Merge tag 'char-misc-5.15-rc1-lkdtm' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / drivers / thermal / qcom / qcom-spmi-adc-tm5.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2020 Linaro Limited
4  *
5  * Based on original driver:
6  * Copyright (c) 2012-2020, The Linux Foundation. All rights reserved.
7  */
8 #include <linux/bitfield.h>
9 #include <linux/iio/adc/qcom-vadc-common.h>
10 #include <linux/iio/consumer.h>
11 #include <linux/interrupt.h>
12 #include <linux/module.h>
13 #include <linux/of.h>
14 #include <linux/of_device.h>
15 #include <linux/platform_device.h>
16 #include <linux/regmap.h>
17 #include <linux/thermal.h>
18
19 /*
20  * Thermal monitoring block consists of 8 (ADC_TM5_NUM_CHANNELS) channels. Each
21  * channel is programmed to use one of ADC channels for voltage comparison.
22  * Voltages are programmed using ADC codes, so we have to convert temp to
23  * voltage and then to ADC code value.
24  *
25  * Configuration of TM channels must match configuration of corresponding ADC
26  * channels.
27  */
28
29 #define ADC5_MAX_CHANNEL                        0xc0
30 #define ADC_TM5_NUM_CHANNELS            8
31
32 #define ADC_TM5_STATUS_LOW                      0x0a
33
34 #define ADC_TM5_STATUS_HIGH                     0x0b
35
36 #define ADC_TM5_NUM_BTM                         0x0f
37
38 #define ADC_TM5_ADC_DIG_PARAM                   0x42
39
40 #define ADC_TM5_FAST_AVG_CTL                    (ADC_TM5_ADC_DIG_PARAM + 1)
41 #define ADC_TM5_FAST_AVG_EN                             BIT(7)
42
43 #define ADC_TM5_MEAS_INTERVAL_CTL               (ADC_TM5_ADC_DIG_PARAM + 2)
44 #define ADC_TM5_TIMER1                                  3 /* 3.9ms */
45
46 #define ADC_TM5_MEAS_INTERVAL_CTL2              (ADC_TM5_ADC_DIG_PARAM + 3)
47 #define ADC_TM5_MEAS_INTERVAL_CTL2_MASK                 0xf0
48 #define ADC_TM5_TIMER2                                  10 /* 1 second */
49 #define ADC_TM5_MEAS_INTERVAL_CTL3_MASK                 0xf
50 #define ADC_TM5_TIMER3                                  4 /* 4 second */
51
52 #define ADC_TM_EN_CTL1                          0x46
53 #define ADC_TM_EN                                       BIT(7)
54 #define ADC_TM_CONV_REQ                         0x47
55 #define ADC_TM_CONV_REQ_EN                              BIT(7)
56
57 #define ADC_TM5_M_CHAN_BASE                     0x60
58
59 #define ADC_TM5_M_ADC_CH_SEL_CTL(n)             (ADC_TM5_M_CHAN_BASE + ((n) * 8) + 0)
60 #define ADC_TM5_M_LOW_THR0(n)                   (ADC_TM5_M_CHAN_BASE + ((n) * 8) + 1)
61 #define ADC_TM5_M_LOW_THR1(n)                   (ADC_TM5_M_CHAN_BASE + ((n) * 8) + 2)
62 #define ADC_TM5_M_HIGH_THR0(n)                  (ADC_TM5_M_CHAN_BASE + ((n) * 8) + 3)
63 #define ADC_TM5_M_HIGH_THR1(n)                  (ADC_TM5_M_CHAN_BASE + ((n) * 8) + 4)
64 #define ADC_TM5_M_MEAS_INTERVAL_CTL(n)          (ADC_TM5_M_CHAN_BASE + ((n) * 8) + 5)
65 #define ADC_TM5_M_CTL(n)                        (ADC_TM5_M_CHAN_BASE + ((n) * 8) + 6)
66 #define ADC_TM5_M_CTL_HW_SETTLE_DELAY_MASK              0xf
67 #define ADC_TM5_M_CTL_CAL_SEL_MASK                      0x30
68 #define ADC_TM5_M_CTL_CAL_VAL                           0x40
69 #define ADC_TM5_M_EN(n)                         (ADC_TM5_M_CHAN_BASE + ((n) * 8) + 7)
70 #define ADC_TM5_M_MEAS_EN                               BIT(7)
71 #define ADC_TM5_M_HIGH_THR_INT_EN                       BIT(1)
72 #define ADC_TM5_M_LOW_THR_INT_EN                        BIT(0)
73
74 enum adc5_timer_select {
75         ADC5_TIMER_SEL_1 = 0,
76         ADC5_TIMER_SEL_2,
77         ADC5_TIMER_SEL_3,
78         ADC5_TIMER_SEL_NONE,
79 };
80
81 struct adc_tm5_data {
82         const u32       full_scale_code_volt;
83         unsigned int    *decimation;
84         unsigned int    *hw_settle;
85 };
86
87 enum adc_tm5_cal_method {
88         ADC_TM5_NO_CAL = 0,
89         ADC_TM5_RATIOMETRIC_CAL,
90         ADC_TM5_ABSOLUTE_CAL
91 };
92
93 struct adc_tm5_chip;
94
95 /**
96  * struct adc_tm5_channel - ADC Thermal Monitoring channel data.
97  * @channel: channel number.
98  * @adc_channel: corresponding ADC channel number.
99  * @cal_method: calibration method.
100  * @prescale: channel scaling performed on the input signal.
101  * @hw_settle_time: the time between AMUX being configured and the
102  *      start of conversion.
103  * @iio: IIO channel instance used by this channel.
104  * @chip: ADC TM chip instance.
105  * @tzd: thermal zone device used by this channel.
106  */
107 struct adc_tm5_channel {
108         unsigned int            channel;
109         unsigned int            adc_channel;
110         enum adc_tm5_cal_method cal_method;
111         unsigned int            prescale;
112         unsigned int            hw_settle_time;
113         struct iio_channel      *iio;
114         struct adc_tm5_chip     *chip;
115         struct thermal_zone_device *tzd;
116 };
117
118 /**
119  * struct adc_tm5_chip - ADC Thermal Monitoring properties
120  * @regmap: SPMI ADC5 Thermal Monitoring  peripheral register map field.
121  * @dev: SPMI ADC5 device.
122  * @data: software configuration data.
123  * @channels: array of ADC TM channel data.
124  * @nchannels: amount of channels defined/allocated
125  * @decimation: sampling rate supported for the channel.
126  * @avg_samples: ability to provide single result from the ADC
127  *      that is an average of multiple measurements.
128  * @base: base address of TM registers.
129  */
130 struct adc_tm5_chip {
131         struct regmap           *regmap;
132         struct device           *dev;
133         const struct adc_tm5_data       *data;
134         struct adc_tm5_channel  *channels;
135         unsigned int            nchannels;
136         unsigned int            decimation;
137         unsigned int            avg_samples;
138         u16                     base;
139 };
140
141 static const struct adc_tm5_data adc_tm5_data_pmic = {
142         .full_scale_code_volt = 0x70e4,
143         .decimation = (unsigned int []) { 250, 420, 840 },
144         .hw_settle = (unsigned int []) { 15, 100, 200, 300, 400, 500, 600, 700,
145                                          1000, 2000, 4000, 8000, 16000, 32000,
146                                          64000, 128000 },
147 };
148
149 static int adc_tm5_read(struct adc_tm5_chip *adc_tm, u16 offset, u8 *data, int len)
150 {
151         return regmap_bulk_read(adc_tm->regmap, adc_tm->base + offset, data, len);
152 }
153
154 static int adc_tm5_write(struct adc_tm5_chip *adc_tm, u16 offset, u8 *data, int len)
155 {
156         return regmap_bulk_write(adc_tm->regmap, adc_tm->base + offset, data, len);
157 }
158
159 static int adc_tm5_reg_update(struct adc_tm5_chip *adc_tm, u16 offset, u8 mask, u8 val)
160 {
161         return regmap_write_bits(adc_tm->regmap, adc_tm->base + offset, mask, val);
162 }
163
164 static irqreturn_t adc_tm5_isr(int irq, void *data)
165 {
166         struct adc_tm5_chip *chip = data;
167         u8 status_low, status_high, ctl;
168         int ret, i;
169
170         ret = adc_tm5_read(chip, ADC_TM5_STATUS_LOW, &status_low, sizeof(status_low));
171         if (unlikely(ret)) {
172                 dev_err(chip->dev, "read status low failed: %d\n", ret);
173                 return IRQ_HANDLED;
174         }
175
176         ret = adc_tm5_read(chip, ADC_TM5_STATUS_HIGH, &status_high, sizeof(status_high));
177         if (unlikely(ret)) {
178                 dev_err(chip->dev, "read status high failed: %d\n", ret);
179                 return IRQ_HANDLED;
180         }
181
182         for (i = 0; i < chip->nchannels; i++) {
183                 bool upper_set = false, lower_set = false;
184                 unsigned int ch = chip->channels[i].channel;
185
186                 /* No TZD, we warned at the boot time */
187                 if (!chip->channels[i].tzd)
188                         continue;
189
190                 ret = adc_tm5_read(chip, ADC_TM5_M_EN(ch), &ctl, sizeof(ctl));
191                 if (unlikely(ret)) {
192                         dev_err(chip->dev, "ctl read failed: %d, channel %d\n", ret, i);
193                         continue;
194                 }
195
196                 if (!(ctl & ADC_TM5_M_MEAS_EN))
197                         continue;
198
199                 lower_set = (status_low & BIT(ch)) &&
200                         (ctl & ADC_TM5_M_LOW_THR_INT_EN);
201
202                 upper_set = (status_high & BIT(ch)) &&
203                         (ctl & ADC_TM5_M_HIGH_THR_INT_EN);
204
205                 if (upper_set || lower_set)
206                         thermal_zone_device_update(chip->channels[i].tzd,
207                                                    THERMAL_EVENT_UNSPECIFIED);
208         }
209
210         return IRQ_HANDLED;
211 }
212
213 static int adc_tm5_get_temp(void *data, int *temp)
214 {
215         struct adc_tm5_channel *channel = data;
216         int ret;
217
218         if (!channel || !channel->iio)
219                 return -EINVAL;
220
221         ret = iio_read_channel_processed(channel->iio, temp);
222         if (ret < 0)
223                 return ret;
224
225         if (ret != IIO_VAL_INT)
226                 return -EINVAL;
227
228         return 0;
229 }
230
231 static int adc_tm5_disable_channel(struct adc_tm5_channel *channel)
232 {
233         struct adc_tm5_chip *chip = channel->chip;
234         unsigned int reg = ADC_TM5_M_EN(channel->channel);
235
236         return adc_tm5_reg_update(chip, reg,
237                                   ADC_TM5_M_MEAS_EN |
238                                   ADC_TM5_M_HIGH_THR_INT_EN |
239                                   ADC_TM5_M_LOW_THR_INT_EN,
240                                   0);
241 }
242
243 static int adc_tm5_enable(struct adc_tm5_chip *chip)
244 {
245         int ret;
246         u8 data;
247
248         data = ADC_TM_EN;
249         ret = adc_tm5_write(chip, ADC_TM_EN_CTL1, &data, sizeof(data));
250         if (ret < 0) {
251                 dev_err(chip->dev, "adc-tm enable failed\n");
252                 return ret;
253         }
254
255         data = ADC_TM_CONV_REQ_EN;
256         ret = adc_tm5_write(chip, ADC_TM_CONV_REQ, &data, sizeof(data));
257         if (ret < 0) {
258                 dev_err(chip->dev, "adc-tm request conversion failed\n");
259                 return ret;
260         }
261
262         return 0;
263 }
264
265 static int adc_tm5_configure(struct adc_tm5_channel *channel, int low, int high)
266 {
267         struct adc_tm5_chip *chip = channel->chip;
268         u8 buf[8];
269         u16 reg = ADC_TM5_M_ADC_CH_SEL_CTL(channel->channel);
270         int ret;
271
272         ret = adc_tm5_read(chip, reg, buf, sizeof(buf));
273         if (ret) {
274                 dev_err(chip->dev, "channel %d params read failed: %d\n", channel->channel, ret);
275                 return ret;
276         }
277
278         buf[0] = channel->adc_channel;
279
280         /* High temperature corresponds to low voltage threshold */
281         if (high != INT_MAX) {
282                 u16 adc_code = qcom_adc_tm5_temp_volt_scale(channel->prescale,
283                                 chip->data->full_scale_code_volt, high);
284
285                 buf[1] = adc_code & 0xff;
286                 buf[2] = adc_code >> 8;
287                 buf[7] |= ADC_TM5_M_LOW_THR_INT_EN;
288         } else {
289                 buf[7] &= ~ADC_TM5_M_LOW_THR_INT_EN;
290         }
291
292         /* Low temperature corresponds to high voltage threshold */
293         if (low != -INT_MAX) {
294                 u16 adc_code = qcom_adc_tm5_temp_volt_scale(channel->prescale,
295                                 chip->data->full_scale_code_volt, low);
296
297                 buf[3] = adc_code & 0xff;
298                 buf[4] = adc_code >> 8;
299                 buf[7] |= ADC_TM5_M_HIGH_THR_INT_EN;
300         } else {
301                 buf[7] &= ~ADC_TM5_M_HIGH_THR_INT_EN;
302         }
303
304         buf[5] = ADC5_TIMER_SEL_2;
305
306         /* Set calibration select, hw_settle delay */
307         buf[6] &= ~ADC_TM5_M_CTL_HW_SETTLE_DELAY_MASK;
308         buf[6] |= FIELD_PREP(ADC_TM5_M_CTL_HW_SETTLE_DELAY_MASK, channel->hw_settle_time);
309         buf[6] &= ~ADC_TM5_M_CTL_CAL_SEL_MASK;
310         buf[6] |= FIELD_PREP(ADC_TM5_M_CTL_CAL_SEL_MASK, channel->cal_method);
311
312         buf[7] |= ADC_TM5_M_MEAS_EN;
313
314         ret = adc_tm5_write(chip, reg, buf, sizeof(buf));
315         if (ret) {
316                 dev_err(chip->dev, "channel %d params write failed: %d\n", channel->channel, ret);
317                 return ret;
318         }
319
320         return adc_tm5_enable(chip);
321 }
322
323 static int adc_tm5_set_trips(void *data, int low, int high)
324 {
325         struct adc_tm5_channel *channel = data;
326         struct adc_tm5_chip *chip;
327         int ret;
328
329         if (!channel)
330                 return -EINVAL;
331
332         chip = channel->chip;
333         dev_dbg(chip->dev, "%d:low(mdegC):%d, high(mdegC):%d\n",
334                 channel->channel, low, high);
335
336         if (high == INT_MAX && low <= -INT_MAX)
337                 ret = adc_tm5_disable_channel(channel);
338         else
339                 ret = adc_tm5_configure(channel, low, high);
340
341         return ret;
342 }
343
344 static struct thermal_zone_of_device_ops adc_tm5_ops = {
345         .get_temp = adc_tm5_get_temp,
346         .set_trips = adc_tm5_set_trips,
347 };
348
349 static int adc_tm5_register_tzd(struct adc_tm5_chip *adc_tm)
350 {
351         unsigned int i;
352         struct thermal_zone_device *tzd;
353
354         for (i = 0; i < adc_tm->nchannels; i++) {
355                 adc_tm->channels[i].chip = adc_tm;
356
357                 tzd = devm_thermal_zone_of_sensor_register(adc_tm->dev,
358                                                            adc_tm->channels[i].channel,
359                                                            &adc_tm->channels[i],
360                                                            &adc_tm5_ops);
361                 if (IS_ERR(tzd)) {
362                         if (PTR_ERR(tzd) == -ENODEV) {
363                                 dev_warn(adc_tm->dev, "thermal sensor on channel %d is not used\n",
364                                          adc_tm->channels[i].channel);
365                                 continue;
366                         }
367
368                         dev_err(adc_tm->dev, "Error registering TZ zone for channel %d: %ld\n",
369                                 adc_tm->channels[i].channel, PTR_ERR(tzd));
370                         return PTR_ERR(tzd);
371                 }
372                 adc_tm->channels[i].tzd = tzd;
373         }
374
375         return 0;
376 }
377
378 static int adc_tm5_init(struct adc_tm5_chip *chip)
379 {
380         u8 buf[4], channels_available;
381         int ret;
382         unsigned int i;
383
384         ret = adc_tm5_read(chip, ADC_TM5_NUM_BTM,
385                            &channels_available, sizeof(channels_available));
386         if (ret) {
387                 dev_err(chip->dev, "read failed for BTM channels\n");
388                 return ret;
389         }
390
391         for (i = 0; i < chip->nchannels; i++) {
392                 if (chip->channels[i].channel >= channels_available) {
393                         dev_err(chip->dev, "Invalid channel %d\n", chip->channels[i].channel);
394                         return -EINVAL;
395                 }
396         }
397
398         buf[0] = chip->decimation;
399         buf[1] = chip->avg_samples | ADC_TM5_FAST_AVG_EN;
400         buf[2] = ADC_TM5_TIMER1;
401         buf[3] = FIELD_PREP(ADC_TM5_MEAS_INTERVAL_CTL2_MASK, ADC_TM5_TIMER2) |
402                  FIELD_PREP(ADC_TM5_MEAS_INTERVAL_CTL3_MASK, ADC_TM5_TIMER3);
403
404         ret = adc_tm5_write(chip, ADC_TM5_ADC_DIG_PARAM, buf, sizeof(buf));
405         if (ret) {
406                 dev_err(chip->dev, "block write failed: %d\n", ret);
407                 return ret;
408         }
409
410         return ret;
411 }
412
413 static int adc_tm5_get_dt_channel_data(struct adc_tm5_chip *adc_tm,
414                                        struct adc_tm5_channel *channel,
415                                        struct device_node *node)
416 {
417         const char *name = node->name;
418         u32 chan, value, varr[2];
419         int ret;
420         struct device *dev = adc_tm->dev;
421         struct of_phandle_args args;
422
423         ret = of_property_read_u32(node, "reg", &chan);
424         if (ret) {
425                 dev_err(dev, "%s: invalid channel number %d\n", name, ret);
426                 return ret;
427         }
428
429         if (chan >= ADC_TM5_NUM_CHANNELS) {
430                 dev_err(dev, "%s: channel number too big: %d\n", name, chan);
431                 return -EINVAL;
432         }
433
434         channel->channel = chan;
435
436         /*
437          * We are tied to PMIC's ADC controller, which always use single
438          * argument for channel number.  So don't bother parsing
439          * #io-channel-cells, just enforce cell_count = 1.
440          */
441         ret = of_parse_phandle_with_fixed_args(node, "io-channels", 1, 0, &args);
442         if (ret < 0) {
443                 dev_err(dev, "%s: error parsing ADC channel number %d: %d\n", name, chan, ret);
444                 return ret;
445         }
446         of_node_put(args.np);
447
448         if (args.args_count != 1 || args.args[0] >= ADC5_MAX_CHANNEL) {
449                 dev_err(dev, "%s: invalid ADC channel number %d\n", name, chan);
450                 return -EINVAL;
451         }
452         channel->adc_channel = args.args[0];
453
454         channel->iio = devm_of_iio_channel_get_by_name(adc_tm->dev, node, NULL);
455         if (IS_ERR(channel->iio)) {
456                 ret = PTR_ERR(channel->iio);
457                 if (ret != -EPROBE_DEFER)
458                         dev_err(dev, "%s: error getting channel: %d\n", name, ret);
459                 return ret;
460         }
461
462         ret = of_property_read_u32_array(node, "qcom,pre-scaling", varr, 2);
463         if (!ret) {
464                 ret = qcom_adc5_prescaling_from_dt(varr[0], varr[1]);
465                 if (ret < 0) {
466                         dev_err(dev, "%s: invalid pre-scaling <%d %d>\n",
467                                 name, varr[0], varr[1]);
468                         return ret;
469                 }
470                 channel->prescale = ret;
471         } else {
472                 /* 1:1 prescale is index 0 */
473                 channel->prescale = 0;
474         }
475
476         ret = of_property_read_u32(node, "qcom,hw-settle-time-us", &value);
477         if (!ret) {
478                 ret = qcom_adc5_hw_settle_time_from_dt(value, adc_tm->data->hw_settle);
479                 if (ret < 0) {
480                         dev_err(dev, "%s invalid hw-settle-time-us %d us\n",
481                                 name, value);
482                         return ret;
483                 }
484                 channel->hw_settle_time = ret;
485         } else {
486                 channel->hw_settle_time = VADC_DEF_HW_SETTLE_TIME;
487         }
488
489         if (of_property_read_bool(node, "qcom,ratiometric"))
490                 channel->cal_method = ADC_TM5_RATIOMETRIC_CAL;
491         else
492                 channel->cal_method = ADC_TM5_ABSOLUTE_CAL;
493
494         return 0;
495 }
496
497 static int adc_tm5_get_dt_data(struct adc_tm5_chip *adc_tm, struct device_node *node)
498 {
499         struct adc_tm5_channel *channels;
500         struct device_node *child;
501         u32 value;
502         int ret;
503         struct device *dev = adc_tm->dev;
504
505         adc_tm->nchannels = of_get_available_child_count(node);
506         if (!adc_tm->nchannels)
507                 return -EINVAL;
508
509         adc_tm->channels = devm_kcalloc(dev, adc_tm->nchannels,
510                                         sizeof(*adc_tm->channels), GFP_KERNEL);
511         if (!adc_tm->channels)
512                 return -ENOMEM;
513
514         channels = adc_tm->channels;
515
516         adc_tm->data = of_device_get_match_data(dev);
517         if (!adc_tm->data)
518                 adc_tm->data = &adc_tm5_data_pmic;
519
520         ret = of_property_read_u32(node, "qcom,decimation", &value);
521         if (!ret) {
522                 ret = qcom_adc5_decimation_from_dt(value, adc_tm->data->decimation);
523                 if (ret < 0) {
524                         dev_err(dev, "invalid decimation %d\n", value);
525                         return ret;
526                 }
527                 adc_tm->decimation = ret;
528         } else {
529                 adc_tm->decimation = ADC5_DECIMATION_DEFAULT;
530         }
531
532         ret = of_property_read_u32(node, "qcom,avg-samples", &value);
533         if (!ret) {
534                 ret = qcom_adc5_avg_samples_from_dt(value);
535                 if (ret < 0) {
536                         dev_err(dev, "invalid avg-samples %d\n", value);
537                         return ret;
538                 }
539                 adc_tm->avg_samples = ret;
540         } else {
541                 adc_tm->avg_samples = VADC_DEF_AVG_SAMPLES;
542         }
543
544         for_each_available_child_of_node(node, child) {
545                 ret = adc_tm5_get_dt_channel_data(adc_tm, channels, child);
546                 if (ret) {
547                         of_node_put(child);
548                         return ret;
549                 }
550
551                 channels++;
552         }
553
554         return 0;
555 }
556
557 static int adc_tm5_probe(struct platform_device *pdev)
558 {
559         struct device_node *node = pdev->dev.of_node;
560         struct device *dev = &pdev->dev;
561         struct adc_tm5_chip *adc_tm;
562         struct regmap *regmap;
563         int ret, irq;
564         u32 reg;
565
566         regmap = dev_get_regmap(dev->parent, NULL);
567         if (!regmap)
568                 return -ENODEV;
569
570         ret = of_property_read_u32(node, "reg", &reg);
571         if (ret)
572                 return ret;
573
574         adc_tm = devm_kzalloc(&pdev->dev, sizeof(*adc_tm), GFP_KERNEL);
575         if (!adc_tm)
576                 return -ENOMEM;
577
578         adc_tm->regmap = regmap;
579         adc_tm->dev = dev;
580         adc_tm->base = reg;
581
582         irq = platform_get_irq(pdev, 0);
583         if (irq < 0) {
584                 dev_err(dev, "get_irq failed: %d\n", irq);
585                 return irq;
586         }
587
588         ret = adc_tm5_get_dt_data(adc_tm, node);
589         if (ret) {
590                 dev_err(dev, "get dt data failed: %d\n", ret);
591                 return ret;
592         }
593
594         ret = adc_tm5_init(adc_tm);
595         if (ret) {
596                 dev_err(dev, "adc-tm init failed\n");
597                 return ret;
598         }
599
600         ret = adc_tm5_register_tzd(adc_tm);
601         if (ret) {
602                 dev_err(dev, "tzd register failed\n");
603                 return ret;
604         }
605
606         return devm_request_threaded_irq(dev, irq, NULL, adc_tm5_isr,
607                                          IRQF_ONESHOT, "pm-adc-tm5", adc_tm);
608 }
609
610 static const struct of_device_id adc_tm5_match_table[] = {
611         {
612                 .compatible = "qcom,spmi-adc-tm5",
613                 .data = &adc_tm5_data_pmic,
614         },
615         { }
616 };
617 MODULE_DEVICE_TABLE(of, adc_tm5_match_table);
618
619 static struct platform_driver adc_tm5_driver = {
620         .driver = {
621                 .name = "qcom-spmi-adc-tm5",
622                 .of_match_table = adc_tm5_match_table,
623         },
624         .probe = adc_tm5_probe,
625 };
626 module_platform_driver(adc_tm5_driver);
627
628 MODULE_DESCRIPTION("SPMI PMIC Thermal Monitor ADC driver");
629 MODULE_LICENSE("GPL v2");