Merge tag 'acpi-5.15-rc1-3' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[linux-2.6-microblaze.git] / fs / btrfs / ordered-data.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/slab.h>
7 #include <linux/blkdev.h>
8 #include <linux/writeback.h>
9 #include <linux/sched/mm.h>
10 #include "misc.h"
11 #include "ctree.h"
12 #include "transaction.h"
13 #include "btrfs_inode.h"
14 #include "extent_io.h"
15 #include "disk-io.h"
16 #include "compression.h"
17 #include "delalloc-space.h"
18 #include "qgroup.h"
19 #include "subpage.h"
20
21 static struct kmem_cache *btrfs_ordered_extent_cache;
22
23 static u64 entry_end(struct btrfs_ordered_extent *entry)
24 {
25         if (entry->file_offset + entry->num_bytes < entry->file_offset)
26                 return (u64)-1;
27         return entry->file_offset + entry->num_bytes;
28 }
29
30 /* returns NULL if the insertion worked, or it returns the node it did find
31  * in the tree
32  */
33 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
34                                    struct rb_node *node)
35 {
36         struct rb_node **p = &root->rb_node;
37         struct rb_node *parent = NULL;
38         struct btrfs_ordered_extent *entry;
39
40         while (*p) {
41                 parent = *p;
42                 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
43
44                 if (file_offset < entry->file_offset)
45                         p = &(*p)->rb_left;
46                 else if (file_offset >= entry_end(entry))
47                         p = &(*p)->rb_right;
48                 else
49                         return parent;
50         }
51
52         rb_link_node(node, parent, p);
53         rb_insert_color(node, root);
54         return NULL;
55 }
56
57 /*
58  * look for a given offset in the tree, and if it can't be found return the
59  * first lesser offset
60  */
61 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
62                                      struct rb_node **prev_ret)
63 {
64         struct rb_node *n = root->rb_node;
65         struct rb_node *prev = NULL;
66         struct rb_node *test;
67         struct btrfs_ordered_extent *entry;
68         struct btrfs_ordered_extent *prev_entry = NULL;
69
70         while (n) {
71                 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
72                 prev = n;
73                 prev_entry = entry;
74
75                 if (file_offset < entry->file_offset)
76                         n = n->rb_left;
77                 else if (file_offset >= entry_end(entry))
78                         n = n->rb_right;
79                 else
80                         return n;
81         }
82         if (!prev_ret)
83                 return NULL;
84
85         while (prev && file_offset >= entry_end(prev_entry)) {
86                 test = rb_next(prev);
87                 if (!test)
88                         break;
89                 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
90                                       rb_node);
91                 if (file_offset < entry_end(prev_entry))
92                         break;
93
94                 prev = test;
95         }
96         if (prev)
97                 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
98                                       rb_node);
99         while (prev && file_offset < entry_end(prev_entry)) {
100                 test = rb_prev(prev);
101                 if (!test)
102                         break;
103                 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
104                                       rb_node);
105                 prev = test;
106         }
107         *prev_ret = prev;
108         return NULL;
109 }
110
111 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
112                           u64 len)
113 {
114         if (file_offset + len <= entry->file_offset ||
115             entry->file_offset + entry->num_bytes <= file_offset)
116                 return 0;
117         return 1;
118 }
119
120 /*
121  * look find the first ordered struct that has this offset, otherwise
122  * the first one less than this offset
123  */
124 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
125                                           u64 file_offset)
126 {
127         struct rb_root *root = &tree->tree;
128         struct rb_node *prev = NULL;
129         struct rb_node *ret;
130         struct btrfs_ordered_extent *entry;
131
132         if (tree->last) {
133                 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
134                                  rb_node);
135                 if (in_range(file_offset, entry->file_offset, entry->num_bytes))
136                         return tree->last;
137         }
138         ret = __tree_search(root, file_offset, &prev);
139         if (!ret)
140                 ret = prev;
141         if (ret)
142                 tree->last = ret;
143         return ret;
144 }
145
146 /*
147  * Allocate and add a new ordered_extent into the per-inode tree.
148  *
149  * The tree is given a single reference on the ordered extent that was
150  * inserted.
151  */
152 static int __btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset,
153                                       u64 disk_bytenr, u64 num_bytes,
154                                       u64 disk_num_bytes, int type, int dio,
155                                       int compress_type)
156 {
157         struct btrfs_root *root = inode->root;
158         struct btrfs_fs_info *fs_info = root->fs_info;
159         struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
160         struct rb_node *node;
161         struct btrfs_ordered_extent *entry;
162         int ret;
163
164         if (type == BTRFS_ORDERED_NOCOW || type == BTRFS_ORDERED_PREALLOC) {
165                 /* For nocow write, we can release the qgroup rsv right now */
166                 ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes);
167                 if (ret < 0)
168                         return ret;
169                 ret = 0;
170         } else {
171                 /*
172                  * The ordered extent has reserved qgroup space, release now
173                  * and pass the reserved number for qgroup_record to free.
174                  */
175                 ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes);
176                 if (ret < 0)
177                         return ret;
178         }
179         entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
180         if (!entry)
181                 return -ENOMEM;
182
183         entry->file_offset = file_offset;
184         entry->disk_bytenr = disk_bytenr;
185         entry->num_bytes = num_bytes;
186         entry->disk_num_bytes = disk_num_bytes;
187         entry->bytes_left = num_bytes;
188         entry->inode = igrab(&inode->vfs_inode);
189         entry->compress_type = compress_type;
190         entry->truncated_len = (u64)-1;
191         entry->qgroup_rsv = ret;
192         entry->physical = (u64)-1;
193
194         ASSERT(type == BTRFS_ORDERED_REGULAR ||
195                type == BTRFS_ORDERED_NOCOW ||
196                type == BTRFS_ORDERED_PREALLOC ||
197                type == BTRFS_ORDERED_COMPRESSED);
198         set_bit(type, &entry->flags);
199
200         percpu_counter_add_batch(&fs_info->ordered_bytes, num_bytes,
201                                  fs_info->delalloc_batch);
202
203         if (dio)
204                 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
205
206         /* one ref for the tree */
207         refcount_set(&entry->refs, 1);
208         init_waitqueue_head(&entry->wait);
209         INIT_LIST_HEAD(&entry->list);
210         INIT_LIST_HEAD(&entry->log_list);
211         INIT_LIST_HEAD(&entry->root_extent_list);
212         INIT_LIST_HEAD(&entry->work_list);
213         init_completion(&entry->completion);
214
215         trace_btrfs_ordered_extent_add(inode, entry);
216
217         spin_lock_irq(&tree->lock);
218         node = tree_insert(&tree->tree, file_offset,
219                            &entry->rb_node);
220         if (node)
221                 btrfs_panic(fs_info, -EEXIST,
222                                 "inconsistency in ordered tree at offset %llu",
223                                 file_offset);
224         spin_unlock_irq(&tree->lock);
225
226         spin_lock(&root->ordered_extent_lock);
227         list_add_tail(&entry->root_extent_list,
228                       &root->ordered_extents);
229         root->nr_ordered_extents++;
230         if (root->nr_ordered_extents == 1) {
231                 spin_lock(&fs_info->ordered_root_lock);
232                 BUG_ON(!list_empty(&root->ordered_root));
233                 list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
234                 spin_unlock(&fs_info->ordered_root_lock);
235         }
236         spin_unlock(&root->ordered_extent_lock);
237
238         /*
239          * We don't need the count_max_extents here, we can assume that all of
240          * that work has been done at higher layers, so this is truly the
241          * smallest the extent is going to get.
242          */
243         spin_lock(&inode->lock);
244         btrfs_mod_outstanding_extents(inode, 1);
245         spin_unlock(&inode->lock);
246
247         return 0;
248 }
249
250 int btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset,
251                              u64 disk_bytenr, u64 num_bytes, u64 disk_num_bytes,
252                              int type)
253 {
254         ASSERT(type == BTRFS_ORDERED_REGULAR ||
255                type == BTRFS_ORDERED_NOCOW ||
256                type == BTRFS_ORDERED_PREALLOC);
257         return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
258                                           num_bytes, disk_num_bytes, type, 0,
259                                           BTRFS_COMPRESS_NONE);
260 }
261
262 int btrfs_add_ordered_extent_dio(struct btrfs_inode *inode, u64 file_offset,
263                                  u64 disk_bytenr, u64 num_bytes,
264                                  u64 disk_num_bytes, int type)
265 {
266         ASSERT(type == BTRFS_ORDERED_REGULAR ||
267                type == BTRFS_ORDERED_NOCOW ||
268                type == BTRFS_ORDERED_PREALLOC);
269         return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
270                                           num_bytes, disk_num_bytes, type, 1,
271                                           BTRFS_COMPRESS_NONE);
272 }
273
274 int btrfs_add_ordered_extent_compress(struct btrfs_inode *inode, u64 file_offset,
275                                       u64 disk_bytenr, u64 num_bytes,
276                                       u64 disk_num_bytes, int compress_type)
277 {
278         ASSERT(compress_type != BTRFS_COMPRESS_NONE);
279         return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
280                                           num_bytes, disk_num_bytes,
281                                           BTRFS_ORDERED_COMPRESSED, 0,
282                                           compress_type);
283 }
284
285 /*
286  * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
287  * when an ordered extent is finished.  If the list covers more than one
288  * ordered extent, it is split across multiples.
289  */
290 void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
291                            struct btrfs_ordered_sum *sum)
292 {
293         struct btrfs_ordered_inode_tree *tree;
294
295         tree = &BTRFS_I(entry->inode)->ordered_tree;
296         spin_lock_irq(&tree->lock);
297         list_add_tail(&sum->list, &entry->list);
298         spin_unlock_irq(&tree->lock);
299 }
300
301 /*
302  * Mark all ordered extents io inside the specified range finished.
303  *
304  * @page:        The invovled page for the opeartion.
305  *               For uncompressed buffered IO, the page status also needs to be
306  *               updated to indicate whether the pending ordered io is finished.
307  *               Can be NULL for direct IO and compressed write.
308  *               For these cases, callers are ensured they won't execute the
309  *               endio function twice.
310  * @finish_func: The function to be executed when all the IO of an ordered
311  *               extent are finished.
312  *
313  * This function is called for endio, thus the range must have ordered
314  * extent(s) coveri it.
315  */
316 void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode,
317                                 struct page *page, u64 file_offset,
318                                 u64 num_bytes, btrfs_func_t finish_func,
319                                 bool uptodate)
320 {
321         struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
322         struct btrfs_fs_info *fs_info = inode->root->fs_info;
323         struct btrfs_workqueue *wq;
324         struct rb_node *node;
325         struct btrfs_ordered_extent *entry = NULL;
326         unsigned long flags;
327         u64 cur = file_offset;
328
329         if (btrfs_is_free_space_inode(inode))
330                 wq = fs_info->endio_freespace_worker;
331         else
332                 wq = fs_info->endio_write_workers;
333
334         if (page)
335                 ASSERT(page->mapping && page_offset(page) <= file_offset &&
336                        file_offset + num_bytes <= page_offset(page) + PAGE_SIZE);
337
338         spin_lock_irqsave(&tree->lock, flags);
339         while (cur < file_offset + num_bytes) {
340                 u64 entry_end;
341                 u64 end;
342                 u32 len;
343
344                 node = tree_search(tree, cur);
345                 /* No ordered extents at all */
346                 if (!node)
347                         break;
348
349                 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
350                 entry_end = entry->file_offset + entry->num_bytes;
351                 /*
352                  * |<-- OE --->|  |
353                  *                cur
354                  * Go to next OE.
355                  */
356                 if (cur >= entry_end) {
357                         node = rb_next(node);
358                         /* No more ordered extents, exit */
359                         if (!node)
360                                 break;
361                         entry = rb_entry(node, struct btrfs_ordered_extent,
362                                          rb_node);
363
364                         /* Go to next ordered extent and continue */
365                         cur = entry->file_offset;
366                         continue;
367                 }
368                 /*
369                  * |    |<--- OE --->|
370                  * cur
371                  * Go to the start of OE.
372                  */
373                 if (cur < entry->file_offset) {
374                         cur = entry->file_offset;
375                         continue;
376                 }
377
378                 /*
379                  * Now we are definitely inside one ordered extent.
380                  *
381                  * |<--- OE --->|
382                  *      |
383                  *      cur
384                  */
385                 end = min(entry->file_offset + entry->num_bytes,
386                           file_offset + num_bytes) - 1;
387                 ASSERT(end + 1 - cur < U32_MAX);
388                 len = end + 1 - cur;
389
390                 if (page) {
391                         /*
392                          * Ordered (Private2) bit indicates whether we still
393                          * have pending io unfinished for the ordered extent.
394                          *
395                          * If there's no such bit, we need to skip to next range.
396                          */
397                         if (!btrfs_page_test_ordered(fs_info, page, cur, len)) {
398                                 cur += len;
399                                 continue;
400                         }
401                         btrfs_page_clear_ordered(fs_info, page, cur, len);
402                 }
403
404                 /* Now we're fine to update the accounting */
405                 if (unlikely(len > entry->bytes_left)) {
406                         WARN_ON(1);
407                         btrfs_crit(fs_info,
408 "bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%u left=%llu",
409                                    inode->root->root_key.objectid,
410                                    btrfs_ino(inode),
411                                    entry->file_offset,
412                                    entry->num_bytes,
413                                    len, entry->bytes_left);
414                         entry->bytes_left = 0;
415                 } else {
416                         entry->bytes_left -= len;
417                 }
418
419                 if (!uptodate)
420                         set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
421
422                 /*
423                  * All the IO of the ordered extent is finished, we need to queue
424                  * the finish_func to be executed.
425                  */
426                 if (entry->bytes_left == 0) {
427                         set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
428                         cond_wake_up(&entry->wait);
429                         refcount_inc(&entry->refs);
430                         spin_unlock_irqrestore(&tree->lock, flags);
431                         btrfs_init_work(&entry->work, finish_func, NULL, NULL);
432                         btrfs_queue_work(wq, &entry->work);
433                         spin_lock_irqsave(&tree->lock, flags);
434                 }
435                 cur += len;
436         }
437         spin_unlock_irqrestore(&tree->lock, flags);
438 }
439
440 /*
441  * Finish IO for one ordered extent across a given range.  The range can only
442  * contain one ordered extent.
443  *
444  * @cached:      The cached ordered extent. If not NULL, we can skip the tree
445  *               search and use the ordered extent directly.
446  *               Will be also used to store the finished ordered extent.
447  * @file_offset: File offset for the finished IO
448  * @io_size:     Length of the finish IO range
449  *
450  * Return true if the ordered extent is finished in the range, and update
451  * @cached.
452  * Return false otherwise.
453  *
454  * NOTE: The range can NOT cross multiple ordered extents.
455  * Thus caller should ensure the range doesn't cross ordered extents.
456  */
457 bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode,
458                                     struct btrfs_ordered_extent **cached,
459                                     u64 file_offset, u64 io_size)
460 {
461         struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
462         struct rb_node *node;
463         struct btrfs_ordered_extent *entry = NULL;
464         unsigned long flags;
465         bool finished = false;
466
467         spin_lock_irqsave(&tree->lock, flags);
468         if (cached && *cached) {
469                 entry = *cached;
470                 goto have_entry;
471         }
472
473         node = tree_search(tree, file_offset);
474         if (!node)
475                 goto out;
476
477         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
478 have_entry:
479         if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
480                 goto out;
481
482         if (io_size > entry->bytes_left)
483                 btrfs_crit(inode->root->fs_info,
484                            "bad ordered accounting left %llu size %llu",
485                        entry->bytes_left, io_size);
486
487         entry->bytes_left -= io_size;
488
489         if (entry->bytes_left == 0) {
490                 /*
491                  * Ensure only one caller can set the flag and finished_ret
492                  * accordingly
493                  */
494                 finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
495                 /* test_and_set_bit implies a barrier */
496                 cond_wake_up_nomb(&entry->wait);
497         }
498 out:
499         if (finished && cached && entry) {
500                 *cached = entry;
501                 refcount_inc(&entry->refs);
502         }
503         spin_unlock_irqrestore(&tree->lock, flags);
504         return finished;
505 }
506
507 /*
508  * used to drop a reference on an ordered extent.  This will free
509  * the extent if the last reference is dropped
510  */
511 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
512 {
513         struct list_head *cur;
514         struct btrfs_ordered_sum *sum;
515
516         trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry);
517
518         if (refcount_dec_and_test(&entry->refs)) {
519                 ASSERT(list_empty(&entry->root_extent_list));
520                 ASSERT(list_empty(&entry->log_list));
521                 ASSERT(RB_EMPTY_NODE(&entry->rb_node));
522                 if (entry->inode)
523                         btrfs_add_delayed_iput(entry->inode);
524                 while (!list_empty(&entry->list)) {
525                         cur = entry->list.next;
526                         sum = list_entry(cur, struct btrfs_ordered_sum, list);
527                         list_del(&sum->list);
528                         kvfree(sum);
529                 }
530                 kmem_cache_free(btrfs_ordered_extent_cache, entry);
531         }
532 }
533
534 /*
535  * remove an ordered extent from the tree.  No references are dropped
536  * and waiters are woken up.
537  */
538 void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode,
539                                  struct btrfs_ordered_extent *entry)
540 {
541         struct btrfs_ordered_inode_tree *tree;
542         struct btrfs_root *root = btrfs_inode->root;
543         struct btrfs_fs_info *fs_info = root->fs_info;
544         struct rb_node *node;
545         bool pending;
546
547         /* This is paired with btrfs_add_ordered_extent. */
548         spin_lock(&btrfs_inode->lock);
549         btrfs_mod_outstanding_extents(btrfs_inode, -1);
550         spin_unlock(&btrfs_inode->lock);
551         if (root != fs_info->tree_root)
552                 btrfs_delalloc_release_metadata(btrfs_inode, entry->num_bytes,
553                                                 false);
554
555         percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes,
556                                  fs_info->delalloc_batch);
557
558         tree = &btrfs_inode->ordered_tree;
559         spin_lock_irq(&tree->lock);
560         node = &entry->rb_node;
561         rb_erase(node, &tree->tree);
562         RB_CLEAR_NODE(node);
563         if (tree->last == node)
564                 tree->last = NULL;
565         set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
566         pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags);
567         spin_unlock_irq(&tree->lock);
568
569         /*
570          * The current running transaction is waiting on us, we need to let it
571          * know that we're complete and wake it up.
572          */
573         if (pending) {
574                 struct btrfs_transaction *trans;
575
576                 /*
577                  * The checks for trans are just a formality, it should be set,
578                  * but if it isn't we don't want to deref/assert under the spin
579                  * lock, so be nice and check if trans is set, but ASSERT() so
580                  * if it isn't set a developer will notice.
581                  */
582                 spin_lock(&fs_info->trans_lock);
583                 trans = fs_info->running_transaction;
584                 if (trans)
585                         refcount_inc(&trans->use_count);
586                 spin_unlock(&fs_info->trans_lock);
587
588                 ASSERT(trans);
589                 if (trans) {
590                         if (atomic_dec_and_test(&trans->pending_ordered))
591                                 wake_up(&trans->pending_wait);
592                         btrfs_put_transaction(trans);
593                 }
594         }
595
596         spin_lock(&root->ordered_extent_lock);
597         list_del_init(&entry->root_extent_list);
598         root->nr_ordered_extents--;
599
600         trace_btrfs_ordered_extent_remove(btrfs_inode, entry);
601
602         if (!root->nr_ordered_extents) {
603                 spin_lock(&fs_info->ordered_root_lock);
604                 BUG_ON(list_empty(&root->ordered_root));
605                 list_del_init(&root->ordered_root);
606                 spin_unlock(&fs_info->ordered_root_lock);
607         }
608         spin_unlock(&root->ordered_extent_lock);
609         wake_up(&entry->wait);
610 }
611
612 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
613 {
614         struct btrfs_ordered_extent *ordered;
615
616         ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
617         btrfs_start_ordered_extent(ordered, 1);
618         complete(&ordered->completion);
619 }
620
621 /*
622  * wait for all the ordered extents in a root.  This is done when balancing
623  * space between drives.
624  */
625 u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
626                                const u64 range_start, const u64 range_len)
627 {
628         struct btrfs_fs_info *fs_info = root->fs_info;
629         LIST_HEAD(splice);
630         LIST_HEAD(skipped);
631         LIST_HEAD(works);
632         struct btrfs_ordered_extent *ordered, *next;
633         u64 count = 0;
634         const u64 range_end = range_start + range_len;
635
636         mutex_lock(&root->ordered_extent_mutex);
637         spin_lock(&root->ordered_extent_lock);
638         list_splice_init(&root->ordered_extents, &splice);
639         while (!list_empty(&splice) && nr) {
640                 ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
641                                            root_extent_list);
642
643                 if (range_end <= ordered->disk_bytenr ||
644                     ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
645                         list_move_tail(&ordered->root_extent_list, &skipped);
646                         cond_resched_lock(&root->ordered_extent_lock);
647                         continue;
648                 }
649
650                 list_move_tail(&ordered->root_extent_list,
651                                &root->ordered_extents);
652                 refcount_inc(&ordered->refs);
653                 spin_unlock(&root->ordered_extent_lock);
654
655                 btrfs_init_work(&ordered->flush_work,
656                                 btrfs_run_ordered_extent_work, NULL, NULL);
657                 list_add_tail(&ordered->work_list, &works);
658                 btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
659
660                 cond_resched();
661                 spin_lock(&root->ordered_extent_lock);
662                 if (nr != U64_MAX)
663                         nr--;
664                 count++;
665         }
666         list_splice_tail(&skipped, &root->ordered_extents);
667         list_splice_tail(&splice, &root->ordered_extents);
668         spin_unlock(&root->ordered_extent_lock);
669
670         list_for_each_entry_safe(ordered, next, &works, work_list) {
671                 list_del_init(&ordered->work_list);
672                 wait_for_completion(&ordered->completion);
673                 btrfs_put_ordered_extent(ordered);
674                 cond_resched();
675         }
676         mutex_unlock(&root->ordered_extent_mutex);
677
678         return count;
679 }
680
681 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
682                              const u64 range_start, const u64 range_len)
683 {
684         struct btrfs_root *root;
685         struct list_head splice;
686         u64 done;
687
688         INIT_LIST_HEAD(&splice);
689
690         mutex_lock(&fs_info->ordered_operations_mutex);
691         spin_lock(&fs_info->ordered_root_lock);
692         list_splice_init(&fs_info->ordered_roots, &splice);
693         while (!list_empty(&splice) && nr) {
694                 root = list_first_entry(&splice, struct btrfs_root,
695                                         ordered_root);
696                 root = btrfs_grab_root(root);
697                 BUG_ON(!root);
698                 list_move_tail(&root->ordered_root,
699                                &fs_info->ordered_roots);
700                 spin_unlock(&fs_info->ordered_root_lock);
701
702                 done = btrfs_wait_ordered_extents(root, nr,
703                                                   range_start, range_len);
704                 btrfs_put_root(root);
705
706                 spin_lock(&fs_info->ordered_root_lock);
707                 if (nr != U64_MAX) {
708                         nr -= done;
709                 }
710         }
711         list_splice_tail(&splice, &fs_info->ordered_roots);
712         spin_unlock(&fs_info->ordered_root_lock);
713         mutex_unlock(&fs_info->ordered_operations_mutex);
714 }
715
716 /*
717  * Used to start IO or wait for a given ordered extent to finish.
718  *
719  * If wait is one, this effectively waits on page writeback for all the pages
720  * in the extent, and it waits on the io completion code to insert
721  * metadata into the btree corresponding to the extent
722  */
723 void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry, int wait)
724 {
725         u64 start = entry->file_offset;
726         u64 end = start + entry->num_bytes - 1;
727         struct btrfs_inode *inode = BTRFS_I(entry->inode);
728
729         trace_btrfs_ordered_extent_start(inode, entry);
730
731         /*
732          * pages in the range can be dirty, clean or writeback.  We
733          * start IO on any dirty ones so the wait doesn't stall waiting
734          * for the flusher thread to find them
735          */
736         if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
737                 filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end);
738         if (wait) {
739                 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
740                                                  &entry->flags));
741         }
742 }
743
744 /*
745  * Used to wait on ordered extents across a large range of bytes.
746  */
747 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
748 {
749         int ret = 0;
750         int ret_wb = 0;
751         u64 end;
752         u64 orig_end;
753         struct btrfs_ordered_extent *ordered;
754
755         if (start + len < start) {
756                 orig_end = INT_LIMIT(loff_t);
757         } else {
758                 orig_end = start + len - 1;
759                 if (orig_end > INT_LIMIT(loff_t))
760                         orig_end = INT_LIMIT(loff_t);
761         }
762
763         /* start IO across the range first to instantiate any delalloc
764          * extents
765          */
766         ret = btrfs_fdatawrite_range(inode, start, orig_end);
767         if (ret)
768                 return ret;
769
770         /*
771          * If we have a writeback error don't return immediately. Wait first
772          * for any ordered extents that haven't completed yet. This is to make
773          * sure no one can dirty the same page ranges and call writepages()
774          * before the ordered extents complete - to avoid failures (-EEXIST)
775          * when adding the new ordered extents to the ordered tree.
776          */
777         ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
778
779         end = orig_end;
780         while (1) {
781                 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end);
782                 if (!ordered)
783                         break;
784                 if (ordered->file_offset > orig_end) {
785                         btrfs_put_ordered_extent(ordered);
786                         break;
787                 }
788                 if (ordered->file_offset + ordered->num_bytes <= start) {
789                         btrfs_put_ordered_extent(ordered);
790                         break;
791                 }
792                 btrfs_start_ordered_extent(ordered, 1);
793                 end = ordered->file_offset;
794                 /*
795                  * If the ordered extent had an error save the error but don't
796                  * exit without waiting first for all other ordered extents in
797                  * the range to complete.
798                  */
799                 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
800                         ret = -EIO;
801                 btrfs_put_ordered_extent(ordered);
802                 if (end == 0 || end == start)
803                         break;
804                 end--;
805         }
806         return ret_wb ? ret_wb : ret;
807 }
808
809 /*
810  * find an ordered extent corresponding to file_offset.  return NULL if
811  * nothing is found, otherwise take a reference on the extent and return it
812  */
813 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
814                                                          u64 file_offset)
815 {
816         struct btrfs_ordered_inode_tree *tree;
817         struct rb_node *node;
818         struct btrfs_ordered_extent *entry = NULL;
819         unsigned long flags;
820
821         tree = &inode->ordered_tree;
822         spin_lock_irqsave(&tree->lock, flags);
823         node = tree_search(tree, file_offset);
824         if (!node)
825                 goto out;
826
827         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
828         if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
829                 entry = NULL;
830         if (entry)
831                 refcount_inc(&entry->refs);
832 out:
833         spin_unlock_irqrestore(&tree->lock, flags);
834         return entry;
835 }
836
837 /* Since the DIO code tries to lock a wide area we need to look for any ordered
838  * extents that exist in the range, rather than just the start of the range.
839  */
840 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
841                 struct btrfs_inode *inode, u64 file_offset, u64 len)
842 {
843         struct btrfs_ordered_inode_tree *tree;
844         struct rb_node *node;
845         struct btrfs_ordered_extent *entry = NULL;
846
847         tree = &inode->ordered_tree;
848         spin_lock_irq(&tree->lock);
849         node = tree_search(tree, file_offset);
850         if (!node) {
851                 node = tree_search(tree, file_offset + len);
852                 if (!node)
853                         goto out;
854         }
855
856         while (1) {
857                 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
858                 if (range_overlaps(entry, file_offset, len))
859                         break;
860
861                 if (entry->file_offset >= file_offset + len) {
862                         entry = NULL;
863                         break;
864                 }
865                 entry = NULL;
866                 node = rb_next(node);
867                 if (!node)
868                         break;
869         }
870 out:
871         if (entry)
872                 refcount_inc(&entry->refs);
873         spin_unlock_irq(&tree->lock);
874         return entry;
875 }
876
877 /*
878  * Adds all ordered extents to the given list. The list ends up sorted by the
879  * file_offset of the ordered extents.
880  */
881 void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode,
882                                            struct list_head *list)
883 {
884         struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
885         struct rb_node *n;
886
887         ASSERT(inode_is_locked(&inode->vfs_inode));
888
889         spin_lock_irq(&tree->lock);
890         for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
891                 struct btrfs_ordered_extent *ordered;
892
893                 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
894
895                 if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
896                         continue;
897
898                 ASSERT(list_empty(&ordered->log_list));
899                 list_add_tail(&ordered->log_list, list);
900                 refcount_inc(&ordered->refs);
901         }
902         spin_unlock_irq(&tree->lock);
903 }
904
905 /*
906  * lookup and return any extent before 'file_offset'.  NULL is returned
907  * if none is found
908  */
909 struct btrfs_ordered_extent *
910 btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset)
911 {
912         struct btrfs_ordered_inode_tree *tree;
913         struct rb_node *node;
914         struct btrfs_ordered_extent *entry = NULL;
915
916         tree = &inode->ordered_tree;
917         spin_lock_irq(&tree->lock);
918         node = tree_search(tree, file_offset);
919         if (!node)
920                 goto out;
921
922         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
923         refcount_inc(&entry->refs);
924 out:
925         spin_unlock_irq(&tree->lock);
926         return entry;
927 }
928
929 /*
930  * Lookup the first ordered extent that overlaps the range
931  * [@file_offset, @file_offset + @len).
932  *
933  * The difference between this and btrfs_lookup_first_ordered_extent() is
934  * that this one won't return any ordered extent that does not overlap the range.
935  * And the difference against btrfs_lookup_ordered_extent() is, this function
936  * ensures the first ordered extent gets returned.
937  */
938 struct btrfs_ordered_extent *btrfs_lookup_first_ordered_range(
939                         struct btrfs_inode *inode, u64 file_offset, u64 len)
940 {
941         struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
942         struct rb_node *node;
943         struct rb_node *cur;
944         struct rb_node *prev;
945         struct rb_node *next;
946         struct btrfs_ordered_extent *entry = NULL;
947
948         spin_lock_irq(&tree->lock);
949         node = tree->tree.rb_node;
950         /*
951          * Here we don't want to use tree_search() which will use tree->last
952          * and screw up the search order.
953          * And __tree_search() can't return the adjacent ordered extents
954          * either, thus here we do our own search.
955          */
956         while (node) {
957                 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
958
959                 if (file_offset < entry->file_offset) {
960                         node = node->rb_left;
961                 } else if (file_offset >= entry_end(entry)) {
962                         node = node->rb_right;
963                 } else {
964                         /*
965                          * Direct hit, got an ordered extent that starts at
966                          * @file_offset
967                          */
968                         goto out;
969                 }
970         }
971         if (!entry) {
972                 /* Empty tree */
973                 goto out;
974         }
975
976         cur = &entry->rb_node;
977         /* We got an entry around @file_offset, check adjacent entries */
978         if (entry->file_offset < file_offset) {
979                 prev = cur;
980                 next = rb_next(cur);
981         } else {
982                 prev = rb_prev(cur);
983                 next = cur;
984         }
985         if (prev) {
986                 entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node);
987                 if (range_overlaps(entry, file_offset, len))
988                         goto out;
989         }
990         if (next) {
991                 entry = rb_entry(next, struct btrfs_ordered_extent, rb_node);
992                 if (range_overlaps(entry, file_offset, len))
993                         goto out;
994         }
995         /* No ordered extent in the range */
996         entry = NULL;
997 out:
998         if (entry)
999                 refcount_inc(&entry->refs);
1000         spin_unlock_irq(&tree->lock);
1001         return entry;
1002 }
1003
1004 /*
1005  * btrfs_flush_ordered_range - Lock the passed range and ensures all pending
1006  * ordered extents in it are run to completion.
1007  *
1008  * @inode:        Inode whose ordered tree is to be searched
1009  * @start:        Beginning of range to flush
1010  * @end:          Last byte of range to lock
1011  * @cached_state: If passed, will return the extent state responsible for the
1012  * locked range. It's the caller's responsibility to free the cached state.
1013  *
1014  * This function always returns with the given range locked, ensuring after it's
1015  * called no order extent can be pending.
1016  */
1017 void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
1018                                         u64 end,
1019                                         struct extent_state **cached_state)
1020 {
1021         struct btrfs_ordered_extent *ordered;
1022         struct extent_state *cache = NULL;
1023         struct extent_state **cachedp = &cache;
1024
1025         if (cached_state)
1026                 cachedp = cached_state;
1027
1028         while (1) {
1029                 lock_extent_bits(&inode->io_tree, start, end, cachedp);
1030                 ordered = btrfs_lookup_ordered_range(inode, start,
1031                                                      end - start + 1);
1032                 if (!ordered) {
1033                         /*
1034                          * If no external cached_state has been passed then
1035                          * decrement the extra ref taken for cachedp since we
1036                          * aren't exposing it outside of this function
1037                          */
1038                         if (!cached_state)
1039                                 refcount_dec(&cache->refs);
1040                         break;
1041                 }
1042                 unlock_extent_cached(&inode->io_tree, start, end, cachedp);
1043                 btrfs_start_ordered_extent(ordered, 1);
1044                 btrfs_put_ordered_extent(ordered);
1045         }
1046 }
1047
1048 static int clone_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pos,
1049                                 u64 len)
1050 {
1051         struct inode *inode = ordered->inode;
1052         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1053         u64 file_offset = ordered->file_offset + pos;
1054         u64 disk_bytenr = ordered->disk_bytenr + pos;
1055         u64 num_bytes = len;
1056         u64 disk_num_bytes = len;
1057         int type;
1058         unsigned long flags_masked = ordered->flags & ~(1 << BTRFS_ORDERED_DIRECT);
1059         int compress_type = ordered->compress_type;
1060         unsigned long weight;
1061         int ret;
1062
1063         weight = hweight_long(flags_masked);
1064         WARN_ON_ONCE(weight > 1);
1065         if (!weight)
1066                 type = 0;
1067         else
1068                 type = __ffs(flags_masked);
1069
1070         /*
1071          * The splitting extent is already counted and will be added again
1072          * in btrfs_add_ordered_extent_*(). Subtract num_bytes to avoid
1073          * double counting.
1074          */
1075         percpu_counter_add_batch(&fs_info->ordered_bytes, -num_bytes,
1076                                  fs_info->delalloc_batch);
1077         if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered->flags)) {
1078                 WARN_ON_ONCE(1);
1079                 ret = btrfs_add_ordered_extent_compress(BTRFS_I(inode),
1080                                 file_offset, disk_bytenr, num_bytes,
1081                                 disk_num_bytes, compress_type);
1082         } else if (test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
1083                 ret = btrfs_add_ordered_extent_dio(BTRFS_I(inode), file_offset,
1084                                 disk_bytenr, num_bytes, disk_num_bytes, type);
1085         } else {
1086                 ret = btrfs_add_ordered_extent(BTRFS_I(inode), file_offset,
1087                                 disk_bytenr, num_bytes, disk_num_bytes, type);
1088         }
1089
1090         return ret;
1091 }
1092
1093 int btrfs_split_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pre,
1094                                 u64 post)
1095 {
1096         struct inode *inode = ordered->inode;
1097         struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
1098         struct rb_node *node;
1099         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1100         int ret = 0;
1101
1102         spin_lock_irq(&tree->lock);
1103         /* Remove from tree once */
1104         node = &ordered->rb_node;
1105         rb_erase(node, &tree->tree);
1106         RB_CLEAR_NODE(node);
1107         if (tree->last == node)
1108                 tree->last = NULL;
1109
1110         ordered->file_offset += pre;
1111         ordered->disk_bytenr += pre;
1112         ordered->num_bytes -= (pre + post);
1113         ordered->disk_num_bytes -= (pre + post);
1114         ordered->bytes_left -= (pre + post);
1115
1116         /* Re-insert the node */
1117         node = tree_insert(&tree->tree, ordered->file_offset, &ordered->rb_node);
1118         if (node)
1119                 btrfs_panic(fs_info, -EEXIST,
1120                         "zoned: inconsistency in ordered tree at offset %llu",
1121                             ordered->file_offset);
1122
1123         spin_unlock_irq(&tree->lock);
1124
1125         if (pre)
1126                 ret = clone_ordered_extent(ordered, 0, pre);
1127         if (ret == 0 && post)
1128                 ret = clone_ordered_extent(ordered, pre + ordered->disk_num_bytes,
1129                                            post);
1130
1131         return ret;
1132 }
1133
1134 int __init ordered_data_init(void)
1135 {
1136         btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1137                                      sizeof(struct btrfs_ordered_extent), 0,
1138                                      SLAB_MEM_SPREAD,
1139                                      NULL);
1140         if (!btrfs_ordered_extent_cache)
1141                 return -ENOMEM;
1142
1143         return 0;
1144 }
1145
1146 void __cold ordered_data_exit(void)
1147 {
1148         kmem_cache_destroy(btrfs_ordered_extent_cache);
1149 }