perf cpumap: Add new map type for aggregation
[linux-2.6-microblaze.git] / fs / buffer.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/buffer.c
4  *
5  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
6  */
7
8 /*
9  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10  *
11  * Removed a lot of unnecessary code and simplified things now that
12  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13  *
14  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
15  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
16  *
17  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18  *
19  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
20  */
21
22 #include <linux/kernel.h>
23 #include <linux/sched/signal.h>
24 #include <linux/syscalls.h>
25 #include <linux/fs.h>
26 #include <linux/iomap.h>
27 #include <linux/mm.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/capability.h>
31 #include <linux/blkdev.h>
32 #include <linux/file.h>
33 #include <linux/quotaops.h>
34 #include <linux/highmem.h>
35 #include <linux/export.h>
36 #include <linux/backing-dev.h>
37 #include <linux/writeback.h>
38 #include <linux/hash.h>
39 #include <linux/suspend.h>
40 #include <linux/buffer_head.h>
41 #include <linux/task_io_accounting_ops.h>
42 #include <linux/bio.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
50 #include <linux/fscrypt.h>
51
52 #include "internal.h"
53
54 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
55 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
56                          enum rw_hint hint, struct writeback_control *wbc);
57
58 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
59
60 inline void touch_buffer(struct buffer_head *bh)
61 {
62         trace_block_touch_buffer(bh);
63         mark_page_accessed(bh->b_page);
64 }
65 EXPORT_SYMBOL(touch_buffer);
66
67 void __lock_buffer(struct buffer_head *bh)
68 {
69         wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
70 }
71 EXPORT_SYMBOL(__lock_buffer);
72
73 void unlock_buffer(struct buffer_head *bh)
74 {
75         clear_bit_unlock(BH_Lock, &bh->b_state);
76         smp_mb__after_atomic();
77         wake_up_bit(&bh->b_state, BH_Lock);
78 }
79 EXPORT_SYMBOL(unlock_buffer);
80
81 /*
82  * Returns if the page has dirty or writeback buffers. If all the buffers
83  * are unlocked and clean then the PageDirty information is stale. If
84  * any of the pages are locked, it is assumed they are locked for IO.
85  */
86 void buffer_check_dirty_writeback(struct page *page,
87                                      bool *dirty, bool *writeback)
88 {
89         struct buffer_head *head, *bh;
90         *dirty = false;
91         *writeback = false;
92
93         BUG_ON(!PageLocked(page));
94
95         if (!page_has_buffers(page))
96                 return;
97
98         if (PageWriteback(page))
99                 *writeback = true;
100
101         head = page_buffers(page);
102         bh = head;
103         do {
104                 if (buffer_locked(bh))
105                         *writeback = true;
106
107                 if (buffer_dirty(bh))
108                         *dirty = true;
109
110                 bh = bh->b_this_page;
111         } while (bh != head);
112 }
113 EXPORT_SYMBOL(buffer_check_dirty_writeback);
114
115 /*
116  * Block until a buffer comes unlocked.  This doesn't stop it
117  * from becoming locked again - you have to lock it yourself
118  * if you want to preserve its state.
119  */
120 void __wait_on_buffer(struct buffer_head * bh)
121 {
122         wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
123 }
124 EXPORT_SYMBOL(__wait_on_buffer);
125
126 static void buffer_io_error(struct buffer_head *bh, char *msg)
127 {
128         if (!test_bit(BH_Quiet, &bh->b_state))
129                 printk_ratelimited(KERN_ERR
130                         "Buffer I/O error on dev %pg, logical block %llu%s\n",
131                         bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
132 }
133
134 /*
135  * End-of-IO handler helper function which does not touch the bh after
136  * unlocking it.
137  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
138  * a race there is benign: unlock_buffer() only use the bh's address for
139  * hashing after unlocking the buffer, so it doesn't actually touch the bh
140  * itself.
141  */
142 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
143 {
144         if (uptodate) {
145                 set_buffer_uptodate(bh);
146         } else {
147                 /* This happens, due to failed read-ahead attempts. */
148                 clear_buffer_uptodate(bh);
149         }
150         unlock_buffer(bh);
151 }
152
153 /*
154  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
155  * unlock the buffer. This is what ll_rw_block uses too.
156  */
157 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
158 {
159         __end_buffer_read_notouch(bh, uptodate);
160         put_bh(bh);
161 }
162 EXPORT_SYMBOL(end_buffer_read_sync);
163
164 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
165 {
166         if (uptodate) {
167                 set_buffer_uptodate(bh);
168         } else {
169                 buffer_io_error(bh, ", lost sync page write");
170                 mark_buffer_write_io_error(bh);
171                 clear_buffer_uptodate(bh);
172         }
173         unlock_buffer(bh);
174         put_bh(bh);
175 }
176 EXPORT_SYMBOL(end_buffer_write_sync);
177
178 /*
179  * Various filesystems appear to want __find_get_block to be non-blocking.
180  * But it's the page lock which protects the buffers.  To get around this,
181  * we get exclusion from try_to_free_buffers with the blockdev mapping's
182  * private_lock.
183  *
184  * Hack idea: for the blockdev mapping, private_lock contention
185  * may be quite high.  This code could TryLock the page, and if that
186  * succeeds, there is no need to take private_lock.
187  */
188 static struct buffer_head *
189 __find_get_block_slow(struct block_device *bdev, sector_t block)
190 {
191         struct inode *bd_inode = bdev->bd_inode;
192         struct address_space *bd_mapping = bd_inode->i_mapping;
193         struct buffer_head *ret = NULL;
194         pgoff_t index;
195         struct buffer_head *bh;
196         struct buffer_head *head;
197         struct page *page;
198         int all_mapped = 1;
199         static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
200
201         index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
202         page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
203         if (!page)
204                 goto out;
205
206         spin_lock(&bd_mapping->private_lock);
207         if (!page_has_buffers(page))
208                 goto out_unlock;
209         head = page_buffers(page);
210         bh = head;
211         do {
212                 if (!buffer_mapped(bh))
213                         all_mapped = 0;
214                 else if (bh->b_blocknr == block) {
215                         ret = bh;
216                         get_bh(bh);
217                         goto out_unlock;
218                 }
219                 bh = bh->b_this_page;
220         } while (bh != head);
221
222         /* we might be here because some of the buffers on this page are
223          * not mapped.  This is due to various races between
224          * file io on the block device and getblk.  It gets dealt with
225          * elsewhere, don't buffer_error if we had some unmapped buffers
226          */
227         ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
228         if (all_mapped && __ratelimit(&last_warned)) {
229                 printk("__find_get_block_slow() failed. block=%llu, "
230                        "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
231                        "device %pg blocksize: %d\n",
232                        (unsigned long long)block,
233                        (unsigned long long)bh->b_blocknr,
234                        bh->b_state, bh->b_size, bdev,
235                        1 << bd_inode->i_blkbits);
236         }
237 out_unlock:
238         spin_unlock(&bd_mapping->private_lock);
239         put_page(page);
240 out:
241         return ret;
242 }
243
244 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
245 {
246         unsigned long flags;
247         struct buffer_head *first;
248         struct buffer_head *tmp;
249         struct page *page;
250         int page_uptodate = 1;
251
252         BUG_ON(!buffer_async_read(bh));
253
254         page = bh->b_page;
255         if (uptodate) {
256                 set_buffer_uptodate(bh);
257         } else {
258                 clear_buffer_uptodate(bh);
259                 buffer_io_error(bh, ", async page read");
260                 SetPageError(page);
261         }
262
263         /*
264          * Be _very_ careful from here on. Bad things can happen if
265          * two buffer heads end IO at almost the same time and both
266          * decide that the page is now completely done.
267          */
268         first = page_buffers(page);
269         spin_lock_irqsave(&first->b_uptodate_lock, flags);
270         clear_buffer_async_read(bh);
271         unlock_buffer(bh);
272         tmp = bh;
273         do {
274                 if (!buffer_uptodate(tmp))
275                         page_uptodate = 0;
276                 if (buffer_async_read(tmp)) {
277                         BUG_ON(!buffer_locked(tmp));
278                         goto still_busy;
279                 }
280                 tmp = tmp->b_this_page;
281         } while (tmp != bh);
282         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
283
284         /*
285          * If none of the buffers had errors and they are all
286          * uptodate then we can set the page uptodate.
287          */
288         if (page_uptodate && !PageError(page))
289                 SetPageUptodate(page);
290         unlock_page(page);
291         return;
292
293 still_busy:
294         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
295         return;
296 }
297
298 struct decrypt_bh_ctx {
299         struct work_struct work;
300         struct buffer_head *bh;
301 };
302
303 static void decrypt_bh(struct work_struct *work)
304 {
305         struct decrypt_bh_ctx *ctx =
306                 container_of(work, struct decrypt_bh_ctx, work);
307         struct buffer_head *bh = ctx->bh;
308         int err;
309
310         err = fscrypt_decrypt_pagecache_blocks(bh->b_page, bh->b_size,
311                                                bh_offset(bh));
312         end_buffer_async_read(bh, err == 0);
313         kfree(ctx);
314 }
315
316 /*
317  * I/O completion handler for block_read_full_page() - pages
318  * which come unlocked at the end of I/O.
319  */
320 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
321 {
322         /* Decrypt if needed */
323         if (uptodate &&
324             fscrypt_inode_uses_fs_layer_crypto(bh->b_page->mapping->host)) {
325                 struct decrypt_bh_ctx *ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
326
327                 if (ctx) {
328                         INIT_WORK(&ctx->work, decrypt_bh);
329                         ctx->bh = bh;
330                         fscrypt_enqueue_decrypt_work(&ctx->work);
331                         return;
332                 }
333                 uptodate = 0;
334         }
335         end_buffer_async_read(bh, uptodate);
336 }
337
338 /*
339  * Completion handler for block_write_full_page() - pages which are unlocked
340  * during I/O, and which have PageWriteback cleared upon I/O completion.
341  */
342 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
343 {
344         unsigned long flags;
345         struct buffer_head *first;
346         struct buffer_head *tmp;
347         struct page *page;
348
349         BUG_ON(!buffer_async_write(bh));
350
351         page = bh->b_page;
352         if (uptodate) {
353                 set_buffer_uptodate(bh);
354         } else {
355                 buffer_io_error(bh, ", lost async page write");
356                 mark_buffer_write_io_error(bh);
357                 clear_buffer_uptodate(bh);
358                 SetPageError(page);
359         }
360
361         first = page_buffers(page);
362         spin_lock_irqsave(&first->b_uptodate_lock, flags);
363
364         clear_buffer_async_write(bh);
365         unlock_buffer(bh);
366         tmp = bh->b_this_page;
367         while (tmp != bh) {
368                 if (buffer_async_write(tmp)) {
369                         BUG_ON(!buffer_locked(tmp));
370                         goto still_busy;
371                 }
372                 tmp = tmp->b_this_page;
373         }
374         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
375         end_page_writeback(page);
376         return;
377
378 still_busy:
379         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
380         return;
381 }
382 EXPORT_SYMBOL(end_buffer_async_write);
383
384 /*
385  * If a page's buffers are under async readin (end_buffer_async_read
386  * completion) then there is a possibility that another thread of
387  * control could lock one of the buffers after it has completed
388  * but while some of the other buffers have not completed.  This
389  * locked buffer would confuse end_buffer_async_read() into not unlocking
390  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
391  * that this buffer is not under async I/O.
392  *
393  * The page comes unlocked when it has no locked buffer_async buffers
394  * left.
395  *
396  * PageLocked prevents anyone starting new async I/O reads any of
397  * the buffers.
398  *
399  * PageWriteback is used to prevent simultaneous writeout of the same
400  * page.
401  *
402  * PageLocked prevents anyone from starting writeback of a page which is
403  * under read I/O (PageWriteback is only ever set against a locked page).
404  */
405 static void mark_buffer_async_read(struct buffer_head *bh)
406 {
407         bh->b_end_io = end_buffer_async_read_io;
408         set_buffer_async_read(bh);
409 }
410
411 static void mark_buffer_async_write_endio(struct buffer_head *bh,
412                                           bh_end_io_t *handler)
413 {
414         bh->b_end_io = handler;
415         set_buffer_async_write(bh);
416 }
417
418 void mark_buffer_async_write(struct buffer_head *bh)
419 {
420         mark_buffer_async_write_endio(bh, end_buffer_async_write);
421 }
422 EXPORT_SYMBOL(mark_buffer_async_write);
423
424
425 /*
426  * fs/buffer.c contains helper functions for buffer-backed address space's
427  * fsync functions.  A common requirement for buffer-based filesystems is
428  * that certain data from the backing blockdev needs to be written out for
429  * a successful fsync().  For example, ext2 indirect blocks need to be
430  * written back and waited upon before fsync() returns.
431  *
432  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
433  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
434  * management of a list of dependent buffers at ->i_mapping->private_list.
435  *
436  * Locking is a little subtle: try_to_free_buffers() will remove buffers
437  * from their controlling inode's queue when they are being freed.  But
438  * try_to_free_buffers() will be operating against the *blockdev* mapping
439  * at the time, not against the S_ISREG file which depends on those buffers.
440  * So the locking for private_list is via the private_lock in the address_space
441  * which backs the buffers.  Which is different from the address_space 
442  * against which the buffers are listed.  So for a particular address_space,
443  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
444  * mapping->private_list will always be protected by the backing blockdev's
445  * ->private_lock.
446  *
447  * Which introduces a requirement: all buffers on an address_space's
448  * ->private_list must be from the same address_space: the blockdev's.
449  *
450  * address_spaces which do not place buffers at ->private_list via these
451  * utility functions are free to use private_lock and private_list for
452  * whatever they want.  The only requirement is that list_empty(private_list)
453  * be true at clear_inode() time.
454  *
455  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
456  * filesystems should do that.  invalidate_inode_buffers() should just go
457  * BUG_ON(!list_empty).
458  *
459  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
460  * take an address_space, not an inode.  And it should be called
461  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
462  * queued up.
463  *
464  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
465  * list if it is already on a list.  Because if the buffer is on a list,
466  * it *must* already be on the right one.  If not, the filesystem is being
467  * silly.  This will save a ton of locking.  But first we have to ensure
468  * that buffers are taken *off* the old inode's list when they are freed
469  * (presumably in truncate).  That requires careful auditing of all
470  * filesystems (do it inside bforget()).  It could also be done by bringing
471  * b_inode back.
472  */
473
474 /*
475  * The buffer's backing address_space's private_lock must be held
476  */
477 static void __remove_assoc_queue(struct buffer_head *bh)
478 {
479         list_del_init(&bh->b_assoc_buffers);
480         WARN_ON(!bh->b_assoc_map);
481         bh->b_assoc_map = NULL;
482 }
483
484 int inode_has_buffers(struct inode *inode)
485 {
486         return !list_empty(&inode->i_data.private_list);
487 }
488
489 /*
490  * osync is designed to support O_SYNC io.  It waits synchronously for
491  * all already-submitted IO to complete, but does not queue any new
492  * writes to the disk.
493  *
494  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
495  * you dirty the buffers, and then use osync_inode_buffers to wait for
496  * completion.  Any other dirty buffers which are not yet queued for
497  * write will not be flushed to disk by the osync.
498  */
499 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
500 {
501         struct buffer_head *bh;
502         struct list_head *p;
503         int err = 0;
504
505         spin_lock(lock);
506 repeat:
507         list_for_each_prev(p, list) {
508                 bh = BH_ENTRY(p);
509                 if (buffer_locked(bh)) {
510                         get_bh(bh);
511                         spin_unlock(lock);
512                         wait_on_buffer(bh);
513                         if (!buffer_uptodate(bh))
514                                 err = -EIO;
515                         brelse(bh);
516                         spin_lock(lock);
517                         goto repeat;
518                 }
519         }
520         spin_unlock(lock);
521         return err;
522 }
523
524 void emergency_thaw_bdev(struct super_block *sb)
525 {
526         while (sb->s_bdev && !thaw_bdev(sb->s_bdev))
527                 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
528 }
529
530 /**
531  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
532  * @mapping: the mapping which wants those buffers written
533  *
534  * Starts I/O against the buffers at mapping->private_list, and waits upon
535  * that I/O.
536  *
537  * Basically, this is a convenience function for fsync().
538  * @mapping is a file or directory which needs those buffers to be written for
539  * a successful fsync().
540  */
541 int sync_mapping_buffers(struct address_space *mapping)
542 {
543         struct address_space *buffer_mapping = mapping->private_data;
544
545         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
546                 return 0;
547
548         return fsync_buffers_list(&buffer_mapping->private_lock,
549                                         &mapping->private_list);
550 }
551 EXPORT_SYMBOL(sync_mapping_buffers);
552
553 /*
554  * Called when we've recently written block `bblock', and it is known that
555  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
556  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
557  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
558  */
559 void write_boundary_block(struct block_device *bdev,
560                         sector_t bblock, unsigned blocksize)
561 {
562         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
563         if (bh) {
564                 if (buffer_dirty(bh))
565                         ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
566                 put_bh(bh);
567         }
568 }
569
570 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
571 {
572         struct address_space *mapping = inode->i_mapping;
573         struct address_space *buffer_mapping = bh->b_page->mapping;
574
575         mark_buffer_dirty(bh);
576         if (!mapping->private_data) {
577                 mapping->private_data = buffer_mapping;
578         } else {
579                 BUG_ON(mapping->private_data != buffer_mapping);
580         }
581         if (!bh->b_assoc_map) {
582                 spin_lock(&buffer_mapping->private_lock);
583                 list_move_tail(&bh->b_assoc_buffers,
584                                 &mapping->private_list);
585                 bh->b_assoc_map = mapping;
586                 spin_unlock(&buffer_mapping->private_lock);
587         }
588 }
589 EXPORT_SYMBOL(mark_buffer_dirty_inode);
590
591 /*
592  * Mark the page dirty, and set it dirty in the page cache, and mark the inode
593  * dirty.
594  *
595  * If warn is true, then emit a warning if the page is not uptodate and has
596  * not been truncated.
597  *
598  * The caller must hold lock_page_memcg().
599  */
600 void __set_page_dirty(struct page *page, struct address_space *mapping,
601                              int warn)
602 {
603         unsigned long flags;
604
605         xa_lock_irqsave(&mapping->i_pages, flags);
606         if (page->mapping) {    /* Race with truncate? */
607                 WARN_ON_ONCE(warn && !PageUptodate(page));
608                 account_page_dirtied(page, mapping);
609                 __xa_set_mark(&mapping->i_pages, page_index(page),
610                                 PAGECACHE_TAG_DIRTY);
611         }
612         xa_unlock_irqrestore(&mapping->i_pages, flags);
613 }
614 EXPORT_SYMBOL_GPL(__set_page_dirty);
615
616 /*
617  * Add a page to the dirty page list.
618  *
619  * It is a sad fact of life that this function is called from several places
620  * deeply under spinlocking.  It may not sleep.
621  *
622  * If the page has buffers, the uptodate buffers are set dirty, to preserve
623  * dirty-state coherency between the page and the buffers.  It the page does
624  * not have buffers then when they are later attached they will all be set
625  * dirty.
626  *
627  * The buffers are dirtied before the page is dirtied.  There's a small race
628  * window in which a writepage caller may see the page cleanness but not the
629  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
630  * before the buffers, a concurrent writepage caller could clear the page dirty
631  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
632  * page on the dirty page list.
633  *
634  * We use private_lock to lock against try_to_free_buffers while using the
635  * page's buffer list.  Also use this to protect against clean buffers being
636  * added to the page after it was set dirty.
637  *
638  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
639  * address_space though.
640  */
641 int __set_page_dirty_buffers(struct page *page)
642 {
643         int newly_dirty;
644         struct address_space *mapping = page_mapping(page);
645
646         if (unlikely(!mapping))
647                 return !TestSetPageDirty(page);
648
649         spin_lock(&mapping->private_lock);
650         if (page_has_buffers(page)) {
651                 struct buffer_head *head = page_buffers(page);
652                 struct buffer_head *bh = head;
653
654                 do {
655                         set_buffer_dirty(bh);
656                         bh = bh->b_this_page;
657                 } while (bh != head);
658         }
659         /*
660          * Lock out page's memcg migration to keep PageDirty
661          * synchronized with per-memcg dirty page counters.
662          */
663         lock_page_memcg(page);
664         newly_dirty = !TestSetPageDirty(page);
665         spin_unlock(&mapping->private_lock);
666
667         if (newly_dirty)
668                 __set_page_dirty(page, mapping, 1);
669
670         unlock_page_memcg(page);
671
672         if (newly_dirty)
673                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
674
675         return newly_dirty;
676 }
677 EXPORT_SYMBOL(__set_page_dirty_buffers);
678
679 /*
680  * Write out and wait upon a list of buffers.
681  *
682  * We have conflicting pressures: we want to make sure that all
683  * initially dirty buffers get waited on, but that any subsequently
684  * dirtied buffers don't.  After all, we don't want fsync to last
685  * forever if somebody is actively writing to the file.
686  *
687  * Do this in two main stages: first we copy dirty buffers to a
688  * temporary inode list, queueing the writes as we go.  Then we clean
689  * up, waiting for those writes to complete.
690  * 
691  * During this second stage, any subsequent updates to the file may end
692  * up refiling the buffer on the original inode's dirty list again, so
693  * there is a chance we will end up with a buffer queued for write but
694  * not yet completed on that list.  So, as a final cleanup we go through
695  * the osync code to catch these locked, dirty buffers without requeuing
696  * any newly dirty buffers for write.
697  */
698 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
699 {
700         struct buffer_head *bh;
701         struct list_head tmp;
702         struct address_space *mapping;
703         int err = 0, err2;
704         struct blk_plug plug;
705
706         INIT_LIST_HEAD(&tmp);
707         blk_start_plug(&plug);
708
709         spin_lock(lock);
710         while (!list_empty(list)) {
711                 bh = BH_ENTRY(list->next);
712                 mapping = bh->b_assoc_map;
713                 __remove_assoc_queue(bh);
714                 /* Avoid race with mark_buffer_dirty_inode() which does
715                  * a lockless check and we rely on seeing the dirty bit */
716                 smp_mb();
717                 if (buffer_dirty(bh) || buffer_locked(bh)) {
718                         list_add(&bh->b_assoc_buffers, &tmp);
719                         bh->b_assoc_map = mapping;
720                         if (buffer_dirty(bh)) {
721                                 get_bh(bh);
722                                 spin_unlock(lock);
723                                 /*
724                                  * Ensure any pending I/O completes so that
725                                  * write_dirty_buffer() actually writes the
726                                  * current contents - it is a noop if I/O is
727                                  * still in flight on potentially older
728                                  * contents.
729                                  */
730                                 write_dirty_buffer(bh, REQ_SYNC);
731
732                                 /*
733                                  * Kick off IO for the previous mapping. Note
734                                  * that we will not run the very last mapping,
735                                  * wait_on_buffer() will do that for us
736                                  * through sync_buffer().
737                                  */
738                                 brelse(bh);
739                                 spin_lock(lock);
740                         }
741                 }
742         }
743
744         spin_unlock(lock);
745         blk_finish_plug(&plug);
746         spin_lock(lock);
747
748         while (!list_empty(&tmp)) {
749                 bh = BH_ENTRY(tmp.prev);
750                 get_bh(bh);
751                 mapping = bh->b_assoc_map;
752                 __remove_assoc_queue(bh);
753                 /* Avoid race with mark_buffer_dirty_inode() which does
754                  * a lockless check and we rely on seeing the dirty bit */
755                 smp_mb();
756                 if (buffer_dirty(bh)) {
757                         list_add(&bh->b_assoc_buffers,
758                                  &mapping->private_list);
759                         bh->b_assoc_map = mapping;
760                 }
761                 spin_unlock(lock);
762                 wait_on_buffer(bh);
763                 if (!buffer_uptodate(bh))
764                         err = -EIO;
765                 brelse(bh);
766                 spin_lock(lock);
767         }
768         
769         spin_unlock(lock);
770         err2 = osync_buffers_list(lock, list);
771         if (err)
772                 return err;
773         else
774                 return err2;
775 }
776
777 /*
778  * Invalidate any and all dirty buffers on a given inode.  We are
779  * probably unmounting the fs, but that doesn't mean we have already
780  * done a sync().  Just drop the buffers from the inode list.
781  *
782  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
783  * assumes that all the buffers are against the blockdev.  Not true
784  * for reiserfs.
785  */
786 void invalidate_inode_buffers(struct inode *inode)
787 {
788         if (inode_has_buffers(inode)) {
789                 struct address_space *mapping = &inode->i_data;
790                 struct list_head *list = &mapping->private_list;
791                 struct address_space *buffer_mapping = mapping->private_data;
792
793                 spin_lock(&buffer_mapping->private_lock);
794                 while (!list_empty(list))
795                         __remove_assoc_queue(BH_ENTRY(list->next));
796                 spin_unlock(&buffer_mapping->private_lock);
797         }
798 }
799 EXPORT_SYMBOL(invalidate_inode_buffers);
800
801 /*
802  * Remove any clean buffers from the inode's buffer list.  This is called
803  * when we're trying to free the inode itself.  Those buffers can pin it.
804  *
805  * Returns true if all buffers were removed.
806  */
807 int remove_inode_buffers(struct inode *inode)
808 {
809         int ret = 1;
810
811         if (inode_has_buffers(inode)) {
812                 struct address_space *mapping = &inode->i_data;
813                 struct list_head *list = &mapping->private_list;
814                 struct address_space *buffer_mapping = mapping->private_data;
815
816                 spin_lock(&buffer_mapping->private_lock);
817                 while (!list_empty(list)) {
818                         struct buffer_head *bh = BH_ENTRY(list->next);
819                         if (buffer_dirty(bh)) {
820                                 ret = 0;
821                                 break;
822                         }
823                         __remove_assoc_queue(bh);
824                 }
825                 spin_unlock(&buffer_mapping->private_lock);
826         }
827         return ret;
828 }
829
830 /*
831  * Create the appropriate buffers when given a page for data area and
832  * the size of each buffer.. Use the bh->b_this_page linked list to
833  * follow the buffers created.  Return NULL if unable to create more
834  * buffers.
835  *
836  * The retry flag is used to differentiate async IO (paging, swapping)
837  * which may not fail from ordinary buffer allocations.
838  */
839 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
840                 bool retry)
841 {
842         struct buffer_head *bh, *head;
843         gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
844         long offset;
845         struct mem_cgroup *memcg, *old_memcg;
846
847         if (retry)
848                 gfp |= __GFP_NOFAIL;
849
850         memcg = get_mem_cgroup_from_page(page);
851         old_memcg = set_active_memcg(memcg);
852
853         head = NULL;
854         offset = PAGE_SIZE;
855         while ((offset -= size) >= 0) {
856                 bh = alloc_buffer_head(gfp);
857                 if (!bh)
858                         goto no_grow;
859
860                 bh->b_this_page = head;
861                 bh->b_blocknr = -1;
862                 head = bh;
863
864                 bh->b_size = size;
865
866                 /* Link the buffer to its page */
867                 set_bh_page(bh, page, offset);
868         }
869 out:
870         set_active_memcg(old_memcg);
871         mem_cgroup_put(memcg);
872         return head;
873 /*
874  * In case anything failed, we just free everything we got.
875  */
876 no_grow:
877         if (head) {
878                 do {
879                         bh = head;
880                         head = head->b_this_page;
881                         free_buffer_head(bh);
882                 } while (head);
883         }
884
885         goto out;
886 }
887 EXPORT_SYMBOL_GPL(alloc_page_buffers);
888
889 static inline void
890 link_dev_buffers(struct page *page, struct buffer_head *head)
891 {
892         struct buffer_head *bh, *tail;
893
894         bh = head;
895         do {
896                 tail = bh;
897                 bh = bh->b_this_page;
898         } while (bh);
899         tail->b_this_page = head;
900         attach_page_private(page, head);
901 }
902
903 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
904 {
905         sector_t retval = ~((sector_t)0);
906         loff_t sz = i_size_read(bdev->bd_inode);
907
908         if (sz) {
909                 unsigned int sizebits = blksize_bits(size);
910                 retval = (sz >> sizebits);
911         }
912         return retval;
913 }
914
915 /*
916  * Initialise the state of a blockdev page's buffers.
917  */ 
918 static sector_t
919 init_page_buffers(struct page *page, struct block_device *bdev,
920                         sector_t block, int size)
921 {
922         struct buffer_head *head = page_buffers(page);
923         struct buffer_head *bh = head;
924         int uptodate = PageUptodate(page);
925         sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
926
927         do {
928                 if (!buffer_mapped(bh)) {
929                         bh->b_end_io = NULL;
930                         bh->b_private = NULL;
931                         bh->b_bdev = bdev;
932                         bh->b_blocknr = block;
933                         if (uptodate)
934                                 set_buffer_uptodate(bh);
935                         if (block < end_block)
936                                 set_buffer_mapped(bh);
937                 }
938                 block++;
939                 bh = bh->b_this_page;
940         } while (bh != head);
941
942         /*
943          * Caller needs to validate requested block against end of device.
944          */
945         return end_block;
946 }
947
948 /*
949  * Create the page-cache page that contains the requested block.
950  *
951  * This is used purely for blockdev mappings.
952  */
953 static int
954 grow_dev_page(struct block_device *bdev, sector_t block,
955               pgoff_t index, int size, int sizebits, gfp_t gfp)
956 {
957         struct inode *inode = bdev->bd_inode;
958         struct page *page;
959         struct buffer_head *bh;
960         sector_t end_block;
961         int ret = 0;
962         gfp_t gfp_mask;
963
964         gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
965
966         /*
967          * XXX: __getblk_slow() can not really deal with failure and
968          * will endlessly loop on improvised global reclaim.  Prefer
969          * looping in the allocator rather than here, at least that
970          * code knows what it's doing.
971          */
972         gfp_mask |= __GFP_NOFAIL;
973
974         page = find_or_create_page(inode->i_mapping, index, gfp_mask);
975
976         BUG_ON(!PageLocked(page));
977
978         if (page_has_buffers(page)) {
979                 bh = page_buffers(page);
980                 if (bh->b_size == size) {
981                         end_block = init_page_buffers(page, bdev,
982                                                 (sector_t)index << sizebits,
983                                                 size);
984                         goto done;
985                 }
986                 if (!try_to_free_buffers(page))
987                         goto failed;
988         }
989
990         /*
991          * Allocate some buffers for this page
992          */
993         bh = alloc_page_buffers(page, size, true);
994
995         /*
996          * Link the page to the buffers and initialise them.  Take the
997          * lock to be atomic wrt __find_get_block(), which does not
998          * run under the page lock.
999          */
1000         spin_lock(&inode->i_mapping->private_lock);
1001         link_dev_buffers(page, bh);
1002         end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1003                         size);
1004         spin_unlock(&inode->i_mapping->private_lock);
1005 done:
1006         ret = (block < end_block) ? 1 : -ENXIO;
1007 failed:
1008         unlock_page(page);
1009         put_page(page);
1010         return ret;
1011 }
1012
1013 /*
1014  * Create buffers for the specified block device block's page.  If
1015  * that page was dirty, the buffers are set dirty also.
1016  */
1017 static int
1018 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1019 {
1020         pgoff_t index;
1021         int sizebits;
1022
1023         sizebits = -1;
1024         do {
1025                 sizebits++;
1026         } while ((size << sizebits) < PAGE_SIZE);
1027
1028         index = block >> sizebits;
1029
1030         /*
1031          * Check for a block which wants to lie outside our maximum possible
1032          * pagecache index.  (this comparison is done using sector_t types).
1033          */
1034         if (unlikely(index != block >> sizebits)) {
1035                 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1036                         "device %pg\n",
1037                         __func__, (unsigned long long)block,
1038                         bdev);
1039                 return -EIO;
1040         }
1041
1042         /* Create a page with the proper size buffers.. */
1043         return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1044 }
1045
1046 static struct buffer_head *
1047 __getblk_slow(struct block_device *bdev, sector_t block,
1048              unsigned size, gfp_t gfp)
1049 {
1050         /* Size must be multiple of hard sectorsize */
1051         if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1052                         (size < 512 || size > PAGE_SIZE))) {
1053                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1054                                         size);
1055                 printk(KERN_ERR "logical block size: %d\n",
1056                                         bdev_logical_block_size(bdev));
1057
1058                 dump_stack();
1059                 return NULL;
1060         }
1061
1062         for (;;) {
1063                 struct buffer_head *bh;
1064                 int ret;
1065
1066                 bh = __find_get_block(bdev, block, size);
1067                 if (bh)
1068                         return bh;
1069
1070                 ret = grow_buffers(bdev, block, size, gfp);
1071                 if (ret < 0)
1072                         return NULL;
1073         }
1074 }
1075
1076 /*
1077  * The relationship between dirty buffers and dirty pages:
1078  *
1079  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1080  * the page is tagged dirty in the page cache.
1081  *
1082  * At all times, the dirtiness of the buffers represents the dirtiness of
1083  * subsections of the page.  If the page has buffers, the page dirty bit is
1084  * merely a hint about the true dirty state.
1085  *
1086  * When a page is set dirty in its entirety, all its buffers are marked dirty
1087  * (if the page has buffers).
1088  *
1089  * When a buffer is marked dirty, its page is dirtied, but the page's other
1090  * buffers are not.
1091  *
1092  * Also.  When blockdev buffers are explicitly read with bread(), they
1093  * individually become uptodate.  But their backing page remains not
1094  * uptodate - even if all of its buffers are uptodate.  A subsequent
1095  * block_read_full_page() against that page will discover all the uptodate
1096  * buffers, will set the page uptodate and will perform no I/O.
1097  */
1098
1099 /**
1100  * mark_buffer_dirty - mark a buffer_head as needing writeout
1101  * @bh: the buffer_head to mark dirty
1102  *
1103  * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1104  * its backing page dirty, then tag the page as dirty in the page cache
1105  * and then attach the address_space's inode to its superblock's dirty
1106  * inode list.
1107  *
1108  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1109  * i_pages lock and mapping->host->i_lock.
1110  */
1111 void mark_buffer_dirty(struct buffer_head *bh)
1112 {
1113         WARN_ON_ONCE(!buffer_uptodate(bh));
1114
1115         trace_block_dirty_buffer(bh);
1116
1117         /*
1118          * Very *carefully* optimize the it-is-already-dirty case.
1119          *
1120          * Don't let the final "is it dirty" escape to before we
1121          * perhaps modified the buffer.
1122          */
1123         if (buffer_dirty(bh)) {
1124                 smp_mb();
1125                 if (buffer_dirty(bh))
1126                         return;
1127         }
1128
1129         if (!test_set_buffer_dirty(bh)) {
1130                 struct page *page = bh->b_page;
1131                 struct address_space *mapping = NULL;
1132
1133                 lock_page_memcg(page);
1134                 if (!TestSetPageDirty(page)) {
1135                         mapping = page_mapping(page);
1136                         if (mapping)
1137                                 __set_page_dirty(page, mapping, 0);
1138                 }
1139                 unlock_page_memcg(page);
1140                 if (mapping)
1141                         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1142         }
1143 }
1144 EXPORT_SYMBOL(mark_buffer_dirty);
1145
1146 void mark_buffer_write_io_error(struct buffer_head *bh)
1147 {
1148         struct super_block *sb;
1149
1150         set_buffer_write_io_error(bh);
1151         /* FIXME: do we need to set this in both places? */
1152         if (bh->b_page && bh->b_page->mapping)
1153                 mapping_set_error(bh->b_page->mapping, -EIO);
1154         if (bh->b_assoc_map)
1155                 mapping_set_error(bh->b_assoc_map, -EIO);
1156         rcu_read_lock();
1157         sb = READ_ONCE(bh->b_bdev->bd_super);
1158         if (sb)
1159                 errseq_set(&sb->s_wb_err, -EIO);
1160         rcu_read_unlock();
1161 }
1162 EXPORT_SYMBOL(mark_buffer_write_io_error);
1163
1164 /*
1165  * Decrement a buffer_head's reference count.  If all buffers against a page
1166  * have zero reference count, are clean and unlocked, and if the page is clean
1167  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1168  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1169  * a page but it ends up not being freed, and buffers may later be reattached).
1170  */
1171 void __brelse(struct buffer_head * buf)
1172 {
1173         if (atomic_read(&buf->b_count)) {
1174                 put_bh(buf);
1175                 return;
1176         }
1177         WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1178 }
1179 EXPORT_SYMBOL(__brelse);
1180
1181 /*
1182  * bforget() is like brelse(), except it discards any
1183  * potentially dirty data.
1184  */
1185 void __bforget(struct buffer_head *bh)
1186 {
1187         clear_buffer_dirty(bh);
1188         if (bh->b_assoc_map) {
1189                 struct address_space *buffer_mapping = bh->b_page->mapping;
1190
1191                 spin_lock(&buffer_mapping->private_lock);
1192                 list_del_init(&bh->b_assoc_buffers);
1193                 bh->b_assoc_map = NULL;
1194                 spin_unlock(&buffer_mapping->private_lock);
1195         }
1196         __brelse(bh);
1197 }
1198 EXPORT_SYMBOL(__bforget);
1199
1200 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1201 {
1202         lock_buffer(bh);
1203         if (buffer_uptodate(bh)) {
1204                 unlock_buffer(bh);
1205                 return bh;
1206         } else {
1207                 get_bh(bh);
1208                 bh->b_end_io = end_buffer_read_sync;
1209                 submit_bh(REQ_OP_READ, 0, bh);
1210                 wait_on_buffer(bh);
1211                 if (buffer_uptodate(bh))
1212                         return bh;
1213         }
1214         brelse(bh);
1215         return NULL;
1216 }
1217
1218 /*
1219  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1220  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1221  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1222  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1223  * CPU's LRUs at the same time.
1224  *
1225  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1226  * sb_find_get_block().
1227  *
1228  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1229  * a local interrupt disable for that.
1230  */
1231
1232 #define BH_LRU_SIZE     16
1233
1234 struct bh_lru {
1235         struct buffer_head *bhs[BH_LRU_SIZE];
1236 };
1237
1238 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1239
1240 #ifdef CONFIG_SMP
1241 #define bh_lru_lock()   local_irq_disable()
1242 #define bh_lru_unlock() local_irq_enable()
1243 #else
1244 #define bh_lru_lock()   preempt_disable()
1245 #define bh_lru_unlock() preempt_enable()
1246 #endif
1247
1248 static inline void check_irqs_on(void)
1249 {
1250 #ifdef irqs_disabled
1251         BUG_ON(irqs_disabled());
1252 #endif
1253 }
1254
1255 /*
1256  * Install a buffer_head into this cpu's LRU.  If not already in the LRU, it is
1257  * inserted at the front, and the buffer_head at the back if any is evicted.
1258  * Or, if already in the LRU it is moved to the front.
1259  */
1260 static void bh_lru_install(struct buffer_head *bh)
1261 {
1262         struct buffer_head *evictee = bh;
1263         struct bh_lru *b;
1264         int i;
1265
1266         check_irqs_on();
1267         bh_lru_lock();
1268
1269         b = this_cpu_ptr(&bh_lrus);
1270         for (i = 0; i < BH_LRU_SIZE; i++) {
1271                 swap(evictee, b->bhs[i]);
1272                 if (evictee == bh) {
1273                         bh_lru_unlock();
1274                         return;
1275                 }
1276         }
1277
1278         get_bh(bh);
1279         bh_lru_unlock();
1280         brelse(evictee);
1281 }
1282
1283 /*
1284  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1285  */
1286 static struct buffer_head *
1287 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1288 {
1289         struct buffer_head *ret = NULL;
1290         unsigned int i;
1291
1292         check_irqs_on();
1293         bh_lru_lock();
1294         for (i = 0; i < BH_LRU_SIZE; i++) {
1295                 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1296
1297                 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1298                     bh->b_size == size) {
1299                         if (i) {
1300                                 while (i) {
1301                                         __this_cpu_write(bh_lrus.bhs[i],
1302                                                 __this_cpu_read(bh_lrus.bhs[i - 1]));
1303                                         i--;
1304                                 }
1305                                 __this_cpu_write(bh_lrus.bhs[0], bh);
1306                         }
1307                         get_bh(bh);
1308                         ret = bh;
1309                         break;
1310                 }
1311         }
1312         bh_lru_unlock();
1313         return ret;
1314 }
1315
1316 /*
1317  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1318  * it in the LRU and mark it as accessed.  If it is not present then return
1319  * NULL
1320  */
1321 struct buffer_head *
1322 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1323 {
1324         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1325
1326         if (bh == NULL) {
1327                 /* __find_get_block_slow will mark the page accessed */
1328                 bh = __find_get_block_slow(bdev, block);
1329                 if (bh)
1330                         bh_lru_install(bh);
1331         } else
1332                 touch_buffer(bh);
1333
1334         return bh;
1335 }
1336 EXPORT_SYMBOL(__find_get_block);
1337
1338 /*
1339  * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1340  * which corresponds to the passed block_device, block and size. The
1341  * returned buffer has its reference count incremented.
1342  *
1343  * __getblk_gfp() will lock up the machine if grow_dev_page's
1344  * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1345  */
1346 struct buffer_head *
1347 __getblk_gfp(struct block_device *bdev, sector_t block,
1348              unsigned size, gfp_t gfp)
1349 {
1350         struct buffer_head *bh = __find_get_block(bdev, block, size);
1351
1352         might_sleep();
1353         if (bh == NULL)
1354                 bh = __getblk_slow(bdev, block, size, gfp);
1355         return bh;
1356 }
1357 EXPORT_SYMBOL(__getblk_gfp);
1358
1359 /*
1360  * Do async read-ahead on a buffer..
1361  */
1362 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1363 {
1364         struct buffer_head *bh = __getblk(bdev, block, size);
1365         if (likely(bh)) {
1366                 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1367                 brelse(bh);
1368         }
1369 }
1370 EXPORT_SYMBOL(__breadahead);
1371
1372 void __breadahead_gfp(struct block_device *bdev, sector_t block, unsigned size,
1373                       gfp_t gfp)
1374 {
1375         struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1376         if (likely(bh)) {
1377                 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1378                 brelse(bh);
1379         }
1380 }
1381 EXPORT_SYMBOL(__breadahead_gfp);
1382
1383 /**
1384  *  __bread_gfp() - reads a specified block and returns the bh
1385  *  @bdev: the block_device to read from
1386  *  @block: number of block
1387  *  @size: size (in bytes) to read
1388  *  @gfp: page allocation flag
1389  *
1390  *  Reads a specified block, and returns buffer head that contains it.
1391  *  The page cache can be allocated from non-movable area
1392  *  not to prevent page migration if you set gfp to zero.
1393  *  It returns NULL if the block was unreadable.
1394  */
1395 struct buffer_head *
1396 __bread_gfp(struct block_device *bdev, sector_t block,
1397                    unsigned size, gfp_t gfp)
1398 {
1399         struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1400
1401         if (likely(bh) && !buffer_uptodate(bh))
1402                 bh = __bread_slow(bh);
1403         return bh;
1404 }
1405 EXPORT_SYMBOL(__bread_gfp);
1406
1407 /*
1408  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1409  * This doesn't race because it runs in each cpu either in irq
1410  * or with preempt disabled.
1411  */
1412 static void invalidate_bh_lru(void *arg)
1413 {
1414         struct bh_lru *b = &get_cpu_var(bh_lrus);
1415         int i;
1416
1417         for (i = 0; i < BH_LRU_SIZE; i++) {
1418                 brelse(b->bhs[i]);
1419                 b->bhs[i] = NULL;
1420         }
1421         put_cpu_var(bh_lrus);
1422 }
1423
1424 static bool has_bh_in_lru(int cpu, void *dummy)
1425 {
1426         struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1427         int i;
1428         
1429         for (i = 0; i < BH_LRU_SIZE; i++) {
1430                 if (b->bhs[i])
1431                         return true;
1432         }
1433
1434         return false;
1435 }
1436
1437 void invalidate_bh_lrus(void)
1438 {
1439         on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1440 }
1441 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1442
1443 void set_bh_page(struct buffer_head *bh,
1444                 struct page *page, unsigned long offset)
1445 {
1446         bh->b_page = page;
1447         BUG_ON(offset >= PAGE_SIZE);
1448         if (PageHighMem(page))
1449                 /*
1450                  * This catches illegal uses and preserves the offset:
1451                  */
1452                 bh->b_data = (char *)(0 + offset);
1453         else
1454                 bh->b_data = page_address(page) + offset;
1455 }
1456 EXPORT_SYMBOL(set_bh_page);
1457
1458 /*
1459  * Called when truncating a buffer on a page completely.
1460  */
1461
1462 /* Bits that are cleared during an invalidate */
1463 #define BUFFER_FLAGS_DISCARD \
1464         (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1465          1 << BH_Delay | 1 << BH_Unwritten)
1466
1467 static void discard_buffer(struct buffer_head * bh)
1468 {
1469         unsigned long b_state, b_state_old;
1470
1471         lock_buffer(bh);
1472         clear_buffer_dirty(bh);
1473         bh->b_bdev = NULL;
1474         b_state = bh->b_state;
1475         for (;;) {
1476                 b_state_old = cmpxchg(&bh->b_state, b_state,
1477                                       (b_state & ~BUFFER_FLAGS_DISCARD));
1478                 if (b_state_old == b_state)
1479                         break;
1480                 b_state = b_state_old;
1481         }
1482         unlock_buffer(bh);
1483 }
1484
1485 /**
1486  * block_invalidatepage - invalidate part or all of a buffer-backed page
1487  *
1488  * @page: the page which is affected
1489  * @offset: start of the range to invalidate
1490  * @length: length of the range to invalidate
1491  *
1492  * block_invalidatepage() is called when all or part of the page has become
1493  * invalidated by a truncate operation.
1494  *
1495  * block_invalidatepage() does not have to release all buffers, but it must
1496  * ensure that no dirty buffer is left outside @offset and that no I/O
1497  * is underway against any of the blocks which are outside the truncation
1498  * point.  Because the caller is about to free (and possibly reuse) those
1499  * blocks on-disk.
1500  */
1501 void block_invalidatepage(struct page *page, unsigned int offset,
1502                           unsigned int length)
1503 {
1504         struct buffer_head *head, *bh, *next;
1505         unsigned int curr_off = 0;
1506         unsigned int stop = length + offset;
1507
1508         BUG_ON(!PageLocked(page));
1509         if (!page_has_buffers(page))
1510                 goto out;
1511
1512         /*
1513          * Check for overflow
1514          */
1515         BUG_ON(stop > PAGE_SIZE || stop < length);
1516
1517         head = page_buffers(page);
1518         bh = head;
1519         do {
1520                 unsigned int next_off = curr_off + bh->b_size;
1521                 next = bh->b_this_page;
1522
1523                 /*
1524                  * Are we still fully in range ?
1525                  */
1526                 if (next_off > stop)
1527                         goto out;
1528
1529                 /*
1530                  * is this block fully invalidated?
1531                  */
1532                 if (offset <= curr_off)
1533                         discard_buffer(bh);
1534                 curr_off = next_off;
1535                 bh = next;
1536         } while (bh != head);
1537
1538         /*
1539          * We release buffers only if the entire page is being invalidated.
1540          * The get_block cached value has been unconditionally invalidated,
1541          * so real IO is not possible anymore.
1542          */
1543         if (length == PAGE_SIZE)
1544                 try_to_release_page(page, 0);
1545 out:
1546         return;
1547 }
1548 EXPORT_SYMBOL(block_invalidatepage);
1549
1550
1551 /*
1552  * We attach and possibly dirty the buffers atomically wrt
1553  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1554  * is already excluded via the page lock.
1555  */
1556 void create_empty_buffers(struct page *page,
1557                         unsigned long blocksize, unsigned long b_state)
1558 {
1559         struct buffer_head *bh, *head, *tail;
1560
1561         head = alloc_page_buffers(page, blocksize, true);
1562         bh = head;
1563         do {
1564                 bh->b_state |= b_state;
1565                 tail = bh;
1566                 bh = bh->b_this_page;
1567         } while (bh);
1568         tail->b_this_page = head;
1569
1570         spin_lock(&page->mapping->private_lock);
1571         if (PageUptodate(page) || PageDirty(page)) {
1572                 bh = head;
1573                 do {
1574                         if (PageDirty(page))
1575                                 set_buffer_dirty(bh);
1576                         if (PageUptodate(page))
1577                                 set_buffer_uptodate(bh);
1578                         bh = bh->b_this_page;
1579                 } while (bh != head);
1580         }
1581         attach_page_private(page, head);
1582         spin_unlock(&page->mapping->private_lock);
1583 }
1584 EXPORT_SYMBOL(create_empty_buffers);
1585
1586 /**
1587  * clean_bdev_aliases: clean a range of buffers in block device
1588  * @bdev: Block device to clean buffers in
1589  * @block: Start of a range of blocks to clean
1590  * @len: Number of blocks to clean
1591  *
1592  * We are taking a range of blocks for data and we don't want writeback of any
1593  * buffer-cache aliases starting from return from this function and until the
1594  * moment when something will explicitly mark the buffer dirty (hopefully that
1595  * will not happen until we will free that block ;-) We don't even need to mark
1596  * it not-uptodate - nobody can expect anything from a newly allocated buffer
1597  * anyway. We used to use unmap_buffer() for such invalidation, but that was
1598  * wrong. We definitely don't want to mark the alias unmapped, for example - it
1599  * would confuse anyone who might pick it with bread() afterwards...
1600  *
1601  * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1602  * writeout I/O going on against recently-freed buffers.  We don't wait on that
1603  * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1604  * need to.  That happens here.
1605  */
1606 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1607 {
1608         struct inode *bd_inode = bdev->bd_inode;
1609         struct address_space *bd_mapping = bd_inode->i_mapping;
1610         struct pagevec pvec;
1611         pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1612         pgoff_t end;
1613         int i, count;
1614         struct buffer_head *bh;
1615         struct buffer_head *head;
1616
1617         end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1618         pagevec_init(&pvec);
1619         while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) {
1620                 count = pagevec_count(&pvec);
1621                 for (i = 0; i < count; i++) {
1622                         struct page *page = pvec.pages[i];
1623
1624                         if (!page_has_buffers(page))
1625                                 continue;
1626                         /*
1627                          * We use page lock instead of bd_mapping->private_lock
1628                          * to pin buffers here since we can afford to sleep and
1629                          * it scales better than a global spinlock lock.
1630                          */
1631                         lock_page(page);
1632                         /* Recheck when the page is locked which pins bhs */
1633                         if (!page_has_buffers(page))
1634                                 goto unlock_page;
1635                         head = page_buffers(page);
1636                         bh = head;
1637                         do {
1638                                 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1639                                         goto next;
1640                                 if (bh->b_blocknr >= block + len)
1641                                         break;
1642                                 clear_buffer_dirty(bh);
1643                                 wait_on_buffer(bh);
1644                                 clear_buffer_req(bh);
1645 next:
1646                                 bh = bh->b_this_page;
1647                         } while (bh != head);
1648 unlock_page:
1649                         unlock_page(page);
1650                 }
1651                 pagevec_release(&pvec);
1652                 cond_resched();
1653                 /* End of range already reached? */
1654                 if (index > end || !index)
1655                         break;
1656         }
1657 }
1658 EXPORT_SYMBOL(clean_bdev_aliases);
1659
1660 /*
1661  * Size is a power-of-two in the range 512..PAGE_SIZE,
1662  * and the case we care about most is PAGE_SIZE.
1663  *
1664  * So this *could* possibly be written with those
1665  * constraints in mind (relevant mostly if some
1666  * architecture has a slow bit-scan instruction)
1667  */
1668 static inline int block_size_bits(unsigned int blocksize)
1669 {
1670         return ilog2(blocksize);
1671 }
1672
1673 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1674 {
1675         BUG_ON(!PageLocked(page));
1676
1677         if (!page_has_buffers(page))
1678                 create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits),
1679                                      b_state);
1680         return page_buffers(page);
1681 }
1682
1683 /*
1684  * NOTE! All mapped/uptodate combinations are valid:
1685  *
1686  *      Mapped  Uptodate        Meaning
1687  *
1688  *      No      No              "unknown" - must do get_block()
1689  *      No      Yes             "hole" - zero-filled
1690  *      Yes     No              "allocated" - allocated on disk, not read in
1691  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1692  *
1693  * "Dirty" is valid only with the last case (mapped+uptodate).
1694  */
1695
1696 /*
1697  * While block_write_full_page is writing back the dirty buffers under
1698  * the page lock, whoever dirtied the buffers may decide to clean them
1699  * again at any time.  We handle that by only looking at the buffer
1700  * state inside lock_buffer().
1701  *
1702  * If block_write_full_page() is called for regular writeback
1703  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1704  * locked buffer.   This only can happen if someone has written the buffer
1705  * directly, with submit_bh().  At the address_space level PageWriteback
1706  * prevents this contention from occurring.
1707  *
1708  * If block_write_full_page() is called with wbc->sync_mode ==
1709  * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1710  * causes the writes to be flagged as synchronous writes.
1711  */
1712 int __block_write_full_page(struct inode *inode, struct page *page,
1713                         get_block_t *get_block, struct writeback_control *wbc,
1714                         bh_end_io_t *handler)
1715 {
1716         int err;
1717         sector_t block;
1718         sector_t last_block;
1719         struct buffer_head *bh, *head;
1720         unsigned int blocksize, bbits;
1721         int nr_underway = 0;
1722         int write_flags = wbc_to_write_flags(wbc);
1723
1724         head = create_page_buffers(page, inode,
1725                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
1726
1727         /*
1728          * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1729          * here, and the (potentially unmapped) buffers may become dirty at
1730          * any time.  If a buffer becomes dirty here after we've inspected it
1731          * then we just miss that fact, and the page stays dirty.
1732          *
1733          * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1734          * handle that here by just cleaning them.
1735          */
1736
1737         bh = head;
1738         blocksize = bh->b_size;
1739         bbits = block_size_bits(blocksize);
1740
1741         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1742         last_block = (i_size_read(inode) - 1) >> bbits;
1743
1744         /*
1745          * Get all the dirty buffers mapped to disk addresses and
1746          * handle any aliases from the underlying blockdev's mapping.
1747          */
1748         do {
1749                 if (block > last_block) {
1750                         /*
1751                          * mapped buffers outside i_size will occur, because
1752                          * this page can be outside i_size when there is a
1753                          * truncate in progress.
1754                          */
1755                         /*
1756                          * The buffer was zeroed by block_write_full_page()
1757                          */
1758                         clear_buffer_dirty(bh);
1759                         set_buffer_uptodate(bh);
1760                 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1761                            buffer_dirty(bh)) {
1762                         WARN_ON(bh->b_size != blocksize);
1763                         err = get_block(inode, block, bh, 1);
1764                         if (err)
1765                                 goto recover;
1766                         clear_buffer_delay(bh);
1767                         if (buffer_new(bh)) {
1768                                 /* blockdev mappings never come here */
1769                                 clear_buffer_new(bh);
1770                                 clean_bdev_bh_alias(bh);
1771                         }
1772                 }
1773                 bh = bh->b_this_page;
1774                 block++;
1775         } while (bh != head);
1776
1777         do {
1778                 if (!buffer_mapped(bh))
1779                         continue;
1780                 /*
1781                  * If it's a fully non-blocking write attempt and we cannot
1782                  * lock the buffer then redirty the page.  Note that this can
1783                  * potentially cause a busy-wait loop from writeback threads
1784                  * and kswapd activity, but those code paths have their own
1785                  * higher-level throttling.
1786                  */
1787                 if (wbc->sync_mode != WB_SYNC_NONE) {
1788                         lock_buffer(bh);
1789                 } else if (!trylock_buffer(bh)) {
1790                         redirty_page_for_writepage(wbc, page);
1791                         continue;
1792                 }
1793                 if (test_clear_buffer_dirty(bh)) {
1794                         mark_buffer_async_write_endio(bh, handler);
1795                 } else {
1796                         unlock_buffer(bh);
1797                 }
1798         } while ((bh = bh->b_this_page) != head);
1799
1800         /*
1801          * The page and its buffers are protected by PageWriteback(), so we can
1802          * drop the bh refcounts early.
1803          */
1804         BUG_ON(PageWriteback(page));
1805         set_page_writeback(page);
1806
1807         do {
1808                 struct buffer_head *next = bh->b_this_page;
1809                 if (buffer_async_write(bh)) {
1810                         submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1811                                         inode->i_write_hint, wbc);
1812                         nr_underway++;
1813                 }
1814                 bh = next;
1815         } while (bh != head);
1816         unlock_page(page);
1817
1818         err = 0;
1819 done:
1820         if (nr_underway == 0) {
1821                 /*
1822                  * The page was marked dirty, but the buffers were
1823                  * clean.  Someone wrote them back by hand with
1824                  * ll_rw_block/submit_bh.  A rare case.
1825                  */
1826                 end_page_writeback(page);
1827
1828                 /*
1829                  * The page and buffer_heads can be released at any time from
1830                  * here on.
1831                  */
1832         }
1833         return err;
1834
1835 recover:
1836         /*
1837          * ENOSPC, or some other error.  We may already have added some
1838          * blocks to the file, so we need to write these out to avoid
1839          * exposing stale data.
1840          * The page is currently locked and not marked for writeback
1841          */
1842         bh = head;
1843         /* Recovery: lock and submit the mapped buffers */
1844         do {
1845                 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1846                     !buffer_delay(bh)) {
1847                         lock_buffer(bh);
1848                         mark_buffer_async_write_endio(bh, handler);
1849                 } else {
1850                         /*
1851                          * The buffer may have been set dirty during
1852                          * attachment to a dirty page.
1853                          */
1854                         clear_buffer_dirty(bh);
1855                 }
1856         } while ((bh = bh->b_this_page) != head);
1857         SetPageError(page);
1858         BUG_ON(PageWriteback(page));
1859         mapping_set_error(page->mapping, err);
1860         set_page_writeback(page);
1861         do {
1862                 struct buffer_head *next = bh->b_this_page;
1863                 if (buffer_async_write(bh)) {
1864                         clear_buffer_dirty(bh);
1865                         submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1866                                         inode->i_write_hint, wbc);
1867                         nr_underway++;
1868                 }
1869                 bh = next;
1870         } while (bh != head);
1871         unlock_page(page);
1872         goto done;
1873 }
1874 EXPORT_SYMBOL(__block_write_full_page);
1875
1876 /*
1877  * If a page has any new buffers, zero them out here, and mark them uptodate
1878  * and dirty so they'll be written out (in order to prevent uninitialised
1879  * block data from leaking). And clear the new bit.
1880  */
1881 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1882 {
1883         unsigned int block_start, block_end;
1884         struct buffer_head *head, *bh;
1885
1886         BUG_ON(!PageLocked(page));
1887         if (!page_has_buffers(page))
1888                 return;
1889
1890         bh = head = page_buffers(page);
1891         block_start = 0;
1892         do {
1893                 block_end = block_start + bh->b_size;
1894
1895                 if (buffer_new(bh)) {
1896                         if (block_end > from && block_start < to) {
1897                                 if (!PageUptodate(page)) {
1898                                         unsigned start, size;
1899
1900                                         start = max(from, block_start);
1901                                         size = min(to, block_end) - start;
1902
1903                                         zero_user(page, start, size);
1904                                         set_buffer_uptodate(bh);
1905                                 }
1906
1907                                 clear_buffer_new(bh);
1908                                 mark_buffer_dirty(bh);
1909                         }
1910                 }
1911
1912                 block_start = block_end;
1913                 bh = bh->b_this_page;
1914         } while (bh != head);
1915 }
1916 EXPORT_SYMBOL(page_zero_new_buffers);
1917
1918 static void
1919 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1920                 struct iomap *iomap)
1921 {
1922         loff_t offset = block << inode->i_blkbits;
1923
1924         bh->b_bdev = iomap->bdev;
1925
1926         /*
1927          * Block points to offset in file we need to map, iomap contains
1928          * the offset at which the map starts. If the map ends before the
1929          * current block, then do not map the buffer and let the caller
1930          * handle it.
1931          */
1932         BUG_ON(offset >= iomap->offset + iomap->length);
1933
1934         switch (iomap->type) {
1935         case IOMAP_HOLE:
1936                 /*
1937                  * If the buffer is not up to date or beyond the current EOF,
1938                  * we need to mark it as new to ensure sub-block zeroing is
1939                  * executed if necessary.
1940                  */
1941                 if (!buffer_uptodate(bh) ||
1942                     (offset >= i_size_read(inode)))
1943                         set_buffer_new(bh);
1944                 break;
1945         case IOMAP_DELALLOC:
1946                 if (!buffer_uptodate(bh) ||
1947                     (offset >= i_size_read(inode)))
1948                         set_buffer_new(bh);
1949                 set_buffer_uptodate(bh);
1950                 set_buffer_mapped(bh);
1951                 set_buffer_delay(bh);
1952                 break;
1953         case IOMAP_UNWRITTEN:
1954                 /*
1955                  * For unwritten regions, we always need to ensure that regions
1956                  * in the block we are not writing to are zeroed. Mark the
1957                  * buffer as new to ensure this.
1958                  */
1959                 set_buffer_new(bh);
1960                 set_buffer_unwritten(bh);
1961                 fallthrough;
1962         case IOMAP_MAPPED:
1963                 if ((iomap->flags & IOMAP_F_NEW) ||
1964                     offset >= i_size_read(inode))
1965                         set_buffer_new(bh);
1966                 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
1967                                 inode->i_blkbits;
1968                 set_buffer_mapped(bh);
1969                 break;
1970         }
1971 }
1972
1973 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1974                 get_block_t *get_block, struct iomap *iomap)
1975 {
1976         unsigned from = pos & (PAGE_SIZE - 1);
1977         unsigned to = from + len;
1978         struct inode *inode = page->mapping->host;
1979         unsigned block_start, block_end;
1980         sector_t block;
1981         int err = 0;
1982         unsigned blocksize, bbits;
1983         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1984
1985         BUG_ON(!PageLocked(page));
1986         BUG_ON(from > PAGE_SIZE);
1987         BUG_ON(to > PAGE_SIZE);
1988         BUG_ON(from > to);
1989
1990         head = create_page_buffers(page, inode, 0);
1991         blocksize = head->b_size;
1992         bbits = block_size_bits(blocksize);
1993
1994         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1995
1996         for(bh = head, block_start = 0; bh != head || !block_start;
1997             block++, block_start=block_end, bh = bh->b_this_page) {
1998                 block_end = block_start + blocksize;
1999                 if (block_end <= from || block_start >= to) {
2000                         if (PageUptodate(page)) {
2001                                 if (!buffer_uptodate(bh))
2002                                         set_buffer_uptodate(bh);
2003                         }
2004                         continue;
2005                 }
2006                 if (buffer_new(bh))
2007                         clear_buffer_new(bh);
2008                 if (!buffer_mapped(bh)) {
2009                         WARN_ON(bh->b_size != blocksize);
2010                         if (get_block) {
2011                                 err = get_block(inode, block, bh, 1);
2012                                 if (err)
2013                                         break;
2014                         } else {
2015                                 iomap_to_bh(inode, block, bh, iomap);
2016                         }
2017
2018                         if (buffer_new(bh)) {
2019                                 clean_bdev_bh_alias(bh);
2020                                 if (PageUptodate(page)) {
2021                                         clear_buffer_new(bh);
2022                                         set_buffer_uptodate(bh);
2023                                         mark_buffer_dirty(bh);
2024                                         continue;
2025                                 }
2026                                 if (block_end > to || block_start < from)
2027                                         zero_user_segments(page,
2028                                                 to, block_end,
2029                                                 block_start, from);
2030                                 continue;
2031                         }
2032                 }
2033                 if (PageUptodate(page)) {
2034                         if (!buffer_uptodate(bh))
2035                                 set_buffer_uptodate(bh);
2036                         continue; 
2037                 }
2038                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2039                     !buffer_unwritten(bh) &&
2040                      (block_start < from || block_end > to)) {
2041                         ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2042                         *wait_bh++=bh;
2043                 }
2044         }
2045         /*
2046          * If we issued read requests - let them complete.
2047          */
2048         while(wait_bh > wait) {
2049                 wait_on_buffer(*--wait_bh);
2050                 if (!buffer_uptodate(*wait_bh))
2051                         err = -EIO;
2052         }
2053         if (unlikely(err))
2054                 page_zero_new_buffers(page, from, to);
2055         return err;
2056 }
2057
2058 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2059                 get_block_t *get_block)
2060 {
2061         return __block_write_begin_int(page, pos, len, get_block, NULL);
2062 }
2063 EXPORT_SYMBOL(__block_write_begin);
2064
2065 static int __block_commit_write(struct inode *inode, struct page *page,
2066                 unsigned from, unsigned to)
2067 {
2068         unsigned block_start, block_end;
2069         int partial = 0;
2070         unsigned blocksize;
2071         struct buffer_head *bh, *head;
2072
2073         bh = head = page_buffers(page);
2074         blocksize = bh->b_size;
2075
2076         block_start = 0;
2077         do {
2078                 block_end = block_start + blocksize;
2079                 if (block_end <= from || block_start >= to) {
2080                         if (!buffer_uptodate(bh))
2081                                 partial = 1;
2082                 } else {
2083                         set_buffer_uptodate(bh);
2084                         mark_buffer_dirty(bh);
2085                 }
2086                 clear_buffer_new(bh);
2087
2088                 block_start = block_end;
2089                 bh = bh->b_this_page;
2090         } while (bh != head);
2091
2092         /*
2093          * If this is a partial write which happened to make all buffers
2094          * uptodate then we can optimize away a bogus readpage() for
2095          * the next read(). Here we 'discover' whether the page went
2096          * uptodate as a result of this (potentially partial) write.
2097          */
2098         if (!partial)
2099                 SetPageUptodate(page);
2100         return 0;
2101 }
2102
2103 /*
2104  * block_write_begin takes care of the basic task of block allocation and
2105  * bringing partial write blocks uptodate first.
2106  *
2107  * The filesystem needs to handle block truncation upon failure.
2108  */
2109 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2110                 unsigned flags, struct page **pagep, get_block_t *get_block)
2111 {
2112         pgoff_t index = pos >> PAGE_SHIFT;
2113         struct page *page;
2114         int status;
2115
2116         page = grab_cache_page_write_begin(mapping, index, flags);
2117         if (!page)
2118                 return -ENOMEM;
2119
2120         status = __block_write_begin(page, pos, len, get_block);
2121         if (unlikely(status)) {
2122                 unlock_page(page);
2123                 put_page(page);
2124                 page = NULL;
2125         }
2126
2127         *pagep = page;
2128         return status;
2129 }
2130 EXPORT_SYMBOL(block_write_begin);
2131
2132 int block_write_end(struct file *file, struct address_space *mapping,
2133                         loff_t pos, unsigned len, unsigned copied,
2134                         struct page *page, void *fsdata)
2135 {
2136         struct inode *inode = mapping->host;
2137         unsigned start;
2138
2139         start = pos & (PAGE_SIZE - 1);
2140
2141         if (unlikely(copied < len)) {
2142                 /*
2143                  * The buffers that were written will now be uptodate, so we
2144                  * don't have to worry about a readpage reading them and
2145                  * overwriting a partial write. However if we have encountered
2146                  * a short write and only partially written into a buffer, it
2147                  * will not be marked uptodate, so a readpage might come in and
2148                  * destroy our partial write.
2149                  *
2150                  * Do the simplest thing, and just treat any short write to a
2151                  * non uptodate page as a zero-length write, and force the
2152                  * caller to redo the whole thing.
2153                  */
2154                 if (!PageUptodate(page))
2155                         copied = 0;
2156
2157                 page_zero_new_buffers(page, start+copied, start+len);
2158         }
2159         flush_dcache_page(page);
2160
2161         /* This could be a short (even 0-length) commit */
2162         __block_commit_write(inode, page, start, start+copied);
2163
2164         return copied;
2165 }
2166 EXPORT_SYMBOL(block_write_end);
2167
2168 int generic_write_end(struct file *file, struct address_space *mapping,
2169                         loff_t pos, unsigned len, unsigned copied,
2170                         struct page *page, void *fsdata)
2171 {
2172         struct inode *inode = mapping->host;
2173         loff_t old_size = inode->i_size;
2174         bool i_size_changed = false;
2175
2176         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2177
2178         /*
2179          * No need to use i_size_read() here, the i_size cannot change under us
2180          * because we hold i_rwsem.
2181          *
2182          * But it's important to update i_size while still holding page lock:
2183          * page writeout could otherwise come in and zero beyond i_size.
2184          */
2185         if (pos + copied > inode->i_size) {
2186                 i_size_write(inode, pos + copied);
2187                 i_size_changed = true;
2188         }
2189
2190         unlock_page(page);
2191         put_page(page);
2192
2193         if (old_size < pos)
2194                 pagecache_isize_extended(inode, old_size, pos);
2195         /*
2196          * Don't mark the inode dirty under page lock. First, it unnecessarily
2197          * makes the holding time of page lock longer. Second, it forces lock
2198          * ordering of page lock and transaction start for journaling
2199          * filesystems.
2200          */
2201         if (i_size_changed)
2202                 mark_inode_dirty(inode);
2203         return copied;
2204 }
2205 EXPORT_SYMBOL(generic_write_end);
2206
2207 /*
2208  * block_is_partially_uptodate checks whether buffers within a page are
2209  * uptodate or not.
2210  *
2211  * Returns true if all buffers which correspond to a file portion
2212  * we want to read are uptodate.
2213  */
2214 int block_is_partially_uptodate(struct page *page, unsigned long from,
2215                                         unsigned long count)
2216 {
2217         unsigned block_start, block_end, blocksize;
2218         unsigned to;
2219         struct buffer_head *bh, *head;
2220         int ret = 1;
2221
2222         if (!page_has_buffers(page))
2223                 return 0;
2224
2225         head = page_buffers(page);
2226         blocksize = head->b_size;
2227         to = min_t(unsigned, PAGE_SIZE - from, count);
2228         to = from + to;
2229         if (from < blocksize && to > PAGE_SIZE - blocksize)
2230                 return 0;
2231
2232         bh = head;
2233         block_start = 0;
2234         do {
2235                 block_end = block_start + blocksize;
2236                 if (block_end > from && block_start < to) {
2237                         if (!buffer_uptodate(bh)) {
2238                                 ret = 0;
2239                                 break;
2240                         }
2241                         if (block_end >= to)
2242                                 break;
2243                 }
2244                 block_start = block_end;
2245                 bh = bh->b_this_page;
2246         } while (bh != head);
2247
2248         return ret;
2249 }
2250 EXPORT_SYMBOL(block_is_partially_uptodate);
2251
2252 /*
2253  * Generic "read page" function for block devices that have the normal
2254  * get_block functionality. This is most of the block device filesystems.
2255  * Reads the page asynchronously --- the unlock_buffer() and
2256  * set/clear_buffer_uptodate() functions propagate buffer state into the
2257  * page struct once IO has completed.
2258  */
2259 int block_read_full_page(struct page *page, get_block_t *get_block)
2260 {
2261         struct inode *inode = page->mapping->host;
2262         sector_t iblock, lblock;
2263         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2264         unsigned int blocksize, bbits;
2265         int nr, i;
2266         int fully_mapped = 1;
2267
2268         head = create_page_buffers(page, inode, 0);
2269         blocksize = head->b_size;
2270         bbits = block_size_bits(blocksize);
2271
2272         iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2273         lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2274         bh = head;
2275         nr = 0;
2276         i = 0;
2277
2278         do {
2279                 if (buffer_uptodate(bh))
2280                         continue;
2281
2282                 if (!buffer_mapped(bh)) {
2283                         int err = 0;
2284
2285                         fully_mapped = 0;
2286                         if (iblock < lblock) {
2287                                 WARN_ON(bh->b_size != blocksize);
2288                                 err = get_block(inode, iblock, bh, 0);
2289                                 if (err)
2290                                         SetPageError(page);
2291                         }
2292                         if (!buffer_mapped(bh)) {
2293                                 zero_user(page, i * blocksize, blocksize);
2294                                 if (!err)
2295                                         set_buffer_uptodate(bh);
2296                                 continue;
2297                         }
2298                         /*
2299                          * get_block() might have updated the buffer
2300                          * synchronously
2301                          */
2302                         if (buffer_uptodate(bh))
2303                                 continue;
2304                 }
2305                 arr[nr++] = bh;
2306         } while (i++, iblock++, (bh = bh->b_this_page) != head);
2307
2308         if (fully_mapped)
2309                 SetPageMappedToDisk(page);
2310
2311         if (!nr) {
2312                 /*
2313                  * All buffers are uptodate - we can set the page uptodate
2314                  * as well. But not if get_block() returned an error.
2315                  */
2316                 if (!PageError(page))
2317                         SetPageUptodate(page);
2318                 unlock_page(page);
2319                 return 0;
2320         }
2321
2322         /* Stage two: lock the buffers */
2323         for (i = 0; i < nr; i++) {
2324                 bh = arr[i];
2325                 lock_buffer(bh);
2326                 mark_buffer_async_read(bh);
2327         }
2328
2329         /*
2330          * Stage 3: start the IO.  Check for uptodateness
2331          * inside the buffer lock in case another process reading
2332          * the underlying blockdev brought it uptodate (the sct fix).
2333          */
2334         for (i = 0; i < nr; i++) {
2335                 bh = arr[i];
2336                 if (buffer_uptodate(bh))
2337                         end_buffer_async_read(bh, 1);
2338                 else
2339                         submit_bh(REQ_OP_READ, 0, bh);
2340         }
2341         return 0;
2342 }
2343 EXPORT_SYMBOL(block_read_full_page);
2344
2345 /* utility function for filesystems that need to do work on expanding
2346  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2347  * deal with the hole.  
2348  */
2349 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2350 {
2351         struct address_space *mapping = inode->i_mapping;
2352         struct page *page;
2353         void *fsdata;
2354         int err;
2355
2356         err = inode_newsize_ok(inode, size);
2357         if (err)
2358                 goto out;
2359
2360         err = pagecache_write_begin(NULL, mapping, size, 0,
2361                                     AOP_FLAG_CONT_EXPAND, &page, &fsdata);
2362         if (err)
2363                 goto out;
2364
2365         err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2366         BUG_ON(err > 0);
2367
2368 out:
2369         return err;
2370 }
2371 EXPORT_SYMBOL(generic_cont_expand_simple);
2372
2373 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2374                             loff_t pos, loff_t *bytes)
2375 {
2376         struct inode *inode = mapping->host;
2377         unsigned int blocksize = i_blocksize(inode);
2378         struct page *page;
2379         void *fsdata;
2380         pgoff_t index, curidx;
2381         loff_t curpos;
2382         unsigned zerofrom, offset, len;
2383         int err = 0;
2384
2385         index = pos >> PAGE_SHIFT;
2386         offset = pos & ~PAGE_MASK;
2387
2388         while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2389                 zerofrom = curpos & ~PAGE_MASK;
2390                 if (zerofrom & (blocksize-1)) {
2391                         *bytes |= (blocksize-1);
2392                         (*bytes)++;
2393                 }
2394                 len = PAGE_SIZE - zerofrom;
2395
2396                 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2397                                             &page, &fsdata);
2398                 if (err)
2399                         goto out;
2400                 zero_user(page, zerofrom, len);
2401                 err = pagecache_write_end(file, mapping, curpos, len, len,
2402                                                 page, fsdata);
2403                 if (err < 0)
2404                         goto out;
2405                 BUG_ON(err != len);
2406                 err = 0;
2407
2408                 balance_dirty_pages_ratelimited(mapping);
2409
2410                 if (fatal_signal_pending(current)) {
2411                         err = -EINTR;
2412                         goto out;
2413                 }
2414         }
2415
2416         /* page covers the boundary, find the boundary offset */
2417         if (index == curidx) {
2418                 zerofrom = curpos & ~PAGE_MASK;
2419                 /* if we will expand the thing last block will be filled */
2420                 if (offset <= zerofrom) {
2421                         goto out;
2422                 }
2423                 if (zerofrom & (blocksize-1)) {
2424                         *bytes |= (blocksize-1);
2425                         (*bytes)++;
2426                 }
2427                 len = offset - zerofrom;
2428
2429                 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2430                                             &page, &fsdata);
2431                 if (err)
2432                         goto out;
2433                 zero_user(page, zerofrom, len);
2434                 err = pagecache_write_end(file, mapping, curpos, len, len,
2435                                                 page, fsdata);
2436                 if (err < 0)
2437                         goto out;
2438                 BUG_ON(err != len);
2439                 err = 0;
2440         }
2441 out:
2442         return err;
2443 }
2444
2445 /*
2446  * For moronic filesystems that do not allow holes in file.
2447  * We may have to extend the file.
2448  */
2449 int cont_write_begin(struct file *file, struct address_space *mapping,
2450                         loff_t pos, unsigned len, unsigned flags,
2451                         struct page **pagep, void **fsdata,
2452                         get_block_t *get_block, loff_t *bytes)
2453 {
2454         struct inode *inode = mapping->host;
2455         unsigned int blocksize = i_blocksize(inode);
2456         unsigned int zerofrom;
2457         int err;
2458
2459         err = cont_expand_zero(file, mapping, pos, bytes);
2460         if (err)
2461                 return err;
2462
2463         zerofrom = *bytes & ~PAGE_MASK;
2464         if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2465                 *bytes |= (blocksize-1);
2466                 (*bytes)++;
2467         }
2468
2469         return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2470 }
2471 EXPORT_SYMBOL(cont_write_begin);
2472
2473 int block_commit_write(struct page *page, unsigned from, unsigned to)
2474 {
2475         struct inode *inode = page->mapping->host;
2476         __block_commit_write(inode,page,from,to);
2477         return 0;
2478 }
2479 EXPORT_SYMBOL(block_commit_write);
2480
2481 /*
2482  * block_page_mkwrite() is not allowed to change the file size as it gets
2483  * called from a page fault handler when a page is first dirtied. Hence we must
2484  * be careful to check for EOF conditions here. We set the page up correctly
2485  * for a written page which means we get ENOSPC checking when writing into
2486  * holes and correct delalloc and unwritten extent mapping on filesystems that
2487  * support these features.
2488  *
2489  * We are not allowed to take the i_mutex here so we have to play games to
2490  * protect against truncate races as the page could now be beyond EOF.  Because
2491  * truncate writes the inode size before removing pages, once we have the
2492  * page lock we can determine safely if the page is beyond EOF. If it is not
2493  * beyond EOF, then the page is guaranteed safe against truncation until we
2494  * unlock the page.
2495  *
2496  * Direct callers of this function should protect against filesystem freezing
2497  * using sb_start_pagefault() - sb_end_pagefault() functions.
2498  */
2499 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2500                          get_block_t get_block)
2501 {
2502         struct page *page = vmf->page;
2503         struct inode *inode = file_inode(vma->vm_file);
2504         unsigned long end;
2505         loff_t size;
2506         int ret;
2507
2508         lock_page(page);
2509         size = i_size_read(inode);
2510         if ((page->mapping != inode->i_mapping) ||
2511             (page_offset(page) > size)) {
2512                 /* We overload EFAULT to mean page got truncated */
2513                 ret = -EFAULT;
2514                 goto out_unlock;
2515         }
2516
2517         /* page is wholly or partially inside EOF */
2518         if (((page->index + 1) << PAGE_SHIFT) > size)
2519                 end = size & ~PAGE_MASK;
2520         else
2521                 end = PAGE_SIZE;
2522
2523         ret = __block_write_begin(page, 0, end, get_block);
2524         if (!ret)
2525                 ret = block_commit_write(page, 0, end);
2526
2527         if (unlikely(ret < 0))
2528                 goto out_unlock;
2529         set_page_dirty(page);
2530         wait_for_stable_page(page);
2531         return 0;
2532 out_unlock:
2533         unlock_page(page);
2534         return ret;
2535 }
2536 EXPORT_SYMBOL(block_page_mkwrite);
2537
2538 /*
2539  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2540  * immediately, while under the page lock.  So it needs a special end_io
2541  * handler which does not touch the bh after unlocking it.
2542  */
2543 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2544 {
2545         __end_buffer_read_notouch(bh, uptodate);
2546 }
2547
2548 /*
2549  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2550  * the page (converting it to circular linked list and taking care of page
2551  * dirty races).
2552  */
2553 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2554 {
2555         struct buffer_head *bh;
2556
2557         BUG_ON(!PageLocked(page));
2558
2559         spin_lock(&page->mapping->private_lock);
2560         bh = head;
2561         do {
2562                 if (PageDirty(page))
2563                         set_buffer_dirty(bh);
2564                 if (!bh->b_this_page)
2565                         bh->b_this_page = head;
2566                 bh = bh->b_this_page;
2567         } while (bh != head);
2568         attach_page_private(page, head);
2569         spin_unlock(&page->mapping->private_lock);
2570 }
2571
2572 /*
2573  * On entry, the page is fully not uptodate.
2574  * On exit the page is fully uptodate in the areas outside (from,to)
2575  * The filesystem needs to handle block truncation upon failure.
2576  */
2577 int nobh_write_begin(struct address_space *mapping,
2578                         loff_t pos, unsigned len, unsigned flags,
2579                         struct page **pagep, void **fsdata,
2580                         get_block_t *get_block)
2581 {
2582         struct inode *inode = mapping->host;
2583         const unsigned blkbits = inode->i_blkbits;
2584         const unsigned blocksize = 1 << blkbits;
2585         struct buffer_head *head, *bh;
2586         struct page *page;
2587         pgoff_t index;
2588         unsigned from, to;
2589         unsigned block_in_page;
2590         unsigned block_start, block_end;
2591         sector_t block_in_file;
2592         int nr_reads = 0;
2593         int ret = 0;
2594         int is_mapped_to_disk = 1;
2595
2596         index = pos >> PAGE_SHIFT;
2597         from = pos & (PAGE_SIZE - 1);
2598         to = from + len;
2599
2600         page = grab_cache_page_write_begin(mapping, index, flags);
2601         if (!page)
2602                 return -ENOMEM;
2603         *pagep = page;
2604         *fsdata = NULL;
2605
2606         if (page_has_buffers(page)) {
2607                 ret = __block_write_begin(page, pos, len, get_block);
2608                 if (unlikely(ret))
2609                         goto out_release;
2610                 return ret;
2611         }
2612
2613         if (PageMappedToDisk(page))
2614                 return 0;
2615
2616         /*
2617          * Allocate buffers so that we can keep track of state, and potentially
2618          * attach them to the page if an error occurs. In the common case of
2619          * no error, they will just be freed again without ever being attached
2620          * to the page (which is all OK, because we're under the page lock).
2621          *
2622          * Be careful: the buffer linked list is a NULL terminated one, rather
2623          * than the circular one we're used to.
2624          */
2625         head = alloc_page_buffers(page, blocksize, false);
2626         if (!head) {
2627                 ret = -ENOMEM;
2628                 goto out_release;
2629         }
2630
2631         block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2632
2633         /*
2634          * We loop across all blocks in the page, whether or not they are
2635          * part of the affected region.  This is so we can discover if the
2636          * page is fully mapped-to-disk.
2637          */
2638         for (block_start = 0, block_in_page = 0, bh = head;
2639                   block_start < PAGE_SIZE;
2640                   block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2641                 int create;
2642
2643                 block_end = block_start + blocksize;
2644                 bh->b_state = 0;
2645                 create = 1;
2646                 if (block_start >= to)
2647                         create = 0;
2648                 ret = get_block(inode, block_in_file + block_in_page,
2649                                         bh, create);
2650                 if (ret)
2651                         goto failed;
2652                 if (!buffer_mapped(bh))
2653                         is_mapped_to_disk = 0;
2654                 if (buffer_new(bh))
2655                         clean_bdev_bh_alias(bh);
2656                 if (PageUptodate(page)) {
2657                         set_buffer_uptodate(bh);
2658                         continue;
2659                 }
2660                 if (buffer_new(bh) || !buffer_mapped(bh)) {
2661                         zero_user_segments(page, block_start, from,
2662                                                         to, block_end);
2663                         continue;
2664                 }
2665                 if (buffer_uptodate(bh))
2666                         continue;       /* reiserfs does this */
2667                 if (block_start < from || block_end > to) {
2668                         lock_buffer(bh);
2669                         bh->b_end_io = end_buffer_read_nobh;
2670                         submit_bh(REQ_OP_READ, 0, bh);
2671                         nr_reads++;
2672                 }
2673         }
2674
2675         if (nr_reads) {
2676                 /*
2677                  * The page is locked, so these buffers are protected from
2678                  * any VM or truncate activity.  Hence we don't need to care
2679                  * for the buffer_head refcounts.
2680                  */
2681                 for (bh = head; bh; bh = bh->b_this_page) {
2682                         wait_on_buffer(bh);
2683                         if (!buffer_uptodate(bh))
2684                                 ret = -EIO;
2685                 }
2686                 if (ret)
2687                         goto failed;
2688         }
2689
2690         if (is_mapped_to_disk)
2691                 SetPageMappedToDisk(page);
2692
2693         *fsdata = head; /* to be released by nobh_write_end */
2694
2695         return 0;
2696
2697 failed:
2698         BUG_ON(!ret);
2699         /*
2700          * Error recovery is a bit difficult. We need to zero out blocks that
2701          * were newly allocated, and dirty them to ensure they get written out.
2702          * Buffers need to be attached to the page at this point, otherwise
2703          * the handling of potential IO errors during writeout would be hard
2704          * (could try doing synchronous writeout, but what if that fails too?)
2705          */
2706         attach_nobh_buffers(page, head);
2707         page_zero_new_buffers(page, from, to);
2708
2709 out_release:
2710         unlock_page(page);
2711         put_page(page);
2712         *pagep = NULL;
2713
2714         return ret;
2715 }
2716 EXPORT_SYMBOL(nobh_write_begin);
2717
2718 int nobh_write_end(struct file *file, struct address_space *mapping,
2719                         loff_t pos, unsigned len, unsigned copied,
2720                         struct page *page, void *fsdata)
2721 {
2722         struct inode *inode = page->mapping->host;
2723         struct buffer_head *head = fsdata;
2724         struct buffer_head *bh;
2725         BUG_ON(fsdata != NULL && page_has_buffers(page));
2726
2727         if (unlikely(copied < len) && head)
2728                 attach_nobh_buffers(page, head);
2729         if (page_has_buffers(page))
2730                 return generic_write_end(file, mapping, pos, len,
2731                                         copied, page, fsdata);
2732
2733         SetPageUptodate(page);
2734         set_page_dirty(page);
2735         if (pos+copied > inode->i_size) {
2736                 i_size_write(inode, pos+copied);
2737                 mark_inode_dirty(inode);
2738         }
2739
2740         unlock_page(page);
2741         put_page(page);
2742
2743         while (head) {
2744                 bh = head;
2745                 head = head->b_this_page;
2746                 free_buffer_head(bh);
2747         }
2748
2749         return copied;
2750 }
2751 EXPORT_SYMBOL(nobh_write_end);
2752
2753 /*
2754  * nobh_writepage() - based on block_full_write_page() except
2755  * that it tries to operate without attaching bufferheads to
2756  * the page.
2757  */
2758 int nobh_writepage(struct page *page, get_block_t *get_block,
2759                         struct writeback_control *wbc)
2760 {
2761         struct inode * const inode = page->mapping->host;
2762         loff_t i_size = i_size_read(inode);
2763         const pgoff_t end_index = i_size >> PAGE_SHIFT;
2764         unsigned offset;
2765         int ret;
2766
2767         /* Is the page fully inside i_size? */
2768         if (page->index < end_index)
2769                 goto out;
2770
2771         /* Is the page fully outside i_size? (truncate in progress) */
2772         offset = i_size & (PAGE_SIZE-1);
2773         if (page->index >= end_index+1 || !offset) {
2774                 unlock_page(page);
2775                 return 0; /* don't care */
2776         }
2777
2778         /*
2779          * The page straddles i_size.  It must be zeroed out on each and every
2780          * writepage invocation because it may be mmapped.  "A file is mapped
2781          * in multiples of the page size.  For a file that is not a multiple of
2782          * the  page size, the remaining memory is zeroed when mapped, and
2783          * writes to that region are not written out to the file."
2784          */
2785         zero_user_segment(page, offset, PAGE_SIZE);
2786 out:
2787         ret = mpage_writepage(page, get_block, wbc);
2788         if (ret == -EAGAIN)
2789                 ret = __block_write_full_page(inode, page, get_block, wbc,
2790                                               end_buffer_async_write);
2791         return ret;
2792 }
2793 EXPORT_SYMBOL(nobh_writepage);
2794
2795 int nobh_truncate_page(struct address_space *mapping,
2796                         loff_t from, get_block_t *get_block)
2797 {
2798         pgoff_t index = from >> PAGE_SHIFT;
2799         unsigned offset = from & (PAGE_SIZE-1);
2800         unsigned blocksize;
2801         sector_t iblock;
2802         unsigned length, pos;
2803         struct inode *inode = mapping->host;
2804         struct page *page;
2805         struct buffer_head map_bh;
2806         int err;
2807
2808         blocksize = i_blocksize(inode);
2809         length = offset & (blocksize - 1);
2810
2811         /* Block boundary? Nothing to do */
2812         if (!length)
2813                 return 0;
2814
2815         length = blocksize - length;
2816         iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2817
2818         page = grab_cache_page(mapping, index);
2819         err = -ENOMEM;
2820         if (!page)
2821                 goto out;
2822
2823         if (page_has_buffers(page)) {
2824 has_buffers:
2825                 unlock_page(page);
2826                 put_page(page);
2827                 return block_truncate_page(mapping, from, get_block);
2828         }
2829
2830         /* Find the buffer that contains "offset" */
2831         pos = blocksize;
2832         while (offset >= pos) {
2833                 iblock++;
2834                 pos += blocksize;
2835         }
2836
2837         map_bh.b_size = blocksize;
2838         map_bh.b_state = 0;
2839         err = get_block(inode, iblock, &map_bh, 0);
2840         if (err)
2841                 goto unlock;
2842         /* unmapped? It's a hole - nothing to do */
2843         if (!buffer_mapped(&map_bh))
2844                 goto unlock;
2845
2846         /* Ok, it's mapped. Make sure it's up-to-date */
2847         if (!PageUptodate(page)) {
2848                 err = mapping->a_ops->readpage(NULL, page);
2849                 if (err) {
2850                         put_page(page);
2851                         goto out;
2852                 }
2853                 lock_page(page);
2854                 if (!PageUptodate(page)) {
2855                         err = -EIO;
2856                         goto unlock;
2857                 }
2858                 if (page_has_buffers(page))
2859                         goto has_buffers;
2860         }
2861         zero_user(page, offset, length);
2862         set_page_dirty(page);
2863         err = 0;
2864
2865 unlock:
2866         unlock_page(page);
2867         put_page(page);
2868 out:
2869         return err;
2870 }
2871 EXPORT_SYMBOL(nobh_truncate_page);
2872
2873 int block_truncate_page(struct address_space *mapping,
2874                         loff_t from, get_block_t *get_block)
2875 {
2876         pgoff_t index = from >> PAGE_SHIFT;
2877         unsigned offset = from & (PAGE_SIZE-1);
2878         unsigned blocksize;
2879         sector_t iblock;
2880         unsigned length, pos;
2881         struct inode *inode = mapping->host;
2882         struct page *page;
2883         struct buffer_head *bh;
2884         int err;
2885
2886         blocksize = i_blocksize(inode);
2887         length = offset & (blocksize - 1);
2888
2889         /* Block boundary? Nothing to do */
2890         if (!length)
2891                 return 0;
2892
2893         length = blocksize - length;
2894         iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2895         
2896         page = grab_cache_page(mapping, index);
2897         err = -ENOMEM;
2898         if (!page)
2899                 goto out;
2900
2901         if (!page_has_buffers(page))
2902                 create_empty_buffers(page, blocksize, 0);
2903
2904         /* Find the buffer that contains "offset" */
2905         bh = page_buffers(page);
2906         pos = blocksize;
2907         while (offset >= pos) {
2908                 bh = bh->b_this_page;
2909                 iblock++;
2910                 pos += blocksize;
2911         }
2912
2913         err = 0;
2914         if (!buffer_mapped(bh)) {
2915                 WARN_ON(bh->b_size != blocksize);
2916                 err = get_block(inode, iblock, bh, 0);
2917                 if (err)
2918                         goto unlock;
2919                 /* unmapped? It's a hole - nothing to do */
2920                 if (!buffer_mapped(bh))
2921                         goto unlock;
2922         }
2923
2924         /* Ok, it's mapped. Make sure it's up-to-date */
2925         if (PageUptodate(page))
2926                 set_buffer_uptodate(bh);
2927
2928         if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2929                 err = -EIO;
2930                 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2931                 wait_on_buffer(bh);
2932                 /* Uhhuh. Read error. Complain and punt. */
2933                 if (!buffer_uptodate(bh))
2934                         goto unlock;
2935         }
2936
2937         zero_user(page, offset, length);
2938         mark_buffer_dirty(bh);
2939         err = 0;
2940
2941 unlock:
2942         unlock_page(page);
2943         put_page(page);
2944 out:
2945         return err;
2946 }
2947 EXPORT_SYMBOL(block_truncate_page);
2948
2949 /*
2950  * The generic ->writepage function for buffer-backed address_spaces
2951  */
2952 int block_write_full_page(struct page *page, get_block_t *get_block,
2953                         struct writeback_control *wbc)
2954 {
2955         struct inode * const inode = page->mapping->host;
2956         loff_t i_size = i_size_read(inode);
2957         const pgoff_t end_index = i_size >> PAGE_SHIFT;
2958         unsigned offset;
2959
2960         /* Is the page fully inside i_size? */
2961         if (page->index < end_index)
2962                 return __block_write_full_page(inode, page, get_block, wbc,
2963                                                end_buffer_async_write);
2964
2965         /* Is the page fully outside i_size? (truncate in progress) */
2966         offset = i_size & (PAGE_SIZE-1);
2967         if (page->index >= end_index+1 || !offset) {
2968                 unlock_page(page);
2969                 return 0; /* don't care */
2970         }
2971
2972         /*
2973          * The page straddles i_size.  It must be zeroed out on each and every
2974          * writepage invocation because it may be mmapped.  "A file is mapped
2975          * in multiples of the page size.  For a file that is not a multiple of
2976          * the  page size, the remaining memory is zeroed when mapped, and
2977          * writes to that region are not written out to the file."
2978          */
2979         zero_user_segment(page, offset, PAGE_SIZE);
2980         return __block_write_full_page(inode, page, get_block, wbc,
2981                                                         end_buffer_async_write);
2982 }
2983 EXPORT_SYMBOL(block_write_full_page);
2984
2985 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2986                             get_block_t *get_block)
2987 {
2988         struct inode *inode = mapping->host;
2989         struct buffer_head tmp = {
2990                 .b_size = i_blocksize(inode),
2991         };
2992
2993         get_block(inode, block, &tmp, 0);
2994         return tmp.b_blocknr;
2995 }
2996 EXPORT_SYMBOL(generic_block_bmap);
2997
2998 static void end_bio_bh_io_sync(struct bio *bio)
2999 {
3000         struct buffer_head *bh = bio->bi_private;
3001
3002         if (unlikely(bio_flagged(bio, BIO_QUIET)))
3003                 set_bit(BH_Quiet, &bh->b_state);
3004
3005         bh->b_end_io(bh, !bio->bi_status);
3006         bio_put(bio);
3007 }
3008
3009 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3010                          enum rw_hint write_hint, struct writeback_control *wbc)
3011 {
3012         struct bio *bio;
3013
3014         BUG_ON(!buffer_locked(bh));
3015         BUG_ON(!buffer_mapped(bh));
3016         BUG_ON(!bh->b_end_io);
3017         BUG_ON(buffer_delay(bh));
3018         BUG_ON(buffer_unwritten(bh));
3019
3020         /*
3021          * Only clear out a write error when rewriting
3022          */
3023         if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3024                 clear_buffer_write_io_error(bh);
3025
3026         bio = bio_alloc(GFP_NOIO, 1);
3027
3028         fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
3029
3030         bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3031         bio_set_dev(bio, bh->b_bdev);
3032         bio->bi_write_hint = write_hint;
3033
3034         bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3035         BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3036
3037         bio->bi_end_io = end_bio_bh_io_sync;
3038         bio->bi_private = bh;
3039
3040         if (buffer_meta(bh))
3041                 op_flags |= REQ_META;
3042         if (buffer_prio(bh))
3043                 op_flags |= REQ_PRIO;
3044         bio_set_op_attrs(bio, op, op_flags);
3045
3046         /* Take care of bh's that straddle the end of the device */
3047         guard_bio_eod(bio);
3048
3049         if (wbc) {
3050                 wbc_init_bio(wbc, bio);
3051                 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
3052         }
3053
3054         submit_bio(bio);
3055         return 0;
3056 }
3057
3058 int submit_bh(int op, int op_flags, struct buffer_head *bh)
3059 {
3060         return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3061 }
3062 EXPORT_SYMBOL(submit_bh);
3063
3064 /**
3065  * ll_rw_block: low-level access to block devices (DEPRECATED)
3066  * @op: whether to %READ or %WRITE
3067  * @op_flags: req_flag_bits
3068  * @nr: number of &struct buffer_heads in the array
3069  * @bhs: array of pointers to &struct buffer_head
3070  *
3071  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3072  * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3073  * @op_flags contains flags modifying the detailed I/O behavior, most notably
3074  * %REQ_RAHEAD.
3075  *
3076  * This function drops any buffer that it cannot get a lock on (with the
3077  * BH_Lock state bit), any buffer that appears to be clean when doing a write
3078  * request, and any buffer that appears to be up-to-date when doing read
3079  * request.  Further it marks as clean buffers that are processed for
3080  * writing (the buffer cache won't assume that they are actually clean
3081  * until the buffer gets unlocked).
3082  *
3083  * ll_rw_block sets b_end_io to simple completion handler that marks
3084  * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3085  * any waiters. 
3086  *
3087  * All of the buffers must be for the same device, and must also be a
3088  * multiple of the current approved size for the device.
3089  */
3090 void ll_rw_block(int op, int op_flags,  int nr, struct buffer_head *bhs[])
3091 {
3092         int i;
3093
3094         for (i = 0; i < nr; i++) {
3095                 struct buffer_head *bh = bhs[i];
3096
3097                 if (!trylock_buffer(bh))
3098                         continue;
3099                 if (op == WRITE) {
3100                         if (test_clear_buffer_dirty(bh)) {
3101                                 bh->b_end_io = end_buffer_write_sync;
3102                                 get_bh(bh);
3103                                 submit_bh(op, op_flags, bh);
3104                                 continue;
3105                         }
3106                 } else {
3107                         if (!buffer_uptodate(bh)) {
3108                                 bh->b_end_io = end_buffer_read_sync;
3109                                 get_bh(bh);
3110                                 submit_bh(op, op_flags, bh);
3111                                 continue;
3112                         }
3113                 }
3114                 unlock_buffer(bh);
3115         }
3116 }
3117 EXPORT_SYMBOL(ll_rw_block);
3118
3119 void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3120 {
3121         lock_buffer(bh);
3122         if (!test_clear_buffer_dirty(bh)) {
3123                 unlock_buffer(bh);
3124                 return;
3125         }
3126         bh->b_end_io = end_buffer_write_sync;
3127         get_bh(bh);
3128         submit_bh(REQ_OP_WRITE, op_flags, bh);
3129 }
3130 EXPORT_SYMBOL(write_dirty_buffer);
3131
3132 /*
3133  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3134  * and then start new I/O and then wait upon it.  The caller must have a ref on
3135  * the buffer_head.
3136  */
3137 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3138 {
3139         int ret = 0;
3140
3141         WARN_ON(atomic_read(&bh->b_count) < 1);
3142         lock_buffer(bh);
3143         if (test_clear_buffer_dirty(bh)) {
3144                 /*
3145                  * The bh should be mapped, but it might not be if the
3146                  * device was hot-removed. Not much we can do but fail the I/O.
3147                  */
3148                 if (!buffer_mapped(bh)) {
3149                         unlock_buffer(bh);
3150                         return -EIO;
3151                 }
3152
3153                 get_bh(bh);
3154                 bh->b_end_io = end_buffer_write_sync;
3155                 ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3156                 wait_on_buffer(bh);
3157                 if (!ret && !buffer_uptodate(bh))
3158                         ret = -EIO;
3159         } else {
3160                 unlock_buffer(bh);
3161         }
3162         return ret;
3163 }
3164 EXPORT_SYMBOL(__sync_dirty_buffer);
3165
3166 int sync_dirty_buffer(struct buffer_head *bh)
3167 {
3168         return __sync_dirty_buffer(bh, REQ_SYNC);
3169 }
3170 EXPORT_SYMBOL(sync_dirty_buffer);
3171
3172 /*
3173  * try_to_free_buffers() checks if all the buffers on this particular page
3174  * are unused, and releases them if so.
3175  *
3176  * Exclusion against try_to_free_buffers may be obtained by either
3177  * locking the page or by holding its mapping's private_lock.
3178  *
3179  * If the page is dirty but all the buffers are clean then we need to
3180  * be sure to mark the page clean as well.  This is because the page
3181  * may be against a block device, and a later reattachment of buffers
3182  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3183  * filesystem data on the same device.
3184  *
3185  * The same applies to regular filesystem pages: if all the buffers are
3186  * clean then we set the page clean and proceed.  To do that, we require
3187  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3188  * private_lock.
3189  *
3190  * try_to_free_buffers() is non-blocking.
3191  */
3192 static inline int buffer_busy(struct buffer_head *bh)
3193 {
3194         return atomic_read(&bh->b_count) |
3195                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3196 }
3197
3198 static int
3199 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3200 {
3201         struct buffer_head *head = page_buffers(page);
3202         struct buffer_head *bh;
3203
3204         bh = head;
3205         do {
3206                 if (buffer_busy(bh))
3207                         goto failed;
3208                 bh = bh->b_this_page;
3209         } while (bh != head);
3210
3211         do {
3212                 struct buffer_head *next = bh->b_this_page;
3213
3214                 if (bh->b_assoc_map)
3215                         __remove_assoc_queue(bh);
3216                 bh = next;
3217         } while (bh != head);
3218         *buffers_to_free = head;
3219         detach_page_private(page);
3220         return 1;
3221 failed:
3222         return 0;
3223 }
3224
3225 int try_to_free_buffers(struct page *page)
3226 {
3227         struct address_space * const mapping = page->mapping;
3228         struct buffer_head *buffers_to_free = NULL;
3229         int ret = 0;
3230
3231         BUG_ON(!PageLocked(page));
3232         if (PageWriteback(page))
3233                 return 0;
3234
3235         if (mapping == NULL) {          /* can this still happen? */
3236                 ret = drop_buffers(page, &buffers_to_free);
3237                 goto out;
3238         }
3239
3240         spin_lock(&mapping->private_lock);
3241         ret = drop_buffers(page, &buffers_to_free);
3242
3243         /*
3244          * If the filesystem writes its buffers by hand (eg ext3)
3245          * then we can have clean buffers against a dirty page.  We
3246          * clean the page here; otherwise the VM will never notice
3247          * that the filesystem did any IO at all.
3248          *
3249          * Also, during truncate, discard_buffer will have marked all
3250          * the page's buffers clean.  We discover that here and clean
3251          * the page also.
3252          *
3253          * private_lock must be held over this entire operation in order
3254          * to synchronise against __set_page_dirty_buffers and prevent the
3255          * dirty bit from being lost.
3256          */
3257         if (ret)
3258                 cancel_dirty_page(page);
3259         spin_unlock(&mapping->private_lock);
3260 out:
3261         if (buffers_to_free) {
3262                 struct buffer_head *bh = buffers_to_free;
3263
3264                 do {
3265                         struct buffer_head *next = bh->b_this_page;
3266                         free_buffer_head(bh);
3267                         bh = next;
3268                 } while (bh != buffers_to_free);
3269         }
3270         return ret;
3271 }
3272 EXPORT_SYMBOL(try_to_free_buffers);
3273
3274 /*
3275  * There are no bdflush tunables left.  But distributions are
3276  * still running obsolete flush daemons, so we terminate them here.
3277  *
3278  * Use of bdflush() is deprecated and will be removed in a future kernel.
3279  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3280  */
3281 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3282 {
3283         static int msg_count;
3284
3285         if (!capable(CAP_SYS_ADMIN))
3286                 return -EPERM;
3287
3288         if (msg_count < 5) {
3289                 msg_count++;
3290                 printk(KERN_INFO
3291                         "warning: process `%s' used the obsolete bdflush"
3292                         " system call\n", current->comm);
3293                 printk(KERN_INFO "Fix your initscripts?\n");
3294         }
3295
3296         if (func == 1)
3297                 do_exit(0);
3298         return 0;
3299 }
3300
3301 /*
3302  * Buffer-head allocation
3303  */
3304 static struct kmem_cache *bh_cachep __read_mostly;
3305
3306 /*
3307  * Once the number of bh's in the machine exceeds this level, we start
3308  * stripping them in writeback.
3309  */
3310 static unsigned long max_buffer_heads;
3311
3312 int buffer_heads_over_limit;
3313
3314 struct bh_accounting {
3315         int nr;                 /* Number of live bh's */
3316         int ratelimit;          /* Limit cacheline bouncing */
3317 };
3318
3319 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3320
3321 static void recalc_bh_state(void)
3322 {
3323         int i;
3324         int tot = 0;
3325
3326         if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3327                 return;
3328         __this_cpu_write(bh_accounting.ratelimit, 0);
3329         for_each_online_cpu(i)
3330                 tot += per_cpu(bh_accounting, i).nr;
3331         buffer_heads_over_limit = (tot > max_buffer_heads);
3332 }
3333
3334 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3335 {
3336         struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3337         if (ret) {
3338                 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3339                 spin_lock_init(&ret->b_uptodate_lock);
3340                 preempt_disable();
3341                 __this_cpu_inc(bh_accounting.nr);
3342                 recalc_bh_state();
3343                 preempt_enable();
3344         }
3345         return ret;
3346 }
3347 EXPORT_SYMBOL(alloc_buffer_head);
3348
3349 void free_buffer_head(struct buffer_head *bh)
3350 {
3351         BUG_ON(!list_empty(&bh->b_assoc_buffers));
3352         kmem_cache_free(bh_cachep, bh);
3353         preempt_disable();
3354         __this_cpu_dec(bh_accounting.nr);
3355         recalc_bh_state();
3356         preempt_enable();
3357 }
3358 EXPORT_SYMBOL(free_buffer_head);
3359
3360 static int buffer_exit_cpu_dead(unsigned int cpu)
3361 {
3362         int i;
3363         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3364
3365         for (i = 0; i < BH_LRU_SIZE; i++) {
3366                 brelse(b->bhs[i]);
3367                 b->bhs[i] = NULL;
3368         }
3369         this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3370         per_cpu(bh_accounting, cpu).nr = 0;
3371         return 0;
3372 }
3373
3374 /**
3375  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3376  * @bh: struct buffer_head
3377  *
3378  * Return true if the buffer is up-to-date and false,
3379  * with the buffer locked, if not.
3380  */
3381 int bh_uptodate_or_lock(struct buffer_head *bh)
3382 {
3383         if (!buffer_uptodate(bh)) {
3384                 lock_buffer(bh);
3385                 if (!buffer_uptodate(bh))
3386                         return 0;
3387                 unlock_buffer(bh);
3388         }
3389         return 1;
3390 }
3391 EXPORT_SYMBOL(bh_uptodate_or_lock);
3392
3393 /**
3394  * bh_submit_read - Submit a locked buffer for reading
3395  * @bh: struct buffer_head
3396  *
3397  * Returns zero on success and -EIO on error.
3398  */
3399 int bh_submit_read(struct buffer_head *bh)
3400 {
3401         BUG_ON(!buffer_locked(bh));
3402
3403         if (buffer_uptodate(bh)) {
3404                 unlock_buffer(bh);
3405                 return 0;
3406         }
3407
3408         get_bh(bh);
3409         bh->b_end_io = end_buffer_read_sync;
3410         submit_bh(REQ_OP_READ, 0, bh);
3411         wait_on_buffer(bh);
3412         if (buffer_uptodate(bh))
3413                 return 0;
3414         return -EIO;
3415 }
3416 EXPORT_SYMBOL(bh_submit_read);
3417
3418 void __init buffer_init(void)
3419 {
3420         unsigned long nrpages;
3421         int ret;
3422
3423         bh_cachep = kmem_cache_create("buffer_head",
3424                         sizeof(struct buffer_head), 0,
3425                                 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3426                                 SLAB_MEM_SPREAD),
3427                                 NULL);
3428
3429         /*
3430          * Limit the bh occupancy to 10% of ZONE_NORMAL
3431          */
3432         nrpages = (nr_free_buffer_pages() * 10) / 100;
3433         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3434         ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3435                                         NULL, buffer_exit_cpu_dead);
3436         WARN_ON(ret < 0);
3437 }