Merge remote-tracking branch 'torvalds/master' into perf/core
[linux-2.6-microblaze.git] / drivers / usb / gadget / function / f_fs.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * f_fs.c -- user mode file system API for USB composite function controllers
4  *
5  * Copyright (C) 2010 Samsung Electronics
6  * Author: Michal Nazarewicz <mina86@mina86.com>
7  *
8  * Based on inode.c (GadgetFS) which was:
9  * Copyright (C) 2003-2004 David Brownell
10  * Copyright (C) 2003 Agilent Technologies
11  */
12
13
14 /* #define DEBUG */
15 /* #define VERBOSE_DEBUG */
16
17 #include <linux/blkdev.h>
18 #include <linux/pagemap.h>
19 #include <linux/export.h>
20 #include <linux/fs_parser.h>
21 #include <linux/hid.h>
22 #include <linux/mm.h>
23 #include <linux/module.h>
24 #include <linux/scatterlist.h>
25 #include <linux/sched/signal.h>
26 #include <linux/uio.h>
27 #include <linux/vmalloc.h>
28 #include <asm/unaligned.h>
29
30 #include <linux/usb/ccid.h>
31 #include <linux/usb/composite.h>
32 #include <linux/usb/functionfs.h>
33
34 #include <linux/aio.h>
35 #include <linux/kthread.h>
36 #include <linux/poll.h>
37 #include <linux/eventfd.h>
38
39 #include "u_fs.h"
40 #include "u_f.h"
41 #include "u_os_desc.h"
42 #include "configfs.h"
43
44 #define FUNCTIONFS_MAGIC        0xa647361 /* Chosen by a honest dice roll ;) */
45
46 /* Reference counter handling */
47 static void ffs_data_get(struct ffs_data *ffs);
48 static void ffs_data_put(struct ffs_data *ffs);
49 /* Creates new ffs_data object. */
50 static struct ffs_data *__must_check ffs_data_new(const char *dev_name)
51         __attribute__((malloc));
52
53 /* Opened counter handling. */
54 static void ffs_data_opened(struct ffs_data *ffs);
55 static void ffs_data_closed(struct ffs_data *ffs);
56
57 /* Called with ffs->mutex held; take over ownership of data. */
58 static int __must_check
59 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
60 static int __must_check
61 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
62
63
64 /* The function structure ***************************************************/
65
66 struct ffs_ep;
67
68 struct ffs_function {
69         struct usb_configuration        *conf;
70         struct usb_gadget               *gadget;
71         struct ffs_data                 *ffs;
72
73         struct ffs_ep                   *eps;
74         u8                              eps_revmap[16];
75         short                           *interfaces_nums;
76
77         struct usb_function             function;
78 };
79
80
81 static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
82 {
83         return container_of(f, struct ffs_function, function);
84 }
85
86
87 static inline enum ffs_setup_state
88 ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
89 {
90         return (enum ffs_setup_state)
91                 cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
92 }
93
94
95 static void ffs_func_eps_disable(struct ffs_function *func);
96 static int __must_check ffs_func_eps_enable(struct ffs_function *func);
97
98 static int ffs_func_bind(struct usb_configuration *,
99                          struct usb_function *);
100 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
101 static void ffs_func_disable(struct usb_function *);
102 static int ffs_func_setup(struct usb_function *,
103                           const struct usb_ctrlrequest *);
104 static bool ffs_func_req_match(struct usb_function *,
105                                const struct usb_ctrlrequest *,
106                                bool config0);
107 static void ffs_func_suspend(struct usb_function *);
108 static void ffs_func_resume(struct usb_function *);
109
110
111 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
112 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
113
114
115 /* The endpoints structures *************************************************/
116
117 struct ffs_ep {
118         struct usb_ep                   *ep;    /* P: ffs->eps_lock */
119         struct usb_request              *req;   /* P: epfile->mutex */
120
121         /* [0]: full speed, [1]: high speed, [2]: super speed */
122         struct usb_endpoint_descriptor  *descs[3];
123
124         u8                              num;
125
126         int                             status; /* P: epfile->mutex */
127 };
128
129 struct ffs_epfile {
130         /* Protects ep->ep and ep->req. */
131         struct mutex                    mutex;
132
133         struct ffs_data                 *ffs;
134         struct ffs_ep                   *ep;    /* P: ffs->eps_lock */
135
136         struct dentry                   *dentry;
137
138         /*
139          * Buffer for holding data from partial reads which may happen since
140          * we’re rounding user read requests to a multiple of a max packet size.
141          *
142          * The pointer is initialised with NULL value and may be set by
143          * __ffs_epfile_read_data function to point to a temporary buffer.
144          *
145          * In normal operation, calls to __ffs_epfile_read_buffered will consume
146          * data from said buffer and eventually free it.  Importantly, while the
147          * function is using the buffer, it sets the pointer to NULL.  This is
148          * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
149          * can never run concurrently (they are synchronised by epfile->mutex)
150          * so the latter will not assign a new value to the pointer.
151          *
152          * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
153          * valid) and sets the pointer to READ_BUFFER_DROP value.  This special
154          * value is crux of the synchronisation between ffs_func_eps_disable and
155          * __ffs_epfile_read_data.
156          *
157          * Once __ffs_epfile_read_data is about to finish it will try to set the
158          * pointer back to its old value (as described above), but seeing as the
159          * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
160          * the buffer.
161          *
162          * == State transitions ==
163          *
164          * • ptr == NULL:  (initial state)
165          *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP
166          *   ◦ __ffs_epfile_read_buffered:    nop
167          *   ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
168          *   ◦ reading finishes:              n/a, not in ‘and reading’ state
169          * • ptr == DROP:
170          *   ◦ __ffs_epfile_read_buffer_free: nop
171          *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL
172          *   ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
173          *   ◦ reading finishes:              n/a, not in ‘and reading’ state
174          * • ptr == buf:
175          *   ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
176          *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL and reading
177          *   ◦ __ffs_epfile_read_data:        n/a, __ffs_epfile_read_buffered
178          *                                    is always called first
179          *   ◦ reading finishes:              n/a, not in ‘and reading’ state
180          * • ptr == NULL and reading:
181          *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
182          *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
183          *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
184          *   ◦ reading finishes and …
185          *     … all data read:               free buf, go to ptr == NULL
186          *     … otherwise:                   go to ptr == buf and reading
187          * • ptr == DROP and reading:
188          *   ◦ __ffs_epfile_read_buffer_free: nop
189          *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
190          *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
191          *   ◦ reading finishes:              free buf, go to ptr == DROP
192          */
193         struct ffs_buffer               *read_buffer;
194 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
195
196         char                            name[5];
197
198         unsigned char                   in;     /* P: ffs->eps_lock */
199         unsigned char                   isoc;   /* P: ffs->eps_lock */
200
201         unsigned char                   _pad;
202 };
203
204 struct ffs_buffer {
205         size_t length;
206         char *data;
207         char storage[];
208 };
209
210 /*  ffs_io_data structure ***************************************************/
211
212 struct ffs_io_data {
213         bool aio;
214         bool read;
215
216         struct kiocb *kiocb;
217         struct iov_iter data;
218         const void *to_free;
219         char *buf;
220
221         struct mm_struct *mm;
222         struct work_struct work;
223
224         struct usb_ep *ep;
225         struct usb_request *req;
226         struct sg_table sgt;
227         bool use_sg;
228
229         struct ffs_data *ffs;
230 };
231
232 struct ffs_desc_helper {
233         struct ffs_data *ffs;
234         unsigned interfaces_count;
235         unsigned eps_count;
236 };
237
238 static int  __must_check ffs_epfiles_create(struct ffs_data *ffs);
239 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
240
241 static struct dentry *
242 ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
243                    const struct file_operations *fops);
244
245 /* Devices management *******************************************************/
246
247 DEFINE_MUTEX(ffs_lock);
248 EXPORT_SYMBOL_GPL(ffs_lock);
249
250 static struct ffs_dev *_ffs_find_dev(const char *name);
251 static struct ffs_dev *_ffs_alloc_dev(void);
252 static void _ffs_free_dev(struct ffs_dev *dev);
253 static void *ffs_acquire_dev(const char *dev_name);
254 static void ffs_release_dev(struct ffs_data *ffs_data);
255 static int ffs_ready(struct ffs_data *ffs);
256 static void ffs_closed(struct ffs_data *ffs);
257
258 /* Misc helper functions ****************************************************/
259
260 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
261         __attribute__((warn_unused_result, nonnull));
262 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
263         __attribute__((warn_unused_result, nonnull));
264
265
266 /* Control file aka ep0 *****************************************************/
267
268 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
269 {
270         struct ffs_data *ffs = req->context;
271
272         complete(&ffs->ep0req_completion);
273 }
274
275 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
276         __releases(&ffs->ev.waitq.lock)
277 {
278         struct usb_request *req = ffs->ep0req;
279         int ret;
280
281         req->zero     = len < le16_to_cpu(ffs->ev.setup.wLength);
282
283         spin_unlock_irq(&ffs->ev.waitq.lock);
284
285         req->buf      = data;
286         req->length   = len;
287
288         /*
289          * UDC layer requires to provide a buffer even for ZLP, but should
290          * not use it at all. Let's provide some poisoned pointer to catch
291          * possible bug in the driver.
292          */
293         if (req->buf == NULL)
294                 req->buf = (void *)0xDEADBABE;
295
296         reinit_completion(&ffs->ep0req_completion);
297
298         ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
299         if (ret < 0)
300                 return ret;
301
302         ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
303         if (ret) {
304                 usb_ep_dequeue(ffs->gadget->ep0, req);
305                 return -EINTR;
306         }
307
308         ffs->setup_state = FFS_NO_SETUP;
309         return req->status ? req->status : req->actual;
310 }
311
312 static int __ffs_ep0_stall(struct ffs_data *ffs)
313 {
314         if (ffs->ev.can_stall) {
315                 pr_vdebug("ep0 stall\n");
316                 usb_ep_set_halt(ffs->gadget->ep0);
317                 ffs->setup_state = FFS_NO_SETUP;
318                 return -EL2HLT;
319         } else {
320                 pr_debug("bogus ep0 stall!\n");
321                 return -ESRCH;
322         }
323 }
324
325 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
326                              size_t len, loff_t *ptr)
327 {
328         struct ffs_data *ffs = file->private_data;
329         ssize_t ret;
330         char *data;
331
332         ENTER();
333
334         /* Fast check if setup was canceled */
335         if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
336                 return -EIDRM;
337
338         /* Acquire mutex */
339         ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
340         if (ret < 0)
341                 return ret;
342
343         /* Check state */
344         switch (ffs->state) {
345         case FFS_READ_DESCRIPTORS:
346         case FFS_READ_STRINGS:
347                 /* Copy data */
348                 if (len < 16) {
349                         ret = -EINVAL;
350                         break;
351                 }
352
353                 data = ffs_prepare_buffer(buf, len);
354                 if (IS_ERR(data)) {
355                         ret = PTR_ERR(data);
356                         break;
357                 }
358
359                 /* Handle data */
360                 if (ffs->state == FFS_READ_DESCRIPTORS) {
361                         pr_info("read descriptors\n");
362                         ret = __ffs_data_got_descs(ffs, data, len);
363                         if (ret < 0)
364                                 break;
365
366                         ffs->state = FFS_READ_STRINGS;
367                         ret = len;
368                 } else {
369                         pr_info("read strings\n");
370                         ret = __ffs_data_got_strings(ffs, data, len);
371                         if (ret < 0)
372                                 break;
373
374                         ret = ffs_epfiles_create(ffs);
375                         if (ret) {
376                                 ffs->state = FFS_CLOSING;
377                                 break;
378                         }
379
380                         ffs->state = FFS_ACTIVE;
381                         mutex_unlock(&ffs->mutex);
382
383                         ret = ffs_ready(ffs);
384                         if (ret < 0) {
385                                 ffs->state = FFS_CLOSING;
386                                 return ret;
387                         }
388
389                         return len;
390                 }
391                 break;
392
393         case FFS_ACTIVE:
394                 data = NULL;
395                 /*
396                  * We're called from user space, we can use _irq
397                  * rather then _irqsave
398                  */
399                 spin_lock_irq(&ffs->ev.waitq.lock);
400                 switch (ffs_setup_state_clear_cancelled(ffs)) {
401                 case FFS_SETUP_CANCELLED:
402                         ret = -EIDRM;
403                         goto done_spin;
404
405                 case FFS_NO_SETUP:
406                         ret = -ESRCH;
407                         goto done_spin;
408
409                 case FFS_SETUP_PENDING:
410                         break;
411                 }
412
413                 /* FFS_SETUP_PENDING */
414                 if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
415                         spin_unlock_irq(&ffs->ev.waitq.lock);
416                         ret = __ffs_ep0_stall(ffs);
417                         break;
418                 }
419
420                 /* FFS_SETUP_PENDING and not stall */
421                 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
422
423                 spin_unlock_irq(&ffs->ev.waitq.lock);
424
425                 data = ffs_prepare_buffer(buf, len);
426                 if (IS_ERR(data)) {
427                         ret = PTR_ERR(data);
428                         break;
429                 }
430
431                 spin_lock_irq(&ffs->ev.waitq.lock);
432
433                 /*
434                  * We are guaranteed to be still in FFS_ACTIVE state
435                  * but the state of setup could have changed from
436                  * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
437                  * to check for that.  If that happened we copied data
438                  * from user space in vain but it's unlikely.
439                  *
440                  * For sure we are not in FFS_NO_SETUP since this is
441                  * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
442                  * transition can be performed and it's protected by
443                  * mutex.
444                  */
445                 if (ffs_setup_state_clear_cancelled(ffs) ==
446                     FFS_SETUP_CANCELLED) {
447                         ret = -EIDRM;
448 done_spin:
449                         spin_unlock_irq(&ffs->ev.waitq.lock);
450                 } else {
451                         /* unlocks spinlock */
452                         ret = __ffs_ep0_queue_wait(ffs, data, len);
453                 }
454                 kfree(data);
455                 break;
456
457         default:
458                 ret = -EBADFD;
459                 break;
460         }
461
462         mutex_unlock(&ffs->mutex);
463         return ret;
464 }
465
466 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
467 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
468                                      size_t n)
469         __releases(&ffs->ev.waitq.lock)
470 {
471         /*
472          * n cannot be bigger than ffs->ev.count, which cannot be bigger than
473          * size of ffs->ev.types array (which is four) so that's how much space
474          * we reserve.
475          */
476         struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
477         const size_t size = n * sizeof *events;
478         unsigned i = 0;
479
480         memset(events, 0, size);
481
482         do {
483                 events[i].type = ffs->ev.types[i];
484                 if (events[i].type == FUNCTIONFS_SETUP) {
485                         events[i].u.setup = ffs->ev.setup;
486                         ffs->setup_state = FFS_SETUP_PENDING;
487                 }
488         } while (++i < n);
489
490         ffs->ev.count -= n;
491         if (ffs->ev.count)
492                 memmove(ffs->ev.types, ffs->ev.types + n,
493                         ffs->ev.count * sizeof *ffs->ev.types);
494
495         spin_unlock_irq(&ffs->ev.waitq.lock);
496         mutex_unlock(&ffs->mutex);
497
498         return copy_to_user(buf, events, size) ? -EFAULT : size;
499 }
500
501 static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
502                             size_t len, loff_t *ptr)
503 {
504         struct ffs_data *ffs = file->private_data;
505         char *data = NULL;
506         size_t n;
507         int ret;
508
509         ENTER();
510
511         /* Fast check if setup was canceled */
512         if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
513                 return -EIDRM;
514
515         /* Acquire mutex */
516         ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
517         if (ret < 0)
518                 return ret;
519
520         /* Check state */
521         if (ffs->state != FFS_ACTIVE) {
522                 ret = -EBADFD;
523                 goto done_mutex;
524         }
525
526         /*
527          * We're called from user space, we can use _irq rather then
528          * _irqsave
529          */
530         spin_lock_irq(&ffs->ev.waitq.lock);
531
532         switch (ffs_setup_state_clear_cancelled(ffs)) {
533         case FFS_SETUP_CANCELLED:
534                 ret = -EIDRM;
535                 break;
536
537         case FFS_NO_SETUP:
538                 n = len / sizeof(struct usb_functionfs_event);
539                 if (!n) {
540                         ret = -EINVAL;
541                         break;
542                 }
543
544                 if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
545                         ret = -EAGAIN;
546                         break;
547                 }
548
549                 if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
550                                                         ffs->ev.count)) {
551                         ret = -EINTR;
552                         break;
553                 }
554
555                 /* unlocks spinlock */
556                 return __ffs_ep0_read_events(ffs, buf,
557                                              min(n, (size_t)ffs->ev.count));
558
559         case FFS_SETUP_PENDING:
560                 if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
561                         spin_unlock_irq(&ffs->ev.waitq.lock);
562                         ret = __ffs_ep0_stall(ffs);
563                         goto done_mutex;
564                 }
565
566                 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
567
568                 spin_unlock_irq(&ffs->ev.waitq.lock);
569
570                 if (len) {
571                         data = kmalloc(len, GFP_KERNEL);
572                         if (!data) {
573                                 ret = -ENOMEM;
574                                 goto done_mutex;
575                         }
576                 }
577
578                 spin_lock_irq(&ffs->ev.waitq.lock);
579
580                 /* See ffs_ep0_write() */
581                 if (ffs_setup_state_clear_cancelled(ffs) ==
582                     FFS_SETUP_CANCELLED) {
583                         ret = -EIDRM;
584                         break;
585                 }
586
587                 /* unlocks spinlock */
588                 ret = __ffs_ep0_queue_wait(ffs, data, len);
589                 if ((ret > 0) && (copy_to_user(buf, data, len)))
590                         ret = -EFAULT;
591                 goto done_mutex;
592
593         default:
594                 ret = -EBADFD;
595                 break;
596         }
597
598         spin_unlock_irq(&ffs->ev.waitq.lock);
599 done_mutex:
600         mutex_unlock(&ffs->mutex);
601         kfree(data);
602         return ret;
603 }
604
605 static int ffs_ep0_open(struct inode *inode, struct file *file)
606 {
607         struct ffs_data *ffs = inode->i_private;
608
609         ENTER();
610
611         if (ffs->state == FFS_CLOSING)
612                 return -EBUSY;
613
614         file->private_data = ffs;
615         ffs_data_opened(ffs);
616
617         return 0;
618 }
619
620 static int ffs_ep0_release(struct inode *inode, struct file *file)
621 {
622         struct ffs_data *ffs = file->private_data;
623
624         ENTER();
625
626         ffs_data_closed(ffs);
627
628         return 0;
629 }
630
631 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
632 {
633         struct ffs_data *ffs = file->private_data;
634         struct usb_gadget *gadget = ffs->gadget;
635         long ret;
636
637         ENTER();
638
639         if (code == FUNCTIONFS_INTERFACE_REVMAP) {
640                 struct ffs_function *func = ffs->func;
641                 ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
642         } else if (gadget && gadget->ops->ioctl) {
643                 ret = gadget->ops->ioctl(gadget, code, value);
644         } else {
645                 ret = -ENOTTY;
646         }
647
648         return ret;
649 }
650
651 static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait)
652 {
653         struct ffs_data *ffs = file->private_data;
654         __poll_t mask = EPOLLWRNORM;
655         int ret;
656
657         poll_wait(file, &ffs->ev.waitq, wait);
658
659         ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
660         if (ret < 0)
661                 return mask;
662
663         switch (ffs->state) {
664         case FFS_READ_DESCRIPTORS:
665         case FFS_READ_STRINGS:
666                 mask |= EPOLLOUT;
667                 break;
668
669         case FFS_ACTIVE:
670                 switch (ffs->setup_state) {
671                 case FFS_NO_SETUP:
672                         if (ffs->ev.count)
673                                 mask |= EPOLLIN;
674                         break;
675
676                 case FFS_SETUP_PENDING:
677                 case FFS_SETUP_CANCELLED:
678                         mask |= (EPOLLIN | EPOLLOUT);
679                         break;
680                 }
681                 break;
682
683         case FFS_CLOSING:
684                 break;
685         case FFS_DEACTIVATED:
686                 break;
687         }
688
689         mutex_unlock(&ffs->mutex);
690
691         return mask;
692 }
693
694 static const struct file_operations ffs_ep0_operations = {
695         .llseek =       no_llseek,
696
697         .open =         ffs_ep0_open,
698         .write =        ffs_ep0_write,
699         .read =         ffs_ep0_read,
700         .release =      ffs_ep0_release,
701         .unlocked_ioctl =       ffs_ep0_ioctl,
702         .poll =         ffs_ep0_poll,
703 };
704
705
706 /* "Normal" endpoints operations ********************************************/
707
708 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
709 {
710         ENTER();
711         if (req->context) {
712                 struct ffs_ep *ep = _ep->driver_data;
713                 ep->status = req->status ? req->status : req->actual;
714                 complete(req->context);
715         }
716 }
717
718 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
719 {
720         ssize_t ret = copy_to_iter(data, data_len, iter);
721         if (ret == data_len)
722                 return ret;
723
724         if (iov_iter_count(iter))
725                 return -EFAULT;
726
727         /*
728          * Dear user space developer!
729          *
730          * TL;DR: To stop getting below error message in your kernel log, change
731          * user space code using functionfs to align read buffers to a max
732          * packet size.
733          *
734          * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
735          * packet size.  When unaligned buffer is passed to functionfs, it
736          * internally uses a larger, aligned buffer so that such UDCs are happy.
737          *
738          * Unfortunately, this means that host may send more data than was
739          * requested in read(2) system call.  f_fs doesn’t know what to do with
740          * that excess data so it simply drops it.
741          *
742          * Was the buffer aligned in the first place, no such problem would
743          * happen.
744          *
745          * Data may be dropped only in AIO reads.  Synchronous reads are handled
746          * by splitting a request into multiple parts.  This splitting may still
747          * be a problem though so it’s likely best to align the buffer
748          * regardless of it being AIO or not..
749          *
750          * This only affects OUT endpoints, i.e. reading data with a read(2),
751          * aio_read(2) etc. system calls.  Writing data to an IN endpoint is not
752          * affected.
753          */
754         pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
755                "Align read buffer size to max packet size to avoid the problem.\n",
756                data_len, ret);
757
758         return ret;
759 }
760
761 /*
762  * allocate a virtually contiguous buffer and create a scatterlist describing it
763  * @sg_table    - pointer to a place to be filled with sg_table contents
764  * @size        - required buffer size
765  */
766 static void *ffs_build_sg_list(struct sg_table *sgt, size_t sz)
767 {
768         struct page **pages;
769         void *vaddr, *ptr;
770         unsigned int n_pages;
771         int i;
772
773         vaddr = vmalloc(sz);
774         if (!vaddr)
775                 return NULL;
776
777         n_pages = PAGE_ALIGN(sz) >> PAGE_SHIFT;
778         pages = kvmalloc_array(n_pages, sizeof(struct page *), GFP_KERNEL);
779         if (!pages) {
780                 vfree(vaddr);
781
782                 return NULL;
783         }
784         for (i = 0, ptr = vaddr; i < n_pages; ++i, ptr += PAGE_SIZE)
785                 pages[i] = vmalloc_to_page(ptr);
786
787         if (sg_alloc_table_from_pages(sgt, pages, n_pages, 0, sz, GFP_KERNEL)) {
788                 kvfree(pages);
789                 vfree(vaddr);
790
791                 return NULL;
792         }
793         kvfree(pages);
794
795         return vaddr;
796 }
797
798 static inline void *ffs_alloc_buffer(struct ffs_io_data *io_data,
799         size_t data_len)
800 {
801         if (io_data->use_sg)
802                 return ffs_build_sg_list(&io_data->sgt, data_len);
803
804         return kmalloc(data_len, GFP_KERNEL);
805 }
806
807 static inline void ffs_free_buffer(struct ffs_io_data *io_data)
808 {
809         if (!io_data->buf)
810                 return;
811
812         if (io_data->use_sg) {
813                 sg_free_table(&io_data->sgt);
814                 vfree(io_data->buf);
815         } else {
816                 kfree(io_data->buf);
817         }
818 }
819
820 static void ffs_user_copy_worker(struct work_struct *work)
821 {
822         struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
823                                                    work);
824         int ret = io_data->req->status ? io_data->req->status :
825                                          io_data->req->actual;
826         bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
827
828         if (io_data->read && ret > 0) {
829                 kthread_use_mm(io_data->mm);
830                 ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
831                 kthread_unuse_mm(io_data->mm);
832         }
833
834         io_data->kiocb->ki_complete(io_data->kiocb, ret, ret);
835
836         if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
837                 eventfd_signal(io_data->ffs->ffs_eventfd, 1);
838
839         usb_ep_free_request(io_data->ep, io_data->req);
840
841         if (io_data->read)
842                 kfree(io_data->to_free);
843         ffs_free_buffer(io_data);
844         kfree(io_data);
845 }
846
847 static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
848                                          struct usb_request *req)
849 {
850         struct ffs_io_data *io_data = req->context;
851         struct ffs_data *ffs = io_data->ffs;
852
853         ENTER();
854
855         INIT_WORK(&io_data->work, ffs_user_copy_worker);
856         queue_work(ffs->io_completion_wq, &io_data->work);
857 }
858
859 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
860 {
861         /*
862          * See comment in struct ffs_epfile for full read_buffer pointer
863          * synchronisation story.
864          */
865         struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
866         if (buf && buf != READ_BUFFER_DROP)
867                 kfree(buf);
868 }
869
870 /* Assumes epfile->mutex is held. */
871 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
872                                           struct iov_iter *iter)
873 {
874         /*
875          * Null out epfile->read_buffer so ffs_func_eps_disable does not free
876          * the buffer while we are using it.  See comment in struct ffs_epfile
877          * for full read_buffer pointer synchronisation story.
878          */
879         struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
880         ssize_t ret;
881         if (!buf || buf == READ_BUFFER_DROP)
882                 return 0;
883
884         ret = copy_to_iter(buf->data, buf->length, iter);
885         if (buf->length == ret) {
886                 kfree(buf);
887                 return ret;
888         }
889
890         if (iov_iter_count(iter)) {
891                 ret = -EFAULT;
892         } else {
893                 buf->length -= ret;
894                 buf->data += ret;
895         }
896
897         if (cmpxchg(&epfile->read_buffer, NULL, buf))
898                 kfree(buf);
899
900         return ret;
901 }
902
903 /* Assumes epfile->mutex is held. */
904 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
905                                       void *data, int data_len,
906                                       struct iov_iter *iter)
907 {
908         struct ffs_buffer *buf;
909
910         ssize_t ret = copy_to_iter(data, data_len, iter);
911         if (data_len == ret)
912                 return ret;
913
914         if (iov_iter_count(iter))
915                 return -EFAULT;
916
917         /* See ffs_copy_to_iter for more context. */
918         pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
919                 data_len, ret);
920
921         data_len -= ret;
922         buf = kmalloc(sizeof(*buf) + data_len, GFP_KERNEL);
923         if (!buf)
924                 return -ENOMEM;
925         buf->length = data_len;
926         buf->data = buf->storage;
927         memcpy(buf->storage, data + ret, data_len);
928
929         /*
930          * At this point read_buffer is NULL or READ_BUFFER_DROP (if
931          * ffs_func_eps_disable has been called in the meanwhile).  See comment
932          * in struct ffs_epfile for full read_buffer pointer synchronisation
933          * story.
934          */
935         if (cmpxchg(&epfile->read_buffer, NULL, buf))
936                 kfree(buf);
937
938         return ret;
939 }
940
941 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
942 {
943         struct ffs_epfile *epfile = file->private_data;
944         struct usb_request *req;
945         struct ffs_ep *ep;
946         char *data = NULL;
947         ssize_t ret, data_len = -EINVAL;
948         int halt;
949
950         /* Are we still active? */
951         if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
952                 return -ENODEV;
953
954         /* Wait for endpoint to be enabled */
955         ep = epfile->ep;
956         if (!ep) {
957                 if (file->f_flags & O_NONBLOCK)
958                         return -EAGAIN;
959
960                 ret = wait_event_interruptible(
961                                 epfile->ffs->wait, (ep = epfile->ep));
962                 if (ret)
963                         return -EINTR;
964         }
965
966         /* Do we halt? */
967         halt = (!io_data->read == !epfile->in);
968         if (halt && epfile->isoc)
969                 return -EINVAL;
970
971         /* We will be using request and read_buffer */
972         ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
973         if (ret)
974                 goto error;
975
976         /* Allocate & copy */
977         if (!halt) {
978                 struct usb_gadget *gadget;
979
980                 /*
981                  * Do we have buffered data from previous partial read?  Check
982                  * that for synchronous case only because we do not have
983                  * facility to ‘wake up’ a pending asynchronous read and push
984                  * buffered data to it which we would need to make things behave
985                  * consistently.
986                  */
987                 if (!io_data->aio && io_data->read) {
988                         ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
989                         if (ret)
990                                 goto error_mutex;
991                 }
992
993                 /*
994                  * if we _do_ wait above, the epfile->ffs->gadget might be NULL
995                  * before the waiting completes, so do not assign to 'gadget'
996                  * earlier
997                  */
998                 gadget = epfile->ffs->gadget;
999
1000                 spin_lock_irq(&epfile->ffs->eps_lock);
1001                 /* In the meantime, endpoint got disabled or changed. */
1002                 if (epfile->ep != ep) {
1003                         ret = -ESHUTDOWN;
1004                         goto error_lock;
1005                 }
1006                 data_len = iov_iter_count(&io_data->data);
1007                 /*
1008                  * Controller may require buffer size to be aligned to
1009                  * maxpacketsize of an out endpoint.
1010                  */
1011                 if (io_data->read)
1012                         data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
1013
1014                 io_data->use_sg = gadget->sg_supported && data_len > PAGE_SIZE;
1015                 spin_unlock_irq(&epfile->ffs->eps_lock);
1016
1017                 data = ffs_alloc_buffer(io_data, data_len);
1018                 if (!data) {
1019                         ret = -ENOMEM;
1020                         goto error_mutex;
1021                 }
1022                 if (!io_data->read &&
1023                     !copy_from_iter_full(data, data_len, &io_data->data)) {
1024                         ret = -EFAULT;
1025                         goto error_mutex;
1026                 }
1027         }
1028
1029         spin_lock_irq(&epfile->ffs->eps_lock);
1030
1031         if (epfile->ep != ep) {
1032                 /* In the meantime, endpoint got disabled or changed. */
1033                 ret = -ESHUTDOWN;
1034         } else if (halt) {
1035                 ret = usb_ep_set_halt(ep->ep);
1036                 if (!ret)
1037                         ret = -EBADMSG;
1038         } else if (data_len == -EINVAL) {
1039                 /*
1040                  * Sanity Check: even though data_len can't be used
1041                  * uninitialized at the time I write this comment, some
1042                  * compilers complain about this situation.
1043                  * In order to keep the code clean from warnings, data_len is
1044                  * being initialized to -EINVAL during its declaration, which
1045                  * means we can't rely on compiler anymore to warn no future
1046                  * changes won't result in data_len being used uninitialized.
1047                  * For such reason, we're adding this redundant sanity check
1048                  * here.
1049                  */
1050                 WARN(1, "%s: data_len == -EINVAL\n", __func__);
1051                 ret = -EINVAL;
1052         } else if (!io_data->aio) {
1053                 DECLARE_COMPLETION_ONSTACK(done);
1054                 bool interrupted = false;
1055
1056                 req = ep->req;
1057                 if (io_data->use_sg) {
1058                         req->buf = NULL;
1059                         req->sg = io_data->sgt.sgl;
1060                         req->num_sgs = io_data->sgt.nents;
1061                 } else {
1062                         req->buf = data;
1063                         req->num_sgs = 0;
1064                 }
1065                 req->length = data_len;
1066
1067                 io_data->buf = data;
1068
1069                 req->context  = &done;
1070                 req->complete = ffs_epfile_io_complete;
1071
1072                 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1073                 if (ret < 0)
1074                         goto error_lock;
1075
1076                 spin_unlock_irq(&epfile->ffs->eps_lock);
1077
1078                 if (wait_for_completion_interruptible(&done)) {
1079                         /*
1080                          * To avoid race condition with ffs_epfile_io_complete,
1081                          * dequeue the request first then check
1082                          * status. usb_ep_dequeue API should guarantee no race
1083                          * condition with req->complete callback.
1084                          */
1085                         usb_ep_dequeue(ep->ep, req);
1086                         wait_for_completion(&done);
1087                         interrupted = ep->status < 0;
1088                 }
1089
1090                 if (interrupted)
1091                         ret = -EINTR;
1092                 else if (io_data->read && ep->status > 0)
1093                         ret = __ffs_epfile_read_data(epfile, data, ep->status,
1094                                                      &io_data->data);
1095                 else
1096                         ret = ep->status;
1097                 goto error_mutex;
1098         } else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) {
1099                 ret = -ENOMEM;
1100         } else {
1101                 if (io_data->use_sg) {
1102                         req->buf = NULL;
1103                         req->sg = io_data->sgt.sgl;
1104                         req->num_sgs = io_data->sgt.nents;
1105                 } else {
1106                         req->buf = data;
1107                         req->num_sgs = 0;
1108                 }
1109                 req->length = data_len;
1110
1111                 io_data->buf = data;
1112                 io_data->ep = ep->ep;
1113                 io_data->req = req;
1114                 io_data->ffs = epfile->ffs;
1115
1116                 req->context  = io_data;
1117                 req->complete = ffs_epfile_async_io_complete;
1118
1119                 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1120                 if (ret) {
1121                         io_data->req = NULL;
1122                         usb_ep_free_request(ep->ep, req);
1123                         goto error_lock;
1124                 }
1125
1126                 ret = -EIOCBQUEUED;
1127                 /*
1128                  * Do not kfree the buffer in this function.  It will be freed
1129                  * by ffs_user_copy_worker.
1130                  */
1131                 data = NULL;
1132         }
1133
1134 error_lock:
1135         spin_unlock_irq(&epfile->ffs->eps_lock);
1136 error_mutex:
1137         mutex_unlock(&epfile->mutex);
1138 error:
1139         if (ret != -EIOCBQUEUED) /* don't free if there is iocb queued */
1140                 ffs_free_buffer(io_data);
1141         return ret;
1142 }
1143
1144 static int
1145 ffs_epfile_open(struct inode *inode, struct file *file)
1146 {
1147         struct ffs_epfile *epfile = inode->i_private;
1148
1149         ENTER();
1150
1151         if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1152                 return -ENODEV;
1153
1154         file->private_data = epfile;
1155         ffs_data_opened(epfile->ffs);
1156
1157         return 0;
1158 }
1159
1160 static int ffs_aio_cancel(struct kiocb *kiocb)
1161 {
1162         struct ffs_io_data *io_data = kiocb->private;
1163         struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
1164         unsigned long flags;
1165         int value;
1166
1167         ENTER();
1168
1169         spin_lock_irqsave(&epfile->ffs->eps_lock, flags);
1170
1171         if (io_data && io_data->ep && io_data->req)
1172                 value = usb_ep_dequeue(io_data->ep, io_data->req);
1173         else
1174                 value = -EINVAL;
1175
1176         spin_unlock_irqrestore(&epfile->ffs->eps_lock, flags);
1177
1178         return value;
1179 }
1180
1181 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1182 {
1183         struct ffs_io_data io_data, *p = &io_data;
1184         ssize_t res;
1185
1186         ENTER();
1187
1188         if (!is_sync_kiocb(kiocb)) {
1189                 p = kzalloc(sizeof(io_data), GFP_KERNEL);
1190                 if (!p)
1191                         return -ENOMEM;
1192                 p->aio = true;
1193         } else {
1194                 memset(p, 0, sizeof(*p));
1195                 p->aio = false;
1196         }
1197
1198         p->read = false;
1199         p->kiocb = kiocb;
1200         p->data = *from;
1201         p->mm = current->mm;
1202
1203         kiocb->private = p;
1204
1205         if (p->aio)
1206                 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1207
1208         res = ffs_epfile_io(kiocb->ki_filp, p);
1209         if (res == -EIOCBQUEUED)
1210                 return res;
1211         if (p->aio)
1212                 kfree(p);
1213         else
1214                 *from = p->data;
1215         return res;
1216 }
1217
1218 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1219 {
1220         struct ffs_io_data io_data, *p = &io_data;
1221         ssize_t res;
1222
1223         ENTER();
1224
1225         if (!is_sync_kiocb(kiocb)) {
1226                 p = kzalloc(sizeof(io_data), GFP_KERNEL);
1227                 if (!p)
1228                         return -ENOMEM;
1229                 p->aio = true;
1230         } else {
1231                 memset(p, 0, sizeof(*p));
1232                 p->aio = false;
1233         }
1234
1235         p->read = true;
1236         p->kiocb = kiocb;
1237         if (p->aio) {
1238                 p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
1239                 if (!p->to_free) {
1240                         kfree(p);
1241                         return -ENOMEM;
1242                 }
1243         } else {
1244                 p->data = *to;
1245                 p->to_free = NULL;
1246         }
1247         p->mm = current->mm;
1248
1249         kiocb->private = p;
1250
1251         if (p->aio)
1252                 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1253
1254         res = ffs_epfile_io(kiocb->ki_filp, p);
1255         if (res == -EIOCBQUEUED)
1256                 return res;
1257
1258         if (p->aio) {
1259                 kfree(p->to_free);
1260                 kfree(p);
1261         } else {
1262                 *to = p->data;
1263         }
1264         return res;
1265 }
1266
1267 static int
1268 ffs_epfile_release(struct inode *inode, struct file *file)
1269 {
1270         struct ffs_epfile *epfile = inode->i_private;
1271
1272         ENTER();
1273
1274         __ffs_epfile_read_buffer_free(epfile);
1275         ffs_data_closed(epfile->ffs);
1276
1277         return 0;
1278 }
1279
1280 static long ffs_epfile_ioctl(struct file *file, unsigned code,
1281                              unsigned long value)
1282 {
1283         struct ffs_epfile *epfile = file->private_data;
1284         struct ffs_ep *ep;
1285         int ret;
1286
1287         ENTER();
1288
1289         if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1290                 return -ENODEV;
1291
1292         /* Wait for endpoint to be enabled */
1293         ep = epfile->ep;
1294         if (!ep) {
1295                 if (file->f_flags & O_NONBLOCK)
1296                         return -EAGAIN;
1297
1298                 ret = wait_event_interruptible(
1299                                 epfile->ffs->wait, (ep = epfile->ep));
1300                 if (ret)
1301                         return -EINTR;
1302         }
1303
1304         spin_lock_irq(&epfile->ffs->eps_lock);
1305
1306         /* In the meantime, endpoint got disabled or changed. */
1307         if (epfile->ep != ep) {
1308                 spin_unlock_irq(&epfile->ffs->eps_lock);
1309                 return -ESHUTDOWN;
1310         }
1311
1312         switch (code) {
1313         case FUNCTIONFS_FIFO_STATUS:
1314                 ret = usb_ep_fifo_status(epfile->ep->ep);
1315                 break;
1316         case FUNCTIONFS_FIFO_FLUSH:
1317                 usb_ep_fifo_flush(epfile->ep->ep);
1318                 ret = 0;
1319                 break;
1320         case FUNCTIONFS_CLEAR_HALT:
1321                 ret = usb_ep_clear_halt(epfile->ep->ep);
1322                 break;
1323         case FUNCTIONFS_ENDPOINT_REVMAP:
1324                 ret = epfile->ep->num;
1325                 break;
1326         case FUNCTIONFS_ENDPOINT_DESC:
1327         {
1328                 int desc_idx;
1329                 struct usb_endpoint_descriptor desc1, *desc;
1330
1331                 switch (epfile->ffs->gadget->speed) {
1332                 case USB_SPEED_SUPER:
1333                 case USB_SPEED_SUPER_PLUS:
1334                         desc_idx = 2;
1335                         break;
1336                 case USB_SPEED_HIGH:
1337                         desc_idx = 1;
1338                         break;
1339                 default:
1340                         desc_idx = 0;
1341                 }
1342
1343                 desc = epfile->ep->descs[desc_idx];
1344                 memcpy(&desc1, desc, desc->bLength);
1345
1346                 spin_unlock_irq(&epfile->ffs->eps_lock);
1347                 ret = copy_to_user((void __user *)value, &desc1, desc1.bLength);
1348                 if (ret)
1349                         ret = -EFAULT;
1350                 return ret;
1351         }
1352         default:
1353                 ret = -ENOTTY;
1354         }
1355         spin_unlock_irq(&epfile->ffs->eps_lock);
1356
1357         return ret;
1358 }
1359
1360 static const struct file_operations ffs_epfile_operations = {
1361         .llseek =       no_llseek,
1362
1363         .open =         ffs_epfile_open,
1364         .write_iter =   ffs_epfile_write_iter,
1365         .read_iter =    ffs_epfile_read_iter,
1366         .release =      ffs_epfile_release,
1367         .unlocked_ioctl =       ffs_epfile_ioctl,
1368         .compat_ioctl = compat_ptr_ioctl,
1369 };
1370
1371
1372 /* File system and super block operations ***********************************/
1373
1374 /*
1375  * Mounting the file system creates a controller file, used first for
1376  * function configuration then later for event monitoring.
1377  */
1378
1379 static struct inode *__must_check
1380 ffs_sb_make_inode(struct super_block *sb, void *data,
1381                   const struct file_operations *fops,
1382                   const struct inode_operations *iops,
1383                   struct ffs_file_perms *perms)
1384 {
1385         struct inode *inode;
1386
1387         ENTER();
1388
1389         inode = new_inode(sb);
1390
1391         if (inode) {
1392                 struct timespec64 ts = current_time(inode);
1393
1394                 inode->i_ino     = get_next_ino();
1395                 inode->i_mode    = perms->mode;
1396                 inode->i_uid     = perms->uid;
1397                 inode->i_gid     = perms->gid;
1398                 inode->i_atime   = ts;
1399                 inode->i_mtime   = ts;
1400                 inode->i_ctime   = ts;
1401                 inode->i_private = data;
1402                 if (fops)
1403                         inode->i_fop = fops;
1404                 if (iops)
1405                         inode->i_op  = iops;
1406         }
1407
1408         return inode;
1409 }
1410
1411 /* Create "regular" file */
1412 static struct dentry *ffs_sb_create_file(struct super_block *sb,
1413                                         const char *name, void *data,
1414                                         const struct file_operations *fops)
1415 {
1416         struct ffs_data *ffs = sb->s_fs_info;
1417         struct dentry   *dentry;
1418         struct inode    *inode;
1419
1420         ENTER();
1421
1422         dentry = d_alloc_name(sb->s_root, name);
1423         if (!dentry)
1424                 return NULL;
1425
1426         inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1427         if (!inode) {
1428                 dput(dentry);
1429                 return NULL;
1430         }
1431
1432         d_add(dentry, inode);
1433         return dentry;
1434 }
1435
1436 /* Super block */
1437 static const struct super_operations ffs_sb_operations = {
1438         .statfs =       simple_statfs,
1439         .drop_inode =   generic_delete_inode,
1440 };
1441
1442 struct ffs_sb_fill_data {
1443         struct ffs_file_perms perms;
1444         umode_t root_mode;
1445         const char *dev_name;
1446         bool no_disconnect;
1447         struct ffs_data *ffs_data;
1448 };
1449
1450 static int ffs_sb_fill(struct super_block *sb, struct fs_context *fc)
1451 {
1452         struct ffs_sb_fill_data *data = fc->fs_private;
1453         struct inode    *inode;
1454         struct ffs_data *ffs = data->ffs_data;
1455
1456         ENTER();
1457
1458         ffs->sb              = sb;
1459         data->ffs_data       = NULL;
1460         sb->s_fs_info        = ffs;
1461         sb->s_blocksize      = PAGE_SIZE;
1462         sb->s_blocksize_bits = PAGE_SHIFT;
1463         sb->s_magic          = FUNCTIONFS_MAGIC;
1464         sb->s_op             = &ffs_sb_operations;
1465         sb->s_time_gran      = 1;
1466
1467         /* Root inode */
1468         data->perms.mode = data->root_mode;
1469         inode = ffs_sb_make_inode(sb, NULL,
1470                                   &simple_dir_operations,
1471                                   &simple_dir_inode_operations,
1472                                   &data->perms);
1473         sb->s_root = d_make_root(inode);
1474         if (!sb->s_root)
1475                 return -ENOMEM;
1476
1477         /* EP0 file */
1478         if (!ffs_sb_create_file(sb, "ep0", ffs, &ffs_ep0_operations))
1479                 return -ENOMEM;
1480
1481         return 0;
1482 }
1483
1484 enum {
1485         Opt_no_disconnect,
1486         Opt_rmode,
1487         Opt_fmode,
1488         Opt_mode,
1489         Opt_uid,
1490         Opt_gid,
1491 };
1492
1493 static const struct fs_parameter_spec ffs_fs_fs_parameters[] = {
1494         fsparam_bool    ("no_disconnect",       Opt_no_disconnect),
1495         fsparam_u32     ("rmode",               Opt_rmode),
1496         fsparam_u32     ("fmode",               Opt_fmode),
1497         fsparam_u32     ("mode",                Opt_mode),
1498         fsparam_u32     ("uid",                 Opt_uid),
1499         fsparam_u32     ("gid",                 Opt_gid),
1500         {}
1501 };
1502
1503 static int ffs_fs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1504 {
1505         struct ffs_sb_fill_data *data = fc->fs_private;
1506         struct fs_parse_result result;
1507         int opt;
1508
1509         ENTER();
1510
1511         opt = fs_parse(fc, ffs_fs_fs_parameters, param, &result);
1512         if (opt < 0)
1513                 return opt;
1514
1515         switch (opt) {
1516         case Opt_no_disconnect:
1517                 data->no_disconnect = result.boolean;
1518                 break;
1519         case Opt_rmode:
1520                 data->root_mode  = (result.uint_32 & 0555) | S_IFDIR;
1521                 break;
1522         case Opt_fmode:
1523                 data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1524                 break;
1525         case Opt_mode:
1526                 data->root_mode  = (result.uint_32 & 0555) | S_IFDIR;
1527                 data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1528                 break;
1529
1530         case Opt_uid:
1531                 data->perms.uid = make_kuid(current_user_ns(), result.uint_32);
1532                 if (!uid_valid(data->perms.uid))
1533                         goto unmapped_value;
1534                 break;
1535         case Opt_gid:
1536                 data->perms.gid = make_kgid(current_user_ns(), result.uint_32);
1537                 if (!gid_valid(data->perms.gid))
1538                         goto unmapped_value;
1539                 break;
1540
1541         default:
1542                 return -ENOPARAM;
1543         }
1544
1545         return 0;
1546
1547 unmapped_value:
1548         return invalf(fc, "%s: unmapped value: %u", param->key, result.uint_32);
1549 }
1550
1551 /*
1552  * Set up the superblock for a mount.
1553  */
1554 static int ffs_fs_get_tree(struct fs_context *fc)
1555 {
1556         struct ffs_sb_fill_data *ctx = fc->fs_private;
1557         void *ffs_dev;
1558         struct ffs_data *ffs;
1559
1560         ENTER();
1561
1562         if (!fc->source)
1563                 return invalf(fc, "No source specified");
1564
1565         ffs = ffs_data_new(fc->source);
1566         if (!ffs)
1567                 return -ENOMEM;
1568         ffs->file_perms = ctx->perms;
1569         ffs->no_disconnect = ctx->no_disconnect;
1570
1571         ffs->dev_name = kstrdup(fc->source, GFP_KERNEL);
1572         if (!ffs->dev_name) {
1573                 ffs_data_put(ffs);
1574                 return -ENOMEM;
1575         }
1576
1577         ffs_dev = ffs_acquire_dev(ffs->dev_name);
1578         if (IS_ERR(ffs_dev)) {
1579                 ffs_data_put(ffs);
1580                 return PTR_ERR(ffs_dev);
1581         }
1582
1583         ffs->private_data = ffs_dev;
1584         ctx->ffs_data = ffs;
1585         return get_tree_nodev(fc, ffs_sb_fill);
1586 }
1587
1588 static void ffs_fs_free_fc(struct fs_context *fc)
1589 {
1590         struct ffs_sb_fill_data *ctx = fc->fs_private;
1591
1592         if (ctx) {
1593                 if (ctx->ffs_data) {
1594                         ffs_release_dev(ctx->ffs_data);
1595                         ffs_data_put(ctx->ffs_data);
1596                 }
1597
1598                 kfree(ctx);
1599         }
1600 }
1601
1602 static const struct fs_context_operations ffs_fs_context_ops = {
1603         .free           = ffs_fs_free_fc,
1604         .parse_param    = ffs_fs_parse_param,
1605         .get_tree       = ffs_fs_get_tree,
1606 };
1607
1608 static int ffs_fs_init_fs_context(struct fs_context *fc)
1609 {
1610         struct ffs_sb_fill_data *ctx;
1611
1612         ctx = kzalloc(sizeof(struct ffs_sb_fill_data), GFP_KERNEL);
1613         if (!ctx)
1614                 return -ENOMEM;
1615
1616         ctx->perms.mode = S_IFREG | 0600;
1617         ctx->perms.uid = GLOBAL_ROOT_UID;
1618         ctx->perms.gid = GLOBAL_ROOT_GID;
1619         ctx->root_mode = S_IFDIR | 0500;
1620         ctx->no_disconnect = false;
1621
1622         fc->fs_private = ctx;
1623         fc->ops = &ffs_fs_context_ops;
1624         return 0;
1625 }
1626
1627 static void
1628 ffs_fs_kill_sb(struct super_block *sb)
1629 {
1630         ENTER();
1631
1632         kill_litter_super(sb);
1633         if (sb->s_fs_info) {
1634                 ffs_release_dev(sb->s_fs_info);
1635                 ffs_data_closed(sb->s_fs_info);
1636         }
1637 }
1638
1639 static struct file_system_type ffs_fs_type = {
1640         .owner          = THIS_MODULE,
1641         .name           = "functionfs",
1642         .init_fs_context = ffs_fs_init_fs_context,
1643         .parameters     = ffs_fs_fs_parameters,
1644         .kill_sb        = ffs_fs_kill_sb,
1645 };
1646 MODULE_ALIAS_FS("functionfs");
1647
1648
1649 /* Driver's main init/cleanup functions *************************************/
1650
1651 static int functionfs_init(void)
1652 {
1653         int ret;
1654
1655         ENTER();
1656
1657         ret = register_filesystem(&ffs_fs_type);
1658         if (!ret)
1659                 pr_info("file system registered\n");
1660         else
1661                 pr_err("failed registering file system (%d)\n", ret);
1662
1663         return ret;
1664 }
1665
1666 static void functionfs_cleanup(void)
1667 {
1668         ENTER();
1669
1670         pr_info("unloading\n");
1671         unregister_filesystem(&ffs_fs_type);
1672 }
1673
1674
1675 /* ffs_data and ffs_function construction and destruction code **************/
1676
1677 static void ffs_data_clear(struct ffs_data *ffs);
1678 static void ffs_data_reset(struct ffs_data *ffs);
1679
1680 static void ffs_data_get(struct ffs_data *ffs)
1681 {
1682         ENTER();
1683
1684         refcount_inc(&ffs->ref);
1685 }
1686
1687 static void ffs_data_opened(struct ffs_data *ffs)
1688 {
1689         ENTER();
1690
1691         refcount_inc(&ffs->ref);
1692         if (atomic_add_return(1, &ffs->opened) == 1 &&
1693                         ffs->state == FFS_DEACTIVATED) {
1694                 ffs->state = FFS_CLOSING;
1695                 ffs_data_reset(ffs);
1696         }
1697 }
1698
1699 static void ffs_data_put(struct ffs_data *ffs)
1700 {
1701         ENTER();
1702
1703         if (refcount_dec_and_test(&ffs->ref)) {
1704                 pr_info("%s(): freeing\n", __func__);
1705                 ffs_data_clear(ffs);
1706                 BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1707                        swait_active(&ffs->ep0req_completion.wait) ||
1708                        waitqueue_active(&ffs->wait));
1709                 destroy_workqueue(ffs->io_completion_wq);
1710                 kfree(ffs->dev_name);
1711                 kfree(ffs);
1712         }
1713 }
1714
1715 static void ffs_data_closed(struct ffs_data *ffs)
1716 {
1717         ENTER();
1718
1719         if (atomic_dec_and_test(&ffs->opened)) {
1720                 if (ffs->no_disconnect) {
1721                         ffs->state = FFS_DEACTIVATED;
1722                         if (ffs->epfiles) {
1723                                 ffs_epfiles_destroy(ffs->epfiles,
1724                                                    ffs->eps_count);
1725                                 ffs->epfiles = NULL;
1726                         }
1727                         if (ffs->setup_state == FFS_SETUP_PENDING)
1728                                 __ffs_ep0_stall(ffs);
1729                 } else {
1730                         ffs->state = FFS_CLOSING;
1731                         ffs_data_reset(ffs);
1732                 }
1733         }
1734         if (atomic_read(&ffs->opened) < 0) {
1735                 ffs->state = FFS_CLOSING;
1736                 ffs_data_reset(ffs);
1737         }
1738
1739         ffs_data_put(ffs);
1740 }
1741
1742 static struct ffs_data *ffs_data_new(const char *dev_name)
1743 {
1744         struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
1745         if (!ffs)
1746                 return NULL;
1747
1748         ENTER();
1749
1750         ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name);
1751         if (!ffs->io_completion_wq) {
1752                 kfree(ffs);
1753                 return NULL;
1754         }
1755
1756         refcount_set(&ffs->ref, 1);
1757         atomic_set(&ffs->opened, 0);
1758         ffs->state = FFS_READ_DESCRIPTORS;
1759         mutex_init(&ffs->mutex);
1760         spin_lock_init(&ffs->eps_lock);
1761         init_waitqueue_head(&ffs->ev.waitq);
1762         init_waitqueue_head(&ffs->wait);
1763         init_completion(&ffs->ep0req_completion);
1764
1765         /* XXX REVISIT need to update it in some places, or do we? */
1766         ffs->ev.can_stall = 1;
1767
1768         return ffs;
1769 }
1770
1771 static void ffs_data_clear(struct ffs_data *ffs)
1772 {
1773         ENTER();
1774
1775         ffs_closed(ffs);
1776
1777         BUG_ON(ffs->gadget);
1778
1779         if (ffs->epfiles)
1780                 ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count);
1781
1782         if (ffs->ffs_eventfd)
1783                 eventfd_ctx_put(ffs->ffs_eventfd);
1784
1785         kfree(ffs->raw_descs_data);
1786         kfree(ffs->raw_strings);
1787         kfree(ffs->stringtabs);
1788 }
1789
1790 static void ffs_data_reset(struct ffs_data *ffs)
1791 {
1792         ENTER();
1793
1794         ffs_data_clear(ffs);
1795
1796         ffs->epfiles = NULL;
1797         ffs->raw_descs_data = NULL;
1798         ffs->raw_descs = NULL;
1799         ffs->raw_strings = NULL;
1800         ffs->stringtabs = NULL;
1801
1802         ffs->raw_descs_length = 0;
1803         ffs->fs_descs_count = 0;
1804         ffs->hs_descs_count = 0;
1805         ffs->ss_descs_count = 0;
1806
1807         ffs->strings_count = 0;
1808         ffs->interfaces_count = 0;
1809         ffs->eps_count = 0;
1810
1811         ffs->ev.count = 0;
1812
1813         ffs->state = FFS_READ_DESCRIPTORS;
1814         ffs->setup_state = FFS_NO_SETUP;
1815         ffs->flags = 0;
1816
1817         ffs->ms_os_descs_ext_prop_count = 0;
1818         ffs->ms_os_descs_ext_prop_name_len = 0;
1819         ffs->ms_os_descs_ext_prop_data_len = 0;
1820 }
1821
1822
1823 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
1824 {
1825         struct usb_gadget_strings **lang;
1826         int first_id;
1827
1828         ENTER();
1829
1830         if (WARN_ON(ffs->state != FFS_ACTIVE
1831                  || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
1832                 return -EBADFD;
1833
1834         first_id = usb_string_ids_n(cdev, ffs->strings_count);
1835         if (first_id < 0)
1836                 return first_id;
1837
1838         ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
1839         if (!ffs->ep0req)
1840                 return -ENOMEM;
1841         ffs->ep0req->complete = ffs_ep0_complete;
1842         ffs->ep0req->context = ffs;
1843
1844         lang = ffs->stringtabs;
1845         if (lang) {
1846                 for (; *lang; ++lang) {
1847                         struct usb_string *str = (*lang)->strings;
1848                         int id = first_id;
1849                         for (; str->s; ++id, ++str)
1850                                 str->id = id;
1851                 }
1852         }
1853
1854         ffs->gadget = cdev->gadget;
1855         ffs_data_get(ffs);
1856         return 0;
1857 }
1858
1859 static void functionfs_unbind(struct ffs_data *ffs)
1860 {
1861         ENTER();
1862
1863         if (!WARN_ON(!ffs->gadget)) {
1864                 usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
1865                 ffs->ep0req = NULL;
1866                 ffs->gadget = NULL;
1867                 clear_bit(FFS_FL_BOUND, &ffs->flags);
1868                 ffs_data_put(ffs);
1869         }
1870 }
1871
1872 static int ffs_epfiles_create(struct ffs_data *ffs)
1873 {
1874         struct ffs_epfile *epfile, *epfiles;
1875         unsigned i, count;
1876
1877         ENTER();
1878
1879         count = ffs->eps_count;
1880         epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1881         if (!epfiles)
1882                 return -ENOMEM;
1883
1884         epfile = epfiles;
1885         for (i = 1; i <= count; ++i, ++epfile) {
1886                 epfile->ffs = ffs;
1887                 mutex_init(&epfile->mutex);
1888                 if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
1889                         sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
1890                 else
1891                         sprintf(epfile->name, "ep%u", i);
1892                 epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
1893                                                  epfile,
1894                                                  &ffs_epfile_operations);
1895                 if (!epfile->dentry) {
1896                         ffs_epfiles_destroy(epfiles, i - 1);
1897                         return -ENOMEM;
1898                 }
1899         }
1900
1901         ffs->epfiles = epfiles;
1902         return 0;
1903 }
1904
1905 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
1906 {
1907         struct ffs_epfile *epfile = epfiles;
1908
1909         ENTER();
1910
1911         for (; count; --count, ++epfile) {
1912                 BUG_ON(mutex_is_locked(&epfile->mutex));
1913                 if (epfile->dentry) {
1914                         d_delete(epfile->dentry);
1915                         dput(epfile->dentry);
1916                         epfile->dentry = NULL;
1917                 }
1918         }
1919
1920         kfree(epfiles);
1921 }
1922
1923 static void ffs_func_eps_disable(struct ffs_function *func)
1924 {
1925         struct ffs_ep *ep         = func->eps;
1926         struct ffs_epfile *epfile = func->ffs->epfiles;
1927         unsigned count            = func->ffs->eps_count;
1928         unsigned long flags;
1929
1930         spin_lock_irqsave(&func->ffs->eps_lock, flags);
1931         while (count--) {
1932                 /* pending requests get nuked */
1933                 if (ep->ep)
1934                         usb_ep_disable(ep->ep);
1935                 ++ep;
1936
1937                 if (epfile) {
1938                         epfile->ep = NULL;
1939                         __ffs_epfile_read_buffer_free(epfile);
1940                         ++epfile;
1941                 }
1942         }
1943         spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1944 }
1945
1946 static int ffs_func_eps_enable(struct ffs_function *func)
1947 {
1948         struct ffs_data *ffs      = func->ffs;
1949         struct ffs_ep *ep         = func->eps;
1950         struct ffs_epfile *epfile = ffs->epfiles;
1951         unsigned count            = ffs->eps_count;
1952         unsigned long flags;
1953         int ret = 0;
1954
1955         spin_lock_irqsave(&func->ffs->eps_lock, flags);
1956         while(count--) {
1957                 ep->ep->driver_data = ep;
1958
1959                 ret = config_ep_by_speed(func->gadget, &func->function, ep->ep);
1960                 if (ret) {
1961                         pr_err("%s: config_ep_by_speed(%s) returned %d\n",
1962                                         __func__, ep->ep->name, ret);
1963                         break;
1964                 }
1965
1966                 ret = usb_ep_enable(ep->ep);
1967                 if (!ret) {
1968                         epfile->ep = ep;
1969                         epfile->in = usb_endpoint_dir_in(ep->ep->desc);
1970                         epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc);
1971                 } else {
1972                         break;
1973                 }
1974
1975                 ++ep;
1976                 ++epfile;
1977         }
1978
1979         wake_up_interruptible(&ffs->wait);
1980         spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1981
1982         return ret;
1983 }
1984
1985
1986 /* Parsing and building descriptors and strings *****************************/
1987
1988 /*
1989  * This validates if data pointed by data is a valid USB descriptor as
1990  * well as record how many interfaces, endpoints and strings are
1991  * required by given configuration.  Returns address after the
1992  * descriptor or NULL if data is invalid.
1993  */
1994
1995 enum ffs_entity_type {
1996         FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
1997 };
1998
1999 enum ffs_os_desc_type {
2000         FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
2001 };
2002
2003 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
2004                                    u8 *valuep,
2005                                    struct usb_descriptor_header *desc,
2006                                    void *priv);
2007
2008 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
2009                                     struct usb_os_desc_header *h, void *data,
2010                                     unsigned len, void *priv);
2011
2012 static int __must_check ffs_do_single_desc(char *data, unsigned len,
2013                                            ffs_entity_callback entity,
2014                                            void *priv, int *current_class)
2015 {
2016         struct usb_descriptor_header *_ds = (void *)data;
2017         u8 length;
2018         int ret;
2019
2020         ENTER();
2021
2022         /* At least two bytes are required: length and type */
2023         if (len < 2) {
2024                 pr_vdebug("descriptor too short\n");
2025                 return -EINVAL;
2026         }
2027
2028         /* If we have at least as many bytes as the descriptor takes? */
2029         length = _ds->bLength;
2030         if (len < length) {
2031                 pr_vdebug("descriptor longer then available data\n");
2032                 return -EINVAL;
2033         }
2034
2035 #define __entity_check_INTERFACE(val)  1
2036 #define __entity_check_STRING(val)     (val)
2037 #define __entity_check_ENDPOINT(val)   ((val) & USB_ENDPOINT_NUMBER_MASK)
2038 #define __entity(type, val) do {                                        \
2039                 pr_vdebug("entity " #type "(%02x)\n", (val));           \
2040                 if (!__entity_check_ ##type(val)) {                     \
2041                         pr_vdebug("invalid entity's value\n");          \
2042                         return -EINVAL;                                 \
2043                 }                                                       \
2044                 ret = entity(FFS_ ##type, &val, _ds, priv);             \
2045                 if (ret < 0) {                                          \
2046                         pr_debug("entity " #type "(%02x); ret = %d\n",  \
2047                                  (val), ret);                           \
2048                         return ret;                                     \
2049                 }                                                       \
2050         } while (0)
2051
2052         /* Parse descriptor depending on type. */
2053         switch (_ds->bDescriptorType) {
2054         case USB_DT_DEVICE:
2055         case USB_DT_CONFIG:
2056         case USB_DT_STRING:
2057         case USB_DT_DEVICE_QUALIFIER:
2058                 /* function can't have any of those */
2059                 pr_vdebug("descriptor reserved for gadget: %d\n",
2060                       _ds->bDescriptorType);
2061                 return -EINVAL;
2062
2063         case USB_DT_INTERFACE: {
2064                 struct usb_interface_descriptor *ds = (void *)_ds;
2065                 pr_vdebug("interface descriptor\n");
2066                 if (length != sizeof *ds)
2067                         goto inv_length;
2068
2069                 __entity(INTERFACE, ds->bInterfaceNumber);
2070                 if (ds->iInterface)
2071                         __entity(STRING, ds->iInterface);
2072                 *current_class = ds->bInterfaceClass;
2073         }
2074                 break;
2075
2076         case USB_DT_ENDPOINT: {
2077                 struct usb_endpoint_descriptor *ds = (void *)_ds;
2078                 pr_vdebug("endpoint descriptor\n");
2079                 if (length != USB_DT_ENDPOINT_SIZE &&
2080                     length != USB_DT_ENDPOINT_AUDIO_SIZE)
2081                         goto inv_length;
2082                 __entity(ENDPOINT, ds->bEndpointAddress);
2083         }
2084                 break;
2085
2086         case USB_TYPE_CLASS | 0x01:
2087                 if (*current_class == USB_INTERFACE_CLASS_HID) {
2088                         pr_vdebug("hid descriptor\n");
2089                         if (length != sizeof(struct hid_descriptor))
2090                                 goto inv_length;
2091                         break;
2092                 } else if (*current_class == USB_INTERFACE_CLASS_CCID) {
2093                         pr_vdebug("ccid descriptor\n");
2094                         if (length != sizeof(struct ccid_descriptor))
2095                                 goto inv_length;
2096                         break;
2097                 } else {
2098                         pr_vdebug("unknown descriptor: %d for class %d\n",
2099                               _ds->bDescriptorType, *current_class);
2100                         return -EINVAL;
2101                 }
2102
2103         case USB_DT_OTG:
2104                 if (length != sizeof(struct usb_otg_descriptor))
2105                         goto inv_length;
2106                 break;
2107
2108         case USB_DT_INTERFACE_ASSOCIATION: {
2109                 struct usb_interface_assoc_descriptor *ds = (void *)_ds;
2110                 pr_vdebug("interface association descriptor\n");
2111                 if (length != sizeof *ds)
2112                         goto inv_length;
2113                 if (ds->iFunction)
2114                         __entity(STRING, ds->iFunction);
2115         }
2116                 break;
2117
2118         case USB_DT_SS_ENDPOINT_COMP:
2119                 pr_vdebug("EP SS companion descriptor\n");
2120                 if (length != sizeof(struct usb_ss_ep_comp_descriptor))
2121                         goto inv_length;
2122                 break;
2123
2124         case USB_DT_OTHER_SPEED_CONFIG:
2125         case USB_DT_INTERFACE_POWER:
2126         case USB_DT_DEBUG:
2127         case USB_DT_SECURITY:
2128         case USB_DT_CS_RADIO_CONTROL:
2129                 /* TODO */
2130                 pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2131                 return -EINVAL;
2132
2133         default:
2134                 /* We should never be here */
2135                 pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2136                 return -EINVAL;
2137
2138 inv_length:
2139                 pr_vdebug("invalid length: %d (descriptor %d)\n",
2140                           _ds->bLength, _ds->bDescriptorType);
2141                 return -EINVAL;
2142         }
2143
2144 #undef __entity
2145 #undef __entity_check_DESCRIPTOR
2146 #undef __entity_check_INTERFACE
2147 #undef __entity_check_STRING
2148 #undef __entity_check_ENDPOINT
2149
2150         return length;
2151 }
2152
2153 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
2154                                      ffs_entity_callback entity, void *priv)
2155 {
2156         const unsigned _len = len;
2157         unsigned long num = 0;
2158         int current_class = -1;
2159
2160         ENTER();
2161
2162         for (;;) {
2163                 int ret;
2164
2165                 if (num == count)
2166                         data = NULL;
2167
2168                 /* Record "descriptor" entity */
2169                 ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
2170                 if (ret < 0) {
2171                         pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2172                                  num, ret);
2173                         return ret;
2174                 }
2175
2176                 if (!data)
2177                         return _len - len;
2178
2179                 ret = ffs_do_single_desc(data, len, entity, priv,
2180                         &current_class);
2181                 if (ret < 0) {
2182                         pr_debug("%s returns %d\n", __func__, ret);
2183                         return ret;
2184                 }
2185
2186                 len -= ret;
2187                 data += ret;
2188                 ++num;
2189         }
2190 }
2191
2192 static int __ffs_data_do_entity(enum ffs_entity_type type,
2193                                 u8 *valuep, struct usb_descriptor_header *desc,
2194                                 void *priv)
2195 {
2196         struct ffs_desc_helper *helper = priv;
2197         struct usb_endpoint_descriptor *d;
2198
2199         ENTER();
2200
2201         switch (type) {
2202         case FFS_DESCRIPTOR:
2203                 break;
2204
2205         case FFS_INTERFACE:
2206                 /*
2207                  * Interfaces are indexed from zero so if we
2208                  * encountered interface "n" then there are at least
2209                  * "n+1" interfaces.
2210                  */
2211                 if (*valuep >= helper->interfaces_count)
2212                         helper->interfaces_count = *valuep + 1;
2213                 break;
2214
2215         case FFS_STRING:
2216                 /*
2217                  * Strings are indexed from 1 (0 is reserved
2218                  * for languages list)
2219                  */
2220                 if (*valuep > helper->ffs->strings_count)
2221                         helper->ffs->strings_count = *valuep;
2222                 break;
2223
2224         case FFS_ENDPOINT:
2225                 d = (void *)desc;
2226                 helper->eps_count++;
2227                 if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2228                         return -EINVAL;
2229                 /* Check if descriptors for any speed were already parsed */
2230                 if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
2231                         helper->ffs->eps_addrmap[helper->eps_count] =
2232                                 d->bEndpointAddress;
2233                 else if (helper->ffs->eps_addrmap[helper->eps_count] !=
2234                                 d->bEndpointAddress)
2235                         return -EINVAL;
2236                 break;
2237         }
2238
2239         return 0;
2240 }
2241
2242 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
2243                                    struct usb_os_desc_header *desc)
2244 {
2245         u16 bcd_version = le16_to_cpu(desc->bcdVersion);
2246         u16 w_index = le16_to_cpu(desc->wIndex);
2247
2248         if (bcd_version != 1) {
2249                 pr_vdebug("unsupported os descriptors version: %d",
2250                           bcd_version);
2251                 return -EINVAL;
2252         }
2253         switch (w_index) {
2254         case 0x4:
2255                 *next_type = FFS_OS_DESC_EXT_COMPAT;
2256                 break;
2257         case 0x5:
2258                 *next_type = FFS_OS_DESC_EXT_PROP;
2259                 break;
2260         default:
2261                 pr_vdebug("unsupported os descriptor type: %d", w_index);
2262                 return -EINVAL;
2263         }
2264
2265         return sizeof(*desc);
2266 }
2267
2268 /*
2269  * Process all extended compatibility/extended property descriptors
2270  * of a feature descriptor
2271  */
2272 static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
2273                                               enum ffs_os_desc_type type,
2274                                               u16 feature_count,
2275                                               ffs_os_desc_callback entity,
2276                                               void *priv,
2277                                               struct usb_os_desc_header *h)
2278 {
2279         int ret;
2280         const unsigned _len = len;
2281
2282         ENTER();
2283
2284         /* loop over all ext compat/ext prop descriptors */
2285         while (feature_count--) {
2286                 ret = entity(type, h, data, len, priv);
2287                 if (ret < 0) {
2288                         pr_debug("bad OS descriptor, type: %d\n", type);
2289                         return ret;
2290                 }
2291                 data += ret;
2292                 len -= ret;
2293         }
2294         return _len - len;
2295 }
2296
2297 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
2298 static int __must_check ffs_do_os_descs(unsigned count,
2299                                         char *data, unsigned len,
2300                                         ffs_os_desc_callback entity, void *priv)
2301 {
2302         const unsigned _len = len;
2303         unsigned long num = 0;
2304
2305         ENTER();
2306
2307         for (num = 0; num < count; ++num) {
2308                 int ret;
2309                 enum ffs_os_desc_type type;
2310                 u16 feature_count;
2311                 struct usb_os_desc_header *desc = (void *)data;
2312
2313                 if (len < sizeof(*desc))
2314                         return -EINVAL;
2315
2316                 /*
2317                  * Record "descriptor" entity.
2318                  * Process dwLength, bcdVersion, wIndex, get b/wCount.
2319                  * Move the data pointer to the beginning of extended
2320                  * compatibilities proper or extended properties proper
2321                  * portions of the data
2322                  */
2323                 if (le32_to_cpu(desc->dwLength) > len)
2324                         return -EINVAL;
2325
2326                 ret = __ffs_do_os_desc_header(&type, desc);
2327                 if (ret < 0) {
2328                         pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2329                                  num, ret);
2330                         return ret;
2331                 }
2332                 /*
2333                  * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2334                  */
2335                 feature_count = le16_to_cpu(desc->wCount);
2336                 if (type == FFS_OS_DESC_EXT_COMPAT &&
2337                     (feature_count > 255 || desc->Reserved))
2338                                 return -EINVAL;
2339                 len -= ret;
2340                 data += ret;
2341
2342                 /*
2343                  * Process all function/property descriptors
2344                  * of this Feature Descriptor
2345                  */
2346                 ret = ffs_do_single_os_desc(data, len, type,
2347                                             feature_count, entity, priv, desc);
2348                 if (ret < 0) {
2349                         pr_debug("%s returns %d\n", __func__, ret);
2350                         return ret;
2351                 }
2352
2353                 len -= ret;
2354                 data += ret;
2355         }
2356         return _len - len;
2357 }
2358
2359 /*
2360  * Validate contents of the buffer from userspace related to OS descriptors.
2361  */
2362 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2363                                  struct usb_os_desc_header *h, void *data,
2364                                  unsigned len, void *priv)
2365 {
2366         struct ffs_data *ffs = priv;
2367         u8 length;
2368
2369         ENTER();
2370
2371         switch (type) {
2372         case FFS_OS_DESC_EXT_COMPAT: {
2373                 struct usb_ext_compat_desc *d = data;
2374                 int i;
2375
2376                 if (len < sizeof(*d) ||
2377                     d->bFirstInterfaceNumber >= ffs->interfaces_count)
2378                         return -EINVAL;
2379                 if (d->Reserved1 != 1) {
2380                         /*
2381                          * According to the spec, Reserved1 must be set to 1
2382                          * but older kernels incorrectly rejected non-zero
2383                          * values.  We fix it here to avoid returning EINVAL
2384                          * in response to values we used to accept.
2385                          */
2386                         pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n");
2387                         d->Reserved1 = 1;
2388                 }
2389                 for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2390                         if (d->Reserved2[i])
2391                                 return -EINVAL;
2392
2393                 length = sizeof(struct usb_ext_compat_desc);
2394         }
2395                 break;
2396         case FFS_OS_DESC_EXT_PROP: {
2397                 struct usb_ext_prop_desc *d = data;
2398                 u32 type, pdl;
2399                 u16 pnl;
2400
2401                 if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2402                         return -EINVAL;
2403                 length = le32_to_cpu(d->dwSize);
2404                 if (len < length)
2405                         return -EINVAL;
2406                 type = le32_to_cpu(d->dwPropertyDataType);
2407                 if (type < USB_EXT_PROP_UNICODE ||
2408                     type > USB_EXT_PROP_UNICODE_MULTI) {
2409                         pr_vdebug("unsupported os descriptor property type: %d",
2410                                   type);
2411                         return -EINVAL;
2412                 }
2413                 pnl = le16_to_cpu(d->wPropertyNameLength);
2414                 if (length < 14 + pnl) {
2415                         pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
2416                                   length, pnl, type);
2417                         return -EINVAL;
2418                 }
2419                 pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl));
2420                 if (length != 14 + pnl + pdl) {
2421                         pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2422                                   length, pnl, pdl, type);
2423                         return -EINVAL;
2424                 }
2425                 ++ffs->ms_os_descs_ext_prop_count;
2426                 /* property name reported to the host as "WCHAR"s */
2427                 ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2428                 ffs->ms_os_descs_ext_prop_data_len += pdl;
2429         }
2430                 break;
2431         default:
2432                 pr_vdebug("unknown descriptor: %d\n", type);
2433                 return -EINVAL;
2434         }
2435         return length;
2436 }
2437
2438 static int __ffs_data_got_descs(struct ffs_data *ffs,
2439                                 char *const _data, size_t len)
2440 {
2441         char *data = _data, *raw_descs;
2442         unsigned os_descs_count = 0, counts[3], flags;
2443         int ret = -EINVAL, i;
2444         struct ffs_desc_helper helper;
2445
2446         ENTER();
2447
2448         if (get_unaligned_le32(data + 4) != len)
2449                 goto error;
2450
2451         switch (get_unaligned_le32(data)) {
2452         case FUNCTIONFS_DESCRIPTORS_MAGIC:
2453                 flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2454                 data += 8;
2455                 len  -= 8;
2456                 break;
2457         case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2458                 flags = get_unaligned_le32(data + 8);
2459                 ffs->user_flags = flags;
2460                 if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2461                               FUNCTIONFS_HAS_HS_DESC |
2462                               FUNCTIONFS_HAS_SS_DESC |
2463                               FUNCTIONFS_HAS_MS_OS_DESC |
2464                               FUNCTIONFS_VIRTUAL_ADDR |
2465                               FUNCTIONFS_EVENTFD |
2466                               FUNCTIONFS_ALL_CTRL_RECIP |
2467                               FUNCTIONFS_CONFIG0_SETUP)) {
2468                         ret = -ENOSYS;
2469                         goto error;
2470                 }
2471                 data += 12;
2472                 len  -= 12;
2473                 break;
2474         default:
2475                 goto error;
2476         }
2477
2478         if (flags & FUNCTIONFS_EVENTFD) {
2479                 if (len < 4)
2480                         goto error;
2481                 ffs->ffs_eventfd =
2482                         eventfd_ctx_fdget((int)get_unaligned_le32(data));
2483                 if (IS_ERR(ffs->ffs_eventfd)) {
2484                         ret = PTR_ERR(ffs->ffs_eventfd);
2485                         ffs->ffs_eventfd = NULL;
2486                         goto error;
2487                 }
2488                 data += 4;
2489                 len  -= 4;
2490         }
2491
2492         /* Read fs_count, hs_count and ss_count (if present) */
2493         for (i = 0; i < 3; ++i) {
2494                 if (!(flags & (1 << i))) {
2495                         counts[i] = 0;
2496                 } else if (len < 4) {
2497                         goto error;
2498                 } else {
2499                         counts[i] = get_unaligned_le32(data);
2500                         data += 4;
2501                         len  -= 4;
2502                 }
2503         }
2504         if (flags & (1 << i)) {
2505                 if (len < 4) {
2506                         goto error;
2507                 }
2508                 os_descs_count = get_unaligned_le32(data);
2509                 data += 4;
2510                 len -= 4;
2511         }
2512
2513         /* Read descriptors */
2514         raw_descs = data;
2515         helper.ffs = ffs;
2516         for (i = 0; i < 3; ++i) {
2517                 if (!counts[i])
2518                         continue;
2519                 helper.interfaces_count = 0;
2520                 helper.eps_count = 0;
2521                 ret = ffs_do_descs(counts[i], data, len,
2522                                    __ffs_data_do_entity, &helper);
2523                 if (ret < 0)
2524                         goto error;
2525                 if (!ffs->eps_count && !ffs->interfaces_count) {
2526                         ffs->eps_count = helper.eps_count;
2527                         ffs->interfaces_count = helper.interfaces_count;
2528                 } else {
2529                         if (ffs->eps_count != helper.eps_count) {
2530                                 ret = -EINVAL;
2531                                 goto error;
2532                         }
2533                         if (ffs->interfaces_count != helper.interfaces_count) {
2534                                 ret = -EINVAL;
2535                                 goto error;
2536                         }
2537                 }
2538                 data += ret;
2539                 len  -= ret;
2540         }
2541         if (os_descs_count) {
2542                 ret = ffs_do_os_descs(os_descs_count, data, len,
2543                                       __ffs_data_do_os_desc, ffs);
2544                 if (ret < 0)
2545                         goto error;
2546                 data += ret;
2547                 len -= ret;
2548         }
2549
2550         if (raw_descs == data || len) {
2551                 ret = -EINVAL;
2552                 goto error;
2553         }
2554
2555         ffs->raw_descs_data     = _data;
2556         ffs->raw_descs          = raw_descs;
2557         ffs->raw_descs_length   = data - raw_descs;
2558         ffs->fs_descs_count     = counts[0];
2559         ffs->hs_descs_count     = counts[1];
2560         ffs->ss_descs_count     = counts[2];
2561         ffs->ms_os_descs_count  = os_descs_count;
2562
2563         return 0;
2564
2565 error:
2566         kfree(_data);
2567         return ret;
2568 }
2569
2570 static int __ffs_data_got_strings(struct ffs_data *ffs,
2571                                   char *const _data, size_t len)
2572 {
2573         u32 str_count, needed_count, lang_count;
2574         struct usb_gadget_strings **stringtabs, *t;
2575         const char *data = _data;
2576         struct usb_string *s;
2577
2578         ENTER();
2579
2580         if (len < 16 ||
2581             get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
2582             get_unaligned_le32(data + 4) != len)
2583                 goto error;
2584         str_count  = get_unaligned_le32(data + 8);
2585         lang_count = get_unaligned_le32(data + 12);
2586
2587         /* if one is zero the other must be zero */
2588         if (!str_count != !lang_count)
2589                 goto error;
2590
2591         /* Do we have at least as many strings as descriptors need? */
2592         needed_count = ffs->strings_count;
2593         if (str_count < needed_count)
2594                 goto error;
2595
2596         /*
2597          * If we don't need any strings just return and free all
2598          * memory.
2599          */
2600         if (!needed_count) {
2601                 kfree(_data);
2602                 return 0;
2603         }
2604
2605         /* Allocate everything in one chunk so there's less maintenance. */
2606         {
2607                 unsigned i = 0;
2608                 vla_group(d);
2609                 vla_item(d, struct usb_gadget_strings *, stringtabs,
2610                         lang_count + 1);
2611                 vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
2612                 vla_item(d, struct usb_string, strings,
2613                         lang_count*(needed_count+1));
2614
2615                 char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
2616
2617                 if (!vlabuf) {
2618                         kfree(_data);
2619                         return -ENOMEM;
2620                 }
2621
2622                 /* Initialize the VLA pointers */
2623                 stringtabs = vla_ptr(vlabuf, d, stringtabs);
2624                 t = vla_ptr(vlabuf, d, stringtab);
2625                 i = lang_count;
2626                 do {
2627                         *stringtabs++ = t++;
2628                 } while (--i);
2629                 *stringtabs = NULL;
2630
2631                 /* stringtabs = vlabuf = d_stringtabs for later kfree */
2632                 stringtabs = vla_ptr(vlabuf, d, stringtabs);
2633                 t = vla_ptr(vlabuf, d, stringtab);
2634                 s = vla_ptr(vlabuf, d, strings);
2635         }
2636
2637         /* For each language */
2638         data += 16;
2639         len -= 16;
2640
2641         do { /* lang_count > 0 so we can use do-while */
2642                 unsigned needed = needed_count;
2643                 u32 str_per_lang = str_count;
2644
2645                 if (len < 3)
2646                         goto error_free;
2647                 t->language = get_unaligned_le16(data);
2648                 t->strings  = s;
2649                 ++t;
2650
2651                 data += 2;
2652                 len -= 2;
2653
2654                 /* For each string */
2655                 do { /* str_count > 0 so we can use do-while */
2656                         size_t length = strnlen(data, len);
2657
2658                         if (length == len)
2659                                 goto error_free;
2660
2661                         /*
2662                          * User may provide more strings then we need,
2663                          * if that's the case we simply ignore the
2664                          * rest
2665                          */
2666                         if (needed) {
2667                                 /*
2668                                  * s->id will be set while adding
2669                                  * function to configuration so for
2670                                  * now just leave garbage here.
2671                                  */
2672                                 s->s = data;
2673                                 --needed;
2674                                 ++s;
2675                         }
2676
2677                         data += length + 1;
2678                         len -= length + 1;
2679                 } while (--str_per_lang);
2680
2681                 s->id = 0;   /* terminator */
2682                 s->s = NULL;
2683                 ++s;
2684
2685         } while (--lang_count);
2686
2687         /* Some garbage left? */
2688         if (len)
2689                 goto error_free;
2690
2691         /* Done! */
2692         ffs->stringtabs = stringtabs;
2693         ffs->raw_strings = _data;
2694
2695         return 0;
2696
2697 error_free:
2698         kfree(stringtabs);
2699 error:
2700         kfree(_data);
2701         return -EINVAL;
2702 }
2703
2704
2705 /* Events handling and management *******************************************/
2706
2707 static void __ffs_event_add(struct ffs_data *ffs,
2708                             enum usb_functionfs_event_type type)
2709 {
2710         enum usb_functionfs_event_type rem_type1, rem_type2 = type;
2711         int neg = 0;
2712
2713         /*
2714          * Abort any unhandled setup
2715          *
2716          * We do not need to worry about some cmpxchg() changing value
2717          * of ffs->setup_state without holding the lock because when
2718          * state is FFS_SETUP_PENDING cmpxchg() in several places in
2719          * the source does nothing.
2720          */
2721         if (ffs->setup_state == FFS_SETUP_PENDING)
2722                 ffs->setup_state = FFS_SETUP_CANCELLED;
2723
2724         /*
2725          * Logic of this function guarantees that there are at most four pending
2726          * evens on ffs->ev.types queue.  This is important because the queue
2727          * has space for four elements only and __ffs_ep0_read_events function
2728          * depends on that limit as well.  If more event types are added, those
2729          * limits have to be revisited or guaranteed to still hold.
2730          */
2731         switch (type) {
2732         case FUNCTIONFS_RESUME:
2733                 rem_type2 = FUNCTIONFS_SUSPEND;
2734                 fallthrough;
2735         case FUNCTIONFS_SUSPEND:
2736         case FUNCTIONFS_SETUP:
2737                 rem_type1 = type;
2738                 /* Discard all similar events */
2739                 break;
2740
2741         case FUNCTIONFS_BIND:
2742         case FUNCTIONFS_UNBIND:
2743         case FUNCTIONFS_DISABLE:
2744         case FUNCTIONFS_ENABLE:
2745                 /* Discard everything other then power management. */
2746                 rem_type1 = FUNCTIONFS_SUSPEND;
2747                 rem_type2 = FUNCTIONFS_RESUME;
2748                 neg = 1;
2749                 break;
2750
2751         default:
2752                 WARN(1, "%d: unknown event, this should not happen\n", type);
2753                 return;
2754         }
2755
2756         {
2757                 u8 *ev  = ffs->ev.types, *out = ev;
2758                 unsigned n = ffs->ev.count;
2759                 for (; n; --n, ++ev)
2760                         if ((*ev == rem_type1 || *ev == rem_type2) == neg)
2761                                 *out++ = *ev;
2762                         else
2763                                 pr_vdebug("purging event %d\n", *ev);
2764                 ffs->ev.count = out - ffs->ev.types;
2765         }
2766
2767         pr_vdebug("adding event %d\n", type);
2768         ffs->ev.types[ffs->ev.count++] = type;
2769         wake_up_locked(&ffs->ev.waitq);
2770         if (ffs->ffs_eventfd)
2771                 eventfd_signal(ffs->ffs_eventfd, 1);
2772 }
2773
2774 static void ffs_event_add(struct ffs_data *ffs,
2775                           enum usb_functionfs_event_type type)
2776 {
2777         unsigned long flags;
2778         spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
2779         __ffs_event_add(ffs, type);
2780         spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
2781 }
2782
2783 /* Bind/unbind USB function hooks *******************************************/
2784
2785 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
2786 {
2787         int i;
2788
2789         for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
2790                 if (ffs->eps_addrmap[i] == endpoint_address)
2791                         return i;
2792         return -ENOENT;
2793 }
2794
2795 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
2796                                     struct usb_descriptor_header *desc,
2797                                     void *priv)
2798 {
2799         struct usb_endpoint_descriptor *ds = (void *)desc;
2800         struct ffs_function *func = priv;
2801         struct ffs_ep *ffs_ep;
2802         unsigned ep_desc_id;
2803         int idx;
2804         static const char *speed_names[] = { "full", "high", "super" };
2805
2806         if (type != FFS_DESCRIPTOR)
2807                 return 0;
2808
2809         /*
2810          * If ss_descriptors is not NULL, we are reading super speed
2811          * descriptors; if hs_descriptors is not NULL, we are reading high
2812          * speed descriptors; otherwise, we are reading full speed
2813          * descriptors.
2814          */
2815         if (func->function.ss_descriptors) {
2816                 ep_desc_id = 2;
2817                 func->function.ss_descriptors[(long)valuep] = desc;
2818         } else if (func->function.hs_descriptors) {
2819                 ep_desc_id = 1;
2820                 func->function.hs_descriptors[(long)valuep] = desc;
2821         } else {
2822                 ep_desc_id = 0;
2823                 func->function.fs_descriptors[(long)valuep]    = desc;
2824         }
2825
2826         if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
2827                 return 0;
2828
2829         idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
2830         if (idx < 0)
2831                 return idx;
2832
2833         ffs_ep = func->eps + idx;
2834
2835         if (ffs_ep->descs[ep_desc_id]) {
2836                 pr_err("two %sspeed descriptors for EP %d\n",
2837                           speed_names[ep_desc_id],
2838                           ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2839                 return -EINVAL;
2840         }
2841         ffs_ep->descs[ep_desc_id] = ds;
2842
2843         ffs_dump_mem(": Original  ep desc", ds, ds->bLength);
2844         if (ffs_ep->ep) {
2845                 ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
2846                 if (!ds->wMaxPacketSize)
2847                         ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
2848         } else {
2849                 struct usb_request *req;
2850                 struct usb_ep *ep;
2851                 u8 bEndpointAddress;
2852                 u16 wMaxPacketSize;
2853
2854                 /*
2855                  * We back up bEndpointAddress because autoconfig overwrites
2856                  * it with physical endpoint address.
2857                  */
2858                 bEndpointAddress = ds->bEndpointAddress;
2859                 /*
2860                  * We back up wMaxPacketSize because autoconfig treats
2861                  * endpoint descriptors as if they were full speed.
2862                  */
2863                 wMaxPacketSize = ds->wMaxPacketSize;
2864                 pr_vdebug("autoconfig\n");
2865                 ep = usb_ep_autoconfig(func->gadget, ds);
2866                 if (!ep)
2867                         return -ENOTSUPP;
2868                 ep->driver_data = func->eps + idx;
2869
2870                 req = usb_ep_alloc_request(ep, GFP_KERNEL);
2871                 if (!req)
2872                         return -ENOMEM;
2873
2874                 ffs_ep->ep  = ep;
2875                 ffs_ep->req = req;
2876                 func->eps_revmap[ds->bEndpointAddress &
2877                                  USB_ENDPOINT_NUMBER_MASK] = idx + 1;
2878                 /*
2879                  * If we use virtual address mapping, we restore
2880                  * original bEndpointAddress value.
2881                  */
2882                 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2883                         ds->bEndpointAddress = bEndpointAddress;
2884                 /*
2885                  * Restore wMaxPacketSize which was potentially
2886                  * overwritten by autoconfig.
2887                  */
2888                 ds->wMaxPacketSize = wMaxPacketSize;
2889         }
2890         ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
2891
2892         return 0;
2893 }
2894
2895 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
2896                                    struct usb_descriptor_header *desc,
2897                                    void *priv)
2898 {
2899         struct ffs_function *func = priv;
2900         unsigned idx;
2901         u8 newValue;
2902
2903         switch (type) {
2904         default:
2905         case FFS_DESCRIPTOR:
2906                 /* Handled in previous pass by __ffs_func_bind_do_descs() */
2907                 return 0;
2908
2909         case FFS_INTERFACE:
2910                 idx = *valuep;
2911                 if (func->interfaces_nums[idx] < 0) {
2912                         int id = usb_interface_id(func->conf, &func->function);
2913                         if (id < 0)
2914                                 return id;
2915                         func->interfaces_nums[idx] = id;
2916                 }
2917                 newValue = func->interfaces_nums[idx];
2918                 break;
2919
2920         case FFS_STRING:
2921                 /* String' IDs are allocated when fsf_data is bound to cdev */
2922                 newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
2923                 break;
2924
2925         case FFS_ENDPOINT:
2926                 /*
2927                  * USB_DT_ENDPOINT are handled in
2928                  * __ffs_func_bind_do_descs().
2929                  */
2930                 if (desc->bDescriptorType == USB_DT_ENDPOINT)
2931                         return 0;
2932
2933                 idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
2934                 if (!func->eps[idx].ep)
2935                         return -EINVAL;
2936
2937                 {
2938                         struct usb_endpoint_descriptor **descs;
2939                         descs = func->eps[idx].descs;
2940                         newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
2941                 }
2942                 break;
2943         }
2944
2945         pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2946         *valuep = newValue;
2947         return 0;
2948 }
2949
2950 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
2951                                       struct usb_os_desc_header *h, void *data,
2952                                       unsigned len, void *priv)
2953 {
2954         struct ffs_function *func = priv;
2955         u8 length = 0;
2956
2957         switch (type) {
2958         case FFS_OS_DESC_EXT_COMPAT: {
2959                 struct usb_ext_compat_desc *desc = data;
2960                 struct usb_os_desc_table *t;
2961
2962                 t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
2963                 t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
2964                 memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID,
2965                        ARRAY_SIZE(desc->CompatibleID) +
2966                        ARRAY_SIZE(desc->SubCompatibleID));
2967                 length = sizeof(*desc);
2968         }
2969                 break;
2970         case FFS_OS_DESC_EXT_PROP: {
2971                 struct usb_ext_prop_desc *desc = data;
2972                 struct usb_os_desc_table *t;
2973                 struct usb_os_desc_ext_prop *ext_prop;
2974                 char *ext_prop_name;
2975                 char *ext_prop_data;
2976
2977                 t = &func->function.os_desc_table[h->interface];
2978                 t->if_id = func->interfaces_nums[h->interface];
2979
2980                 ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
2981                 func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
2982
2983                 ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
2984                 ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
2985                 ext_prop->data_len = le32_to_cpu(*(__le32 *)
2986                         usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
2987                 length = ext_prop->name_len + ext_prop->data_len + 14;
2988
2989                 ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
2990                 func->ffs->ms_os_descs_ext_prop_name_avail +=
2991                         ext_prop->name_len;
2992
2993                 ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
2994                 func->ffs->ms_os_descs_ext_prop_data_avail +=
2995                         ext_prop->data_len;
2996                 memcpy(ext_prop_data,
2997                        usb_ext_prop_data_ptr(data, ext_prop->name_len),
2998                        ext_prop->data_len);
2999                 /* unicode data reported to the host as "WCHAR"s */
3000                 switch (ext_prop->type) {
3001                 case USB_EXT_PROP_UNICODE:
3002                 case USB_EXT_PROP_UNICODE_ENV:
3003                 case USB_EXT_PROP_UNICODE_LINK:
3004                 case USB_EXT_PROP_UNICODE_MULTI:
3005                         ext_prop->data_len *= 2;
3006                         break;
3007                 }
3008                 ext_prop->data = ext_prop_data;
3009
3010                 memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
3011                        ext_prop->name_len);
3012                 /* property name reported to the host as "WCHAR"s */
3013                 ext_prop->name_len *= 2;
3014                 ext_prop->name = ext_prop_name;
3015
3016                 t->os_desc->ext_prop_len +=
3017                         ext_prop->name_len + ext_prop->data_len + 14;
3018                 ++t->os_desc->ext_prop_count;
3019                 list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
3020         }
3021                 break;
3022         default:
3023                 pr_vdebug("unknown descriptor: %d\n", type);
3024         }
3025
3026         return length;
3027 }
3028
3029 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
3030                                                 struct usb_configuration *c)
3031 {
3032         struct ffs_function *func = ffs_func_from_usb(f);
3033         struct f_fs_opts *ffs_opts =
3034                 container_of(f->fi, struct f_fs_opts, func_inst);
3035         int ret;
3036
3037         ENTER();
3038
3039         /*
3040          * Legacy gadget triggers binding in functionfs_ready_callback,
3041          * which already uses locking; taking the same lock here would
3042          * cause a deadlock.
3043          *
3044          * Configfs-enabled gadgets however do need ffs_dev_lock.
3045          */
3046         if (!ffs_opts->no_configfs)
3047                 ffs_dev_lock();
3048         ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
3049         func->ffs = ffs_opts->dev->ffs_data;
3050         if (!ffs_opts->no_configfs)
3051                 ffs_dev_unlock();
3052         if (ret)
3053                 return ERR_PTR(ret);
3054
3055         func->conf = c;
3056         func->gadget = c->cdev->gadget;
3057
3058         /*
3059          * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
3060          * configurations are bound in sequence with list_for_each_entry,
3061          * in each configuration its functions are bound in sequence
3062          * with list_for_each_entry, so we assume no race condition
3063          * with regard to ffs_opts->bound access
3064          */
3065         if (!ffs_opts->refcnt) {
3066                 ret = functionfs_bind(func->ffs, c->cdev);
3067                 if (ret)
3068                         return ERR_PTR(ret);
3069         }
3070         ffs_opts->refcnt++;
3071         func->function.strings = func->ffs->stringtabs;
3072
3073         return ffs_opts;
3074 }
3075
3076 static int _ffs_func_bind(struct usb_configuration *c,
3077                           struct usb_function *f)
3078 {
3079         struct ffs_function *func = ffs_func_from_usb(f);
3080         struct ffs_data *ffs = func->ffs;
3081
3082         const int full = !!func->ffs->fs_descs_count;
3083         const int high = !!func->ffs->hs_descs_count;
3084         const int super = !!func->ffs->ss_descs_count;
3085
3086         int fs_len, hs_len, ss_len, ret, i;
3087         struct ffs_ep *eps_ptr;
3088
3089         /* Make it a single chunk, less management later on */
3090         vla_group(d);
3091         vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
3092         vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
3093                 full ? ffs->fs_descs_count + 1 : 0);
3094         vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
3095                 high ? ffs->hs_descs_count + 1 : 0);
3096         vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
3097                 super ? ffs->ss_descs_count + 1 : 0);
3098         vla_item_with_sz(d, short, inums, ffs->interfaces_count);
3099         vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
3100                          c->cdev->use_os_string ? ffs->interfaces_count : 0);
3101         vla_item_with_sz(d, char[16], ext_compat,
3102                          c->cdev->use_os_string ? ffs->interfaces_count : 0);
3103         vla_item_with_sz(d, struct usb_os_desc, os_desc,
3104                          c->cdev->use_os_string ? ffs->interfaces_count : 0);
3105         vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
3106                          ffs->ms_os_descs_ext_prop_count);
3107         vla_item_with_sz(d, char, ext_prop_name,
3108                          ffs->ms_os_descs_ext_prop_name_len);
3109         vla_item_with_sz(d, char, ext_prop_data,
3110                          ffs->ms_os_descs_ext_prop_data_len);
3111         vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
3112         char *vlabuf;
3113
3114         ENTER();
3115
3116         /* Has descriptors only for speeds gadget does not support */
3117         if (!(full | high | super))
3118                 return -ENOTSUPP;
3119
3120         /* Allocate a single chunk, less management later on */
3121         vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
3122         if (!vlabuf)
3123                 return -ENOMEM;
3124
3125         ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
3126         ffs->ms_os_descs_ext_prop_name_avail =
3127                 vla_ptr(vlabuf, d, ext_prop_name);
3128         ffs->ms_os_descs_ext_prop_data_avail =
3129                 vla_ptr(vlabuf, d, ext_prop_data);
3130
3131         /* Copy descriptors  */
3132         memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
3133                ffs->raw_descs_length);
3134
3135         memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3136         eps_ptr = vla_ptr(vlabuf, d, eps);
3137         for (i = 0; i < ffs->eps_count; i++)
3138                 eps_ptr[i].num = -1;
3139
3140         /* Save pointers
3141          * d_eps == vlabuf, func->eps used to kfree vlabuf later
3142         */
3143         func->eps             = vla_ptr(vlabuf, d, eps);
3144         func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3145
3146         /*
3147          * Go through all the endpoint descriptors and allocate
3148          * endpoints first, so that later we can rewrite the endpoint
3149          * numbers without worrying that it may be described later on.
3150          */
3151         if (full) {
3152                 func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3153                 fs_len = ffs_do_descs(ffs->fs_descs_count,
3154                                       vla_ptr(vlabuf, d, raw_descs),
3155                                       d_raw_descs__sz,
3156                                       __ffs_func_bind_do_descs, func);
3157                 if (fs_len < 0) {
3158                         ret = fs_len;
3159                         goto error;
3160                 }
3161         } else {
3162                 fs_len = 0;
3163         }
3164
3165         if (high) {
3166                 func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3167                 hs_len = ffs_do_descs(ffs->hs_descs_count,
3168                                       vla_ptr(vlabuf, d, raw_descs) + fs_len,
3169                                       d_raw_descs__sz - fs_len,
3170                                       __ffs_func_bind_do_descs, func);
3171                 if (hs_len < 0) {
3172                         ret = hs_len;
3173                         goto error;
3174                 }
3175         } else {
3176                 hs_len = 0;
3177         }
3178
3179         if (super) {
3180                 func->function.ss_descriptors = func->function.ssp_descriptors =
3181                         vla_ptr(vlabuf, d, ss_descs);
3182                 ss_len = ffs_do_descs(ffs->ss_descs_count,
3183                                 vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
3184                                 d_raw_descs__sz - fs_len - hs_len,
3185                                 __ffs_func_bind_do_descs, func);
3186                 if (ss_len < 0) {
3187                         ret = ss_len;
3188                         goto error;
3189                 }
3190         } else {
3191                 ss_len = 0;
3192         }
3193
3194         /*
3195          * Now handle interface numbers allocation and interface and
3196          * endpoint numbers rewriting.  We can do that in one go
3197          * now.
3198          */
3199         ret = ffs_do_descs(ffs->fs_descs_count +
3200                            (high ? ffs->hs_descs_count : 0) +
3201                            (super ? ffs->ss_descs_count : 0),
3202                            vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3203                            __ffs_func_bind_do_nums, func);
3204         if (ret < 0)
3205                 goto error;
3206
3207         func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3208         if (c->cdev->use_os_string) {
3209                 for (i = 0; i < ffs->interfaces_count; ++i) {
3210                         struct usb_os_desc *desc;
3211
3212                         desc = func->function.os_desc_table[i].os_desc =
3213                                 vla_ptr(vlabuf, d, os_desc) +
3214                                 i * sizeof(struct usb_os_desc);
3215                         desc->ext_compat_id =
3216                                 vla_ptr(vlabuf, d, ext_compat) + i * 16;
3217                         INIT_LIST_HEAD(&desc->ext_prop);
3218                 }
3219                 ret = ffs_do_os_descs(ffs->ms_os_descs_count,
3220                                       vla_ptr(vlabuf, d, raw_descs) +
3221                                       fs_len + hs_len + ss_len,
3222                                       d_raw_descs__sz - fs_len - hs_len -
3223                                       ss_len,
3224                                       __ffs_func_bind_do_os_desc, func);
3225                 if (ret < 0)
3226                         goto error;
3227         }
3228         func->function.os_desc_n =
3229                 c->cdev->use_os_string ? ffs->interfaces_count : 0;
3230
3231         /* And we're done */
3232         ffs_event_add(ffs, FUNCTIONFS_BIND);
3233         return 0;
3234
3235 error:
3236         /* XXX Do we need to release all claimed endpoints here? */
3237         return ret;
3238 }
3239
3240 static int ffs_func_bind(struct usb_configuration *c,
3241                          struct usb_function *f)
3242 {
3243         struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3244         struct ffs_function *func = ffs_func_from_usb(f);
3245         int ret;
3246
3247         if (IS_ERR(ffs_opts))
3248                 return PTR_ERR(ffs_opts);
3249
3250         ret = _ffs_func_bind(c, f);
3251         if (ret && !--ffs_opts->refcnt)
3252                 functionfs_unbind(func->ffs);
3253
3254         return ret;
3255 }
3256
3257
3258 /* Other USB function hooks *************************************************/
3259
3260 static void ffs_reset_work(struct work_struct *work)
3261 {
3262         struct ffs_data *ffs = container_of(work,
3263                 struct ffs_data, reset_work);
3264         ffs_data_reset(ffs);
3265 }
3266
3267 static int ffs_func_set_alt(struct usb_function *f,
3268                             unsigned interface, unsigned alt)
3269 {
3270         struct ffs_function *func = ffs_func_from_usb(f);
3271         struct ffs_data *ffs = func->ffs;
3272         int ret = 0, intf;
3273
3274         if (alt != (unsigned)-1) {
3275                 intf = ffs_func_revmap_intf(func, interface);
3276                 if (intf < 0)
3277                         return intf;
3278         }
3279
3280         if (ffs->func)
3281                 ffs_func_eps_disable(ffs->func);
3282
3283         if (ffs->state == FFS_DEACTIVATED) {
3284                 ffs->state = FFS_CLOSING;
3285                 INIT_WORK(&ffs->reset_work, ffs_reset_work);
3286                 schedule_work(&ffs->reset_work);
3287                 return -ENODEV;
3288         }
3289
3290         if (ffs->state != FFS_ACTIVE)
3291                 return -ENODEV;
3292
3293         if (alt == (unsigned)-1) {
3294                 ffs->func = NULL;
3295                 ffs_event_add(ffs, FUNCTIONFS_DISABLE);
3296                 return 0;
3297         }
3298
3299         ffs->func = func;
3300         ret = ffs_func_eps_enable(func);
3301         if (ret >= 0)
3302                 ffs_event_add(ffs, FUNCTIONFS_ENABLE);
3303         return ret;
3304 }
3305
3306 static void ffs_func_disable(struct usb_function *f)
3307 {
3308         ffs_func_set_alt(f, 0, (unsigned)-1);
3309 }
3310
3311 static int ffs_func_setup(struct usb_function *f,
3312                           const struct usb_ctrlrequest *creq)
3313 {
3314         struct ffs_function *func = ffs_func_from_usb(f);
3315         struct ffs_data *ffs = func->ffs;
3316         unsigned long flags;
3317         int ret;
3318
3319         ENTER();
3320
3321         pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
3322         pr_vdebug("creq->bRequest     = %02x\n", creq->bRequest);
3323         pr_vdebug("creq->wValue       = %04x\n", le16_to_cpu(creq->wValue));
3324         pr_vdebug("creq->wIndex       = %04x\n", le16_to_cpu(creq->wIndex));
3325         pr_vdebug("creq->wLength      = %04x\n", le16_to_cpu(creq->wLength));
3326
3327         /*
3328          * Most requests directed to interface go through here
3329          * (notable exceptions are set/get interface) so we need to
3330          * handle them.  All other either handled by composite or
3331          * passed to usb_configuration->setup() (if one is set).  No
3332          * matter, we will handle requests directed to endpoint here
3333          * as well (as it's straightforward).  Other request recipient
3334          * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
3335          * is being used.
3336          */
3337         if (ffs->state != FFS_ACTIVE)
3338                 return -ENODEV;
3339
3340         switch (creq->bRequestType & USB_RECIP_MASK) {
3341         case USB_RECIP_INTERFACE:
3342                 ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
3343                 if (ret < 0)
3344                         return ret;
3345                 break;
3346
3347         case USB_RECIP_ENDPOINT:
3348                 ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3349                 if (ret < 0)
3350                         return ret;
3351                 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3352                         ret = func->ffs->eps_addrmap[ret];
3353                 break;
3354
3355         default:
3356                 if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
3357                         ret = le16_to_cpu(creq->wIndex);
3358                 else
3359                         return -EOPNOTSUPP;
3360         }
3361
3362         spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3363         ffs->ev.setup = *creq;
3364         ffs->ev.setup.wIndex = cpu_to_le16(ret);
3365         __ffs_event_add(ffs, FUNCTIONFS_SETUP);
3366         spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3367
3368         return creq->wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0;
3369 }
3370
3371 static bool ffs_func_req_match(struct usb_function *f,
3372                                const struct usb_ctrlrequest *creq,
3373                                bool config0)
3374 {
3375         struct ffs_function *func = ffs_func_from_usb(f);
3376
3377         if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3378                 return false;
3379
3380         switch (creq->bRequestType & USB_RECIP_MASK) {
3381         case USB_RECIP_INTERFACE:
3382                 return (ffs_func_revmap_intf(func,
3383                                              le16_to_cpu(creq->wIndex)) >= 0);
3384         case USB_RECIP_ENDPOINT:
3385                 return (ffs_func_revmap_ep(func,
3386                                            le16_to_cpu(creq->wIndex)) >= 0);
3387         default:
3388                 return (bool) (func->ffs->user_flags &
3389                                FUNCTIONFS_ALL_CTRL_RECIP);
3390         }
3391 }
3392
3393 static void ffs_func_suspend(struct usb_function *f)
3394 {
3395         ENTER();
3396         ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3397 }
3398
3399 static void ffs_func_resume(struct usb_function *f)
3400 {
3401         ENTER();
3402         ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3403 }
3404
3405
3406 /* Endpoint and interface numbers reverse mapping ***************************/
3407
3408 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3409 {
3410         num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3411         return num ? num : -EDOM;
3412 }
3413
3414 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3415 {
3416         short *nums = func->interfaces_nums;
3417         unsigned count = func->ffs->interfaces_count;
3418
3419         for (; count; --count, ++nums) {
3420                 if (*nums >= 0 && *nums == intf)
3421                         return nums - func->interfaces_nums;
3422         }
3423
3424         return -EDOM;
3425 }
3426
3427
3428 /* Devices management *******************************************************/
3429
3430 static LIST_HEAD(ffs_devices);
3431
3432 static struct ffs_dev *_ffs_do_find_dev(const char *name)
3433 {
3434         struct ffs_dev *dev;
3435
3436         if (!name)
3437                 return NULL;
3438
3439         list_for_each_entry(dev, &ffs_devices, entry) {
3440                 if (strcmp(dev->name, name) == 0)
3441                         return dev;
3442         }
3443
3444         return NULL;
3445 }
3446
3447 /*
3448  * ffs_lock must be taken by the caller of this function
3449  */
3450 static struct ffs_dev *_ffs_get_single_dev(void)
3451 {
3452         struct ffs_dev *dev;
3453
3454         if (list_is_singular(&ffs_devices)) {
3455                 dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3456                 if (dev->single)
3457                         return dev;
3458         }
3459
3460         return NULL;
3461 }
3462
3463 /*
3464  * ffs_lock must be taken by the caller of this function
3465  */
3466 static struct ffs_dev *_ffs_find_dev(const char *name)
3467 {
3468         struct ffs_dev *dev;
3469
3470         dev = _ffs_get_single_dev();
3471         if (dev)
3472                 return dev;
3473
3474         return _ffs_do_find_dev(name);
3475 }
3476
3477 /* Configfs support *********************************************************/
3478
3479 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3480 {
3481         return container_of(to_config_group(item), struct f_fs_opts,
3482                             func_inst.group);
3483 }
3484
3485 static void ffs_attr_release(struct config_item *item)
3486 {
3487         struct f_fs_opts *opts = to_ffs_opts(item);
3488
3489         usb_put_function_instance(&opts->func_inst);
3490 }
3491
3492 static struct configfs_item_operations ffs_item_ops = {
3493         .release        = ffs_attr_release,
3494 };
3495
3496 static const struct config_item_type ffs_func_type = {
3497         .ct_item_ops    = &ffs_item_ops,
3498         .ct_owner       = THIS_MODULE,
3499 };
3500
3501
3502 /* Function registration interface ******************************************/
3503
3504 static void ffs_free_inst(struct usb_function_instance *f)
3505 {
3506         struct f_fs_opts *opts;
3507
3508         opts = to_f_fs_opts(f);
3509         ffs_dev_lock();
3510         _ffs_free_dev(opts->dev);
3511         ffs_dev_unlock();
3512         kfree(opts);
3513 }
3514
3515 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
3516 {
3517         if (strlen(name) >= sizeof_field(struct ffs_dev, name))
3518                 return -ENAMETOOLONG;
3519         return ffs_name_dev(to_f_fs_opts(fi)->dev, name);
3520 }
3521
3522 static struct usb_function_instance *ffs_alloc_inst(void)
3523 {
3524         struct f_fs_opts *opts;
3525         struct ffs_dev *dev;
3526
3527         opts = kzalloc(sizeof(*opts), GFP_KERNEL);
3528         if (!opts)
3529                 return ERR_PTR(-ENOMEM);
3530
3531         opts->func_inst.set_inst_name = ffs_set_inst_name;
3532         opts->func_inst.free_func_inst = ffs_free_inst;
3533         ffs_dev_lock();
3534         dev = _ffs_alloc_dev();
3535         ffs_dev_unlock();
3536         if (IS_ERR(dev)) {
3537                 kfree(opts);
3538                 return ERR_CAST(dev);
3539         }
3540         opts->dev = dev;
3541         dev->opts = opts;
3542
3543         config_group_init_type_name(&opts->func_inst.group, "",
3544                                     &ffs_func_type);
3545         return &opts->func_inst;
3546 }
3547
3548 static void ffs_free(struct usb_function *f)
3549 {
3550         kfree(ffs_func_from_usb(f));
3551 }
3552
3553 static void ffs_func_unbind(struct usb_configuration *c,
3554                             struct usb_function *f)
3555 {
3556         struct ffs_function *func = ffs_func_from_usb(f);
3557         struct ffs_data *ffs = func->ffs;
3558         struct f_fs_opts *opts =
3559                 container_of(f->fi, struct f_fs_opts, func_inst);
3560         struct ffs_ep *ep = func->eps;
3561         unsigned count = ffs->eps_count;
3562         unsigned long flags;
3563
3564         ENTER();
3565         if (ffs->func == func) {
3566                 ffs_func_eps_disable(func);
3567                 ffs->func = NULL;
3568         }
3569
3570         /* Drain any pending AIO completions */
3571         drain_workqueue(ffs->io_completion_wq);
3572
3573         if (!--opts->refcnt)
3574                 functionfs_unbind(ffs);
3575
3576         /* cleanup after autoconfig */
3577         spin_lock_irqsave(&func->ffs->eps_lock, flags);
3578         while (count--) {
3579                 if (ep->ep && ep->req)
3580                         usb_ep_free_request(ep->ep, ep->req);
3581                 ep->req = NULL;
3582                 ++ep;
3583         }
3584         spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
3585         kfree(func->eps);
3586         func->eps = NULL;
3587         /*
3588          * eps, descriptors and interfaces_nums are allocated in the
3589          * same chunk so only one free is required.
3590          */
3591         func->function.fs_descriptors = NULL;
3592         func->function.hs_descriptors = NULL;
3593         func->function.ss_descriptors = NULL;
3594         func->function.ssp_descriptors = NULL;
3595         func->interfaces_nums = NULL;
3596
3597         ffs_event_add(ffs, FUNCTIONFS_UNBIND);
3598 }
3599
3600 static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
3601 {
3602         struct ffs_function *func;
3603
3604         ENTER();
3605
3606         func = kzalloc(sizeof(*func), GFP_KERNEL);
3607         if (!func)
3608                 return ERR_PTR(-ENOMEM);
3609
3610         func->function.name    = "Function FS Gadget";
3611
3612         func->function.bind    = ffs_func_bind;
3613         func->function.unbind  = ffs_func_unbind;
3614         func->function.set_alt = ffs_func_set_alt;
3615         func->function.disable = ffs_func_disable;
3616         func->function.setup   = ffs_func_setup;
3617         func->function.req_match = ffs_func_req_match;
3618         func->function.suspend = ffs_func_suspend;
3619         func->function.resume  = ffs_func_resume;
3620         func->function.free_func = ffs_free;
3621
3622         return &func->function;
3623 }
3624
3625 /*
3626  * ffs_lock must be taken by the caller of this function
3627  */
3628 static struct ffs_dev *_ffs_alloc_dev(void)
3629 {
3630         struct ffs_dev *dev;
3631         int ret;
3632
3633         if (_ffs_get_single_dev())
3634                         return ERR_PTR(-EBUSY);
3635
3636         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3637         if (!dev)
3638                 return ERR_PTR(-ENOMEM);
3639
3640         if (list_empty(&ffs_devices)) {
3641                 ret = functionfs_init();
3642                 if (ret) {
3643                         kfree(dev);
3644                         return ERR_PTR(ret);
3645                 }
3646         }
3647
3648         list_add(&dev->entry, &ffs_devices);
3649
3650         return dev;
3651 }
3652
3653 int ffs_name_dev(struct ffs_dev *dev, const char *name)
3654 {
3655         struct ffs_dev *existing;
3656         int ret = 0;
3657
3658         ffs_dev_lock();
3659
3660         existing = _ffs_do_find_dev(name);
3661         if (!existing)
3662                 strlcpy(dev->name, name, ARRAY_SIZE(dev->name));
3663         else if (existing != dev)
3664                 ret = -EBUSY;
3665
3666         ffs_dev_unlock();
3667
3668         return ret;
3669 }
3670 EXPORT_SYMBOL_GPL(ffs_name_dev);
3671
3672 int ffs_single_dev(struct ffs_dev *dev)
3673 {
3674         int ret;
3675
3676         ret = 0;
3677         ffs_dev_lock();
3678
3679         if (!list_is_singular(&ffs_devices))
3680                 ret = -EBUSY;
3681         else
3682                 dev->single = true;
3683
3684         ffs_dev_unlock();
3685         return ret;
3686 }
3687 EXPORT_SYMBOL_GPL(ffs_single_dev);
3688
3689 /*
3690  * ffs_lock must be taken by the caller of this function
3691  */
3692 static void _ffs_free_dev(struct ffs_dev *dev)
3693 {
3694         list_del(&dev->entry);
3695
3696         /* Clear the private_data pointer to stop incorrect dev access */
3697         if (dev->ffs_data)
3698                 dev->ffs_data->private_data = NULL;
3699
3700         kfree(dev);
3701         if (list_empty(&ffs_devices))
3702                 functionfs_cleanup();
3703 }
3704
3705 static void *ffs_acquire_dev(const char *dev_name)
3706 {
3707         struct ffs_dev *ffs_dev;
3708
3709         ENTER();
3710         ffs_dev_lock();
3711
3712         ffs_dev = _ffs_find_dev(dev_name);
3713         if (!ffs_dev)
3714                 ffs_dev = ERR_PTR(-ENOENT);
3715         else if (ffs_dev->mounted)
3716                 ffs_dev = ERR_PTR(-EBUSY);
3717         else if (ffs_dev->ffs_acquire_dev_callback &&
3718             ffs_dev->ffs_acquire_dev_callback(ffs_dev))
3719                 ffs_dev = ERR_PTR(-ENOENT);
3720         else
3721                 ffs_dev->mounted = true;
3722
3723         ffs_dev_unlock();
3724         return ffs_dev;
3725 }
3726
3727 static void ffs_release_dev(struct ffs_data *ffs_data)
3728 {
3729         struct ffs_dev *ffs_dev;
3730
3731         ENTER();
3732         ffs_dev_lock();
3733
3734         ffs_dev = ffs_data->private_data;
3735         if (ffs_dev) {
3736                 ffs_dev->mounted = false;
3737
3738                 if (ffs_dev->ffs_release_dev_callback)
3739                         ffs_dev->ffs_release_dev_callback(ffs_dev);
3740         }
3741
3742         ffs_dev_unlock();
3743 }
3744
3745 static int ffs_ready(struct ffs_data *ffs)
3746 {
3747         struct ffs_dev *ffs_obj;
3748         int ret = 0;
3749
3750         ENTER();
3751         ffs_dev_lock();
3752
3753         ffs_obj = ffs->private_data;
3754         if (!ffs_obj) {
3755                 ret = -EINVAL;
3756                 goto done;
3757         }
3758         if (WARN_ON(ffs_obj->desc_ready)) {
3759                 ret = -EBUSY;
3760                 goto done;
3761         }
3762
3763         ffs_obj->desc_ready = true;
3764         ffs_obj->ffs_data = ffs;
3765
3766         if (ffs_obj->ffs_ready_callback) {
3767                 ret = ffs_obj->ffs_ready_callback(ffs);
3768                 if (ret)
3769                         goto done;
3770         }
3771
3772         set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
3773 done:
3774         ffs_dev_unlock();
3775         return ret;
3776 }
3777
3778 static void ffs_closed(struct ffs_data *ffs)
3779 {
3780         struct ffs_dev *ffs_obj;
3781         struct f_fs_opts *opts;
3782         struct config_item *ci;
3783
3784         ENTER();
3785         ffs_dev_lock();
3786
3787         ffs_obj = ffs->private_data;
3788         if (!ffs_obj)
3789                 goto done;
3790
3791         ffs_obj->desc_ready = false;
3792         ffs_obj->ffs_data = NULL;
3793
3794         if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
3795             ffs_obj->ffs_closed_callback)
3796                 ffs_obj->ffs_closed_callback(ffs);
3797
3798         if (ffs_obj->opts)
3799                 opts = ffs_obj->opts;
3800         else
3801                 goto done;
3802
3803         if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
3804             || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
3805                 goto done;
3806
3807         ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
3808         ffs_dev_unlock();
3809
3810         if (test_bit(FFS_FL_BOUND, &ffs->flags))
3811                 unregister_gadget_item(ci);
3812         return;
3813 done:
3814         ffs_dev_unlock();
3815 }
3816
3817 /* Misc helper functions ****************************************************/
3818
3819 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
3820 {
3821         return nonblock
3822                 ? mutex_trylock(mutex) ? 0 : -EAGAIN
3823                 : mutex_lock_interruptible(mutex);
3824 }
3825
3826 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3827 {
3828         char *data;
3829
3830         if (!len)
3831                 return NULL;
3832
3833         data = memdup_user(buf, len);
3834         if (IS_ERR(data))
3835                 return ERR_PTR(PTR_ERR(data));
3836
3837         pr_vdebug("Buffer from user space:\n");
3838         ffs_dump_mem("", data, len);
3839
3840         return data;
3841 }
3842
3843 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
3844 MODULE_LICENSE("GPL");
3845 MODULE_AUTHOR("Michal Nazarewicz");