Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[linux-2.6-microblaze.git] / drivers / scsi / scsi_lib.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 1999 Eric Youngdale
4  * Copyright (C) 2014 Christoph Hellwig
5  *
6  *  SCSI queueing library.
7  *      Initial versions: Eric Youngdale (eric@andante.org).
8  *                        Based upon conversations with large numbers
9  *                        of people at Linux Expo.
10  */
11
12 #include <linux/bio.h>
13 #include <linux/bitops.h>
14 #include <linux/blkdev.h>
15 #include <linux/completion.h>
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 #include <linux/blk-mq.h>
24 #include <linux/ratelimit.h>
25 #include <asm/unaligned.h>
26
27 #include <scsi/scsi.h>
28 #include <scsi/scsi_cmnd.h>
29 #include <scsi/scsi_dbg.h>
30 #include <scsi/scsi_device.h>
31 #include <scsi/scsi_driver.h>
32 #include <scsi/scsi_eh.h>
33 #include <scsi/scsi_host.h>
34 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
35 #include <scsi/scsi_dh.h>
36
37 #include <trace/events/scsi.h>
38
39 #include "scsi_debugfs.h"
40 #include "scsi_priv.h"
41 #include "scsi_logging.h"
42
43 /*
44  * Size of integrity metadata is usually small, 1 inline sg should
45  * cover normal cases.
46  */
47 #ifdef CONFIG_ARCH_NO_SG_CHAIN
48 #define  SCSI_INLINE_PROT_SG_CNT  0
49 #define  SCSI_INLINE_SG_CNT  0
50 #else
51 #define  SCSI_INLINE_PROT_SG_CNT  1
52 #define  SCSI_INLINE_SG_CNT  2
53 #endif
54
55 static struct kmem_cache *scsi_sense_cache;
56 static struct kmem_cache *scsi_sense_isadma_cache;
57 static DEFINE_MUTEX(scsi_sense_cache_mutex);
58
59 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
60
61 static inline struct kmem_cache *
62 scsi_select_sense_cache(bool unchecked_isa_dma)
63 {
64         return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache;
65 }
66
67 static void scsi_free_sense_buffer(bool unchecked_isa_dma,
68                                    unsigned char *sense_buffer)
69 {
70         kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma),
71                         sense_buffer);
72 }
73
74 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma,
75         gfp_t gfp_mask, int numa_node)
76 {
77         return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma),
78                                      gfp_mask, numa_node);
79 }
80
81 int scsi_init_sense_cache(struct Scsi_Host *shost)
82 {
83         struct kmem_cache *cache;
84         int ret = 0;
85
86         mutex_lock(&scsi_sense_cache_mutex);
87         cache = scsi_select_sense_cache(shost->unchecked_isa_dma);
88         if (cache)
89                 goto exit;
90
91         if (shost->unchecked_isa_dma) {
92                 scsi_sense_isadma_cache =
93                         kmem_cache_create("scsi_sense_cache(DMA)",
94                                 SCSI_SENSE_BUFFERSIZE, 0,
95                                 SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
96                 if (!scsi_sense_isadma_cache)
97                         ret = -ENOMEM;
98         } else {
99                 scsi_sense_cache =
100                         kmem_cache_create_usercopy("scsi_sense_cache",
101                                 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
102                                 0, SCSI_SENSE_BUFFERSIZE, NULL);
103                 if (!scsi_sense_cache)
104                         ret = -ENOMEM;
105         }
106  exit:
107         mutex_unlock(&scsi_sense_cache_mutex);
108         return ret;
109 }
110
111 /*
112  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
113  * not change behaviour from the previous unplug mechanism, experimentation
114  * may prove this needs changing.
115  */
116 #define SCSI_QUEUE_DELAY        3
117
118 static void
119 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
120 {
121         struct Scsi_Host *host = cmd->device->host;
122         struct scsi_device *device = cmd->device;
123         struct scsi_target *starget = scsi_target(device);
124
125         /*
126          * Set the appropriate busy bit for the device/host.
127          *
128          * If the host/device isn't busy, assume that something actually
129          * completed, and that we should be able to queue a command now.
130          *
131          * Note that the prior mid-layer assumption that any host could
132          * always queue at least one command is now broken.  The mid-layer
133          * will implement a user specifiable stall (see
134          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
135          * if a command is requeued with no other commands outstanding
136          * either for the device or for the host.
137          */
138         switch (reason) {
139         case SCSI_MLQUEUE_HOST_BUSY:
140                 atomic_set(&host->host_blocked, host->max_host_blocked);
141                 break;
142         case SCSI_MLQUEUE_DEVICE_BUSY:
143         case SCSI_MLQUEUE_EH_RETRY:
144                 atomic_set(&device->device_blocked,
145                            device->max_device_blocked);
146                 break;
147         case SCSI_MLQUEUE_TARGET_BUSY:
148                 atomic_set(&starget->target_blocked,
149                            starget->max_target_blocked);
150                 break;
151         }
152 }
153
154 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
155 {
156         if (cmd->request->rq_flags & RQF_DONTPREP) {
157                 cmd->request->rq_flags &= ~RQF_DONTPREP;
158                 scsi_mq_uninit_cmd(cmd);
159         } else {
160                 WARN_ON_ONCE(true);
161         }
162         blk_mq_requeue_request(cmd->request, true);
163 }
164
165 /**
166  * __scsi_queue_insert - private queue insertion
167  * @cmd: The SCSI command being requeued
168  * @reason:  The reason for the requeue
169  * @unbusy: Whether the queue should be unbusied
170  *
171  * This is a private queue insertion.  The public interface
172  * scsi_queue_insert() always assumes the queue should be unbusied
173  * because it's always called before the completion.  This function is
174  * for a requeue after completion, which should only occur in this
175  * file.
176  */
177 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
178 {
179         struct scsi_device *device = cmd->device;
180
181         SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
182                 "Inserting command %p into mlqueue\n", cmd));
183
184         scsi_set_blocked(cmd, reason);
185
186         /*
187          * Decrement the counters, since these commands are no longer
188          * active on the host/device.
189          */
190         if (unbusy)
191                 scsi_device_unbusy(device, cmd);
192
193         /*
194          * Requeue this command.  It will go before all other commands
195          * that are already in the queue. Schedule requeue work under
196          * lock such that the kblockd_schedule_work() call happens
197          * before blk_cleanup_queue() finishes.
198          */
199         cmd->result = 0;
200
201         blk_mq_requeue_request(cmd->request, true);
202 }
203
204 /**
205  * scsi_queue_insert - Reinsert a command in the queue.
206  * @cmd:    command that we are adding to queue.
207  * @reason: why we are inserting command to queue.
208  *
209  * We do this for one of two cases. Either the host is busy and it cannot accept
210  * any more commands for the time being, or the device returned QUEUE_FULL and
211  * can accept no more commands.
212  *
213  * Context: This could be called either from an interrupt context or a normal
214  * process context.
215  */
216 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
217 {
218         __scsi_queue_insert(cmd, reason, true);
219 }
220
221
222 /**
223  * __scsi_execute - insert request and wait for the result
224  * @sdev:       scsi device
225  * @cmd:        scsi command
226  * @data_direction: data direction
227  * @buffer:     data buffer
228  * @bufflen:    len of buffer
229  * @sense:      optional sense buffer
230  * @sshdr:      optional decoded sense header
231  * @timeout:    request timeout in seconds
232  * @retries:    number of times to retry request
233  * @flags:      flags for ->cmd_flags
234  * @rq_flags:   flags for ->rq_flags
235  * @resid:      optional residual length
236  *
237  * Returns the scsi_cmnd result field if a command was executed, or a negative
238  * Linux error code if we didn't get that far.
239  */
240 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
241                  int data_direction, void *buffer, unsigned bufflen,
242                  unsigned char *sense, struct scsi_sense_hdr *sshdr,
243                  int timeout, int retries, u64 flags, req_flags_t rq_flags,
244                  int *resid)
245 {
246         struct request *req;
247         struct scsi_request *rq;
248         int ret = DRIVER_ERROR << 24;
249
250         req = blk_get_request(sdev->request_queue,
251                         data_direction == DMA_TO_DEVICE ?
252                         REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN,
253                         rq_flags & RQF_PM ? BLK_MQ_REQ_PM : 0);
254         if (IS_ERR(req))
255                 return ret;
256         rq = scsi_req(req);
257
258         if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
259                                         buffer, bufflen, GFP_NOIO))
260                 goto out;
261
262         rq->cmd_len = COMMAND_SIZE(cmd[0]);
263         memcpy(rq->cmd, cmd, rq->cmd_len);
264         rq->retries = retries;
265         req->timeout = timeout;
266         req->cmd_flags |= flags;
267         req->rq_flags |= rq_flags | RQF_QUIET;
268
269         /*
270          * head injection *required* here otherwise quiesce won't work
271          */
272         blk_execute_rq(req->q, NULL, req, 1);
273
274         /*
275          * Some devices (USB mass-storage in particular) may transfer
276          * garbage data together with a residue indicating that the data
277          * is invalid.  Prevent the garbage from being misinterpreted
278          * and prevent security leaks by zeroing out the excess data.
279          */
280         if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
281                 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
282
283         if (resid)
284                 *resid = rq->resid_len;
285         if (sense && rq->sense_len)
286                 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
287         if (sshdr)
288                 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
289         ret = rq->result;
290  out:
291         blk_put_request(req);
292
293         return ret;
294 }
295 EXPORT_SYMBOL(__scsi_execute);
296
297 /*
298  * Wake up the error handler if necessary. Avoid as follows that the error
299  * handler is not woken up if host in-flight requests number ==
300  * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
301  * with an RCU read lock in this function to ensure that this function in
302  * its entirety either finishes before scsi_eh_scmd_add() increases the
303  * host_failed counter or that it notices the shost state change made by
304  * scsi_eh_scmd_add().
305  */
306 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
307 {
308         unsigned long flags;
309
310         rcu_read_lock();
311         __clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
312         if (unlikely(scsi_host_in_recovery(shost))) {
313                 spin_lock_irqsave(shost->host_lock, flags);
314                 if (shost->host_failed || shost->host_eh_scheduled)
315                         scsi_eh_wakeup(shost);
316                 spin_unlock_irqrestore(shost->host_lock, flags);
317         }
318         rcu_read_unlock();
319 }
320
321 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
322 {
323         struct Scsi_Host *shost = sdev->host;
324         struct scsi_target *starget = scsi_target(sdev);
325
326         scsi_dec_host_busy(shost, cmd);
327
328         if (starget->can_queue > 0)
329                 atomic_dec(&starget->target_busy);
330
331         atomic_dec(&sdev->device_busy);
332 }
333
334 static void scsi_kick_queue(struct request_queue *q)
335 {
336         blk_mq_run_hw_queues(q, false);
337 }
338
339 /*
340  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
341  * and call blk_run_queue for all the scsi_devices on the target -
342  * including current_sdev first.
343  *
344  * Called with *no* scsi locks held.
345  */
346 static void scsi_single_lun_run(struct scsi_device *current_sdev)
347 {
348         struct Scsi_Host *shost = current_sdev->host;
349         struct scsi_device *sdev, *tmp;
350         struct scsi_target *starget = scsi_target(current_sdev);
351         unsigned long flags;
352
353         spin_lock_irqsave(shost->host_lock, flags);
354         starget->starget_sdev_user = NULL;
355         spin_unlock_irqrestore(shost->host_lock, flags);
356
357         /*
358          * Call blk_run_queue for all LUNs on the target, starting with
359          * current_sdev. We race with others (to set starget_sdev_user),
360          * but in most cases, we will be first. Ideally, each LU on the
361          * target would get some limited time or requests on the target.
362          */
363         scsi_kick_queue(current_sdev->request_queue);
364
365         spin_lock_irqsave(shost->host_lock, flags);
366         if (starget->starget_sdev_user)
367                 goto out;
368         list_for_each_entry_safe(sdev, tmp, &starget->devices,
369                         same_target_siblings) {
370                 if (sdev == current_sdev)
371                         continue;
372                 if (scsi_device_get(sdev))
373                         continue;
374
375                 spin_unlock_irqrestore(shost->host_lock, flags);
376                 scsi_kick_queue(sdev->request_queue);
377                 spin_lock_irqsave(shost->host_lock, flags);
378
379                 scsi_device_put(sdev);
380         }
381  out:
382         spin_unlock_irqrestore(shost->host_lock, flags);
383 }
384
385 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
386 {
387         if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
388                 return true;
389         if (atomic_read(&sdev->device_blocked) > 0)
390                 return true;
391         return false;
392 }
393
394 static inline bool scsi_target_is_busy(struct scsi_target *starget)
395 {
396         if (starget->can_queue > 0) {
397                 if (atomic_read(&starget->target_busy) >= starget->can_queue)
398                         return true;
399                 if (atomic_read(&starget->target_blocked) > 0)
400                         return true;
401         }
402         return false;
403 }
404
405 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
406 {
407         if (atomic_read(&shost->host_blocked) > 0)
408                 return true;
409         if (shost->host_self_blocked)
410                 return true;
411         return false;
412 }
413
414 static void scsi_starved_list_run(struct Scsi_Host *shost)
415 {
416         LIST_HEAD(starved_list);
417         struct scsi_device *sdev;
418         unsigned long flags;
419
420         spin_lock_irqsave(shost->host_lock, flags);
421         list_splice_init(&shost->starved_list, &starved_list);
422
423         while (!list_empty(&starved_list)) {
424                 struct request_queue *slq;
425
426                 /*
427                  * As long as shost is accepting commands and we have
428                  * starved queues, call blk_run_queue. scsi_request_fn
429                  * drops the queue_lock and can add us back to the
430                  * starved_list.
431                  *
432                  * host_lock protects the starved_list and starved_entry.
433                  * scsi_request_fn must get the host_lock before checking
434                  * or modifying starved_list or starved_entry.
435                  */
436                 if (scsi_host_is_busy(shost))
437                         break;
438
439                 sdev = list_entry(starved_list.next,
440                                   struct scsi_device, starved_entry);
441                 list_del_init(&sdev->starved_entry);
442                 if (scsi_target_is_busy(scsi_target(sdev))) {
443                         list_move_tail(&sdev->starved_entry,
444                                        &shost->starved_list);
445                         continue;
446                 }
447
448                 /*
449                  * Once we drop the host lock, a racing scsi_remove_device()
450                  * call may remove the sdev from the starved list and destroy
451                  * it and the queue.  Mitigate by taking a reference to the
452                  * queue and never touching the sdev again after we drop the
453                  * host lock.  Note: if __scsi_remove_device() invokes
454                  * blk_cleanup_queue() before the queue is run from this
455                  * function then blk_run_queue() will return immediately since
456                  * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
457                  */
458                 slq = sdev->request_queue;
459                 if (!blk_get_queue(slq))
460                         continue;
461                 spin_unlock_irqrestore(shost->host_lock, flags);
462
463                 scsi_kick_queue(slq);
464                 blk_put_queue(slq);
465
466                 spin_lock_irqsave(shost->host_lock, flags);
467         }
468         /* put any unprocessed entries back */
469         list_splice(&starved_list, &shost->starved_list);
470         spin_unlock_irqrestore(shost->host_lock, flags);
471 }
472
473 /**
474  * scsi_run_queue - Select a proper request queue to serve next.
475  * @q:  last request's queue
476  *
477  * The previous command was completely finished, start a new one if possible.
478  */
479 static void scsi_run_queue(struct request_queue *q)
480 {
481         struct scsi_device *sdev = q->queuedata;
482
483         if (scsi_target(sdev)->single_lun)
484                 scsi_single_lun_run(sdev);
485         if (!list_empty(&sdev->host->starved_list))
486                 scsi_starved_list_run(sdev->host);
487
488         blk_mq_run_hw_queues(q, false);
489 }
490
491 void scsi_requeue_run_queue(struct work_struct *work)
492 {
493         struct scsi_device *sdev;
494         struct request_queue *q;
495
496         sdev = container_of(work, struct scsi_device, requeue_work);
497         q = sdev->request_queue;
498         scsi_run_queue(q);
499 }
500
501 void scsi_run_host_queues(struct Scsi_Host *shost)
502 {
503         struct scsi_device *sdev;
504
505         shost_for_each_device(sdev, shost)
506                 scsi_run_queue(sdev->request_queue);
507 }
508
509 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
510 {
511         if (!blk_rq_is_passthrough(cmd->request)) {
512                 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
513
514                 if (drv->uninit_command)
515                         drv->uninit_command(cmd);
516         }
517 }
518
519 void scsi_free_sgtables(struct scsi_cmnd *cmd)
520 {
521         if (cmd->sdb.table.nents)
522                 sg_free_table_chained(&cmd->sdb.table,
523                                 SCSI_INLINE_SG_CNT);
524         if (scsi_prot_sg_count(cmd))
525                 sg_free_table_chained(&cmd->prot_sdb->table,
526                                 SCSI_INLINE_PROT_SG_CNT);
527 }
528 EXPORT_SYMBOL_GPL(scsi_free_sgtables);
529
530 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
531 {
532         scsi_free_sgtables(cmd);
533         scsi_uninit_cmd(cmd);
534 }
535
536 static void scsi_run_queue_async(struct scsi_device *sdev)
537 {
538         if (scsi_target(sdev)->single_lun ||
539             !list_empty(&sdev->host->starved_list)) {
540                 kblockd_schedule_work(&sdev->requeue_work);
541         } else {
542                 /*
543                  * smp_mb() present in sbitmap_queue_clear() or implied in
544                  * .end_io is for ordering writing .device_busy in
545                  * scsi_device_unbusy() and reading sdev->restarts.
546                  */
547                 int old = atomic_read(&sdev->restarts);
548
549                 /*
550                  * ->restarts has to be kept as non-zero if new budget
551                  *  contention occurs.
552                  *
553                  *  No need to run queue when either another re-run
554                  *  queue wins in updating ->restarts or a new budget
555                  *  contention occurs.
556                  */
557                 if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
558                         blk_mq_run_hw_queues(sdev->request_queue, true);
559         }
560 }
561
562 /* Returns false when no more bytes to process, true if there are more */
563 static bool scsi_end_request(struct request *req, blk_status_t error,
564                 unsigned int bytes)
565 {
566         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
567         struct scsi_device *sdev = cmd->device;
568         struct request_queue *q = sdev->request_queue;
569
570         if (blk_update_request(req, error, bytes))
571                 return true;
572
573         if (blk_queue_add_random(q))
574                 add_disk_randomness(req->rq_disk);
575
576         if (!blk_rq_is_scsi(req)) {
577                 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
578                 cmd->flags &= ~SCMD_INITIALIZED;
579         }
580
581         /*
582          * Calling rcu_barrier() is not necessary here because the
583          * SCSI error handler guarantees that the function called by
584          * call_rcu() has been called before scsi_end_request() is
585          * called.
586          */
587         destroy_rcu_head(&cmd->rcu);
588
589         /*
590          * In the MQ case the command gets freed by __blk_mq_end_request,
591          * so we have to do all cleanup that depends on it earlier.
592          *
593          * We also can't kick the queues from irq context, so we
594          * will have to defer it to a workqueue.
595          */
596         scsi_mq_uninit_cmd(cmd);
597
598         /*
599          * queue is still alive, so grab the ref for preventing it
600          * from being cleaned up during running queue.
601          */
602         percpu_ref_get(&q->q_usage_counter);
603
604         __blk_mq_end_request(req, error);
605
606         scsi_run_queue_async(sdev);
607
608         percpu_ref_put(&q->q_usage_counter);
609         return false;
610 }
611
612 /**
613  * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
614  * @cmd:        SCSI command
615  * @result:     scsi error code
616  *
617  * Translate a SCSI result code into a blk_status_t value. May reset the host
618  * byte of @cmd->result.
619  */
620 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result)
621 {
622         switch (host_byte(result)) {
623         case DID_OK:
624                 /*
625                  * Also check the other bytes than the status byte in result
626                  * to handle the case when a SCSI LLD sets result to
627                  * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION.
628                  */
629                 if (scsi_status_is_good(result) && (result & ~0xff) == 0)
630                         return BLK_STS_OK;
631                 return BLK_STS_IOERR;
632         case DID_TRANSPORT_FAILFAST:
633                 return BLK_STS_TRANSPORT;
634         case DID_TARGET_FAILURE:
635                 set_host_byte(cmd, DID_OK);
636                 return BLK_STS_TARGET;
637         case DID_NEXUS_FAILURE:
638                 set_host_byte(cmd, DID_OK);
639                 return BLK_STS_NEXUS;
640         case DID_ALLOC_FAILURE:
641                 set_host_byte(cmd, DID_OK);
642                 return BLK_STS_NOSPC;
643         case DID_MEDIUM_ERROR:
644                 set_host_byte(cmd, DID_OK);
645                 return BLK_STS_MEDIUM;
646         default:
647                 return BLK_STS_IOERR;
648         }
649 }
650
651 /* Helper for scsi_io_completion() when "reprep" action required. */
652 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd,
653                                       struct request_queue *q)
654 {
655         /* A new command will be prepared and issued. */
656         scsi_mq_requeue_cmd(cmd);
657 }
658
659 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
660 {
661         struct request *req = cmd->request;
662         unsigned long wait_for;
663
664         if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
665                 return false;
666
667         wait_for = (cmd->allowed + 1) * req->timeout;
668         if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
669                 scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
670                             wait_for/HZ);
671                 return true;
672         }
673         return false;
674 }
675
676 /* Helper for scsi_io_completion() when special action required. */
677 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
678 {
679         struct request_queue *q = cmd->device->request_queue;
680         struct request *req = cmd->request;
681         int level = 0;
682         enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
683               ACTION_DELAYED_RETRY} action;
684         struct scsi_sense_hdr sshdr;
685         bool sense_valid;
686         bool sense_current = true;      /* false implies "deferred sense" */
687         blk_status_t blk_stat;
688
689         sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
690         if (sense_valid)
691                 sense_current = !scsi_sense_is_deferred(&sshdr);
692
693         blk_stat = scsi_result_to_blk_status(cmd, result);
694
695         if (host_byte(result) == DID_RESET) {
696                 /* Third party bus reset or reset for error recovery
697                  * reasons.  Just retry the command and see what
698                  * happens.
699                  */
700                 action = ACTION_RETRY;
701         } else if (sense_valid && sense_current) {
702                 switch (sshdr.sense_key) {
703                 case UNIT_ATTENTION:
704                         if (cmd->device->removable) {
705                                 /* Detected disc change.  Set a bit
706                                  * and quietly refuse further access.
707                                  */
708                                 cmd->device->changed = 1;
709                                 action = ACTION_FAIL;
710                         } else {
711                                 /* Must have been a power glitch, or a
712                                  * bus reset.  Could not have been a
713                                  * media change, so we just retry the
714                                  * command and see what happens.
715                                  */
716                                 action = ACTION_RETRY;
717                         }
718                         break;
719                 case ILLEGAL_REQUEST:
720                         /* If we had an ILLEGAL REQUEST returned, then
721                          * we may have performed an unsupported
722                          * command.  The only thing this should be
723                          * would be a ten byte read where only a six
724                          * byte read was supported.  Also, on a system
725                          * where READ CAPACITY failed, we may have
726                          * read past the end of the disk.
727                          */
728                         if ((cmd->device->use_10_for_rw &&
729                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
730                             (cmd->cmnd[0] == READ_10 ||
731                              cmd->cmnd[0] == WRITE_10)) {
732                                 /* This will issue a new 6-byte command. */
733                                 cmd->device->use_10_for_rw = 0;
734                                 action = ACTION_REPREP;
735                         } else if (sshdr.asc == 0x10) /* DIX */ {
736                                 action = ACTION_FAIL;
737                                 blk_stat = BLK_STS_PROTECTION;
738                         /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
739                         } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
740                                 action = ACTION_FAIL;
741                                 blk_stat = BLK_STS_TARGET;
742                         } else
743                                 action = ACTION_FAIL;
744                         break;
745                 case ABORTED_COMMAND:
746                         action = ACTION_FAIL;
747                         if (sshdr.asc == 0x10) /* DIF */
748                                 blk_stat = BLK_STS_PROTECTION;
749                         break;
750                 case NOT_READY:
751                         /* If the device is in the process of becoming
752                          * ready, or has a temporary blockage, retry.
753                          */
754                         if (sshdr.asc == 0x04) {
755                                 switch (sshdr.ascq) {
756                                 case 0x01: /* becoming ready */
757                                 case 0x04: /* format in progress */
758                                 case 0x05: /* rebuild in progress */
759                                 case 0x06: /* recalculation in progress */
760                                 case 0x07: /* operation in progress */
761                                 case 0x08: /* Long write in progress */
762                                 case 0x09: /* self test in progress */
763                                 case 0x14: /* space allocation in progress */
764                                 case 0x1a: /* start stop unit in progress */
765                                 case 0x1b: /* sanitize in progress */
766                                 case 0x1d: /* configuration in progress */
767                                 case 0x24: /* depopulation in progress */
768                                         action = ACTION_DELAYED_RETRY;
769                                         break;
770                                 case 0x0a: /* ALUA state transition */
771                                         blk_stat = BLK_STS_AGAIN;
772                                         fallthrough;
773                                 default:
774                                         action = ACTION_FAIL;
775                                         break;
776                                 }
777                         } else
778                                 action = ACTION_FAIL;
779                         break;
780                 case VOLUME_OVERFLOW:
781                         /* See SSC3rXX or current. */
782                         action = ACTION_FAIL;
783                         break;
784                 case DATA_PROTECT:
785                         action = ACTION_FAIL;
786                         if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
787                             (sshdr.asc == 0x55 &&
788                              (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
789                                 /* Insufficient zone resources */
790                                 blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
791                         }
792                         break;
793                 default:
794                         action = ACTION_FAIL;
795                         break;
796                 }
797         } else
798                 action = ACTION_FAIL;
799
800         if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
801                 action = ACTION_FAIL;
802
803         switch (action) {
804         case ACTION_FAIL:
805                 /* Give up and fail the remainder of the request */
806                 if (!(req->rq_flags & RQF_QUIET)) {
807                         static DEFINE_RATELIMIT_STATE(_rs,
808                                         DEFAULT_RATELIMIT_INTERVAL,
809                                         DEFAULT_RATELIMIT_BURST);
810
811                         if (unlikely(scsi_logging_level))
812                                 level =
813                                      SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
814                                                     SCSI_LOG_MLCOMPLETE_BITS);
815
816                         /*
817                          * if logging is enabled the failure will be printed
818                          * in scsi_log_completion(), so avoid duplicate messages
819                          */
820                         if (!level && __ratelimit(&_rs)) {
821                                 scsi_print_result(cmd, NULL, FAILED);
822                                 if (driver_byte(result) == DRIVER_SENSE)
823                                         scsi_print_sense(cmd);
824                                 scsi_print_command(cmd);
825                         }
826                 }
827                 if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req)))
828                         return;
829                 fallthrough;
830         case ACTION_REPREP:
831                 scsi_io_completion_reprep(cmd, q);
832                 break;
833         case ACTION_RETRY:
834                 /* Retry the same command immediately */
835                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
836                 break;
837         case ACTION_DELAYED_RETRY:
838                 /* Retry the same command after a delay */
839                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
840                 break;
841         }
842 }
843
844 /*
845  * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
846  * new result that may suppress further error checking. Also modifies
847  * *blk_statp in some cases.
848  */
849 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
850                                         blk_status_t *blk_statp)
851 {
852         bool sense_valid;
853         bool sense_current = true;      /* false implies "deferred sense" */
854         struct request *req = cmd->request;
855         struct scsi_sense_hdr sshdr;
856
857         sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
858         if (sense_valid)
859                 sense_current = !scsi_sense_is_deferred(&sshdr);
860
861         if (blk_rq_is_passthrough(req)) {
862                 if (sense_valid) {
863                         /*
864                          * SG_IO wants current and deferred errors
865                          */
866                         scsi_req(req)->sense_len =
867                                 min(8 + cmd->sense_buffer[7],
868                                     SCSI_SENSE_BUFFERSIZE);
869                 }
870                 if (sense_current)
871                         *blk_statp = scsi_result_to_blk_status(cmd, result);
872         } else if (blk_rq_bytes(req) == 0 && sense_current) {
873                 /*
874                  * Flush commands do not transfers any data, and thus cannot use
875                  * good_bytes != blk_rq_bytes(req) as the signal for an error.
876                  * This sets *blk_statp explicitly for the problem case.
877                  */
878                 *blk_statp = scsi_result_to_blk_status(cmd, result);
879         }
880         /*
881          * Recovered errors need reporting, but they're always treated as
882          * success, so fiddle the result code here.  For passthrough requests
883          * we already took a copy of the original into sreq->result which
884          * is what gets returned to the user
885          */
886         if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
887                 bool do_print = true;
888                 /*
889                  * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
890                  * skip print since caller wants ATA registers. Only occurs
891                  * on SCSI ATA PASS_THROUGH commands when CK_COND=1
892                  */
893                 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
894                         do_print = false;
895                 else if (req->rq_flags & RQF_QUIET)
896                         do_print = false;
897                 if (do_print)
898                         scsi_print_sense(cmd);
899                 result = 0;
900                 /* for passthrough, *blk_statp may be set */
901                 *blk_statp = BLK_STS_OK;
902         }
903         /*
904          * Another corner case: the SCSI status byte is non-zero but 'good'.
905          * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
906          * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
907          * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
908          * intermediate statuses (both obsolete in SAM-4) as good.
909          */
910         if (status_byte(result) && scsi_status_is_good(result)) {
911                 result = 0;
912                 *blk_statp = BLK_STS_OK;
913         }
914         return result;
915 }
916
917 /**
918  * scsi_io_completion - Completion processing for SCSI commands.
919  * @cmd:        command that is finished.
920  * @good_bytes: number of processed bytes.
921  *
922  * We will finish off the specified number of sectors. If we are done, the
923  * command block will be released and the queue function will be goosed. If we
924  * are not done then we have to figure out what to do next:
925  *
926  *   a) We can call scsi_io_completion_reprep().  The request will be
927  *      unprepared and put back on the queue.  Then a new command will
928  *      be created for it.  This should be used if we made forward
929  *      progress, or if we want to switch from READ(10) to READ(6) for
930  *      example.
931  *
932  *   b) We can call scsi_io_completion_action().  The request will be
933  *      put back on the queue and retried using the same command as
934  *      before, possibly after a delay.
935  *
936  *   c) We can call scsi_end_request() with blk_stat other than
937  *      BLK_STS_OK, to fail the remainder of the request.
938  */
939 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
940 {
941         int result = cmd->result;
942         struct request_queue *q = cmd->device->request_queue;
943         struct request *req = cmd->request;
944         blk_status_t blk_stat = BLK_STS_OK;
945
946         if (unlikely(result))   /* a nz result may or may not be an error */
947                 result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
948
949         if (unlikely(blk_rq_is_passthrough(req))) {
950                 /*
951                  * scsi_result_to_blk_status may have reset the host_byte
952                  */
953                 scsi_req(req)->result = cmd->result;
954         }
955
956         /*
957          * Next deal with any sectors which we were able to correctly
958          * handle.
959          */
960         SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
961                 "%u sectors total, %d bytes done.\n",
962                 blk_rq_sectors(req), good_bytes));
963
964         /*
965          * Failed, zero length commands always need to drop down
966          * to retry code. Fast path should return in this block.
967          */
968         if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
969                 if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
970                         return; /* no bytes remaining */
971         }
972
973         /* Kill remainder if no retries. */
974         if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
975                 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
976                         WARN_ONCE(true,
977                             "Bytes remaining after failed, no-retry command");
978                 return;
979         }
980
981         /*
982          * If there had been no error, but we have leftover bytes in the
983          * requeues just queue the command up again.
984          */
985         if (likely(result == 0))
986                 scsi_io_completion_reprep(cmd, q);
987         else
988                 scsi_io_completion_action(cmd, result);
989 }
990
991 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
992                 struct request *rq)
993 {
994         return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
995                !op_is_write(req_op(rq)) &&
996                sdev->host->hostt->dma_need_drain(rq);
997 }
998
999 /**
1000  * scsi_alloc_sgtables - allocate S/G tables for a command
1001  * @cmd:  command descriptor we wish to initialize
1002  *
1003  * Returns:
1004  * * BLK_STS_OK       - on success
1005  * * BLK_STS_RESOURCE - if the failure is retryable
1006  * * BLK_STS_IOERR    - if the failure is fatal
1007  */
1008 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
1009 {
1010         struct scsi_device *sdev = cmd->device;
1011         struct request *rq = cmd->request;
1012         unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
1013         struct scatterlist *last_sg = NULL;
1014         blk_status_t ret;
1015         bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
1016         int count;
1017
1018         if (WARN_ON_ONCE(!nr_segs))
1019                 return BLK_STS_IOERR;
1020
1021         /*
1022          * Make sure there is space for the drain.  The driver must adjust
1023          * max_hw_segments to be prepared for this.
1024          */
1025         if (need_drain)
1026                 nr_segs++;
1027
1028         /*
1029          * If sg table allocation fails, requeue request later.
1030          */
1031         if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1032                         cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1033                 return BLK_STS_RESOURCE;
1034
1035         /*
1036          * Next, walk the list, and fill in the addresses and sizes of
1037          * each segment.
1038          */
1039         count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1040
1041         if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
1042                 unsigned int pad_len =
1043                         (rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1044
1045                 last_sg->length += pad_len;
1046                 cmd->extra_len += pad_len;
1047         }
1048
1049         if (need_drain) {
1050                 sg_unmark_end(last_sg);
1051                 last_sg = sg_next(last_sg);
1052                 sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1053                 sg_mark_end(last_sg);
1054
1055                 cmd->extra_len += sdev->dma_drain_len;
1056                 count++;
1057         }
1058
1059         BUG_ON(count > cmd->sdb.table.nents);
1060         cmd->sdb.table.nents = count;
1061         cmd->sdb.length = blk_rq_payload_bytes(rq);
1062
1063         if (blk_integrity_rq(rq)) {
1064                 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1065                 int ivecs;
1066
1067                 if (WARN_ON_ONCE(!prot_sdb)) {
1068                         /*
1069                          * This can happen if someone (e.g. multipath)
1070                          * queues a command to a device on an adapter
1071                          * that does not support DIX.
1072                          */
1073                         ret = BLK_STS_IOERR;
1074                         goto out_free_sgtables;
1075                 }
1076
1077                 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1078
1079                 if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1080                                 prot_sdb->table.sgl,
1081                                 SCSI_INLINE_PROT_SG_CNT)) {
1082                         ret = BLK_STS_RESOURCE;
1083                         goto out_free_sgtables;
1084                 }
1085
1086                 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1087                                                 prot_sdb->table.sgl);
1088                 BUG_ON(count > ivecs);
1089                 BUG_ON(count > queue_max_integrity_segments(rq->q));
1090
1091                 cmd->prot_sdb = prot_sdb;
1092                 cmd->prot_sdb->table.nents = count;
1093         }
1094
1095         return BLK_STS_OK;
1096 out_free_sgtables:
1097         scsi_free_sgtables(cmd);
1098         return ret;
1099 }
1100 EXPORT_SYMBOL(scsi_alloc_sgtables);
1101
1102 /**
1103  * scsi_initialize_rq - initialize struct scsi_cmnd partially
1104  * @rq: Request associated with the SCSI command to be initialized.
1105  *
1106  * This function initializes the members of struct scsi_cmnd that must be
1107  * initialized before request processing starts and that won't be
1108  * reinitialized if a SCSI command is requeued.
1109  *
1110  * Called from inside blk_get_request() for pass-through requests and from
1111  * inside scsi_init_command() for filesystem requests.
1112  */
1113 static void scsi_initialize_rq(struct request *rq)
1114 {
1115         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1116
1117         scsi_req_init(&cmd->req);
1118         init_rcu_head(&cmd->rcu);
1119         cmd->jiffies_at_alloc = jiffies;
1120         cmd->retries = 0;
1121 }
1122
1123 /*
1124  * Only called when the request isn't completed by SCSI, and not freed by
1125  * SCSI
1126  */
1127 static void scsi_cleanup_rq(struct request *rq)
1128 {
1129         if (rq->rq_flags & RQF_DONTPREP) {
1130                 scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1131                 rq->rq_flags &= ~RQF_DONTPREP;
1132         }
1133 }
1134
1135 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */
1136 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1137 {
1138         void *buf = cmd->sense_buffer;
1139         void *prot = cmd->prot_sdb;
1140         struct request *rq = blk_mq_rq_from_pdu(cmd);
1141         unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1142         unsigned long jiffies_at_alloc;
1143         int retries, to_clear;
1144         bool in_flight;
1145
1146         if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) {
1147                 flags |= SCMD_INITIALIZED;
1148                 scsi_initialize_rq(rq);
1149         }
1150
1151         jiffies_at_alloc = cmd->jiffies_at_alloc;
1152         retries = cmd->retries;
1153         in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1154         /*
1155          * Zero out the cmd, except for the embedded scsi_request. Only clear
1156          * the driver-private command data if the LLD does not supply a
1157          * function to initialize that data.
1158          */
1159         to_clear = sizeof(*cmd) - sizeof(cmd->req);
1160         if (!dev->host->hostt->init_cmd_priv)
1161                 to_clear += dev->host->hostt->cmd_size;
1162         memset((char *)cmd + sizeof(cmd->req), 0, to_clear);
1163
1164         cmd->device = dev;
1165         cmd->sense_buffer = buf;
1166         cmd->prot_sdb = prot;
1167         cmd->flags = flags;
1168         INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1169         cmd->jiffies_at_alloc = jiffies_at_alloc;
1170         cmd->retries = retries;
1171         if (in_flight)
1172                 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1173
1174 }
1175
1176 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1177                 struct request *req)
1178 {
1179         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1180
1181         /*
1182          * Passthrough requests may transfer data, in which case they must
1183          * a bio attached to them.  Or they might contain a SCSI command
1184          * that does not transfer data, in which case they may optionally
1185          * submit a request without an attached bio.
1186          */
1187         if (req->bio) {
1188                 blk_status_t ret = scsi_alloc_sgtables(cmd);
1189                 if (unlikely(ret != BLK_STS_OK))
1190                         return ret;
1191         } else {
1192                 BUG_ON(blk_rq_bytes(req));
1193
1194                 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1195         }
1196
1197         cmd->cmd_len = scsi_req(req)->cmd_len;
1198         if (cmd->cmd_len == 0)
1199                 cmd->cmd_len = scsi_command_size(cmd->cmnd);
1200         cmd->cmnd = scsi_req(req)->cmd;
1201         cmd->transfersize = blk_rq_bytes(req);
1202         cmd->allowed = scsi_req(req)->retries;
1203         return BLK_STS_OK;
1204 }
1205
1206 static blk_status_t
1207 scsi_device_state_check(struct scsi_device *sdev, struct request *req)
1208 {
1209         switch (sdev->sdev_state) {
1210         case SDEV_CREATED:
1211                 return BLK_STS_OK;
1212         case SDEV_OFFLINE:
1213         case SDEV_TRANSPORT_OFFLINE:
1214                 /*
1215                  * If the device is offline we refuse to process any
1216                  * commands.  The device must be brought online
1217                  * before trying any recovery commands.
1218                  */
1219                 if (!sdev->offline_already) {
1220                         sdev->offline_already = true;
1221                         sdev_printk(KERN_ERR, sdev,
1222                                     "rejecting I/O to offline device\n");
1223                 }
1224                 return BLK_STS_IOERR;
1225         case SDEV_DEL:
1226                 /*
1227                  * If the device is fully deleted, we refuse to
1228                  * process any commands as well.
1229                  */
1230                 sdev_printk(KERN_ERR, sdev,
1231                             "rejecting I/O to dead device\n");
1232                 return BLK_STS_IOERR;
1233         case SDEV_BLOCK:
1234         case SDEV_CREATED_BLOCK:
1235                 return BLK_STS_RESOURCE;
1236         case SDEV_QUIESCE:
1237                 /*
1238                  * If the device is blocked we only accept power management
1239                  * commands.
1240                  */
1241                 if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM)))
1242                         return BLK_STS_RESOURCE;
1243                 return BLK_STS_OK;
1244         default:
1245                 /*
1246                  * For any other not fully online state we only allow
1247                  * power management commands.
1248                  */
1249                 if (req && !(req->rq_flags & RQF_PM))
1250                         return BLK_STS_IOERR;
1251                 return BLK_STS_OK;
1252         }
1253 }
1254
1255 /*
1256  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1257  * return 0.
1258  *
1259  * Called with the queue_lock held.
1260  */
1261 static inline int scsi_dev_queue_ready(struct request_queue *q,
1262                                   struct scsi_device *sdev)
1263 {
1264         unsigned int busy;
1265
1266         busy = atomic_inc_return(&sdev->device_busy) - 1;
1267         if (atomic_read(&sdev->device_blocked)) {
1268                 if (busy)
1269                         goto out_dec;
1270
1271                 /*
1272                  * unblock after device_blocked iterates to zero
1273                  */
1274                 if (atomic_dec_return(&sdev->device_blocked) > 0)
1275                         goto out_dec;
1276                 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1277                                    "unblocking device at zero depth\n"));
1278         }
1279
1280         if (busy >= sdev->queue_depth)
1281                 goto out_dec;
1282
1283         return 1;
1284 out_dec:
1285         atomic_dec(&sdev->device_busy);
1286         return 0;
1287 }
1288
1289 /*
1290  * scsi_target_queue_ready: checks if there we can send commands to target
1291  * @sdev: scsi device on starget to check.
1292  */
1293 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1294                                            struct scsi_device *sdev)
1295 {
1296         struct scsi_target *starget = scsi_target(sdev);
1297         unsigned int busy;
1298
1299         if (starget->single_lun) {
1300                 spin_lock_irq(shost->host_lock);
1301                 if (starget->starget_sdev_user &&
1302                     starget->starget_sdev_user != sdev) {
1303                         spin_unlock_irq(shost->host_lock);
1304                         return 0;
1305                 }
1306                 starget->starget_sdev_user = sdev;
1307                 spin_unlock_irq(shost->host_lock);
1308         }
1309
1310         if (starget->can_queue <= 0)
1311                 return 1;
1312
1313         busy = atomic_inc_return(&starget->target_busy) - 1;
1314         if (atomic_read(&starget->target_blocked) > 0) {
1315                 if (busy)
1316                         goto starved;
1317
1318                 /*
1319                  * unblock after target_blocked iterates to zero
1320                  */
1321                 if (atomic_dec_return(&starget->target_blocked) > 0)
1322                         goto out_dec;
1323
1324                 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1325                                  "unblocking target at zero depth\n"));
1326         }
1327
1328         if (busy >= starget->can_queue)
1329                 goto starved;
1330
1331         return 1;
1332
1333 starved:
1334         spin_lock_irq(shost->host_lock);
1335         list_move_tail(&sdev->starved_entry, &shost->starved_list);
1336         spin_unlock_irq(shost->host_lock);
1337 out_dec:
1338         if (starget->can_queue > 0)
1339                 atomic_dec(&starget->target_busy);
1340         return 0;
1341 }
1342
1343 /*
1344  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1345  * return 0. We must end up running the queue again whenever 0 is
1346  * returned, else IO can hang.
1347  */
1348 static inline int scsi_host_queue_ready(struct request_queue *q,
1349                                    struct Scsi_Host *shost,
1350                                    struct scsi_device *sdev,
1351                                    struct scsi_cmnd *cmd)
1352 {
1353         if (scsi_host_in_recovery(shost))
1354                 return 0;
1355
1356         if (atomic_read(&shost->host_blocked) > 0) {
1357                 if (scsi_host_busy(shost) > 0)
1358                         goto starved;
1359
1360                 /*
1361                  * unblock after host_blocked iterates to zero
1362                  */
1363                 if (atomic_dec_return(&shost->host_blocked) > 0)
1364                         goto out_dec;
1365
1366                 SCSI_LOG_MLQUEUE(3,
1367                         shost_printk(KERN_INFO, shost,
1368                                      "unblocking host at zero depth\n"));
1369         }
1370
1371         if (shost->host_self_blocked)
1372                 goto starved;
1373
1374         /* We're OK to process the command, so we can't be starved */
1375         if (!list_empty(&sdev->starved_entry)) {
1376                 spin_lock_irq(shost->host_lock);
1377                 if (!list_empty(&sdev->starved_entry))
1378                         list_del_init(&sdev->starved_entry);
1379                 spin_unlock_irq(shost->host_lock);
1380         }
1381
1382         __set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1383
1384         return 1;
1385
1386 starved:
1387         spin_lock_irq(shost->host_lock);
1388         if (list_empty(&sdev->starved_entry))
1389                 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1390         spin_unlock_irq(shost->host_lock);
1391 out_dec:
1392         scsi_dec_host_busy(shost, cmd);
1393         return 0;
1394 }
1395
1396 /*
1397  * Busy state exporting function for request stacking drivers.
1398  *
1399  * For efficiency, no lock is taken to check the busy state of
1400  * shost/starget/sdev, since the returned value is not guaranteed and
1401  * may be changed after request stacking drivers call the function,
1402  * regardless of taking lock or not.
1403  *
1404  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1405  * needs to return 'not busy'. Otherwise, request stacking drivers
1406  * may hold requests forever.
1407  */
1408 static bool scsi_mq_lld_busy(struct request_queue *q)
1409 {
1410         struct scsi_device *sdev = q->queuedata;
1411         struct Scsi_Host *shost;
1412
1413         if (blk_queue_dying(q))
1414                 return false;
1415
1416         shost = sdev->host;
1417
1418         /*
1419          * Ignore host/starget busy state.
1420          * Since block layer does not have a concept of fairness across
1421          * multiple queues, congestion of host/starget needs to be handled
1422          * in SCSI layer.
1423          */
1424         if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1425                 return true;
1426
1427         return false;
1428 }
1429
1430 static void scsi_softirq_done(struct request *rq)
1431 {
1432         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1433         int disposition;
1434
1435         INIT_LIST_HEAD(&cmd->eh_entry);
1436
1437         atomic_inc(&cmd->device->iodone_cnt);
1438         if (cmd->result)
1439                 atomic_inc(&cmd->device->ioerr_cnt);
1440
1441         disposition = scsi_decide_disposition(cmd);
1442         if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
1443                 disposition = SUCCESS;
1444
1445         scsi_log_completion(cmd, disposition);
1446
1447         switch (disposition) {
1448         case SUCCESS:
1449                 scsi_finish_command(cmd);
1450                 break;
1451         case NEEDS_RETRY:
1452                 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1453                 break;
1454         case ADD_TO_MLQUEUE:
1455                 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1456                 break;
1457         default:
1458                 scsi_eh_scmd_add(cmd);
1459                 break;
1460         }
1461 }
1462
1463 /**
1464  * scsi_dispatch_cmd - Dispatch a command to the low-level driver.
1465  * @cmd: command block we are dispatching.
1466  *
1467  * Return: nonzero return request was rejected and device's queue needs to be
1468  * plugged.
1469  */
1470 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1471 {
1472         struct Scsi_Host *host = cmd->device->host;
1473         int rtn = 0;
1474
1475         atomic_inc(&cmd->device->iorequest_cnt);
1476
1477         /* check if the device is still usable */
1478         if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1479                 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1480                  * returns an immediate error upwards, and signals
1481                  * that the device is no longer present */
1482                 cmd->result = DID_NO_CONNECT << 16;
1483                 goto done;
1484         }
1485
1486         /* Check to see if the scsi lld made this device blocked. */
1487         if (unlikely(scsi_device_blocked(cmd->device))) {
1488                 /*
1489                  * in blocked state, the command is just put back on
1490                  * the device queue.  The suspend state has already
1491                  * blocked the queue so future requests should not
1492                  * occur until the device transitions out of the
1493                  * suspend state.
1494                  */
1495                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1496                         "queuecommand : device blocked\n"));
1497                 return SCSI_MLQUEUE_DEVICE_BUSY;
1498         }
1499
1500         /* Store the LUN value in cmnd, if needed. */
1501         if (cmd->device->lun_in_cdb)
1502                 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1503                                (cmd->device->lun << 5 & 0xe0);
1504
1505         scsi_log_send(cmd);
1506
1507         /*
1508          * Before we queue this command, check if the command
1509          * length exceeds what the host adapter can handle.
1510          */
1511         if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1512                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1513                                "queuecommand : command too long. "
1514                                "cdb_size=%d host->max_cmd_len=%d\n",
1515                                cmd->cmd_len, cmd->device->host->max_cmd_len));
1516                 cmd->result = (DID_ABORT << 16);
1517                 goto done;
1518         }
1519
1520         if (unlikely(host->shost_state == SHOST_DEL)) {
1521                 cmd->result = (DID_NO_CONNECT << 16);
1522                 goto done;
1523
1524         }
1525
1526         trace_scsi_dispatch_cmd_start(cmd);
1527         rtn = host->hostt->queuecommand(host, cmd);
1528         if (rtn) {
1529                 trace_scsi_dispatch_cmd_error(cmd, rtn);
1530                 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1531                     rtn != SCSI_MLQUEUE_TARGET_BUSY)
1532                         rtn = SCSI_MLQUEUE_HOST_BUSY;
1533
1534                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1535                         "queuecommand : request rejected\n"));
1536         }
1537
1538         return rtn;
1539  done:
1540         cmd->scsi_done(cmd);
1541         return 0;
1542 }
1543
1544 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1545 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1546 {
1547         return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1548                 sizeof(struct scatterlist);
1549 }
1550
1551 static blk_status_t scsi_prepare_cmd(struct request *req)
1552 {
1553         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1554         struct scsi_device *sdev = req->q->queuedata;
1555         struct Scsi_Host *shost = sdev->host;
1556         struct scatterlist *sg;
1557
1558         scsi_init_command(sdev, cmd);
1559
1560         cmd->request = req;
1561         cmd->tag = req->tag;
1562         cmd->prot_op = SCSI_PROT_NORMAL;
1563         if (blk_rq_bytes(req))
1564                 cmd->sc_data_direction = rq_dma_dir(req);
1565         else
1566                 cmd->sc_data_direction = DMA_NONE;
1567
1568         sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1569         cmd->sdb.table.sgl = sg;
1570
1571         if (scsi_host_get_prot(shost)) {
1572                 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1573
1574                 cmd->prot_sdb->table.sgl =
1575                         (struct scatterlist *)(cmd->prot_sdb + 1);
1576         }
1577
1578         /*
1579          * Special handling for passthrough commands, which don't go to the ULP
1580          * at all:
1581          */
1582         if (blk_rq_is_scsi(req))
1583                 return scsi_setup_scsi_cmnd(sdev, req);
1584
1585         if (sdev->handler && sdev->handler->prep_fn) {
1586                 blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1587
1588                 if (ret != BLK_STS_OK)
1589                         return ret;
1590         }
1591
1592         cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1593         memset(cmd->cmnd, 0, BLK_MAX_CDB);
1594         return scsi_cmd_to_driver(cmd)->init_command(cmd);
1595 }
1596
1597 static void scsi_mq_done(struct scsi_cmnd *cmd)
1598 {
1599         if (unlikely(blk_should_fake_timeout(cmd->request->q)))
1600                 return;
1601         if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1602                 return;
1603         trace_scsi_dispatch_cmd_done(cmd);
1604         blk_mq_complete_request(cmd->request);
1605 }
1606
1607 static void scsi_mq_put_budget(struct request_queue *q)
1608 {
1609         struct scsi_device *sdev = q->queuedata;
1610
1611         atomic_dec(&sdev->device_busy);
1612 }
1613
1614 static bool scsi_mq_get_budget(struct request_queue *q)
1615 {
1616         struct scsi_device *sdev = q->queuedata;
1617
1618         if (scsi_dev_queue_ready(q, sdev))
1619                 return true;
1620
1621         atomic_inc(&sdev->restarts);
1622
1623         /*
1624          * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1625          * .restarts must be incremented before .device_busy is read because the
1626          * code in scsi_run_queue_async() depends on the order of these operations.
1627          */
1628         smp_mb__after_atomic();
1629
1630         /*
1631          * If all in-flight requests originated from this LUN are completed
1632          * before reading .device_busy, sdev->device_busy will be observed as
1633          * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1634          * soon. Otherwise, completion of one of these requests will observe
1635          * the .restarts flag, and the request queue will be run for handling
1636          * this request, see scsi_end_request().
1637          */
1638         if (unlikely(atomic_read(&sdev->device_busy) == 0 &&
1639                                 !scsi_device_blocked(sdev)))
1640                 blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1641         return false;
1642 }
1643
1644 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1645                          const struct blk_mq_queue_data *bd)
1646 {
1647         struct request *req = bd->rq;
1648         struct request_queue *q = req->q;
1649         struct scsi_device *sdev = q->queuedata;
1650         struct Scsi_Host *shost = sdev->host;
1651         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1652         blk_status_t ret;
1653         int reason;
1654
1655         /*
1656          * If the device is not in running state we will reject some or all
1657          * commands.
1658          */
1659         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1660                 ret = scsi_device_state_check(sdev, req);
1661                 if (ret != BLK_STS_OK)
1662                         goto out_put_budget;
1663         }
1664
1665         ret = BLK_STS_RESOURCE;
1666         if (!scsi_target_queue_ready(shost, sdev))
1667                 goto out_put_budget;
1668         if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1669                 goto out_dec_target_busy;
1670
1671         if (!(req->rq_flags & RQF_DONTPREP)) {
1672                 ret = scsi_prepare_cmd(req);
1673                 if (ret != BLK_STS_OK)
1674                         goto out_dec_host_busy;
1675                 req->rq_flags |= RQF_DONTPREP;
1676         } else {
1677                 clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1678         }
1679
1680         cmd->flags &= SCMD_PRESERVED_FLAGS;
1681         if (sdev->simple_tags)
1682                 cmd->flags |= SCMD_TAGGED;
1683         if (bd->last)
1684                 cmd->flags |= SCMD_LAST;
1685
1686         scsi_set_resid(cmd, 0);
1687         memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1688         cmd->scsi_done = scsi_mq_done;
1689
1690         blk_mq_start_request(req);
1691         reason = scsi_dispatch_cmd(cmd);
1692         if (reason) {
1693                 scsi_set_blocked(cmd, reason);
1694                 ret = BLK_STS_RESOURCE;
1695                 goto out_dec_host_busy;
1696         }
1697
1698         return BLK_STS_OK;
1699
1700 out_dec_host_busy:
1701         scsi_dec_host_busy(shost, cmd);
1702 out_dec_target_busy:
1703         if (scsi_target(sdev)->can_queue > 0)
1704                 atomic_dec(&scsi_target(sdev)->target_busy);
1705 out_put_budget:
1706         scsi_mq_put_budget(q);
1707         switch (ret) {
1708         case BLK_STS_OK:
1709                 break;
1710         case BLK_STS_RESOURCE:
1711         case BLK_STS_ZONE_RESOURCE:
1712                 if (scsi_device_blocked(sdev))
1713                         ret = BLK_STS_DEV_RESOURCE;
1714                 break;
1715         case BLK_STS_AGAIN:
1716                 scsi_req(req)->result = DID_BUS_BUSY << 16;
1717                 if (req->rq_flags & RQF_DONTPREP)
1718                         scsi_mq_uninit_cmd(cmd);
1719                 break;
1720         default:
1721                 if (unlikely(!scsi_device_online(sdev)))
1722                         scsi_req(req)->result = DID_NO_CONNECT << 16;
1723                 else
1724                         scsi_req(req)->result = DID_ERROR << 16;
1725                 /*
1726                  * Make sure to release all allocated resources when
1727                  * we hit an error, as we will never see this command
1728                  * again.
1729                  */
1730                 if (req->rq_flags & RQF_DONTPREP)
1731                         scsi_mq_uninit_cmd(cmd);
1732                 scsi_run_queue_async(sdev);
1733                 break;
1734         }
1735         return ret;
1736 }
1737
1738 static enum blk_eh_timer_return scsi_timeout(struct request *req,
1739                 bool reserved)
1740 {
1741         if (reserved)
1742                 return BLK_EH_RESET_TIMER;
1743         return scsi_times_out(req);
1744 }
1745
1746 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1747                                 unsigned int hctx_idx, unsigned int numa_node)
1748 {
1749         struct Scsi_Host *shost = set->driver_data;
1750         const bool unchecked_isa_dma = shost->unchecked_isa_dma;
1751         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1752         struct scatterlist *sg;
1753         int ret = 0;
1754
1755         if (unchecked_isa_dma)
1756                 cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
1757         cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma,
1758                                                     GFP_KERNEL, numa_node);
1759         if (!cmd->sense_buffer)
1760                 return -ENOMEM;
1761         cmd->req.sense = cmd->sense_buffer;
1762
1763         if (scsi_host_get_prot(shost)) {
1764                 sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1765                         shost->hostt->cmd_size;
1766                 cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1767         }
1768
1769         if (shost->hostt->init_cmd_priv) {
1770                 ret = shost->hostt->init_cmd_priv(shost, cmd);
1771                 if (ret < 0)
1772                         scsi_free_sense_buffer(unchecked_isa_dma,
1773                                                cmd->sense_buffer);
1774         }
1775
1776         return ret;
1777 }
1778
1779 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1780                                  unsigned int hctx_idx)
1781 {
1782         struct Scsi_Host *shost = set->driver_data;
1783         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1784
1785         if (shost->hostt->exit_cmd_priv)
1786                 shost->hostt->exit_cmd_priv(shost, cmd);
1787         scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
1788                                cmd->sense_buffer);
1789 }
1790
1791 static int scsi_map_queues(struct blk_mq_tag_set *set)
1792 {
1793         struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1794
1795         if (shost->hostt->map_queues)
1796                 return shost->hostt->map_queues(shost);
1797         return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1798 }
1799
1800 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1801 {
1802         struct device *dev = shost->dma_dev;
1803
1804         /*
1805          * this limit is imposed by hardware restrictions
1806          */
1807         blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1808                                         SG_MAX_SEGMENTS));
1809
1810         if (scsi_host_prot_dma(shost)) {
1811                 shost->sg_prot_tablesize =
1812                         min_not_zero(shost->sg_prot_tablesize,
1813                                      (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1814                 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1815                 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1816         }
1817
1818         if (dev->dma_mask) {
1819                 shost->max_sectors = min_t(unsigned int, shost->max_sectors,
1820                                 dma_max_mapping_size(dev) >> SECTOR_SHIFT);
1821         }
1822         blk_queue_max_hw_sectors(q, shost->max_sectors);
1823         if (shost->unchecked_isa_dma)
1824                 blk_queue_bounce_limit(q, BLK_BOUNCE_ISA);
1825         blk_queue_segment_boundary(q, shost->dma_boundary);
1826         dma_set_seg_boundary(dev, shost->dma_boundary);
1827
1828         blk_queue_max_segment_size(q, shost->max_segment_size);
1829         blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1830         dma_set_max_seg_size(dev, queue_max_segment_size(q));
1831
1832         /*
1833          * Set a reasonable default alignment:  The larger of 32-byte (dword),
1834          * which is a common minimum for HBAs, and the minimum DMA alignment,
1835          * which is set by the platform.
1836          *
1837          * Devices that require a bigger alignment can increase it later.
1838          */
1839         blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1840 }
1841 EXPORT_SYMBOL_GPL(__scsi_init_queue);
1842
1843 static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1844         .get_budget     = scsi_mq_get_budget,
1845         .put_budget     = scsi_mq_put_budget,
1846         .queue_rq       = scsi_queue_rq,
1847         .complete       = scsi_softirq_done,
1848         .timeout        = scsi_timeout,
1849 #ifdef CONFIG_BLK_DEBUG_FS
1850         .show_rq        = scsi_show_rq,
1851 #endif
1852         .init_request   = scsi_mq_init_request,
1853         .exit_request   = scsi_mq_exit_request,
1854         .initialize_rq_fn = scsi_initialize_rq,
1855         .cleanup_rq     = scsi_cleanup_rq,
1856         .busy           = scsi_mq_lld_busy,
1857         .map_queues     = scsi_map_queues,
1858 };
1859
1860
1861 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
1862 {
1863         struct request_queue *q = hctx->queue;
1864         struct scsi_device *sdev = q->queuedata;
1865         struct Scsi_Host *shost = sdev->host;
1866
1867         shost->hostt->commit_rqs(shost, hctx->queue_num);
1868 }
1869
1870 static const struct blk_mq_ops scsi_mq_ops = {
1871         .get_budget     = scsi_mq_get_budget,
1872         .put_budget     = scsi_mq_put_budget,
1873         .queue_rq       = scsi_queue_rq,
1874         .commit_rqs     = scsi_commit_rqs,
1875         .complete       = scsi_softirq_done,
1876         .timeout        = scsi_timeout,
1877 #ifdef CONFIG_BLK_DEBUG_FS
1878         .show_rq        = scsi_show_rq,
1879 #endif
1880         .init_request   = scsi_mq_init_request,
1881         .exit_request   = scsi_mq_exit_request,
1882         .initialize_rq_fn = scsi_initialize_rq,
1883         .cleanup_rq     = scsi_cleanup_rq,
1884         .busy           = scsi_mq_lld_busy,
1885         .map_queues     = scsi_map_queues,
1886 };
1887
1888 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
1889 {
1890         sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
1891         if (IS_ERR(sdev->request_queue))
1892                 return NULL;
1893
1894         sdev->request_queue->queuedata = sdev;
1895         __scsi_init_queue(sdev->host, sdev->request_queue);
1896         blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue);
1897         return sdev->request_queue;
1898 }
1899
1900 int scsi_mq_setup_tags(struct Scsi_Host *shost)
1901 {
1902         unsigned int cmd_size, sgl_size;
1903         struct blk_mq_tag_set *tag_set = &shost->tag_set;
1904
1905         sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
1906                                 scsi_mq_inline_sgl_size(shost));
1907         cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1908         if (scsi_host_get_prot(shost))
1909                 cmd_size += sizeof(struct scsi_data_buffer) +
1910                         sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1911
1912         memset(tag_set, 0, sizeof(*tag_set));
1913         if (shost->hostt->commit_rqs)
1914                 tag_set->ops = &scsi_mq_ops;
1915         else
1916                 tag_set->ops = &scsi_mq_ops_no_commit;
1917         tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
1918         tag_set->queue_depth = shost->can_queue;
1919         tag_set->cmd_size = cmd_size;
1920         tag_set->numa_node = NUMA_NO_NODE;
1921         tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
1922         tag_set->flags |=
1923                 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1924         tag_set->driver_data = shost;
1925         if (shost->host_tagset)
1926                 tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1927
1928         return blk_mq_alloc_tag_set(tag_set);
1929 }
1930
1931 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
1932 {
1933         blk_mq_free_tag_set(&shost->tag_set);
1934 }
1935
1936 /**
1937  * scsi_device_from_queue - return sdev associated with a request_queue
1938  * @q: The request queue to return the sdev from
1939  *
1940  * Return the sdev associated with a request queue or NULL if the
1941  * request_queue does not reference a SCSI device.
1942  */
1943 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
1944 {
1945         struct scsi_device *sdev = NULL;
1946
1947         if (q->mq_ops == &scsi_mq_ops_no_commit ||
1948             q->mq_ops == &scsi_mq_ops)
1949                 sdev = q->queuedata;
1950         if (!sdev || !get_device(&sdev->sdev_gendev))
1951                 sdev = NULL;
1952
1953         return sdev;
1954 }
1955
1956 /**
1957  * scsi_block_requests - Utility function used by low-level drivers to prevent
1958  * further commands from being queued to the device.
1959  * @shost:  host in question
1960  *
1961  * There is no timer nor any other means by which the requests get unblocked
1962  * other than the low-level driver calling scsi_unblock_requests().
1963  */
1964 void scsi_block_requests(struct Scsi_Host *shost)
1965 {
1966         shost->host_self_blocked = 1;
1967 }
1968 EXPORT_SYMBOL(scsi_block_requests);
1969
1970 /**
1971  * scsi_unblock_requests - Utility function used by low-level drivers to allow
1972  * further commands to be queued to the device.
1973  * @shost:  host in question
1974  *
1975  * There is no timer nor any other means by which the requests get unblocked
1976  * other than the low-level driver calling scsi_unblock_requests(). This is done
1977  * as an API function so that changes to the internals of the scsi mid-layer
1978  * won't require wholesale changes to drivers that use this feature.
1979  */
1980 void scsi_unblock_requests(struct Scsi_Host *shost)
1981 {
1982         shost->host_self_blocked = 0;
1983         scsi_run_host_queues(shost);
1984 }
1985 EXPORT_SYMBOL(scsi_unblock_requests);
1986
1987 void scsi_exit_queue(void)
1988 {
1989         kmem_cache_destroy(scsi_sense_cache);
1990         kmem_cache_destroy(scsi_sense_isadma_cache);
1991 }
1992
1993 /**
1994  *      scsi_mode_select - issue a mode select
1995  *      @sdev:  SCSI device to be queried
1996  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
1997  *      @sp:    Save page bit (0 == don't save, 1 == save)
1998  *      @modepage: mode page being requested
1999  *      @buffer: request buffer (may not be smaller than eight bytes)
2000  *      @len:   length of request buffer.
2001  *      @timeout: command timeout
2002  *      @retries: number of retries before failing
2003  *      @data: returns a structure abstracting the mode header data
2004  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2005  *              must be SCSI_SENSE_BUFFERSIZE big.
2006  *
2007  *      Returns zero if successful; negative error number or scsi
2008  *      status on error
2009  *
2010  */
2011 int
2012 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2013                  unsigned char *buffer, int len, int timeout, int retries,
2014                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2015 {
2016         unsigned char cmd[10];
2017         unsigned char *real_buffer;
2018         int ret;
2019
2020         memset(cmd, 0, sizeof(cmd));
2021         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2022
2023         if (sdev->use_10_for_ms) {
2024                 if (len > 65535)
2025                         return -EINVAL;
2026                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2027                 if (!real_buffer)
2028                         return -ENOMEM;
2029                 memcpy(real_buffer + 8, buffer, len);
2030                 len += 8;
2031                 real_buffer[0] = 0;
2032                 real_buffer[1] = 0;
2033                 real_buffer[2] = data->medium_type;
2034                 real_buffer[3] = data->device_specific;
2035                 real_buffer[4] = data->longlba ? 0x01 : 0;
2036                 real_buffer[5] = 0;
2037                 real_buffer[6] = data->block_descriptor_length >> 8;
2038                 real_buffer[7] = data->block_descriptor_length;
2039
2040                 cmd[0] = MODE_SELECT_10;
2041                 cmd[7] = len >> 8;
2042                 cmd[8] = len;
2043         } else {
2044                 if (len > 255 || data->block_descriptor_length > 255 ||
2045                     data->longlba)
2046                         return -EINVAL;
2047
2048                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2049                 if (!real_buffer)
2050                         return -ENOMEM;
2051                 memcpy(real_buffer + 4, buffer, len);
2052                 len += 4;
2053                 real_buffer[0] = 0;
2054                 real_buffer[1] = data->medium_type;
2055                 real_buffer[2] = data->device_specific;
2056                 real_buffer[3] = data->block_descriptor_length;
2057
2058                 cmd[0] = MODE_SELECT;
2059                 cmd[4] = len;
2060         }
2061
2062         ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2063                                sshdr, timeout, retries, NULL);
2064         kfree(real_buffer);
2065         return ret;
2066 }
2067 EXPORT_SYMBOL_GPL(scsi_mode_select);
2068
2069 /**
2070  *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2071  *      @sdev:  SCSI device to be queried
2072  *      @dbd:   set if mode sense will allow block descriptors to be returned
2073  *      @modepage: mode page being requested
2074  *      @buffer: request buffer (may not be smaller than eight bytes)
2075  *      @len:   length of request buffer.
2076  *      @timeout: command timeout
2077  *      @retries: number of retries before failing
2078  *      @data: returns a structure abstracting the mode header data
2079  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2080  *              must be SCSI_SENSE_BUFFERSIZE big.
2081  *
2082  *      Returns zero if unsuccessful, or the header offset (either 4
2083  *      or 8 depending on whether a six or ten byte command was
2084  *      issued) if successful.
2085  */
2086 int
2087 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2088                   unsigned char *buffer, int len, int timeout, int retries,
2089                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2090 {
2091         unsigned char cmd[12];
2092         int use_10_for_ms;
2093         int header_length;
2094         int result, retry_count = retries;
2095         struct scsi_sense_hdr my_sshdr;
2096
2097         memset(data, 0, sizeof(*data));
2098         memset(&cmd[0], 0, 12);
2099
2100         dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2101         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
2102         cmd[2] = modepage;
2103
2104         /* caller might not be interested in sense, but we need it */
2105         if (!sshdr)
2106                 sshdr = &my_sshdr;
2107
2108  retry:
2109         use_10_for_ms = sdev->use_10_for_ms;
2110
2111         if (use_10_for_ms) {
2112                 if (len < 8)
2113                         len = 8;
2114
2115                 cmd[0] = MODE_SENSE_10;
2116                 cmd[8] = len;
2117                 header_length = 8;
2118         } else {
2119                 if (len < 4)
2120                         len = 4;
2121
2122                 cmd[0] = MODE_SENSE;
2123                 cmd[4] = len;
2124                 header_length = 4;
2125         }
2126
2127         memset(buffer, 0, len);
2128
2129         result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2130                                   sshdr, timeout, retries, NULL);
2131
2132         /* This code looks awful: what it's doing is making sure an
2133          * ILLEGAL REQUEST sense return identifies the actual command
2134          * byte as the problem.  MODE_SENSE commands can return
2135          * ILLEGAL REQUEST if the code page isn't supported */
2136
2137         if (use_10_for_ms && !scsi_status_is_good(result) &&
2138             driver_byte(result) == DRIVER_SENSE) {
2139                 if (scsi_sense_valid(sshdr)) {
2140                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2141                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2142                                 /*
2143                                  * Invalid command operation code
2144                                  */
2145                                 sdev->use_10_for_ms = 0;
2146                                 goto retry;
2147                         }
2148                 }
2149         }
2150
2151         if (scsi_status_is_good(result)) {
2152                 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2153                              (modepage == 6 || modepage == 8))) {
2154                         /* Initio breakage? */
2155                         header_length = 0;
2156                         data->length = 13;
2157                         data->medium_type = 0;
2158                         data->device_specific = 0;
2159                         data->longlba = 0;
2160                         data->block_descriptor_length = 0;
2161                 } else if (use_10_for_ms) {
2162                         data->length = buffer[0]*256 + buffer[1] + 2;
2163                         data->medium_type = buffer[2];
2164                         data->device_specific = buffer[3];
2165                         data->longlba = buffer[4] & 0x01;
2166                         data->block_descriptor_length = buffer[6]*256
2167                                 + buffer[7];
2168                 } else {
2169                         data->length = buffer[0] + 1;
2170                         data->medium_type = buffer[1];
2171                         data->device_specific = buffer[2];
2172                         data->block_descriptor_length = buffer[3];
2173                 }
2174                 data->header_length = header_length;
2175         } else if ((status_byte(result) == CHECK_CONDITION) &&
2176                    scsi_sense_valid(sshdr) &&
2177                    sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2178                 retry_count--;
2179                 goto retry;
2180         }
2181
2182         return result;
2183 }
2184 EXPORT_SYMBOL(scsi_mode_sense);
2185
2186 /**
2187  *      scsi_test_unit_ready - test if unit is ready
2188  *      @sdev:  scsi device to change the state of.
2189  *      @timeout: command timeout
2190  *      @retries: number of retries before failing
2191  *      @sshdr: outpout pointer for decoded sense information.
2192  *
2193  *      Returns zero if unsuccessful or an error if TUR failed.  For
2194  *      removable media, UNIT_ATTENTION sets ->changed flag.
2195  **/
2196 int
2197 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2198                      struct scsi_sense_hdr *sshdr)
2199 {
2200         char cmd[] = {
2201                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2202         };
2203         int result;
2204
2205         /* try to eat the UNIT_ATTENTION if there are enough retries */
2206         do {
2207                 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2208                                           timeout, 1, NULL);
2209                 if (sdev->removable && scsi_sense_valid(sshdr) &&
2210                     sshdr->sense_key == UNIT_ATTENTION)
2211                         sdev->changed = 1;
2212         } while (scsi_sense_valid(sshdr) &&
2213                  sshdr->sense_key == UNIT_ATTENTION && --retries);
2214
2215         return result;
2216 }
2217 EXPORT_SYMBOL(scsi_test_unit_ready);
2218
2219 /**
2220  *      scsi_device_set_state - Take the given device through the device state model.
2221  *      @sdev:  scsi device to change the state of.
2222  *      @state: state to change to.
2223  *
2224  *      Returns zero if successful or an error if the requested
2225  *      transition is illegal.
2226  */
2227 int
2228 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2229 {
2230         enum scsi_device_state oldstate = sdev->sdev_state;
2231
2232         if (state == oldstate)
2233                 return 0;
2234
2235         switch (state) {
2236         case SDEV_CREATED:
2237                 switch (oldstate) {
2238                 case SDEV_CREATED_BLOCK:
2239                         break;
2240                 default:
2241                         goto illegal;
2242                 }
2243                 break;
2244
2245         case SDEV_RUNNING:
2246                 switch (oldstate) {
2247                 case SDEV_CREATED:
2248                 case SDEV_OFFLINE:
2249                 case SDEV_TRANSPORT_OFFLINE:
2250                 case SDEV_QUIESCE:
2251                 case SDEV_BLOCK:
2252                         break;
2253                 default:
2254                         goto illegal;
2255                 }
2256                 break;
2257
2258         case SDEV_QUIESCE:
2259                 switch (oldstate) {
2260                 case SDEV_RUNNING:
2261                 case SDEV_OFFLINE:
2262                 case SDEV_TRANSPORT_OFFLINE:
2263                         break;
2264                 default:
2265                         goto illegal;
2266                 }
2267                 break;
2268
2269         case SDEV_OFFLINE:
2270         case SDEV_TRANSPORT_OFFLINE:
2271                 switch (oldstate) {
2272                 case SDEV_CREATED:
2273                 case SDEV_RUNNING:
2274                 case SDEV_QUIESCE:
2275                 case SDEV_BLOCK:
2276                         break;
2277                 default:
2278                         goto illegal;
2279                 }
2280                 break;
2281
2282         case SDEV_BLOCK:
2283                 switch (oldstate) {
2284                 case SDEV_RUNNING:
2285                 case SDEV_CREATED_BLOCK:
2286                 case SDEV_QUIESCE:
2287                 case SDEV_OFFLINE:
2288                         break;
2289                 default:
2290                         goto illegal;
2291                 }
2292                 break;
2293
2294         case SDEV_CREATED_BLOCK:
2295                 switch (oldstate) {
2296                 case SDEV_CREATED:
2297                         break;
2298                 default:
2299                         goto illegal;
2300                 }
2301                 break;
2302
2303         case SDEV_CANCEL:
2304                 switch (oldstate) {
2305                 case SDEV_CREATED:
2306                 case SDEV_RUNNING:
2307                 case SDEV_QUIESCE:
2308                 case SDEV_OFFLINE:
2309                 case SDEV_TRANSPORT_OFFLINE:
2310                         break;
2311                 default:
2312                         goto illegal;
2313                 }
2314                 break;
2315
2316         case SDEV_DEL:
2317                 switch (oldstate) {
2318                 case SDEV_CREATED:
2319                 case SDEV_RUNNING:
2320                 case SDEV_OFFLINE:
2321                 case SDEV_TRANSPORT_OFFLINE:
2322                 case SDEV_CANCEL:
2323                 case SDEV_BLOCK:
2324                 case SDEV_CREATED_BLOCK:
2325                         break;
2326                 default:
2327                         goto illegal;
2328                 }
2329                 break;
2330
2331         }
2332         sdev->offline_already = false;
2333         sdev->sdev_state = state;
2334         return 0;
2335
2336  illegal:
2337         SCSI_LOG_ERROR_RECOVERY(1,
2338                                 sdev_printk(KERN_ERR, sdev,
2339                                             "Illegal state transition %s->%s",
2340                                             scsi_device_state_name(oldstate),
2341                                             scsi_device_state_name(state))
2342                                 );
2343         return -EINVAL;
2344 }
2345 EXPORT_SYMBOL(scsi_device_set_state);
2346
2347 /**
2348  *      scsi_evt_emit - emit a single SCSI device uevent
2349  *      @sdev: associated SCSI device
2350  *      @evt: event to emit
2351  *
2352  *      Send a single uevent (scsi_event) to the associated scsi_device.
2353  */
2354 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2355 {
2356         int idx = 0;
2357         char *envp[3];
2358
2359         switch (evt->evt_type) {
2360         case SDEV_EVT_MEDIA_CHANGE:
2361                 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2362                 break;
2363         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2364                 scsi_rescan_device(&sdev->sdev_gendev);
2365                 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2366                 break;
2367         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2368                 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2369                 break;
2370         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2371                envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2372                 break;
2373         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2374                 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2375                 break;
2376         case SDEV_EVT_LUN_CHANGE_REPORTED:
2377                 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2378                 break;
2379         case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2380                 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2381                 break;
2382         case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2383                 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2384                 break;
2385         default:
2386                 /* do nothing */
2387                 break;
2388         }
2389
2390         envp[idx++] = NULL;
2391
2392         kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2393 }
2394
2395 /**
2396  *      scsi_evt_thread - send a uevent for each scsi event
2397  *      @work: work struct for scsi_device
2398  *
2399  *      Dispatch queued events to their associated scsi_device kobjects
2400  *      as uevents.
2401  */
2402 void scsi_evt_thread(struct work_struct *work)
2403 {
2404         struct scsi_device *sdev;
2405         enum scsi_device_event evt_type;
2406         LIST_HEAD(event_list);
2407
2408         sdev = container_of(work, struct scsi_device, event_work);
2409
2410         for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2411                 if (test_and_clear_bit(evt_type, sdev->pending_events))
2412                         sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2413
2414         while (1) {
2415                 struct scsi_event *evt;
2416                 struct list_head *this, *tmp;
2417                 unsigned long flags;
2418
2419                 spin_lock_irqsave(&sdev->list_lock, flags);
2420                 list_splice_init(&sdev->event_list, &event_list);
2421                 spin_unlock_irqrestore(&sdev->list_lock, flags);
2422
2423                 if (list_empty(&event_list))
2424                         break;
2425
2426                 list_for_each_safe(this, tmp, &event_list) {
2427                         evt = list_entry(this, struct scsi_event, node);
2428                         list_del(&evt->node);
2429                         scsi_evt_emit(sdev, evt);
2430                         kfree(evt);
2431                 }
2432         }
2433 }
2434
2435 /**
2436  *      sdev_evt_send - send asserted event to uevent thread
2437  *      @sdev: scsi_device event occurred on
2438  *      @evt: event to send
2439  *
2440  *      Assert scsi device event asynchronously.
2441  */
2442 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2443 {
2444         unsigned long flags;
2445
2446 #if 0
2447         /* FIXME: currently this check eliminates all media change events
2448          * for polled devices.  Need to update to discriminate between AN
2449          * and polled events */
2450         if (!test_bit(evt->evt_type, sdev->supported_events)) {
2451                 kfree(evt);
2452                 return;
2453         }
2454 #endif
2455
2456         spin_lock_irqsave(&sdev->list_lock, flags);
2457         list_add_tail(&evt->node, &sdev->event_list);
2458         schedule_work(&sdev->event_work);
2459         spin_unlock_irqrestore(&sdev->list_lock, flags);
2460 }
2461 EXPORT_SYMBOL_GPL(sdev_evt_send);
2462
2463 /**
2464  *      sdev_evt_alloc - allocate a new scsi event
2465  *      @evt_type: type of event to allocate
2466  *      @gfpflags: GFP flags for allocation
2467  *
2468  *      Allocates and returns a new scsi_event.
2469  */
2470 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2471                                   gfp_t gfpflags)
2472 {
2473         struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2474         if (!evt)
2475                 return NULL;
2476
2477         evt->evt_type = evt_type;
2478         INIT_LIST_HEAD(&evt->node);
2479
2480         /* evt_type-specific initialization, if any */
2481         switch (evt_type) {
2482         case SDEV_EVT_MEDIA_CHANGE:
2483         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2484         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2485         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2486         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2487         case SDEV_EVT_LUN_CHANGE_REPORTED:
2488         case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2489         case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2490         default:
2491                 /* do nothing */
2492                 break;
2493         }
2494
2495         return evt;
2496 }
2497 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2498
2499 /**
2500  *      sdev_evt_send_simple - send asserted event to uevent thread
2501  *      @sdev: scsi_device event occurred on
2502  *      @evt_type: type of event to send
2503  *      @gfpflags: GFP flags for allocation
2504  *
2505  *      Assert scsi device event asynchronously, given an event type.
2506  */
2507 void sdev_evt_send_simple(struct scsi_device *sdev,
2508                           enum scsi_device_event evt_type, gfp_t gfpflags)
2509 {
2510         struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2511         if (!evt) {
2512                 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2513                             evt_type);
2514                 return;
2515         }
2516
2517         sdev_evt_send(sdev, evt);
2518 }
2519 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2520
2521 /**
2522  *      scsi_device_quiesce - Block all commands except power management.
2523  *      @sdev:  scsi device to quiesce.
2524  *
2525  *      This works by trying to transition to the SDEV_QUIESCE state
2526  *      (which must be a legal transition).  When the device is in this
2527  *      state, only power management requests will be accepted, all others will
2528  *      be deferred.
2529  *
2530  *      Must be called with user context, may sleep.
2531  *
2532  *      Returns zero if unsuccessful or an error if not.
2533  */
2534 int
2535 scsi_device_quiesce(struct scsi_device *sdev)
2536 {
2537         struct request_queue *q = sdev->request_queue;
2538         int err;
2539
2540         /*
2541          * It is allowed to call scsi_device_quiesce() multiple times from
2542          * the same context but concurrent scsi_device_quiesce() calls are
2543          * not allowed.
2544          */
2545         WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2546
2547         if (sdev->quiesced_by == current)
2548                 return 0;
2549
2550         blk_set_pm_only(q);
2551
2552         blk_mq_freeze_queue(q);
2553         /*
2554          * Ensure that the effect of blk_set_pm_only() will be visible
2555          * for percpu_ref_tryget() callers that occur after the queue
2556          * unfreeze even if the queue was already frozen before this function
2557          * was called. See also https://lwn.net/Articles/573497/.
2558          */
2559         synchronize_rcu();
2560         blk_mq_unfreeze_queue(q);
2561
2562         mutex_lock(&sdev->state_mutex);
2563         err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2564         if (err == 0)
2565                 sdev->quiesced_by = current;
2566         else
2567                 blk_clear_pm_only(q);
2568         mutex_unlock(&sdev->state_mutex);
2569
2570         return err;
2571 }
2572 EXPORT_SYMBOL(scsi_device_quiesce);
2573
2574 /**
2575  *      scsi_device_resume - Restart user issued commands to a quiesced device.
2576  *      @sdev:  scsi device to resume.
2577  *
2578  *      Moves the device from quiesced back to running and restarts the
2579  *      queues.
2580  *
2581  *      Must be called with user context, may sleep.
2582  */
2583 void scsi_device_resume(struct scsi_device *sdev)
2584 {
2585         /* check if the device state was mutated prior to resume, and if
2586          * so assume the state is being managed elsewhere (for example
2587          * device deleted during suspend)
2588          */
2589         mutex_lock(&sdev->state_mutex);
2590         if (sdev->sdev_state == SDEV_QUIESCE)
2591                 scsi_device_set_state(sdev, SDEV_RUNNING);
2592         if (sdev->quiesced_by) {
2593                 sdev->quiesced_by = NULL;
2594                 blk_clear_pm_only(sdev->request_queue);
2595         }
2596         mutex_unlock(&sdev->state_mutex);
2597 }
2598 EXPORT_SYMBOL(scsi_device_resume);
2599
2600 static void
2601 device_quiesce_fn(struct scsi_device *sdev, void *data)
2602 {
2603         scsi_device_quiesce(sdev);
2604 }
2605
2606 void
2607 scsi_target_quiesce(struct scsi_target *starget)
2608 {
2609         starget_for_each_device(starget, NULL, device_quiesce_fn);
2610 }
2611 EXPORT_SYMBOL(scsi_target_quiesce);
2612
2613 static void
2614 device_resume_fn(struct scsi_device *sdev, void *data)
2615 {
2616         scsi_device_resume(sdev);
2617 }
2618
2619 void
2620 scsi_target_resume(struct scsi_target *starget)
2621 {
2622         starget_for_each_device(starget, NULL, device_resume_fn);
2623 }
2624 EXPORT_SYMBOL(scsi_target_resume);
2625
2626 /**
2627  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2628  * @sdev: device to block
2629  *
2630  * Pause SCSI command processing on the specified device. Does not sleep.
2631  *
2632  * Returns zero if successful or a negative error code upon failure.
2633  *
2634  * Notes:
2635  * This routine transitions the device to the SDEV_BLOCK state (which must be
2636  * a legal transition). When the device is in this state, command processing
2637  * is paused until the device leaves the SDEV_BLOCK state. See also
2638  * scsi_internal_device_unblock_nowait().
2639  */
2640 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2641 {
2642         struct request_queue *q = sdev->request_queue;
2643         int err = 0;
2644
2645         err = scsi_device_set_state(sdev, SDEV_BLOCK);
2646         if (err) {
2647                 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2648
2649                 if (err)
2650                         return err;
2651         }
2652
2653         /*
2654          * The device has transitioned to SDEV_BLOCK.  Stop the
2655          * block layer from calling the midlayer with this device's
2656          * request queue.
2657          */
2658         blk_mq_quiesce_queue_nowait(q);
2659         return 0;
2660 }
2661 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2662
2663 /**
2664  * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
2665  * @sdev: device to block
2666  *
2667  * Pause SCSI command processing on the specified device and wait until all
2668  * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
2669  *
2670  * Returns zero if successful or a negative error code upon failure.
2671  *
2672  * Note:
2673  * This routine transitions the device to the SDEV_BLOCK state (which must be
2674  * a legal transition). When the device is in this state, command processing
2675  * is paused until the device leaves the SDEV_BLOCK state. See also
2676  * scsi_internal_device_unblock().
2677  */
2678 static int scsi_internal_device_block(struct scsi_device *sdev)
2679 {
2680         struct request_queue *q = sdev->request_queue;
2681         int err;
2682
2683         mutex_lock(&sdev->state_mutex);
2684         err = scsi_internal_device_block_nowait(sdev);
2685         if (err == 0)
2686                 blk_mq_quiesce_queue(q);
2687         mutex_unlock(&sdev->state_mutex);
2688
2689         return err;
2690 }
2691
2692 void scsi_start_queue(struct scsi_device *sdev)
2693 {
2694         struct request_queue *q = sdev->request_queue;
2695
2696         blk_mq_unquiesce_queue(q);
2697 }
2698
2699 /**
2700  * scsi_internal_device_unblock_nowait - resume a device after a block request
2701  * @sdev:       device to resume
2702  * @new_state:  state to set the device to after unblocking
2703  *
2704  * Restart the device queue for a previously suspended SCSI device. Does not
2705  * sleep.
2706  *
2707  * Returns zero if successful or a negative error code upon failure.
2708  *
2709  * Notes:
2710  * This routine transitions the device to the SDEV_RUNNING state or to one of
2711  * the offline states (which must be a legal transition) allowing the midlayer
2712  * to goose the queue for this device.
2713  */
2714 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2715                                         enum scsi_device_state new_state)
2716 {
2717         switch (new_state) {
2718         case SDEV_RUNNING:
2719         case SDEV_TRANSPORT_OFFLINE:
2720                 break;
2721         default:
2722                 return -EINVAL;
2723         }
2724
2725         /*
2726          * Try to transition the scsi device to SDEV_RUNNING or one of the
2727          * offlined states and goose the device queue if successful.
2728          */
2729         switch (sdev->sdev_state) {
2730         case SDEV_BLOCK:
2731         case SDEV_TRANSPORT_OFFLINE:
2732                 sdev->sdev_state = new_state;
2733                 break;
2734         case SDEV_CREATED_BLOCK:
2735                 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2736                     new_state == SDEV_OFFLINE)
2737                         sdev->sdev_state = new_state;
2738                 else
2739                         sdev->sdev_state = SDEV_CREATED;
2740                 break;
2741         case SDEV_CANCEL:
2742         case SDEV_OFFLINE:
2743                 break;
2744         default:
2745                 return -EINVAL;
2746         }
2747         scsi_start_queue(sdev);
2748
2749         return 0;
2750 }
2751 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2752
2753 /**
2754  * scsi_internal_device_unblock - resume a device after a block request
2755  * @sdev:       device to resume
2756  * @new_state:  state to set the device to after unblocking
2757  *
2758  * Restart the device queue for a previously suspended SCSI device. May sleep.
2759  *
2760  * Returns zero if successful or a negative error code upon failure.
2761  *
2762  * Notes:
2763  * This routine transitions the device to the SDEV_RUNNING state or to one of
2764  * the offline states (which must be a legal transition) allowing the midlayer
2765  * to goose the queue for this device.
2766  */
2767 static int scsi_internal_device_unblock(struct scsi_device *sdev,
2768                                         enum scsi_device_state new_state)
2769 {
2770         int ret;
2771
2772         mutex_lock(&sdev->state_mutex);
2773         ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2774         mutex_unlock(&sdev->state_mutex);
2775
2776         return ret;
2777 }
2778
2779 static void
2780 device_block(struct scsi_device *sdev, void *data)
2781 {
2782         int ret;
2783
2784         ret = scsi_internal_device_block(sdev);
2785
2786         WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n",
2787                   dev_name(&sdev->sdev_gendev), ret);
2788 }
2789
2790 static int
2791 target_block(struct device *dev, void *data)
2792 {
2793         if (scsi_is_target_device(dev))
2794                 starget_for_each_device(to_scsi_target(dev), NULL,
2795                                         device_block);
2796         return 0;
2797 }
2798
2799 void
2800 scsi_target_block(struct device *dev)
2801 {
2802         if (scsi_is_target_device(dev))
2803                 starget_for_each_device(to_scsi_target(dev), NULL,
2804                                         device_block);
2805         else
2806                 device_for_each_child(dev, NULL, target_block);
2807 }
2808 EXPORT_SYMBOL_GPL(scsi_target_block);
2809
2810 static void
2811 device_unblock(struct scsi_device *sdev, void *data)
2812 {
2813         scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2814 }
2815
2816 static int
2817 target_unblock(struct device *dev, void *data)
2818 {
2819         if (scsi_is_target_device(dev))
2820                 starget_for_each_device(to_scsi_target(dev), data,
2821                                         device_unblock);
2822         return 0;
2823 }
2824
2825 void
2826 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2827 {
2828         if (scsi_is_target_device(dev))
2829                 starget_for_each_device(to_scsi_target(dev), &new_state,
2830                                         device_unblock);
2831         else
2832                 device_for_each_child(dev, &new_state, target_unblock);
2833 }
2834 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2835
2836 int
2837 scsi_host_block(struct Scsi_Host *shost)
2838 {
2839         struct scsi_device *sdev;
2840         int ret = 0;
2841
2842         /*
2843          * Call scsi_internal_device_block_nowait so we can avoid
2844          * calling synchronize_rcu() for each LUN.
2845          */
2846         shost_for_each_device(sdev, shost) {
2847                 mutex_lock(&sdev->state_mutex);
2848                 ret = scsi_internal_device_block_nowait(sdev);
2849                 mutex_unlock(&sdev->state_mutex);
2850                 if (ret) {
2851                         scsi_device_put(sdev);
2852                         break;
2853                 }
2854         }
2855
2856         /*
2857          * SCSI never enables blk-mq's BLK_MQ_F_BLOCKING flag so
2858          * calling synchronize_rcu() once is enough.
2859          */
2860         WARN_ON_ONCE(shost->tag_set.flags & BLK_MQ_F_BLOCKING);
2861
2862         if (!ret)
2863                 synchronize_rcu();
2864
2865         return ret;
2866 }
2867 EXPORT_SYMBOL_GPL(scsi_host_block);
2868
2869 int
2870 scsi_host_unblock(struct Scsi_Host *shost, int new_state)
2871 {
2872         struct scsi_device *sdev;
2873         int ret = 0;
2874
2875         shost_for_each_device(sdev, shost) {
2876                 ret = scsi_internal_device_unblock(sdev, new_state);
2877                 if (ret) {
2878                         scsi_device_put(sdev);
2879                         break;
2880                 }
2881         }
2882         return ret;
2883 }
2884 EXPORT_SYMBOL_GPL(scsi_host_unblock);
2885
2886 /**
2887  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2888  * @sgl:        scatter-gather list
2889  * @sg_count:   number of segments in sg
2890  * @offset:     offset in bytes into sg, on return offset into the mapped area
2891  * @len:        bytes to map, on return number of bytes mapped
2892  *
2893  * Returns virtual address of the start of the mapped page
2894  */
2895 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2896                           size_t *offset, size_t *len)
2897 {
2898         int i;
2899         size_t sg_len = 0, len_complete = 0;
2900         struct scatterlist *sg;
2901         struct page *page;
2902
2903         WARN_ON(!irqs_disabled());
2904
2905         for_each_sg(sgl, sg, sg_count, i) {
2906                 len_complete = sg_len; /* Complete sg-entries */
2907                 sg_len += sg->length;
2908                 if (sg_len > *offset)
2909                         break;
2910         }
2911
2912         if (unlikely(i == sg_count)) {
2913                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2914                         "elements %d\n",
2915                        __func__, sg_len, *offset, sg_count);
2916                 WARN_ON(1);
2917                 return NULL;
2918         }
2919
2920         /* Offset starting from the beginning of first page in this sg-entry */
2921         *offset = *offset - len_complete + sg->offset;
2922
2923         /* Assumption: contiguous pages can be accessed as "page + i" */
2924         page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2925         *offset &= ~PAGE_MASK;
2926
2927         /* Bytes in this sg-entry from *offset to the end of the page */
2928         sg_len = PAGE_SIZE - *offset;
2929         if (*len > sg_len)
2930                 *len = sg_len;
2931
2932         return kmap_atomic(page);
2933 }
2934 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2935
2936 /**
2937  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2938  * @virt:       virtual address to be unmapped
2939  */
2940 void scsi_kunmap_atomic_sg(void *virt)
2941 {
2942         kunmap_atomic(virt);
2943 }
2944 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2945
2946 void sdev_disable_disk_events(struct scsi_device *sdev)
2947 {
2948         atomic_inc(&sdev->disk_events_disable_depth);
2949 }
2950 EXPORT_SYMBOL(sdev_disable_disk_events);
2951
2952 void sdev_enable_disk_events(struct scsi_device *sdev)
2953 {
2954         if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2955                 return;
2956         atomic_dec(&sdev->disk_events_disable_depth);
2957 }
2958 EXPORT_SYMBOL(sdev_enable_disk_events);
2959
2960 static unsigned char designator_prio(const unsigned char *d)
2961 {
2962         if (d[1] & 0x30)
2963                 /* not associated with LUN */
2964                 return 0;
2965
2966         if (d[3] == 0)
2967                 /* invalid length */
2968                 return 0;
2969
2970         /*
2971          * Order of preference for lun descriptor:
2972          * - SCSI name string
2973          * - NAA IEEE Registered Extended
2974          * - EUI-64 based 16-byte
2975          * - EUI-64 based 12-byte
2976          * - NAA IEEE Registered
2977          * - NAA IEEE Extended
2978          * - EUI-64 based 8-byte
2979          * - SCSI name string (truncated)
2980          * - T10 Vendor ID
2981          * as longer descriptors reduce the likelyhood
2982          * of identification clashes.
2983          */
2984
2985         switch (d[1] & 0xf) {
2986         case 8:
2987                 /* SCSI name string, variable-length UTF-8 */
2988                 return 9;
2989         case 3:
2990                 switch (d[4] >> 4) {
2991                 case 6:
2992                         /* NAA registered extended */
2993                         return 8;
2994                 case 5:
2995                         /* NAA registered */
2996                         return 5;
2997                 case 4:
2998                         /* NAA extended */
2999                         return 4;
3000                 case 3:
3001                         /* NAA locally assigned */
3002                         return 1;
3003                 default:
3004                         break;
3005                 }
3006                 break;
3007         case 2:
3008                 switch (d[3]) {
3009                 case 16:
3010                         /* EUI64-based, 16 byte */
3011                         return 7;
3012                 case 12:
3013                         /* EUI64-based, 12 byte */
3014                         return 6;
3015                 case 8:
3016                         /* EUI64-based, 8 byte */
3017                         return 3;
3018                 default:
3019                         break;
3020                 }
3021                 break;
3022         case 1:
3023                 /* T10 vendor ID */
3024                 return 1;
3025         default:
3026                 break;
3027         }
3028
3029         return 0;
3030 }
3031
3032 /**
3033  * scsi_vpd_lun_id - return a unique device identification
3034  * @sdev: SCSI device
3035  * @id:   buffer for the identification
3036  * @id_len:  length of the buffer
3037  *
3038  * Copies a unique device identification into @id based
3039  * on the information in the VPD page 0x83 of the device.
3040  * The string will be formatted as a SCSI name string.
3041  *
3042  * Returns the length of the identification or error on failure.
3043  * If the identifier is longer than the supplied buffer the actual
3044  * identifier length is returned and the buffer is not zero-padded.
3045  */
3046 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3047 {
3048         u8 cur_id_prio = 0;
3049         u8 cur_id_size = 0;
3050         const unsigned char *d, *cur_id_str;
3051         const struct scsi_vpd *vpd_pg83;
3052         int id_size = -EINVAL;
3053
3054         rcu_read_lock();
3055         vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3056         if (!vpd_pg83) {
3057                 rcu_read_unlock();
3058                 return -ENXIO;
3059         }
3060
3061         /* The id string must be at least 20 bytes + terminating NULL byte */
3062         if (id_len < 21) {
3063                 rcu_read_unlock();
3064                 return -EINVAL;
3065         }
3066
3067         memset(id, 0, id_len);
3068         for (d = vpd_pg83->data + 4;
3069              d < vpd_pg83->data + vpd_pg83->len;
3070              d += d[3] + 4) {
3071                 u8 prio = designator_prio(d);
3072
3073                 if (prio == 0 || cur_id_prio > prio)
3074                         continue;
3075
3076                 switch (d[1] & 0xf) {
3077                 case 0x1:
3078                         /* T10 Vendor ID */
3079                         if (cur_id_size > d[3])
3080                                 break;
3081                         cur_id_prio = prio;
3082                         cur_id_size = d[3];
3083                         if (cur_id_size + 4 > id_len)
3084                                 cur_id_size = id_len - 4;
3085                         cur_id_str = d + 4;
3086                         id_size = snprintf(id, id_len, "t10.%*pE",
3087                                            cur_id_size, cur_id_str);
3088                         break;
3089                 case 0x2:
3090                         /* EUI-64 */
3091                         cur_id_prio = prio;
3092                         cur_id_size = d[3];
3093                         cur_id_str = d + 4;
3094                         switch (cur_id_size) {
3095                         case 8:
3096                                 id_size = snprintf(id, id_len,
3097                                                    "eui.%8phN",
3098                                                    cur_id_str);
3099                                 break;
3100                         case 12:
3101                                 id_size = snprintf(id, id_len,
3102                                                    "eui.%12phN",
3103                                                    cur_id_str);
3104                                 break;
3105                         case 16:
3106                                 id_size = snprintf(id, id_len,
3107                                                    "eui.%16phN",
3108                                                    cur_id_str);
3109                                 break;
3110                         default:
3111                                 break;
3112                         }
3113                         break;
3114                 case 0x3:
3115                         /* NAA */
3116                         cur_id_prio = prio;
3117                         cur_id_size = d[3];
3118                         cur_id_str = d + 4;
3119                         switch (cur_id_size) {
3120                         case 8:
3121                                 id_size = snprintf(id, id_len,
3122                                                    "naa.%8phN",
3123                                                    cur_id_str);
3124                                 break;
3125                         case 16:
3126                                 id_size = snprintf(id, id_len,
3127                                                    "naa.%16phN",
3128                                                    cur_id_str);
3129                                 break;
3130                         default:
3131                                 break;
3132                         }
3133                         break;
3134                 case 0x8:
3135                         /* SCSI name string */
3136                         if (cur_id_size > d[3])
3137                                 break;
3138                         /* Prefer others for truncated descriptor */
3139                         if (d[3] > id_len) {
3140                                 prio = 2;
3141                                 if (cur_id_prio > prio)
3142                                         break;
3143                         }
3144                         cur_id_prio = prio;
3145                         cur_id_size = id_size = d[3];
3146                         cur_id_str = d + 4;
3147                         if (cur_id_size >= id_len)
3148                                 cur_id_size = id_len - 1;
3149                         memcpy(id, cur_id_str, cur_id_size);
3150                         break;
3151                 default:
3152                         break;
3153                 }
3154         }
3155         rcu_read_unlock();
3156
3157         return id_size;
3158 }
3159 EXPORT_SYMBOL(scsi_vpd_lun_id);
3160
3161 /*
3162  * scsi_vpd_tpg_id - return a target port group identifier
3163  * @sdev: SCSI device
3164  *
3165  * Returns the Target Port Group identifier from the information
3166  * froom VPD page 0x83 of the device.
3167  *
3168  * Returns the identifier or error on failure.
3169  */
3170 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3171 {
3172         const unsigned char *d;
3173         const struct scsi_vpd *vpd_pg83;
3174         int group_id = -EAGAIN, rel_port = -1;
3175
3176         rcu_read_lock();
3177         vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3178         if (!vpd_pg83) {
3179                 rcu_read_unlock();
3180                 return -ENXIO;
3181         }
3182
3183         d = vpd_pg83->data + 4;
3184         while (d < vpd_pg83->data + vpd_pg83->len) {
3185                 switch (d[1] & 0xf) {
3186                 case 0x4:
3187                         /* Relative target port */
3188                         rel_port = get_unaligned_be16(&d[6]);
3189                         break;
3190                 case 0x5:
3191                         /* Target port group */
3192                         group_id = get_unaligned_be16(&d[6]);
3193                         break;
3194                 default:
3195                         break;
3196                 }
3197                 d += d[3] + 4;
3198         }
3199         rcu_read_unlock();
3200
3201         if (group_id >= 0 && rel_id && rel_port != -1)
3202                 *rel_id = rel_port;
3203
3204         return group_id;
3205 }
3206 EXPORT_SYMBOL(scsi_vpd_tpg_id);