tools headers UAPI: Sync linux/prctl.h with the kernel sources
[linux-2.6-microblaze.git] / fs / buffer.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/buffer.c
4  *
5  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
6  */
7
8 /*
9  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10  *
11  * Removed a lot of unnecessary code and simplified things now that
12  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13  *
14  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
15  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
16  *
17  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18  *
19  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
20  */
21
22 #include <linux/kernel.h>
23 #include <linux/sched/signal.h>
24 #include <linux/syscalls.h>
25 #include <linux/fs.h>
26 #include <linux/iomap.h>
27 #include <linux/mm.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/capability.h>
31 #include <linux/blkdev.h>
32 #include <linux/file.h>
33 #include <linux/quotaops.h>
34 #include <linux/highmem.h>
35 #include <linux/export.h>
36 #include <linux/backing-dev.h>
37 #include <linux/writeback.h>
38 #include <linux/hash.h>
39 #include <linux/suspend.h>
40 #include <linux/buffer_head.h>
41 #include <linux/task_io_accounting_ops.h>
42 #include <linux/bio.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
50 #include <linux/fscrypt.h>
51
52 #include "internal.h"
53
54 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
55 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
56                          enum rw_hint hint, struct writeback_control *wbc);
57
58 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
59
60 inline void touch_buffer(struct buffer_head *bh)
61 {
62         trace_block_touch_buffer(bh);
63         mark_page_accessed(bh->b_page);
64 }
65 EXPORT_SYMBOL(touch_buffer);
66
67 void __lock_buffer(struct buffer_head *bh)
68 {
69         wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
70 }
71 EXPORT_SYMBOL(__lock_buffer);
72
73 void unlock_buffer(struct buffer_head *bh)
74 {
75         clear_bit_unlock(BH_Lock, &bh->b_state);
76         smp_mb__after_atomic();
77         wake_up_bit(&bh->b_state, BH_Lock);
78 }
79 EXPORT_SYMBOL(unlock_buffer);
80
81 /*
82  * Returns if the page has dirty or writeback buffers. If all the buffers
83  * are unlocked and clean then the PageDirty information is stale. If
84  * any of the pages are locked, it is assumed they are locked for IO.
85  */
86 void buffer_check_dirty_writeback(struct page *page,
87                                      bool *dirty, bool *writeback)
88 {
89         struct buffer_head *head, *bh;
90         *dirty = false;
91         *writeback = false;
92
93         BUG_ON(!PageLocked(page));
94
95         if (!page_has_buffers(page))
96                 return;
97
98         if (PageWriteback(page))
99                 *writeback = true;
100
101         head = page_buffers(page);
102         bh = head;
103         do {
104                 if (buffer_locked(bh))
105                         *writeback = true;
106
107                 if (buffer_dirty(bh))
108                         *dirty = true;
109
110                 bh = bh->b_this_page;
111         } while (bh != head);
112 }
113 EXPORT_SYMBOL(buffer_check_dirty_writeback);
114
115 /*
116  * Block until a buffer comes unlocked.  This doesn't stop it
117  * from becoming locked again - you have to lock it yourself
118  * if you want to preserve its state.
119  */
120 void __wait_on_buffer(struct buffer_head * bh)
121 {
122         wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
123 }
124 EXPORT_SYMBOL(__wait_on_buffer);
125
126 static void buffer_io_error(struct buffer_head *bh, char *msg)
127 {
128         if (!test_bit(BH_Quiet, &bh->b_state))
129                 printk_ratelimited(KERN_ERR
130                         "Buffer I/O error on dev %pg, logical block %llu%s\n",
131                         bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
132 }
133
134 /*
135  * End-of-IO handler helper function which does not touch the bh after
136  * unlocking it.
137  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
138  * a race there is benign: unlock_buffer() only use the bh's address for
139  * hashing after unlocking the buffer, so it doesn't actually touch the bh
140  * itself.
141  */
142 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
143 {
144         if (uptodate) {
145                 set_buffer_uptodate(bh);
146         } else {
147                 /* This happens, due to failed read-ahead attempts. */
148                 clear_buffer_uptodate(bh);
149         }
150         unlock_buffer(bh);
151 }
152
153 /*
154  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
155  * unlock the buffer. This is what ll_rw_block uses too.
156  */
157 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
158 {
159         __end_buffer_read_notouch(bh, uptodate);
160         put_bh(bh);
161 }
162 EXPORT_SYMBOL(end_buffer_read_sync);
163
164 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
165 {
166         if (uptodate) {
167                 set_buffer_uptodate(bh);
168         } else {
169                 buffer_io_error(bh, ", lost sync page write");
170                 mark_buffer_write_io_error(bh);
171                 clear_buffer_uptodate(bh);
172         }
173         unlock_buffer(bh);
174         put_bh(bh);
175 }
176 EXPORT_SYMBOL(end_buffer_write_sync);
177
178 /*
179  * Various filesystems appear to want __find_get_block to be non-blocking.
180  * But it's the page lock which protects the buffers.  To get around this,
181  * we get exclusion from try_to_free_buffers with the blockdev mapping's
182  * private_lock.
183  *
184  * Hack idea: for the blockdev mapping, private_lock contention
185  * may be quite high.  This code could TryLock the page, and if that
186  * succeeds, there is no need to take private_lock.
187  */
188 static struct buffer_head *
189 __find_get_block_slow(struct block_device *bdev, sector_t block)
190 {
191         struct inode *bd_inode = bdev->bd_inode;
192         struct address_space *bd_mapping = bd_inode->i_mapping;
193         struct buffer_head *ret = NULL;
194         pgoff_t index;
195         struct buffer_head *bh;
196         struct buffer_head *head;
197         struct page *page;
198         int all_mapped = 1;
199         static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
200
201         index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
202         page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
203         if (!page)
204                 goto out;
205
206         spin_lock(&bd_mapping->private_lock);
207         if (!page_has_buffers(page))
208                 goto out_unlock;
209         head = page_buffers(page);
210         bh = head;
211         do {
212                 if (!buffer_mapped(bh))
213                         all_mapped = 0;
214                 else if (bh->b_blocknr == block) {
215                         ret = bh;
216                         get_bh(bh);
217                         goto out_unlock;
218                 }
219                 bh = bh->b_this_page;
220         } while (bh != head);
221
222         /* we might be here because some of the buffers on this page are
223          * not mapped.  This is due to various races between
224          * file io on the block device and getblk.  It gets dealt with
225          * elsewhere, don't buffer_error if we had some unmapped buffers
226          */
227         ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
228         if (all_mapped && __ratelimit(&last_warned)) {
229                 printk("__find_get_block_slow() failed. block=%llu, "
230                        "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
231                        "device %pg blocksize: %d\n",
232                        (unsigned long long)block,
233                        (unsigned long long)bh->b_blocknr,
234                        bh->b_state, bh->b_size, bdev,
235                        1 << bd_inode->i_blkbits);
236         }
237 out_unlock:
238         spin_unlock(&bd_mapping->private_lock);
239         put_page(page);
240 out:
241         return ret;
242 }
243
244 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
245 {
246         unsigned long flags;
247         struct buffer_head *first;
248         struct buffer_head *tmp;
249         struct page *page;
250         int page_uptodate = 1;
251
252         BUG_ON(!buffer_async_read(bh));
253
254         page = bh->b_page;
255         if (uptodate) {
256                 set_buffer_uptodate(bh);
257         } else {
258                 clear_buffer_uptodate(bh);
259                 buffer_io_error(bh, ", async page read");
260                 SetPageError(page);
261         }
262
263         /*
264          * Be _very_ careful from here on. Bad things can happen if
265          * two buffer heads end IO at almost the same time and both
266          * decide that the page is now completely done.
267          */
268         first = page_buffers(page);
269         spin_lock_irqsave(&first->b_uptodate_lock, flags);
270         clear_buffer_async_read(bh);
271         unlock_buffer(bh);
272         tmp = bh;
273         do {
274                 if (!buffer_uptodate(tmp))
275                         page_uptodate = 0;
276                 if (buffer_async_read(tmp)) {
277                         BUG_ON(!buffer_locked(tmp));
278                         goto still_busy;
279                 }
280                 tmp = tmp->b_this_page;
281         } while (tmp != bh);
282         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
283
284         /*
285          * If none of the buffers had errors and they are all
286          * uptodate then we can set the page uptodate.
287          */
288         if (page_uptodate && !PageError(page))
289                 SetPageUptodate(page);
290         unlock_page(page);
291         return;
292
293 still_busy:
294         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
295         return;
296 }
297
298 struct decrypt_bh_ctx {
299         struct work_struct work;
300         struct buffer_head *bh;
301 };
302
303 static void decrypt_bh(struct work_struct *work)
304 {
305         struct decrypt_bh_ctx *ctx =
306                 container_of(work, struct decrypt_bh_ctx, work);
307         struct buffer_head *bh = ctx->bh;
308         int err;
309
310         err = fscrypt_decrypt_pagecache_blocks(bh->b_page, bh->b_size,
311                                                bh_offset(bh));
312         end_buffer_async_read(bh, err == 0);
313         kfree(ctx);
314 }
315
316 /*
317  * I/O completion handler for block_read_full_page() - pages
318  * which come unlocked at the end of I/O.
319  */
320 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
321 {
322         /* Decrypt if needed */
323         if (uptodate &&
324             fscrypt_inode_uses_fs_layer_crypto(bh->b_page->mapping->host)) {
325                 struct decrypt_bh_ctx *ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
326
327                 if (ctx) {
328                         INIT_WORK(&ctx->work, decrypt_bh);
329                         ctx->bh = bh;
330                         fscrypt_enqueue_decrypt_work(&ctx->work);
331                         return;
332                 }
333                 uptodate = 0;
334         }
335         end_buffer_async_read(bh, uptodate);
336 }
337
338 /*
339  * Completion handler for block_write_full_page() - pages which are unlocked
340  * during I/O, and which have PageWriteback cleared upon I/O completion.
341  */
342 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
343 {
344         unsigned long flags;
345         struct buffer_head *first;
346         struct buffer_head *tmp;
347         struct page *page;
348
349         BUG_ON(!buffer_async_write(bh));
350
351         page = bh->b_page;
352         if (uptodate) {
353                 set_buffer_uptodate(bh);
354         } else {
355                 buffer_io_error(bh, ", lost async page write");
356                 mark_buffer_write_io_error(bh);
357                 clear_buffer_uptodate(bh);
358                 SetPageError(page);
359         }
360
361         first = page_buffers(page);
362         spin_lock_irqsave(&first->b_uptodate_lock, flags);
363
364         clear_buffer_async_write(bh);
365         unlock_buffer(bh);
366         tmp = bh->b_this_page;
367         while (tmp != bh) {
368                 if (buffer_async_write(tmp)) {
369                         BUG_ON(!buffer_locked(tmp));
370                         goto still_busy;
371                 }
372                 tmp = tmp->b_this_page;
373         }
374         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
375         end_page_writeback(page);
376         return;
377
378 still_busy:
379         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
380         return;
381 }
382 EXPORT_SYMBOL(end_buffer_async_write);
383
384 /*
385  * If a page's buffers are under async readin (end_buffer_async_read
386  * completion) then there is a possibility that another thread of
387  * control could lock one of the buffers after it has completed
388  * but while some of the other buffers have not completed.  This
389  * locked buffer would confuse end_buffer_async_read() into not unlocking
390  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
391  * that this buffer is not under async I/O.
392  *
393  * The page comes unlocked when it has no locked buffer_async buffers
394  * left.
395  *
396  * PageLocked prevents anyone starting new async I/O reads any of
397  * the buffers.
398  *
399  * PageWriteback is used to prevent simultaneous writeout of the same
400  * page.
401  *
402  * PageLocked prevents anyone from starting writeback of a page which is
403  * under read I/O (PageWriteback is only ever set against a locked page).
404  */
405 static void mark_buffer_async_read(struct buffer_head *bh)
406 {
407         bh->b_end_io = end_buffer_async_read_io;
408         set_buffer_async_read(bh);
409 }
410
411 static void mark_buffer_async_write_endio(struct buffer_head *bh,
412                                           bh_end_io_t *handler)
413 {
414         bh->b_end_io = handler;
415         set_buffer_async_write(bh);
416 }
417
418 void mark_buffer_async_write(struct buffer_head *bh)
419 {
420         mark_buffer_async_write_endio(bh, end_buffer_async_write);
421 }
422 EXPORT_SYMBOL(mark_buffer_async_write);
423
424
425 /*
426  * fs/buffer.c contains helper functions for buffer-backed address space's
427  * fsync functions.  A common requirement for buffer-based filesystems is
428  * that certain data from the backing blockdev needs to be written out for
429  * a successful fsync().  For example, ext2 indirect blocks need to be
430  * written back and waited upon before fsync() returns.
431  *
432  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
433  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
434  * management of a list of dependent buffers at ->i_mapping->private_list.
435  *
436  * Locking is a little subtle: try_to_free_buffers() will remove buffers
437  * from their controlling inode's queue when they are being freed.  But
438  * try_to_free_buffers() will be operating against the *blockdev* mapping
439  * at the time, not against the S_ISREG file which depends on those buffers.
440  * So the locking for private_list is via the private_lock in the address_space
441  * which backs the buffers.  Which is different from the address_space 
442  * against which the buffers are listed.  So for a particular address_space,
443  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
444  * mapping->private_list will always be protected by the backing blockdev's
445  * ->private_lock.
446  *
447  * Which introduces a requirement: all buffers on an address_space's
448  * ->private_list must be from the same address_space: the blockdev's.
449  *
450  * address_spaces which do not place buffers at ->private_list via these
451  * utility functions are free to use private_lock and private_list for
452  * whatever they want.  The only requirement is that list_empty(private_list)
453  * be true at clear_inode() time.
454  *
455  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
456  * filesystems should do that.  invalidate_inode_buffers() should just go
457  * BUG_ON(!list_empty).
458  *
459  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
460  * take an address_space, not an inode.  And it should be called
461  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
462  * queued up.
463  *
464  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
465  * list if it is already on a list.  Because if the buffer is on a list,
466  * it *must* already be on the right one.  If not, the filesystem is being
467  * silly.  This will save a ton of locking.  But first we have to ensure
468  * that buffers are taken *off* the old inode's list when they are freed
469  * (presumably in truncate).  That requires careful auditing of all
470  * filesystems (do it inside bforget()).  It could also be done by bringing
471  * b_inode back.
472  */
473
474 /*
475  * The buffer's backing address_space's private_lock must be held
476  */
477 static void __remove_assoc_queue(struct buffer_head *bh)
478 {
479         list_del_init(&bh->b_assoc_buffers);
480         WARN_ON(!bh->b_assoc_map);
481         bh->b_assoc_map = NULL;
482 }
483
484 int inode_has_buffers(struct inode *inode)
485 {
486         return !list_empty(&inode->i_data.private_list);
487 }
488
489 /*
490  * osync is designed to support O_SYNC io.  It waits synchronously for
491  * all already-submitted IO to complete, but does not queue any new
492  * writes to the disk.
493  *
494  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
495  * you dirty the buffers, and then use osync_inode_buffers to wait for
496  * completion.  Any other dirty buffers which are not yet queued for
497  * write will not be flushed to disk by the osync.
498  */
499 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
500 {
501         struct buffer_head *bh;
502         struct list_head *p;
503         int err = 0;
504
505         spin_lock(lock);
506 repeat:
507         list_for_each_prev(p, list) {
508                 bh = BH_ENTRY(p);
509                 if (buffer_locked(bh)) {
510                         get_bh(bh);
511                         spin_unlock(lock);
512                         wait_on_buffer(bh);
513                         if (!buffer_uptodate(bh))
514                                 err = -EIO;
515                         brelse(bh);
516                         spin_lock(lock);
517                         goto repeat;
518                 }
519         }
520         spin_unlock(lock);
521         return err;
522 }
523
524 void emergency_thaw_bdev(struct super_block *sb)
525 {
526         while (sb->s_bdev && !thaw_bdev(sb->s_bdev))
527                 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
528 }
529
530 /**
531  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
532  * @mapping: the mapping which wants those buffers written
533  *
534  * Starts I/O against the buffers at mapping->private_list, and waits upon
535  * that I/O.
536  *
537  * Basically, this is a convenience function for fsync().
538  * @mapping is a file or directory which needs those buffers to be written for
539  * a successful fsync().
540  */
541 int sync_mapping_buffers(struct address_space *mapping)
542 {
543         struct address_space *buffer_mapping = mapping->private_data;
544
545         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
546                 return 0;
547
548         return fsync_buffers_list(&buffer_mapping->private_lock,
549                                         &mapping->private_list);
550 }
551 EXPORT_SYMBOL(sync_mapping_buffers);
552
553 /*
554  * Called when we've recently written block `bblock', and it is known that
555  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
556  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
557  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
558  */
559 void write_boundary_block(struct block_device *bdev,
560                         sector_t bblock, unsigned blocksize)
561 {
562         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
563         if (bh) {
564                 if (buffer_dirty(bh))
565                         ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
566                 put_bh(bh);
567         }
568 }
569
570 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
571 {
572         struct address_space *mapping = inode->i_mapping;
573         struct address_space *buffer_mapping = bh->b_page->mapping;
574
575         mark_buffer_dirty(bh);
576         if (!mapping->private_data) {
577                 mapping->private_data = buffer_mapping;
578         } else {
579                 BUG_ON(mapping->private_data != buffer_mapping);
580         }
581         if (!bh->b_assoc_map) {
582                 spin_lock(&buffer_mapping->private_lock);
583                 list_move_tail(&bh->b_assoc_buffers,
584                                 &mapping->private_list);
585                 bh->b_assoc_map = mapping;
586                 spin_unlock(&buffer_mapping->private_lock);
587         }
588 }
589 EXPORT_SYMBOL(mark_buffer_dirty_inode);
590
591 /*
592  * Mark the page dirty, and set it dirty in the page cache, and mark the inode
593  * dirty.
594  *
595  * If warn is true, then emit a warning if the page is not uptodate and has
596  * not been truncated.
597  *
598  * The caller must hold lock_page_memcg().
599  */
600 void __set_page_dirty(struct page *page, struct address_space *mapping,
601                              int warn)
602 {
603         unsigned long flags;
604
605         xa_lock_irqsave(&mapping->i_pages, flags);
606         if (page->mapping) {    /* Race with truncate? */
607                 WARN_ON_ONCE(warn && !PageUptodate(page));
608                 account_page_dirtied(page, mapping);
609                 __xa_set_mark(&mapping->i_pages, page_index(page),
610                                 PAGECACHE_TAG_DIRTY);
611         }
612         xa_unlock_irqrestore(&mapping->i_pages, flags);
613 }
614 EXPORT_SYMBOL_GPL(__set_page_dirty);
615
616 /*
617  * Add a page to the dirty page list.
618  *
619  * It is a sad fact of life that this function is called from several places
620  * deeply under spinlocking.  It may not sleep.
621  *
622  * If the page has buffers, the uptodate buffers are set dirty, to preserve
623  * dirty-state coherency between the page and the buffers.  It the page does
624  * not have buffers then when they are later attached they will all be set
625  * dirty.
626  *
627  * The buffers are dirtied before the page is dirtied.  There's a small race
628  * window in which a writepage caller may see the page cleanness but not the
629  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
630  * before the buffers, a concurrent writepage caller could clear the page dirty
631  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
632  * page on the dirty page list.
633  *
634  * We use private_lock to lock against try_to_free_buffers while using the
635  * page's buffer list.  Also use this to protect against clean buffers being
636  * added to the page after it was set dirty.
637  *
638  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
639  * address_space though.
640  */
641 int __set_page_dirty_buffers(struct page *page)
642 {
643         int newly_dirty;
644         struct address_space *mapping = page_mapping(page);
645
646         if (unlikely(!mapping))
647                 return !TestSetPageDirty(page);
648
649         spin_lock(&mapping->private_lock);
650         if (page_has_buffers(page)) {
651                 struct buffer_head *head = page_buffers(page);
652                 struct buffer_head *bh = head;
653
654                 do {
655                         set_buffer_dirty(bh);
656                         bh = bh->b_this_page;
657                 } while (bh != head);
658         }
659         /*
660          * Lock out page's memcg migration to keep PageDirty
661          * synchronized with per-memcg dirty page counters.
662          */
663         lock_page_memcg(page);
664         newly_dirty = !TestSetPageDirty(page);
665         spin_unlock(&mapping->private_lock);
666
667         if (newly_dirty)
668                 __set_page_dirty(page, mapping, 1);
669
670         unlock_page_memcg(page);
671
672         if (newly_dirty)
673                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
674
675         return newly_dirty;
676 }
677 EXPORT_SYMBOL(__set_page_dirty_buffers);
678
679 /*
680  * Write out and wait upon a list of buffers.
681  *
682  * We have conflicting pressures: we want to make sure that all
683  * initially dirty buffers get waited on, but that any subsequently
684  * dirtied buffers don't.  After all, we don't want fsync to last
685  * forever if somebody is actively writing to the file.
686  *
687  * Do this in two main stages: first we copy dirty buffers to a
688  * temporary inode list, queueing the writes as we go.  Then we clean
689  * up, waiting for those writes to complete.
690  * 
691  * During this second stage, any subsequent updates to the file may end
692  * up refiling the buffer on the original inode's dirty list again, so
693  * there is a chance we will end up with a buffer queued for write but
694  * not yet completed on that list.  So, as a final cleanup we go through
695  * the osync code to catch these locked, dirty buffers without requeuing
696  * any newly dirty buffers for write.
697  */
698 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
699 {
700         struct buffer_head *bh;
701         struct list_head tmp;
702         struct address_space *mapping;
703         int err = 0, err2;
704         struct blk_plug plug;
705
706         INIT_LIST_HEAD(&tmp);
707         blk_start_plug(&plug);
708
709         spin_lock(lock);
710         while (!list_empty(list)) {
711                 bh = BH_ENTRY(list->next);
712                 mapping = bh->b_assoc_map;
713                 __remove_assoc_queue(bh);
714                 /* Avoid race with mark_buffer_dirty_inode() which does
715                  * a lockless check and we rely on seeing the dirty bit */
716                 smp_mb();
717                 if (buffer_dirty(bh) || buffer_locked(bh)) {
718                         list_add(&bh->b_assoc_buffers, &tmp);
719                         bh->b_assoc_map = mapping;
720                         if (buffer_dirty(bh)) {
721                                 get_bh(bh);
722                                 spin_unlock(lock);
723                                 /*
724                                  * Ensure any pending I/O completes so that
725                                  * write_dirty_buffer() actually writes the
726                                  * current contents - it is a noop if I/O is
727                                  * still in flight on potentially older
728                                  * contents.
729                                  */
730                                 write_dirty_buffer(bh, REQ_SYNC);
731
732                                 /*
733                                  * Kick off IO for the previous mapping. Note
734                                  * that we will not run the very last mapping,
735                                  * wait_on_buffer() will do that for us
736                                  * through sync_buffer().
737                                  */
738                                 brelse(bh);
739                                 spin_lock(lock);
740                         }
741                 }
742         }
743
744         spin_unlock(lock);
745         blk_finish_plug(&plug);
746         spin_lock(lock);
747
748         while (!list_empty(&tmp)) {
749                 bh = BH_ENTRY(tmp.prev);
750                 get_bh(bh);
751                 mapping = bh->b_assoc_map;
752                 __remove_assoc_queue(bh);
753                 /* Avoid race with mark_buffer_dirty_inode() which does
754                  * a lockless check and we rely on seeing the dirty bit */
755                 smp_mb();
756                 if (buffer_dirty(bh)) {
757                         list_add(&bh->b_assoc_buffers,
758                                  &mapping->private_list);
759                         bh->b_assoc_map = mapping;
760                 }
761                 spin_unlock(lock);
762                 wait_on_buffer(bh);
763                 if (!buffer_uptodate(bh))
764                         err = -EIO;
765                 brelse(bh);
766                 spin_lock(lock);
767         }
768         
769         spin_unlock(lock);
770         err2 = osync_buffers_list(lock, list);
771         if (err)
772                 return err;
773         else
774                 return err2;
775 }
776
777 /*
778  * Invalidate any and all dirty buffers on a given inode.  We are
779  * probably unmounting the fs, but that doesn't mean we have already
780  * done a sync().  Just drop the buffers from the inode list.
781  *
782  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
783  * assumes that all the buffers are against the blockdev.  Not true
784  * for reiserfs.
785  */
786 void invalidate_inode_buffers(struct inode *inode)
787 {
788         if (inode_has_buffers(inode)) {
789                 struct address_space *mapping = &inode->i_data;
790                 struct list_head *list = &mapping->private_list;
791                 struct address_space *buffer_mapping = mapping->private_data;
792
793                 spin_lock(&buffer_mapping->private_lock);
794                 while (!list_empty(list))
795                         __remove_assoc_queue(BH_ENTRY(list->next));
796                 spin_unlock(&buffer_mapping->private_lock);
797         }
798 }
799 EXPORT_SYMBOL(invalidate_inode_buffers);
800
801 /*
802  * Remove any clean buffers from the inode's buffer list.  This is called
803  * when we're trying to free the inode itself.  Those buffers can pin it.
804  *
805  * Returns true if all buffers were removed.
806  */
807 int remove_inode_buffers(struct inode *inode)
808 {
809         int ret = 1;
810
811         if (inode_has_buffers(inode)) {
812                 struct address_space *mapping = &inode->i_data;
813                 struct list_head *list = &mapping->private_list;
814                 struct address_space *buffer_mapping = mapping->private_data;
815
816                 spin_lock(&buffer_mapping->private_lock);
817                 while (!list_empty(list)) {
818                         struct buffer_head *bh = BH_ENTRY(list->next);
819                         if (buffer_dirty(bh)) {
820                                 ret = 0;
821                                 break;
822                         }
823                         __remove_assoc_queue(bh);
824                 }
825                 spin_unlock(&buffer_mapping->private_lock);
826         }
827         return ret;
828 }
829
830 /*
831  * Create the appropriate buffers when given a page for data area and
832  * the size of each buffer.. Use the bh->b_this_page linked list to
833  * follow the buffers created.  Return NULL if unable to create more
834  * buffers.
835  *
836  * The retry flag is used to differentiate async IO (paging, swapping)
837  * which may not fail from ordinary buffer allocations.
838  */
839 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
840                 bool retry)
841 {
842         struct buffer_head *bh, *head;
843         gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
844         long offset;
845         struct mem_cgroup *memcg, *old_memcg;
846
847         if (retry)
848                 gfp |= __GFP_NOFAIL;
849
850         /* The page lock pins the memcg */
851         memcg = page_memcg(page);
852         old_memcg = set_active_memcg(memcg);
853
854         head = NULL;
855         offset = PAGE_SIZE;
856         while ((offset -= size) >= 0) {
857                 bh = alloc_buffer_head(gfp);
858                 if (!bh)
859                         goto no_grow;
860
861                 bh->b_this_page = head;
862                 bh->b_blocknr = -1;
863                 head = bh;
864
865                 bh->b_size = size;
866
867                 /* Link the buffer to its page */
868                 set_bh_page(bh, page, offset);
869         }
870 out:
871         set_active_memcg(old_memcg);
872         return head;
873 /*
874  * In case anything failed, we just free everything we got.
875  */
876 no_grow:
877         if (head) {
878                 do {
879                         bh = head;
880                         head = head->b_this_page;
881                         free_buffer_head(bh);
882                 } while (head);
883         }
884
885         goto out;
886 }
887 EXPORT_SYMBOL_GPL(alloc_page_buffers);
888
889 static inline void
890 link_dev_buffers(struct page *page, struct buffer_head *head)
891 {
892         struct buffer_head *bh, *tail;
893
894         bh = head;
895         do {
896                 tail = bh;
897                 bh = bh->b_this_page;
898         } while (bh);
899         tail->b_this_page = head;
900         attach_page_private(page, head);
901 }
902
903 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
904 {
905         sector_t retval = ~((sector_t)0);
906         loff_t sz = i_size_read(bdev->bd_inode);
907
908         if (sz) {
909                 unsigned int sizebits = blksize_bits(size);
910                 retval = (sz >> sizebits);
911         }
912         return retval;
913 }
914
915 /*
916  * Initialise the state of a blockdev page's buffers.
917  */ 
918 static sector_t
919 init_page_buffers(struct page *page, struct block_device *bdev,
920                         sector_t block, int size)
921 {
922         struct buffer_head *head = page_buffers(page);
923         struct buffer_head *bh = head;
924         int uptodate = PageUptodate(page);
925         sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
926
927         do {
928                 if (!buffer_mapped(bh)) {
929                         bh->b_end_io = NULL;
930                         bh->b_private = NULL;
931                         bh->b_bdev = bdev;
932                         bh->b_blocknr = block;
933                         if (uptodate)
934                                 set_buffer_uptodate(bh);
935                         if (block < end_block)
936                                 set_buffer_mapped(bh);
937                 }
938                 block++;
939                 bh = bh->b_this_page;
940         } while (bh != head);
941
942         /*
943          * Caller needs to validate requested block against end of device.
944          */
945         return end_block;
946 }
947
948 /*
949  * Create the page-cache page that contains the requested block.
950  *
951  * This is used purely for blockdev mappings.
952  */
953 static int
954 grow_dev_page(struct block_device *bdev, sector_t block,
955               pgoff_t index, int size, int sizebits, gfp_t gfp)
956 {
957         struct inode *inode = bdev->bd_inode;
958         struct page *page;
959         struct buffer_head *bh;
960         sector_t end_block;
961         int ret = 0;
962         gfp_t gfp_mask;
963
964         gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
965
966         /*
967          * XXX: __getblk_slow() can not really deal with failure and
968          * will endlessly loop on improvised global reclaim.  Prefer
969          * looping in the allocator rather than here, at least that
970          * code knows what it's doing.
971          */
972         gfp_mask |= __GFP_NOFAIL;
973
974         page = find_or_create_page(inode->i_mapping, index, gfp_mask);
975
976         BUG_ON(!PageLocked(page));
977
978         if (page_has_buffers(page)) {
979                 bh = page_buffers(page);
980                 if (bh->b_size == size) {
981                         end_block = init_page_buffers(page, bdev,
982                                                 (sector_t)index << sizebits,
983                                                 size);
984                         goto done;
985                 }
986                 if (!try_to_free_buffers(page))
987                         goto failed;
988         }
989
990         /*
991          * Allocate some buffers for this page
992          */
993         bh = alloc_page_buffers(page, size, true);
994
995         /*
996          * Link the page to the buffers and initialise them.  Take the
997          * lock to be atomic wrt __find_get_block(), which does not
998          * run under the page lock.
999          */
1000         spin_lock(&inode->i_mapping->private_lock);
1001         link_dev_buffers(page, bh);
1002         end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1003                         size);
1004         spin_unlock(&inode->i_mapping->private_lock);
1005 done:
1006         ret = (block < end_block) ? 1 : -ENXIO;
1007 failed:
1008         unlock_page(page);
1009         put_page(page);
1010         return ret;
1011 }
1012
1013 /*
1014  * Create buffers for the specified block device block's page.  If
1015  * that page was dirty, the buffers are set dirty also.
1016  */
1017 static int
1018 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1019 {
1020         pgoff_t index;
1021         int sizebits;
1022
1023         sizebits = PAGE_SHIFT - __ffs(size);
1024         index = block >> sizebits;
1025
1026         /*
1027          * Check for a block which wants to lie outside our maximum possible
1028          * pagecache index.  (this comparison is done using sector_t types).
1029          */
1030         if (unlikely(index != block >> sizebits)) {
1031                 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1032                         "device %pg\n",
1033                         __func__, (unsigned long long)block,
1034                         bdev);
1035                 return -EIO;
1036         }
1037
1038         /* Create a page with the proper size buffers.. */
1039         return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1040 }
1041
1042 static struct buffer_head *
1043 __getblk_slow(struct block_device *bdev, sector_t block,
1044              unsigned size, gfp_t gfp)
1045 {
1046         /* Size must be multiple of hard sectorsize */
1047         if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1048                         (size < 512 || size > PAGE_SIZE))) {
1049                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1050                                         size);
1051                 printk(KERN_ERR "logical block size: %d\n",
1052                                         bdev_logical_block_size(bdev));
1053
1054                 dump_stack();
1055                 return NULL;
1056         }
1057
1058         for (;;) {
1059                 struct buffer_head *bh;
1060                 int ret;
1061
1062                 bh = __find_get_block(bdev, block, size);
1063                 if (bh)
1064                         return bh;
1065
1066                 ret = grow_buffers(bdev, block, size, gfp);
1067                 if (ret < 0)
1068                         return NULL;
1069         }
1070 }
1071
1072 /*
1073  * The relationship between dirty buffers and dirty pages:
1074  *
1075  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1076  * the page is tagged dirty in the page cache.
1077  *
1078  * At all times, the dirtiness of the buffers represents the dirtiness of
1079  * subsections of the page.  If the page has buffers, the page dirty bit is
1080  * merely a hint about the true dirty state.
1081  *
1082  * When a page is set dirty in its entirety, all its buffers are marked dirty
1083  * (if the page has buffers).
1084  *
1085  * When a buffer is marked dirty, its page is dirtied, but the page's other
1086  * buffers are not.
1087  *
1088  * Also.  When blockdev buffers are explicitly read with bread(), they
1089  * individually become uptodate.  But their backing page remains not
1090  * uptodate - even if all of its buffers are uptodate.  A subsequent
1091  * block_read_full_page() against that page will discover all the uptodate
1092  * buffers, will set the page uptodate and will perform no I/O.
1093  */
1094
1095 /**
1096  * mark_buffer_dirty - mark a buffer_head as needing writeout
1097  * @bh: the buffer_head to mark dirty
1098  *
1099  * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1100  * its backing page dirty, then tag the page as dirty in the page cache
1101  * and then attach the address_space's inode to its superblock's dirty
1102  * inode list.
1103  *
1104  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1105  * i_pages lock and mapping->host->i_lock.
1106  */
1107 void mark_buffer_dirty(struct buffer_head *bh)
1108 {
1109         WARN_ON_ONCE(!buffer_uptodate(bh));
1110
1111         trace_block_dirty_buffer(bh);
1112
1113         /*
1114          * Very *carefully* optimize the it-is-already-dirty case.
1115          *
1116          * Don't let the final "is it dirty" escape to before we
1117          * perhaps modified the buffer.
1118          */
1119         if (buffer_dirty(bh)) {
1120                 smp_mb();
1121                 if (buffer_dirty(bh))
1122                         return;
1123         }
1124
1125         if (!test_set_buffer_dirty(bh)) {
1126                 struct page *page = bh->b_page;
1127                 struct address_space *mapping = NULL;
1128
1129                 lock_page_memcg(page);
1130                 if (!TestSetPageDirty(page)) {
1131                         mapping = page_mapping(page);
1132                         if (mapping)
1133                                 __set_page_dirty(page, mapping, 0);
1134                 }
1135                 unlock_page_memcg(page);
1136                 if (mapping)
1137                         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1138         }
1139 }
1140 EXPORT_SYMBOL(mark_buffer_dirty);
1141
1142 void mark_buffer_write_io_error(struct buffer_head *bh)
1143 {
1144         struct super_block *sb;
1145
1146         set_buffer_write_io_error(bh);
1147         /* FIXME: do we need to set this in both places? */
1148         if (bh->b_page && bh->b_page->mapping)
1149                 mapping_set_error(bh->b_page->mapping, -EIO);
1150         if (bh->b_assoc_map)
1151                 mapping_set_error(bh->b_assoc_map, -EIO);
1152         rcu_read_lock();
1153         sb = READ_ONCE(bh->b_bdev->bd_super);
1154         if (sb)
1155                 errseq_set(&sb->s_wb_err, -EIO);
1156         rcu_read_unlock();
1157 }
1158 EXPORT_SYMBOL(mark_buffer_write_io_error);
1159
1160 /*
1161  * Decrement a buffer_head's reference count.  If all buffers against a page
1162  * have zero reference count, are clean and unlocked, and if the page is clean
1163  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1164  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1165  * a page but it ends up not being freed, and buffers may later be reattached).
1166  */
1167 void __brelse(struct buffer_head * buf)
1168 {
1169         if (atomic_read(&buf->b_count)) {
1170                 put_bh(buf);
1171                 return;
1172         }
1173         WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1174 }
1175 EXPORT_SYMBOL(__brelse);
1176
1177 /*
1178  * bforget() is like brelse(), except it discards any
1179  * potentially dirty data.
1180  */
1181 void __bforget(struct buffer_head *bh)
1182 {
1183         clear_buffer_dirty(bh);
1184         if (bh->b_assoc_map) {
1185                 struct address_space *buffer_mapping = bh->b_page->mapping;
1186
1187                 spin_lock(&buffer_mapping->private_lock);
1188                 list_del_init(&bh->b_assoc_buffers);
1189                 bh->b_assoc_map = NULL;
1190                 spin_unlock(&buffer_mapping->private_lock);
1191         }
1192         __brelse(bh);
1193 }
1194 EXPORT_SYMBOL(__bforget);
1195
1196 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1197 {
1198         lock_buffer(bh);
1199         if (buffer_uptodate(bh)) {
1200                 unlock_buffer(bh);
1201                 return bh;
1202         } else {
1203                 get_bh(bh);
1204                 bh->b_end_io = end_buffer_read_sync;
1205                 submit_bh(REQ_OP_READ, 0, bh);
1206                 wait_on_buffer(bh);
1207                 if (buffer_uptodate(bh))
1208                         return bh;
1209         }
1210         brelse(bh);
1211         return NULL;
1212 }
1213
1214 /*
1215  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1216  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1217  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1218  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1219  * CPU's LRUs at the same time.
1220  *
1221  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1222  * sb_find_get_block().
1223  *
1224  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1225  * a local interrupt disable for that.
1226  */
1227
1228 #define BH_LRU_SIZE     16
1229
1230 struct bh_lru {
1231         struct buffer_head *bhs[BH_LRU_SIZE];
1232 };
1233
1234 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1235
1236 #ifdef CONFIG_SMP
1237 #define bh_lru_lock()   local_irq_disable()
1238 #define bh_lru_unlock() local_irq_enable()
1239 #else
1240 #define bh_lru_lock()   preempt_disable()
1241 #define bh_lru_unlock() preempt_enable()
1242 #endif
1243
1244 static inline void check_irqs_on(void)
1245 {
1246 #ifdef irqs_disabled
1247         BUG_ON(irqs_disabled());
1248 #endif
1249 }
1250
1251 /*
1252  * Install a buffer_head into this cpu's LRU.  If not already in the LRU, it is
1253  * inserted at the front, and the buffer_head at the back if any is evicted.
1254  * Or, if already in the LRU it is moved to the front.
1255  */
1256 static void bh_lru_install(struct buffer_head *bh)
1257 {
1258         struct buffer_head *evictee = bh;
1259         struct bh_lru *b;
1260         int i;
1261
1262         check_irqs_on();
1263         /*
1264          * the refcount of buffer_head in bh_lru prevents dropping the
1265          * attached page(i.e., try_to_free_buffers) so it could cause
1266          * failing page migration.
1267          * Skip putting upcoming bh into bh_lru until migration is done.
1268          */
1269         if (lru_cache_disabled())
1270                 return;
1271
1272         bh_lru_lock();
1273
1274         b = this_cpu_ptr(&bh_lrus);
1275         for (i = 0; i < BH_LRU_SIZE; i++) {
1276                 swap(evictee, b->bhs[i]);
1277                 if (evictee == bh) {
1278                         bh_lru_unlock();
1279                         return;
1280                 }
1281         }
1282
1283         get_bh(bh);
1284         bh_lru_unlock();
1285         brelse(evictee);
1286 }
1287
1288 /*
1289  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1290  */
1291 static struct buffer_head *
1292 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1293 {
1294         struct buffer_head *ret = NULL;
1295         unsigned int i;
1296
1297         check_irqs_on();
1298         bh_lru_lock();
1299         for (i = 0; i < BH_LRU_SIZE; i++) {
1300                 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1301
1302                 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1303                     bh->b_size == size) {
1304                         if (i) {
1305                                 while (i) {
1306                                         __this_cpu_write(bh_lrus.bhs[i],
1307                                                 __this_cpu_read(bh_lrus.bhs[i - 1]));
1308                                         i--;
1309                                 }
1310                                 __this_cpu_write(bh_lrus.bhs[0], bh);
1311                         }
1312                         get_bh(bh);
1313                         ret = bh;
1314                         break;
1315                 }
1316         }
1317         bh_lru_unlock();
1318         return ret;
1319 }
1320
1321 /*
1322  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1323  * it in the LRU and mark it as accessed.  If it is not present then return
1324  * NULL
1325  */
1326 struct buffer_head *
1327 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1328 {
1329         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1330
1331         if (bh == NULL) {
1332                 /* __find_get_block_slow will mark the page accessed */
1333                 bh = __find_get_block_slow(bdev, block);
1334                 if (bh)
1335                         bh_lru_install(bh);
1336         } else
1337                 touch_buffer(bh);
1338
1339         return bh;
1340 }
1341 EXPORT_SYMBOL(__find_get_block);
1342
1343 /*
1344  * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1345  * which corresponds to the passed block_device, block and size. The
1346  * returned buffer has its reference count incremented.
1347  *
1348  * __getblk_gfp() will lock up the machine if grow_dev_page's
1349  * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1350  */
1351 struct buffer_head *
1352 __getblk_gfp(struct block_device *bdev, sector_t block,
1353              unsigned size, gfp_t gfp)
1354 {
1355         struct buffer_head *bh = __find_get_block(bdev, block, size);
1356
1357         might_sleep();
1358         if (bh == NULL)
1359                 bh = __getblk_slow(bdev, block, size, gfp);
1360         return bh;
1361 }
1362 EXPORT_SYMBOL(__getblk_gfp);
1363
1364 /*
1365  * Do async read-ahead on a buffer..
1366  */
1367 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1368 {
1369         struct buffer_head *bh = __getblk(bdev, block, size);
1370         if (likely(bh)) {
1371                 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1372                 brelse(bh);
1373         }
1374 }
1375 EXPORT_SYMBOL(__breadahead);
1376
1377 void __breadahead_gfp(struct block_device *bdev, sector_t block, unsigned size,
1378                       gfp_t gfp)
1379 {
1380         struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1381         if (likely(bh)) {
1382                 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1383                 brelse(bh);
1384         }
1385 }
1386 EXPORT_SYMBOL(__breadahead_gfp);
1387
1388 /**
1389  *  __bread_gfp() - reads a specified block and returns the bh
1390  *  @bdev: the block_device to read from
1391  *  @block: number of block
1392  *  @size: size (in bytes) to read
1393  *  @gfp: page allocation flag
1394  *
1395  *  Reads a specified block, and returns buffer head that contains it.
1396  *  The page cache can be allocated from non-movable area
1397  *  not to prevent page migration if you set gfp to zero.
1398  *  It returns NULL if the block was unreadable.
1399  */
1400 struct buffer_head *
1401 __bread_gfp(struct block_device *bdev, sector_t block,
1402                    unsigned size, gfp_t gfp)
1403 {
1404         struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1405
1406         if (likely(bh) && !buffer_uptodate(bh))
1407                 bh = __bread_slow(bh);
1408         return bh;
1409 }
1410 EXPORT_SYMBOL(__bread_gfp);
1411
1412 static void __invalidate_bh_lrus(struct bh_lru *b)
1413 {
1414         int i;
1415
1416         for (i = 0; i < BH_LRU_SIZE; i++) {
1417                 brelse(b->bhs[i]);
1418                 b->bhs[i] = NULL;
1419         }
1420 }
1421 /*
1422  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1423  * This doesn't race because it runs in each cpu either in irq
1424  * or with preempt disabled.
1425  */
1426 static void invalidate_bh_lru(void *arg)
1427 {
1428         struct bh_lru *b = &get_cpu_var(bh_lrus);
1429
1430         __invalidate_bh_lrus(b);
1431         put_cpu_var(bh_lrus);
1432 }
1433
1434 bool has_bh_in_lru(int cpu, void *dummy)
1435 {
1436         struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1437         int i;
1438         
1439         for (i = 0; i < BH_LRU_SIZE; i++) {
1440                 if (b->bhs[i])
1441                         return true;
1442         }
1443
1444         return false;
1445 }
1446
1447 void invalidate_bh_lrus(void)
1448 {
1449         on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1450 }
1451 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1452
1453 void invalidate_bh_lrus_cpu(int cpu)
1454 {
1455         struct bh_lru *b;
1456
1457         bh_lru_lock();
1458         b = per_cpu_ptr(&bh_lrus, cpu);
1459         __invalidate_bh_lrus(b);
1460         bh_lru_unlock();
1461 }
1462
1463 void set_bh_page(struct buffer_head *bh,
1464                 struct page *page, unsigned long offset)
1465 {
1466         bh->b_page = page;
1467         BUG_ON(offset >= PAGE_SIZE);
1468         if (PageHighMem(page))
1469                 /*
1470                  * This catches illegal uses and preserves the offset:
1471                  */
1472                 bh->b_data = (char *)(0 + offset);
1473         else
1474                 bh->b_data = page_address(page) + offset;
1475 }
1476 EXPORT_SYMBOL(set_bh_page);
1477
1478 /*
1479  * Called when truncating a buffer on a page completely.
1480  */
1481
1482 /* Bits that are cleared during an invalidate */
1483 #define BUFFER_FLAGS_DISCARD \
1484         (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1485          1 << BH_Delay | 1 << BH_Unwritten)
1486
1487 static void discard_buffer(struct buffer_head * bh)
1488 {
1489         unsigned long b_state, b_state_old;
1490
1491         lock_buffer(bh);
1492         clear_buffer_dirty(bh);
1493         bh->b_bdev = NULL;
1494         b_state = bh->b_state;
1495         for (;;) {
1496                 b_state_old = cmpxchg(&bh->b_state, b_state,
1497                                       (b_state & ~BUFFER_FLAGS_DISCARD));
1498                 if (b_state_old == b_state)
1499                         break;
1500                 b_state = b_state_old;
1501         }
1502         unlock_buffer(bh);
1503 }
1504
1505 /**
1506  * block_invalidatepage - invalidate part or all of a buffer-backed page
1507  *
1508  * @page: the page which is affected
1509  * @offset: start of the range to invalidate
1510  * @length: length of the range to invalidate
1511  *
1512  * block_invalidatepage() is called when all or part of the page has become
1513  * invalidated by a truncate operation.
1514  *
1515  * block_invalidatepage() does not have to release all buffers, but it must
1516  * ensure that no dirty buffer is left outside @offset and that no I/O
1517  * is underway against any of the blocks which are outside the truncation
1518  * point.  Because the caller is about to free (and possibly reuse) those
1519  * blocks on-disk.
1520  */
1521 void block_invalidatepage(struct page *page, unsigned int offset,
1522                           unsigned int length)
1523 {
1524         struct buffer_head *head, *bh, *next;
1525         unsigned int curr_off = 0;
1526         unsigned int stop = length + offset;
1527
1528         BUG_ON(!PageLocked(page));
1529         if (!page_has_buffers(page))
1530                 goto out;
1531
1532         /*
1533          * Check for overflow
1534          */
1535         BUG_ON(stop > PAGE_SIZE || stop < length);
1536
1537         head = page_buffers(page);
1538         bh = head;
1539         do {
1540                 unsigned int next_off = curr_off + bh->b_size;
1541                 next = bh->b_this_page;
1542
1543                 /*
1544                  * Are we still fully in range ?
1545                  */
1546                 if (next_off > stop)
1547                         goto out;
1548
1549                 /*
1550                  * is this block fully invalidated?
1551                  */
1552                 if (offset <= curr_off)
1553                         discard_buffer(bh);
1554                 curr_off = next_off;
1555                 bh = next;
1556         } while (bh != head);
1557
1558         /*
1559          * We release buffers only if the entire page is being invalidated.
1560          * The get_block cached value has been unconditionally invalidated,
1561          * so real IO is not possible anymore.
1562          */
1563         if (length == PAGE_SIZE)
1564                 try_to_release_page(page, 0);
1565 out:
1566         return;
1567 }
1568 EXPORT_SYMBOL(block_invalidatepage);
1569
1570
1571 /*
1572  * We attach and possibly dirty the buffers atomically wrt
1573  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1574  * is already excluded via the page lock.
1575  */
1576 void create_empty_buffers(struct page *page,
1577                         unsigned long blocksize, unsigned long b_state)
1578 {
1579         struct buffer_head *bh, *head, *tail;
1580
1581         head = alloc_page_buffers(page, blocksize, true);
1582         bh = head;
1583         do {
1584                 bh->b_state |= b_state;
1585                 tail = bh;
1586                 bh = bh->b_this_page;
1587         } while (bh);
1588         tail->b_this_page = head;
1589
1590         spin_lock(&page->mapping->private_lock);
1591         if (PageUptodate(page) || PageDirty(page)) {
1592                 bh = head;
1593                 do {
1594                         if (PageDirty(page))
1595                                 set_buffer_dirty(bh);
1596                         if (PageUptodate(page))
1597                                 set_buffer_uptodate(bh);
1598                         bh = bh->b_this_page;
1599                 } while (bh != head);
1600         }
1601         attach_page_private(page, head);
1602         spin_unlock(&page->mapping->private_lock);
1603 }
1604 EXPORT_SYMBOL(create_empty_buffers);
1605
1606 /**
1607  * clean_bdev_aliases: clean a range of buffers in block device
1608  * @bdev: Block device to clean buffers in
1609  * @block: Start of a range of blocks to clean
1610  * @len: Number of blocks to clean
1611  *
1612  * We are taking a range of blocks for data and we don't want writeback of any
1613  * buffer-cache aliases starting from return from this function and until the
1614  * moment when something will explicitly mark the buffer dirty (hopefully that
1615  * will not happen until we will free that block ;-) We don't even need to mark
1616  * it not-uptodate - nobody can expect anything from a newly allocated buffer
1617  * anyway. We used to use unmap_buffer() for such invalidation, but that was
1618  * wrong. We definitely don't want to mark the alias unmapped, for example - it
1619  * would confuse anyone who might pick it with bread() afterwards...
1620  *
1621  * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1622  * writeout I/O going on against recently-freed buffers.  We don't wait on that
1623  * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1624  * need to.  That happens here.
1625  */
1626 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1627 {
1628         struct inode *bd_inode = bdev->bd_inode;
1629         struct address_space *bd_mapping = bd_inode->i_mapping;
1630         struct pagevec pvec;
1631         pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1632         pgoff_t end;
1633         int i, count;
1634         struct buffer_head *bh;
1635         struct buffer_head *head;
1636
1637         end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1638         pagevec_init(&pvec);
1639         while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) {
1640                 count = pagevec_count(&pvec);
1641                 for (i = 0; i < count; i++) {
1642                         struct page *page = pvec.pages[i];
1643
1644                         if (!page_has_buffers(page))
1645                                 continue;
1646                         /*
1647                          * We use page lock instead of bd_mapping->private_lock
1648                          * to pin buffers here since we can afford to sleep and
1649                          * it scales better than a global spinlock lock.
1650                          */
1651                         lock_page(page);
1652                         /* Recheck when the page is locked which pins bhs */
1653                         if (!page_has_buffers(page))
1654                                 goto unlock_page;
1655                         head = page_buffers(page);
1656                         bh = head;
1657                         do {
1658                                 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1659                                         goto next;
1660                                 if (bh->b_blocknr >= block + len)
1661                                         break;
1662                                 clear_buffer_dirty(bh);
1663                                 wait_on_buffer(bh);
1664                                 clear_buffer_req(bh);
1665 next:
1666                                 bh = bh->b_this_page;
1667                         } while (bh != head);
1668 unlock_page:
1669                         unlock_page(page);
1670                 }
1671                 pagevec_release(&pvec);
1672                 cond_resched();
1673                 /* End of range already reached? */
1674                 if (index > end || !index)
1675                         break;
1676         }
1677 }
1678 EXPORT_SYMBOL(clean_bdev_aliases);
1679
1680 /*
1681  * Size is a power-of-two in the range 512..PAGE_SIZE,
1682  * and the case we care about most is PAGE_SIZE.
1683  *
1684  * So this *could* possibly be written with those
1685  * constraints in mind (relevant mostly if some
1686  * architecture has a slow bit-scan instruction)
1687  */
1688 static inline int block_size_bits(unsigned int blocksize)
1689 {
1690         return ilog2(blocksize);
1691 }
1692
1693 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1694 {
1695         BUG_ON(!PageLocked(page));
1696
1697         if (!page_has_buffers(page))
1698                 create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits),
1699                                      b_state);
1700         return page_buffers(page);
1701 }
1702
1703 /*
1704  * NOTE! All mapped/uptodate combinations are valid:
1705  *
1706  *      Mapped  Uptodate        Meaning
1707  *
1708  *      No      No              "unknown" - must do get_block()
1709  *      No      Yes             "hole" - zero-filled
1710  *      Yes     No              "allocated" - allocated on disk, not read in
1711  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1712  *
1713  * "Dirty" is valid only with the last case (mapped+uptodate).
1714  */
1715
1716 /*
1717  * While block_write_full_page is writing back the dirty buffers under
1718  * the page lock, whoever dirtied the buffers may decide to clean them
1719  * again at any time.  We handle that by only looking at the buffer
1720  * state inside lock_buffer().
1721  *
1722  * If block_write_full_page() is called for regular writeback
1723  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1724  * locked buffer.   This only can happen if someone has written the buffer
1725  * directly, with submit_bh().  At the address_space level PageWriteback
1726  * prevents this contention from occurring.
1727  *
1728  * If block_write_full_page() is called with wbc->sync_mode ==
1729  * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1730  * causes the writes to be flagged as synchronous writes.
1731  */
1732 int __block_write_full_page(struct inode *inode, struct page *page,
1733                         get_block_t *get_block, struct writeback_control *wbc,
1734                         bh_end_io_t *handler)
1735 {
1736         int err;
1737         sector_t block;
1738         sector_t last_block;
1739         struct buffer_head *bh, *head;
1740         unsigned int blocksize, bbits;
1741         int nr_underway = 0;
1742         int write_flags = wbc_to_write_flags(wbc);
1743
1744         head = create_page_buffers(page, inode,
1745                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
1746
1747         /*
1748          * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1749          * here, and the (potentially unmapped) buffers may become dirty at
1750          * any time.  If a buffer becomes dirty here after we've inspected it
1751          * then we just miss that fact, and the page stays dirty.
1752          *
1753          * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1754          * handle that here by just cleaning them.
1755          */
1756
1757         bh = head;
1758         blocksize = bh->b_size;
1759         bbits = block_size_bits(blocksize);
1760
1761         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1762         last_block = (i_size_read(inode) - 1) >> bbits;
1763
1764         /*
1765          * Get all the dirty buffers mapped to disk addresses and
1766          * handle any aliases from the underlying blockdev's mapping.
1767          */
1768         do {
1769                 if (block > last_block) {
1770                         /*
1771                          * mapped buffers outside i_size will occur, because
1772                          * this page can be outside i_size when there is a
1773                          * truncate in progress.
1774                          */
1775                         /*
1776                          * The buffer was zeroed by block_write_full_page()
1777                          */
1778                         clear_buffer_dirty(bh);
1779                         set_buffer_uptodate(bh);
1780                 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1781                            buffer_dirty(bh)) {
1782                         WARN_ON(bh->b_size != blocksize);
1783                         err = get_block(inode, block, bh, 1);
1784                         if (err)
1785                                 goto recover;
1786                         clear_buffer_delay(bh);
1787                         if (buffer_new(bh)) {
1788                                 /* blockdev mappings never come here */
1789                                 clear_buffer_new(bh);
1790                                 clean_bdev_bh_alias(bh);
1791                         }
1792                 }
1793                 bh = bh->b_this_page;
1794                 block++;
1795         } while (bh != head);
1796
1797         do {
1798                 if (!buffer_mapped(bh))
1799                         continue;
1800                 /*
1801                  * If it's a fully non-blocking write attempt and we cannot
1802                  * lock the buffer then redirty the page.  Note that this can
1803                  * potentially cause a busy-wait loop from writeback threads
1804                  * and kswapd activity, but those code paths have their own
1805                  * higher-level throttling.
1806                  */
1807                 if (wbc->sync_mode != WB_SYNC_NONE) {
1808                         lock_buffer(bh);
1809                 } else if (!trylock_buffer(bh)) {
1810                         redirty_page_for_writepage(wbc, page);
1811                         continue;
1812                 }
1813                 if (test_clear_buffer_dirty(bh)) {
1814                         mark_buffer_async_write_endio(bh, handler);
1815                 } else {
1816                         unlock_buffer(bh);
1817                 }
1818         } while ((bh = bh->b_this_page) != head);
1819
1820         /*
1821          * The page and its buffers are protected by PageWriteback(), so we can
1822          * drop the bh refcounts early.
1823          */
1824         BUG_ON(PageWriteback(page));
1825         set_page_writeback(page);
1826
1827         do {
1828                 struct buffer_head *next = bh->b_this_page;
1829                 if (buffer_async_write(bh)) {
1830                         submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1831                                         inode->i_write_hint, wbc);
1832                         nr_underway++;
1833                 }
1834                 bh = next;
1835         } while (bh != head);
1836         unlock_page(page);
1837
1838         err = 0;
1839 done:
1840         if (nr_underway == 0) {
1841                 /*
1842                  * The page was marked dirty, but the buffers were
1843                  * clean.  Someone wrote them back by hand with
1844                  * ll_rw_block/submit_bh.  A rare case.
1845                  */
1846                 end_page_writeback(page);
1847
1848                 /*
1849                  * The page and buffer_heads can be released at any time from
1850                  * here on.
1851                  */
1852         }
1853         return err;
1854
1855 recover:
1856         /*
1857          * ENOSPC, or some other error.  We may already have added some
1858          * blocks to the file, so we need to write these out to avoid
1859          * exposing stale data.
1860          * The page is currently locked and not marked for writeback
1861          */
1862         bh = head;
1863         /* Recovery: lock and submit the mapped buffers */
1864         do {
1865                 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1866                     !buffer_delay(bh)) {
1867                         lock_buffer(bh);
1868                         mark_buffer_async_write_endio(bh, handler);
1869                 } else {
1870                         /*
1871                          * The buffer may have been set dirty during
1872                          * attachment to a dirty page.
1873                          */
1874                         clear_buffer_dirty(bh);
1875                 }
1876         } while ((bh = bh->b_this_page) != head);
1877         SetPageError(page);
1878         BUG_ON(PageWriteback(page));
1879         mapping_set_error(page->mapping, err);
1880         set_page_writeback(page);
1881         do {
1882                 struct buffer_head *next = bh->b_this_page;
1883                 if (buffer_async_write(bh)) {
1884                         clear_buffer_dirty(bh);
1885                         submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1886                                         inode->i_write_hint, wbc);
1887                         nr_underway++;
1888                 }
1889                 bh = next;
1890         } while (bh != head);
1891         unlock_page(page);
1892         goto done;
1893 }
1894 EXPORT_SYMBOL(__block_write_full_page);
1895
1896 /*
1897  * If a page has any new buffers, zero them out here, and mark them uptodate
1898  * and dirty so they'll be written out (in order to prevent uninitialised
1899  * block data from leaking). And clear the new bit.
1900  */
1901 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1902 {
1903         unsigned int block_start, block_end;
1904         struct buffer_head *head, *bh;
1905
1906         BUG_ON(!PageLocked(page));
1907         if (!page_has_buffers(page))
1908                 return;
1909
1910         bh = head = page_buffers(page);
1911         block_start = 0;
1912         do {
1913                 block_end = block_start + bh->b_size;
1914
1915                 if (buffer_new(bh)) {
1916                         if (block_end > from && block_start < to) {
1917                                 if (!PageUptodate(page)) {
1918                                         unsigned start, size;
1919
1920                                         start = max(from, block_start);
1921                                         size = min(to, block_end) - start;
1922
1923                                         zero_user(page, start, size);
1924                                         set_buffer_uptodate(bh);
1925                                 }
1926
1927                                 clear_buffer_new(bh);
1928                                 mark_buffer_dirty(bh);
1929                         }
1930                 }
1931
1932                 block_start = block_end;
1933                 bh = bh->b_this_page;
1934         } while (bh != head);
1935 }
1936 EXPORT_SYMBOL(page_zero_new_buffers);
1937
1938 static void
1939 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1940                 struct iomap *iomap)
1941 {
1942         loff_t offset = block << inode->i_blkbits;
1943
1944         bh->b_bdev = iomap->bdev;
1945
1946         /*
1947          * Block points to offset in file we need to map, iomap contains
1948          * the offset at which the map starts. If the map ends before the
1949          * current block, then do not map the buffer and let the caller
1950          * handle it.
1951          */
1952         BUG_ON(offset >= iomap->offset + iomap->length);
1953
1954         switch (iomap->type) {
1955         case IOMAP_HOLE:
1956                 /*
1957                  * If the buffer is not up to date or beyond the current EOF,
1958                  * we need to mark it as new to ensure sub-block zeroing is
1959                  * executed if necessary.
1960                  */
1961                 if (!buffer_uptodate(bh) ||
1962                     (offset >= i_size_read(inode)))
1963                         set_buffer_new(bh);
1964                 break;
1965         case IOMAP_DELALLOC:
1966                 if (!buffer_uptodate(bh) ||
1967                     (offset >= i_size_read(inode)))
1968                         set_buffer_new(bh);
1969                 set_buffer_uptodate(bh);
1970                 set_buffer_mapped(bh);
1971                 set_buffer_delay(bh);
1972                 break;
1973         case IOMAP_UNWRITTEN:
1974                 /*
1975                  * For unwritten regions, we always need to ensure that regions
1976                  * in the block we are not writing to are zeroed. Mark the
1977                  * buffer as new to ensure this.
1978                  */
1979                 set_buffer_new(bh);
1980                 set_buffer_unwritten(bh);
1981                 fallthrough;
1982         case IOMAP_MAPPED:
1983                 if ((iomap->flags & IOMAP_F_NEW) ||
1984                     offset >= i_size_read(inode))
1985                         set_buffer_new(bh);
1986                 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
1987                                 inode->i_blkbits;
1988                 set_buffer_mapped(bh);
1989                 break;
1990         }
1991 }
1992
1993 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1994                 get_block_t *get_block, struct iomap *iomap)
1995 {
1996         unsigned from = pos & (PAGE_SIZE - 1);
1997         unsigned to = from + len;
1998         struct inode *inode = page->mapping->host;
1999         unsigned block_start, block_end;
2000         sector_t block;
2001         int err = 0;
2002         unsigned blocksize, bbits;
2003         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
2004
2005         BUG_ON(!PageLocked(page));
2006         BUG_ON(from > PAGE_SIZE);
2007         BUG_ON(to > PAGE_SIZE);
2008         BUG_ON(from > to);
2009
2010         head = create_page_buffers(page, inode, 0);
2011         blocksize = head->b_size;
2012         bbits = block_size_bits(blocksize);
2013
2014         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
2015
2016         for(bh = head, block_start = 0; bh != head || !block_start;
2017             block++, block_start=block_end, bh = bh->b_this_page) {
2018                 block_end = block_start + blocksize;
2019                 if (block_end <= from || block_start >= to) {
2020                         if (PageUptodate(page)) {
2021                                 if (!buffer_uptodate(bh))
2022                                         set_buffer_uptodate(bh);
2023                         }
2024                         continue;
2025                 }
2026                 if (buffer_new(bh))
2027                         clear_buffer_new(bh);
2028                 if (!buffer_mapped(bh)) {
2029                         WARN_ON(bh->b_size != blocksize);
2030                         if (get_block) {
2031                                 err = get_block(inode, block, bh, 1);
2032                                 if (err)
2033                                         break;
2034                         } else {
2035                                 iomap_to_bh(inode, block, bh, iomap);
2036                         }
2037
2038                         if (buffer_new(bh)) {
2039                                 clean_bdev_bh_alias(bh);
2040                                 if (PageUptodate(page)) {
2041                                         clear_buffer_new(bh);
2042                                         set_buffer_uptodate(bh);
2043                                         mark_buffer_dirty(bh);
2044                                         continue;
2045                                 }
2046                                 if (block_end > to || block_start < from)
2047                                         zero_user_segments(page,
2048                                                 to, block_end,
2049                                                 block_start, from);
2050                                 continue;
2051                         }
2052                 }
2053                 if (PageUptodate(page)) {
2054                         if (!buffer_uptodate(bh))
2055                                 set_buffer_uptodate(bh);
2056                         continue; 
2057                 }
2058                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2059                     !buffer_unwritten(bh) &&
2060                      (block_start < from || block_end > to)) {
2061                         ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2062                         *wait_bh++=bh;
2063                 }
2064         }
2065         /*
2066          * If we issued read requests - let them complete.
2067          */
2068         while(wait_bh > wait) {
2069                 wait_on_buffer(*--wait_bh);
2070                 if (!buffer_uptodate(*wait_bh))
2071                         err = -EIO;
2072         }
2073         if (unlikely(err))
2074                 page_zero_new_buffers(page, from, to);
2075         return err;
2076 }
2077
2078 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2079                 get_block_t *get_block)
2080 {
2081         return __block_write_begin_int(page, pos, len, get_block, NULL);
2082 }
2083 EXPORT_SYMBOL(__block_write_begin);
2084
2085 static int __block_commit_write(struct inode *inode, struct page *page,
2086                 unsigned from, unsigned to)
2087 {
2088         unsigned block_start, block_end;
2089         int partial = 0;
2090         unsigned blocksize;
2091         struct buffer_head *bh, *head;
2092
2093         bh = head = page_buffers(page);
2094         blocksize = bh->b_size;
2095
2096         block_start = 0;
2097         do {
2098                 block_end = block_start + blocksize;
2099                 if (block_end <= from || block_start >= to) {
2100                         if (!buffer_uptodate(bh))
2101                                 partial = 1;
2102                 } else {
2103                         set_buffer_uptodate(bh);
2104                         mark_buffer_dirty(bh);
2105                 }
2106                 if (buffer_new(bh))
2107                         clear_buffer_new(bh);
2108
2109                 block_start = block_end;
2110                 bh = bh->b_this_page;
2111         } while (bh != head);
2112
2113         /*
2114          * If this is a partial write which happened to make all buffers
2115          * uptodate then we can optimize away a bogus readpage() for
2116          * the next read(). Here we 'discover' whether the page went
2117          * uptodate as a result of this (potentially partial) write.
2118          */
2119         if (!partial)
2120                 SetPageUptodate(page);
2121         return 0;
2122 }
2123
2124 /*
2125  * block_write_begin takes care of the basic task of block allocation and
2126  * bringing partial write blocks uptodate first.
2127  *
2128  * The filesystem needs to handle block truncation upon failure.
2129  */
2130 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2131                 unsigned flags, struct page **pagep, get_block_t *get_block)
2132 {
2133         pgoff_t index = pos >> PAGE_SHIFT;
2134         struct page *page;
2135         int status;
2136
2137         page = grab_cache_page_write_begin(mapping, index, flags);
2138         if (!page)
2139                 return -ENOMEM;
2140
2141         status = __block_write_begin(page, pos, len, get_block);
2142         if (unlikely(status)) {
2143                 unlock_page(page);
2144                 put_page(page);
2145                 page = NULL;
2146         }
2147
2148         *pagep = page;
2149         return status;
2150 }
2151 EXPORT_SYMBOL(block_write_begin);
2152
2153 int block_write_end(struct file *file, struct address_space *mapping,
2154                         loff_t pos, unsigned len, unsigned copied,
2155                         struct page *page, void *fsdata)
2156 {
2157         struct inode *inode = mapping->host;
2158         unsigned start;
2159
2160         start = pos & (PAGE_SIZE - 1);
2161
2162         if (unlikely(copied < len)) {
2163                 /*
2164                  * The buffers that were written will now be uptodate, so we
2165                  * don't have to worry about a readpage reading them and
2166                  * overwriting a partial write. However if we have encountered
2167                  * a short write and only partially written into a buffer, it
2168                  * will not be marked uptodate, so a readpage might come in and
2169                  * destroy our partial write.
2170                  *
2171                  * Do the simplest thing, and just treat any short write to a
2172                  * non uptodate page as a zero-length write, and force the
2173                  * caller to redo the whole thing.
2174                  */
2175                 if (!PageUptodate(page))
2176                         copied = 0;
2177
2178                 page_zero_new_buffers(page, start+copied, start+len);
2179         }
2180         flush_dcache_page(page);
2181
2182         /* This could be a short (even 0-length) commit */
2183         __block_commit_write(inode, page, start, start+copied);
2184
2185         return copied;
2186 }
2187 EXPORT_SYMBOL(block_write_end);
2188
2189 int generic_write_end(struct file *file, struct address_space *mapping,
2190                         loff_t pos, unsigned len, unsigned copied,
2191                         struct page *page, void *fsdata)
2192 {
2193         struct inode *inode = mapping->host;
2194         loff_t old_size = inode->i_size;
2195         bool i_size_changed = false;
2196
2197         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2198
2199         /*
2200          * No need to use i_size_read() here, the i_size cannot change under us
2201          * because we hold i_rwsem.
2202          *
2203          * But it's important to update i_size while still holding page lock:
2204          * page writeout could otherwise come in and zero beyond i_size.
2205          */
2206         if (pos + copied > inode->i_size) {
2207                 i_size_write(inode, pos + copied);
2208                 i_size_changed = true;
2209         }
2210
2211         unlock_page(page);
2212         put_page(page);
2213
2214         if (old_size < pos)
2215                 pagecache_isize_extended(inode, old_size, pos);
2216         /*
2217          * Don't mark the inode dirty under page lock. First, it unnecessarily
2218          * makes the holding time of page lock longer. Second, it forces lock
2219          * ordering of page lock and transaction start for journaling
2220          * filesystems.
2221          */
2222         if (i_size_changed)
2223                 mark_inode_dirty(inode);
2224         return copied;
2225 }
2226 EXPORT_SYMBOL(generic_write_end);
2227
2228 /*
2229  * block_is_partially_uptodate checks whether buffers within a page are
2230  * uptodate or not.
2231  *
2232  * Returns true if all buffers which correspond to a file portion
2233  * we want to read are uptodate.
2234  */
2235 int block_is_partially_uptodate(struct page *page, unsigned long from,
2236                                         unsigned long count)
2237 {
2238         unsigned block_start, block_end, blocksize;
2239         unsigned to;
2240         struct buffer_head *bh, *head;
2241         int ret = 1;
2242
2243         if (!page_has_buffers(page))
2244                 return 0;
2245
2246         head = page_buffers(page);
2247         blocksize = head->b_size;
2248         to = min_t(unsigned, PAGE_SIZE - from, count);
2249         to = from + to;
2250         if (from < blocksize && to > PAGE_SIZE - blocksize)
2251                 return 0;
2252
2253         bh = head;
2254         block_start = 0;
2255         do {
2256                 block_end = block_start + blocksize;
2257                 if (block_end > from && block_start < to) {
2258                         if (!buffer_uptodate(bh)) {
2259                                 ret = 0;
2260                                 break;
2261                         }
2262                         if (block_end >= to)
2263                                 break;
2264                 }
2265                 block_start = block_end;
2266                 bh = bh->b_this_page;
2267         } while (bh != head);
2268
2269         return ret;
2270 }
2271 EXPORT_SYMBOL(block_is_partially_uptodate);
2272
2273 /*
2274  * Generic "read page" function for block devices that have the normal
2275  * get_block functionality. This is most of the block device filesystems.
2276  * Reads the page asynchronously --- the unlock_buffer() and
2277  * set/clear_buffer_uptodate() functions propagate buffer state into the
2278  * page struct once IO has completed.
2279  */
2280 int block_read_full_page(struct page *page, get_block_t *get_block)
2281 {
2282         struct inode *inode = page->mapping->host;
2283         sector_t iblock, lblock;
2284         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2285         unsigned int blocksize, bbits;
2286         int nr, i;
2287         int fully_mapped = 1;
2288
2289         head = create_page_buffers(page, inode, 0);
2290         blocksize = head->b_size;
2291         bbits = block_size_bits(blocksize);
2292
2293         iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2294         lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2295         bh = head;
2296         nr = 0;
2297         i = 0;
2298
2299         do {
2300                 if (buffer_uptodate(bh))
2301                         continue;
2302
2303                 if (!buffer_mapped(bh)) {
2304                         int err = 0;
2305
2306                         fully_mapped = 0;
2307                         if (iblock < lblock) {
2308                                 WARN_ON(bh->b_size != blocksize);
2309                                 err = get_block(inode, iblock, bh, 0);
2310                                 if (err)
2311                                         SetPageError(page);
2312                         }
2313                         if (!buffer_mapped(bh)) {
2314                                 zero_user(page, i * blocksize, blocksize);
2315                                 if (!err)
2316                                         set_buffer_uptodate(bh);
2317                                 continue;
2318                         }
2319                         /*
2320                          * get_block() might have updated the buffer
2321                          * synchronously
2322                          */
2323                         if (buffer_uptodate(bh))
2324                                 continue;
2325                 }
2326                 arr[nr++] = bh;
2327         } while (i++, iblock++, (bh = bh->b_this_page) != head);
2328
2329         if (fully_mapped)
2330                 SetPageMappedToDisk(page);
2331
2332         if (!nr) {
2333                 /*
2334                  * All buffers are uptodate - we can set the page uptodate
2335                  * as well. But not if get_block() returned an error.
2336                  */
2337                 if (!PageError(page))
2338                         SetPageUptodate(page);
2339                 unlock_page(page);
2340                 return 0;
2341         }
2342
2343         /* Stage two: lock the buffers */
2344         for (i = 0; i < nr; i++) {
2345                 bh = arr[i];
2346                 lock_buffer(bh);
2347                 mark_buffer_async_read(bh);
2348         }
2349
2350         /*
2351          * Stage 3: start the IO.  Check for uptodateness
2352          * inside the buffer lock in case another process reading
2353          * the underlying blockdev brought it uptodate (the sct fix).
2354          */
2355         for (i = 0; i < nr; i++) {
2356                 bh = arr[i];
2357                 if (buffer_uptodate(bh))
2358                         end_buffer_async_read(bh, 1);
2359                 else
2360                         submit_bh(REQ_OP_READ, 0, bh);
2361         }
2362         return 0;
2363 }
2364 EXPORT_SYMBOL(block_read_full_page);
2365
2366 /* utility function for filesystems that need to do work on expanding
2367  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2368  * deal with the hole.  
2369  */
2370 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2371 {
2372         struct address_space *mapping = inode->i_mapping;
2373         struct page *page;
2374         void *fsdata;
2375         int err;
2376
2377         err = inode_newsize_ok(inode, size);
2378         if (err)
2379                 goto out;
2380
2381         err = pagecache_write_begin(NULL, mapping, size, 0,
2382                                     AOP_FLAG_CONT_EXPAND, &page, &fsdata);
2383         if (err)
2384                 goto out;
2385
2386         err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2387         BUG_ON(err > 0);
2388
2389 out:
2390         return err;
2391 }
2392 EXPORT_SYMBOL(generic_cont_expand_simple);
2393
2394 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2395                             loff_t pos, loff_t *bytes)
2396 {
2397         struct inode *inode = mapping->host;
2398         unsigned int blocksize = i_blocksize(inode);
2399         struct page *page;
2400         void *fsdata;
2401         pgoff_t index, curidx;
2402         loff_t curpos;
2403         unsigned zerofrom, offset, len;
2404         int err = 0;
2405
2406         index = pos >> PAGE_SHIFT;
2407         offset = pos & ~PAGE_MASK;
2408
2409         while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2410                 zerofrom = curpos & ~PAGE_MASK;
2411                 if (zerofrom & (blocksize-1)) {
2412                         *bytes |= (blocksize-1);
2413                         (*bytes)++;
2414                 }
2415                 len = PAGE_SIZE - zerofrom;
2416
2417                 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2418                                             &page, &fsdata);
2419                 if (err)
2420                         goto out;
2421                 zero_user(page, zerofrom, len);
2422                 err = pagecache_write_end(file, mapping, curpos, len, len,
2423                                                 page, fsdata);
2424                 if (err < 0)
2425                         goto out;
2426                 BUG_ON(err != len);
2427                 err = 0;
2428
2429                 balance_dirty_pages_ratelimited(mapping);
2430
2431                 if (fatal_signal_pending(current)) {
2432                         err = -EINTR;
2433                         goto out;
2434                 }
2435         }
2436
2437         /* page covers the boundary, find the boundary offset */
2438         if (index == curidx) {
2439                 zerofrom = curpos & ~PAGE_MASK;
2440                 /* if we will expand the thing last block will be filled */
2441                 if (offset <= zerofrom) {
2442                         goto out;
2443                 }
2444                 if (zerofrom & (blocksize-1)) {
2445                         *bytes |= (blocksize-1);
2446                         (*bytes)++;
2447                 }
2448                 len = offset - zerofrom;
2449
2450                 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2451                                             &page, &fsdata);
2452                 if (err)
2453                         goto out;
2454                 zero_user(page, zerofrom, len);
2455                 err = pagecache_write_end(file, mapping, curpos, len, len,
2456                                                 page, fsdata);
2457                 if (err < 0)
2458                         goto out;
2459                 BUG_ON(err != len);
2460                 err = 0;
2461         }
2462 out:
2463         return err;
2464 }
2465
2466 /*
2467  * For moronic filesystems that do not allow holes in file.
2468  * We may have to extend the file.
2469  */
2470 int cont_write_begin(struct file *file, struct address_space *mapping,
2471                         loff_t pos, unsigned len, unsigned flags,
2472                         struct page **pagep, void **fsdata,
2473                         get_block_t *get_block, loff_t *bytes)
2474 {
2475         struct inode *inode = mapping->host;
2476         unsigned int blocksize = i_blocksize(inode);
2477         unsigned int zerofrom;
2478         int err;
2479
2480         err = cont_expand_zero(file, mapping, pos, bytes);
2481         if (err)
2482                 return err;
2483
2484         zerofrom = *bytes & ~PAGE_MASK;
2485         if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2486                 *bytes |= (blocksize-1);
2487                 (*bytes)++;
2488         }
2489
2490         return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2491 }
2492 EXPORT_SYMBOL(cont_write_begin);
2493
2494 int block_commit_write(struct page *page, unsigned from, unsigned to)
2495 {
2496         struct inode *inode = page->mapping->host;
2497         __block_commit_write(inode,page,from,to);
2498         return 0;
2499 }
2500 EXPORT_SYMBOL(block_commit_write);
2501
2502 /*
2503  * block_page_mkwrite() is not allowed to change the file size as it gets
2504  * called from a page fault handler when a page is first dirtied. Hence we must
2505  * be careful to check for EOF conditions here. We set the page up correctly
2506  * for a written page which means we get ENOSPC checking when writing into
2507  * holes and correct delalloc and unwritten extent mapping on filesystems that
2508  * support these features.
2509  *
2510  * We are not allowed to take the i_mutex here so we have to play games to
2511  * protect against truncate races as the page could now be beyond EOF.  Because
2512  * truncate writes the inode size before removing pages, once we have the
2513  * page lock we can determine safely if the page is beyond EOF. If it is not
2514  * beyond EOF, then the page is guaranteed safe against truncation until we
2515  * unlock the page.
2516  *
2517  * Direct callers of this function should protect against filesystem freezing
2518  * using sb_start_pagefault() - sb_end_pagefault() functions.
2519  */
2520 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2521                          get_block_t get_block)
2522 {
2523         struct page *page = vmf->page;
2524         struct inode *inode = file_inode(vma->vm_file);
2525         unsigned long end;
2526         loff_t size;
2527         int ret;
2528
2529         lock_page(page);
2530         size = i_size_read(inode);
2531         if ((page->mapping != inode->i_mapping) ||
2532             (page_offset(page) > size)) {
2533                 /* We overload EFAULT to mean page got truncated */
2534                 ret = -EFAULT;
2535                 goto out_unlock;
2536         }
2537
2538         /* page is wholly or partially inside EOF */
2539         if (((page->index + 1) << PAGE_SHIFT) > size)
2540                 end = size & ~PAGE_MASK;
2541         else
2542                 end = PAGE_SIZE;
2543
2544         ret = __block_write_begin(page, 0, end, get_block);
2545         if (!ret)
2546                 ret = block_commit_write(page, 0, end);
2547
2548         if (unlikely(ret < 0))
2549                 goto out_unlock;
2550         set_page_dirty(page);
2551         wait_for_stable_page(page);
2552         return 0;
2553 out_unlock:
2554         unlock_page(page);
2555         return ret;
2556 }
2557 EXPORT_SYMBOL(block_page_mkwrite);
2558
2559 /*
2560  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2561  * immediately, while under the page lock.  So it needs a special end_io
2562  * handler which does not touch the bh after unlocking it.
2563  */
2564 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2565 {
2566         __end_buffer_read_notouch(bh, uptodate);
2567 }
2568
2569 /*
2570  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2571  * the page (converting it to circular linked list and taking care of page
2572  * dirty races).
2573  */
2574 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2575 {
2576         struct buffer_head *bh;
2577
2578         BUG_ON(!PageLocked(page));
2579
2580         spin_lock(&page->mapping->private_lock);
2581         bh = head;
2582         do {
2583                 if (PageDirty(page))
2584                         set_buffer_dirty(bh);
2585                 if (!bh->b_this_page)
2586                         bh->b_this_page = head;
2587                 bh = bh->b_this_page;
2588         } while (bh != head);
2589         attach_page_private(page, head);
2590         spin_unlock(&page->mapping->private_lock);
2591 }
2592
2593 /*
2594  * On entry, the page is fully not uptodate.
2595  * On exit the page is fully uptodate in the areas outside (from,to)
2596  * The filesystem needs to handle block truncation upon failure.
2597  */
2598 int nobh_write_begin(struct address_space *mapping,
2599                         loff_t pos, unsigned len, unsigned flags,
2600                         struct page **pagep, void **fsdata,
2601                         get_block_t *get_block)
2602 {
2603         struct inode *inode = mapping->host;
2604         const unsigned blkbits = inode->i_blkbits;
2605         const unsigned blocksize = 1 << blkbits;
2606         struct buffer_head *head, *bh;
2607         struct page *page;
2608         pgoff_t index;
2609         unsigned from, to;
2610         unsigned block_in_page;
2611         unsigned block_start, block_end;
2612         sector_t block_in_file;
2613         int nr_reads = 0;
2614         int ret = 0;
2615         int is_mapped_to_disk = 1;
2616
2617         index = pos >> PAGE_SHIFT;
2618         from = pos & (PAGE_SIZE - 1);
2619         to = from + len;
2620
2621         page = grab_cache_page_write_begin(mapping, index, flags);
2622         if (!page)
2623                 return -ENOMEM;
2624         *pagep = page;
2625         *fsdata = NULL;
2626
2627         if (page_has_buffers(page)) {
2628                 ret = __block_write_begin(page, pos, len, get_block);
2629                 if (unlikely(ret))
2630                         goto out_release;
2631                 return ret;
2632         }
2633
2634         if (PageMappedToDisk(page))
2635                 return 0;
2636
2637         /*
2638          * Allocate buffers so that we can keep track of state, and potentially
2639          * attach them to the page if an error occurs. In the common case of
2640          * no error, they will just be freed again without ever being attached
2641          * to the page (which is all OK, because we're under the page lock).
2642          *
2643          * Be careful: the buffer linked list is a NULL terminated one, rather
2644          * than the circular one we're used to.
2645          */
2646         head = alloc_page_buffers(page, blocksize, false);
2647         if (!head) {
2648                 ret = -ENOMEM;
2649                 goto out_release;
2650         }
2651
2652         block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2653
2654         /*
2655          * We loop across all blocks in the page, whether or not they are
2656          * part of the affected region.  This is so we can discover if the
2657          * page is fully mapped-to-disk.
2658          */
2659         for (block_start = 0, block_in_page = 0, bh = head;
2660                   block_start < PAGE_SIZE;
2661                   block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2662                 int create;
2663
2664                 block_end = block_start + blocksize;
2665                 bh->b_state = 0;
2666                 create = 1;
2667                 if (block_start >= to)
2668                         create = 0;
2669                 ret = get_block(inode, block_in_file + block_in_page,
2670                                         bh, create);
2671                 if (ret)
2672                         goto failed;
2673                 if (!buffer_mapped(bh))
2674                         is_mapped_to_disk = 0;
2675                 if (buffer_new(bh))
2676                         clean_bdev_bh_alias(bh);
2677                 if (PageUptodate(page)) {
2678                         set_buffer_uptodate(bh);
2679                         continue;
2680                 }
2681                 if (buffer_new(bh) || !buffer_mapped(bh)) {
2682                         zero_user_segments(page, block_start, from,
2683                                                         to, block_end);
2684                         continue;
2685                 }
2686                 if (buffer_uptodate(bh))
2687                         continue;       /* reiserfs does this */
2688                 if (block_start < from || block_end > to) {
2689                         lock_buffer(bh);
2690                         bh->b_end_io = end_buffer_read_nobh;
2691                         submit_bh(REQ_OP_READ, 0, bh);
2692                         nr_reads++;
2693                 }
2694         }
2695
2696         if (nr_reads) {
2697                 /*
2698                  * The page is locked, so these buffers are protected from
2699                  * any VM or truncate activity.  Hence we don't need to care
2700                  * for the buffer_head refcounts.
2701                  */
2702                 for (bh = head; bh; bh = bh->b_this_page) {
2703                         wait_on_buffer(bh);
2704                         if (!buffer_uptodate(bh))
2705                                 ret = -EIO;
2706                 }
2707                 if (ret)
2708                         goto failed;
2709         }
2710
2711         if (is_mapped_to_disk)
2712                 SetPageMappedToDisk(page);
2713
2714         *fsdata = head; /* to be released by nobh_write_end */
2715
2716         return 0;
2717
2718 failed:
2719         BUG_ON(!ret);
2720         /*
2721          * Error recovery is a bit difficult. We need to zero out blocks that
2722          * were newly allocated, and dirty them to ensure they get written out.
2723          * Buffers need to be attached to the page at this point, otherwise
2724          * the handling of potential IO errors during writeout would be hard
2725          * (could try doing synchronous writeout, but what if that fails too?)
2726          */
2727         attach_nobh_buffers(page, head);
2728         page_zero_new_buffers(page, from, to);
2729
2730 out_release:
2731         unlock_page(page);
2732         put_page(page);
2733         *pagep = NULL;
2734
2735         return ret;
2736 }
2737 EXPORT_SYMBOL(nobh_write_begin);
2738
2739 int nobh_write_end(struct file *file, struct address_space *mapping,
2740                         loff_t pos, unsigned len, unsigned copied,
2741                         struct page *page, void *fsdata)
2742 {
2743         struct inode *inode = page->mapping->host;
2744         struct buffer_head *head = fsdata;
2745         struct buffer_head *bh;
2746         BUG_ON(fsdata != NULL && page_has_buffers(page));
2747
2748         if (unlikely(copied < len) && head)
2749                 attach_nobh_buffers(page, head);
2750         if (page_has_buffers(page))
2751                 return generic_write_end(file, mapping, pos, len,
2752                                         copied, page, fsdata);
2753
2754         SetPageUptodate(page);
2755         set_page_dirty(page);
2756         if (pos+copied > inode->i_size) {
2757                 i_size_write(inode, pos+copied);
2758                 mark_inode_dirty(inode);
2759         }
2760
2761         unlock_page(page);
2762         put_page(page);
2763
2764         while (head) {
2765                 bh = head;
2766                 head = head->b_this_page;
2767                 free_buffer_head(bh);
2768         }
2769
2770         return copied;
2771 }
2772 EXPORT_SYMBOL(nobh_write_end);
2773
2774 /*
2775  * nobh_writepage() - based on block_full_write_page() except
2776  * that it tries to operate without attaching bufferheads to
2777  * the page.
2778  */
2779 int nobh_writepage(struct page *page, get_block_t *get_block,
2780                         struct writeback_control *wbc)
2781 {
2782         struct inode * const inode = page->mapping->host;
2783         loff_t i_size = i_size_read(inode);
2784         const pgoff_t end_index = i_size >> PAGE_SHIFT;
2785         unsigned offset;
2786         int ret;
2787
2788         /* Is the page fully inside i_size? */
2789         if (page->index < end_index)
2790                 goto out;
2791
2792         /* Is the page fully outside i_size? (truncate in progress) */
2793         offset = i_size & (PAGE_SIZE-1);
2794         if (page->index >= end_index+1 || !offset) {
2795                 unlock_page(page);
2796                 return 0; /* don't care */
2797         }
2798
2799         /*
2800          * The page straddles i_size.  It must be zeroed out on each and every
2801          * writepage invocation because it may be mmapped.  "A file is mapped
2802          * in multiples of the page size.  For a file that is not a multiple of
2803          * the  page size, the remaining memory is zeroed when mapped, and
2804          * writes to that region are not written out to the file."
2805          */
2806         zero_user_segment(page, offset, PAGE_SIZE);
2807 out:
2808         ret = mpage_writepage(page, get_block, wbc);
2809         if (ret == -EAGAIN)
2810                 ret = __block_write_full_page(inode, page, get_block, wbc,
2811                                               end_buffer_async_write);
2812         return ret;
2813 }
2814 EXPORT_SYMBOL(nobh_writepage);
2815
2816 int nobh_truncate_page(struct address_space *mapping,
2817                         loff_t from, get_block_t *get_block)
2818 {
2819         pgoff_t index = from >> PAGE_SHIFT;
2820         unsigned offset = from & (PAGE_SIZE-1);
2821         unsigned blocksize;
2822         sector_t iblock;
2823         unsigned length, pos;
2824         struct inode *inode = mapping->host;
2825         struct page *page;
2826         struct buffer_head map_bh;
2827         int err;
2828
2829         blocksize = i_blocksize(inode);
2830         length = offset & (blocksize - 1);
2831
2832         /* Block boundary? Nothing to do */
2833         if (!length)
2834                 return 0;
2835
2836         length = blocksize - length;
2837         iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2838
2839         page = grab_cache_page(mapping, index);
2840         err = -ENOMEM;
2841         if (!page)
2842                 goto out;
2843
2844         if (page_has_buffers(page)) {
2845 has_buffers:
2846                 unlock_page(page);
2847                 put_page(page);
2848                 return block_truncate_page(mapping, from, get_block);
2849         }
2850
2851         /* Find the buffer that contains "offset" */
2852         pos = blocksize;
2853         while (offset >= pos) {
2854                 iblock++;
2855                 pos += blocksize;
2856         }
2857
2858         map_bh.b_size = blocksize;
2859         map_bh.b_state = 0;
2860         err = get_block(inode, iblock, &map_bh, 0);
2861         if (err)
2862                 goto unlock;
2863         /* unmapped? It's a hole - nothing to do */
2864         if (!buffer_mapped(&map_bh))
2865                 goto unlock;
2866
2867         /* Ok, it's mapped. Make sure it's up-to-date */
2868         if (!PageUptodate(page)) {
2869                 err = mapping->a_ops->readpage(NULL, page);
2870                 if (err) {
2871                         put_page(page);
2872                         goto out;
2873                 }
2874                 lock_page(page);
2875                 if (!PageUptodate(page)) {
2876                         err = -EIO;
2877                         goto unlock;
2878                 }
2879                 if (page_has_buffers(page))
2880                         goto has_buffers;
2881         }
2882         zero_user(page, offset, length);
2883         set_page_dirty(page);
2884         err = 0;
2885
2886 unlock:
2887         unlock_page(page);
2888         put_page(page);
2889 out:
2890         return err;
2891 }
2892 EXPORT_SYMBOL(nobh_truncate_page);
2893
2894 int block_truncate_page(struct address_space *mapping,
2895                         loff_t from, get_block_t *get_block)
2896 {
2897         pgoff_t index = from >> PAGE_SHIFT;
2898         unsigned offset = from & (PAGE_SIZE-1);
2899         unsigned blocksize;
2900         sector_t iblock;
2901         unsigned length, pos;
2902         struct inode *inode = mapping->host;
2903         struct page *page;
2904         struct buffer_head *bh;
2905         int err;
2906
2907         blocksize = i_blocksize(inode);
2908         length = offset & (blocksize - 1);
2909
2910         /* Block boundary? Nothing to do */
2911         if (!length)
2912                 return 0;
2913
2914         length = blocksize - length;
2915         iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2916         
2917         page = grab_cache_page(mapping, index);
2918         err = -ENOMEM;
2919         if (!page)
2920                 goto out;
2921
2922         if (!page_has_buffers(page))
2923                 create_empty_buffers(page, blocksize, 0);
2924
2925         /* Find the buffer that contains "offset" */
2926         bh = page_buffers(page);
2927         pos = blocksize;
2928         while (offset >= pos) {
2929                 bh = bh->b_this_page;
2930                 iblock++;
2931                 pos += blocksize;
2932         }
2933
2934         err = 0;
2935         if (!buffer_mapped(bh)) {
2936                 WARN_ON(bh->b_size != blocksize);
2937                 err = get_block(inode, iblock, bh, 0);
2938                 if (err)
2939                         goto unlock;
2940                 /* unmapped? It's a hole - nothing to do */
2941                 if (!buffer_mapped(bh))
2942                         goto unlock;
2943         }
2944
2945         /* Ok, it's mapped. Make sure it's up-to-date */
2946         if (PageUptodate(page))
2947                 set_buffer_uptodate(bh);
2948
2949         if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2950                 err = -EIO;
2951                 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2952                 wait_on_buffer(bh);
2953                 /* Uhhuh. Read error. Complain and punt. */
2954                 if (!buffer_uptodate(bh))
2955                         goto unlock;
2956         }
2957
2958         zero_user(page, offset, length);
2959         mark_buffer_dirty(bh);
2960         err = 0;
2961
2962 unlock:
2963         unlock_page(page);
2964         put_page(page);
2965 out:
2966         return err;
2967 }
2968 EXPORT_SYMBOL(block_truncate_page);
2969
2970 /*
2971  * The generic ->writepage function for buffer-backed address_spaces
2972  */
2973 int block_write_full_page(struct page *page, get_block_t *get_block,
2974                         struct writeback_control *wbc)
2975 {
2976         struct inode * const inode = page->mapping->host;
2977         loff_t i_size = i_size_read(inode);
2978         const pgoff_t end_index = i_size >> PAGE_SHIFT;
2979         unsigned offset;
2980
2981         /* Is the page fully inside i_size? */
2982         if (page->index < end_index)
2983                 return __block_write_full_page(inode, page, get_block, wbc,
2984                                                end_buffer_async_write);
2985
2986         /* Is the page fully outside i_size? (truncate in progress) */
2987         offset = i_size & (PAGE_SIZE-1);
2988         if (page->index >= end_index+1 || !offset) {
2989                 unlock_page(page);
2990                 return 0; /* don't care */
2991         }
2992
2993         /*
2994          * The page straddles i_size.  It must be zeroed out on each and every
2995          * writepage invocation because it may be mmapped.  "A file is mapped
2996          * in multiples of the page size.  For a file that is not a multiple of
2997          * the  page size, the remaining memory is zeroed when mapped, and
2998          * writes to that region are not written out to the file."
2999          */
3000         zero_user_segment(page, offset, PAGE_SIZE);
3001         return __block_write_full_page(inode, page, get_block, wbc,
3002                                                         end_buffer_async_write);
3003 }
3004 EXPORT_SYMBOL(block_write_full_page);
3005
3006 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
3007                             get_block_t *get_block)
3008 {
3009         struct inode *inode = mapping->host;
3010         struct buffer_head tmp = {
3011                 .b_size = i_blocksize(inode),
3012         };
3013
3014         get_block(inode, block, &tmp, 0);
3015         return tmp.b_blocknr;
3016 }
3017 EXPORT_SYMBOL(generic_block_bmap);
3018
3019 static void end_bio_bh_io_sync(struct bio *bio)
3020 {
3021         struct buffer_head *bh = bio->bi_private;
3022
3023         if (unlikely(bio_flagged(bio, BIO_QUIET)))
3024                 set_bit(BH_Quiet, &bh->b_state);
3025
3026         bh->b_end_io(bh, !bio->bi_status);
3027         bio_put(bio);
3028 }
3029
3030 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3031                          enum rw_hint write_hint, struct writeback_control *wbc)
3032 {
3033         struct bio *bio;
3034
3035         BUG_ON(!buffer_locked(bh));
3036         BUG_ON(!buffer_mapped(bh));
3037         BUG_ON(!bh->b_end_io);
3038         BUG_ON(buffer_delay(bh));
3039         BUG_ON(buffer_unwritten(bh));
3040
3041         /*
3042          * Only clear out a write error when rewriting
3043          */
3044         if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3045                 clear_buffer_write_io_error(bh);
3046
3047         bio = bio_alloc(GFP_NOIO, 1);
3048
3049         fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
3050
3051         bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3052         bio_set_dev(bio, bh->b_bdev);
3053         bio->bi_write_hint = write_hint;
3054
3055         bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3056         BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3057
3058         bio->bi_end_io = end_bio_bh_io_sync;
3059         bio->bi_private = bh;
3060
3061         if (buffer_meta(bh))
3062                 op_flags |= REQ_META;
3063         if (buffer_prio(bh))
3064                 op_flags |= REQ_PRIO;
3065         bio_set_op_attrs(bio, op, op_flags);
3066
3067         /* Take care of bh's that straddle the end of the device */
3068         guard_bio_eod(bio);
3069
3070         if (wbc) {
3071                 wbc_init_bio(wbc, bio);
3072                 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
3073         }
3074
3075         submit_bio(bio);
3076         return 0;
3077 }
3078
3079 int submit_bh(int op, int op_flags, struct buffer_head *bh)
3080 {
3081         return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3082 }
3083 EXPORT_SYMBOL(submit_bh);
3084
3085 /**
3086  * ll_rw_block: low-level access to block devices (DEPRECATED)
3087  * @op: whether to %READ or %WRITE
3088  * @op_flags: req_flag_bits
3089  * @nr: number of &struct buffer_heads in the array
3090  * @bhs: array of pointers to &struct buffer_head
3091  *
3092  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3093  * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3094  * @op_flags contains flags modifying the detailed I/O behavior, most notably
3095  * %REQ_RAHEAD.
3096  *
3097  * This function drops any buffer that it cannot get a lock on (with the
3098  * BH_Lock state bit), any buffer that appears to be clean when doing a write
3099  * request, and any buffer that appears to be up-to-date when doing read
3100  * request.  Further it marks as clean buffers that are processed for
3101  * writing (the buffer cache won't assume that they are actually clean
3102  * until the buffer gets unlocked).
3103  *
3104  * ll_rw_block sets b_end_io to simple completion handler that marks
3105  * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3106  * any waiters. 
3107  *
3108  * All of the buffers must be for the same device, and must also be a
3109  * multiple of the current approved size for the device.
3110  */
3111 void ll_rw_block(int op, int op_flags,  int nr, struct buffer_head *bhs[])
3112 {
3113         int i;
3114
3115         for (i = 0; i < nr; i++) {
3116                 struct buffer_head *bh = bhs[i];
3117
3118                 if (!trylock_buffer(bh))
3119                         continue;
3120                 if (op == WRITE) {
3121                         if (test_clear_buffer_dirty(bh)) {
3122                                 bh->b_end_io = end_buffer_write_sync;
3123                                 get_bh(bh);
3124                                 submit_bh(op, op_flags, bh);
3125                                 continue;
3126                         }
3127                 } else {
3128                         if (!buffer_uptodate(bh)) {
3129                                 bh->b_end_io = end_buffer_read_sync;
3130                                 get_bh(bh);
3131                                 submit_bh(op, op_flags, bh);
3132                                 continue;
3133                         }
3134                 }
3135                 unlock_buffer(bh);
3136         }
3137 }
3138 EXPORT_SYMBOL(ll_rw_block);
3139
3140 void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3141 {
3142         lock_buffer(bh);
3143         if (!test_clear_buffer_dirty(bh)) {
3144                 unlock_buffer(bh);
3145                 return;
3146         }
3147         bh->b_end_io = end_buffer_write_sync;
3148         get_bh(bh);
3149         submit_bh(REQ_OP_WRITE, op_flags, bh);
3150 }
3151 EXPORT_SYMBOL(write_dirty_buffer);
3152
3153 /*
3154  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3155  * and then start new I/O and then wait upon it.  The caller must have a ref on
3156  * the buffer_head.
3157  */
3158 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3159 {
3160         int ret = 0;
3161
3162         WARN_ON(atomic_read(&bh->b_count) < 1);
3163         lock_buffer(bh);
3164         if (test_clear_buffer_dirty(bh)) {
3165                 /*
3166                  * The bh should be mapped, but it might not be if the
3167                  * device was hot-removed. Not much we can do but fail the I/O.
3168                  */
3169                 if (!buffer_mapped(bh)) {
3170                         unlock_buffer(bh);
3171                         return -EIO;
3172                 }
3173
3174                 get_bh(bh);
3175                 bh->b_end_io = end_buffer_write_sync;
3176                 ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3177                 wait_on_buffer(bh);
3178                 if (!ret && !buffer_uptodate(bh))
3179                         ret = -EIO;
3180         } else {
3181                 unlock_buffer(bh);
3182         }
3183         return ret;
3184 }
3185 EXPORT_SYMBOL(__sync_dirty_buffer);
3186
3187 int sync_dirty_buffer(struct buffer_head *bh)
3188 {
3189         return __sync_dirty_buffer(bh, REQ_SYNC);
3190 }
3191 EXPORT_SYMBOL(sync_dirty_buffer);
3192
3193 /*
3194  * try_to_free_buffers() checks if all the buffers on this particular page
3195  * are unused, and releases them if so.
3196  *
3197  * Exclusion against try_to_free_buffers may be obtained by either
3198  * locking the page or by holding its mapping's private_lock.
3199  *
3200  * If the page is dirty but all the buffers are clean then we need to
3201  * be sure to mark the page clean as well.  This is because the page
3202  * may be against a block device, and a later reattachment of buffers
3203  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3204  * filesystem data on the same device.
3205  *
3206  * The same applies to regular filesystem pages: if all the buffers are
3207  * clean then we set the page clean and proceed.  To do that, we require
3208  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3209  * private_lock.
3210  *
3211  * try_to_free_buffers() is non-blocking.
3212  */
3213 static inline int buffer_busy(struct buffer_head *bh)
3214 {
3215         return atomic_read(&bh->b_count) |
3216                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3217 }
3218
3219 static int
3220 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3221 {
3222         struct buffer_head *head = page_buffers(page);
3223         struct buffer_head *bh;
3224
3225         bh = head;
3226         do {
3227                 if (buffer_busy(bh))
3228                         goto failed;
3229                 bh = bh->b_this_page;
3230         } while (bh != head);
3231
3232         do {
3233                 struct buffer_head *next = bh->b_this_page;
3234
3235                 if (bh->b_assoc_map)
3236                         __remove_assoc_queue(bh);
3237                 bh = next;
3238         } while (bh != head);
3239         *buffers_to_free = head;
3240         detach_page_private(page);
3241         return 1;
3242 failed:
3243         return 0;
3244 }
3245
3246 int try_to_free_buffers(struct page *page)
3247 {
3248         struct address_space * const mapping = page->mapping;
3249         struct buffer_head *buffers_to_free = NULL;
3250         int ret = 0;
3251
3252         BUG_ON(!PageLocked(page));
3253         if (PageWriteback(page))
3254                 return 0;
3255
3256         if (mapping == NULL) {          /* can this still happen? */
3257                 ret = drop_buffers(page, &buffers_to_free);
3258                 goto out;
3259         }
3260
3261         spin_lock(&mapping->private_lock);
3262         ret = drop_buffers(page, &buffers_to_free);
3263
3264         /*
3265          * If the filesystem writes its buffers by hand (eg ext3)
3266          * then we can have clean buffers against a dirty page.  We
3267          * clean the page here; otherwise the VM will never notice
3268          * that the filesystem did any IO at all.
3269          *
3270          * Also, during truncate, discard_buffer will have marked all
3271          * the page's buffers clean.  We discover that here and clean
3272          * the page also.
3273          *
3274          * private_lock must be held over this entire operation in order
3275          * to synchronise against __set_page_dirty_buffers and prevent the
3276          * dirty bit from being lost.
3277          */
3278         if (ret)
3279                 cancel_dirty_page(page);
3280         spin_unlock(&mapping->private_lock);
3281 out:
3282         if (buffers_to_free) {
3283                 struct buffer_head *bh = buffers_to_free;
3284
3285                 do {
3286                         struct buffer_head *next = bh->b_this_page;
3287                         free_buffer_head(bh);
3288                         bh = next;
3289                 } while (bh != buffers_to_free);
3290         }
3291         return ret;
3292 }
3293 EXPORT_SYMBOL(try_to_free_buffers);
3294
3295 /*
3296  * There are no bdflush tunables left.  But distributions are
3297  * still running obsolete flush daemons, so we terminate them here.
3298  *
3299  * Use of bdflush() is deprecated and will be removed in a future kernel.
3300  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3301  */
3302 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3303 {
3304         static int msg_count;
3305
3306         if (!capable(CAP_SYS_ADMIN))
3307                 return -EPERM;
3308
3309         if (msg_count < 5) {
3310                 msg_count++;
3311                 printk(KERN_INFO
3312                         "warning: process `%s' used the obsolete bdflush"
3313                         " system call\n", current->comm);
3314                 printk(KERN_INFO "Fix your initscripts?\n");
3315         }
3316
3317         if (func == 1)
3318                 do_exit(0);
3319         return 0;
3320 }
3321
3322 /*
3323  * Buffer-head allocation
3324  */
3325 static struct kmem_cache *bh_cachep __read_mostly;
3326
3327 /*
3328  * Once the number of bh's in the machine exceeds this level, we start
3329  * stripping them in writeback.
3330  */
3331 static unsigned long max_buffer_heads;
3332
3333 int buffer_heads_over_limit;
3334
3335 struct bh_accounting {
3336         int nr;                 /* Number of live bh's */
3337         int ratelimit;          /* Limit cacheline bouncing */
3338 };
3339
3340 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3341
3342 static void recalc_bh_state(void)
3343 {
3344         int i;
3345         int tot = 0;
3346
3347         if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3348                 return;
3349         __this_cpu_write(bh_accounting.ratelimit, 0);
3350         for_each_online_cpu(i)
3351                 tot += per_cpu(bh_accounting, i).nr;
3352         buffer_heads_over_limit = (tot > max_buffer_heads);
3353 }
3354
3355 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3356 {
3357         struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3358         if (ret) {
3359                 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3360                 spin_lock_init(&ret->b_uptodate_lock);
3361                 preempt_disable();
3362                 __this_cpu_inc(bh_accounting.nr);
3363                 recalc_bh_state();
3364                 preempt_enable();
3365         }
3366         return ret;
3367 }
3368 EXPORT_SYMBOL(alloc_buffer_head);
3369
3370 void free_buffer_head(struct buffer_head *bh)
3371 {
3372         BUG_ON(!list_empty(&bh->b_assoc_buffers));
3373         kmem_cache_free(bh_cachep, bh);
3374         preempt_disable();
3375         __this_cpu_dec(bh_accounting.nr);
3376         recalc_bh_state();
3377         preempt_enable();
3378 }
3379 EXPORT_SYMBOL(free_buffer_head);
3380
3381 static int buffer_exit_cpu_dead(unsigned int cpu)
3382 {
3383         int i;
3384         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3385
3386         for (i = 0; i < BH_LRU_SIZE; i++) {
3387                 brelse(b->bhs[i]);
3388                 b->bhs[i] = NULL;
3389         }
3390         this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3391         per_cpu(bh_accounting, cpu).nr = 0;
3392         return 0;
3393 }
3394
3395 /**
3396  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3397  * @bh: struct buffer_head
3398  *
3399  * Return true if the buffer is up-to-date and false,
3400  * with the buffer locked, if not.
3401  */
3402 int bh_uptodate_or_lock(struct buffer_head *bh)
3403 {
3404         if (!buffer_uptodate(bh)) {
3405                 lock_buffer(bh);
3406                 if (!buffer_uptodate(bh))
3407                         return 0;
3408                 unlock_buffer(bh);
3409         }
3410         return 1;
3411 }
3412 EXPORT_SYMBOL(bh_uptodate_or_lock);
3413
3414 /**
3415  * bh_submit_read - Submit a locked buffer for reading
3416  * @bh: struct buffer_head
3417  *
3418  * Returns zero on success and -EIO on error.
3419  */
3420 int bh_submit_read(struct buffer_head *bh)
3421 {
3422         BUG_ON(!buffer_locked(bh));
3423
3424         if (buffer_uptodate(bh)) {
3425                 unlock_buffer(bh);
3426                 return 0;
3427         }
3428
3429         get_bh(bh);
3430         bh->b_end_io = end_buffer_read_sync;
3431         submit_bh(REQ_OP_READ, 0, bh);
3432         wait_on_buffer(bh);
3433         if (buffer_uptodate(bh))
3434                 return 0;
3435         return -EIO;
3436 }
3437 EXPORT_SYMBOL(bh_submit_read);
3438
3439 void __init buffer_init(void)
3440 {
3441         unsigned long nrpages;
3442         int ret;
3443
3444         bh_cachep = kmem_cache_create("buffer_head",
3445                         sizeof(struct buffer_head), 0,
3446                                 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3447                                 SLAB_MEM_SPREAD),
3448                                 NULL);
3449
3450         /*
3451          * Limit the bh occupancy to 10% of ZONE_NORMAL
3452          */
3453         nrpages = (nr_free_buffer_pages() * 10) / 100;
3454         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3455         ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3456                                         NULL, buffer_exit_cpu_dead);
3457         WARN_ON(ret < 0);
3458 }