pagevec.h>
20 #include <linux/sched.h>
21 #include <linux/sched/signal.h>
22 #include <linux/uio.h>
23 #include <linux/vmstat.h>
24 #include <linux/pfn_t.h>
25 #include <linux/sizes.h>
26 #include <linux/mmu_notifier.h>
27 #include <linux/iomap.h>
28 #include <asm/pgalloc.h>
29
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/fs_dax.h>
32
33 static inline unsigned int pe_order(enum page_entry_size pe_size)
34 {
35         if (pe_size == PE_SIZE_PTE)
36                 return PAGE_SHIFT - PAGE_SHIFT;
37         if (pe_size == PE_SIZE_PMD)
38                 return PMD_SHIFT - PAGE_SHIFT;
39         if (pe_size == PE_SIZE_PUD)
40                 return PUD_SHIFT - PAGE_SHIFT;
41         return ~0;
42 }
43
44 /* We choose 4096 entries - same as per-zone page wait tables */
45 #define DAX_WAIT_TABLE_BITS 12
46 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
47
48 /* The 'colour' (ie low bits) within a PMD of a page offset.  */
49 #define PG_PMD_COLOUR   ((PMD_SIZE >> PAGE_SHIFT) - 1)
50 #define PG_PMD_NR       (PMD_SIZE >> PAGE_SHIFT)
51
52 /* The order of a PMD entry */
53 #define PMD_ORDER       (PMD_SHIFT - PAGE_SHIFT)
54
55 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
56
57 static int __init init_dax_wait_table(void)
58 {
59         int i;
60
61         for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
62                 init_waitqueue_head(wait_table + i);
63         return 0;
64 }
65 fs_initcall(init_dax_wait_table);
66
67 /*
68  * DAX pagecache entries use XArray value entries so they can't be mistaken
69  * for pages.  We use one bit for locking, one bit for the entry size (PMD)
70  * and two more to tell us if the entry is a zero page or an empty entry that
71  * is just used for locking.  In total four special bits.
72  *
73  * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
74  * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
75  * block allocation.
76  */
77 #define DAX_SHIFT       (4)
78 #define DAX_LOCKED      (1UL << 0)
79 #define DAX_PMD         (1UL << 1)
80 #define DAX_ZERO_PAGE   (1UL << 2)
81 #define DAX_EMPTY       (1UL << 3)
82
83 static unsigned long dax_to_pfn(void *entry)
84 {
85         return xa_to_value(entry) >> DAX_SHIFT;
86 }
87
88 static void *dax_make_entry(pfn_t pfn, unsigned long flags)
89 {
90         return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
91 }
92
93 static bool dax_is_locked(void *entry)
94 {
95         return xa_to_value(entry) & DAX_LOCKED;
96 }
97
98 static unsigned int dax_entry_order(void *entry)
99 {
100         if (xa_to_value(entry) & DAX_PMD)
101                 return PMD_ORDER;
102         return 0;
103 }
104
105 static unsigned long dax_is_pmd_entry(void *entry)
106 {
107         return xa_to_value(entry) & DAX_PMD;
108 }
109
110 static bool dax_is_pte_entry(void *entry)
111 {
112         return !(xa_to_value(entry) & DAX_PMD);
113 }
114
115 static int dax_is_zero_entry(void *entry)
116 {
117         return xa_to_value(entry) & DAX_ZERO_PAGE;
118 }
119
120 static int dax_is_empty_entry(void *entry)
121 {
122         return xa_to_value(entry) & DAX_EMPTY;
123 }
124
125 /*
126  * true if the entry that was found is of a smaller order than the entry
127  * we were looking for
128  */
129 static bool dax_is_conflict(void *entry)
130 {
131         return entry == XA_RETRY_ENTRY;
132 }
133
134 /*
135  * DAX page cache entry locking
136  */
137 struct exceptional_entry_key {
138         struct xarray *xa;
139         pgoff_t entry_start;
140 };
141
142 struct wait_exceptional_entry_queue {
143         wait_queue_entry_t wait;
144         struct exceptional_entry_key key;
145 };
146
147 static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
148                 void *entry, struct exceptional_entry_key *key)
149 {
150         unsigned long hash;
151         unsigned long index = xas->xa_index;
152
153         /*
154          * If 'entry' is a PMD, align the 'index' that we use for the wait
155          * queue to the start of that PMD.  This ensures that all offsets in
156          * the range covered by the PMD map to the same bit lock.
157          */
158         if (dax_is_pmd_entry(entry))
159                 index &= ~PG_PMD_COLOUR;
160         key->xa = xas->xa;
161         key->entry_start = index;
162
163         hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
164         return wait_table + hash;
165 }
166
167 static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
168                 unsigned int mode, int sync, void *keyp)
169 {
170         struct exceptional_entry_key *key = keyp;
171         struct wait_exceptional_entry_queue *ewait =
172                 container_of(wait, struct wait_exceptional_entry_queue, wait);
173
174         if (key->xa != ewait->key.xa ||
175             key->entry_start != ewait->key.entry_start)
176                 return 0;
177         return autoremove_wake_function(wait, mode, sync, NULL);
178 }
179
180 /*
181  * @entry may no longer be the entry at the index in the mapping.
182  * The important information it's conveying is whether the entry at
183  * this index used to be a PMD entry.
184  */
185 static void dax_wake_entry(struct xa_state *xas, void *entry, bool wake_all)
186 {
187         struct exceptional_entry_key key;
188         wait_queue_head_t *wq;
189
190         wq = dax_entry_waitqueue(xas, entry, &key);
191
192         /*
193          * Checking for locked entry and prepare_to_wait_exclusive() happens
194          * under the i_pages lock, ditto for entry handling in our callers.
195          * So at this point all tasks that could have seen our entry locked
196          * must be in the waitqueue and the following check will see them.
197          */
198         if (waitqueue_active(wq))
199                 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
200 }
201
202 /*
203  * Look up entry in page cache, wait for it to become unlocked if it
204  * is a DAX entry and return it.  The caller must subsequently call
205  * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
206  * if it did.  The entry returned may have a larger order than @order.
207  * If @order is larger than the order of the entry found in i_pages, this
208  * function returns a dax_is_conflict entry.
209  *
210  * Must be called with the i_pages lock held.
211  */
212 static void *get_unlocked_entry(struct xa_state *xas, unsigned int order)
213 {
214         void *entry;
215         struct wait_exceptional_entry_queue ewait;
216         wait_queue_head_t *wq;
217
218         init_wait(&ewait.wait);
219         ewait.wait.func = wake_exceptional_entry_func;
220
221         for (;;) {
222                 entry = xas_find_conflict(xas);
223                 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
224                         return entry;
225                 if (dax_entry_order(entry) < order)
226                         return XA_RETRY_ENTRY;
227                 if (!dax_is_locked(entry))
228                         return entry;
229
230                 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
231                 prepare_to_wait_exclusive(wq, &ewait.wait,
232                                           TASK_UNINTERRUPTIBLE);
233                 xas_unlock_irq(xas);
234                 xas_reset(xas);
235                 schedule();
236                 finish_wait(wq, &ewait.wait);
237                 xas_lock_irq(xas);
238         }
239 }
240
241 /*
242  * The only thing keeping the address space around is the i_pages lock
243  * (it's cycled in clear_inode() after removing the entries from i_pages)
244  * After we call xas_unlock_irq(), we cannot touch xas->xa.
245  */
246 static void wait_entry_unlocked(struct xa_state *xas, void *entry)
247 {
248         struct wait_exceptional_entry_queue ewait;
249         wait_queue_head_t *wq;
250
251         init_wait(&ewait.wait);
252         ewait.wait.func = wake_exceptional_entry_func;
253
254         wq = dax_entry_waitqueue(xas, entry, &ewait.key);
255         /*
256          * Unlike get_unlocked_entry() there is no guarantee that this
257          * path ever successfully retrieves an unlocked entry before an
258          * inode dies. Perform a non-exclusive wait in case this path
259          * never successfully performs its own wake up.
260          */
261         prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE);
262         xas_unlock_irq(xas);
263         schedule();
264         finish_wait(wq, &ewait.wait);
265 }
266
267 static void put_unlocked_entry(struct xa_state *xas, void *entry)
268 {
269         /* If we were the only waiter woken, wake the next one */
270         if (entry && !dax_is_conflict(entry))
271                 dax_wake_entry(xas, entry, false);
272 }
273
274 /*
275  * We used the xa_state to get the entry, but then we locked the entry and
276  * dropped the xa_lock, so we know the xa_state is stale and must be reset
277  * before use.
278  */
279 static void dax_unlock_entry(struct xa_state *xas, void *entry)
280 {
281         void *old;
282
283         BUG_ON(dax_is_locked(entry));
284         xas_reset(xas);
285         xas_lock_irq(xas);
286         old = xas_store(xas, entry);
287         xas_unlock_irq(xas);
288         BUG_ON(!dax_is_locked(old));
289         dax_wake_entry(xas, entry, false);
290 }
291
292 /*
293  * Return: The entry stored at this location before it was locked.
294  */
295 static void *dax_lock_entry(struct xa_state *xas, void *entry)
296 {
297         unsigned long v = xa_to_value(entry);
298         return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
299 }
300
301 static unsigned long dax_entry_size(void *entry)
302 {
303         if (dax_is_zero_entry(entry))
304                 return 0;
305         else if (dax_is_empty_entry(entry))
306                 return 0;
307         else if (dax_is_pmd_entry(entry))
308                 return PMD_SIZE;
309         else
310                 return PAGE_SIZE;
311 }
312
313 static unsigned long dax_end_pfn(void *entry)
314 {
315         return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
316 }
317
318 /*
319  * Iterate through all mapped pfns represented by an entry, i.e. skip
320  * 'empty' and 'zero' entries.
321  */
322 #define for_each_mapped_pfn(entry, pfn) \
323         for (pfn = dax_to_pfn(entry); \
324                         pfn < dax_end_pfn(entry); pfn++)
325
326 /*
327  * TODO: for reflink+dax we need a way to associate a single page with
328  * multiple address_space instances at different linear_page_index()
329  * offsets.
330  */
331 static void dax_associate_entry(void *entry, struct address_space *mapping,
332                 struct vm_area_struct *vma, unsigned long address)
333 {
334         unsigned long size = dax_entry_size(entry), pfn, index;
335         int i = 0;
336
337         if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
338                 return;
339
340         index = linear_page_index(vma, address & ~(size - 1));
341         for_each_mapped_pfn(entry, pfn) {
342                 struct page *page = pfn_to_page(pfn);
343
344                 WARN_ON_ONCE(page->mapping);
345                 page->mapping = mapping;
346                 page->index = index + i++;
347         }
348 }
349
350 static void dax_disassociate_entry(void *entry, struct address_space *mapping,
351                 bool trunc)
352 {
353         unsigned long pfn;
354
355         if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
356                 return;
357
358         for_each_mapped_pfn(entry, pfn) {
359                 struct page *page = pfn_to_page(pfn);
360
361                 WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
362                 WARN_ON_ONCE(page->mapping && page->mapping != mapping);
363                 page->mapping = NULL;
364                 page->index = 0;
365         }
366 }
367
368 static struct page *dax_busy_page(void *entry)
369 {
370         unsigned long pfn;
371
372         for_each_mapped_pfn(entry, pfn) {
373                 struct page *page = pfn_to_page(pfn);
374
375                 if (page_ref_count(page) > 1)
376                         return page;
377         }
378         return NULL;
379 }
380
381 /*
382  * dax_lock_mapping_entry - Lock the DAX entry corresponding to a page
383  * @page: The page whose entry we want to lock
384  *
385  * Context: Process context.
386  * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could
387  * not be locked.
388  */
389 dax_entry_t dax_lock_page(struct page *page)
390 {
391         XA_STATE(xas, NULL, 0);
392         void *entry;
393
394         /* Ensure page->mapping isn't freed while we look at it */
395         rcu_read_lock();
396         for (;;) {
397                 struct address_space *mapping = READ_ONCE(page->mapping);
398
399                 entry = NULL;
400                 if (!mapping || !dax_mapping(mapping))
401                         break;
402
403                 /*
404                  * In the device-dax case there's no need to lock, a
405                  * struct dev_pagemap pin is sufficient to keep the
406                  * inode alive, and we assume we have dev_pagemap pin
407                  * otherwise we would not have a valid pfn_to_page()
408                  * translation.
409                  */
410                 entry = (void *)~0UL;
411                 if (S_ISCHR(mapping->host->i_mode))
412                         break;
413
414                 xas.xa = &mapping->i_pages;
415                 xas_lock_irq(&xas);
416                 if (mapping != page->mapping) {
417                         xas_unlock_irq(&xas);
418                         continue;
419                 }
420                 xas_set(&xas, page->index);
421                 entry = xas_load(&xas);
422                 if (dax_is_locked(entry)) {
423                         rcu_read_unlock();
424                         wait_entry_unlocked(&xas, entry);
425                         rcu_read_lock();
426                         continue;
427                 }
428                 dax_lock_entry(&xas, entry);
429                 xas_unlock_irq(&xas);
430                 break;
431         }
432         rcu_read_unlock();
433         return (dax_entry_t)entry;
434 }
435
436 void dax_unlock_page(struct page *page, dax_entry_t cookie)
437 {
438         struct address_space *mapping = page->mapping;
439         XA_STATE(xas, &mapping->i_pages, page->index);
440
441         if (S_ISCHR(mapping->host->i_mode))
442                 return;
443
444         dax_unlock_entry(&xas, (void *)cookie);
445 }
446
447 /*
448  * Find page cache entry at given index. If it is a DAX entry, return it
449  * with the entry locked. If the page cache doesn't contain an entry at
450  * that index, add a locked empty entry.
451  *
452  * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
453  * either return that locked entry or will return VM_FAULT_FALLBACK.
454  * This will happen if there are any PTE entries within the PMD range
455  * that we are requesting.
456  *
457  * We always favor PTE entries over PMD entries. There isn't a flow where we
458  * evict PTE entries in order to 'upgrade' them to a PMD entry.  A PMD
459  * insertion will fail if it finds any PTE entries already in the tree, and a
460  * PTE insertion will cause an existing PMD entry to be unmapped and
461  * downgraded to PTE entries.  This happens for both PMD zero pages as
462  * well as PMD empty entries.
463  *
464  * The exception to this downgrade path is for PMD entries that have
465  * real storage backing them.  We will leave these real PMD entries in
466  * the tree, and PTE writes will simply dirty the entire PMD entry.
467  *
468  * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
469  * persistent memory the benefit is doubtful. We can add that later if we can
470  * show it helps.
471  *
472  * On error, this function does not return an ERR_PTR.  Instead it returns
473  * a VM_FAULT code, encoded as an xarray internal entry.  The ERR_PTR values
474  * overlap with xarray value entries.
475  */
476 static void *grab_mapping_entry(struct xa_state *xas,
477                 struct address_space *mapping, unsigned int order)
478 {
479         unsigned long index = xas->xa_index;
480         bool pmd_downgrade = false; /* splitting PMD entry into PTE entries? */
481         void *entry;
482
483 retry:
484         xas_lock_irq(xas);
485         entry = get_unlocked_entry(xas, order);
486
487         if (entry) {
488                 if (dax_is_conflict(entry))
489                         goto fallback;
490                 if (!xa_is_value(entry)) {
491                         xas_set_err(xas, -EIO);
492                         goto out_unlock;
493                 }
494
495                 if (order == 0) {
496                         if (dax_is_pmd_entry(entry) &&
497                             (dax_is_zero_entry(entry) ||
498                              dax_is_empty_entry(entry))) {
499                                 pmd_downgrade = true;
500                         }
501                 }
502         }
503
504         if (pmd_downgrade) {
505                 /*
506                  * Make sure 'entry' remains valid while we drop
507                  * the i_pages lock.
508                  */
509                 dax_lock_entry(xas, entry);
510
511                 /*
512                  * Besides huge zero pages the only other thing that gets
513                  * downgraded are empty entries which don't need to be
514                  * unmapped.
515                  */
516                 if (dax_is_zero_entry(entry)) {
517                         xas_unlock_irq(xas);
518                         unmap_mapping_pages(mapping,
519                                         xas->xa_index & ~PG_PMD_COLOUR,
520                                         PG_PMD_NR, false);
521                         xas_reset(xas);
522                         xas_lock_irq(xas);
523                 }
524
525                 dax_disassociate_entry(entry, mapping, false);
526                 xas_store(xas, NULL);   /* undo the PMD join */
527                 dax_wake_entry(xas, entry, true);
528                 mapping->nrexceptional--;
529                 entry = NULL;
530                 xas_set(xas, index);
531         }
532
533         if (entry) {
534                 dax_lock_entry(xas, entry);
535         } else {
536                 unsigned long flags = DAX_EMPTY;
537
538                 if (order > 0)
539                         flags |= DAX_PMD;
540                 entry = dax_make_entry(pfn_to_pfn_t(0), flags);
541                 dax_lock_entry(xas, entry);
542                 if (xas_error(xas))
543                         goto out_unlock;
544                 mapping->nrexceptional++;
545         }
546
547 out_unlock:
548         xas_unlock_irq(xas);
549         if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
550                 goto retry;
551         if (xas->xa_node == XA_ERROR(-ENOMEM))
552                 return xa_mk_internal(VM_FAULT_OOM);
553         if (xas_error(xas))
554                 return xa_mk_internal(VM_FAULT_SIGBUS);
555         return entry;
556 fallback:
557         xas_unlock_irq(xas);
558         return xa_mk_internal(VM_FAULT_FALLBACK);
559 }
560
561 /**
562  * dax_layout_busy_page_range - find first pinned page in @mapping
563  * @mapping: address space to scan for a page with ref count > 1
564  * @start: Starting offset. Page containing 'start' is included.
565  * @end: End offset. Page containing 'end' is included. If 'end' is LLONG_MAX,
566  *       pages from 'start' till the end of file are included.
567  *
568  * DAX requires ZONE_DEVICE mapped pages. These pages are never
569  * 'onlined' to the page allocator so they are considered idle when
570  * page->count == 1. A filesystem uses this interface to determine if
571  * any page in the mapping is busy, i.e. for DMA, or other
572  * get_user_pages() usages.
573  *
574  * It is expected that the filesystem is holding locks to block the
575  * establishment of new mappings in this address_space. I.e. it expects
576  * to be able to run unmap_mapping_range() and subsequently not race
577  * mapping_mapped() becoming true.
578  */
579 struct page *dax_layout_busy_page_range(struct address_space *mapping,
580                                         loff_t start, loff_t end)
581 {
582         void *entry;
583         unsigned int scanned = 0;
584         struct page *page = NULL;
585         pgoff_t start_idx = start >> PAGE_SHIFT;
586         pgoff_t end_idx;
587         XA_STATE(xas, &mapping->i_pages, start_idx);
588
589         /*
590          * In the 'limited' case get_user_pages() for dax is disabled.
591          */
592         if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
593                 return NULL;
594
595         if (!dax_mapping(mapping) || !mapping_mapped(mapping))
596                 return NULL;
597
598         /* If end == LLONG_MAX, all pages from start to till end of file */
599         if (end == LLONG_MAX)
600                 end_idx = ULONG_MAX;
601         else
602                 end_idx = end >> PAGE_SHIFT;
603         /*
604          * If we race get_user_pages_fast() here either we'll see the
605          * elevated page count in the iteration and wait, or
606          * get_user_pages_fast() will see that the page it took a reference
607          * against is no longer mapped in the page tables and bail to the
608          * get_user_pages() slow path.  The slow path is protected by
609          * pte_lock() and pmd_lock(). New references are not taken without
610          * holding those locks, and unmap_mapping_pages() will not zero the
611          * pte or pmd without holding the respective lock, so we are
612          * guaranteed to either see new references or prevent new
613          * references from being established.
614          */
615         unmap_mapping_pages(mapping, start_idx, end_idx - start_idx + 1, 0);
616
617         xas_lock_irq(&xas);
618         xas_for_each(&xas, entry, end_idx) {
619                 if (WARN_ON_ONCE(!xa_is_value(entry)))
620                         continue;
621                 if (unlikely(dax_is_locked(entry)))
622                         entry = get_unlocked_entry(&xas, 0);
623                 if (entry)
624                         page = dax_busy_page(entry);
625                 put_unlocked_entry(&xas, entry);
626                 if (page)
627                         break;
628                 if (++scanned % XA_CHECK_SCHED)
629                         continue;
630
631                 xas_pause(&xas);
632                 xas_unlock_irq(&xas);
633                 cond_resched();
634                 xas_lock_irq(&xas);
635         }
636         xas_unlock_irq(&xas);
637         return page;
638 }
639 EXPORT_SYMBOL_GPL(dax_layout_busy_page_range);
640
641 struct page *dax_layout_busy_page(struct address_space *mapping)
642 {
643         return dax_layout_busy_page_range(mapping, 0, LLONG_MAX);
644 }
645 EXPORT_SYMBOL_GPL(dax_layout_busy_page);
646
647 static int __dax_invalidate_entry(struct address_space *mapping,
648                                           pgoff_t index, bool trunc)
649 {
650         XA_STATE(xas, &mapping->i_pages, index);
651         int ret = 0;
652         void *entry;
653
654         xas_lock_irq(&xas);
655         entry = get_unlocked_entry(&xas, 0);
656         if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
657                 goto out;
658         if (!trunc &&
659             (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
660              xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
661                 goto out;
662         dax_disassociate_entry(entry, mapping, trunc);
663         xas_store(&xas, NULL);
664         mapping->nrexceptional--;
665         ret = 1;
666 out:
667         put_unlocked_entry(&xas, entry);
668         xas_unlock_irq(&xas);
669         return ret;
670 }
671
672 /*
673  * Delete DAX entry at @index from @mapping.  Wait for it
674  * to be unlocked before deleting it.
675  */
676 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
677 {
678         int ret = __dax_invalidate_entry(mapping, index, true);
679
680         /*
681          * This gets called from truncate / punch_hole path. As such, the caller
682          * must hold locks protecting against concurrent modifications of the
683          * page cache (usually fs-private i_mmap_sem for writing). Since the
684          * caller has seen a DAX entry for this index, we better find it
685          * at that index as well...
686          */
687         WARN_ON_ONCE(!ret);
688         return ret;
689 }
690
691 /*
692  * Invalidate DAX entry if it is clean.
693  */
694 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
695                                       pgoff_t index)
696 {
697         return __dax_invalidate_entry(mapping, index, false);
698 }
699
700 static int copy_cow_page_dax(struct block_device *bdev, struct dax_device *dax_dev,
701                              sector_t sector, struct page *to, unsigned long vaddr)
702 {
703         void *vto, *kaddr;
704         pgoff_t pgoff;
705         long rc;
706         int id;
707
708         rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
709         if (rc)
710                 return rc;
711
712         id = dax_read_lock();
713         rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(PAGE_SIZE), &kaddr, NULL);
714         if (rc < 0) {
715                 dax_read_unlock(id);
716                 return rc;
717         }
718         vto = kmap_atomic(to);
719         copy_user_page(vto, (void __force *)kaddr, vaddr, to);
720         kunmap_atomic(vto);
721         dax_read_unlock(id);
722         return 0;
723 }
724
725 /*
726  * By this point grab_mapping_entry() has ensured that we have a locked entry
727  * of the appropriate size so we don't have to worry about downgrading PMDs to
728  * PTEs.  If we happen to be trying to insert a PTE and there is a PMD
729  * already in the tree, we will skip the insertion and just dirty the PMD as
730  * appropriate.
731  */
732 static void *dax_insert_entry(struct xa_state *xas,
733                 struct address_space *mapping, struct vm_fault *vmf,
734                 void *entry, pfn_t pfn, unsigned long flags, bool dirty)
735 {
736         void *new_entry = dax_make_entry(pfn, flags);
737
738         if (dirty)
739                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
740
741         if (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE)) {
742                 unsigned long index = xas->xa_index;
743                 /* we are replacing a zero page with block mapping */
744                 if (dax_is_pmd_entry(entry))
745                         unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
746                                         PG_PMD_NR, false);
747                 else /* pte entry */
748                         unmap_mapping_pages(mapping, index, 1, false);
749         }
750
751         xas_reset(xas);
752         xas_lock_irq(xas);
753         if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
754                 void *old;
755
756                 dax_disassociate_entry(entry, mapping, false);
757                 dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address);
758                 /*
759                  * Only swap our new entry into the page cache if the current
760                  * entry is a zero page or an empty entry.  If a normal PTE or
761                  * PMD entry is already in the cache, we leave it alone.  This
762                  * means that if we are trying to insert a PTE and the
763                  * existing entry is a PMD, we will just leave the PMD in the
764                  * tree and dirty it if necessary.
765                  */
766                 old = dax_lock_entry(xas, new_entry);
767                 WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
768                                         DAX_LOCKED));
769                 entry = new_entry;
770         } else {
771                 xas_load(xas);  /* Walk the xa_state */
772         }
773
774         if (dirty)
775                 xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
776
777         xas_unlock_irq(xas);
778         return entry;
779 }
780
781 static inline
782 unsigned long pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
783 {
784         unsigned long address;
785
786         address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
787         VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
788         return address;
789 }
790
791 /* Walk all mappings of a given index of a file and writeprotect them */
792 static void dax_entry_mkclean(struct address_space *mapping, pgoff_t index,
793                 unsigned long pfn)
794 {
795         struct vm_area_struct *vma;
796         pte_t pte, *ptep = NULL;
797         pmd_t *pmdp = NULL;
798         spinlock_t *ptl;
799
800         i_mmap_lock_read(mapping);
801         vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
802                 struct mmu_notifier_range range;
803                 unsigned long address;
804
805                 cond_resched();
806
807                 if (!(vma->vm_flags & VM_SHARED))
808                         continue;
809
810                 address = pgoff_address(index, vma);
811
812                 /*
813                  * Note because we provide range to follow_pte it will call
814                  * mmu_notifier_invalidate_range_start() on our behalf before
815                  * taking any lock.
816                  */
817                 if (follow_pte(vma->vm_mm, address, &range, &ptep, &pmdp, &ptl))
818                         continue;
819
820                 /*
821                  * No need to call mmu_notifier_invalidate_range() as we are
822                  * downgrading page table protection not changing it to point
823                  * to a new page.
824                  *
825                  * See Documentation/vm/mmu_notifier.rst
826                  */
827                 if (pmdp) {
828 #ifdef CONFIG_FS_DAX_PMD
829                         pmd_t pmd;
830
831                         if (pfn != pmd_pfn(*pmdp))
832                                 goto unlock_pmd;
833                         if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
834                                 goto unlock_pmd;
835
836                         flush_cache_page(vma, address, pfn);
837                         pmd = pmdp_invalidate(vma, address, pmdp);
838                         pmd = pmd_wrprotect(pmd);
839                         pmd = pmd_mkclean(pmd);
840                         set_pmd_at(vma->vm_mm, address, pmdp, pmd);
841 unlock_pmd:
842 #endif
843                         spin_unlock(ptl);
844                 } else {
845                         if (pfn != pte_pfn(*ptep))
846                                 goto unlock_pte;
847                         if (!pte_dirty(*ptep) && !pte_write(*ptep))
848                                 goto unlock_pte;
849
850                         flush_cache_page(vma, address, pfn);
851                         pte = ptep_clear_flush(vma, address, ptep);
852                         pte = pte_wrprotect(pte);
853                         pte = pte_mkclean(pte);
854                         set_pte_at(vma->vm_mm, address, ptep, pte);
855 unlock_pte:
856                         pte_unmap_unlock(ptep, ptl);
857                 }
858
859                 mmu_notifier_invalidate_range_end(&range);
860         }
861         i_mmap_unlock_read(mapping);
862 }
863
864 static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
865                 struct address_space *mapping, void *entry)
866 {
867         unsigned long pfn, index, count;
868         long ret = 0;
869
870         /*
871          * A page got tagged dirty in DAX mapping? Something is seriously
872          * wrong.
873          */
874         if (WARN_ON(!xa_is_value(entry)))
875                 return -EIO;
876
877         if (unlikely(dax_is_locked(entry))) {
878                 void *old_entry = entry;
879
880                 entry = get_unlocked_entry(xas, 0);
881
882                 /* Entry got punched out / reallocated? */
883                 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
884                         goto put_unlocked;
885                 /*
886                  * Entry got reallocated elsewhere? No need to writeback.
887                  * We have to compare pfns as we must not bail out due to
888                  * difference in lockbit or entry type.
889                  */
890                 if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
891                         goto put_unlocked;
892                 if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
893                                         dax_is_zero_entry(entry))) {
894                         ret = -EIO;
895                         goto put_unlocked;
896                 }
897
898                 /* Another fsync thread may have already done this entry */
899                 if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
900                         goto put_unlocked;
901         }
902
903         /* Lock the entry to serialize with page faults */
904         dax_lock_entry(xas, entry);
905
906         /*
907          * We can clear the tag now but we have to be careful so that concurrent
908          * dax_writeback_one() calls for the same index cannot finish before we
909          * actually flush the caches. This is achieved as the calls will look
910          * at the entry only under the i_pages lock and once they do that
911          * they will see the entry locked and wait for it to unlock.
912          */
913         xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
914         xas_unlock_irq(xas);
915
916         /*
917          * If dax_writeback_mapping_range() was given a wbc->range_start
918          * in the middle of a PMD, the 'index' we use needs to be
919          * aligned to the start of the PMD.
920          * This allows us to flush for PMD_SIZE and not have to worry about
921          * partial PMD writebacks.
922          */
923         pfn = dax_to_pfn(entry);
924         count = 1UL << dax_entry_order(entry);
925         index = xas->xa_index & ~(count - 1);
926
927         dax_entry_mkclean(mapping, index, pfn);
928         dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE);
929         /*
930          * After we have flushed the cache, we can clear the dirty tag. There
931          * cannot be new dirty data in the pfn after the flush has completed as
932          * the pfn mappings are writeprotected and fault waits for mapping
933          * entry lock.
934          */
935         xas_reset(xas);
936         xas_lock_irq(xas);
937         xas_store(xas, entry);
938         xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
939         dax_wake_entry(xas, entry, false);
940
941         trace_dax_writeback_one(mapping->host, index, count);
942         return ret;
943
944  put_unlocked:
945         put_unlocked_entry(xas, entry);
946         return ret;
947 }
948
949 /*
950  * Flush the mapping to the persistent domain within the byte range of [start,
951  * end]. This is required by data integrity operations to ensure file data is
952  * on persistent storage prior to completion of the operation.
953  */
954 int dax_writeback_mapping_range(struct address_space *mapping,
955                 struct dax_device *dax_dev, struct writeback_control *wbc)
956 {
957         XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
958         struct inode *inode = mapping->host;
959         pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
960         void *entry;
961         int ret = 0;
962         unsigned int scanned = 0;
963
964         if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
965                 return -EIO;
966
967         if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
968                 return 0;
969
970         trace_dax_writeback_range(inode, xas.xa_index, end_index);
971
972         tag_pages_for_writeback(mapping, xas.xa_index, end_index);
973
974         xas_lock_irq(&xas);
975         xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
976                 ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
977                 if (ret < 0) {
978                         mapping_set_error(mapping, ret);
979                         break;
980                 }
981                 if (++scanned % XA_CHECK_SCHED)
982                         continue;
983
984                 xas_pause(&xas);
985                 xas_unlock_irq(&xas);
986                 cond_resched();
987                 xas_lock_irq(&xas);
988         }
989         xas_unlock_irq(&xas);
990         trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
991         return ret;
992 }
993 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
994
995 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
996 {
997         return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
998 }
999
1000 static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size,
1001                          pfn_t *pfnp)
1002 {
1003         const sector_t sector = dax_iomap_sector(iomap, pos);
1004         pgoff_t pgoff;
1005         int id, rc;
1006         long length;
1007
1008         rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff);
1009         if (rc)
1010                 return rc;
1011         id = dax_read_lock();
1012         length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
1013                                    NULL, pfnp);
1014         if (length < 0) {
1015                 rc = length;
1016                 goto out;
1017         }
1018         rc = -EINVAL;
1019         if (PFN_PHYS(length) < size)
1020                 goto out;
1021         if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
1022                 goto out;
1023         /* For larger pages we need devmap */
1024         if (length > 1 && !pfn_t_devmap(*pfnp))
1025                 goto out;
1026         rc = 0;
1027 out:
1028         dax_read_unlock(id);
1029         return rc;
1030 }
1031
1032 /*
1033  * The user has performed a load from a hole in the file.  Allocating a new
1034  * page in the file would cause excessive storage usage for workloads with
1035  * sparse files.  Instead we insert a read-only mapping of the 4k zero page.
1036  * If this page is ever written to we will re-fault and change the mapping to
1037  * point to real DAX storage instead.
1038  */
1039 static vm_fault_t dax_load_hole(struct xa_state *xas,
1040                 struct address_space *mapping, void **entry,
1041                 struct vm_fault *vmf)
1042 {
1043         struct inode *inode = mapping->host;
1044         unsigned long vaddr = vmf->address;
1045         pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1046         vm_fault_t ret;
1047
1048         *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1049                         DAX_ZERO_PAGE, false);
1050
1051         ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
1052         trace_dax_load_hole(inode, vmf, ret);
1053         return ret;
1054 }
1055
1056 s64 dax_iomap_zero(loff_t pos, u64 length, struct iomap *iomap)
1057 {
1058         sector_t sector = iomap_sector(iomap, pos & PAGE_MASK);
1059         pgoff_t pgoff;
1060         long rc, id;
1061         void *kaddr;
1062         bool page_aligned = false;
1063         unsigned offset = offset_in_page(pos);
1064         unsigned size = min_t(u64, PAGE_SIZE - offset, length);
1065
1066         if (IS_ALIGNED(sector << SECTOR_SHIFT, PAGE_SIZE) &&
1067             (size == PAGE_SIZE))
1068                 page_aligned = true;
1069
1070         rc = bdev_dax_pgoff(iomap->bdev, sector, PAGE_SIZE, &pgoff);
1071         if (rc)
1072                 return rc;
1073
1074         id = dax_read_lock();
1075
1076         if (page_aligned)
1077                 rc = dax_zero_page_range(iomap->dax_dev, pgoff, 1);
1078         else
1079                 rc = dax_direct_access(iomap->dax_dev, pgoff, 1, &kaddr, NULL);
1080         if (rc < 0) {
1081                 dax_read_unlock(id);
1082                 return rc;
1083         }
1084
1085         if (!page_aligned) {
1086                 memset(kaddr + offset, 0, size);
1087                 dax_flush(iomap->dax_dev, kaddr + offset, size);
1088         }
1089         dax_read_unlock(id);
1090         return size;
1091 }
1092
1093 static loff_t
1094 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
1095                 struct iomap *iomap, struct iomap *srcmap)
1096 {
1097         struct block_device *bdev = iomap->bdev;
1098         struct dax_device *dax_dev = iomap->dax_dev;
1099         struct iov_iter *iter = data;
1100         loff_t end = pos + length, done = 0;
1101         ssize_t ret = 0;
1102         size_t xfer;
1103         int id;
1104
1105         if (iov_iter_rw(iter) == READ) {
1106                 end = min(end, i_size_read(inode));
1107                 if (pos >= end)
1108                         return 0;
1109
1110                 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1111                         return iov_iter_zero(min(length, end - pos), iter);
1112         }
1113
1114         if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1115                 return -EIO;
1116
1117         /*
1118          * Write can allocate block for an area which has a hole page mapped
1119          * into page tables. We have to tear down these mappings so that data
1120          * written by write(2) is visible in mmap.
1121          */
1122         if (iomap->flags & IOMAP_F_NEW) {
1123                 invalidate_inode_pages2_range(inode->i_mapping,
1124                                               pos >> PAGE_SHIFT,
1125                                               (end - 1) >> PAGE_SHIFT);
1126         }
1127
1128         id = dax_read_lock();
1129         while (pos < end) {
1130                 unsigned offset = pos & (PAGE_SIZE - 1);
1131                 const size_t size = ALIGN(length + offset, PAGE_SIZE);
1132                 const sector_t sector = dax_iomap_sector(iomap, pos);
1133                 ssize_t map_len;
1134                 pgoff_t pgoff;
1135                 void *kaddr;
1136
1137                 if (fatal_signal_pending(current)) {
1138                         ret = -EINTR;
1139                         break;
1140                 }
1141
1142                 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1143                 if (ret)
1144                         break;
1145
1146                 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1147                                 &kaddr, NULL);
1148                 if (map_len < 0) {
1149                         ret = map_len;
1150                         break;
1151                 }
1152
1153                 map_len = PFN_PHYS(map_len);
1154                 kaddr += offset;
1155                 map_len -= offset;
1156                 if (map_len > end - pos)
1157                         map_len = end - pos;
1158
1159                 /*
1160                  * The userspace address for the memory copy has already been
1161                  * validated via access_ok() in either vfs_read() or
1162                  * vfs_write(), depending on which operation we are doing.
1163                  */
1164                 if (iov_iter_rw(iter) == WRITE)
1165                         xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1166                                         map_len, iter);
1167                 else
1168                         xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
1169                                         map_len, iter);
1170
1171                 pos += xfer;
1172                 length -= xfer;
1173                 done += xfer;
1174
1175                 if (xfer == 0)
1176                         ret = -EFAULT;
1177                 if (xfer < map_len)
1178                         break;
1179         }
1180         dax_read_unlock(id);
1181
1182         return done ? done : ret;
1183 }
1184
1185 /**
1186  * dax_iomap_rw - Perform I/O to a DAX file
1187  * @iocb:       The control block for this I/O
1188  * @iter:       The addresses to do I/O from or to
1189  * @ops:        iomap ops passed from the file system
1190  *
1191  * This function performs read and write operations to directly mapped
1192  * persistent memory.  The callers needs to take care of read/write exclusion
1193  * and evicting any page cache pages in the region under I/O.
1194  */
1195 ssize_t
1196 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1197                 const struct iomap_ops *ops)
1198 {
1199         struct address_space *mapping = iocb->ki_filp->f_mapping;
1200         struct inode *inode = mapping->host;
1201         loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1202         unsigned flags = 0;
1203
1204         if (iov_iter_rw(iter) == WRITE) {
1205                 lockdep_assert_held_write(&inode->i_rwsem);
1206                 flags |= IOMAP_WRITE;
1207         } else {
1208                 lockdep_assert_held(&inode->i_rwsem);
1209         }
1210
1211         if (iocb->ki_flags & IOCB_NOWAIT)
1212                 flags |= IOMAP_NOWAIT;
1213
1214         while (iov_iter_count(iter)) {
1215                 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1216                                 iter, dax_iomap_actor);
1217                 if (ret <= 0)
1218                         break;
1219                 pos += ret;
1220                 done += ret;
1221         }
1222
1223         iocb->ki_pos += done;
1224         return done ? done : ret;
1225 }
1226 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1227
1228 static vm_fault_t dax_fault_return(int error)
1229 {
1230         if (error == 0)
1231                 return VM_FAULT_NOPAGE;
1232         return vmf_error(error);
1233 }
1234
1235 /*
1236  * MAP_SYNC on a dax mapping guarantees dirty metadata is
1237  * flushed on write-faults (non-cow), but not read-faults.
1238  */
1239 static bool dax_fault_is_synchronous(unsigned long flags,
1240                 struct vm_area_struct *vma, struct iomap *iomap)
1241 {
1242         return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1243                 && (iomap->flags & IOMAP_F_DIRTY);
1244 }
1245
1246 static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1247                                int *iomap_errp, const struct iomap_ops *ops)
1248 {
1249         struct vm_area_struct *vma = vmf->vma;
1250         struct address_space *mapping = vma->vm_file->f_mapping;
1251         XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
1252         struct inode *inode = mapping->host;
1253         unsigned long vaddr = vmf->address;
1254         loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1255         struct iomap iomap = { .type = IOMAP_HOLE };
1256         struct iomap srcmap = { .type = IOMAP_HOLE };
1257         unsigned flags = IOMAP_FAULT;
1258         int error, major = 0;
1259         bool write = vmf->flags & FAULT_FLAG_WRITE;
1260         bool sync;
1261         vm_fault_t ret = 0;
1262         void *entry;
1263         pfn_t pfn;
1264
1265         trace_dax_pte_fault(inode, vmf, ret);
1266         /*
1267          * Check whether offset isn't beyond end of file now. Caller is supposed
1268          * to hold locks serializing us with truncate / punch hole so this is
1269          * a reliable test.
1270          */
1271         if (pos >= i_size_read(inode)) {
1272                 ret = VM_FAULT_SIGBUS;
1273                 goto out;
1274         }
1275
1276         if (write && !vmf->cow_page)
1277                 flags |= IOMAP_WRITE;
1278
1279         entry = grab_mapping_entry(&xas, mapping, 0);
1280         if (xa_is_internal(entry)) {
1281                 ret = xa_to_internal(entry);
1282                 goto out;
1283         }
1284
1285         /*
1286          * It is possible, particularly with mixed reads & writes to private
1287          * mappings, that we have raced with a PMD fault that overlaps with
1288          * the PTE we need to set up.  If so just return and the fault will be
1289          * retried.
1290          */
1291         if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1292                 ret = VM_FAULT_NOPAGE;
1293                 goto unlock_entry;
1294         }
1295
1296         /*
1297          * Note that we don't bother to use iomap_apply here: DAX required
1298          * the file system block size to be equal the page size, which means
1299          * that we never have to deal with more than a single extent here.
1300          */
1301         error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap, &srcmap);
1302         if (iomap_errp)
1303                 *iomap_errp = error;
1304         if (error) {
1305                 ret = dax_fault_return(error);
1306                 goto unlock_entry;
1307         }
1308         if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1309                 error = -EIO;   /* fs corruption? */
1310                 goto error_finish_iomap;
1311         }
1312
1313         if (vmf->cow_page) {
1314                 sector_t sector = dax_iomap_sector(&iomap, pos);
1315
1316                 switch (iomap.type) {
1317                 case IOMAP_HOLE:
1318                 case IOMAP_UNWRITTEN:
1319                         clear_user_highpage(vmf->cow_page, vaddr);
1320                         break;
1321                 case IOMAP_MAPPED:
1322                         error = copy_cow_page_dax(iomap.bdev, iomap.dax_dev,
1323                                                   sector, vmf->cow_page, vaddr);
1324                         break;
1325                 default:
1326                         WARN_ON_ONCE(1);
1327                         error = -EIO;
1328                         break;
1329                 }
1330
1331                 if (error)
1332                         goto error_finish_iomap;
1333
1334                 __SetPageUptodate(vmf->cow_page);
1335                 ret = finish_fault(vmf);
1336                 if (!ret)
1337                         ret = VM_FAULT_DONE_COW;
1338                 goto finish_iomap;
1339         }
1340
1341         sync = dax_fault_is_synchronous(flags, vma, &iomap);
1342
1343         switch (iomap.type) {
1344         case IOMAP_MAPPED:
1345                 if (iomap.flags & IOMAP_F_NEW) {
1346                         count_vm_event(PGMAJFAULT);
1347                         count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
1348                         major = VM_FAULT_MAJOR;
1349                 }
1350                 error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn);
1351                 if (error < 0)
1352                         goto error_finish_iomap;
1353
1354                 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
1355                                                  0, write && !sync);
1356
1357                 /*
1358                  * If we are doing synchronous page fault and inode needs fsync,
1359                  * we can insert PTE into page tables only after that happens.
1360                  * Skip insertion for now and return the pfn so that caller can
1361                  * insert it after fsync is done.
1362                  */
1363                 if (sync) {
1364                         if (WARN_ON_ONCE(!pfnp)) {
1365                                 error = -EIO;
1366                                 goto error_finish_iomap;
1367                         }
1368                         *pfnp = pfn;
1369                         ret = VM_FAULT_NEEDDSYNC | major;
1370                         goto finish_iomap;
1371                 }
1372                 trace_dax_insert_mapping(inode, vmf, entry);
1373                 if (write)
1374                         ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn);
1375                 else
1376                         ret = vmf_insert_mixed(vma, vaddr, pfn);
1377
1378                 goto finish_iomap;
1379         case IOMAP_UNWRITTEN:
1380         case IOMAP_HOLE:
1381                 if (!write) {
1382                         ret = dax_load_hole(&xas, mapping, &entry, vmf);
1383                         goto finish_iomap;
1384                 }
1385                 fallthrough;
1386         default:
1387                 WARN_ON_ONCE(1);
1388                 error = -EIO;
1389                 break;
1390         }
1391
1392  error_finish_iomap:
1393         ret = dax_fault_return(error);
1394  finish_iomap:
1395         if (ops->iomap_end) {
1396                 int copied = PAGE_SIZE;
1397
1398                 if (ret & VM_FAULT_ERROR)
1399                         copied = 0;
1400                 /*
1401                  * The fault is done by now and there's no way back (other
1402                  * thread may be already happily using PTE we have installed).
1403                  * Just ignore error from ->iomap_end since we cannot do much
1404                  * with it.
1405                  */
1406                 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1407         }
1408  unlock_entry:
1409         dax_unlock_entry(&xas, entry);
1410  out:
1411         trace_dax_pte_fault_done(inode, vmf, ret);
1412         return ret | major;
1413 }
1414
1415 #ifdef CONFIG_FS_DAX_PMD
1416 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1417                 struct iomap *iomap, void **entry)
1418 {
1419         struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1420         unsigned long pmd_addr = vmf->address & PMD_MASK;
1421         struct vm_area_struct *vma = vmf->vma;
1422         struct inode *inode = mapping->host;
1423         pgtable_t pgtable = NULL;
1424         struct page *zero_page;
1425         spinlock_t *ptl;
1426         pmd_t pmd_entry;
1427         pfn_t pfn;
1428
1429         zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1430
1431         if (unlikely(!zero_page))
1432                 goto fallback;
1433
1434         pfn = page_to_pfn_t(zero_page);
1435         *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1436                         DAX_PMD | DAX_ZERO_PAGE, false);
1437
1438         if (arch_needs_pgtable_deposit()) {
1439                 pgtable = pte_alloc_one(vma->vm_mm);
1440                 if (!pgtable)
1441                         return VM_FAULT_OOM;
1442         }
1443
1444         ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1445         if (!pmd_none(*(vmf->pmd))) {
1446                 spin_unlock(ptl);
1447                 goto fallback;
1448         }
1449
1450         if (pgtable) {
1451                 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1452                 mm_inc_nr_ptes(vma->vm_mm);
1453         }
1454         pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1455         pmd_entry = pmd_mkhuge(pmd_entry);
1456         set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1457         spin_unlock(ptl);
1458         trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
1459         return VM_FAULT_NOPAGE;
1460
1461 fallback:
1462         if (pgtable)
1463                 pte_free(vma->vm_mm, pgtable);
1464         trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
1465         return VM_FAULT_FALLBACK;
1466 }
1467
1468 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1469                                const struct iomap_ops *ops)
1470 {
1471         struct vm_area_struct *vma = vmf->vma;
1472         struct address_space *mapping = vma->vm_file->f_mapping;
1473         XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
1474         unsigned long pmd_addr = vmf->address & PMD_MASK;
1475         bool write = vmf->flags & FAULT_FLAG_WRITE;
1476         bool sync;
1477         unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1478         struct inode *inode = mapping->host;
1479         vm_fault_t result = VM_FAULT_FALLBACK;
1480         struct iomap iomap = { .type = IOMAP_HOLE };
1481         struct iomap srcmap = { .type = IOMAP_HOLE };
1482         pgoff_t max_pgoff;
1483         void *entry;
1484         loff_t pos;
1485         int error;
1486         pfn_t pfn;
1487
1488         /*
1489          * Check whether offset isn't beyond end of file now. Caller is
1490          * supposed to hold locks serializing us with truncate / punch hole so
1491          * this is a reliable test.
1492          */
1493         max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1494
1495         trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
1496
1497         /*
1498          * Make sure that the faulting address's PMD offset (color) matches
1499          * the PMD offset from the start of the file.  This is necessary so
1500          * that a PMD range in the page table overlaps exactly with a PMD
1501          * range in the page cache.
1502          */
1503         if ((vmf->pgoff & PG_PMD_COLOUR) !=
1504             ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1505                 goto fallback;
1506
1507         /* Fall back to PTEs if we're going to COW */
1508         if (write && !(vma->vm_flags & VM_SHARED))
1509                 goto fallback;
1510
1511         /* If the PMD would extend outside the VMA */
1512         if (pmd_addr < vma->vm_start)
1513                 goto fallback;
1514         if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1515                 goto fallback;
1516
1517         if (xas.xa_index >= max_pgoff) {
1518                 result = VM_FAULT_SIGBUS;
1519                 goto out;
1520         }
1521
1522         /* If the PMD would extend beyond the file size */
1523         if ((xas.xa_index | PG_PMD_COLOUR) >= max_pgoff)
1524                 goto fallback;
1525
1526         /*
1527          * grab_mapping_entry() will make sure we get an empty PMD entry,
1528          * a zero PMD entry or a DAX PMD.  If it can't (because a PTE
1529          * entry is already in the array, for instance), it will return
1530          * VM_FAULT_FALLBACK.
1531          */
1532         entry = grab_mapping_entry(&xas, mapping, PMD_ORDER);
1533         if (xa_is_internal(entry)) {
1534                 result = xa_to_internal(entry);
1535                 goto fallback;
1536         }
1537
1538         /*
1539          * It is possible, particularly with mixed reads & writes to private
1540          * mappings, that we have raced with a PTE fault that overlaps with
1541          * the PMD we need to set up.  If so just return and the fault will be
1542          * retried.
1543          */
1544         if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1545                         !pmd_devmap(*vmf->pmd)) {
1546                 result = 0;
1547                 goto unlock_entry;
1548         }
1549
1550         /*
1551          * Note that we don't use iomap_apply here.  We aren't doing I/O, only
1552          * setting up a mapping, so really we're using iomap_begin() as a way
1553          * to look up our filesystem block.
1554          */
1555         pos = (loff_t)xas.xa_index << PAGE_SHIFT;
1556         error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap,
1557                         &srcmap);
1558         if (error)
1559                 goto unlock_entry;
1560
1561         if (iomap.offset + iomap.length < pos + PMD_SIZE)
1562                 goto finish_iomap;
1563
1564         sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap);
1565
1566         switch (iomap.type) {
1567         case IOMAP_MAPPED:
1568                 error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn);
1569                 if (error < 0)
1570                         goto finish_iomap;
1571
1572                 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
1573                                                 DAX_PMD, write && !sync);
1574
1575                 /*
1576                  * If we are doing synchronous page fault and inode needs fsync,
1577                  * we can insert PMD into page tables only after that happens.
1578                  * Skip insertion for now and return the pfn so that caller can
1579                  * insert it after fsync is done.
1580                  */
1581                 if (sync) {
1582                         if (WARN_ON_ONCE(!pfnp))
1583                                 goto finish_iomap;
1584                         *pfnp = pfn;
1585                         result = VM_FAULT_NEEDDSYNC;
1586                         goto finish_iomap;
1587                 }
1588
1589                 trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry);
1590                 result = vmf_insert_pfn_pmd(vmf, pfn, write);
1591                 break;
1592         case IOMAP_UNWRITTEN:
1593         case IOMAP_HOLE:
1594                 if (WARN_ON_ONCE(write))
1595                         break;
1596                 result = dax_pmd_load_hole(&xas, vmf, &iomap, &entry);
1597                 break;
1598         default:
1599                 WARN_ON_ONCE(1);
1600                 break;
1601         }
1602
1603  finish_iomap:
1604         if (ops->iomap_end) {
1605                 int copied = PMD_SIZE;
1606
1607                 if (result == VM_FAULT_FALLBACK)
1608                         copied = 0;
1609                 /*
1610                  * The fault is done by now and there's no way back (other
1611                  * thread may be already happily using PMD we have installed).
1612                  * Just ignore error from ->iomap_end since we cannot do much
1613                  * with it.
1614                  */
1615                 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1616                                 &iomap);
1617         }
1618  unlock_entry:
1619         dax_unlock_entry(&xas, entry);
1620  fallback:
1621         if (result == VM_FAULT_FALLBACK) {
1622                 split_huge_pmd(vma, vmf->pmd, vmf->address);
1623                 count_vm_event(THP_FAULT_FALLBACK);
1624         }
1625 out:
1626         trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
1627         return result;
1628 }
1629 #else
1630 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1631                                const struct iomap_ops *ops)
1632 {
1633         return VM_FAULT_FALLBACK;
1634 }
1635 #endif /* CONFIG_FS_DAX_PMD */
1636
1637 /**
1638  * dax_iomap_fault - handle a page fault on a DAX file
1639  * @vmf: The description of the fault
1640  * @pe_size: Size of the page to fault in
1641  * @pfnp: PFN to insert for synchronous faults if fsync is required
1642  * @iomap_errp: Storage for detailed error code in case of error
1643  * @ops: Iomap ops passed from the file system
1644  *
1645  * When a page fault occurs, filesystems may call this helper in
1646  * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1647  * has done all the necessary locking for page fault to proceed
1648  * successfully.
1649  */
1650 vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1651                     pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
1652 {
1653         switch (pe_size) {
1654         case PE_SIZE_PTE:
1655                 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
1656         case PE_SIZE_PMD:
1657                 return dax_iomap_pmd_fault(vmf, pfnp, ops);
1658         default:
1659                 return VM_FAULT_FALLBACK;
1660         }
1661 }
1662 EXPORT_SYMBOL_GPL(dax_iomap_fault);
1663
1664 /*
1665  * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1666  * @vmf: The description of the fault
1667  * @pfn: PFN to insert
1668  * @order: Order of entry to insert.
1669  *
1670  * This function inserts a writeable PTE or PMD entry into the page tables
1671  * for an mmaped DAX file.  It also marks the page cache entry as dirty.
1672  */
1673 static vm_fault_t
1674 dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
1675 {
1676         struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1677         XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
1678         void *entry;
1679         vm_fault_t ret;
1680
1681         xas_lock_irq(&xas);
1682         entry = get_unlocked_entry(&xas, order);
1683         /* Did we race with someone splitting entry or so? */
1684         if (!entry || dax_is_conflict(entry) ||
1685             (order == 0 && !dax_is_pte_entry(entry))) {
1686                 put_unlocked_entry(&xas, entry);
1687                 xas_unlock_irq(&xas);
1688                 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1689                                                       VM_FAULT_NOPAGE);
1690                 return VM_FAULT_NOPAGE;
1691         }
1692         xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
1693         dax_lock_entry(&xas, entry);
1694         xas_unlock_irq(&xas);
1695         if (order == 0)
1696                 ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1697 #ifdef CONFIG_FS_DAX_PMD
1698         else if (order == PMD_ORDER)
1699                 ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE);
1700 #endif
1701         else
1702                 ret = VM_FAULT_FALLBACK;
1703         dax_unlock_entry(&xas, entry);
1704         trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1705         return ret;
1706 }
1707
1708 /**
1709  * dax_finish_sync_fault - finish synchronous page fault
1710  * @vmf: The description of the fault
1711  * @pe_size: Size of entry to be inserted
1712  * @pfn: PFN to insert
1713  *
1714  * This function ensures that the file range touched by the page fault is
1715  * stored persistently on the media and handles inserting of appropriate page
1716  * table entry.
1717  */
1718 vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1719                 enum page_entry_size pe_size, pfn_t pfn)
1720 {
1721         int err;
1722         loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1723         unsigned int order = pe_order(pe_size);
1724         size_t len = PAGE_SIZE << order;
1725
1726         err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1727         if (err)
1728                 return VM_FAULT_SIGBUS;
1729         return dax_insert_pfn_mkwrite(vmf, pfn, order);
1730 }
1731 EXPORT_SYMBOL_GPL(dax_finish_sync_fault);