Merge tag 'scsi-misc' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[linux-2.6-microblaze.git] / drivers / scsi / mpt3sas / mpt3sas_base.c
1 /*
2  * This is the Fusion MPT base driver providing common API layer interface
3  * for access to MPT (Message Passing Technology) firmware.
4  *
5  * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
6  * Copyright (C) 2012-2014  LSI Corporation
7  * Copyright (C) 2013-2014 Avago Technologies
8  *  (mailto: MPT-FusionLinux.pdl@avagotech.com)
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version 2
13  * of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * NO WARRANTY
21  * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22  * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23  * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25  * solely responsible for determining the appropriateness of using and
26  * distributing the Program and assumes all risks associated with its
27  * exercise of rights under this Agreement, including but not limited to
28  * the risks and costs of program errors, damage to or loss of data,
29  * programs or equipment, and unavailability or interruption of operations.
30
31  * DISCLAIMER OF LIABILITY
32  * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37  * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38  * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
39
40  * You should have received a copy of the GNU General Public License
41  * along with this program; if not, write to the Free Software
42  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
43  * USA.
44  */
45
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/kdev_t.h>
54 #include <linux/blkdev.h>
55 #include <linux/delay.h>
56 #include <linux/interrupt.h>
57 #include <linux/dma-mapping.h>
58 #include <linux/io.h>
59 #include <linux/time.h>
60 #include <linux/ktime.h>
61 #include <linux/kthread.h>
62 #include <asm/page.h>        /* To get host page size per arch */
63 #include <linux/aer.h>
64
65
66 #include "mpt3sas_base.h"
67
68 static MPT_CALLBACK     mpt_callbacks[MPT_MAX_CALLBACKS];
69
70
71 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
72
73  /* maximum controller queue depth */
74 #define MAX_HBA_QUEUE_DEPTH     30000
75 #define MAX_CHAIN_DEPTH         100000
76 static int max_queue_depth = -1;
77 module_param(max_queue_depth, int, 0444);
78 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
79
80 static int max_sgl_entries = -1;
81 module_param(max_sgl_entries, int, 0444);
82 MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
83
84 static int msix_disable = -1;
85 module_param(msix_disable, int, 0444);
86 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
87
88 static int smp_affinity_enable = 1;
89 module_param(smp_affinity_enable, int, 0444);
90 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disable Default: enable(1)");
91
92 static int max_msix_vectors = -1;
93 module_param(max_msix_vectors, int, 0444);
94 MODULE_PARM_DESC(max_msix_vectors,
95         " max msix vectors");
96
97 static int irqpoll_weight = -1;
98 module_param(irqpoll_weight, int, 0444);
99 MODULE_PARM_DESC(irqpoll_weight,
100         "irq poll weight (default= one fourth of HBA queue depth)");
101
102 static int mpt3sas_fwfault_debug;
103 MODULE_PARM_DESC(mpt3sas_fwfault_debug,
104         " enable detection of firmware fault and halt firmware - (default=0)");
105
106 static int perf_mode = -1;
107 module_param(perf_mode, int, 0444);
108 MODULE_PARM_DESC(perf_mode,
109         "Performance mode (only for Aero/Sea Generation), options:\n\t\t"
110         "0 - balanced: high iops mode is enabled &\n\t\t"
111         "interrupt coalescing is enabled only on high iops queues,\n\t\t"
112         "1 - iops: high iops mode is disabled &\n\t\t"
113         "interrupt coalescing is enabled on all queues,\n\t\t"
114         "2 - latency: high iops mode is disabled &\n\t\t"
115         "interrupt coalescing is enabled on all queues with timeout value 0xA,\n"
116         "\t\tdefault - default perf_mode is 'balanced'"
117         );
118
119 static int poll_queues;
120 module_param(poll_queues, int, 0444);
121 MODULE_PARM_DESC(poll_queues, "Number of queues to be use for io_uring poll mode.\n\t\t"
122         "This parameter is effective only if host_tagset_enable=1. &\n\t\t"
123         "when poll_queues are enabled then &\n\t\t"
124         "perf_mode is set to latency mode. &\n\t\t"
125         );
126
127 enum mpt3sas_perf_mode {
128         MPT_PERF_MODE_DEFAULT   = -1,
129         MPT_PERF_MODE_BALANCED  = 0,
130         MPT_PERF_MODE_IOPS      = 1,
131         MPT_PERF_MODE_LATENCY   = 2,
132 };
133
134 static int
135 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc,
136                 u32 ioc_state, int timeout);
137 static int
138 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc);
139 static void
140 _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc);
141
142 /**
143  * mpt3sas_base_check_cmd_timeout - Function
144  *              to check timeout and command termination due
145  *              to Host reset.
146  *
147  * @ioc:        per adapter object.
148  * @status:     Status of issued command.
149  * @mpi_request:mf request pointer.
150  * @sz:         size of buffer.
151  *
152  * Return: 1/0 Reset to be done or Not
153  */
154 u8
155 mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER *ioc,
156                 u8 status, void *mpi_request, int sz)
157 {
158         u8 issue_reset = 0;
159
160         if (!(status & MPT3_CMD_RESET))
161                 issue_reset = 1;
162
163         ioc_err(ioc, "Command %s\n",
164                 issue_reset == 0 ? "terminated due to Host Reset" : "Timeout");
165         _debug_dump_mf(mpi_request, sz);
166
167         return issue_reset;
168 }
169
170 /**
171  * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
172  * @val: ?
173  * @kp: ?
174  *
175  * Return: ?
176  */
177 static int
178 _scsih_set_fwfault_debug(const char *val, const struct kernel_param *kp)
179 {
180         int ret = param_set_int(val, kp);
181         struct MPT3SAS_ADAPTER *ioc;
182
183         if (ret)
184                 return ret;
185
186         /* global ioc spinlock to protect controller list on list operations */
187         pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
188         spin_lock(&gioc_lock);
189         list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
190                 ioc->fwfault_debug = mpt3sas_fwfault_debug;
191         spin_unlock(&gioc_lock);
192         return 0;
193 }
194 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
195         param_get_int, &mpt3sas_fwfault_debug, 0644);
196
197 /**
198  * _base_readl_aero - retry readl for max three times.
199  * @addr: MPT Fusion system interface register address
200  *
201  * Retry the readl() for max three times if it gets zero value
202  * while reading the system interface register.
203  */
204 static inline u32
205 _base_readl_aero(const volatile void __iomem *addr)
206 {
207         u32 i = 0, ret_val;
208
209         do {
210                 ret_val = readl(addr);
211                 i++;
212         } while (ret_val == 0 && i < 3);
213
214         return ret_val;
215 }
216
217 static inline u32
218 _base_readl(const volatile void __iomem *addr)
219 {
220         return readl(addr);
221 }
222
223 /**
224  * _base_clone_reply_to_sys_mem - copies reply to reply free iomem
225  *                                in BAR0 space.
226  *
227  * @ioc: per adapter object
228  * @reply: reply message frame(lower 32bit addr)
229  * @index: System request message index.
230  */
231 static void
232 _base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER *ioc, u32 reply,
233                 u32 index)
234 {
235         /*
236          * 256 is offset within sys register.
237          * 256 offset MPI frame starts. Max MPI frame supported is 32.
238          * 32 * 128 = 4K. From here, Clone of reply free for mcpu starts
239          */
240         u16 cmd_credit = ioc->facts.RequestCredit + 1;
241         void __iomem *reply_free_iomem = (void __iomem *)ioc->chip +
242                         MPI_FRAME_START_OFFSET +
243                         (cmd_credit * ioc->request_sz) + (index * sizeof(u32));
244
245         writel(reply, reply_free_iomem);
246 }
247
248 /**
249  * _base_clone_mpi_to_sys_mem - Writes/copies MPI frames
250  *                              to system/BAR0 region.
251  *
252  * @dst_iomem: Pointer to the destination location in BAR0 space.
253  * @src: Pointer to the Source data.
254  * @size: Size of data to be copied.
255  */
256 static void
257 _base_clone_mpi_to_sys_mem(void *dst_iomem, void *src, u32 size)
258 {
259         int i;
260         u32 *src_virt_mem = (u32 *)src;
261
262         for (i = 0; i < size/4; i++)
263                 writel((u32)src_virt_mem[i],
264                                 (void __iomem *)dst_iomem + (i * 4));
265 }
266
267 /**
268  * _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region
269  *
270  * @dst_iomem: Pointer to the destination location in BAR0 space.
271  * @src: Pointer to the Source data.
272  * @size: Size of data to be copied.
273  */
274 static void
275 _base_clone_to_sys_mem(void __iomem *dst_iomem, void *src, u32 size)
276 {
277         int i;
278         u32 *src_virt_mem = (u32 *)(src);
279
280         for (i = 0; i < size/4; i++)
281                 writel((u32)src_virt_mem[i],
282                         (void __iomem *)dst_iomem + (i * 4));
283 }
284
285 /**
286  * _base_get_chain - Calculates and Returns virtual chain address
287  *                       for the provided smid in BAR0 space.
288  *
289  * @ioc: per adapter object
290  * @smid: system request message index
291  * @sge_chain_count: Scatter gather chain count.
292  *
293  * Return: the chain address.
294  */
295 static inline void __iomem*
296 _base_get_chain(struct MPT3SAS_ADAPTER *ioc, u16 smid,
297                 u8 sge_chain_count)
298 {
299         void __iomem *base_chain, *chain_virt;
300         u16 cmd_credit = ioc->facts.RequestCredit + 1;
301
302         base_chain  = (void __iomem *)ioc->chip + MPI_FRAME_START_OFFSET +
303                 (cmd_credit * ioc->request_sz) +
304                 REPLY_FREE_POOL_SIZE;
305         chain_virt = base_chain + (smid * ioc->facts.MaxChainDepth *
306                         ioc->request_sz) + (sge_chain_count * ioc->request_sz);
307         return chain_virt;
308 }
309
310 /**
311  * _base_get_chain_phys - Calculates and Returns physical address
312  *                      in BAR0 for scatter gather chains, for
313  *                      the provided smid.
314  *
315  * @ioc: per adapter object
316  * @smid: system request message index
317  * @sge_chain_count: Scatter gather chain count.
318  *
319  * Return: Physical chain address.
320  */
321 static inline phys_addr_t
322 _base_get_chain_phys(struct MPT3SAS_ADAPTER *ioc, u16 smid,
323                 u8 sge_chain_count)
324 {
325         phys_addr_t base_chain_phys, chain_phys;
326         u16 cmd_credit = ioc->facts.RequestCredit + 1;
327
328         base_chain_phys  = ioc->chip_phys + MPI_FRAME_START_OFFSET +
329                 (cmd_credit * ioc->request_sz) +
330                 REPLY_FREE_POOL_SIZE;
331         chain_phys = base_chain_phys + (smid * ioc->facts.MaxChainDepth *
332                         ioc->request_sz) + (sge_chain_count * ioc->request_sz);
333         return chain_phys;
334 }
335
336 /**
337  * _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host
338  *                      buffer address for the provided smid.
339  *                      (Each smid can have 64K starts from 17024)
340  *
341  * @ioc: per adapter object
342  * @smid: system request message index
343  *
344  * Return: Pointer to buffer location in BAR0.
345  */
346
347 static void __iomem *
348 _base_get_buffer_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
349 {
350         u16 cmd_credit = ioc->facts.RequestCredit + 1;
351         // Added extra 1 to reach end of chain.
352         void __iomem *chain_end = _base_get_chain(ioc,
353                         cmd_credit + 1,
354                         ioc->facts.MaxChainDepth);
355         return chain_end + (smid * 64 * 1024);
356 }
357
358 /**
359  * _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped
360  *              Host buffer Physical address for the provided smid.
361  *              (Each smid can have 64K starts from 17024)
362  *
363  * @ioc: per adapter object
364  * @smid: system request message index
365  *
366  * Return: Pointer to buffer location in BAR0.
367  */
368 static phys_addr_t
369 _base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
370 {
371         u16 cmd_credit = ioc->facts.RequestCredit + 1;
372         phys_addr_t chain_end_phys = _base_get_chain_phys(ioc,
373                         cmd_credit + 1,
374                         ioc->facts.MaxChainDepth);
375         return chain_end_phys + (smid * 64 * 1024);
376 }
377
378 /**
379  * _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain
380  *                      lookup list and Provides chain_buffer
381  *                      address for the matching dma address.
382  *                      (Each smid can have 64K starts from 17024)
383  *
384  * @ioc: per adapter object
385  * @chain_buffer_dma: Chain buffer dma address.
386  *
387  * Return: Pointer to chain buffer. Or Null on Failure.
388  */
389 static void *
390 _base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER *ioc,
391                 dma_addr_t chain_buffer_dma)
392 {
393         u16 index, j;
394         struct chain_tracker *ct;
395
396         for (index = 0; index < ioc->scsiio_depth; index++) {
397                 for (j = 0; j < ioc->chains_needed_per_io; j++) {
398                         ct = &ioc->chain_lookup[index].chains_per_smid[j];
399                         if (ct && ct->chain_buffer_dma == chain_buffer_dma)
400                                 return ct->chain_buffer;
401                 }
402         }
403         ioc_info(ioc, "Provided chain_buffer_dma address is not in the lookup list\n");
404         return NULL;
405 }
406
407 /**
408  * _clone_sg_entries -  MPI EP's scsiio and config requests
409  *                      are handled here. Base function for
410  *                      double buffering, before submitting
411  *                      the requests.
412  *
413  * @ioc: per adapter object.
414  * @mpi_request: mf request pointer.
415  * @smid: system request message index.
416  */
417 static void _clone_sg_entries(struct MPT3SAS_ADAPTER *ioc,
418                 void *mpi_request, u16 smid)
419 {
420         Mpi2SGESimple32_t *sgel, *sgel_next;
421         u32  sgl_flags, sge_chain_count = 0;
422         bool is_write = false;
423         u16 i = 0;
424         void __iomem *buffer_iomem;
425         phys_addr_t buffer_iomem_phys;
426         void __iomem *buff_ptr;
427         phys_addr_t buff_ptr_phys;
428         void __iomem *dst_chain_addr[MCPU_MAX_CHAINS_PER_IO];
429         void *src_chain_addr[MCPU_MAX_CHAINS_PER_IO];
430         phys_addr_t dst_addr_phys;
431         MPI2RequestHeader_t *request_hdr;
432         struct scsi_cmnd *scmd;
433         struct scatterlist *sg_scmd = NULL;
434         int is_scsiio_req = 0;
435
436         request_hdr = (MPI2RequestHeader_t *) mpi_request;
437
438         if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) {
439                 Mpi25SCSIIORequest_t *scsiio_request =
440                         (Mpi25SCSIIORequest_t *)mpi_request;
441                 sgel = (Mpi2SGESimple32_t *) &scsiio_request->SGL;
442                 is_scsiio_req = 1;
443         } else if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
444                 Mpi2ConfigRequest_t  *config_req =
445                         (Mpi2ConfigRequest_t *)mpi_request;
446                 sgel = (Mpi2SGESimple32_t *) &config_req->PageBufferSGE;
447         } else
448                 return;
449
450         /* From smid we can get scsi_cmd, once we have sg_scmd,
451          * we just need to get sg_virt and sg_next to get virtual
452          * address associated with sgel->Address.
453          */
454
455         if (is_scsiio_req) {
456                 /* Get scsi_cmd using smid */
457                 scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
458                 if (scmd == NULL) {
459                         ioc_err(ioc, "scmd is NULL\n");
460                         return;
461                 }
462
463                 /* Get sg_scmd from scmd provided */
464                 sg_scmd = scsi_sglist(scmd);
465         }
466
467         /*
468          * 0 - 255      System register
469          * 256 - 4352   MPI Frame. (This is based on maxCredit 32)
470          * 4352 - 4864  Reply_free pool (512 byte is reserved
471          *              considering maxCredit 32. Reply need extra
472          *              room, for mCPU case kept four times of
473          *              maxCredit).
474          * 4864 - 17152 SGE chain element. (32cmd * 3 chain of
475          *              128 byte size = 12288)
476          * 17152 - x    Host buffer mapped with smid.
477          *              (Each smid can have 64K Max IO.)
478          * BAR0+Last 1K MSIX Addr and Data
479          * Total size in use 2113664 bytes of 4MB BAR0
480          */
481
482         buffer_iomem = _base_get_buffer_bar0(ioc, smid);
483         buffer_iomem_phys = _base_get_buffer_phys_bar0(ioc, smid);
484
485         buff_ptr = buffer_iomem;
486         buff_ptr_phys = buffer_iomem_phys;
487         WARN_ON(buff_ptr_phys > U32_MAX);
488
489         if (le32_to_cpu(sgel->FlagsLength) &
490                         (MPI2_SGE_FLAGS_HOST_TO_IOC << MPI2_SGE_FLAGS_SHIFT))
491                 is_write = true;
492
493         for (i = 0; i < MPT_MIN_PHYS_SEGMENTS + ioc->facts.MaxChainDepth; i++) {
494
495                 sgl_flags =
496                     (le32_to_cpu(sgel->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT);
497
498                 switch (sgl_flags & MPI2_SGE_FLAGS_ELEMENT_MASK) {
499                 case MPI2_SGE_FLAGS_CHAIN_ELEMENT:
500                         /*
501                          * Helper function which on passing
502                          * chain_buffer_dma returns chain_buffer. Get
503                          * the virtual address for sgel->Address
504                          */
505                         sgel_next =
506                                 _base_get_chain_buffer_dma_to_chain_buffer(ioc,
507                                                 le32_to_cpu(sgel->Address));
508                         if (sgel_next == NULL)
509                                 return;
510                         /*
511                          * This is coping 128 byte chain
512                          * frame (not a host buffer)
513                          */
514                         dst_chain_addr[sge_chain_count] =
515                                 _base_get_chain(ioc,
516                                         smid, sge_chain_count);
517                         src_chain_addr[sge_chain_count] =
518                                                 (void *) sgel_next;
519                         dst_addr_phys = _base_get_chain_phys(ioc,
520                                                 smid, sge_chain_count);
521                         WARN_ON(dst_addr_phys > U32_MAX);
522                         sgel->Address =
523                                 cpu_to_le32(lower_32_bits(dst_addr_phys));
524                         sgel = sgel_next;
525                         sge_chain_count++;
526                         break;
527                 case MPI2_SGE_FLAGS_SIMPLE_ELEMENT:
528                         if (is_write) {
529                                 if (is_scsiio_req) {
530                                         _base_clone_to_sys_mem(buff_ptr,
531                                             sg_virt(sg_scmd),
532                                             (le32_to_cpu(sgel->FlagsLength) &
533                                             0x00ffffff));
534                                         /*
535                                          * FIXME: this relies on a a zero
536                                          * PCI mem_offset.
537                                          */
538                                         sgel->Address =
539                                             cpu_to_le32((u32)buff_ptr_phys);
540                                 } else {
541                                         _base_clone_to_sys_mem(buff_ptr,
542                                             ioc->config_vaddr,
543                                             (le32_to_cpu(sgel->FlagsLength) &
544                                             0x00ffffff));
545                                         sgel->Address =
546                                             cpu_to_le32((u32)buff_ptr_phys);
547                                 }
548                         }
549                         buff_ptr += (le32_to_cpu(sgel->FlagsLength) &
550                             0x00ffffff);
551                         buff_ptr_phys += (le32_to_cpu(sgel->FlagsLength) &
552                             0x00ffffff);
553                         if ((le32_to_cpu(sgel->FlagsLength) &
554                             (MPI2_SGE_FLAGS_END_OF_BUFFER
555                                         << MPI2_SGE_FLAGS_SHIFT)))
556                                 goto eob_clone_chain;
557                         else {
558                                 /*
559                                  * Every single element in MPT will have
560                                  * associated sg_next. Better to sanity that
561                                  * sg_next is not NULL, but it will be a bug
562                                  * if it is null.
563                                  */
564                                 if (is_scsiio_req) {
565                                         sg_scmd = sg_next(sg_scmd);
566                                         if (sg_scmd)
567                                                 sgel++;
568                                         else
569                                                 goto eob_clone_chain;
570                                 }
571                         }
572                         break;
573                 }
574         }
575
576 eob_clone_chain:
577         for (i = 0; i < sge_chain_count; i++) {
578                 if (is_scsiio_req)
579                         _base_clone_to_sys_mem(dst_chain_addr[i],
580                                 src_chain_addr[i], ioc->request_sz);
581         }
582 }
583
584 /**
585  *  mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
586  * @arg: input argument, used to derive ioc
587  *
588  * Return:
589  * 0 if controller is removed from pci subsystem.
590  * -1 for other case.
591  */
592 static int mpt3sas_remove_dead_ioc_func(void *arg)
593 {
594         struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
595         struct pci_dev *pdev;
596
597         if (!ioc)
598                 return -1;
599
600         pdev = ioc->pdev;
601         if (!pdev)
602                 return -1;
603         pci_stop_and_remove_bus_device_locked(pdev);
604         return 0;
605 }
606
607 /**
608  * _base_sync_drv_fw_timestamp - Sync Drive-Fw TimeStamp.
609  * @ioc: Per Adapter Object
610  *
611  * Return: nothing.
612  */
613 static void _base_sync_drv_fw_timestamp(struct MPT3SAS_ADAPTER *ioc)
614 {
615         Mpi26IoUnitControlRequest_t *mpi_request;
616         Mpi26IoUnitControlReply_t *mpi_reply;
617         u16 smid;
618         ktime_t current_time;
619         u64 TimeStamp = 0;
620         u8 issue_reset = 0;
621
622         mutex_lock(&ioc->scsih_cmds.mutex);
623         if (ioc->scsih_cmds.status != MPT3_CMD_NOT_USED) {
624                 ioc_err(ioc, "scsih_cmd in use %s\n", __func__);
625                 goto out;
626         }
627         ioc->scsih_cmds.status = MPT3_CMD_PENDING;
628         smid = mpt3sas_base_get_smid(ioc, ioc->scsih_cb_idx);
629         if (!smid) {
630                 ioc_err(ioc, "Failed obtaining a smid %s\n", __func__);
631                 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
632                 goto out;
633         }
634         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
635         ioc->scsih_cmds.smid = smid;
636         memset(mpi_request, 0, sizeof(Mpi26IoUnitControlRequest_t));
637         mpi_request->Function = MPI2_FUNCTION_IO_UNIT_CONTROL;
638         mpi_request->Operation = MPI26_CTRL_OP_SET_IOC_PARAMETER;
639         mpi_request->IOCParameter = MPI26_SET_IOC_PARAMETER_SYNC_TIMESTAMP;
640         current_time = ktime_get_real();
641         TimeStamp = ktime_to_ms(current_time);
642         mpi_request->Reserved7 = cpu_to_le32(TimeStamp & 0xFFFFFFFF);
643         mpi_request->IOCParameterValue = cpu_to_le32(TimeStamp >> 32);
644         init_completion(&ioc->scsih_cmds.done);
645         ioc->put_smid_default(ioc, smid);
646         dinitprintk(ioc, ioc_info(ioc,
647             "Io Unit Control Sync TimeStamp (sending), @time %lld ms\n",
648             TimeStamp));
649         wait_for_completion_timeout(&ioc->scsih_cmds.done,
650                 MPT3SAS_TIMESYNC_TIMEOUT_SECONDS*HZ);
651         if (!(ioc->scsih_cmds.status & MPT3_CMD_COMPLETE)) {
652                 mpt3sas_check_cmd_timeout(ioc,
653                     ioc->scsih_cmds.status, mpi_request,
654                     sizeof(Mpi2SasIoUnitControlRequest_t)/4, issue_reset);
655                 goto issue_host_reset;
656         }
657         if (ioc->scsih_cmds.status & MPT3_CMD_REPLY_VALID) {
658                 mpi_reply = ioc->scsih_cmds.reply;
659                 dinitprintk(ioc, ioc_info(ioc,
660                     "Io Unit Control sync timestamp (complete): ioc_status(0x%04x), loginfo(0x%08x)\n",
661                     le16_to_cpu(mpi_reply->IOCStatus),
662                     le32_to_cpu(mpi_reply->IOCLogInfo)));
663         }
664 issue_host_reset:
665         if (issue_reset)
666                 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
667         ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
668 out:
669         mutex_unlock(&ioc->scsih_cmds.mutex);
670 }
671
672 /**
673  * _base_fault_reset_work - workq handling ioc fault conditions
674  * @work: input argument, used to derive ioc
675  *
676  * Context: sleep.
677  */
678 static void
679 _base_fault_reset_work(struct work_struct *work)
680 {
681         struct MPT3SAS_ADAPTER *ioc =
682             container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
683         unsigned long    flags;
684         u32 doorbell;
685         int rc;
686         struct task_struct *p;
687
688
689         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
690         if ((ioc->shost_recovery && (ioc->ioc_coredump_loop == 0)) ||
691                         ioc->pci_error_recovery)
692                 goto rearm_timer;
693         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
694
695         doorbell = mpt3sas_base_get_iocstate(ioc, 0);
696         if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
697                 ioc_err(ioc, "SAS host is non-operational !!!!\n");
698
699                 /* It may be possible that EEH recovery can resolve some of
700                  * pci bus failure issues rather removing the dead ioc function
701                  * by considering controller is in a non-operational state. So
702                  * here priority is given to the EEH recovery. If it doesn't
703                  * not resolve this issue, mpt3sas driver will consider this
704                  * controller to non-operational state and remove the dead ioc
705                  * function.
706                  */
707                 if (ioc->non_operational_loop++ < 5) {
708                         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock,
709                                                          flags);
710                         goto rearm_timer;
711                 }
712
713                 /*
714                  * Call _scsih_flush_pending_cmds callback so that we flush all
715                  * pending commands back to OS. This call is required to avoid
716                  * deadlock at block layer. Dead IOC will fail to do diag reset,
717                  * and this call is safe since dead ioc will never return any
718                  * command back from HW.
719                  */
720                 mpt3sas_base_pause_mq_polling(ioc);
721                 ioc->schedule_dead_ioc_flush_running_cmds(ioc);
722                 /*
723                  * Set remove_host flag early since kernel thread will
724                  * take some time to execute.
725                  */
726                 ioc->remove_host = 1;
727                 /*Remove the Dead Host */
728                 p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
729                     "%s_dead_ioc_%d", ioc->driver_name, ioc->id);
730                 if (IS_ERR(p))
731                         ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
732                                 __func__);
733                 else
734                         ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread success !!!!\n",
735                                 __func__);
736                 return; /* don't rearm timer */
737         }
738
739         if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
740                 u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ?
741                     ioc->manu_pg11.CoreDumpTOSec :
742                     MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
743
744                 timeout /= (FAULT_POLLING_INTERVAL/1000);
745
746                 if (ioc->ioc_coredump_loop == 0) {
747                         mpt3sas_print_coredump_info(ioc,
748                             doorbell & MPI2_DOORBELL_DATA_MASK);
749                         /* do not accept any IOs and disable the interrupts */
750                         spin_lock_irqsave(
751                             &ioc->ioc_reset_in_progress_lock, flags);
752                         ioc->shost_recovery = 1;
753                         spin_unlock_irqrestore(
754                             &ioc->ioc_reset_in_progress_lock, flags);
755                         mpt3sas_base_mask_interrupts(ioc);
756                         mpt3sas_base_pause_mq_polling(ioc);
757                         _base_clear_outstanding_commands(ioc);
758                 }
759
760                 ioc_info(ioc, "%s: CoreDump loop %d.",
761                     __func__, ioc->ioc_coredump_loop);
762
763                 /* Wait until CoreDump completes or times out */
764                 if (ioc->ioc_coredump_loop++ < timeout) {
765                         spin_lock_irqsave(
766                             &ioc->ioc_reset_in_progress_lock, flags);
767                         goto rearm_timer;
768                 }
769         }
770
771         if (ioc->ioc_coredump_loop) {
772                 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_COREDUMP)
773                         ioc_err(ioc, "%s: CoreDump completed. LoopCount: %d",
774                             __func__, ioc->ioc_coredump_loop);
775                 else
776                         ioc_err(ioc, "%s: CoreDump Timed out. LoopCount: %d",
777                             __func__, ioc->ioc_coredump_loop);
778                 ioc->ioc_coredump_loop = MPT3SAS_COREDUMP_LOOP_DONE;
779         }
780         ioc->non_operational_loop = 0;
781         if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
782                 rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
783                 ioc_warn(ioc, "%s: hard reset: %s\n",
784                          __func__, rc == 0 ? "success" : "failed");
785                 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
786                 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
787                         mpt3sas_print_fault_code(ioc, doorbell &
788                             MPI2_DOORBELL_DATA_MASK);
789                 } else if ((doorbell & MPI2_IOC_STATE_MASK) ==
790                     MPI2_IOC_STATE_COREDUMP)
791                         mpt3sas_print_coredump_info(ioc, doorbell &
792                             MPI2_DOORBELL_DATA_MASK);
793                 if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
794                     MPI2_IOC_STATE_OPERATIONAL)
795                         return; /* don't rearm timer */
796         }
797         ioc->ioc_coredump_loop = 0;
798         if (ioc->time_sync_interval &&
799             ++ioc->timestamp_update_count >= ioc->time_sync_interval) {
800                 ioc->timestamp_update_count = 0;
801                 _base_sync_drv_fw_timestamp(ioc);
802         }
803         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
804  rearm_timer:
805         if (ioc->fault_reset_work_q)
806                 queue_delayed_work(ioc->fault_reset_work_q,
807                     &ioc->fault_reset_work,
808                     msecs_to_jiffies(FAULT_POLLING_INTERVAL));
809         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
810 }
811
812 /**
813  * mpt3sas_base_start_watchdog - start the fault_reset_work_q
814  * @ioc: per adapter object
815  *
816  * Context: sleep.
817  */
818 void
819 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
820 {
821         unsigned long    flags;
822
823         if (ioc->fault_reset_work_q)
824                 return;
825
826         ioc->timestamp_update_count = 0;
827         /* initialize fault polling */
828
829         INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
830         snprintf(ioc->fault_reset_work_q_name,
831             sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status",
832             ioc->driver_name, ioc->id);
833         ioc->fault_reset_work_q =
834                 create_singlethread_workqueue(ioc->fault_reset_work_q_name);
835         if (!ioc->fault_reset_work_q) {
836                 ioc_err(ioc, "%s: failed (line=%d)\n", __func__, __LINE__);
837                 return;
838         }
839         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
840         if (ioc->fault_reset_work_q)
841                 queue_delayed_work(ioc->fault_reset_work_q,
842                     &ioc->fault_reset_work,
843                     msecs_to_jiffies(FAULT_POLLING_INTERVAL));
844         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
845 }
846
847 /**
848  * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
849  * @ioc: per adapter object
850  *
851  * Context: sleep.
852  */
853 void
854 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
855 {
856         unsigned long flags;
857         struct workqueue_struct *wq;
858
859         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
860         wq = ioc->fault_reset_work_q;
861         ioc->fault_reset_work_q = NULL;
862         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
863         if (wq) {
864                 if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
865                         flush_workqueue(wq);
866                 destroy_workqueue(wq);
867         }
868 }
869
870 /**
871  * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
872  * @ioc: per adapter object
873  * @fault_code: fault code
874  */
875 void
876 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code)
877 {
878         ioc_err(ioc, "fault_state(0x%04x)!\n", fault_code);
879 }
880
881 /**
882  * mpt3sas_base_coredump_info - verbose translation of firmware CoreDump state
883  * @ioc: per adapter object
884  * @fault_code: fault code
885  *
886  * Return: nothing.
887  */
888 void
889 mpt3sas_base_coredump_info(struct MPT3SAS_ADAPTER *ioc, u16 fault_code)
890 {
891         ioc_err(ioc, "coredump_state(0x%04x)!\n", fault_code);
892 }
893
894 /**
895  * mpt3sas_base_wait_for_coredump_completion - Wait until coredump
896  * completes or times out
897  * @ioc: per adapter object
898  * @caller: caller function name
899  *
900  * Return: 0 for success, non-zero for failure.
901  */
902 int
903 mpt3sas_base_wait_for_coredump_completion(struct MPT3SAS_ADAPTER *ioc,
904                 const char *caller)
905 {
906         u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ?
907                         ioc->manu_pg11.CoreDumpTOSec :
908                         MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
909
910         int ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_FAULT,
911                                         timeout);
912
913         if (ioc_state)
914                 ioc_err(ioc,
915                     "%s: CoreDump timed out. (ioc_state=0x%x)\n",
916                     caller, ioc_state);
917         else
918                 ioc_info(ioc,
919                     "%s: CoreDump completed. (ioc_state=0x%x)\n",
920                     caller, ioc_state);
921
922         return ioc_state;
923 }
924
925 /**
926  * mpt3sas_halt_firmware - halt's mpt controller firmware
927  * @ioc: per adapter object
928  *
929  * For debugging timeout related issues.  Writing 0xCOFFEE00
930  * to the doorbell register will halt controller firmware. With
931  * the purpose to stop both driver and firmware, the enduser can
932  * obtain a ring buffer from controller UART.
933  */
934 void
935 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
936 {
937         u32 doorbell;
938
939         if (!ioc->fwfault_debug)
940                 return;
941
942         dump_stack();
943
944         doorbell = ioc->base_readl(&ioc->chip->Doorbell);
945         if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
946                 mpt3sas_print_fault_code(ioc, doorbell &
947                     MPI2_DOORBELL_DATA_MASK);
948         } else if ((doorbell & MPI2_IOC_STATE_MASK) ==
949             MPI2_IOC_STATE_COREDUMP) {
950                 mpt3sas_print_coredump_info(ioc, doorbell &
951                     MPI2_DOORBELL_DATA_MASK);
952         } else {
953                 writel(0xC0FFEE00, &ioc->chip->Doorbell);
954                 ioc_err(ioc, "Firmware is halted due to command timeout\n");
955         }
956
957         if (ioc->fwfault_debug == 2)
958                 for (;;)
959                         ;
960         else
961                 panic("panic in %s\n", __func__);
962 }
963
964 /**
965  * _base_sas_ioc_info - verbose translation of the ioc status
966  * @ioc: per adapter object
967  * @mpi_reply: reply mf payload returned from firmware
968  * @request_hdr: request mf
969  */
970 static void
971 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
972         MPI2RequestHeader_t *request_hdr)
973 {
974         u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
975             MPI2_IOCSTATUS_MASK;
976         char *desc = NULL;
977         u16 frame_sz;
978         char *func_str = NULL;
979
980         /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
981         if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
982             request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
983             request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
984                 return;
985
986         if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
987                 return;
988         /*
989          * Older Firmware version doesn't support driver trigger pages.
990          * So, skip displaying 'config invalid type' type
991          * of error message.
992          */
993         if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
994                 Mpi2ConfigRequest_t *rqst = (Mpi2ConfigRequest_t *)request_hdr;
995
996                 if ((rqst->ExtPageType ==
997                     MPI2_CONFIG_EXTPAGETYPE_DRIVER_PERSISTENT_TRIGGER) &&
998                     !(ioc->logging_level & MPT_DEBUG_CONFIG)) {
999                         return;
1000                 }
1001         }
1002
1003         switch (ioc_status) {
1004
1005 /****************************************************************************
1006 *  Common IOCStatus values for all replies
1007 ****************************************************************************/
1008
1009         case MPI2_IOCSTATUS_INVALID_FUNCTION:
1010                 desc = "invalid function";
1011                 break;
1012         case MPI2_IOCSTATUS_BUSY:
1013                 desc = "busy";
1014                 break;
1015         case MPI2_IOCSTATUS_INVALID_SGL:
1016                 desc = "invalid sgl";
1017                 break;
1018         case MPI2_IOCSTATUS_INTERNAL_ERROR:
1019                 desc = "internal error";
1020                 break;
1021         case MPI2_IOCSTATUS_INVALID_VPID:
1022                 desc = "invalid vpid";
1023                 break;
1024         case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
1025                 desc = "insufficient resources";
1026                 break;
1027         case MPI2_IOCSTATUS_INSUFFICIENT_POWER:
1028                 desc = "insufficient power";
1029                 break;
1030         case MPI2_IOCSTATUS_INVALID_FIELD:
1031                 desc = "invalid field";
1032                 break;
1033         case MPI2_IOCSTATUS_INVALID_STATE:
1034                 desc = "invalid state";
1035                 break;
1036         case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
1037                 desc = "op state not supported";
1038                 break;
1039
1040 /****************************************************************************
1041 *  Config IOCStatus values
1042 ****************************************************************************/
1043
1044         case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
1045                 desc = "config invalid action";
1046                 break;
1047         case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
1048                 desc = "config invalid type";
1049                 break;
1050         case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
1051                 desc = "config invalid page";
1052                 break;
1053         case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
1054                 desc = "config invalid data";
1055                 break;
1056         case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
1057                 desc = "config no defaults";
1058                 break;
1059         case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
1060                 desc = "config cant commit";
1061                 break;
1062
1063 /****************************************************************************
1064 *  SCSI IO Reply
1065 ****************************************************************************/
1066
1067         case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
1068         case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
1069         case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
1070         case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
1071         case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
1072         case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
1073         case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
1074         case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
1075         case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
1076         case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
1077         case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
1078         case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
1079                 break;
1080
1081 /****************************************************************************
1082 *  For use by SCSI Initiator and SCSI Target end-to-end data protection
1083 ****************************************************************************/
1084
1085         case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
1086                 desc = "eedp guard error";
1087                 break;
1088         case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
1089                 desc = "eedp ref tag error";
1090                 break;
1091         case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
1092                 desc = "eedp app tag error";
1093                 break;
1094
1095 /****************************************************************************
1096 *  SCSI Target values
1097 ****************************************************************************/
1098
1099         case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
1100                 desc = "target invalid io index";
1101                 break;
1102         case MPI2_IOCSTATUS_TARGET_ABORTED:
1103                 desc = "target aborted";
1104                 break;
1105         case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
1106                 desc = "target no conn retryable";
1107                 break;
1108         case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
1109                 desc = "target no connection";
1110                 break;
1111         case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
1112                 desc = "target xfer count mismatch";
1113                 break;
1114         case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
1115                 desc = "target data offset error";
1116                 break;
1117         case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
1118                 desc = "target too much write data";
1119                 break;
1120         case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
1121                 desc = "target iu too short";
1122                 break;
1123         case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
1124                 desc = "target ack nak timeout";
1125                 break;
1126         case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
1127                 desc = "target nak received";
1128                 break;
1129
1130 /****************************************************************************
1131 *  Serial Attached SCSI values
1132 ****************************************************************************/
1133
1134         case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
1135                 desc = "smp request failed";
1136                 break;
1137         case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
1138                 desc = "smp data overrun";
1139                 break;
1140
1141 /****************************************************************************
1142 *  Diagnostic Buffer Post / Diagnostic Release values
1143 ****************************************************************************/
1144
1145         case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
1146                 desc = "diagnostic released";
1147                 break;
1148         default:
1149                 break;
1150         }
1151
1152         if (!desc)
1153                 return;
1154
1155         switch (request_hdr->Function) {
1156         case MPI2_FUNCTION_CONFIG:
1157                 frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
1158                 func_str = "config_page";
1159                 break;
1160         case MPI2_FUNCTION_SCSI_TASK_MGMT:
1161                 frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
1162                 func_str = "task_mgmt";
1163                 break;
1164         case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
1165                 frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
1166                 func_str = "sas_iounit_ctl";
1167                 break;
1168         case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
1169                 frame_sz = sizeof(Mpi2SepRequest_t);
1170                 func_str = "enclosure";
1171                 break;
1172         case MPI2_FUNCTION_IOC_INIT:
1173                 frame_sz = sizeof(Mpi2IOCInitRequest_t);
1174                 func_str = "ioc_init";
1175                 break;
1176         case MPI2_FUNCTION_PORT_ENABLE:
1177                 frame_sz = sizeof(Mpi2PortEnableRequest_t);
1178                 func_str = "port_enable";
1179                 break;
1180         case MPI2_FUNCTION_SMP_PASSTHROUGH:
1181                 frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
1182                 func_str = "smp_passthru";
1183                 break;
1184         case MPI2_FUNCTION_NVME_ENCAPSULATED:
1185                 frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) +
1186                     ioc->sge_size;
1187                 func_str = "nvme_encapsulated";
1188                 break;
1189         default:
1190                 frame_sz = 32;
1191                 func_str = "unknown";
1192                 break;
1193         }
1194
1195         ioc_warn(ioc, "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
1196                  desc, ioc_status, request_hdr, func_str);
1197
1198         _debug_dump_mf(request_hdr, frame_sz/4);
1199 }
1200
1201 /**
1202  * _base_display_event_data - verbose translation of firmware asyn events
1203  * @ioc: per adapter object
1204  * @mpi_reply: reply mf payload returned from firmware
1205  */
1206 static void
1207 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
1208         Mpi2EventNotificationReply_t *mpi_reply)
1209 {
1210         char *desc = NULL;
1211         u16 event;
1212
1213         if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
1214                 return;
1215
1216         event = le16_to_cpu(mpi_reply->Event);
1217
1218         switch (event) {
1219         case MPI2_EVENT_LOG_DATA:
1220                 desc = "Log Data";
1221                 break;
1222         case MPI2_EVENT_STATE_CHANGE:
1223                 desc = "Status Change";
1224                 break;
1225         case MPI2_EVENT_HARD_RESET_RECEIVED:
1226                 desc = "Hard Reset Received";
1227                 break;
1228         case MPI2_EVENT_EVENT_CHANGE:
1229                 desc = "Event Change";
1230                 break;
1231         case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
1232                 desc = "Device Status Change";
1233                 break;
1234         case MPI2_EVENT_IR_OPERATION_STATUS:
1235                 if (!ioc->hide_ir_msg)
1236                         desc = "IR Operation Status";
1237                 break;
1238         case MPI2_EVENT_SAS_DISCOVERY:
1239         {
1240                 Mpi2EventDataSasDiscovery_t *event_data =
1241                     (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
1242                 ioc_info(ioc, "Discovery: (%s)",
1243                          event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED ?
1244                          "start" : "stop");
1245                 if (event_data->DiscoveryStatus)
1246                         pr_cont(" discovery_status(0x%08x)",
1247                             le32_to_cpu(event_data->DiscoveryStatus));
1248                 pr_cont("\n");
1249                 return;
1250         }
1251         case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
1252                 desc = "SAS Broadcast Primitive";
1253                 break;
1254         case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
1255                 desc = "SAS Init Device Status Change";
1256                 break;
1257         case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
1258                 desc = "SAS Init Table Overflow";
1259                 break;
1260         case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
1261                 desc = "SAS Topology Change List";
1262                 break;
1263         case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
1264                 desc = "SAS Enclosure Device Status Change";
1265                 break;
1266         case MPI2_EVENT_IR_VOLUME:
1267                 if (!ioc->hide_ir_msg)
1268                         desc = "IR Volume";
1269                 break;
1270         case MPI2_EVENT_IR_PHYSICAL_DISK:
1271                 if (!ioc->hide_ir_msg)
1272                         desc = "IR Physical Disk";
1273                 break;
1274         case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
1275                 if (!ioc->hide_ir_msg)
1276                         desc = "IR Configuration Change List";
1277                 break;
1278         case MPI2_EVENT_LOG_ENTRY_ADDED:
1279                 if (!ioc->hide_ir_msg)
1280                         desc = "Log Entry Added";
1281                 break;
1282         case MPI2_EVENT_TEMP_THRESHOLD:
1283                 desc = "Temperature Threshold";
1284                 break;
1285         case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION:
1286                 desc = "Cable Event";
1287                 break;
1288         case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR:
1289                 desc = "SAS Device Discovery Error";
1290                 break;
1291         case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE:
1292                 desc = "PCIE Device Status Change";
1293                 break;
1294         case MPI2_EVENT_PCIE_ENUMERATION:
1295         {
1296                 Mpi26EventDataPCIeEnumeration_t *event_data =
1297                         (Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData;
1298                 ioc_info(ioc, "PCIE Enumeration: (%s)",
1299                          event_data->ReasonCode == MPI26_EVENT_PCIE_ENUM_RC_STARTED ?
1300                          "start" : "stop");
1301                 if (event_data->EnumerationStatus)
1302                         pr_cont("enumeration_status(0x%08x)",
1303                                 le32_to_cpu(event_data->EnumerationStatus));
1304                 pr_cont("\n");
1305                 return;
1306         }
1307         case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST:
1308                 desc = "PCIE Topology Change List";
1309                 break;
1310         }
1311
1312         if (!desc)
1313                 return;
1314
1315         ioc_info(ioc, "%s\n", desc);
1316 }
1317
1318 /**
1319  * _base_sas_log_info - verbose translation of firmware log info
1320  * @ioc: per adapter object
1321  * @log_info: log info
1322  */
1323 static void
1324 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info)
1325 {
1326         union loginfo_type {
1327                 u32     loginfo;
1328                 struct {
1329                         u32     subcode:16;
1330                         u32     code:8;
1331                         u32     originator:4;
1332                         u32     bus_type:4;
1333                 } dw;
1334         };
1335         union loginfo_type sas_loginfo;
1336         char *originator_str = NULL;
1337
1338         sas_loginfo.loginfo = log_info;
1339         if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
1340                 return;
1341
1342         /* each nexus loss loginfo */
1343         if (log_info == 0x31170000)
1344                 return;
1345
1346         /* eat the loginfos associated with task aborts */
1347         if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
1348             0x31140000 || log_info == 0x31130000))
1349                 return;
1350
1351         switch (sas_loginfo.dw.originator) {
1352         case 0:
1353                 originator_str = "IOP";
1354                 break;
1355         case 1:
1356                 originator_str = "PL";
1357                 break;
1358         case 2:
1359                 if (!ioc->hide_ir_msg)
1360                         originator_str = "IR";
1361                 else
1362                         originator_str = "WarpDrive";
1363                 break;
1364         }
1365
1366         ioc_warn(ioc, "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
1367                  log_info,
1368                  originator_str, sas_loginfo.dw.code, sas_loginfo.dw.subcode);
1369 }
1370
1371 /**
1372  * _base_display_reply_info - handle reply descriptors depending on IOC Status
1373  * @ioc: per adapter object
1374  * @smid: system request message index
1375  * @msix_index: MSIX table index supplied by the OS
1376  * @reply: reply message frame (lower 32bit addr)
1377  */
1378 static void
1379 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1380         u32 reply)
1381 {
1382         MPI2DefaultReply_t *mpi_reply;
1383         u16 ioc_status;
1384         u32 loginfo = 0;
1385
1386         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1387         if (unlikely(!mpi_reply)) {
1388                 ioc_err(ioc, "mpi_reply not valid at %s:%d/%s()!\n",
1389                         __FILE__, __LINE__, __func__);
1390                 return;
1391         }
1392         ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
1393
1394         if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
1395             (ioc->logging_level & MPT_DEBUG_REPLY)) {
1396                 _base_sas_ioc_info(ioc , mpi_reply,
1397                    mpt3sas_base_get_msg_frame(ioc, smid));
1398         }
1399
1400         if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
1401                 loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
1402                 _base_sas_log_info(ioc, loginfo);
1403         }
1404
1405         if (ioc_status || loginfo) {
1406                 ioc_status &= MPI2_IOCSTATUS_MASK;
1407                 mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
1408         }
1409 }
1410
1411 /**
1412  * mpt3sas_base_done - base internal command completion routine
1413  * @ioc: per adapter object
1414  * @smid: system request message index
1415  * @msix_index: MSIX table index supplied by the OS
1416  * @reply: reply message frame(lower 32bit addr)
1417  *
1418  * Return:
1419  * 1 meaning mf should be freed from _base_interrupt
1420  * 0 means the mf is freed from this function.
1421  */
1422 u8
1423 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1424         u32 reply)
1425 {
1426         MPI2DefaultReply_t *mpi_reply;
1427
1428         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1429         if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
1430                 return mpt3sas_check_for_pending_internal_cmds(ioc, smid);
1431
1432         if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
1433                 return 1;
1434
1435         ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
1436         if (mpi_reply) {
1437                 ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
1438                 memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
1439         }
1440         ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
1441
1442         complete(&ioc->base_cmds.done);
1443         return 1;
1444 }
1445
1446 /**
1447  * _base_async_event - main callback handler for firmware asyn events
1448  * @ioc: per adapter object
1449  * @msix_index: MSIX table index supplied by the OS
1450  * @reply: reply message frame(lower 32bit addr)
1451  *
1452  * Return:
1453  * 1 meaning mf should be freed from _base_interrupt
1454  * 0 means the mf is freed from this function.
1455  */
1456 static u8
1457 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
1458 {
1459         Mpi2EventNotificationReply_t *mpi_reply;
1460         Mpi2EventAckRequest_t *ack_request;
1461         u16 smid;
1462         struct _event_ack_list *delayed_event_ack;
1463
1464         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1465         if (!mpi_reply)
1466                 return 1;
1467         if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
1468                 return 1;
1469
1470         _base_display_event_data(ioc, mpi_reply);
1471
1472         if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
1473                 goto out;
1474         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
1475         if (!smid) {
1476                 delayed_event_ack = kzalloc(sizeof(*delayed_event_ack),
1477                                         GFP_ATOMIC);
1478                 if (!delayed_event_ack)
1479                         goto out;
1480                 INIT_LIST_HEAD(&delayed_event_ack->list);
1481                 delayed_event_ack->Event = mpi_reply->Event;
1482                 delayed_event_ack->EventContext = mpi_reply->EventContext;
1483                 list_add_tail(&delayed_event_ack->list,
1484                                 &ioc->delayed_event_ack_list);
1485                 dewtprintk(ioc,
1486                            ioc_info(ioc, "DELAYED: EVENT ACK: event (0x%04x)\n",
1487                                     le16_to_cpu(mpi_reply->Event)));
1488                 goto out;
1489         }
1490
1491         ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
1492         memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
1493         ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
1494         ack_request->Event = mpi_reply->Event;
1495         ack_request->EventContext = mpi_reply->EventContext;
1496         ack_request->VF_ID = 0;  /* TODO */
1497         ack_request->VP_ID = 0;
1498         ioc->put_smid_default(ioc, smid);
1499
1500  out:
1501
1502         /* scsih callback handler */
1503         mpt3sas_scsih_event_callback(ioc, msix_index, reply);
1504
1505         /* ctl callback handler */
1506         mpt3sas_ctl_event_callback(ioc, msix_index, reply);
1507
1508         return 1;
1509 }
1510
1511 static struct scsiio_tracker *
1512 _get_st_from_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1513 {
1514         struct scsi_cmnd *cmd;
1515
1516         if (WARN_ON(!smid) ||
1517             WARN_ON(smid >= ioc->hi_priority_smid))
1518                 return NULL;
1519
1520         cmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
1521         if (cmd)
1522                 return scsi_cmd_priv(cmd);
1523
1524         return NULL;
1525 }
1526
1527 /**
1528  * _base_get_cb_idx - obtain the callback index
1529  * @ioc: per adapter object
1530  * @smid: system request message index
1531  *
1532  * Return: callback index.
1533  */
1534 static u8
1535 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1536 {
1537         int i;
1538         u16 ctl_smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1;
1539         u8 cb_idx = 0xFF;
1540
1541         if (smid < ioc->hi_priority_smid) {
1542                 struct scsiio_tracker *st;
1543
1544                 if (smid < ctl_smid) {
1545                         st = _get_st_from_smid(ioc, smid);
1546                         if (st)
1547                                 cb_idx = st->cb_idx;
1548                 } else if (smid == ctl_smid)
1549                         cb_idx = ioc->ctl_cb_idx;
1550         } else if (smid < ioc->internal_smid) {
1551                 i = smid - ioc->hi_priority_smid;
1552                 cb_idx = ioc->hpr_lookup[i].cb_idx;
1553         } else if (smid <= ioc->hba_queue_depth) {
1554                 i = smid - ioc->internal_smid;
1555                 cb_idx = ioc->internal_lookup[i].cb_idx;
1556         }
1557         return cb_idx;
1558 }
1559
1560 /**
1561  * mpt3sas_base_pause_mq_polling - pause polling on the mq poll queues
1562  *                              when driver is flushing out the IOs.
1563  * @ioc: per adapter object
1564  *
1565  * Pause polling on the mq poll (io uring) queues when driver is flushing
1566  * out the IOs. Otherwise we may see the race condition of completing the same
1567  * IO from two paths.
1568  *
1569  * Returns nothing.
1570  */
1571 void
1572 mpt3sas_base_pause_mq_polling(struct MPT3SAS_ADAPTER *ioc)
1573 {
1574         int iopoll_q_count =
1575             ioc->reply_queue_count - ioc->iopoll_q_start_index;
1576         int qid;
1577
1578         for (qid = 0; qid < iopoll_q_count; qid++)
1579                 atomic_set(&ioc->io_uring_poll_queues[qid].pause, 1);
1580
1581         /*
1582          * wait for current poll to complete.
1583          */
1584         for (qid = 0; qid < iopoll_q_count; qid++) {
1585                 while (atomic_read(&ioc->io_uring_poll_queues[qid].busy))
1586                         udelay(500);
1587         }
1588 }
1589
1590 /**
1591  * mpt3sas_base_resume_mq_polling - Resume polling on mq poll queues.
1592  * @ioc: per adapter object
1593  *
1594  * Returns nothing.
1595  */
1596 void
1597 mpt3sas_base_resume_mq_polling(struct MPT3SAS_ADAPTER *ioc)
1598 {
1599         int iopoll_q_count =
1600             ioc->reply_queue_count - ioc->iopoll_q_start_index;
1601         int qid;
1602
1603         for (qid = 0; qid < iopoll_q_count; qid++)
1604                 atomic_set(&ioc->io_uring_poll_queues[qid].pause, 0);
1605 }
1606
1607 /**
1608  * mpt3sas_base_mask_interrupts - disable interrupts
1609  * @ioc: per adapter object
1610  *
1611  * Disabling ResetIRQ, Reply and Doorbell Interrupts
1612  */
1613 void
1614 mpt3sas_base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1615 {
1616         u32 him_register;
1617
1618         ioc->mask_interrupts = 1;
1619         him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1620         him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
1621         writel(him_register, &ioc->chip->HostInterruptMask);
1622         ioc->base_readl(&ioc->chip->HostInterruptMask);
1623 }
1624
1625 /**
1626  * mpt3sas_base_unmask_interrupts - enable interrupts
1627  * @ioc: per adapter object
1628  *
1629  * Enabling only Reply Interrupts
1630  */
1631 void
1632 mpt3sas_base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1633 {
1634         u32 him_register;
1635
1636         him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1637         him_register &= ~MPI2_HIM_RIM;
1638         writel(him_register, &ioc->chip->HostInterruptMask);
1639         ioc->mask_interrupts = 0;
1640 }
1641
1642 union reply_descriptor {
1643         u64 word;
1644         struct {
1645                 u32 low;
1646                 u32 high;
1647         } u;
1648 };
1649
1650 static u32 base_mod64(u64 dividend, u32 divisor)
1651 {
1652         u32 remainder;
1653
1654         if (!divisor)
1655                 pr_err("mpt3sas: DIVISOR is zero, in div fn\n");
1656         remainder = do_div(dividend, divisor);
1657         return remainder;
1658 }
1659
1660 /**
1661  * _base_process_reply_queue - Process reply descriptors from reply
1662  *              descriptor post queue.
1663  * @reply_q: per IRQ's reply queue object.
1664  *
1665  * Return: number of reply descriptors processed from reply
1666  *              descriptor queue.
1667  */
1668 static int
1669 _base_process_reply_queue(struct adapter_reply_queue *reply_q)
1670 {
1671         union reply_descriptor rd;
1672         u64 completed_cmds;
1673         u8 request_descript_type;
1674         u16 smid;
1675         u8 cb_idx;
1676         u32 reply;
1677         u8 msix_index = reply_q->msix_index;
1678         struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1679         Mpi2ReplyDescriptorsUnion_t *rpf;
1680         u8 rc;
1681
1682         completed_cmds = 0;
1683         if (!atomic_add_unless(&reply_q->busy, 1, 1))
1684                 return completed_cmds;
1685
1686         rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
1687         request_descript_type = rpf->Default.ReplyFlags
1688              & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1689         if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
1690                 atomic_dec(&reply_q->busy);
1691                 return completed_cmds;
1692         }
1693
1694         cb_idx = 0xFF;
1695         do {
1696                 rd.word = le64_to_cpu(rpf->Words);
1697                 if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
1698                         goto out;
1699                 reply = 0;
1700                 smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
1701                 if (request_descript_type ==
1702                     MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
1703                     request_descript_type ==
1704                     MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS ||
1705                     request_descript_type ==
1706                     MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) {
1707                         cb_idx = _base_get_cb_idx(ioc, smid);
1708                         if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1709                             (likely(mpt_callbacks[cb_idx] != NULL))) {
1710                                 rc = mpt_callbacks[cb_idx](ioc, smid,
1711                                     msix_index, 0);
1712                                 if (rc)
1713                                         mpt3sas_base_free_smid(ioc, smid);
1714                         }
1715                 } else if (request_descript_type ==
1716                     MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
1717                         reply = le32_to_cpu(
1718                             rpf->AddressReply.ReplyFrameAddress);
1719                         if (reply > ioc->reply_dma_max_address ||
1720                             reply < ioc->reply_dma_min_address)
1721                                 reply = 0;
1722                         if (smid) {
1723                                 cb_idx = _base_get_cb_idx(ioc, smid);
1724                                 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1725                                     (likely(mpt_callbacks[cb_idx] != NULL))) {
1726                                         rc = mpt_callbacks[cb_idx](ioc, smid,
1727                                             msix_index, reply);
1728                                         if (reply)
1729                                                 _base_display_reply_info(ioc,
1730                                                     smid, msix_index, reply);
1731                                         if (rc)
1732                                                 mpt3sas_base_free_smid(ioc,
1733                                                     smid);
1734                                 }
1735                         } else {
1736                                 _base_async_event(ioc, msix_index, reply);
1737                         }
1738
1739                         /* reply free queue handling */
1740                         if (reply) {
1741                                 ioc->reply_free_host_index =
1742                                     (ioc->reply_free_host_index ==
1743                                     (ioc->reply_free_queue_depth - 1)) ?
1744                                     0 : ioc->reply_free_host_index + 1;
1745                                 ioc->reply_free[ioc->reply_free_host_index] =
1746                                     cpu_to_le32(reply);
1747                                 if (ioc->is_mcpu_endpoint)
1748                                         _base_clone_reply_to_sys_mem(ioc,
1749                                                 reply,
1750                                                 ioc->reply_free_host_index);
1751                                 writel(ioc->reply_free_host_index,
1752                                     &ioc->chip->ReplyFreeHostIndex);
1753                         }
1754                 }
1755
1756                 rpf->Words = cpu_to_le64(ULLONG_MAX);
1757                 reply_q->reply_post_host_index =
1758                     (reply_q->reply_post_host_index ==
1759                     (ioc->reply_post_queue_depth - 1)) ? 0 :
1760                     reply_q->reply_post_host_index + 1;
1761                 request_descript_type =
1762                     reply_q->reply_post_free[reply_q->reply_post_host_index].
1763                     Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1764                 completed_cmds++;
1765                 /* Update the reply post host index after continuously
1766                  * processing the threshold number of Reply Descriptors.
1767                  * So that FW can find enough entries to post the Reply
1768                  * Descriptors in the reply descriptor post queue.
1769                  */
1770                 if (completed_cmds >= ioc->thresh_hold) {
1771                         if (ioc->combined_reply_queue) {
1772                                 writel(reply_q->reply_post_host_index |
1773                                                 ((msix_index  & 7) <<
1774                                                  MPI2_RPHI_MSIX_INDEX_SHIFT),
1775                                     ioc->replyPostRegisterIndex[msix_index/8]);
1776                         } else {
1777                                 writel(reply_q->reply_post_host_index |
1778                                                 (msix_index <<
1779                                                  MPI2_RPHI_MSIX_INDEX_SHIFT),
1780                                                 &ioc->chip->ReplyPostHostIndex);
1781                         }
1782                         if (!reply_q->is_iouring_poll_q &&
1783                             !reply_q->irq_poll_scheduled) {
1784                                 reply_q->irq_poll_scheduled = true;
1785                                 irq_poll_sched(&reply_q->irqpoll);
1786                         }
1787                         atomic_dec(&reply_q->busy);
1788                         return completed_cmds;
1789                 }
1790                 if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1791                         goto out;
1792                 if (!reply_q->reply_post_host_index)
1793                         rpf = reply_q->reply_post_free;
1794                 else
1795                         rpf++;
1796         } while (1);
1797
1798  out:
1799
1800         if (!completed_cmds) {
1801                 atomic_dec(&reply_q->busy);
1802                 return completed_cmds;
1803         }
1804
1805         if (ioc->is_warpdrive) {
1806                 writel(reply_q->reply_post_host_index,
1807                 ioc->reply_post_host_index[msix_index]);
1808                 atomic_dec(&reply_q->busy);
1809                 return completed_cmds;
1810         }
1811
1812         /* Update Reply Post Host Index.
1813          * For those HBA's which support combined reply queue feature
1814          * 1. Get the correct Supplemental Reply Post Host Index Register.
1815          *    i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
1816          *    Index Register address bank i.e replyPostRegisterIndex[],
1817          * 2. Then update this register with new reply host index value
1818          *    in ReplyPostIndex field and the MSIxIndex field with
1819          *    msix_index value reduced to a value between 0 and 7,
1820          *    using a modulo 8 operation. Since each Supplemental Reply Post
1821          *    Host Index Register supports 8 MSI-X vectors.
1822          *
1823          * For other HBA's just update the Reply Post Host Index register with
1824          * new reply host index value in ReplyPostIndex Field and msix_index
1825          * value in MSIxIndex field.
1826          */
1827         if (ioc->combined_reply_queue)
1828                 writel(reply_q->reply_post_host_index | ((msix_index  & 7) <<
1829                         MPI2_RPHI_MSIX_INDEX_SHIFT),
1830                         ioc->replyPostRegisterIndex[msix_index/8]);
1831         else
1832                 writel(reply_q->reply_post_host_index | (msix_index <<
1833                         MPI2_RPHI_MSIX_INDEX_SHIFT),
1834                         &ioc->chip->ReplyPostHostIndex);
1835         atomic_dec(&reply_q->busy);
1836         return completed_cmds;
1837 }
1838
1839 /**
1840  * mpt3sas_blk_mq_poll - poll the blk mq poll queue
1841  * @shost: Scsi_Host object
1842  * @queue_num: hw ctx queue number
1843  *
1844  * Return number of entries that has been processed from poll queue.
1845  */
1846 int mpt3sas_blk_mq_poll(struct Scsi_Host *shost, unsigned int queue_num)
1847 {
1848         struct MPT3SAS_ADAPTER *ioc =
1849             (struct MPT3SAS_ADAPTER *)shost->hostdata;
1850         struct adapter_reply_queue *reply_q;
1851         int num_entries = 0;
1852         int qid = queue_num - ioc->iopoll_q_start_index;
1853
1854         if (atomic_read(&ioc->io_uring_poll_queues[qid].pause) ||
1855             !atomic_add_unless(&ioc->io_uring_poll_queues[qid].busy, 1, 1))
1856                 return 0;
1857
1858         reply_q = ioc->io_uring_poll_queues[qid].reply_q;
1859
1860         num_entries = _base_process_reply_queue(reply_q);
1861         atomic_dec(&ioc->io_uring_poll_queues[qid].busy);
1862
1863         return num_entries;
1864 }
1865
1866 /**
1867  * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
1868  * @irq: irq number (not used)
1869  * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
1870  *
1871  * Return: IRQ_HANDLED if processed, else IRQ_NONE.
1872  */
1873 static irqreturn_t
1874 _base_interrupt(int irq, void *bus_id)
1875 {
1876         struct adapter_reply_queue *reply_q = bus_id;
1877         struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1878
1879         if (ioc->mask_interrupts)
1880                 return IRQ_NONE;
1881         if (reply_q->irq_poll_scheduled)
1882                 return IRQ_HANDLED;
1883         return ((_base_process_reply_queue(reply_q) > 0) ?
1884                         IRQ_HANDLED : IRQ_NONE);
1885 }
1886
1887 /**
1888  * _base_irqpoll - IRQ poll callback handler
1889  * @irqpoll: irq_poll object
1890  * @budget: irq poll weight
1891  *
1892  * Return: number of reply descriptors processed
1893  */
1894 static int
1895 _base_irqpoll(struct irq_poll *irqpoll, int budget)
1896 {
1897         struct adapter_reply_queue *reply_q;
1898         int num_entries = 0;
1899
1900         reply_q = container_of(irqpoll, struct adapter_reply_queue,
1901                         irqpoll);
1902         if (reply_q->irq_line_enable) {
1903                 disable_irq_nosync(reply_q->os_irq);
1904                 reply_q->irq_line_enable = false;
1905         }
1906         num_entries = _base_process_reply_queue(reply_q);
1907         if (num_entries < budget) {
1908                 irq_poll_complete(irqpoll);
1909                 reply_q->irq_poll_scheduled = false;
1910                 reply_q->irq_line_enable = true;
1911                 enable_irq(reply_q->os_irq);
1912                 /*
1913                  * Go for one more round of processing the
1914                  * reply descriptor post queue in case the HBA
1915                  * Firmware has posted some reply descriptors
1916                  * while reenabling the IRQ.
1917                  */
1918                 _base_process_reply_queue(reply_q);
1919         }
1920
1921         return num_entries;
1922 }
1923
1924 /**
1925  * _base_init_irqpolls - initliaze IRQ polls
1926  * @ioc: per adapter object
1927  *
1928  * Return: nothing
1929  */
1930 static void
1931 _base_init_irqpolls(struct MPT3SAS_ADAPTER *ioc)
1932 {
1933         struct adapter_reply_queue *reply_q, *next;
1934
1935         if (list_empty(&ioc->reply_queue_list))
1936                 return;
1937
1938         list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
1939                 if (reply_q->is_iouring_poll_q)
1940                         continue;
1941                 irq_poll_init(&reply_q->irqpoll,
1942                         ioc->hba_queue_depth/4, _base_irqpoll);
1943                 reply_q->irq_poll_scheduled = false;
1944                 reply_q->irq_line_enable = true;
1945                 reply_q->os_irq = pci_irq_vector(ioc->pdev,
1946                     reply_q->msix_index);
1947         }
1948 }
1949
1950 /**
1951  * _base_is_controller_msix_enabled - is controller support muli-reply queues
1952  * @ioc: per adapter object
1953  *
1954  * Return: Whether or not MSI/X is enabled.
1955  */
1956 static inline int
1957 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1958 {
1959         return (ioc->facts.IOCCapabilities &
1960             MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1961 }
1962
1963 /**
1964  * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts
1965  * @ioc: per adapter object
1966  * @poll: poll over reply descriptor pools incase interrupt for
1967  *              timed-out SCSI command got delayed
1968  * Context: non-ISR context
1969  *
1970  * Called when a Task Management request has completed.
1971  */
1972 void
1973 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc, u8 poll)
1974 {
1975         struct adapter_reply_queue *reply_q;
1976
1977         /* If MSIX capability is turned off
1978          * then multi-queues are not enabled
1979          */
1980         if (!_base_is_controller_msix_enabled(ioc))
1981                 return;
1982
1983         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1984                 if (ioc->shost_recovery || ioc->remove_host ||
1985                                 ioc->pci_error_recovery)
1986                         return;
1987                 /* TMs are on msix_index == 0 */
1988                 if (reply_q->msix_index == 0)
1989                         continue;
1990
1991                 if (reply_q->is_iouring_poll_q) {
1992                         _base_process_reply_queue(reply_q);
1993                         continue;
1994                 }
1995
1996                 synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index));
1997                 if (reply_q->irq_poll_scheduled) {
1998                         /* Calling irq_poll_disable will wait for any pending
1999                          * callbacks to have completed.
2000                          */
2001                         irq_poll_disable(&reply_q->irqpoll);
2002                         irq_poll_enable(&reply_q->irqpoll);
2003                         /* check how the scheduled poll has ended,
2004                          * clean up only if necessary
2005                          */
2006                         if (reply_q->irq_poll_scheduled) {
2007                                 reply_q->irq_poll_scheduled = false;
2008                                 reply_q->irq_line_enable = true;
2009                                 enable_irq(reply_q->os_irq);
2010                         }
2011                 }
2012         }
2013         if (poll)
2014                 _base_process_reply_queue(reply_q);
2015 }
2016
2017 /**
2018  * mpt3sas_base_release_callback_handler - clear interrupt callback handler
2019  * @cb_idx: callback index
2020  */
2021 void
2022 mpt3sas_base_release_callback_handler(u8 cb_idx)
2023 {
2024         mpt_callbacks[cb_idx] = NULL;
2025 }
2026
2027 /**
2028  * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
2029  * @cb_func: callback function
2030  *
2031  * Return: Index of @cb_func.
2032  */
2033 u8
2034 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
2035 {
2036         u8 cb_idx;
2037
2038         for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
2039                 if (mpt_callbacks[cb_idx] == NULL)
2040                         break;
2041
2042         mpt_callbacks[cb_idx] = cb_func;
2043         return cb_idx;
2044 }
2045
2046 /**
2047  * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
2048  */
2049 void
2050 mpt3sas_base_initialize_callback_handler(void)
2051 {
2052         u8 cb_idx;
2053
2054         for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
2055                 mpt3sas_base_release_callback_handler(cb_idx);
2056 }
2057
2058
2059 /**
2060  * _base_build_zero_len_sge - build zero length sg entry
2061  * @ioc: per adapter object
2062  * @paddr: virtual address for SGE
2063  *
2064  * Create a zero length scatter gather entry to insure the IOCs hardware has
2065  * something to use if the target device goes brain dead and tries
2066  * to send data even when none is asked for.
2067  */
2068 static void
2069 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
2070 {
2071         u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
2072             MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
2073             MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
2074             MPI2_SGE_FLAGS_SHIFT);
2075         ioc->base_add_sg_single(paddr, flags_length, -1);
2076 }
2077
2078 /**
2079  * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
2080  * @paddr: virtual address for SGE
2081  * @flags_length: SGE flags and data transfer length
2082  * @dma_addr: Physical address
2083  */
2084 static void
2085 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
2086 {
2087         Mpi2SGESimple32_t *sgel = paddr;
2088
2089         flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
2090             MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
2091         sgel->FlagsLength = cpu_to_le32(flags_length);
2092         sgel->Address = cpu_to_le32(dma_addr);
2093 }
2094
2095
2096 /**
2097  * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
2098  * @paddr: virtual address for SGE
2099  * @flags_length: SGE flags and data transfer length
2100  * @dma_addr: Physical address
2101  */
2102 static void
2103 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
2104 {
2105         Mpi2SGESimple64_t *sgel = paddr;
2106
2107         flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
2108             MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
2109         sgel->FlagsLength = cpu_to_le32(flags_length);
2110         sgel->Address = cpu_to_le64(dma_addr);
2111 }
2112
2113 /**
2114  * _base_get_chain_buffer_tracker - obtain chain tracker
2115  * @ioc: per adapter object
2116  * @scmd: SCSI commands of the IO request
2117  *
2118  * Return: chain tracker from chain_lookup table using key as
2119  * smid and smid's chain_offset.
2120  */
2121 static struct chain_tracker *
2122 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc,
2123                                struct scsi_cmnd *scmd)
2124 {
2125         struct chain_tracker *chain_req;
2126         struct scsiio_tracker *st = scsi_cmd_priv(scmd);
2127         u16 smid = st->smid;
2128         u8 chain_offset =
2129            atomic_read(&ioc->chain_lookup[smid - 1].chain_offset);
2130
2131         if (chain_offset == ioc->chains_needed_per_io)
2132                 return NULL;
2133
2134         chain_req = &ioc->chain_lookup[smid - 1].chains_per_smid[chain_offset];
2135         atomic_inc(&ioc->chain_lookup[smid - 1].chain_offset);
2136         return chain_req;
2137 }
2138
2139
2140 /**
2141  * _base_build_sg - build generic sg
2142  * @ioc: per adapter object
2143  * @psge: virtual address for SGE
2144  * @data_out_dma: physical address for WRITES
2145  * @data_out_sz: data xfer size for WRITES
2146  * @data_in_dma: physical address for READS
2147  * @data_in_sz: data xfer size for READS
2148  */
2149 static void
2150 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
2151         dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2152         size_t data_in_sz)
2153 {
2154         u32 sgl_flags;
2155
2156         if (!data_out_sz && !data_in_sz) {
2157                 _base_build_zero_len_sge(ioc, psge);
2158                 return;
2159         }
2160
2161         if (data_out_sz && data_in_sz) {
2162                 /* WRITE sgel first */
2163                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2164                     MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
2165                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2166                 ioc->base_add_sg_single(psge, sgl_flags |
2167                     data_out_sz, data_out_dma);
2168
2169                 /* incr sgel */
2170                 psge += ioc->sge_size;
2171
2172                 /* READ sgel last */
2173                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2174                     MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2175                     MPI2_SGE_FLAGS_END_OF_LIST);
2176                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2177                 ioc->base_add_sg_single(psge, sgl_flags |
2178                     data_in_sz, data_in_dma);
2179         } else if (data_out_sz) /* WRITE */ {
2180                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2181                     MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2182                     MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
2183                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2184                 ioc->base_add_sg_single(psge, sgl_flags |
2185                     data_out_sz, data_out_dma);
2186         } else if (data_in_sz) /* READ */ {
2187                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2188                     MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2189                     MPI2_SGE_FLAGS_END_OF_LIST);
2190                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2191                 ioc->base_add_sg_single(psge, sgl_flags |
2192                     data_in_sz, data_in_dma);
2193         }
2194 }
2195
2196 /* IEEE format sgls */
2197
2198 /**
2199  * _base_build_nvme_prp - This function is called for NVMe end devices to build
2200  *                        a native SGL (NVMe PRP).
2201  * @ioc: per adapter object
2202  * @smid: system request message index for getting asscociated SGL
2203  * @nvme_encap_request: the NVMe request msg frame pointer
2204  * @data_out_dma: physical address for WRITES
2205  * @data_out_sz: data xfer size for WRITES
2206  * @data_in_dma: physical address for READS
2207  * @data_in_sz: data xfer size for READS
2208  *
2209  * The native SGL is built starting in the first PRP
2210  * entry of the NVMe message (PRP1).  If the data buffer is small enough to be
2211  * described entirely using PRP1, then PRP2 is not used.  If needed, PRP2 is
2212  * used to describe a larger data buffer.  If the data buffer is too large to
2213  * describe using the two PRP entriess inside the NVMe message, then PRP1
2214  * describes the first data memory segment, and PRP2 contains a pointer to a PRP
2215  * list located elsewhere in memory to describe the remaining data memory
2216  * segments.  The PRP list will be contiguous.
2217  *
2218  * The native SGL for NVMe devices is a Physical Region Page (PRP).  A PRP
2219  * consists of a list of PRP entries to describe a number of noncontigous
2220  * physical memory segments as a single memory buffer, just as a SGL does.  Note
2221  * however, that this function is only used by the IOCTL call, so the memory
2222  * given will be guaranteed to be contiguous.  There is no need to translate
2223  * non-contiguous SGL into a PRP in this case.  All PRPs will describe
2224  * contiguous space that is one page size each.
2225  *
2226  * Each NVMe message contains two PRP entries.  The first (PRP1) either contains
2227  * a PRP list pointer or a PRP element, depending upon the command.  PRP2
2228  * contains the second PRP element if the memory being described fits within 2
2229  * PRP entries, or a PRP list pointer if the PRP spans more than two entries.
2230  *
2231  * A PRP list pointer contains the address of a PRP list, structured as a linear
2232  * array of PRP entries.  Each PRP entry in this list describes a segment of
2233  * physical memory.
2234  *
2235  * Each 64-bit PRP entry comprises an address and an offset field.  The address
2236  * always points at the beginning of a 4KB physical memory page, and the offset
2237  * describes where within that 4KB page the memory segment begins.  Only the
2238  * first element in a PRP list may contain a non-zero offset, implying that all
2239  * memory segments following the first begin at the start of a 4KB page.
2240  *
2241  * Each PRP element normally describes 4KB of physical memory, with exceptions
2242  * for the first and last elements in the list.  If the memory being described
2243  * by the list begins at a non-zero offset within the first 4KB page, then the
2244  * first PRP element will contain a non-zero offset indicating where the region
2245  * begins within the 4KB page.  The last memory segment may end before the end
2246  * of the 4KB segment, depending upon the overall size of the memory being
2247  * described by the PRP list.
2248  *
2249  * Since PRP entries lack any indication of size, the overall data buffer length
2250  * is used to determine where the end of the data memory buffer is located, and
2251  * how many PRP entries are required to describe it.
2252  */
2253 static void
2254 _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2255         Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request,
2256         dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2257         size_t data_in_sz)
2258 {
2259         int             prp_size = NVME_PRP_SIZE;
2260         __le64          *prp_entry, *prp1_entry, *prp2_entry;
2261         __le64          *prp_page;
2262         dma_addr_t      prp_entry_dma, prp_page_dma, dma_addr;
2263         u32             offset, entry_len;
2264         u32             page_mask_result, page_mask;
2265         size_t          length;
2266         struct mpt3sas_nvme_cmd *nvme_cmd =
2267                 (void *)nvme_encap_request->NVMe_Command;
2268
2269         /*
2270          * Not all commands require a data transfer. If no data, just return
2271          * without constructing any PRP.
2272          */
2273         if (!data_in_sz && !data_out_sz)
2274                 return;
2275         prp1_entry = &nvme_cmd->prp1;
2276         prp2_entry = &nvme_cmd->prp2;
2277         prp_entry = prp1_entry;
2278         /*
2279          * For the PRP entries, use the specially allocated buffer of
2280          * contiguous memory.
2281          */
2282         prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid);
2283         prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2284
2285         /*
2286          * Check if we are within 1 entry of a page boundary we don't
2287          * want our first entry to be a PRP List entry.
2288          */
2289         page_mask = ioc->page_size - 1;
2290         page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask;
2291         if (!page_mask_result) {
2292                 /* Bump up to next page boundary. */
2293                 prp_page = (__le64 *)((u8 *)prp_page + prp_size);
2294                 prp_page_dma = prp_page_dma + prp_size;
2295         }
2296
2297         /*
2298          * Set PRP physical pointer, which initially points to the current PRP
2299          * DMA memory page.
2300          */
2301         prp_entry_dma = prp_page_dma;
2302
2303         /* Get physical address and length of the data buffer. */
2304         if (data_in_sz) {
2305                 dma_addr = data_in_dma;
2306                 length = data_in_sz;
2307         } else {
2308                 dma_addr = data_out_dma;
2309                 length = data_out_sz;
2310         }
2311
2312         /* Loop while the length is not zero. */
2313         while (length) {
2314                 /*
2315                  * Check if we need to put a list pointer here if we are at
2316                  * page boundary - prp_size (8 bytes).
2317                  */
2318                 page_mask_result = (prp_entry_dma + prp_size) & page_mask;
2319                 if (!page_mask_result) {
2320                         /*
2321                          * This is the last entry in a PRP List, so we need to
2322                          * put a PRP list pointer here.  What this does is:
2323                          *   - bump the current memory pointer to the next
2324                          *     address, which will be the next full page.
2325                          *   - set the PRP Entry to point to that page.  This
2326                          *     is now the PRP List pointer.
2327                          *   - bump the PRP Entry pointer the start of the
2328                          *     next page.  Since all of this PRP memory is
2329                          *     contiguous, no need to get a new page - it's
2330                          *     just the next address.
2331                          */
2332                         prp_entry_dma++;
2333                         *prp_entry = cpu_to_le64(prp_entry_dma);
2334                         prp_entry++;
2335                 }
2336
2337                 /* Need to handle if entry will be part of a page. */
2338                 offset = dma_addr & page_mask;
2339                 entry_len = ioc->page_size - offset;
2340
2341                 if (prp_entry == prp1_entry) {
2342                         /*
2343                          * Must fill in the first PRP pointer (PRP1) before
2344                          * moving on.
2345                          */
2346                         *prp1_entry = cpu_to_le64(dma_addr);
2347
2348                         /*
2349                          * Now point to the second PRP entry within the
2350                          * command (PRP2).
2351                          */
2352                         prp_entry = prp2_entry;
2353                 } else if (prp_entry == prp2_entry) {
2354                         /*
2355                          * Should the PRP2 entry be a PRP List pointer or just
2356                          * a regular PRP pointer?  If there is more than one
2357                          * more page of data, must use a PRP List pointer.
2358                          */
2359                         if (length > ioc->page_size) {
2360                                 /*
2361                                  * PRP2 will contain a PRP List pointer because
2362                                  * more PRP's are needed with this command. The
2363                                  * list will start at the beginning of the
2364                                  * contiguous buffer.
2365                                  */
2366                                 *prp2_entry = cpu_to_le64(prp_entry_dma);
2367
2368                                 /*
2369                                  * The next PRP Entry will be the start of the
2370                                  * first PRP List.
2371                                  */
2372                                 prp_entry = prp_page;
2373                         } else {
2374                                 /*
2375                                  * After this, the PRP Entries are complete.
2376                                  * This command uses 2 PRP's and no PRP list.
2377                                  */
2378                                 *prp2_entry = cpu_to_le64(dma_addr);
2379                         }
2380                 } else {
2381                         /*
2382                          * Put entry in list and bump the addresses.
2383                          *
2384                          * After PRP1 and PRP2 are filled in, this will fill in
2385                          * all remaining PRP entries in a PRP List, one per
2386                          * each time through the loop.
2387                          */
2388                         *prp_entry = cpu_to_le64(dma_addr);
2389                         prp_entry++;
2390                         prp_entry_dma++;
2391                 }
2392
2393                 /*
2394                  * Bump the phys address of the command's data buffer by the
2395                  * entry_len.
2396                  */
2397                 dma_addr += entry_len;
2398
2399                 /* Decrement length accounting for last partial page. */
2400                 if (entry_len > length)
2401                         length = 0;
2402                 else
2403                         length -= entry_len;
2404         }
2405 }
2406
2407 /**
2408  * base_make_prp_nvme - Prepare PRPs (Physical Region Page) -
2409  *                      SGLs specific to NVMe drives only
2410  *
2411  * @ioc:                per adapter object
2412  * @scmd:               SCSI command from the mid-layer
2413  * @mpi_request:        mpi request
2414  * @smid:               msg Index
2415  * @sge_count:          scatter gather element count.
2416  *
2417  * Return:              true: PRPs are built
2418  *                      false: IEEE SGLs needs to be built
2419  */
2420 static void
2421 base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc,
2422                 struct scsi_cmnd *scmd,
2423                 Mpi25SCSIIORequest_t *mpi_request,
2424                 u16 smid, int sge_count)
2425 {
2426         int sge_len, num_prp_in_chain = 0;
2427         Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl;
2428         __le64 *curr_buff;
2429         dma_addr_t msg_dma, sge_addr, offset;
2430         u32 page_mask, page_mask_result;
2431         struct scatterlist *sg_scmd;
2432         u32 first_prp_len;
2433         int data_len = scsi_bufflen(scmd);
2434         u32 nvme_pg_size;
2435
2436         nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE);
2437         /*
2438          * Nvme has a very convoluted prp format.  One prp is required
2439          * for each page or partial page. Driver need to split up OS sg_list
2440          * entries if it is longer than one page or cross a page
2441          * boundary.  Driver also have to insert a PRP list pointer entry as
2442          * the last entry in each physical page of the PRP list.
2443          *
2444          * NOTE: The first PRP "entry" is actually placed in the first
2445          * SGL entry in the main message as IEEE 64 format.  The 2nd
2446          * entry in the main message is the chain element, and the rest
2447          * of the PRP entries are built in the contiguous pcie buffer.
2448          */
2449         page_mask = nvme_pg_size - 1;
2450
2451         /*
2452          * Native SGL is needed.
2453          * Put a chain element in main message frame that points to the first
2454          * chain buffer.
2455          *
2456          * NOTE:  The ChainOffset field must be 0 when using a chain pointer to
2457          *        a native SGL.
2458          */
2459
2460         /* Set main message chain element pointer */
2461         main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2462         /*
2463          * For NVMe the chain element needs to be the 2nd SG entry in the main
2464          * message.
2465          */
2466         main_chain_element = (Mpi25IeeeSgeChain64_t *)
2467                 ((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64));
2468
2469         /*
2470          * For the PRP entries, use the specially allocated buffer of
2471          * contiguous memory.  Normal chain buffers can't be used
2472          * because each chain buffer would need to be the size of an OS
2473          * page (4k).
2474          */
2475         curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid);
2476         msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2477
2478         main_chain_element->Address = cpu_to_le64(msg_dma);
2479         main_chain_element->NextChainOffset = 0;
2480         main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2481                         MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2482                         MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP;
2483
2484         /* Build first prp, sge need not to be page aligned*/
2485         ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2486         sg_scmd = scsi_sglist(scmd);
2487         sge_addr = sg_dma_address(sg_scmd);
2488         sge_len = sg_dma_len(sg_scmd);
2489
2490         offset = sge_addr & page_mask;
2491         first_prp_len = nvme_pg_size - offset;
2492
2493         ptr_first_sgl->Address = cpu_to_le64(sge_addr);
2494         ptr_first_sgl->Length = cpu_to_le32(first_prp_len);
2495
2496         data_len -= first_prp_len;
2497
2498         if (sge_len > first_prp_len) {
2499                 sge_addr += first_prp_len;
2500                 sge_len -= first_prp_len;
2501         } else if (data_len && (sge_len == first_prp_len)) {
2502                 sg_scmd = sg_next(sg_scmd);
2503                 sge_addr = sg_dma_address(sg_scmd);
2504                 sge_len = sg_dma_len(sg_scmd);
2505         }
2506
2507         for (;;) {
2508                 offset = sge_addr & page_mask;
2509
2510                 /* Put PRP pointer due to page boundary*/
2511                 page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask;
2512                 if (unlikely(!page_mask_result)) {
2513                         scmd_printk(KERN_NOTICE,
2514                                 scmd, "page boundary curr_buff: 0x%p\n",
2515                                 curr_buff);
2516                         msg_dma += 8;
2517                         *curr_buff = cpu_to_le64(msg_dma);
2518                         curr_buff++;
2519                         num_prp_in_chain++;
2520                 }
2521
2522                 *curr_buff = cpu_to_le64(sge_addr);
2523                 curr_buff++;
2524                 msg_dma += 8;
2525                 num_prp_in_chain++;
2526
2527                 sge_addr += nvme_pg_size;
2528                 sge_len -= nvme_pg_size;
2529                 data_len -= nvme_pg_size;
2530
2531                 if (data_len <= 0)
2532                         break;
2533
2534                 if (sge_len > 0)
2535                         continue;
2536
2537                 sg_scmd = sg_next(sg_scmd);
2538                 sge_addr = sg_dma_address(sg_scmd);
2539                 sge_len = sg_dma_len(sg_scmd);
2540         }
2541
2542         main_chain_element->Length =
2543                 cpu_to_le32(num_prp_in_chain * sizeof(u64));
2544         return;
2545 }
2546
2547 static bool
2548 base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc,
2549         struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count)
2550 {
2551         u32 data_length = 0;
2552         bool build_prp = true;
2553
2554         data_length = scsi_bufflen(scmd);
2555         if (pcie_device &&
2556             (mpt3sas_scsih_is_pcie_scsi_device(pcie_device->device_info))) {
2557                 build_prp = false;
2558                 return build_prp;
2559         }
2560
2561         /* If Datalenth is <= 16K and number of SGE’s entries are <= 2
2562          * we built IEEE SGL
2563          */
2564         if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2))
2565                 build_prp = false;
2566
2567         return build_prp;
2568 }
2569
2570 /**
2571  * _base_check_pcie_native_sgl - This function is called for PCIe end devices to
2572  * determine if the driver needs to build a native SGL.  If so, that native
2573  * SGL is built in the special contiguous buffers allocated especially for
2574  * PCIe SGL creation.  If the driver will not build a native SGL, return
2575  * TRUE and a normal IEEE SGL will be built.  Currently this routine
2576  * supports NVMe.
2577  * @ioc: per adapter object
2578  * @mpi_request: mf request pointer
2579  * @smid: system request message index
2580  * @scmd: scsi command
2581  * @pcie_device: points to the PCIe device's info
2582  *
2583  * Return: 0 if native SGL was built, 1 if no SGL was built
2584  */
2585 static int
2586 _base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc,
2587         Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd,
2588         struct _pcie_device *pcie_device)
2589 {
2590         int sges_left;
2591
2592         /* Get the SG list pointer and info. */
2593         sges_left = scsi_dma_map(scmd);
2594         if (sges_left < 0) {
2595                 sdev_printk(KERN_ERR, scmd->device,
2596                         "scsi_dma_map failed: request for %d bytes!\n",
2597                         scsi_bufflen(scmd));
2598                 return 1;
2599         }
2600
2601         /* Check if we need to build a native SG list. */
2602         if (!base_is_prp_possible(ioc, pcie_device,
2603                                 scmd, sges_left)) {
2604                 /* We built a native SG list, just return. */
2605                 goto out;
2606         }
2607
2608         /*
2609          * Build native NVMe PRP.
2610          */
2611         base_make_prp_nvme(ioc, scmd, mpi_request,
2612                         smid, sges_left);
2613
2614         return 0;
2615 out:
2616         scsi_dma_unmap(scmd);
2617         return 1;
2618 }
2619
2620 /**
2621  * _base_add_sg_single_ieee - add sg element for IEEE format
2622  * @paddr: virtual address for SGE
2623  * @flags: SGE flags
2624  * @chain_offset: number of 128 byte elements from start of segment
2625  * @length: data transfer length
2626  * @dma_addr: Physical address
2627  */
2628 static void
2629 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
2630         dma_addr_t dma_addr)
2631 {
2632         Mpi25IeeeSgeChain64_t *sgel = paddr;
2633
2634         sgel->Flags = flags;
2635         sgel->NextChainOffset = chain_offset;
2636         sgel->Length = cpu_to_le32(length);
2637         sgel->Address = cpu_to_le64(dma_addr);
2638 }
2639
2640 /**
2641  * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
2642  * @ioc: per adapter object
2643  * @paddr: virtual address for SGE
2644  *
2645  * Create a zero length scatter gather entry to insure the IOCs hardware has
2646  * something to use if the target device goes brain dead and tries
2647  * to send data even when none is asked for.
2648  */
2649 static void
2650 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
2651 {
2652         u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2653                 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2654                 MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
2655
2656         _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
2657 }
2658
2659 /**
2660  * _base_build_sg_scmd - main sg creation routine
2661  *              pcie_device is unused here!
2662  * @ioc: per adapter object
2663  * @scmd: scsi command
2664  * @smid: system request message index
2665  * @unused: unused pcie_device pointer
2666  * Context: none.
2667  *
2668  * The main routine that builds scatter gather table from a given
2669  * scsi request sent via the .queuecommand main handler.
2670  *
2671  * Return: 0 success, anything else error
2672  */
2673 static int
2674 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
2675         struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused)
2676 {
2677         Mpi2SCSIIORequest_t *mpi_request;
2678         dma_addr_t chain_dma;
2679         struct scatterlist *sg_scmd;
2680         void *sg_local, *chain;
2681         u32 chain_offset;
2682         u32 chain_length;
2683         u32 chain_flags;
2684         int sges_left;
2685         u32 sges_in_segment;
2686         u32 sgl_flags;
2687         u32 sgl_flags_last_element;
2688         u32 sgl_flags_end_buffer;
2689         struct chain_tracker *chain_req;
2690
2691         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2692
2693         /* init scatter gather flags */
2694         sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT;
2695         if (scmd->sc_data_direction == DMA_TO_DEVICE)
2696                 sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
2697         sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT)
2698             << MPI2_SGE_FLAGS_SHIFT;
2699         sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT |
2700             MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST)
2701             << MPI2_SGE_FLAGS_SHIFT;
2702         sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2703
2704         sg_scmd = scsi_sglist(scmd);
2705         sges_left = scsi_dma_map(scmd);
2706         if (sges_left < 0) {
2707                 sdev_printk(KERN_ERR, scmd->device,
2708                  "scsi_dma_map failed: request for %d bytes!\n",
2709                  scsi_bufflen(scmd));
2710                 return -ENOMEM;
2711         }
2712
2713         sg_local = &mpi_request->SGL;
2714         sges_in_segment = ioc->max_sges_in_main_message;
2715         if (sges_left <= sges_in_segment)
2716                 goto fill_in_last_segment;
2717
2718         mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) +
2719             (sges_in_segment * ioc->sge_size))/4;
2720
2721         /* fill in main message segment when there is a chain following */
2722         while (sges_in_segment) {
2723                 if (sges_in_segment == 1)
2724                         ioc->base_add_sg_single(sg_local,
2725                             sgl_flags_last_element | sg_dma_len(sg_scmd),
2726                             sg_dma_address(sg_scmd));
2727                 else
2728                         ioc->base_add_sg_single(sg_local, sgl_flags |
2729                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2730                 sg_scmd = sg_next(sg_scmd);
2731                 sg_local += ioc->sge_size;
2732                 sges_left--;
2733                 sges_in_segment--;
2734         }
2735
2736         /* initializing the chain flags and pointers */
2737         chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT;
2738         chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2739         if (!chain_req)
2740                 return -1;
2741         chain = chain_req->chain_buffer;
2742         chain_dma = chain_req->chain_buffer_dma;
2743         do {
2744                 sges_in_segment = (sges_left <=
2745                     ioc->max_sges_in_chain_message) ? sges_left :
2746                     ioc->max_sges_in_chain_message;
2747                 chain_offset = (sges_left == sges_in_segment) ?
2748                     0 : (sges_in_segment * ioc->sge_size)/4;
2749                 chain_length = sges_in_segment * ioc->sge_size;
2750                 if (chain_offset) {
2751                         chain_offset = chain_offset <<
2752                             MPI2_SGE_CHAIN_OFFSET_SHIFT;
2753                         chain_length += ioc->sge_size;
2754                 }
2755                 ioc->base_add_sg_single(sg_local, chain_flags | chain_offset |
2756                     chain_length, chain_dma);
2757                 sg_local = chain;
2758                 if (!chain_offset)
2759                         goto fill_in_last_segment;
2760
2761                 /* fill in chain segments */
2762                 while (sges_in_segment) {
2763                         if (sges_in_segment == 1)
2764                                 ioc->base_add_sg_single(sg_local,
2765                                     sgl_flags_last_element |
2766                                     sg_dma_len(sg_scmd),
2767                                     sg_dma_address(sg_scmd));
2768                         else
2769                                 ioc->base_add_sg_single(sg_local, sgl_flags |
2770                                     sg_dma_len(sg_scmd),
2771                                     sg_dma_address(sg_scmd));
2772                         sg_scmd = sg_next(sg_scmd);
2773                         sg_local += ioc->sge_size;
2774                         sges_left--;
2775                         sges_in_segment--;
2776                 }
2777
2778                 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2779                 if (!chain_req)
2780                         return -1;
2781                 chain = chain_req->chain_buffer;
2782                 chain_dma = chain_req->chain_buffer_dma;
2783         } while (1);
2784
2785
2786  fill_in_last_segment:
2787
2788         /* fill the last segment */
2789         while (sges_left) {
2790                 if (sges_left == 1)
2791                         ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer |
2792                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2793                 else
2794                         ioc->base_add_sg_single(sg_local, sgl_flags |
2795                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2796                 sg_scmd = sg_next(sg_scmd);
2797                 sg_local += ioc->sge_size;
2798                 sges_left--;
2799         }
2800
2801         return 0;
2802 }
2803
2804 /**
2805  * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
2806  * @ioc: per adapter object
2807  * @scmd: scsi command
2808  * @smid: system request message index
2809  * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be
2810  * constructed on need.
2811  * Context: none.
2812  *
2813  * The main routine that builds scatter gather table from a given
2814  * scsi request sent via the .queuecommand main handler.
2815  *
2816  * Return: 0 success, anything else error
2817  */
2818 static int
2819 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
2820         struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device)
2821 {
2822         Mpi25SCSIIORequest_t *mpi_request;
2823         dma_addr_t chain_dma;
2824         struct scatterlist *sg_scmd;
2825         void *sg_local, *chain;
2826         u32 chain_offset;
2827         u32 chain_length;
2828         int sges_left;
2829         u32 sges_in_segment;
2830         u8 simple_sgl_flags;
2831         u8 simple_sgl_flags_last;
2832         u8 chain_sgl_flags;
2833         struct chain_tracker *chain_req;
2834
2835         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2836
2837         /* init scatter gather flags */
2838         simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2839             MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2840         simple_sgl_flags_last = simple_sgl_flags |
2841             MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2842         chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2843             MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2844
2845         /* Check if we need to build a native SG list. */
2846         if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request,
2847                         smid, scmd, pcie_device) == 0)) {
2848                 /* We built a native SG list, just return. */
2849                 return 0;
2850         }
2851
2852         sg_scmd = scsi_sglist(scmd);
2853         sges_left = scsi_dma_map(scmd);
2854         if (sges_left < 0) {
2855                 sdev_printk(KERN_ERR, scmd->device,
2856                         "scsi_dma_map failed: request for %d bytes!\n",
2857                         scsi_bufflen(scmd));
2858                 return -ENOMEM;
2859         }
2860
2861         sg_local = &mpi_request->SGL;
2862         sges_in_segment = (ioc->request_sz -
2863                    offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
2864         if (sges_left <= sges_in_segment)
2865                 goto fill_in_last_segment;
2866
2867         mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
2868             (offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
2869
2870         /* fill in main message segment when there is a chain following */
2871         while (sges_in_segment > 1) {
2872                 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2873                     sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2874                 sg_scmd = sg_next(sg_scmd);
2875                 sg_local += ioc->sge_size_ieee;
2876                 sges_left--;
2877                 sges_in_segment--;
2878         }
2879
2880         /* initializing the pointers */
2881         chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2882         if (!chain_req)
2883                 return -1;
2884         chain = chain_req->chain_buffer;
2885         chain_dma = chain_req->chain_buffer_dma;
2886         do {
2887                 sges_in_segment = (sges_left <=
2888                     ioc->max_sges_in_chain_message) ? sges_left :
2889                     ioc->max_sges_in_chain_message;
2890                 chain_offset = (sges_left == sges_in_segment) ?
2891                     0 : sges_in_segment;
2892                 chain_length = sges_in_segment * ioc->sge_size_ieee;
2893                 if (chain_offset)
2894                         chain_length += ioc->sge_size_ieee;
2895                 _base_add_sg_single_ieee(sg_local, chain_sgl_flags,
2896                     chain_offset, chain_length, chain_dma);
2897
2898                 sg_local = chain;
2899                 if (!chain_offset)
2900                         goto fill_in_last_segment;
2901
2902                 /* fill in chain segments */
2903                 while (sges_in_segment) {
2904                         _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2905                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2906                         sg_scmd = sg_next(sg_scmd);
2907                         sg_local += ioc->sge_size_ieee;
2908                         sges_left--;
2909                         sges_in_segment--;
2910                 }
2911
2912                 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2913                 if (!chain_req)
2914                         return -1;
2915                 chain = chain_req->chain_buffer;
2916                 chain_dma = chain_req->chain_buffer_dma;
2917         } while (1);
2918
2919
2920  fill_in_last_segment:
2921
2922         /* fill the last segment */
2923         while (sges_left > 0) {
2924                 if (sges_left == 1)
2925                         _base_add_sg_single_ieee(sg_local,
2926                             simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
2927                             sg_dma_address(sg_scmd));
2928                 else
2929                         _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2930                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2931                 sg_scmd = sg_next(sg_scmd);
2932                 sg_local += ioc->sge_size_ieee;
2933                 sges_left--;
2934         }
2935
2936         return 0;
2937 }
2938
2939 /**
2940  * _base_build_sg_ieee - build generic sg for IEEE format
2941  * @ioc: per adapter object
2942  * @psge: virtual address for SGE
2943  * @data_out_dma: physical address for WRITES
2944  * @data_out_sz: data xfer size for WRITES
2945  * @data_in_dma: physical address for READS
2946  * @data_in_sz: data xfer size for READS
2947  */
2948 static void
2949 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
2950         dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2951         size_t data_in_sz)
2952 {
2953         u8 sgl_flags;
2954
2955         if (!data_out_sz && !data_in_sz) {
2956                 _base_build_zero_len_sge_ieee(ioc, psge);
2957                 return;
2958         }
2959
2960         if (data_out_sz && data_in_sz) {
2961                 /* WRITE sgel first */
2962                 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2963                     MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2964                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2965                     data_out_dma);
2966
2967                 /* incr sgel */
2968                 psge += ioc->sge_size_ieee;
2969
2970                 /* READ sgel last */
2971                 sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2972                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2973                     data_in_dma);
2974         } else if (data_out_sz) /* WRITE */ {
2975                 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2976                     MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2977                     MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2978                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2979                     data_out_dma);
2980         } else if (data_in_sz) /* READ */ {
2981                 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2982                     MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2983                     MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2984                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2985                     data_in_dma);
2986         }
2987 }
2988
2989 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
2990
2991 /**
2992  * _base_config_dma_addressing - set dma addressing
2993  * @ioc: per adapter object
2994  * @pdev: PCI device struct
2995  *
2996  * Return: 0 for success, non-zero for failure.
2997  */
2998 static int
2999 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
3000 {
3001         struct sysinfo s;
3002
3003         if (ioc->is_mcpu_endpoint ||
3004             sizeof(dma_addr_t) == 4 || ioc->use_32bit_dma ||
3005             dma_get_required_mask(&pdev->dev) <= 32)
3006                 ioc->dma_mask = 32;
3007         /* Set 63 bit DMA mask for all SAS3 and SAS35 controllers */
3008         else if (ioc->hba_mpi_version_belonged > MPI2_VERSION)
3009                 ioc->dma_mask = 63;
3010         else
3011                 ioc->dma_mask = 64;
3012
3013         if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(ioc->dma_mask)) ||
3014             dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(ioc->dma_mask)))
3015                 return -ENODEV;
3016
3017         if (ioc->dma_mask > 32) {
3018                 ioc->base_add_sg_single = &_base_add_sg_single_64;
3019                 ioc->sge_size = sizeof(Mpi2SGESimple64_t);
3020         } else {
3021                 ioc->base_add_sg_single = &_base_add_sg_single_32;
3022                 ioc->sge_size = sizeof(Mpi2SGESimple32_t);
3023         }
3024
3025         si_meminfo(&s);
3026         ioc_info(ioc, "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
3027                 ioc->dma_mask, convert_to_kb(s.totalram));
3028
3029         return 0;
3030 }
3031
3032 /**
3033  * _base_check_enable_msix - checks MSIX capabable.
3034  * @ioc: per adapter object
3035  *
3036  * Check to see if card is capable of MSIX, and set number
3037  * of available msix vectors
3038  */
3039 static int
3040 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
3041 {
3042         int base;
3043         u16 message_control;
3044
3045         /* Check whether controller SAS2008 B0 controller,
3046          * if it is SAS2008 B0 controller use IO-APIC instead of MSIX
3047          */
3048         if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 &&
3049             ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) {
3050                 return -EINVAL;
3051         }
3052
3053         base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
3054         if (!base) {
3055                 dfailprintk(ioc, ioc_info(ioc, "msix not supported\n"));
3056                 return -EINVAL;
3057         }
3058
3059         /* get msix vector count */
3060         /* NUMA_IO not supported for older controllers */
3061         if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 ||
3062             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 ||
3063             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 ||
3064             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 ||
3065             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 ||
3066             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 ||
3067             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2)
3068                 ioc->msix_vector_count = 1;
3069         else {
3070                 pci_read_config_word(ioc->pdev, base + 2, &message_control);
3071                 ioc->msix_vector_count = (message_control & 0x3FF) + 1;
3072         }
3073         dinitprintk(ioc, ioc_info(ioc, "msix is supported, vector_count(%d)\n",
3074                                   ioc->msix_vector_count));
3075         return 0;
3076 }
3077
3078 /**
3079  * mpt3sas_base_free_irq - free irq
3080  * @ioc: per adapter object
3081  *
3082  * Freeing respective reply_queue from the list.
3083  */
3084 void
3085 mpt3sas_base_free_irq(struct MPT3SAS_ADAPTER *ioc)
3086 {
3087         struct adapter_reply_queue *reply_q, *next;
3088
3089         if (list_empty(&ioc->reply_queue_list))
3090                 return;
3091
3092         list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
3093                 list_del(&reply_q->list);
3094                 if (reply_q->is_iouring_poll_q) {
3095                         kfree(reply_q);
3096                         continue;
3097                 }
3098
3099                 if (ioc->smp_affinity_enable)
3100                         irq_set_affinity_hint(pci_irq_vector(ioc->pdev,
3101                             reply_q->msix_index), NULL);
3102                 free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index),
3103                          reply_q);
3104                 kfree(reply_q);
3105         }
3106 }
3107
3108 /**
3109  * _base_request_irq - request irq
3110  * @ioc: per adapter object
3111  * @index: msix index into vector table
3112  *
3113  * Inserting respective reply_queue into the list.
3114  */
3115 static int
3116 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index)
3117 {
3118         struct pci_dev *pdev = ioc->pdev;
3119         struct adapter_reply_queue *reply_q;
3120         int r, qid;
3121
3122         reply_q =  kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
3123         if (!reply_q) {
3124                 ioc_err(ioc, "unable to allocate memory %zu!\n",
3125                         sizeof(struct adapter_reply_queue));
3126                 return -ENOMEM;
3127         }
3128         reply_q->ioc = ioc;
3129         reply_q->msix_index = index;
3130
3131         atomic_set(&reply_q->busy, 0);
3132
3133         if (index >= ioc->iopoll_q_start_index) {
3134                 qid = index - ioc->iopoll_q_start_index;
3135                 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-mq-poll%d",
3136                     ioc->driver_name, ioc->id, qid);
3137                 reply_q->is_iouring_poll_q = 1;
3138                 ioc->io_uring_poll_queues[qid].reply_q = reply_q;
3139                 goto out;
3140         }
3141
3142
3143         if (ioc->msix_enable)
3144                 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
3145                     ioc->driver_name, ioc->id, index);
3146         else
3147                 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
3148                     ioc->driver_name, ioc->id);
3149         r = request_irq(pci_irq_vector(pdev, index), _base_interrupt,
3150                         IRQF_SHARED, reply_q->name, reply_q);
3151         if (r) {
3152                 pr_err("%s: unable to allocate interrupt %d!\n",
3153                        reply_q->name, pci_irq_vector(pdev, index));
3154                 kfree(reply_q);
3155                 return -EBUSY;
3156         }
3157 out:
3158         INIT_LIST_HEAD(&reply_q->list);
3159         list_add_tail(&reply_q->list, &ioc->reply_queue_list);
3160         return 0;
3161 }
3162
3163 /**
3164  * _base_assign_reply_queues - assigning msix index for each cpu
3165  * @ioc: per adapter object
3166  *
3167  * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
3168  *
3169  * It would nice if we could call irq_set_affinity, however it is not
3170  * an exported symbol
3171  */
3172 static void
3173 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
3174 {
3175         unsigned int cpu, nr_cpus, nr_msix, index = 0;
3176         struct adapter_reply_queue *reply_q;
3177         int local_numa_node;
3178         int iopoll_q_count = ioc->reply_queue_count -
3179             ioc->iopoll_q_start_index;
3180
3181         if (!_base_is_controller_msix_enabled(ioc))
3182                 return;
3183
3184         if (ioc->msix_load_balance)
3185                 return;
3186
3187         memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
3188
3189         nr_cpus = num_online_cpus();
3190         nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
3191                                                ioc->facts.MaxMSIxVectors);
3192         if (!nr_msix)
3193                 return;
3194
3195         if (ioc->smp_affinity_enable) {
3196
3197                 /*
3198                  * set irq affinity to local numa node for those irqs
3199                  * corresponding to high iops queues.
3200                  */
3201                 if (ioc->high_iops_queues) {
3202                         local_numa_node = dev_to_node(&ioc->pdev->dev);
3203                         for (index = 0; index < ioc->high_iops_queues;
3204                             index++) {
3205                                 irq_set_affinity_hint(pci_irq_vector(ioc->pdev,
3206                                     index), cpumask_of_node(local_numa_node));
3207                         }
3208                 }
3209
3210                 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3211                         const cpumask_t *mask;
3212
3213                         if (reply_q->msix_index < ioc->high_iops_queues ||
3214                             reply_q->msix_index >= ioc->iopoll_q_start_index)
3215                                 continue;
3216
3217                         mask = pci_irq_get_affinity(ioc->pdev,
3218                             reply_q->msix_index);
3219                         if (!mask) {
3220                                 ioc_warn(ioc, "no affinity for msi %x\n",
3221                                          reply_q->msix_index);
3222                                 goto fall_back;
3223                         }
3224
3225                         for_each_cpu_and(cpu, mask, cpu_online_mask) {
3226                                 if (cpu >= ioc->cpu_msix_table_sz)
3227                                         break;
3228                                 ioc->cpu_msix_table[cpu] = reply_q->msix_index;
3229                         }
3230                 }
3231                 return;
3232         }
3233
3234 fall_back:
3235         cpu = cpumask_first(cpu_online_mask);
3236         nr_msix -= (ioc->high_iops_queues - iopoll_q_count);
3237         index = 0;
3238
3239         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3240                 unsigned int i, group = nr_cpus / nr_msix;
3241
3242                 if (reply_q->msix_index < ioc->high_iops_queues ||
3243                     reply_q->msix_index >= ioc->iopoll_q_start_index)
3244                         continue;
3245
3246                 if (cpu >= nr_cpus)
3247                         break;
3248
3249                 if (index < nr_cpus % nr_msix)
3250                         group++;
3251
3252                 for (i = 0 ; i < group ; i++) {
3253                         ioc->cpu_msix_table[cpu] = reply_q->msix_index;
3254                         cpu = cpumask_next(cpu, cpu_online_mask);
3255                 }
3256                 index++;
3257         }
3258 }
3259
3260 /**
3261  * _base_check_and_enable_high_iops_queues - enable high iops mode
3262  * @ioc: per adapter object
3263  * @hba_msix_vector_count: msix vectors supported by HBA
3264  *
3265  * Enable high iops queues only if
3266  *  - HBA is a SEA/AERO controller and
3267  *  - MSI-Xs vector supported by the HBA is 128 and
3268  *  - total CPU count in the system >=16 and
3269  *  - loaded driver with default max_msix_vectors module parameter and
3270  *  - system booted in non kdump mode
3271  *
3272  * Return: nothing.
3273  */
3274 static void
3275 _base_check_and_enable_high_iops_queues(struct MPT3SAS_ADAPTER *ioc,
3276                 int hba_msix_vector_count)
3277 {
3278         u16 lnksta, speed;
3279
3280         /*
3281          * Disable high iops queues if io uring poll queues are enabled.
3282          */
3283         if (perf_mode == MPT_PERF_MODE_IOPS ||
3284             perf_mode == MPT_PERF_MODE_LATENCY ||
3285             ioc->io_uring_poll_queues) {
3286                 ioc->high_iops_queues = 0;
3287                 return;
3288         }
3289
3290         if (perf_mode == MPT_PERF_MODE_DEFAULT) {
3291
3292                 pcie_capability_read_word(ioc->pdev, PCI_EXP_LNKSTA, &lnksta);
3293                 speed = lnksta & PCI_EXP_LNKSTA_CLS;
3294
3295                 if (speed < 0x4) {
3296                         ioc->high_iops_queues = 0;
3297                         return;
3298                 }
3299         }
3300
3301         if (!reset_devices && ioc->is_aero_ioc &&
3302             hba_msix_vector_count == MPT3SAS_GEN35_MAX_MSIX_QUEUES &&
3303             num_online_cpus() >= MPT3SAS_HIGH_IOPS_REPLY_QUEUES &&
3304             max_msix_vectors == -1)
3305                 ioc->high_iops_queues = MPT3SAS_HIGH_IOPS_REPLY_QUEUES;
3306         else
3307                 ioc->high_iops_queues = 0;
3308 }
3309
3310 /**
3311  * mpt3sas_base_disable_msix - disables msix
3312  * @ioc: per adapter object
3313  *
3314  */
3315 void
3316 mpt3sas_base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
3317 {
3318         if (!ioc->msix_enable)
3319                 return;
3320         pci_free_irq_vectors(ioc->pdev);
3321         ioc->msix_enable = 0;
3322         kfree(ioc->io_uring_poll_queues);
3323 }
3324
3325 /**
3326  * _base_alloc_irq_vectors - allocate msix vectors
3327  * @ioc: per adapter object
3328  *
3329  */
3330 static int
3331 _base_alloc_irq_vectors(struct MPT3SAS_ADAPTER *ioc)
3332 {
3333         int i, irq_flags = PCI_IRQ_MSIX;
3334         struct irq_affinity desc = { .pre_vectors = ioc->high_iops_queues };
3335         struct irq_affinity *descp = &desc;
3336         /*
3337          * Don't allocate msix vectors for poll_queues.
3338          * msix_vectors is always within a range of FW supported reply queue.
3339          */
3340         int nr_msix_vectors = ioc->iopoll_q_start_index;
3341
3342
3343         if (ioc->smp_affinity_enable)
3344                 irq_flags |= PCI_IRQ_AFFINITY | PCI_IRQ_ALL_TYPES;
3345         else
3346                 descp = NULL;
3347
3348         ioc_info(ioc, " %d %d %d\n", ioc->high_iops_queues,
3349             ioc->reply_queue_count, nr_msix_vectors);
3350
3351         i = pci_alloc_irq_vectors_affinity(ioc->pdev,
3352             ioc->high_iops_queues,
3353             nr_msix_vectors, irq_flags, descp);
3354
3355         return i;
3356 }
3357
3358 /**
3359  * _base_enable_msix - enables msix, failback to io_apic
3360  * @ioc: per adapter object
3361  *
3362  */
3363 static int
3364 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
3365 {
3366         int r;
3367         int i, local_max_msix_vectors;
3368         u8 try_msix = 0;
3369         int iopoll_q_count = 0;
3370
3371         ioc->msix_load_balance = false;
3372
3373         if (msix_disable == -1 || msix_disable == 0)
3374                 try_msix = 1;
3375
3376         if (!try_msix)
3377                 goto try_ioapic;
3378
3379         if (_base_check_enable_msix(ioc) != 0)
3380                 goto try_ioapic;
3381
3382         ioc_info(ioc, "MSI-X vectors supported: %d\n", ioc->msix_vector_count);
3383         pr_info("\t no of cores: %d, max_msix_vectors: %d\n",
3384                 ioc->cpu_count, max_msix_vectors);
3385
3386         ioc->reply_queue_count =
3387                 min_t(int, ioc->cpu_count, ioc->msix_vector_count);
3388
3389         if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
3390                 local_max_msix_vectors = (reset_devices) ? 1 : 8;
3391         else
3392                 local_max_msix_vectors = max_msix_vectors;
3393
3394         if (local_max_msix_vectors == 0)
3395                 goto try_ioapic;
3396
3397         /*
3398          * Enable msix_load_balance only if combined reply queue mode is
3399          * disabled on SAS3 & above generation HBA devices.
3400          */
3401         if (!ioc->combined_reply_queue &&
3402             ioc->hba_mpi_version_belonged != MPI2_VERSION) {
3403                 ioc_info(ioc,
3404                     "combined ReplyQueue is off, Enabling msix load balance\n");
3405                 ioc->msix_load_balance = true;
3406         }
3407
3408         /*
3409          * smp affinity setting is not need when msix load balance
3410          * is enabled.
3411          */
3412         if (ioc->msix_load_balance)
3413                 ioc->smp_affinity_enable = 0;
3414
3415         if (!ioc->smp_affinity_enable || ioc->reply_queue_count <= 1)
3416                 ioc->shost->host_tagset = 0;
3417
3418         /*
3419          * Enable io uring poll queues only if host_tagset is enabled.
3420          */
3421         if (ioc->shost->host_tagset)
3422                 iopoll_q_count = poll_queues;
3423
3424         if (iopoll_q_count) {
3425                 ioc->io_uring_poll_queues = kcalloc(iopoll_q_count,
3426                     sizeof(struct io_uring_poll_queue), GFP_KERNEL);
3427                 if (!ioc->io_uring_poll_queues)
3428                         iopoll_q_count = 0;
3429         }
3430
3431         if (ioc->is_aero_ioc)
3432                 _base_check_and_enable_high_iops_queues(ioc,
3433                     ioc->msix_vector_count);
3434
3435         /*
3436          * Add high iops queues count to reply queue count if high iops queues
3437          * are enabled.
3438          */
3439         ioc->reply_queue_count = min_t(int,
3440             ioc->reply_queue_count + ioc->high_iops_queues,
3441             ioc->msix_vector_count);
3442
3443         /*
3444          * Adjust the reply queue count incase reply queue count
3445          * exceeds the user provided MSIx vectors count.
3446          */
3447         if (local_max_msix_vectors > 0)
3448                 ioc->reply_queue_count = min_t(int, local_max_msix_vectors,
3449                     ioc->reply_queue_count);
3450         /*
3451          * Add io uring poll queues count to reply queues count
3452          * if io uring is enabled in driver.
3453          */
3454         if (iopoll_q_count) {
3455                 if (ioc->reply_queue_count < (iopoll_q_count + MPT3_MIN_IRQS))
3456                         iopoll_q_count = 0;
3457                 ioc->reply_queue_count = min_t(int,
3458                     ioc->reply_queue_count + iopoll_q_count,
3459                     ioc->msix_vector_count);
3460         }
3461
3462         /*
3463          * Starting index of io uring poll queues in reply queue list.
3464          */
3465         ioc->iopoll_q_start_index =
3466             ioc->reply_queue_count - iopoll_q_count;
3467
3468         r = _base_alloc_irq_vectors(ioc);
3469         if (r < 0) {
3470                 ioc_info(ioc, "pci_alloc_irq_vectors failed (r=%d) !!!\n", r);
3471                 goto try_ioapic;
3472         }
3473
3474         /*
3475          * Adjust the reply queue count if the allocated
3476          * MSIx vectors is less then the requested number
3477          * of MSIx vectors.
3478          */
3479         if (r < ioc->iopoll_q_start_index) {
3480                 ioc->reply_queue_count = r + iopoll_q_count;
3481                 ioc->iopoll_q_start_index =
3482                     ioc->reply_queue_count - iopoll_q_count;
3483         }
3484
3485         ioc->msix_enable = 1;
3486         for (i = 0; i < ioc->reply_queue_count; i++) {
3487                 r = _base_request_irq(ioc, i);
3488                 if (r) {
3489                         mpt3sas_base_free_irq(ioc);
3490                         mpt3sas_base_disable_msix(ioc);
3491                         goto try_ioapic;
3492                 }
3493         }
3494
3495         ioc_info(ioc, "High IOPs queues : %s\n",
3496                         ioc->high_iops_queues ? "enabled" : "disabled");
3497
3498         return 0;
3499
3500 /* failback to io_apic interrupt routing */
3501  try_ioapic:
3502         ioc->high_iops_queues = 0;
3503         ioc_info(ioc, "High IOPs queues : disabled\n");
3504         ioc->reply_queue_count = 1;
3505         ioc->iopoll_q_start_index = ioc->reply_queue_count - 0;
3506         r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_LEGACY);
3507         if (r < 0) {
3508                 dfailprintk(ioc,
3509                             ioc_info(ioc, "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n",
3510                                      r));
3511         } else
3512                 r = _base_request_irq(ioc, 0);
3513
3514         return r;
3515 }
3516
3517 /**
3518  * mpt3sas_base_unmap_resources - free controller resources
3519  * @ioc: per adapter object
3520  */
3521 static void
3522 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc)
3523 {
3524         struct pci_dev *pdev = ioc->pdev;
3525
3526         dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3527
3528         mpt3sas_base_free_irq(ioc);
3529         mpt3sas_base_disable_msix(ioc);
3530
3531         kfree(ioc->replyPostRegisterIndex);
3532         ioc->replyPostRegisterIndex = NULL;
3533
3534
3535         if (ioc->chip_phys) {
3536                 iounmap(ioc->chip);
3537                 ioc->chip_phys = 0;
3538         }
3539
3540         if (pci_is_enabled(pdev)) {
3541                 pci_release_selected_regions(ioc->pdev, ioc->bars);
3542                 pci_disable_pcie_error_reporting(pdev);
3543                 pci_disable_device(pdev);
3544         }
3545 }
3546
3547 static int
3548 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc);
3549
3550 /**
3551  * mpt3sas_base_check_for_fault_and_issue_reset - check if IOC is in fault state
3552  *     and if it is in fault state then issue diag reset.
3553  * @ioc: per adapter object
3554  *
3555  * Return: 0 for success, non-zero for failure.
3556  */
3557 int
3558 mpt3sas_base_check_for_fault_and_issue_reset(struct MPT3SAS_ADAPTER *ioc)
3559 {
3560         u32 ioc_state;
3561         int rc = -EFAULT;
3562
3563         dinitprintk(ioc, pr_info("%s\n", __func__));
3564         if (ioc->pci_error_recovery)
3565                 return 0;
3566         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
3567         dhsprintk(ioc, pr_info("%s: ioc_state(0x%08x)\n", __func__, ioc_state));
3568
3569         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
3570                 mpt3sas_print_fault_code(ioc, ioc_state &
3571                     MPI2_DOORBELL_DATA_MASK);
3572                 mpt3sas_base_mask_interrupts(ioc);
3573                 rc = _base_diag_reset(ioc);
3574         } else if ((ioc_state & MPI2_IOC_STATE_MASK) ==
3575             MPI2_IOC_STATE_COREDUMP) {
3576                 mpt3sas_print_coredump_info(ioc, ioc_state &
3577                      MPI2_DOORBELL_DATA_MASK);
3578                 mpt3sas_base_wait_for_coredump_completion(ioc, __func__);
3579                 mpt3sas_base_mask_interrupts(ioc);
3580                 rc = _base_diag_reset(ioc);
3581         }
3582
3583         return rc;
3584 }
3585
3586 /**
3587  * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
3588  * @ioc: per adapter object
3589  *
3590  * Return: 0 for success, non-zero for failure.
3591  */
3592 int
3593 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
3594 {
3595         struct pci_dev *pdev = ioc->pdev;
3596         u32 memap_sz;
3597         u32 pio_sz;
3598         int i, r = 0, rc;
3599         u64 pio_chip = 0;
3600         phys_addr_t chip_phys = 0;
3601         struct adapter_reply_queue *reply_q;
3602         int iopoll_q_count = 0;
3603
3604         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3605
3606         ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
3607         if (pci_enable_device_mem(pdev)) {
3608                 ioc_warn(ioc, "pci_enable_device_mem: failed\n");
3609                 ioc->bars = 0;
3610                 return -ENODEV;
3611         }
3612
3613
3614         if (pci_request_selected_regions(pdev, ioc->bars,
3615             ioc->driver_name)) {
3616                 ioc_warn(ioc, "pci_request_selected_regions: failed\n");
3617                 ioc->bars = 0;
3618                 r = -ENODEV;
3619                 goto out_fail;
3620         }
3621
3622 /* AER (Advanced Error Reporting) hooks */
3623         pci_enable_pcie_error_reporting(pdev);
3624
3625         pci_set_master(pdev);
3626
3627
3628         if (_base_config_dma_addressing(ioc, pdev) != 0) {
3629                 ioc_warn(ioc, "no suitable DMA mask for %s\n", pci_name(pdev));
3630                 r = -ENODEV;
3631                 goto out_fail;
3632         }
3633
3634         for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) &&
3635              (!memap_sz || !pio_sz); i++) {
3636                 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
3637                         if (pio_sz)
3638                                 continue;
3639                         pio_chip = (u64)pci_resource_start(pdev, i);
3640                         pio_sz = pci_resource_len(pdev, i);
3641                 } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3642                         if (memap_sz)
3643                                 continue;
3644                         ioc->chip_phys = pci_resource_start(pdev, i);
3645                         chip_phys = ioc->chip_phys;
3646                         memap_sz = pci_resource_len(pdev, i);
3647                         ioc->chip = ioremap(ioc->chip_phys, memap_sz);
3648                 }
3649         }
3650
3651         if (ioc->chip == NULL) {
3652                 ioc_err(ioc,
3653                     "unable to map adapter memory! or resource not found\n");
3654                 r = -EINVAL;
3655                 goto out_fail;
3656         }
3657
3658         mpt3sas_base_mask_interrupts(ioc);
3659
3660         r = _base_get_ioc_facts(ioc);
3661         if (r) {
3662                 rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
3663                 if (rc || (_base_get_ioc_facts(ioc)))
3664                         goto out_fail;
3665         }
3666
3667         if (!ioc->rdpq_array_enable_assigned) {
3668                 ioc->rdpq_array_enable = ioc->rdpq_array_capable;
3669                 ioc->rdpq_array_enable_assigned = 1;
3670         }
3671
3672         r = _base_enable_msix(ioc);
3673         if (r)
3674                 goto out_fail;
3675
3676         iopoll_q_count = ioc->reply_queue_count - ioc->iopoll_q_start_index;
3677         for (i = 0; i < iopoll_q_count; i++) {
3678                 atomic_set(&ioc->io_uring_poll_queues[i].busy, 0);
3679                 atomic_set(&ioc->io_uring_poll_queues[i].pause, 0);
3680         }
3681
3682         if (!ioc->is_driver_loading)
3683                 _base_init_irqpolls(ioc);
3684         /* Use the Combined reply queue feature only for SAS3 C0 & higher
3685          * revision HBAs and also only when reply queue count is greater than 8
3686          */
3687         if (ioc->combined_reply_queue) {
3688                 /* Determine the Supplemental Reply Post Host Index Registers
3689                  * Addresse. Supplemental Reply Post Host Index Registers
3690                  * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
3691                  * each register is at offset bytes of
3692                  * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
3693                  */
3694                 ioc->replyPostRegisterIndex = kcalloc(
3695                      ioc->combined_reply_index_count,
3696                      sizeof(resource_size_t *), GFP_KERNEL);
3697                 if (!ioc->replyPostRegisterIndex) {
3698                         ioc_err(ioc,
3699                             "allocation for replyPostRegisterIndex failed!\n");
3700                         r = -ENOMEM;
3701                         goto out_fail;
3702                 }
3703
3704                 for (i = 0; i < ioc->combined_reply_index_count; i++) {
3705                         ioc->replyPostRegisterIndex[i] = (resource_size_t *)
3706                              ((u8 __force *)&ioc->chip->Doorbell +
3707                              MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET +
3708                              (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET));
3709                 }
3710         }
3711
3712         if (ioc->is_warpdrive) {
3713                 ioc->reply_post_host_index[0] = (resource_size_t __iomem *)
3714                     &ioc->chip->ReplyPostHostIndex;
3715
3716                 for (i = 1; i < ioc->cpu_msix_table_sz; i++)
3717                         ioc->reply_post_host_index[i] =
3718                         (resource_size_t __iomem *)
3719                         ((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1)
3720                         * 4)));
3721         }
3722
3723         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3724                 if (reply_q->msix_index >= ioc->iopoll_q_start_index) {
3725                         pr_info("%s: enabled: index: %d\n",
3726                             reply_q->name, reply_q->msix_index);
3727                         continue;
3728                 }
3729
3730                 pr_info("%s: %s enabled: IRQ %d\n",
3731                         reply_q->name,
3732                         ioc->msix_enable ? "PCI-MSI-X" : "IO-APIC",
3733                         pci_irq_vector(ioc->pdev, reply_q->msix_index));
3734         }
3735
3736         ioc_info(ioc, "iomem(%pap), mapped(0x%p), size(%d)\n",
3737                  &chip_phys, ioc->chip, memap_sz);
3738         ioc_info(ioc, "ioport(0x%016llx), size(%d)\n",
3739                  (unsigned long long)pio_chip, pio_sz);
3740
3741         /* Save PCI configuration state for recovery from PCI AER/EEH errors */
3742         pci_save_state(pdev);
3743         return 0;
3744
3745  out_fail:
3746         mpt3sas_base_unmap_resources(ioc);
3747         return r;
3748 }
3749
3750 /**
3751  * mpt3sas_base_get_msg_frame - obtain request mf pointer
3752  * @ioc: per adapter object
3753  * @smid: system request message index(smid zero is invalid)
3754  *
3755  * Return: virt pointer to message frame.
3756  */
3757 void *
3758 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3759 {
3760         return (void *)(ioc->request + (smid * ioc->request_sz));
3761 }
3762
3763 /**
3764  * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
3765  * @ioc: per adapter object
3766  * @smid: system request message index
3767  *
3768  * Return: virt pointer to sense buffer.
3769  */
3770 void *
3771 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3772 {
3773         return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
3774 }
3775
3776 /**
3777  * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
3778  * @ioc: per adapter object
3779  * @smid: system request message index
3780  *
3781  * Return: phys pointer to the low 32bit address of the sense buffer.
3782  */
3783 __le32
3784 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3785 {
3786         return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
3787             SCSI_SENSE_BUFFERSIZE));
3788 }
3789
3790 /**
3791  * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr
3792  * @ioc: per adapter object
3793  * @smid: system request message index
3794  *
3795  * Return: virt pointer to a PCIe SGL.
3796  */
3797 void *
3798 mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3799 {
3800         return (void *)(ioc->pcie_sg_lookup[smid - 1].pcie_sgl);
3801 }
3802
3803 /**
3804  * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr
3805  * @ioc: per adapter object
3806  * @smid: system request message index
3807  *
3808  * Return: phys pointer to the address of the PCIe buffer.
3809  */
3810 dma_addr_t
3811 mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3812 {
3813         return ioc->pcie_sg_lookup[smid - 1].pcie_sgl_dma;
3814 }
3815
3816 /**
3817  * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
3818  * @ioc: per adapter object
3819  * @phys_addr: lower 32 physical addr of the reply
3820  *
3821  * Converts 32bit lower physical addr into a virt address.
3822  */
3823 void *
3824 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
3825 {
3826         if (!phys_addr)
3827                 return NULL;
3828         return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
3829 }
3830
3831 /**
3832  * _base_get_msix_index - get the msix index
3833  * @ioc: per adapter object
3834  * @scmd: scsi_cmnd object
3835  *
3836  * Return: msix index of general reply queues,
3837  * i.e. reply queue on which IO request's reply
3838  * should be posted by the HBA firmware.
3839  */
3840 static inline u8
3841 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc,
3842         struct scsi_cmnd *scmd)
3843 {
3844         /* Enables reply_queue load balancing */
3845         if (ioc->msix_load_balance)
3846                 return ioc->reply_queue_count ?
3847                     base_mod64(atomic64_add_return(1,
3848                     &ioc->total_io_cnt), ioc->reply_queue_count) : 0;
3849
3850         if (scmd && ioc->shost->nr_hw_queues > 1) {
3851                 u32 tag = blk_mq_unique_tag(scsi_cmd_to_rq(scmd));
3852
3853                 return blk_mq_unique_tag_to_hwq(tag) +
3854                         ioc->high_iops_queues;
3855         }
3856
3857         return ioc->cpu_msix_table[raw_smp_processor_id()];
3858 }
3859
3860 /**
3861  * _base_get_high_iops_msix_index - get the msix index of
3862  *                              high iops queues
3863  * @ioc: per adapter object
3864  * @scmd: scsi_cmnd object
3865  *
3866  * Return: msix index of high iops reply queues.
3867  * i.e. high iops reply queue on which IO request's
3868  * reply should be posted by the HBA firmware.
3869  */
3870 static inline u8
3871 _base_get_high_iops_msix_index(struct MPT3SAS_ADAPTER *ioc,
3872         struct scsi_cmnd *scmd)
3873 {
3874         /**
3875          * Round robin the IO interrupts among the high iops
3876          * reply queues in terms of batch count 16 when outstanding
3877          * IOs on the target device is >=8.
3878          */
3879
3880         if (scsi_device_busy(scmd->device) > MPT3SAS_DEVICE_HIGH_IOPS_DEPTH)
3881                 return base_mod64((
3882                     atomic64_add_return(1, &ioc->high_iops_outstanding) /
3883                     MPT3SAS_HIGH_IOPS_BATCH_COUNT),
3884                     MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
3885
3886         return _base_get_msix_index(ioc, scmd);
3887 }
3888
3889 /**
3890  * mpt3sas_base_get_smid - obtain a free smid from internal queue
3891  * @ioc: per adapter object
3892  * @cb_idx: callback index
3893  *
3894  * Return: smid (zero is invalid)
3895  */
3896 u16
3897 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3898 {
3899         unsigned long flags;
3900         struct request_tracker *request;
3901         u16 smid;
3902
3903         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3904         if (list_empty(&ioc->internal_free_list)) {
3905                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3906                 ioc_err(ioc, "%s: smid not available\n", __func__);
3907                 return 0;
3908         }
3909
3910         request = list_entry(ioc->internal_free_list.next,
3911             struct request_tracker, tracker_list);
3912         request->cb_idx = cb_idx;
3913         smid = request->smid;
3914         list_del(&request->tracker_list);
3915         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3916         return smid;
3917 }
3918
3919 /**
3920  * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
3921  * @ioc: per adapter object
3922  * @cb_idx: callback index
3923  * @scmd: pointer to scsi command object
3924  *
3925  * Return: smid (zero is invalid)
3926  */
3927 u16
3928 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
3929         struct scsi_cmnd *scmd)
3930 {
3931         struct scsiio_tracker *request = scsi_cmd_priv(scmd);
3932         u16 smid;
3933         u32 tag, unique_tag;
3934
3935         unique_tag = blk_mq_unique_tag(scsi_cmd_to_rq(scmd));
3936         tag = blk_mq_unique_tag_to_tag(unique_tag);
3937
3938         /*
3939          * Store hw queue number corresponding to the tag.
3940          * This hw queue number is used later to determine
3941          * the unique_tag using the logic below. This unique_tag
3942          * is used to retrieve the scmd pointer corresponding
3943          * to tag using scsi_host_find_tag() API.
3944          *
3945          * tag = smid - 1;
3946          * unique_tag = ioc->io_queue_num[tag] << BLK_MQ_UNIQUE_TAG_BITS | tag;
3947          */
3948         ioc->io_queue_num[tag] = blk_mq_unique_tag_to_hwq(unique_tag);
3949
3950         smid = tag + 1;
3951         request->cb_idx = cb_idx;
3952         request->smid = smid;
3953         request->scmd = scmd;
3954         INIT_LIST_HEAD(&request->chain_list);
3955         return smid;
3956 }
3957
3958 /**
3959  * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
3960  * @ioc: per adapter object
3961  * @cb_idx: callback index
3962  *
3963  * Return: smid (zero is invalid)
3964  */
3965 u16
3966 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3967 {
3968         unsigned long flags;
3969         struct request_tracker *request;
3970         u16 smid;
3971
3972         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3973         if (list_empty(&ioc->hpr_free_list)) {
3974                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3975                 return 0;
3976         }
3977
3978         request = list_entry(ioc->hpr_free_list.next,
3979             struct request_tracker, tracker_list);
3980         request->cb_idx = cb_idx;
3981         smid = request->smid;
3982         list_del(&request->tracker_list);
3983         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3984         return smid;
3985 }
3986
3987 static void
3988 _base_recovery_check(struct MPT3SAS_ADAPTER *ioc)
3989 {
3990         /*
3991          * See _wait_for_commands_to_complete() call with regards to this code.
3992          */
3993         if (ioc->shost_recovery && ioc->pending_io_count) {
3994                 ioc->pending_io_count = scsi_host_busy(ioc->shost);
3995                 if (ioc->pending_io_count == 0)
3996                         wake_up(&ioc->reset_wq);
3997         }
3998 }
3999
4000 void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER *ioc,
4001                            struct scsiio_tracker *st)
4002 {
4003         if (WARN_ON(st->smid == 0))
4004                 return;
4005         st->cb_idx = 0xFF;
4006         st->direct_io = 0;
4007         st->scmd = NULL;
4008         atomic_set(&ioc->chain_lookup[st->smid - 1].chain_offset, 0);
4009         st->smid = 0;
4010 }
4011
4012 /**
4013  * mpt3sas_base_free_smid - put smid back on free_list
4014  * @ioc: per adapter object
4015  * @smid: system request message index
4016  */
4017 void
4018 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4019 {
4020         unsigned long flags;
4021         int i;
4022
4023         if (smid < ioc->hi_priority_smid) {
4024                 struct scsiio_tracker *st;
4025                 void *request;
4026
4027                 st = _get_st_from_smid(ioc, smid);
4028                 if (!st) {
4029                         _base_recovery_check(ioc);
4030                         return;
4031                 }
4032
4033                 /* Clear MPI request frame */
4034                 request = mpt3sas_base_get_msg_frame(ioc, smid);
4035                 memset(request, 0, ioc->request_sz);
4036
4037                 mpt3sas_base_clear_st(ioc, st);
4038                 _base_recovery_check(ioc);
4039                 ioc->io_queue_num[smid - 1] = 0;
4040                 return;
4041         }
4042
4043         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
4044         if (smid < ioc->internal_smid) {
4045                 /* hi-priority */
4046                 i = smid - ioc->hi_priority_smid;
4047                 ioc->hpr_lookup[i].cb_idx = 0xFF;
4048                 list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
4049         } else if (smid <= ioc->hba_queue_depth) {
4050                 /* internal queue */
4051                 i = smid - ioc->internal_smid;
4052                 ioc->internal_lookup[i].cb_idx = 0xFF;
4053                 list_add(&ioc->internal_lookup[i].tracker_list,
4054                     &ioc->internal_free_list);
4055         }
4056         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
4057 }
4058
4059 /**
4060  * _base_mpi_ep_writeq - 32 bit write to MMIO
4061  * @b: data payload
4062  * @addr: address in MMIO space
4063  * @writeq_lock: spin lock
4064  *
4065  * This special handling for MPI EP to take care of 32 bit
4066  * environment where its not quarenteed to send the entire word
4067  * in one transfer.
4068  */
4069 static inline void
4070 _base_mpi_ep_writeq(__u64 b, volatile void __iomem *addr,
4071                                         spinlock_t *writeq_lock)
4072 {
4073         unsigned long flags;
4074
4075         spin_lock_irqsave(writeq_lock, flags);
4076         __raw_writel((u32)(b), addr);
4077         __raw_writel((u32)(b >> 32), (addr + 4));
4078         spin_unlock_irqrestore(writeq_lock, flags);
4079 }
4080
4081 /**
4082  * _base_writeq - 64 bit write to MMIO
4083  * @b: data payload
4084  * @addr: address in MMIO space
4085  * @writeq_lock: spin lock
4086  *
4087  * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
4088  * care of 32 bit environment where its not quarenteed to send the entire word
4089  * in one transfer.
4090  */
4091 #if defined(writeq) && defined(CONFIG_64BIT)
4092 static inline void
4093 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
4094 {
4095         wmb();
4096         __raw_writeq(b, addr);
4097         barrier();
4098 }
4099 #else
4100 static inline void
4101 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
4102 {
4103         _base_mpi_ep_writeq(b, addr, writeq_lock);
4104 }
4105 #endif
4106
4107 /**
4108  * _base_set_and_get_msix_index - get the msix index and assign to msix_io
4109  *                                variable of scsi tracker
4110  * @ioc: per adapter object
4111  * @smid: system request message index
4112  *
4113  * Return: msix index.
4114  */
4115 static u8
4116 _base_set_and_get_msix_index(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4117 {
4118         struct scsiio_tracker *st = NULL;
4119
4120         if (smid < ioc->hi_priority_smid)
4121                 st = _get_st_from_smid(ioc, smid);
4122
4123         if (st == NULL)
4124                 return  _base_get_msix_index(ioc, NULL);
4125
4126         st->msix_io = ioc->get_msix_index_for_smlio(ioc, st->scmd);
4127         return st->msix_io;
4128 }
4129
4130 /**
4131  * _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware
4132  * @ioc: per adapter object
4133  * @smid: system request message index
4134  * @handle: device handle
4135  */
4136 static void
4137 _base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER *ioc,
4138         u16 smid, u16 handle)
4139 {
4140         Mpi2RequestDescriptorUnion_t descriptor;
4141         u64 *request = (u64 *)&descriptor;
4142         void *mpi_req_iomem;
4143         __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
4144
4145         _clone_sg_entries(ioc, (void *) mfp, smid);
4146         mpi_req_iomem = (void __force *)ioc->chip +
4147                         MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
4148         _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
4149                                         ioc->request_sz);
4150         descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4151         descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4152         descriptor.SCSIIO.SMID = cpu_to_le16(smid);
4153         descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
4154         descriptor.SCSIIO.LMID = 0;
4155         _base_mpi_ep_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4156             &ioc->scsi_lookup_lock);
4157 }
4158
4159 /**
4160  * _base_put_smid_scsi_io - send SCSI_IO request to firmware
4161  * @ioc: per adapter object
4162  * @smid: system request message index
4163  * @handle: device handle
4164  */
4165 static void
4166 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
4167 {
4168         Mpi2RequestDescriptorUnion_t descriptor;
4169         u64 *request = (u64 *)&descriptor;
4170
4171
4172         descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4173         descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4174         descriptor.SCSIIO.SMID = cpu_to_le16(smid);
4175         descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
4176         descriptor.SCSIIO.LMID = 0;
4177         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4178             &ioc->scsi_lookup_lock);
4179 }
4180
4181 /**
4182  * _base_put_smid_fast_path - send fast path request to firmware
4183  * @ioc: per adapter object
4184  * @smid: system request message index
4185  * @handle: device handle
4186  */
4187 static void
4188 _base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4189         u16 handle)
4190 {
4191         Mpi2RequestDescriptorUnion_t descriptor;
4192         u64 *request = (u64 *)&descriptor;
4193
4194         descriptor.SCSIIO.RequestFlags =
4195             MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
4196         descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4197         descriptor.SCSIIO.SMID = cpu_to_le16(smid);
4198         descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
4199         descriptor.SCSIIO.LMID = 0;
4200         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4201             &ioc->scsi_lookup_lock);
4202 }
4203
4204 /**
4205  * _base_put_smid_hi_priority - send Task Management request to firmware
4206  * @ioc: per adapter object
4207  * @smid: system request message index
4208  * @msix_task: msix_task will be same as msix of IO in case of task abort else 0
4209  */
4210 static void
4211 _base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4212         u16 msix_task)
4213 {
4214         Mpi2RequestDescriptorUnion_t descriptor;
4215         void *mpi_req_iomem;
4216         u64 *request;
4217
4218         if (ioc->is_mcpu_endpoint) {
4219                 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
4220
4221                 /* TBD 256 is offset within sys register. */
4222                 mpi_req_iomem = (void __force *)ioc->chip
4223                                         + MPI_FRAME_START_OFFSET
4224                                         + (smid * ioc->request_sz);
4225                 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
4226                                                         ioc->request_sz);
4227         }
4228
4229         request = (u64 *)&descriptor;
4230
4231         descriptor.HighPriority.RequestFlags =
4232             MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
4233         descriptor.HighPriority.MSIxIndex =  msix_task;
4234         descriptor.HighPriority.SMID = cpu_to_le16(smid);
4235         descriptor.HighPriority.LMID = 0;
4236         descriptor.HighPriority.Reserved1 = 0;
4237         if (ioc->is_mcpu_endpoint)
4238                 _base_mpi_ep_writeq(*request,
4239                                 &ioc->chip->RequestDescriptorPostLow,
4240                                 &ioc->scsi_lookup_lock);
4241         else
4242                 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4243                     &ioc->scsi_lookup_lock);
4244 }
4245
4246 /**
4247  * mpt3sas_base_put_smid_nvme_encap - send NVMe encapsulated request to
4248  *  firmware
4249  * @ioc: per adapter object
4250  * @smid: system request message index
4251  */
4252 void
4253 mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4254 {
4255         Mpi2RequestDescriptorUnion_t descriptor;
4256         u64 *request = (u64 *)&descriptor;
4257
4258         descriptor.Default.RequestFlags =
4259                 MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED;
4260         descriptor.Default.MSIxIndex =  _base_set_and_get_msix_index(ioc, smid);
4261         descriptor.Default.SMID = cpu_to_le16(smid);
4262         descriptor.Default.LMID = 0;
4263         descriptor.Default.DescriptorTypeDependent = 0;
4264         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4265             &ioc->scsi_lookup_lock);
4266 }
4267
4268 /**
4269  * _base_put_smid_default - Default, primarily used for config pages
4270  * @ioc: per adapter object
4271  * @smid: system request message index
4272  */
4273 static void
4274 _base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4275 {
4276         Mpi2RequestDescriptorUnion_t descriptor;
4277         void *mpi_req_iomem;
4278         u64 *request;
4279
4280         if (ioc->is_mcpu_endpoint) {
4281                 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
4282
4283                 _clone_sg_entries(ioc, (void *) mfp, smid);
4284                 /* TBD 256 is offset within sys register */
4285                 mpi_req_iomem = (void __force *)ioc->chip +
4286                         MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
4287                 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
4288                                                         ioc->request_sz);
4289         }
4290         request = (u64 *)&descriptor;
4291         descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
4292         descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4293         descriptor.Default.SMID = cpu_to_le16(smid);
4294         descriptor.Default.LMID = 0;
4295         descriptor.Default.DescriptorTypeDependent = 0;
4296         if (ioc->is_mcpu_endpoint)
4297                 _base_mpi_ep_writeq(*request,
4298                                 &ioc->chip->RequestDescriptorPostLow,
4299                                 &ioc->scsi_lookup_lock);
4300         else
4301                 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4302                                 &ioc->scsi_lookup_lock);
4303 }
4304
4305 /**
4306  * _base_put_smid_scsi_io_atomic - send SCSI_IO request to firmware using
4307  *   Atomic Request Descriptor
4308  * @ioc: per adapter object
4309  * @smid: system request message index
4310  * @handle: device handle, unused in this function, for function type match
4311  *
4312  * Return: nothing.
4313  */
4314 static void
4315 _base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4316         u16 handle)
4317 {
4318         Mpi26AtomicRequestDescriptor_t descriptor;
4319         u32 *request = (u32 *)&descriptor;
4320
4321         descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4322         descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4323         descriptor.SMID = cpu_to_le16(smid);
4324
4325         writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4326 }
4327
4328 /**
4329  * _base_put_smid_fast_path_atomic - send fast path request to firmware
4330  * using Atomic Request Descriptor
4331  * @ioc: per adapter object
4332  * @smid: system request message index
4333  * @handle: device handle, unused in this function, for function type match
4334  * Return: nothing
4335  */
4336 static void
4337 _base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4338         u16 handle)
4339 {
4340         Mpi26AtomicRequestDescriptor_t descriptor;
4341         u32 *request = (u32 *)&descriptor;
4342
4343         descriptor.RequestFlags = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
4344         descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4345         descriptor.SMID = cpu_to_le16(smid);
4346
4347         writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4348 }
4349
4350 /**
4351  * _base_put_smid_hi_priority_atomic - send Task Management request to
4352  * firmware using Atomic Request Descriptor
4353  * @ioc: per adapter object
4354  * @smid: system request message index
4355  * @msix_task: msix_task will be same as msix of IO in case of task abort else 0
4356  *
4357  * Return: nothing.
4358  */
4359 static void
4360 _base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4361         u16 msix_task)
4362 {
4363         Mpi26AtomicRequestDescriptor_t descriptor;
4364         u32 *request = (u32 *)&descriptor;
4365
4366         descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
4367         descriptor.MSIxIndex = msix_task;
4368         descriptor.SMID = cpu_to_le16(smid);
4369
4370         writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4371 }
4372
4373 /**
4374  * _base_put_smid_default_atomic - Default, primarily used for config pages
4375  * use Atomic Request Descriptor
4376  * @ioc: per adapter object
4377  * @smid: system request message index
4378  *
4379  * Return: nothing.
4380  */
4381 static void
4382 _base_put_smid_default_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4383 {
4384         Mpi26AtomicRequestDescriptor_t descriptor;
4385         u32 *request = (u32 *)&descriptor;
4386
4387         descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
4388         descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4389         descriptor.SMID = cpu_to_le16(smid);
4390
4391         writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4392 }
4393
4394 /**
4395  * _base_display_OEMs_branding - Display branding string
4396  * @ioc: per adapter object
4397  */
4398 static void
4399 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc)
4400 {
4401         if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
4402                 return;
4403
4404         switch (ioc->pdev->subsystem_vendor) {
4405         case PCI_VENDOR_ID_INTEL:
4406                 switch (ioc->pdev->device) {
4407                 case MPI2_MFGPAGE_DEVID_SAS2008:
4408                         switch (ioc->pdev->subsystem_device) {
4409                         case MPT2SAS_INTEL_RMS2LL080_SSDID:
4410                                 ioc_info(ioc, "%s\n",
4411                                          MPT2SAS_INTEL_RMS2LL080_BRANDING);
4412                                 break;
4413                         case MPT2SAS_INTEL_RMS2LL040_SSDID:
4414                                 ioc_info(ioc, "%s\n",
4415                                          MPT2SAS_INTEL_RMS2LL040_BRANDING);
4416                                 break;
4417                         case MPT2SAS_INTEL_SSD910_SSDID:
4418                                 ioc_info(ioc, "%s\n",
4419                                          MPT2SAS_INTEL_SSD910_BRANDING);
4420                                 break;
4421                         default:
4422                                 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4423                                          ioc->pdev->subsystem_device);
4424                                 break;
4425                         }
4426                         break;
4427                 case MPI2_MFGPAGE_DEVID_SAS2308_2:
4428                         switch (ioc->pdev->subsystem_device) {
4429                         case MPT2SAS_INTEL_RS25GB008_SSDID:
4430                                 ioc_info(ioc, "%s\n",
4431                                          MPT2SAS_INTEL_RS25GB008_BRANDING);
4432                                 break;
4433                         case MPT2SAS_INTEL_RMS25JB080_SSDID:
4434                                 ioc_info(ioc, "%s\n",
4435                                          MPT2SAS_INTEL_RMS25JB080_BRANDING);
4436                                 break;
4437                         case MPT2SAS_INTEL_RMS25JB040_SSDID:
4438                                 ioc_info(ioc, "%s\n",
4439                                          MPT2SAS_INTEL_RMS25JB040_BRANDING);
4440                                 break;
4441                         case MPT2SAS_INTEL_RMS25KB080_SSDID:
4442                                 ioc_info(ioc, "%s\n",
4443                                          MPT2SAS_INTEL_RMS25KB080_BRANDING);
4444                                 break;
4445                         case MPT2SAS_INTEL_RMS25KB040_SSDID:
4446                                 ioc_info(ioc, "%s\n",
4447                                          MPT2SAS_INTEL_RMS25KB040_BRANDING);
4448                                 break;
4449                         case MPT2SAS_INTEL_RMS25LB040_SSDID:
4450                                 ioc_info(ioc, "%s\n",
4451                                          MPT2SAS_INTEL_RMS25LB040_BRANDING);
4452                                 break;
4453                         case MPT2SAS_INTEL_RMS25LB080_SSDID:
4454                                 ioc_info(ioc, "%s\n",
4455                                          MPT2SAS_INTEL_RMS25LB080_BRANDING);
4456                                 break;
4457                         default:
4458                                 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4459                                          ioc->pdev->subsystem_device);
4460                                 break;
4461                         }
4462                         break;
4463                 case MPI25_MFGPAGE_DEVID_SAS3008:
4464                         switch (ioc->pdev->subsystem_device) {
4465                         case MPT3SAS_INTEL_RMS3JC080_SSDID:
4466                                 ioc_info(ioc, "%s\n",
4467                                          MPT3SAS_INTEL_RMS3JC080_BRANDING);
4468                                 break;
4469
4470                         case MPT3SAS_INTEL_RS3GC008_SSDID:
4471                                 ioc_info(ioc, "%s\n",
4472                                          MPT3SAS_INTEL_RS3GC008_BRANDING);
4473                                 break;
4474                         case MPT3SAS_INTEL_RS3FC044_SSDID:
4475                                 ioc_info(ioc, "%s\n",
4476                                          MPT3SAS_INTEL_RS3FC044_BRANDING);
4477                                 break;
4478                         case MPT3SAS_INTEL_RS3UC080_SSDID:
4479                                 ioc_info(ioc, "%s\n",
4480                                          MPT3SAS_INTEL_RS3UC080_BRANDING);
4481                                 break;
4482                         default:
4483                                 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4484                                          ioc->pdev->subsystem_device);
4485                                 break;
4486                         }
4487                         break;
4488                 default:
4489                         ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4490                                  ioc->pdev->subsystem_device);
4491                         break;
4492                 }
4493                 break;
4494         case PCI_VENDOR_ID_DELL:
4495                 switch (ioc->pdev->device) {
4496                 case MPI2_MFGPAGE_DEVID_SAS2008:
4497                         switch (ioc->pdev->subsystem_device) {
4498                         case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID:
4499                                 ioc_info(ioc, "%s\n",
4500                                          MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING);
4501                                 break;
4502                         case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID:
4503                                 ioc_info(ioc, "%s\n",
4504                                          MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING);
4505                                 break;
4506                         case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID:
4507                                 ioc_info(ioc, "%s\n",
4508                                          MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING);
4509                                 break;
4510                         case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID:
4511                                 ioc_info(ioc, "%s\n",
4512                                          MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING);
4513                                 break;
4514                         case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID:
4515                                 ioc_info(ioc, "%s\n",
4516                                          MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING);
4517                                 break;
4518                         case MPT2SAS_DELL_PERC_H200_SSDID:
4519                                 ioc_info(ioc, "%s\n",
4520                                          MPT2SAS_DELL_PERC_H200_BRANDING);
4521                                 break;
4522                         case MPT2SAS_DELL_6GBPS_SAS_SSDID:
4523                                 ioc_info(ioc, "%s\n",
4524                                          MPT2SAS_DELL_6GBPS_SAS_BRANDING);
4525                                 break;
4526                         default:
4527                                 ioc_info(ioc, "Dell 6Gbps HBA: Subsystem ID: 0x%X\n",
4528                                          ioc->pdev->subsystem_device);
4529                                 break;
4530                         }
4531                         break;
4532                 case MPI25_MFGPAGE_DEVID_SAS3008:
4533                         switch (ioc->pdev->subsystem_device) {
4534                         case MPT3SAS_DELL_12G_HBA_SSDID:
4535                                 ioc_info(ioc, "%s\n",
4536                                          MPT3SAS_DELL_12G_HBA_BRANDING);
4537                                 break;
4538                         default:
4539                                 ioc_info(ioc, "Dell 12Gbps HBA: Subsystem ID: 0x%X\n",
4540                                          ioc->pdev->subsystem_device);
4541                                 break;
4542                         }
4543                         break;
4544                 default:
4545                         ioc_info(ioc, "Dell HBA: Subsystem ID: 0x%X\n",
4546                                  ioc->pdev->subsystem_device);
4547                         break;
4548                 }
4549                 break;
4550         case PCI_VENDOR_ID_CISCO:
4551                 switch (ioc->pdev->device) {
4552                 case MPI25_MFGPAGE_DEVID_SAS3008:
4553                         switch (ioc->pdev->subsystem_device) {
4554                         case MPT3SAS_CISCO_12G_8E_HBA_SSDID:
4555                                 ioc_info(ioc, "%s\n",
4556                                          MPT3SAS_CISCO_12G_8E_HBA_BRANDING);
4557                                 break;
4558                         case MPT3SAS_CISCO_12G_8I_HBA_SSDID:
4559                                 ioc_info(ioc, "%s\n",
4560                                          MPT3SAS_CISCO_12G_8I_HBA_BRANDING);
4561                                 break;
4562                         case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4563                                 ioc_info(ioc, "%s\n",
4564                                          MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4565                                 break;
4566                         default:
4567                                 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4568                                          ioc->pdev->subsystem_device);
4569                                 break;
4570                         }
4571                         break;
4572                 case MPI25_MFGPAGE_DEVID_SAS3108_1:
4573                         switch (ioc->pdev->subsystem_device) {
4574                         case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4575                                 ioc_info(ioc, "%s\n",
4576                                          MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4577                                 break;
4578                         case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID:
4579                                 ioc_info(ioc, "%s\n",
4580                                          MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING);
4581                                 break;
4582                         default:
4583                                 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4584                                          ioc->pdev->subsystem_device);
4585                                 break;
4586                         }
4587                         break;
4588                 default:
4589                         ioc_info(ioc, "Cisco SAS HBA: Subsystem ID: 0x%X\n",
4590                                  ioc->pdev->subsystem_device);
4591                         break;
4592                 }
4593                 break;
4594         case MPT2SAS_HP_3PAR_SSVID:
4595                 switch (ioc->pdev->device) {
4596                 case MPI2_MFGPAGE_DEVID_SAS2004:
4597                         switch (ioc->pdev->subsystem_device) {
4598                         case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID:
4599                                 ioc_info(ioc, "%s\n",
4600                                          MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING);
4601                                 break;
4602                         default:
4603                                 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4604                                          ioc->pdev->subsystem_device);
4605                                 break;
4606                         }
4607                         break;
4608                 case MPI2_MFGPAGE_DEVID_SAS2308_2:
4609                         switch (ioc->pdev->subsystem_device) {
4610                         case MPT2SAS_HP_2_4_INTERNAL_SSDID:
4611                                 ioc_info(ioc, "%s\n",
4612                                          MPT2SAS_HP_2_4_INTERNAL_BRANDING);
4613                                 break;
4614                         case MPT2SAS_HP_2_4_EXTERNAL_SSDID:
4615                                 ioc_info(ioc, "%s\n",
4616                                          MPT2SAS_HP_2_4_EXTERNAL_BRANDING);
4617                                 break;
4618                         case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID:
4619                                 ioc_info(ioc, "%s\n",
4620                                          MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING);
4621                                 break;
4622                         case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID:
4623                                 ioc_info(ioc, "%s\n",
4624                                          MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING);
4625                                 break;
4626                         default:
4627                                 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4628                                          ioc->pdev->subsystem_device);
4629                                 break;
4630                         }
4631                         break;
4632                 default:
4633                         ioc_info(ioc, "HP SAS HBA: Subsystem ID: 0x%X\n",
4634                                  ioc->pdev->subsystem_device);
4635                         break;
4636                 }
4637                 break;
4638         default:
4639                 break;
4640         }
4641 }
4642
4643 /**
4644  * _base_display_fwpkg_version - sends FWUpload request to pull FWPkg
4645  *                              version from FW Image Header.
4646  * @ioc: per adapter object
4647  *
4648  * Return: 0 for success, non-zero for failure.
4649  */
4650         static int
4651 _base_display_fwpkg_version(struct MPT3SAS_ADAPTER *ioc)
4652 {
4653         Mpi2FWImageHeader_t *fw_img_hdr;
4654         Mpi26ComponentImageHeader_t *cmp_img_hdr;
4655         Mpi25FWUploadRequest_t *mpi_request;
4656         Mpi2FWUploadReply_t mpi_reply;
4657         int r = 0, issue_diag_reset = 0;
4658         u32  package_version = 0;
4659         void *fwpkg_data = NULL;
4660         dma_addr_t fwpkg_data_dma;
4661         u16 smid, ioc_status;
4662         size_t data_length;
4663
4664         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
4665
4666         if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
4667                 ioc_err(ioc, "%s: internal command already in use\n", __func__);
4668                 return -EAGAIN;
4669         }
4670
4671         data_length = sizeof(Mpi2FWImageHeader_t);
4672         fwpkg_data = dma_alloc_coherent(&ioc->pdev->dev, data_length,
4673                         &fwpkg_data_dma, GFP_KERNEL);
4674         if (!fwpkg_data) {
4675                 ioc_err(ioc,
4676                     "Memory allocation for fwpkg data failed at %s:%d/%s()!\n",
4677                         __FILE__, __LINE__, __func__);
4678                 return -ENOMEM;
4679         }
4680
4681         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4682         if (!smid) {
4683                 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
4684                 r = -EAGAIN;
4685                 goto out;
4686         }
4687
4688         ioc->base_cmds.status = MPT3_CMD_PENDING;
4689         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4690         ioc->base_cmds.smid = smid;
4691         memset(mpi_request, 0, sizeof(Mpi25FWUploadRequest_t));
4692         mpi_request->Function = MPI2_FUNCTION_FW_UPLOAD;
4693         mpi_request->ImageType = MPI2_FW_UPLOAD_ITYPE_FW_FLASH;
4694         mpi_request->ImageSize = cpu_to_le32(data_length);
4695         ioc->build_sg(ioc, &mpi_request->SGL, 0, 0, fwpkg_data_dma,
4696                         data_length);
4697         init_completion(&ioc->base_cmds.done);
4698         ioc->put_smid_default(ioc, smid);
4699         /* Wait for 15 seconds */
4700         wait_for_completion_timeout(&ioc->base_cmds.done,
4701                         FW_IMG_HDR_READ_TIMEOUT*HZ);
4702         ioc_info(ioc, "%s: complete\n", __func__);
4703         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4704                 ioc_err(ioc, "%s: timeout\n", __func__);
4705                 _debug_dump_mf(mpi_request,
4706                                 sizeof(Mpi25FWUploadRequest_t)/4);
4707                 issue_diag_reset = 1;
4708         } else {
4709                 memset(&mpi_reply, 0, sizeof(Mpi2FWUploadReply_t));
4710                 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) {
4711                         memcpy(&mpi_reply, ioc->base_cmds.reply,
4712                                         sizeof(Mpi2FWUploadReply_t));
4713                         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4714                                                 MPI2_IOCSTATUS_MASK;
4715                         if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
4716                                 fw_img_hdr = (Mpi2FWImageHeader_t *)fwpkg_data;
4717                                 if (le32_to_cpu(fw_img_hdr->Signature) ==
4718                                     MPI26_IMAGE_HEADER_SIGNATURE0_MPI26) {
4719                                         cmp_img_hdr =
4720                                             (Mpi26ComponentImageHeader_t *)
4721                                             (fwpkg_data);
4722                                         package_version =
4723                                             le32_to_cpu(
4724                                             cmp_img_hdr->ApplicationSpecific);
4725                                 } else
4726                                         package_version =
4727                                             le32_to_cpu(
4728                                             fw_img_hdr->PackageVersion.Word);
4729                                 if (package_version)
4730                                         ioc_info(ioc,
4731                                         "FW Package Ver(%02d.%02d.%02d.%02d)\n",
4732                                         ((package_version) & 0xFF000000) >> 24,
4733                                         ((package_version) & 0x00FF0000) >> 16,
4734                                         ((package_version) & 0x0000FF00) >> 8,
4735                                         (package_version) & 0x000000FF);
4736                         } else {
4737                                 _debug_dump_mf(&mpi_reply,
4738                                                 sizeof(Mpi2FWUploadReply_t)/4);
4739                         }
4740                 }
4741         }
4742         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4743 out:
4744         if (fwpkg_data)
4745                 dma_free_coherent(&ioc->pdev->dev, data_length, fwpkg_data,
4746                                 fwpkg_data_dma);
4747         if (issue_diag_reset) {
4748                 if (ioc->drv_internal_flags & MPT_DRV_INTERNAL_FIRST_PE_ISSUED)
4749                         return -EFAULT;
4750                 if (mpt3sas_base_check_for_fault_and_issue_reset(ioc))
4751                         return -EFAULT;
4752                 r = -EAGAIN;
4753         }
4754         return r;
4755 }
4756
4757 /**
4758  * _base_display_ioc_capabilities - Display IOC's capabilities.
4759  * @ioc: per adapter object
4760  */
4761 static void
4762 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
4763 {
4764         int i = 0;
4765         char desc[16];
4766         u32 iounit_pg1_flags;
4767         u32 bios_version;
4768
4769         bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
4770         strncpy(desc, ioc->manu_pg0.ChipName, 16);
4771         ioc_info(ioc, "%s: FWVersion(%02d.%02d.%02d.%02d), ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
4772                  desc,
4773                  (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
4774                  (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
4775                  (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
4776                  ioc->facts.FWVersion.Word & 0x000000FF,
4777                  ioc->pdev->revision,
4778                  (bios_version & 0xFF000000) >> 24,
4779                  (bios_version & 0x00FF0000) >> 16,
4780                  (bios_version & 0x0000FF00) >> 8,
4781                  bios_version & 0x000000FF);
4782
4783         _base_display_OEMs_branding(ioc);
4784
4785         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
4786                 pr_info("%sNVMe", i ? "," : "");
4787                 i++;
4788         }
4789
4790         ioc_info(ioc, "Protocol=(");
4791
4792         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
4793                 pr_cont("Initiator");
4794                 i++;
4795         }
4796
4797         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
4798                 pr_cont("%sTarget", i ? "," : "");
4799                 i++;
4800         }
4801
4802         i = 0;
4803         pr_cont("), Capabilities=(");
4804
4805         if (!ioc->hide_ir_msg) {
4806                 if (ioc->facts.IOCCapabilities &
4807                     MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
4808                         pr_cont("Raid");
4809                         i++;
4810                 }
4811         }
4812
4813         if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
4814                 pr_cont("%sTLR", i ? "," : "");
4815                 i++;
4816         }
4817
4818         if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
4819                 pr_cont("%sMulticast", i ? "," : "");
4820                 i++;
4821         }
4822
4823         if (ioc->facts.IOCCapabilities &
4824             MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
4825                 pr_cont("%sBIDI Target", i ? "," : "");
4826                 i++;
4827         }
4828
4829         if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
4830                 pr_cont("%sEEDP", i ? "," : "");
4831                 i++;
4832         }
4833
4834         if (ioc->facts.IOCCapabilities &
4835             MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
4836                 pr_cont("%sSnapshot Buffer", i ? "," : "");
4837                 i++;
4838         }
4839
4840         if (ioc->facts.IOCCapabilities &
4841             MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
4842                 pr_cont("%sDiag Trace Buffer", i ? "," : "");
4843                 i++;
4844         }
4845
4846         if (ioc->facts.IOCCapabilities &
4847             MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
4848                 pr_cont("%sDiag Extended Buffer", i ? "," : "");
4849                 i++;
4850         }
4851
4852         if (ioc->facts.IOCCapabilities &
4853             MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
4854                 pr_cont("%sTask Set Full", i ? "," : "");
4855                 i++;
4856         }
4857
4858         iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
4859         if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
4860                 pr_cont("%sNCQ", i ? "," : "");
4861                 i++;
4862         }
4863
4864         pr_cont(")\n");
4865 }
4866
4867 /**
4868  * mpt3sas_base_update_missing_delay - change the missing delay timers
4869  * @ioc: per adapter object
4870  * @device_missing_delay: amount of time till device is reported missing
4871  * @io_missing_delay: interval IO is returned when there is a missing device
4872  *
4873  * Passed on the command line, this function will modify the device missing
4874  * delay, as well as the io missing delay. This should be called at driver
4875  * load time.
4876  */
4877 void
4878 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
4879         u16 device_missing_delay, u8 io_missing_delay)
4880 {
4881         u16 dmd, dmd_new, dmd_orignal;
4882         u8 io_missing_delay_original;
4883         u16 sz;
4884         Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
4885         Mpi2ConfigReply_t mpi_reply;
4886         u8 num_phys = 0;
4887         u16 ioc_status;
4888
4889         mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
4890         if (!num_phys)
4891                 return;
4892
4893         sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
4894             sizeof(Mpi2SasIOUnit1PhyData_t));
4895         sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
4896         if (!sas_iounit_pg1) {
4897                 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4898                         __FILE__, __LINE__, __func__);
4899                 goto out;
4900         }
4901         if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
4902             sas_iounit_pg1, sz))) {
4903                 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4904                         __FILE__, __LINE__, __func__);
4905                 goto out;
4906         }
4907         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4908             MPI2_IOCSTATUS_MASK;
4909         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4910                 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4911                         __FILE__, __LINE__, __func__);
4912                 goto out;
4913         }
4914
4915         /* device missing delay */
4916         dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
4917         if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4918                 dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4919         else
4920                 dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4921         dmd_orignal = dmd;
4922         if (device_missing_delay > 0x7F) {
4923                 dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
4924                     device_missing_delay;
4925                 dmd = dmd / 16;
4926                 dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
4927         } else
4928                 dmd = device_missing_delay;
4929         sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
4930
4931         /* io missing delay */
4932         io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
4933         sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
4934
4935         if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
4936             sz)) {
4937                 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4938                         dmd_new = (dmd &
4939                             MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4940                 else
4941                         dmd_new =
4942                     dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4943                 ioc_info(ioc, "device_missing_delay: old(%d), new(%d)\n",
4944                          dmd_orignal, dmd_new);
4945                 ioc_info(ioc, "ioc_missing_delay: old(%d), new(%d)\n",
4946                          io_missing_delay_original,
4947                          io_missing_delay);
4948                 ioc->device_missing_delay = dmd_new;
4949                 ioc->io_missing_delay = io_missing_delay;
4950         }
4951
4952 out:
4953         kfree(sas_iounit_pg1);
4954 }
4955
4956 /**
4957  * _base_update_ioc_page1_inlinewith_perf_mode - Update IOC Page1 fields
4958  *    according to performance mode.
4959  * @ioc : per adapter object
4960  *
4961  * Return: zero on success; otherwise return EAGAIN error code asking the
4962  * caller to retry.
4963  */
4964 static int
4965 _base_update_ioc_page1_inlinewith_perf_mode(struct MPT3SAS_ADAPTER *ioc)
4966 {
4967         Mpi2IOCPage1_t ioc_pg1;
4968         Mpi2ConfigReply_t mpi_reply;
4969         int rc;
4970
4971         rc = mpt3sas_config_get_ioc_pg1(ioc, &mpi_reply, &ioc->ioc_pg1_copy);
4972         if (rc)
4973                 return rc;
4974         memcpy(&ioc_pg1, &ioc->ioc_pg1_copy, sizeof(Mpi2IOCPage1_t));
4975
4976         switch (perf_mode) {
4977         case MPT_PERF_MODE_DEFAULT:
4978         case MPT_PERF_MODE_BALANCED:
4979                 if (ioc->high_iops_queues) {
4980                         ioc_info(ioc,
4981                                 "Enable interrupt coalescing only for first\t"
4982                                 "%d reply queues\n",
4983                                 MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
4984                         /*
4985                          * If 31st bit is zero then interrupt coalescing is
4986                          * enabled for all reply descriptor post queues.
4987                          * If 31st bit is set to one then user can
4988                          * enable/disable interrupt coalescing on per reply
4989                          * descriptor post queue group(8) basis. So to enable
4990                          * interrupt coalescing only on first reply descriptor
4991                          * post queue group 31st bit and zero th bit is enabled.
4992                          */
4993                         ioc_pg1.ProductSpecific = cpu_to_le32(0x80000000 |
4994                             ((1 << MPT3SAS_HIGH_IOPS_REPLY_QUEUES/8) - 1));
4995                         rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
4996                         if (rc)
4997                                 return rc;
4998                         ioc_info(ioc, "performance mode: balanced\n");
4999                         return 0;
5000                 }
5001                 fallthrough;
5002         case MPT_PERF_MODE_LATENCY:
5003                 /*
5004                  * Enable interrupt coalescing on all reply queues
5005                  * with timeout value 0xA
5006                  */
5007                 ioc_pg1.CoalescingTimeout = cpu_to_le32(0xa);
5008                 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
5009                 ioc_pg1.ProductSpecific = 0;
5010                 rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
5011                 if (rc)
5012                         return rc;
5013                 ioc_info(ioc, "performance mode: latency\n");
5014                 break;
5015         case MPT_PERF_MODE_IOPS:
5016                 /*
5017                  * Enable interrupt coalescing on all reply queues.
5018                  */
5019                 ioc_info(ioc,
5020                     "performance mode: iops with coalescing timeout: 0x%x\n",
5021                     le32_to_cpu(ioc_pg1.CoalescingTimeout));
5022                 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
5023                 ioc_pg1.ProductSpecific = 0;
5024                 rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
5025                 if (rc)
5026                         return rc;
5027                 break;
5028         }
5029         return 0;
5030 }
5031
5032 /**
5033  * _base_get_event_diag_triggers - get event diag trigger values from
5034  *                              persistent pages
5035  * @ioc : per adapter object
5036  *
5037  * Return: nothing.
5038  */
5039 static int
5040 _base_get_event_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5041 {
5042         Mpi26DriverTriggerPage2_t trigger_pg2;
5043         struct SL_WH_EVENT_TRIGGER_T *event_tg;
5044         MPI26_DRIVER_MPI_EVENT_TIGGER_ENTRY *mpi_event_tg;
5045         Mpi2ConfigReply_t mpi_reply;
5046         int r = 0, i = 0;
5047         u16 count = 0;
5048         u16 ioc_status;
5049
5050         r = mpt3sas_config_get_driver_trigger_pg2(ioc, &mpi_reply,
5051             &trigger_pg2);
5052         if (r)
5053                 return r;
5054
5055         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5056             MPI2_IOCSTATUS_MASK;
5057         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5058                 dinitprintk(ioc,
5059                     ioc_err(ioc,
5060                     "%s: Failed to get trigger pg2, ioc_status(0x%04x)\n",
5061                    __func__, ioc_status));
5062                 return 0;
5063         }
5064
5065         if (le16_to_cpu(trigger_pg2.NumMPIEventTrigger)) {
5066                 count = le16_to_cpu(trigger_pg2.NumMPIEventTrigger);
5067                 count = min_t(u16, NUM_VALID_ENTRIES, count);
5068                 ioc->diag_trigger_event.ValidEntries = count;
5069
5070                 event_tg = &ioc->diag_trigger_event.EventTriggerEntry[0];
5071                 mpi_event_tg = &trigger_pg2.MPIEventTriggers[0];
5072                 for (i = 0; i < count; i++) {
5073                         event_tg->EventValue = le16_to_cpu(
5074                             mpi_event_tg->MPIEventCode);
5075                         event_tg->LogEntryQualifier = le16_to_cpu(
5076                             mpi_event_tg->MPIEventCodeSpecific);
5077                         event_tg++;
5078                         mpi_event_tg++;
5079                 }
5080         }
5081         return 0;
5082 }
5083
5084 /**
5085  * _base_get_scsi_diag_triggers - get scsi diag trigger values from
5086  *                              persistent pages
5087  * @ioc : per adapter object
5088  *
5089  * Return: 0 on success; otherwise return failure status.
5090  */
5091 static int
5092 _base_get_scsi_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5093 {
5094         Mpi26DriverTriggerPage3_t trigger_pg3;
5095         struct SL_WH_SCSI_TRIGGER_T *scsi_tg;
5096         MPI26_DRIVER_SCSI_SENSE_TIGGER_ENTRY *mpi_scsi_tg;
5097         Mpi2ConfigReply_t mpi_reply;
5098         int r = 0, i = 0;
5099         u16 count = 0;
5100         u16 ioc_status;
5101
5102         r = mpt3sas_config_get_driver_trigger_pg3(ioc, &mpi_reply,
5103             &trigger_pg3);
5104         if (r)
5105                 return r;
5106
5107         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5108             MPI2_IOCSTATUS_MASK;
5109         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5110                 dinitprintk(ioc,
5111                     ioc_err(ioc,
5112                     "%s: Failed to get trigger pg3, ioc_status(0x%04x)\n",
5113                     __func__, ioc_status));
5114                 return 0;
5115         }
5116
5117         if (le16_to_cpu(trigger_pg3.NumSCSISenseTrigger)) {
5118                 count = le16_to_cpu(trigger_pg3.NumSCSISenseTrigger);
5119                 count = min_t(u16, NUM_VALID_ENTRIES, count);
5120                 ioc->diag_trigger_scsi.ValidEntries = count;
5121
5122                 scsi_tg = &ioc->diag_trigger_scsi.SCSITriggerEntry[0];
5123                 mpi_scsi_tg = &trigger_pg3.SCSISenseTriggers[0];
5124                 for (i = 0; i < count; i++) {
5125                         scsi_tg->ASCQ = mpi_scsi_tg->ASCQ;
5126                         scsi_tg->ASC = mpi_scsi_tg->ASC;
5127                         scsi_tg->SenseKey = mpi_scsi_tg->SenseKey;
5128
5129                         scsi_tg++;
5130                         mpi_scsi_tg++;
5131                 }
5132         }
5133         return 0;
5134 }
5135
5136 /**
5137  * _base_get_mpi_diag_triggers - get mpi diag trigger values from
5138  *                              persistent pages
5139  * @ioc : per adapter object
5140  *
5141  * Return: 0 on success; otherwise return failure status.
5142  */
5143 static int
5144 _base_get_mpi_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5145 {
5146         Mpi26DriverTriggerPage4_t trigger_pg4;
5147         struct SL_WH_MPI_TRIGGER_T *status_tg;
5148         MPI26_DRIVER_IOCSTATUS_LOGINFO_TIGGER_ENTRY *mpi_status_tg;
5149         Mpi2ConfigReply_t mpi_reply;
5150         int r = 0, i = 0;
5151         u16 count = 0;
5152         u16 ioc_status;
5153
5154         r = mpt3sas_config_get_driver_trigger_pg4(ioc, &mpi_reply,
5155             &trigger_pg4);
5156         if (r)
5157                 return r;
5158
5159         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5160             MPI2_IOCSTATUS_MASK;
5161         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5162                 dinitprintk(ioc,
5163                     ioc_err(ioc,
5164                     "%s: Failed to get trigger pg4, ioc_status(0x%04x)\n",
5165                     __func__, ioc_status));
5166                 return 0;
5167         }
5168
5169         if (le16_to_cpu(trigger_pg4.NumIOCStatusLogInfoTrigger)) {
5170                 count = le16_to_cpu(trigger_pg4.NumIOCStatusLogInfoTrigger);
5171                 count = min_t(u16, NUM_VALID_ENTRIES, count);
5172                 ioc->diag_trigger_mpi.ValidEntries = count;
5173
5174                 status_tg = &ioc->diag_trigger_mpi.MPITriggerEntry[0];
5175                 mpi_status_tg = &trigger_pg4.IOCStatusLoginfoTriggers[0];
5176
5177                 for (i = 0; i < count; i++) {
5178                         status_tg->IOCStatus = le16_to_cpu(
5179                             mpi_status_tg->IOCStatus);
5180                         status_tg->IocLogInfo = le32_to_cpu(
5181                             mpi_status_tg->LogInfo);
5182
5183                         status_tg++;
5184                         mpi_status_tg++;
5185                 }
5186         }
5187         return 0;
5188 }
5189
5190 /**
5191  * _base_get_master_diag_triggers - get master diag trigger values from
5192  *                              persistent pages
5193  * @ioc : per adapter object
5194  *
5195  * Return: nothing.
5196  */
5197 static int
5198 _base_get_master_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5199 {
5200         Mpi26DriverTriggerPage1_t trigger_pg1;
5201         Mpi2ConfigReply_t mpi_reply;
5202         int r;
5203         u16 ioc_status;
5204
5205         r = mpt3sas_config_get_driver_trigger_pg1(ioc, &mpi_reply,
5206             &trigger_pg1);
5207         if (r)
5208                 return r;
5209
5210         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5211             MPI2_IOCSTATUS_MASK;
5212         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5213                 dinitprintk(ioc,
5214                     ioc_err(ioc,
5215                     "%s: Failed to get trigger pg1, ioc_status(0x%04x)\n",
5216                    __func__, ioc_status));
5217                 return 0;
5218         }
5219
5220         if (le16_to_cpu(trigger_pg1.NumMasterTrigger))
5221                 ioc->diag_trigger_master.MasterData |=
5222                     le32_to_cpu(
5223                     trigger_pg1.MasterTriggers[0].MasterTriggerFlags);
5224         return 0;
5225 }
5226
5227 /**
5228  * _base_check_for_trigger_pages_support - checks whether HBA FW supports
5229  *                                      driver trigger pages or not
5230  * @ioc : per adapter object
5231  * @trigger_flags : address where trigger page0's TriggerFlags value is copied
5232  *
5233  * Return: trigger flags mask if HBA FW supports driver trigger pages;
5234  * otherwise returns %-EFAULT if driver trigger pages are not supported by FW or
5235  * return EAGAIN if diag reset occurred due to FW fault and asking the
5236  * caller to retry the command.
5237  *
5238  */
5239 static int
5240 _base_check_for_trigger_pages_support(struct MPT3SAS_ADAPTER *ioc, u32 *trigger_flags)
5241 {
5242         Mpi26DriverTriggerPage0_t trigger_pg0;
5243         int r = 0;
5244         Mpi2ConfigReply_t mpi_reply;
5245         u16 ioc_status;
5246
5247         r = mpt3sas_config_get_driver_trigger_pg0(ioc, &mpi_reply,
5248             &trigger_pg0);
5249         if (r)
5250                 return r;
5251
5252         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5253             MPI2_IOCSTATUS_MASK;
5254         if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
5255                 return -EFAULT;
5256
5257         *trigger_flags = le16_to_cpu(trigger_pg0.TriggerFlags);
5258         return 0;
5259 }
5260
5261 /**
5262  * _base_get_diag_triggers - Retrieve diag trigger values from
5263  *                              persistent pages.
5264  * @ioc : per adapter object
5265  *
5266  * Return: zero on success; otherwise return EAGAIN error codes
5267  * asking the caller to retry.
5268  */
5269 static int
5270 _base_get_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5271 {
5272         int trigger_flags;
5273         int r;
5274
5275         /*
5276          * Default setting of master trigger.
5277          */
5278         ioc->diag_trigger_master.MasterData =
5279             (MASTER_TRIGGER_FW_FAULT + MASTER_TRIGGER_ADAPTER_RESET);
5280
5281         r = _base_check_for_trigger_pages_support(ioc, &trigger_flags);
5282         if (r) {
5283                 if (r == -EAGAIN)
5284                         return r;
5285                 /*
5286                  * Don't go for error handling when FW doesn't support
5287                  * driver trigger pages.
5288                  */
5289                 return 0;
5290         }
5291
5292         ioc->supports_trigger_pages = 1;
5293
5294         /*
5295          * Retrieve master diag trigger values from driver trigger pg1
5296          * if master trigger bit enabled in TriggerFlags.
5297          */
5298         if ((u16)trigger_flags &
5299             MPI26_DRIVER_TRIGGER0_FLAG_MASTER_TRIGGER_VALID) {
5300                 r = _base_get_master_diag_triggers(ioc);
5301                 if (r)
5302                         return r;
5303         }
5304
5305         /*
5306          * Retrieve event diag trigger values from driver trigger pg2
5307          * if event trigger bit enabled in TriggerFlags.
5308          */
5309         if ((u16)trigger_flags &
5310             MPI26_DRIVER_TRIGGER0_FLAG_MPI_EVENT_TRIGGER_VALID) {
5311                 r = _base_get_event_diag_triggers(ioc);
5312                 if (r)
5313                         return r;
5314         }
5315
5316         /*
5317          * Retrieve scsi diag trigger values from driver trigger pg3
5318          * if scsi trigger bit enabled in TriggerFlags.
5319          */
5320         if ((u16)trigger_flags &
5321             MPI26_DRIVER_TRIGGER0_FLAG_SCSI_SENSE_TRIGGER_VALID) {
5322                 r = _base_get_scsi_diag_triggers(ioc);
5323                 if (r)
5324                         return r;
5325         }
5326         /*
5327          * Retrieve mpi error diag trigger values from driver trigger pg4
5328          * if loginfo trigger bit enabled in TriggerFlags.
5329          */
5330         if ((u16)trigger_flags &
5331             MPI26_DRIVER_TRIGGER0_FLAG_LOGINFO_TRIGGER_VALID) {
5332                 r = _base_get_mpi_diag_triggers(ioc);
5333                 if (r)
5334                         return r;
5335         }
5336         return 0;
5337 }
5338
5339 /**
5340  * _base_update_diag_trigger_pages - Update the driver trigger pages after
5341  *                      online FW update, in case updated FW supports driver
5342  *                      trigger pages.
5343  * @ioc : per adapter object
5344  *
5345  * Return: nothing.
5346  */
5347 static void
5348 _base_update_diag_trigger_pages(struct MPT3SAS_ADAPTER *ioc)
5349 {
5350
5351         if (ioc->diag_trigger_master.MasterData)
5352                 mpt3sas_config_update_driver_trigger_pg1(ioc,
5353                     &ioc->diag_trigger_master, 1);
5354
5355         if (ioc->diag_trigger_event.ValidEntries)
5356                 mpt3sas_config_update_driver_trigger_pg2(ioc,
5357                     &ioc->diag_trigger_event, 1);
5358
5359         if (ioc->diag_trigger_scsi.ValidEntries)
5360                 mpt3sas_config_update_driver_trigger_pg3(ioc,
5361                     &ioc->diag_trigger_scsi, 1);
5362
5363         if (ioc->diag_trigger_mpi.ValidEntries)
5364                 mpt3sas_config_update_driver_trigger_pg4(ioc,
5365                     &ioc->diag_trigger_mpi, 1);
5366 }
5367
5368 /**
5369  * _base_assign_fw_reported_qd  - Get FW reported QD for SAS/SATA devices.
5370  *                              - On failure set default QD values.
5371  * @ioc : per adapter object
5372  *
5373  * Returns 0 for success, non-zero for failure.
5374  *
5375  */
5376 static int _base_assign_fw_reported_qd(struct MPT3SAS_ADAPTER *ioc)
5377 {
5378         Mpi2ConfigReply_t mpi_reply;
5379         Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
5380         Mpi26PCIeIOUnitPage1_t pcie_iounit_pg1;
5381         int sz;
5382         int rc = 0;
5383
5384         ioc->max_wideport_qd = MPT3SAS_SAS_QUEUE_DEPTH;
5385         ioc->max_narrowport_qd = MPT3SAS_SAS_QUEUE_DEPTH;
5386         ioc->max_sata_qd = MPT3SAS_SATA_QUEUE_DEPTH;
5387         ioc->max_nvme_qd = MPT3SAS_NVME_QUEUE_DEPTH;
5388         if (!ioc->is_gen35_ioc)
5389                 goto out;
5390         /* sas iounit page 1 */
5391         sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData);
5392         sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
5393         if (!sas_iounit_pg1) {
5394                 pr_err("%s: failure at %s:%d/%s()!\n",
5395                     ioc->name, __FILE__, __LINE__, __func__);
5396                 return rc;
5397         }
5398         rc = mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
5399             sas_iounit_pg1, sz);
5400         if (rc) {
5401                 pr_err("%s: failure at %s:%d/%s()!\n",
5402                     ioc->name, __FILE__, __LINE__, __func__);
5403                 goto out;
5404         }
5405         ioc->max_wideport_qd =
5406             (le16_to_cpu(sas_iounit_pg1->SASWideMaxQueueDepth)) ?
5407             le16_to_cpu(sas_iounit_pg1->SASWideMaxQueueDepth) :
5408             MPT3SAS_SAS_QUEUE_DEPTH;
5409         ioc->max_narrowport_qd =
5410             (le16_to_cpu(sas_iounit_pg1->SASNarrowMaxQueueDepth)) ?
5411             le16_to_cpu(sas_iounit_pg1->SASNarrowMaxQueueDepth) :
5412             MPT3SAS_SAS_QUEUE_DEPTH;
5413         ioc->max_sata_qd = (sas_iounit_pg1->SATAMaxQDepth) ?
5414             sas_iounit_pg1->SATAMaxQDepth : MPT3SAS_SATA_QUEUE_DEPTH;
5415         /* pcie iounit page 1 */
5416         rc = mpt3sas_config_get_pcie_iounit_pg1(ioc, &mpi_reply,
5417             &pcie_iounit_pg1, sizeof(Mpi26PCIeIOUnitPage1_t));
5418         if (rc) {
5419                 pr_err("%s: failure at %s:%d/%s()!\n",
5420                     ioc->name, __FILE__, __LINE__, __func__);
5421                 goto out;
5422         }
5423         ioc->max_nvme_qd = (le16_to_cpu(pcie_iounit_pg1.NVMeMaxQueueDepth)) ?
5424             (le16_to_cpu(pcie_iounit_pg1.NVMeMaxQueueDepth)) :
5425             MPT3SAS_NVME_QUEUE_DEPTH;
5426 out:
5427         dinitprintk(ioc, pr_err(
5428             "MaxWidePortQD: 0x%x MaxNarrowPortQD: 0x%x MaxSataQD: 0x%x MaxNvmeQD: 0x%x\n",
5429             ioc->max_wideport_qd, ioc->max_narrowport_qd,
5430             ioc->max_sata_qd, ioc->max_nvme_qd));
5431         kfree(sas_iounit_pg1);
5432         return rc;
5433 }
5434
5435 /**
5436  * _base_static_config_pages - static start of day config pages
5437  * @ioc: per adapter object
5438  */
5439 static int
5440 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
5441 {
5442         Mpi2ConfigReply_t mpi_reply;
5443         u32 iounit_pg1_flags;
5444         int tg_flags = 0;
5445         int rc;
5446         ioc->nvme_abort_timeout = 30;
5447
5448         rc = mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply,
5449             &ioc->manu_pg0);
5450         if (rc)
5451                 return rc;
5452         if (ioc->ir_firmware) {
5453                 rc = mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
5454                     &ioc->manu_pg10);
5455                 if (rc)
5456                         return rc;
5457         }
5458         /*
5459          * Ensure correct T10 PI operation if vendor left EEDPTagMode
5460          * flag unset in NVDATA.
5461          */
5462         rc = mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply,
5463             &ioc->manu_pg11);
5464         if (rc)
5465                 return rc;
5466         if (!ioc->is_gen35_ioc && ioc->manu_pg11.EEDPTagMode == 0) {
5467                 pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
5468                     ioc->name);
5469                 ioc->manu_pg11.EEDPTagMode &= ~0x3;
5470                 ioc->manu_pg11.EEDPTagMode |= 0x1;
5471                 mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
5472                     &ioc->manu_pg11);
5473         }
5474         if (ioc->manu_pg11.AddlFlags2 & NVME_TASK_MNGT_CUSTOM_MASK)
5475                 ioc->tm_custom_handling = 1;
5476         else {
5477                 ioc->tm_custom_handling = 0;
5478                 if (ioc->manu_pg11.NVMeAbortTO < NVME_TASK_ABORT_MIN_TIMEOUT)
5479                         ioc->nvme_abort_timeout = NVME_TASK_ABORT_MIN_TIMEOUT;
5480                 else if (ioc->manu_pg11.NVMeAbortTO >
5481                                         NVME_TASK_ABORT_MAX_TIMEOUT)
5482                         ioc->nvme_abort_timeout = NVME_TASK_ABORT_MAX_TIMEOUT;
5483                 else
5484                         ioc->nvme_abort_timeout = ioc->manu_pg11.NVMeAbortTO;
5485         }
5486         ioc->time_sync_interval =
5487             ioc->manu_pg11.TimeSyncInterval & MPT3SAS_TIMESYNC_MASK;
5488         if (ioc->time_sync_interval) {
5489                 if (ioc->manu_pg11.TimeSyncInterval & MPT3SAS_TIMESYNC_UNIT_MASK)
5490                         ioc->time_sync_interval =
5491                             ioc->time_sync_interval * SECONDS_PER_HOUR;
5492                 else
5493                         ioc->time_sync_interval =
5494                             ioc->time_sync_interval * SECONDS_PER_MIN;
5495                 dinitprintk(ioc, ioc_info(ioc,
5496                     "Driver-FW TimeSync interval is %d seconds. ManuPg11 TimeSync Unit is in %s\n",
5497                     ioc->time_sync_interval, (ioc->manu_pg11.TimeSyncInterval &
5498                     MPT3SAS_TIMESYNC_UNIT_MASK) ? "Hour" : "Minute"));
5499         } else {
5500                 if (ioc->is_gen35_ioc)
5501                         ioc_warn(ioc,
5502                             "TimeSync Interval in Manuf page-11 is not enabled. Periodic Time-Sync will be disabled\n");
5503         }
5504         rc = _base_assign_fw_reported_qd(ioc);
5505         if (rc)
5506                 return rc;
5507         rc = mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
5508         if (rc)
5509                 return rc;
5510         rc = mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
5511         if (rc)
5512                 return rc;
5513         rc = mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
5514         if (rc)
5515                 return rc;
5516         rc = mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
5517         if (rc)
5518                 return rc;
5519         rc = mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
5520         if (rc)
5521                 return rc;
5522         rc = mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8);
5523         if (rc)
5524                 return rc;
5525         _base_display_ioc_capabilities(ioc);
5526
5527         /*
5528          * Enable task_set_full handling in iounit_pg1 when the
5529          * facts capabilities indicate that its supported.
5530          */
5531         iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
5532         if ((ioc->facts.IOCCapabilities &
5533             MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
5534                 iounit_pg1_flags &=
5535                     ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
5536         else
5537                 iounit_pg1_flags |=
5538                     MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
5539         ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
5540         rc = mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
5541         if (rc)
5542                 return rc;
5543
5544         if (ioc->iounit_pg8.NumSensors)
5545                 ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors;
5546         if (ioc->is_aero_ioc) {
5547                 rc = _base_update_ioc_page1_inlinewith_perf_mode(ioc);
5548                 if (rc)
5549                         return rc;
5550         }
5551         if (ioc->is_gen35_ioc) {
5552                 if (ioc->is_driver_loading) {
5553                         rc = _base_get_diag_triggers(ioc);
5554                         if (rc)
5555                                 return rc;
5556                 } else {
5557                         /*
5558                          * In case of online HBA FW update operation,
5559                          * check whether updated FW supports the driver trigger
5560                          * pages or not.
5561                          * - If previous FW has not supported driver trigger
5562                          *   pages and newer FW supports them then update these
5563                          *   pages with current diag trigger values.
5564                          * - If previous FW has supported driver trigger pages
5565                          *   and new FW doesn't support them then disable
5566                          *   support_trigger_pages flag.
5567                          */
5568                         _base_check_for_trigger_pages_support(ioc, &tg_flags);
5569                         if (!ioc->supports_trigger_pages && tg_flags != -EFAULT)
5570                                 _base_update_diag_trigger_pages(ioc);
5571                         else if (ioc->supports_trigger_pages &&
5572                             tg_flags == -EFAULT)
5573                                 ioc->supports_trigger_pages = 0;
5574                 }
5575         }
5576         return 0;
5577 }
5578
5579 /**
5580  * mpt3sas_free_enclosure_list - release memory
5581  * @ioc: per adapter object
5582  *
5583  * Free memory allocated during enclosure add.
5584  */
5585 void
5586 mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER *ioc)
5587 {
5588         struct _enclosure_node *enclosure_dev, *enclosure_dev_next;
5589
5590         /* Free enclosure list */
5591         list_for_each_entry_safe(enclosure_dev,
5592                         enclosure_dev_next, &ioc->enclosure_list, list) {
5593                 list_del(&enclosure_dev->list);
5594                 kfree(enclosure_dev);
5595         }
5596 }
5597
5598 /**
5599  * _base_release_memory_pools - release memory
5600  * @ioc: per adapter object
5601  *
5602  * Free memory allocated from _base_allocate_memory_pools.
5603  */
5604 static void
5605 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
5606 {
5607         int i = 0;
5608         int j = 0;
5609         int dma_alloc_count = 0;
5610         struct chain_tracker *ct;
5611         int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1;
5612
5613         dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
5614
5615         if (ioc->request) {
5616                 dma_free_coherent(&ioc->pdev->dev, ioc->request_dma_sz,
5617                     ioc->request,  ioc->request_dma);
5618                 dexitprintk(ioc,
5619                             ioc_info(ioc, "request_pool(0x%p): free\n",
5620                                      ioc->request));
5621                 ioc->request = NULL;
5622         }
5623
5624         if (ioc->sense) {
5625                 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
5626                 dma_pool_destroy(ioc->sense_dma_pool);
5627                 dexitprintk(ioc,
5628                             ioc_info(ioc, "sense_pool(0x%p): free\n",
5629                                      ioc->sense));
5630                 ioc->sense = NULL;
5631         }
5632
5633         if (ioc->reply) {
5634                 dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
5635                 dma_pool_destroy(ioc->reply_dma_pool);
5636                 dexitprintk(ioc,
5637                             ioc_info(ioc, "reply_pool(0x%p): free\n",
5638                                      ioc->reply));
5639                 ioc->reply = NULL;
5640         }
5641
5642         if (ioc->reply_free) {
5643                 dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
5644                     ioc->reply_free_dma);
5645                 dma_pool_destroy(ioc->reply_free_dma_pool);
5646                 dexitprintk(ioc,
5647                             ioc_info(ioc, "reply_free_pool(0x%p): free\n",
5648                                      ioc->reply_free));
5649                 ioc->reply_free = NULL;
5650         }
5651
5652         if (ioc->reply_post) {
5653                 dma_alloc_count = DIV_ROUND_UP(count,
5654                                 RDPQ_MAX_INDEX_IN_ONE_CHUNK);
5655                 for (i = 0; i < count; i++) {
5656                         if (i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0
5657                             && dma_alloc_count) {
5658                                 if (ioc->reply_post[i].reply_post_free) {
5659                                         dma_pool_free(
5660                                             ioc->reply_post_free_dma_pool,
5661                                             ioc->reply_post[i].reply_post_free,
5662                                         ioc->reply_post[i].reply_post_free_dma);
5663                                         dexitprintk(ioc, ioc_info(ioc,
5664                                            "reply_post_free_pool(0x%p): free\n",
5665                                            ioc->reply_post[i].reply_post_free));
5666                                         ioc->reply_post[i].reply_post_free =
5667                                                                         NULL;
5668                                 }
5669                                 --dma_alloc_count;
5670                         }
5671                 }
5672                 dma_pool_destroy(ioc->reply_post_free_dma_pool);
5673                 if (ioc->reply_post_free_array &&
5674                         ioc->rdpq_array_enable) {
5675                         dma_pool_free(ioc->reply_post_free_array_dma_pool,
5676                             ioc->reply_post_free_array,
5677                             ioc->reply_post_free_array_dma);
5678                         ioc->reply_post_free_array = NULL;
5679                 }
5680                 dma_pool_destroy(ioc->reply_post_free_array_dma_pool);
5681                 kfree(ioc->reply_post);
5682         }
5683
5684         if (ioc->pcie_sgl_dma_pool) {
5685                 for (i = 0; i < ioc->scsiio_depth; i++) {
5686                         dma_pool_free(ioc->pcie_sgl_dma_pool,
5687                                         ioc->pcie_sg_lookup[i].pcie_sgl,
5688                                         ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5689                         ioc->pcie_sg_lookup[i].pcie_sgl = NULL;
5690                 }
5691                 dma_pool_destroy(ioc->pcie_sgl_dma_pool);
5692         }
5693         if (ioc->config_page) {
5694                 dexitprintk(ioc,
5695                             ioc_info(ioc, "config_page(0x%p): free\n",
5696                                      ioc->config_page));
5697                 dma_free_coherent(&ioc->pdev->dev, ioc->config_page_sz,
5698                     ioc->config_page, ioc->config_page_dma);
5699         }
5700
5701         kfree(ioc->hpr_lookup);
5702         ioc->hpr_lookup = NULL;
5703         kfree(ioc->internal_lookup);
5704         ioc->internal_lookup = NULL;
5705         if (ioc->chain_lookup) {
5706                 for (i = 0; i < ioc->scsiio_depth; i++) {
5707                         for (j = ioc->chains_per_prp_buffer;
5708                             j < ioc->chains_needed_per_io; j++) {
5709                                 ct = &ioc->chain_lookup[i].chains_per_smid[j];
5710                                 if (ct && ct->chain_buffer)
5711                                         dma_pool_free(ioc->chain_dma_pool,
5712                                                 ct->chain_buffer,
5713                                                 ct->chain_buffer_dma);
5714                         }
5715                         kfree(ioc->chain_lookup[i].chains_per_smid);
5716                 }
5717                 dma_pool_destroy(ioc->chain_dma_pool);
5718                 kfree(ioc->chain_lookup);
5719                 ioc->chain_lookup = NULL;
5720         }
5721
5722         kfree(ioc->io_queue_num);
5723         ioc->io_queue_num = NULL;
5724 }
5725
5726 /**
5727  * mpt3sas_check_same_4gb_region - checks whether all reply queues in a set are
5728  *      having same upper 32bits in their base memory address.
5729  * @reply_pool_start_address: Base address of a reply queue set
5730  * @pool_sz: Size of single Reply Descriptor Post Queues pool size
5731  *
5732  * Return: 1 if reply queues in a set have a same upper 32bits in their base
5733  * memory address, else 0.
5734  */
5735
5736 static int
5737 mpt3sas_check_same_4gb_region(long reply_pool_start_address, u32 pool_sz)
5738 {
5739         long reply_pool_end_address;
5740
5741         reply_pool_end_address = reply_pool_start_address + pool_sz;
5742
5743         if (upper_32_bits(reply_pool_start_address) ==
5744                 upper_32_bits(reply_pool_end_address))
5745                 return 1;
5746         else
5747                 return 0;
5748 }
5749
5750 /**
5751  * _base_reduce_hba_queue_depth- Retry with reduced queue depth
5752  * @ioc: Adapter object
5753  *
5754  * Return: 0 for success, non-zero for failure.
5755  **/
5756 static inline int
5757 _base_reduce_hba_queue_depth(struct MPT3SAS_ADAPTER *ioc)
5758 {
5759         int reduce_sz = 64;
5760
5761         if ((ioc->hba_queue_depth - reduce_sz) >
5762             (ioc->internal_depth + INTERNAL_SCSIIO_CMDS_COUNT)) {
5763                 ioc->hba_queue_depth -= reduce_sz;
5764                 return 0;
5765         } else
5766                 return -ENOMEM;
5767 }
5768
5769 /**
5770  * _base_allocate_pcie_sgl_pool - Allocating DMA'able memory
5771  *                      for pcie sgl pools.
5772  * @ioc: Adapter object
5773  * @sz: DMA Pool size
5774  *
5775  * Return: 0 for success, non-zero for failure.
5776  */
5777
5778 static int
5779 _base_allocate_pcie_sgl_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5780 {
5781         int i = 0, j = 0;
5782         struct chain_tracker *ct;
5783
5784         ioc->pcie_sgl_dma_pool =
5785             dma_pool_create("PCIe SGL pool", &ioc->pdev->dev, sz,
5786             ioc->page_size, 0);
5787         if (!ioc->pcie_sgl_dma_pool) {
5788                 ioc_err(ioc, "PCIe SGL pool: dma_pool_create failed\n");
5789                 return -ENOMEM;
5790         }
5791
5792         ioc->chains_per_prp_buffer = sz/ioc->chain_segment_sz;
5793         ioc->chains_per_prp_buffer =
5794             min(ioc->chains_per_prp_buffer, ioc->chains_needed_per_io);
5795         for (i = 0; i < ioc->scsiio_depth; i++) {
5796                 ioc->pcie_sg_lookup[i].pcie_sgl =
5797                     dma_pool_alloc(ioc->pcie_sgl_dma_pool, GFP_KERNEL,
5798                     &ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5799                 if (!ioc->pcie_sg_lookup[i].pcie_sgl) {
5800                         ioc_err(ioc, "PCIe SGL pool: dma_pool_alloc failed\n");
5801                         return -EAGAIN;
5802                 }
5803
5804                 if (!mpt3sas_check_same_4gb_region(
5805                     (long)ioc->pcie_sg_lookup[i].pcie_sgl, sz)) {
5806                         ioc_err(ioc, "PCIE SGLs are not in same 4G !! pcie sgl (0x%p) dma = (0x%llx)\n",
5807                             ioc->pcie_sg_lookup[i].pcie_sgl,
5808                             (unsigned long long)
5809                             ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5810                         ioc->use_32bit_dma = true;
5811                         return -EAGAIN;
5812                 }
5813
5814                 for (j = 0; j < ioc->chains_per_prp_buffer; j++) {
5815                         ct = &ioc->chain_lookup[i].chains_per_smid[j];
5816                         ct->chain_buffer =
5817                             ioc->pcie_sg_lookup[i].pcie_sgl +
5818                             (j * ioc->chain_segment_sz);
5819                         ct->chain_buffer_dma =
5820                             ioc->pcie_sg_lookup[i].pcie_sgl_dma +
5821                             (j * ioc->chain_segment_sz);
5822                 }
5823         }
5824         dinitprintk(ioc, ioc_info(ioc,
5825             "PCIe sgl pool depth(%d), element_size(%d), pool_size(%d kB)\n",
5826             ioc->scsiio_depth, sz, (sz * ioc->scsiio_depth)/1024));
5827         dinitprintk(ioc, ioc_info(ioc,
5828             "Number of chains can fit in a PRP page(%d)\n",
5829             ioc->chains_per_prp_buffer));
5830         return 0;
5831 }
5832
5833 /**
5834  * _base_allocate_chain_dma_pool - Allocating DMA'able memory
5835  *                      for chain dma pool.
5836  * @ioc: Adapter object
5837  * @sz: DMA Pool size
5838  *
5839  * Return: 0 for success, non-zero for failure.
5840  */
5841 static int
5842 _base_allocate_chain_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5843 {
5844         int i = 0, j = 0;
5845         struct chain_tracker *ctr;
5846
5847         ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev,
5848             ioc->chain_segment_sz, 16, 0);
5849         if (!ioc->chain_dma_pool)
5850                 return -ENOMEM;
5851
5852         for (i = 0; i < ioc->scsiio_depth; i++) {
5853                 for (j = ioc->chains_per_prp_buffer;
5854                     j < ioc->chains_needed_per_io; j++) {
5855                         ctr = &ioc->chain_lookup[i].chains_per_smid[j];
5856                         ctr->chain_buffer = dma_pool_alloc(ioc->chain_dma_pool,
5857                             GFP_KERNEL, &ctr->chain_buffer_dma);
5858                         if (!ctr->chain_buffer)
5859                                 return -EAGAIN;
5860                         if (!mpt3sas_check_same_4gb_region((long)
5861                             ctr->chain_buffer, ioc->chain_segment_sz)) {
5862                                 ioc_err(ioc,
5863                                     "Chain buffers are not in same 4G !!! Chain buff (0x%p) dma = (0x%llx)\n",
5864                                     ctr->chain_buffer,
5865                                     (unsigned long long)ctr->chain_buffer_dma);
5866                                 ioc->use_32bit_dma = true;
5867                                 return -EAGAIN;
5868                         }
5869                 }
5870         }
5871         dinitprintk(ioc, ioc_info(ioc,
5872             "chain_lookup depth (%d), frame_size(%d), pool_size(%d kB)\n",
5873             ioc->scsiio_depth, ioc->chain_segment_sz, ((ioc->scsiio_depth *
5874             (ioc->chains_needed_per_io - ioc->chains_per_prp_buffer) *
5875             ioc->chain_segment_sz))/1024));
5876         return 0;
5877 }
5878
5879 /**
5880  * _base_allocate_sense_dma_pool - Allocating DMA'able memory
5881  *                      for sense dma pool.
5882  * @ioc: Adapter object
5883  * @sz: DMA Pool size
5884  * Return: 0 for success, non-zero for failure.
5885  */
5886 static int
5887 _base_allocate_sense_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5888 {
5889         ioc->sense_dma_pool =
5890             dma_pool_create("sense pool", &ioc->pdev->dev, sz, 4, 0);
5891         if (!ioc->sense_dma_pool)
5892                 return -ENOMEM;
5893         ioc->sense = dma_pool_alloc(ioc->sense_dma_pool,
5894             GFP_KERNEL, &ioc->sense_dma);
5895         if (!ioc->sense)
5896                 return -EAGAIN;
5897         if (!mpt3sas_check_same_4gb_region((long)ioc->sense, sz)) {
5898                 dinitprintk(ioc, pr_err(
5899                     "Bad Sense Pool! sense (0x%p) sense_dma = (0x%llx)\n",
5900                     ioc->sense, (unsigned long long) ioc->sense_dma));
5901                 ioc->use_32bit_dma = true;
5902                 return -EAGAIN;
5903         }
5904         ioc_info(ioc,
5905             "sense pool(0x%p) - dma(0x%llx): depth(%d), element_size(%d), pool_size (%d kB)\n",
5906             ioc->sense, (unsigned long long)ioc->sense_dma,
5907             ioc->scsiio_depth, SCSI_SENSE_BUFFERSIZE, sz/1024);
5908         return 0;
5909 }
5910
5911 /**
5912  * _base_allocate_reply_pool - Allocating DMA'able memory
5913  *                      for reply pool.
5914  * @ioc: Adapter object
5915  * @sz: DMA Pool size
5916  * Return: 0 for success, non-zero for failure.
5917  */
5918 static int
5919 _base_allocate_reply_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5920 {
5921         /* reply pool, 4 byte align */
5922         ioc->reply_dma_pool = dma_pool_create("reply pool",
5923             &ioc->pdev->dev, sz, 4, 0);
5924         if (!ioc->reply_dma_pool)
5925                 return -ENOMEM;
5926         ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL,
5927             &ioc->reply_dma);
5928         if (!ioc->reply)
5929                 return -EAGAIN;
5930         if (!mpt3sas_check_same_4gb_region((long)ioc->reply_free, sz)) {
5931                 dinitprintk(ioc, pr_err(
5932                     "Bad Reply Pool! Reply (0x%p) Reply dma = (0x%llx)\n",
5933                     ioc->reply, (unsigned long long) ioc->reply_dma));
5934                 ioc->use_32bit_dma = true;
5935                 return -EAGAIN;
5936         }
5937         ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
5938         ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
5939         ioc_info(ioc,
5940             "reply pool(0x%p) - dma(0x%llx): depth(%d), frame_size(%d), pool_size(%d kB)\n",
5941             ioc->reply, (unsigned long long)ioc->reply_dma,
5942             ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024);
5943         return 0;
5944 }
5945
5946 /**
5947  * _base_allocate_reply_free_dma_pool - Allocating DMA'able memory
5948  *                      for reply free dma pool.
5949  * @ioc: Adapter object
5950  * @sz: DMA Pool size
5951  * Return: 0 for success, non-zero for failure.
5952  */
5953 static int
5954 _base_allocate_reply_free_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5955 {
5956         /* reply free queue, 16 byte align */
5957         ioc->reply_free_dma_pool = dma_pool_create(
5958             "reply_free pool", &ioc->pdev->dev, sz, 16, 0);
5959         if (!ioc->reply_free_dma_pool)
5960                 return -ENOMEM;
5961         ioc->reply_free = dma_pool_alloc(ioc->reply_free_dma_pool,
5962             GFP_KERNEL, &ioc->reply_free_dma);
5963         if (!ioc->reply_free)
5964                 return -EAGAIN;
5965         if (!mpt3sas_check_same_4gb_region((long)ioc->reply_free, sz)) {
5966                 dinitprintk(ioc,
5967                     pr_err("Bad Reply Free Pool! Reply Free (0x%p) Reply Free dma = (0x%llx)\n",
5968                     ioc->reply_free, (unsigned long long) ioc->reply_free_dma));
5969                 ioc->use_32bit_dma = true;
5970                 return -EAGAIN;
5971         }
5972         memset(ioc->reply_free, 0, sz);
5973         dinitprintk(ioc, ioc_info(ioc,
5974             "reply_free pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n",
5975             ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024));
5976         dinitprintk(ioc, ioc_info(ioc,
5977             "reply_free_dma (0x%llx)\n",
5978             (unsigned long long)ioc->reply_free_dma));
5979         return 0;
5980 }
5981
5982 /**
5983  * _base_allocate_reply_post_free_array - Allocating DMA'able memory
5984  *                      for reply post free array.
5985  * @ioc: Adapter object
5986  * @reply_post_free_array_sz: DMA Pool size
5987  * Return: 0 for success, non-zero for failure.
5988  */
5989
5990 static int
5991 _base_allocate_reply_post_free_array(struct MPT3SAS_ADAPTER *ioc,
5992         u32 reply_post_free_array_sz)
5993 {
5994         ioc->reply_post_free_array_dma_pool =
5995             dma_pool_create("reply_post_free_array pool",
5996             &ioc->pdev->dev, reply_post_free_array_sz, 16, 0);
5997         if (!ioc->reply_post_free_array_dma_pool)
5998                 return -ENOMEM;
5999         ioc->reply_post_free_array =
6000             dma_pool_alloc(ioc->reply_post_free_array_dma_pool,
6001             GFP_KERNEL, &ioc->reply_post_free_array_dma);
6002         if (!ioc->reply_post_free_array)
6003                 return -EAGAIN;
6004         if (!mpt3sas_check_same_4gb_region((long)ioc->reply_post_free_array,
6005             reply_post_free_array_sz)) {
6006                 dinitprintk(ioc, pr_err(
6007                     "Bad Reply Free Pool! Reply Free (0x%p) Reply Free dma = (0x%llx)\n",
6008                     ioc->reply_free,
6009                     (unsigned long long) ioc->reply_free_dma));
6010                 ioc->use_32bit_dma = true;
6011                 return -EAGAIN;
6012         }
6013         return 0;
6014 }
6015 /**
6016  * base_alloc_rdpq_dma_pool - Allocating DMA'able memory
6017  *                     for reply queues.
6018  * @ioc: per adapter object
6019  * @sz: DMA Pool size
6020  * Return: 0 for success, non-zero for failure.
6021  */
6022 static int
6023 base_alloc_rdpq_dma_pool(struct MPT3SAS_ADAPTER *ioc, int sz)
6024 {
6025         int i = 0;
6026         u32 dma_alloc_count = 0;
6027         int reply_post_free_sz = ioc->reply_post_queue_depth *
6028                 sizeof(Mpi2DefaultReplyDescriptor_t);
6029         int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1;
6030
6031         ioc->reply_post = kcalloc(count, sizeof(struct reply_post_struct),
6032                         GFP_KERNEL);
6033         if (!ioc->reply_post)
6034                 return -ENOMEM;
6035         /*
6036          *  For INVADER_SERIES each set of 8 reply queues(0-7, 8-15, ..) and
6037          *  VENTURA_SERIES each set of 16 reply queues(0-15, 16-31, ..) should
6038          *  be within 4GB boundary i.e reply queues in a set must have same
6039          *  upper 32-bits in their memory address. so here driver is allocating
6040          *  the DMA'able memory for reply queues according.
6041          *  Driver uses limitation of
6042          *  VENTURA_SERIES to manage INVADER_SERIES as well.
6043          */
6044         dma_alloc_count = DIV_ROUND_UP(count,
6045                                 RDPQ_MAX_INDEX_IN_ONE_CHUNK);
6046         ioc->reply_post_free_dma_pool =
6047                 dma_pool_create("reply_post_free pool",
6048                     &ioc->pdev->dev, sz, 16, 0);
6049         if (!ioc->reply_post_free_dma_pool)
6050                 return -ENOMEM;
6051         for (i = 0; i < count; i++) {
6052                 if ((i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0) && dma_alloc_count) {
6053                         ioc->reply_post[i].reply_post_free =
6054                             dma_pool_zalloc(ioc->reply_post_free_dma_pool,
6055                                 GFP_KERNEL,
6056                                 &ioc->reply_post[i].reply_post_free_dma);
6057                         if (!ioc->reply_post[i].reply_post_free)
6058                                 return -ENOMEM;
6059                         /*
6060                          * Each set of RDPQ pool must satisfy 4gb boundary
6061                          * restriction.
6062                          * 1) Check if allocated resources for RDPQ pool are in
6063                          *      the same 4GB range.
6064                          * 2) If #1 is true, continue with 64 bit DMA.
6065                          * 3) If #1 is false, return 1. which means free all the
6066                          * resources and set DMA mask to 32 and allocate.
6067                          */
6068                         if (!mpt3sas_check_same_4gb_region(
6069                                 (long)ioc->reply_post[i].reply_post_free, sz)) {
6070                                 dinitprintk(ioc,
6071                                     ioc_err(ioc, "bad Replypost free pool(0x%p)"
6072                                     "reply_post_free_dma = (0x%llx)\n",
6073                                     ioc->reply_post[i].reply_post_free,
6074                                     (unsigned long long)
6075                                     ioc->reply_post[i].reply_post_free_dma));
6076                                 return -EAGAIN;
6077                         }
6078                         dma_alloc_count--;
6079
6080                 } else {
6081                         ioc->reply_post[i].reply_post_free =
6082                             (Mpi2ReplyDescriptorsUnion_t *)
6083                             ((long)ioc->reply_post[i-1].reply_post_free
6084                             + reply_post_free_sz);
6085                         ioc->reply_post[i].reply_post_free_dma =
6086                             (dma_addr_t)
6087                             (ioc->reply_post[i-1].reply_post_free_dma +
6088                             reply_post_free_sz);
6089                 }
6090         }
6091         return 0;
6092 }
6093
6094 /**
6095  * _base_allocate_memory_pools - allocate start of day memory pools
6096  * @ioc: per adapter object
6097  *
6098  * Return: 0 success, anything else error.
6099  */
6100 static int
6101 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc)
6102 {
6103         struct mpt3sas_facts *facts;
6104         u16 max_sge_elements;
6105         u16 chains_needed_per_io;
6106         u32 sz, total_sz, reply_post_free_sz, reply_post_free_array_sz;
6107         u32 retry_sz;
6108         u32 rdpq_sz = 0, sense_sz = 0;
6109         u16 max_request_credit, nvme_blocks_needed;
6110         unsigned short sg_tablesize;
6111         u16 sge_size;
6112         int i;
6113         int ret = 0, rc = 0;
6114
6115         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6116
6117
6118         retry_sz = 0;
6119         facts = &ioc->facts;
6120
6121         /* command line tunables for max sgl entries */
6122         if (max_sgl_entries != -1)
6123                 sg_tablesize = max_sgl_entries;
6124         else {
6125                 if (ioc->hba_mpi_version_belonged == MPI2_VERSION)
6126                         sg_tablesize = MPT2SAS_SG_DEPTH;
6127                 else
6128                         sg_tablesize = MPT3SAS_SG_DEPTH;
6129         }
6130
6131         /* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */
6132         if (reset_devices)
6133                 sg_tablesize = min_t(unsigned short, sg_tablesize,
6134                    MPT_KDUMP_MIN_PHYS_SEGMENTS);
6135
6136         if (ioc->is_mcpu_endpoint)
6137                 ioc->shost->sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
6138         else {
6139                 if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS)
6140                         sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
6141                 else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) {
6142                         sg_tablesize = min_t(unsigned short, sg_tablesize,
6143                                         SG_MAX_SEGMENTS);
6144                         ioc_warn(ioc, "sg_tablesize(%u) is bigger than kernel defined SG_CHUNK_SIZE(%u)\n",
6145                                  sg_tablesize, MPT_MAX_PHYS_SEGMENTS);
6146                 }
6147                 ioc->shost->sg_tablesize = sg_tablesize;
6148         }
6149
6150         ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)),
6151                 (facts->RequestCredit / 4));
6152         if (ioc->internal_depth < INTERNAL_CMDS_COUNT) {
6153                 if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT +
6154                                 INTERNAL_SCSIIO_CMDS_COUNT)) {
6155                         ioc_err(ioc, "IOC doesn't have enough Request Credits, it has just %d number of credits\n",
6156                                 facts->RequestCredit);
6157                         return -ENOMEM;
6158                 }
6159                 ioc->internal_depth = 10;
6160         }
6161
6162         ioc->hi_priority_depth = ioc->internal_depth - (5);
6163         /* command line tunables  for max controller queue depth */
6164         if (max_queue_depth != -1 && max_queue_depth != 0) {
6165                 max_request_credit = min_t(u16, max_queue_depth +
6166                         ioc->internal_depth, facts->RequestCredit);
6167                 if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
6168                         max_request_credit =  MAX_HBA_QUEUE_DEPTH;
6169         } else if (reset_devices)
6170                 max_request_credit = min_t(u16, facts->RequestCredit,
6171                     (MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth));
6172         else
6173                 max_request_credit = min_t(u16, facts->RequestCredit,
6174                     MAX_HBA_QUEUE_DEPTH);
6175
6176         /* Firmware maintains additional facts->HighPriorityCredit number of
6177          * credits for HiPriprity Request messages, so hba queue depth will be
6178          * sum of max_request_credit and high priority queue depth.
6179          */
6180         ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth;
6181
6182         /* request frame size */
6183         ioc->request_sz = facts->IOCRequestFrameSize * 4;
6184
6185         /* reply frame size */
6186         ioc->reply_sz = facts->ReplyFrameSize * 4;
6187
6188         /* chain segment size */
6189         if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
6190                 if (facts->IOCMaxChainSegmentSize)
6191                         ioc->chain_segment_sz =
6192                                         facts->IOCMaxChainSegmentSize *
6193                                         MAX_CHAIN_ELEMT_SZ;
6194                 else
6195                 /* set to 128 bytes size if IOCMaxChainSegmentSize is zero */
6196                         ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS *
6197                                                     MAX_CHAIN_ELEMT_SZ;
6198         } else
6199                 ioc->chain_segment_sz = ioc->request_sz;
6200
6201         /* calculate the max scatter element size */
6202         sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
6203
6204  retry_allocation:
6205         total_sz = 0;
6206         /* calculate number of sg elements left over in the 1st frame */
6207         max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
6208             sizeof(Mpi2SGEIOUnion_t)) + sge_size);
6209         ioc->max_sges_in_main_message = max_sge_elements/sge_size;
6210
6211         /* now do the same for a chain buffer */
6212         max_sge_elements = ioc->chain_segment_sz - sge_size;
6213         ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
6214
6215         /*
6216          *  MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
6217          */
6218         chains_needed_per_io = ((ioc->shost->sg_tablesize -
6219            ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
6220             + 1;
6221         if (chains_needed_per_io > facts->MaxChainDepth) {
6222                 chains_needed_per_io = facts->MaxChainDepth;
6223                 ioc->shost->sg_tablesize = min_t(u16,
6224                 ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
6225                 * chains_needed_per_io), ioc->shost->sg_tablesize);
6226         }
6227         ioc->chains_needed_per_io = chains_needed_per_io;
6228
6229         /* reply free queue sizing - taking into account for 64 FW events */
6230         ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
6231
6232         /* mCPU manage single counters for simplicity */
6233         if (ioc->is_mcpu_endpoint)
6234                 ioc->reply_post_queue_depth = ioc->reply_free_queue_depth;
6235         else {
6236                 /* calculate reply descriptor post queue depth */
6237                 ioc->reply_post_queue_depth = ioc->hba_queue_depth +
6238                         ioc->reply_free_queue_depth +  1;
6239                 /* align the reply post queue on the next 16 count boundary */
6240                 if (ioc->reply_post_queue_depth % 16)
6241                         ioc->reply_post_queue_depth += 16 -
6242                                 (ioc->reply_post_queue_depth % 16);
6243         }
6244
6245         if (ioc->reply_post_queue_depth >
6246             facts->MaxReplyDescriptorPostQueueDepth) {
6247                 ioc->reply_post_queue_depth =
6248                                 facts->MaxReplyDescriptorPostQueueDepth -
6249                     (facts->MaxReplyDescriptorPostQueueDepth % 16);
6250                 ioc->hba_queue_depth =
6251                                 ((ioc->reply_post_queue_depth - 64) / 2) - 1;
6252                 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
6253         }
6254
6255         ioc_info(ioc,
6256             "scatter gather: sge_in_main_msg(%d), sge_per_chain(%d), "
6257             "sge_per_io(%d), chains_per_io(%d)\n",
6258             ioc->max_sges_in_main_message,
6259             ioc->max_sges_in_chain_message,
6260             ioc->shost->sg_tablesize,
6261             ioc->chains_needed_per_io);
6262
6263         /* reply post queue, 16 byte align */
6264         reply_post_free_sz = ioc->reply_post_queue_depth *
6265             sizeof(Mpi2DefaultReplyDescriptor_t);
6266         rdpq_sz = reply_post_free_sz * RDPQ_MAX_INDEX_IN_ONE_CHUNK;
6267         if ((_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
6268             || (ioc->reply_queue_count < RDPQ_MAX_INDEX_IN_ONE_CHUNK))
6269                 rdpq_sz = reply_post_free_sz * ioc->reply_queue_count;
6270         ret = base_alloc_rdpq_dma_pool(ioc, rdpq_sz);
6271         if (ret == -EAGAIN) {
6272                 /*
6273                  * Free allocated bad RDPQ memory pools.
6274                  * Change dma coherent mask to 32 bit and reallocate RDPQ
6275                  */
6276                 _base_release_memory_pools(ioc);
6277                 ioc->use_32bit_dma = true;
6278                 if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) {
6279                         ioc_err(ioc,
6280                             "32 DMA mask failed %s\n", pci_name(ioc->pdev));
6281                         return -ENODEV;
6282                 }
6283                 if (base_alloc_rdpq_dma_pool(ioc, rdpq_sz))
6284                         return -ENOMEM;
6285         } else if (ret == -ENOMEM)
6286                 return -ENOMEM;
6287         total_sz = rdpq_sz * (!ioc->rdpq_array_enable ? 1 :
6288             DIV_ROUND_UP(ioc->reply_queue_count, RDPQ_MAX_INDEX_IN_ONE_CHUNK));
6289         ioc->scsiio_depth = ioc->hba_queue_depth -
6290             ioc->hi_priority_depth - ioc->internal_depth;
6291
6292         /* set the scsi host can_queue depth
6293          * with some internal commands that could be outstanding
6294          */
6295         ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT;
6296         dinitprintk(ioc,
6297                     ioc_info(ioc, "scsi host: can_queue depth (%d)\n",
6298                              ioc->shost->can_queue));
6299
6300         /* contiguous pool for request and chains, 16 byte align, one extra "
6301          * "frame for smid=0
6302          */
6303         ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
6304         sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
6305
6306         /* hi-priority queue */
6307         sz += (ioc->hi_priority_depth * ioc->request_sz);
6308
6309         /* internal queue */
6310         sz += (ioc->internal_depth * ioc->request_sz);
6311
6312         ioc->request_dma_sz = sz;
6313         ioc->request = dma_alloc_coherent(&ioc->pdev->dev, sz,
6314                         &ioc->request_dma, GFP_KERNEL);
6315         if (!ioc->request) {
6316                 ioc_err(ioc, "request pool: dma_alloc_coherent failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kB)\n",
6317                         ioc->hba_queue_depth, ioc->chains_needed_per_io,
6318                         ioc->request_sz, sz / 1024);
6319                 if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
6320                         goto out;
6321                 retry_sz = 64;
6322                 ioc->hba_queue_depth -= retry_sz;
6323                 _base_release_memory_pools(ioc);
6324                 goto retry_allocation;
6325         }
6326
6327         if (retry_sz)
6328                 ioc_err(ioc, "request pool: dma_alloc_coherent succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kb)\n",
6329                         ioc->hba_queue_depth, ioc->chains_needed_per_io,
6330                         ioc->request_sz, sz / 1024);
6331
6332         /* hi-priority queue */
6333         ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
6334             ioc->request_sz);
6335         ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
6336             ioc->request_sz);
6337
6338         /* internal queue */
6339         ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
6340             ioc->request_sz);
6341         ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
6342             ioc->request_sz);
6343
6344         ioc_info(ioc,
6345             "request pool(0x%p) - dma(0x%llx): "
6346             "depth(%d), frame_size(%d), pool_size(%d kB)\n",
6347             ioc->request, (unsigned long long) ioc->request_dma,
6348             ioc->hba_queue_depth, ioc->request_sz,
6349             (ioc->hba_queue_depth * ioc->request_sz) / 1024);
6350
6351         total_sz += sz;
6352
6353         dinitprintk(ioc,
6354                     ioc_info(ioc, "scsiio(0x%p): depth(%d)\n",
6355                              ioc->request, ioc->scsiio_depth));
6356
6357         ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
6358         sz = ioc->scsiio_depth * sizeof(struct chain_lookup);
6359         ioc->chain_lookup = kzalloc(sz, GFP_KERNEL);
6360         if (!ioc->chain_lookup) {
6361                 ioc_err(ioc, "chain_lookup: __get_free_pages failed\n");
6362                 goto out;
6363         }
6364
6365         sz = ioc->chains_needed_per_io * sizeof(struct chain_tracker);
6366         for (i = 0; i < ioc->scsiio_depth; i++) {
6367                 ioc->chain_lookup[i].chains_per_smid = kzalloc(sz, GFP_KERNEL);
6368                 if (!ioc->chain_lookup[i].chains_per_smid) {
6369                         ioc_err(ioc, "chain_lookup: kzalloc failed\n");
6370                         goto out;
6371                 }
6372         }
6373
6374         /* initialize hi-priority queue smid's */
6375         ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
6376             sizeof(struct request_tracker), GFP_KERNEL);
6377         if (!ioc->hpr_lookup) {
6378                 ioc_err(ioc, "hpr_lookup: kcalloc failed\n");
6379                 goto out;
6380         }
6381         ioc->hi_priority_smid = ioc->scsiio_depth + 1;
6382         dinitprintk(ioc,
6383                     ioc_info(ioc, "hi_priority(0x%p): depth(%d), start smid(%d)\n",
6384                              ioc->hi_priority,
6385                              ioc->hi_priority_depth, ioc->hi_priority_smid));
6386
6387         /* initialize internal queue smid's */
6388         ioc->internal_lookup = kcalloc(ioc->internal_depth,
6389             sizeof(struct request_tracker), GFP_KERNEL);
6390         if (!ioc->internal_lookup) {
6391                 ioc_err(ioc, "internal_lookup: kcalloc failed\n");
6392                 goto out;
6393         }
6394         ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
6395         dinitprintk(ioc,
6396                     ioc_info(ioc, "internal(0x%p): depth(%d), start smid(%d)\n",
6397                              ioc->internal,
6398                              ioc->internal_depth, ioc->internal_smid));
6399
6400         ioc->io_queue_num = kcalloc(ioc->scsiio_depth,
6401             sizeof(u16), GFP_KERNEL);
6402         if (!ioc->io_queue_num)
6403                 goto out;
6404         /*
6405          * The number of NVMe page sized blocks needed is:
6406          *     (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1
6407          * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry
6408          * that is placed in the main message frame.  8 is the size of each PRP
6409          * entry or PRP list pointer entry.  8 is subtracted from page_size
6410          * because of the PRP list pointer entry at the end of a page, so this
6411          * is not counted as a PRP entry.  The 1 added page is a round up.
6412          *
6413          * To avoid allocation failures due to the amount of memory that could
6414          * be required for NVMe PRP's, only each set of NVMe blocks will be
6415          * contiguous, so a new set is allocated for each possible I/O.
6416          */
6417
6418         ioc->chains_per_prp_buffer = 0;
6419         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
6420                 nvme_blocks_needed =
6421                         (ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1;
6422                 nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE);
6423                 nvme_blocks_needed++;
6424
6425                 sz = sizeof(struct pcie_sg_list) * ioc->scsiio_depth;
6426                 ioc->pcie_sg_lookup = kzalloc(sz, GFP_KERNEL);
6427                 if (!ioc->pcie_sg_lookup) {
6428                         ioc_info(ioc, "PCIe SGL lookup: kzalloc failed\n");
6429                         goto out;
6430                 }
6431                 sz = nvme_blocks_needed * ioc->page_size;
6432                 rc = _base_allocate_pcie_sgl_pool(ioc, sz);
6433                 if (rc == -ENOMEM)
6434                         return -ENOMEM;
6435                 else if (rc == -EAGAIN)
6436                         goto try_32bit_dma;
6437                 total_sz += sz * ioc->scsiio_depth;
6438         }
6439
6440         rc = _base_allocate_chain_dma_pool(ioc, ioc->chain_segment_sz);
6441         if (rc == -ENOMEM)
6442                 return -ENOMEM;
6443         else if (rc == -EAGAIN)
6444                 goto try_32bit_dma;
6445         total_sz += ioc->chain_segment_sz * ((ioc->chains_needed_per_io -
6446                 ioc->chains_per_prp_buffer) * ioc->scsiio_depth);
6447         dinitprintk(ioc,
6448             ioc_info(ioc, "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
6449             ioc->chain_depth, ioc->chain_segment_sz,
6450             (ioc->chain_depth * ioc->chain_segment_sz) / 1024));
6451         /* sense buffers, 4 byte align */
6452         sense_sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
6453         rc = _base_allocate_sense_dma_pool(ioc, sense_sz);
6454         if (rc  == -ENOMEM)
6455                 return -ENOMEM;
6456         else if (rc == -EAGAIN)
6457                 goto try_32bit_dma;
6458         total_sz += sense_sz;
6459         ioc_info(ioc,
6460             "sense pool(0x%p)- dma(0x%llx): depth(%d),"
6461             "element_size(%d), pool_size(%d kB)\n",
6462             ioc->sense, (unsigned long long)ioc->sense_dma, ioc->scsiio_depth,
6463             SCSI_SENSE_BUFFERSIZE, sz / 1024);
6464         /* reply pool, 4 byte align */
6465         sz = ioc->reply_free_queue_depth * ioc->reply_sz;
6466         rc = _base_allocate_reply_pool(ioc, sz);
6467         if (rc == -ENOMEM)
6468                 return -ENOMEM;
6469         else if (rc == -EAGAIN)
6470                 goto try_32bit_dma;
6471         total_sz += sz;
6472
6473         /* reply free queue, 16 byte align */
6474         sz = ioc->reply_free_queue_depth * 4;
6475         rc = _base_allocate_reply_free_dma_pool(ioc, sz);
6476         if (rc  == -ENOMEM)
6477                 return -ENOMEM;
6478         else if (rc == -EAGAIN)
6479                 goto try_32bit_dma;
6480         dinitprintk(ioc,
6481                     ioc_info(ioc, "reply_free_dma (0x%llx)\n",
6482                              (unsigned long long)ioc->reply_free_dma));
6483         total_sz += sz;
6484         if (ioc->rdpq_array_enable) {
6485                 reply_post_free_array_sz = ioc->reply_queue_count *
6486                     sizeof(Mpi2IOCInitRDPQArrayEntry);
6487                 rc = _base_allocate_reply_post_free_array(ioc,
6488                     reply_post_free_array_sz);
6489                 if (rc == -ENOMEM)
6490                         return -ENOMEM;
6491                 else if (rc == -EAGAIN)
6492                         goto try_32bit_dma;
6493         }
6494         ioc->config_page_sz = 512;
6495         ioc->config_page = dma_alloc_coherent(&ioc->pdev->dev,
6496                         ioc->config_page_sz, &ioc->config_page_dma, GFP_KERNEL);
6497         if (!ioc->config_page) {
6498                 ioc_err(ioc, "config page: dma_pool_alloc failed\n");
6499                 goto out;
6500         }
6501
6502         ioc_info(ioc, "config page(0x%p) - dma(0x%llx): size(%d)\n",
6503             ioc->config_page, (unsigned long long)ioc->config_page_dma,
6504             ioc->config_page_sz);
6505         total_sz += ioc->config_page_sz;
6506
6507         ioc_info(ioc, "Allocated physical memory: size(%d kB)\n",
6508                  total_sz / 1024);
6509         ioc_info(ioc, "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
6510                  ioc->shost->can_queue, facts->RequestCredit);
6511         ioc_info(ioc, "Scatter Gather Elements per IO(%d)\n",
6512                  ioc->shost->sg_tablesize);
6513         return 0;
6514
6515 try_32bit_dma:
6516         _base_release_memory_pools(ioc);
6517         if (ioc->use_32bit_dma && (ioc->dma_mask > 32)) {
6518                 /* Change dma coherent mask to 32 bit and reallocate */
6519                 if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) {
6520                         pr_err("Setting 32 bit coherent DMA mask Failed %s\n",
6521                             pci_name(ioc->pdev));
6522                         return -ENODEV;
6523                 }
6524         } else if (_base_reduce_hba_queue_depth(ioc) != 0)
6525                 return -ENOMEM;
6526         goto retry_allocation;
6527
6528  out:
6529         return -ENOMEM;
6530 }
6531
6532 /**
6533  * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
6534  * @ioc: Pointer to MPT_ADAPTER structure
6535  * @cooked: Request raw or cooked IOC state
6536  *
6537  * Return: all IOC Doorbell register bits if cooked==0, else just the
6538  * Doorbell bits in MPI_IOC_STATE_MASK.
6539  */
6540 u32
6541 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
6542 {
6543         u32 s, sc;
6544
6545         s = ioc->base_readl(&ioc->chip->Doorbell);
6546         sc = s & MPI2_IOC_STATE_MASK;
6547         return cooked ? sc : s;
6548 }
6549
6550 /**
6551  * _base_wait_on_iocstate - waiting on a particular ioc state
6552  * @ioc: ?
6553  * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
6554  * @timeout: timeout in second
6555  *
6556  * Return: 0 for success, non-zero for failure.
6557  */
6558 static int
6559 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout)
6560 {
6561         u32 count, cntdn;
6562         u32 current_state;
6563
6564         count = 0;
6565         cntdn = 1000 * timeout;
6566         do {
6567                 current_state = mpt3sas_base_get_iocstate(ioc, 1);
6568                 if (current_state == ioc_state)
6569                         return 0;
6570                 if (count && current_state == MPI2_IOC_STATE_FAULT)
6571                         break;
6572                 if (count && current_state == MPI2_IOC_STATE_COREDUMP)
6573                         break;
6574
6575                 usleep_range(1000, 1500);
6576                 count++;
6577         } while (--cntdn);
6578
6579         return current_state;
6580 }
6581
6582 /**
6583  * _base_dump_reg_set - This function will print hexdump of register set.
6584  * @ioc: per adapter object
6585  *
6586  * Return: nothing.
6587  */
6588 static inline void
6589 _base_dump_reg_set(struct MPT3SAS_ADAPTER *ioc)
6590 {
6591         unsigned int i, sz = 256;
6592         u32 __iomem *reg = (u32 __iomem *)ioc->chip;
6593
6594         ioc_info(ioc, "System Register set:\n");
6595         for (i = 0; i < (sz / sizeof(u32)); i++)
6596                 pr_info("%08x: %08x\n", (i * 4), readl(&reg[i]));
6597 }
6598
6599 /**
6600  * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
6601  * a write to the doorbell)
6602  * @ioc: per adapter object
6603  * @timeout: timeout in seconds
6604  *
6605  * Return: 0 for success, non-zero for failure.
6606  *
6607  * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
6608  */
6609
6610 static int
6611 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
6612 {
6613         u32 cntdn, count;
6614         u32 int_status;
6615
6616         count = 0;
6617         cntdn = 1000 * timeout;
6618         do {
6619                 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6620                 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6621                         dhsprintk(ioc,
6622                                   ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6623                                            __func__, count, timeout));
6624                         return 0;
6625                 }
6626
6627                 usleep_range(1000, 1500);
6628                 count++;
6629         } while (--cntdn);
6630
6631         ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6632                 __func__, count, int_status);
6633         return -EFAULT;
6634 }
6635
6636 static int
6637 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
6638 {
6639         u32 cntdn, count;
6640         u32 int_status;
6641
6642         count = 0;
6643         cntdn = 2000 * timeout;
6644         do {
6645                 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6646                 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6647                         dhsprintk(ioc,
6648                                   ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6649                                            __func__, count, timeout));
6650                         return 0;
6651                 }
6652
6653                 udelay(500);
6654                 count++;
6655         } while (--cntdn);
6656
6657         ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6658                 __func__, count, int_status);
6659         return -EFAULT;
6660
6661 }
6662
6663 /**
6664  * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
6665  * @ioc: per adapter object
6666  * @timeout: timeout in second
6667  *
6668  * Return: 0 for success, non-zero for failure.
6669  *
6670  * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
6671  * doorbell.
6672  */
6673 static int
6674 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout)
6675 {
6676         u32 cntdn, count;
6677         u32 int_status;
6678         u32 doorbell;
6679
6680         count = 0;
6681         cntdn = 1000 * timeout;
6682         do {
6683                 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6684                 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
6685                         dhsprintk(ioc,
6686                                   ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6687                                            __func__, count, timeout));
6688                         return 0;
6689                 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6690                         doorbell = ioc->base_readl(&ioc->chip->Doorbell);
6691                         if ((doorbell & MPI2_IOC_STATE_MASK) ==
6692                             MPI2_IOC_STATE_FAULT) {
6693                                 mpt3sas_print_fault_code(ioc, doorbell);
6694                                 return -EFAULT;
6695                         }
6696                         if ((doorbell & MPI2_IOC_STATE_MASK) ==
6697                             MPI2_IOC_STATE_COREDUMP) {
6698                                 mpt3sas_print_coredump_info(ioc, doorbell);
6699                                 return -EFAULT;
6700                         }
6701                 } else if (int_status == 0xFFFFFFFF)
6702                         goto out;
6703
6704                 usleep_range(1000, 1500);
6705                 count++;
6706         } while (--cntdn);
6707
6708  out:
6709         ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6710                 __func__, count, int_status);
6711         return -EFAULT;
6712 }
6713
6714 /**
6715  * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
6716  * @ioc: per adapter object
6717  * @timeout: timeout in second
6718  *
6719  * Return: 0 for success, non-zero for failure.
6720  */
6721 static int
6722 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout)
6723 {
6724         u32 cntdn, count;
6725         u32 doorbell_reg;
6726
6727         count = 0;
6728         cntdn = 1000 * timeout;
6729         do {
6730                 doorbell_reg = ioc->base_readl(&ioc->chip->Doorbell);
6731                 if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
6732                         dhsprintk(ioc,
6733                                   ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6734                                            __func__, count, timeout));
6735                         return 0;
6736                 }
6737
6738                 usleep_range(1000, 1500);
6739                 count++;
6740         } while (--cntdn);
6741
6742         ioc_err(ioc, "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
6743                 __func__, count, doorbell_reg);
6744         return -EFAULT;
6745 }
6746
6747 /**
6748  * _base_send_ioc_reset - send doorbell reset
6749  * @ioc: per adapter object
6750  * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
6751  * @timeout: timeout in second
6752  *
6753  * Return: 0 for success, non-zero for failure.
6754  */
6755 static int
6756 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout)
6757 {
6758         u32 ioc_state;
6759         int r = 0;
6760         unsigned long flags;
6761
6762         if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
6763                 ioc_err(ioc, "%s: unknown reset_type\n", __func__);
6764                 return -EFAULT;
6765         }
6766
6767         if (!(ioc->facts.IOCCapabilities &
6768            MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
6769                 return -EFAULT;
6770
6771         ioc_info(ioc, "sending message unit reset !!\n");
6772
6773         writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
6774             &ioc->chip->Doorbell);
6775         if ((_base_wait_for_doorbell_ack(ioc, 15))) {
6776                 r = -EFAULT;
6777                 goto out;
6778         }
6779
6780         ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
6781         if (ioc_state) {
6782                 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
6783                         __func__, ioc_state);
6784                 r = -EFAULT;
6785                 goto out;
6786         }
6787  out:
6788         if (r != 0) {
6789                 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6790                 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
6791                 /*
6792                  * Wait for IOC state CoreDump to clear only during
6793                  * HBA initialization & release time.
6794                  */
6795                 if ((ioc_state & MPI2_IOC_STATE_MASK) ==
6796                     MPI2_IOC_STATE_COREDUMP && (ioc->is_driver_loading == 1 ||
6797                     ioc->fault_reset_work_q == NULL)) {
6798                         spin_unlock_irqrestore(
6799                             &ioc->ioc_reset_in_progress_lock, flags);
6800                         mpt3sas_print_coredump_info(ioc, ioc_state);
6801                         mpt3sas_base_wait_for_coredump_completion(ioc,
6802                             __func__);
6803                         spin_lock_irqsave(
6804                             &ioc->ioc_reset_in_progress_lock, flags);
6805                 }
6806                 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
6807         }
6808         ioc_info(ioc, "message unit reset: %s\n",
6809                  r == 0 ? "SUCCESS" : "FAILED");
6810         return r;
6811 }
6812
6813 /**
6814  * mpt3sas_wait_for_ioc - IOC's operational state is checked here.
6815  * @ioc: per adapter object
6816  * @timeout: timeout in seconds
6817  *
6818  * Return: Waits up to timeout seconds for the IOC to
6819  * become operational. Returns 0 if IOC is present
6820  * and operational; otherwise returns %-EFAULT.
6821  */
6822
6823 int
6824 mpt3sas_wait_for_ioc(struct MPT3SAS_ADAPTER *ioc, int timeout)
6825 {
6826         int wait_state_count = 0;
6827         u32 ioc_state;
6828
6829         do {
6830                 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
6831                 if (ioc_state == MPI2_IOC_STATE_OPERATIONAL)
6832                         break;
6833
6834                 /*
6835                  * Watchdog thread will be started after IOC Initialization, so
6836                  * no need to wait here for IOC state to become operational
6837                  * when IOC Initialization is on. Instead the driver will
6838                  * return ETIME status, so that calling function can issue
6839                  * diag reset operation and retry the command.
6840                  */
6841                 if (ioc->is_driver_loading)
6842                         return -ETIME;
6843
6844                 ssleep(1);
6845                 ioc_info(ioc, "%s: waiting for operational state(count=%d)\n",
6846                                 __func__, ++wait_state_count);
6847         } while (--timeout);
6848         if (!timeout) {
6849                 ioc_err(ioc, "%s: failed due to ioc not operational\n", __func__);
6850                 return -EFAULT;
6851         }
6852         if (wait_state_count)
6853                 ioc_info(ioc, "ioc is operational\n");
6854         return 0;
6855 }
6856
6857 /**
6858  * _base_handshake_req_reply_wait - send request thru doorbell interface
6859  * @ioc: per adapter object
6860  * @request_bytes: request length
6861  * @request: pointer having request payload
6862  * @reply_bytes: reply length
6863  * @reply: pointer to reply payload
6864  * @timeout: timeout in second
6865  *
6866  * Return: 0 for success, non-zero for failure.
6867  */
6868 static int
6869 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
6870         u32 *request, int reply_bytes, u16 *reply, int timeout)
6871 {
6872         MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
6873         int i;
6874         u8 failed;
6875         __le32 *mfp;
6876
6877         /* make sure doorbell is not in use */
6878         if ((ioc->base_readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
6879                 ioc_err(ioc, "doorbell is in use (line=%d)\n", __LINE__);
6880                 return -EFAULT;
6881         }
6882
6883         /* clear pending doorbell interrupts from previous state changes */
6884         if (ioc->base_readl(&ioc->chip->HostInterruptStatus) &
6885             MPI2_HIS_IOC2SYS_DB_STATUS)
6886                 writel(0, &ioc->chip->HostInterruptStatus);
6887
6888         /* send message to ioc */
6889         writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
6890             ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
6891             &ioc->chip->Doorbell);
6892
6893         if ((_base_spin_on_doorbell_int(ioc, 5))) {
6894                 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
6895                         __LINE__);
6896                 return -EFAULT;
6897         }
6898         writel(0, &ioc->chip->HostInterruptStatus);
6899
6900         if ((_base_wait_for_doorbell_ack(ioc, 5))) {
6901                 ioc_err(ioc, "doorbell handshake ack failed (line=%d)\n",
6902                         __LINE__);
6903                 return -EFAULT;
6904         }
6905
6906         /* send message 32-bits at a time */
6907         for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
6908                 writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
6909                 if ((_base_wait_for_doorbell_ack(ioc, 5)))
6910                         failed = 1;
6911         }
6912
6913         if (failed) {
6914                 ioc_err(ioc, "doorbell handshake sending request failed (line=%d)\n",
6915                         __LINE__);
6916                 return -EFAULT;
6917         }
6918
6919         /* now wait for the reply */
6920         if ((_base_wait_for_doorbell_int(ioc, timeout))) {
6921                 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
6922                         __LINE__);
6923                 return -EFAULT;
6924         }
6925
6926         /* read the first two 16-bits, it gives the total length of the reply */
6927         reply[0] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell)
6928             & MPI2_DOORBELL_DATA_MASK);
6929         writel(0, &ioc->chip->HostInterruptStatus);
6930         if ((_base_wait_for_doorbell_int(ioc, 5))) {
6931                 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
6932                         __LINE__);
6933                 return -EFAULT;
6934         }
6935         reply[1] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell)
6936             & MPI2_DOORBELL_DATA_MASK);
6937         writel(0, &ioc->chip->HostInterruptStatus);
6938
6939         for (i = 2; i < default_reply->MsgLength * 2; i++)  {
6940                 if ((_base_wait_for_doorbell_int(ioc, 5))) {
6941                         ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
6942                                 __LINE__);
6943                         return -EFAULT;
6944                 }
6945                 if (i >=  reply_bytes/2) /* overflow case */
6946                         ioc->base_readl(&ioc->chip->Doorbell);
6947                 else
6948                         reply[i] = le16_to_cpu(
6949                             ioc->base_readl(&ioc->chip->Doorbell)
6950                             & MPI2_DOORBELL_DATA_MASK);
6951                 writel(0, &ioc->chip->HostInterruptStatus);
6952         }
6953
6954         _base_wait_for_doorbell_int(ioc, 5);
6955         if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) {
6956                 dhsprintk(ioc,
6957                           ioc_info(ioc, "doorbell is in use (line=%d)\n",
6958                                    __LINE__));
6959         }
6960         writel(0, &ioc->chip->HostInterruptStatus);
6961
6962         if (ioc->logging_level & MPT_DEBUG_INIT) {
6963                 mfp = (__le32 *)reply;
6964                 pr_info("\toffset:data\n");
6965                 for (i = 0; i < reply_bytes/4; i++)
6966                         ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4,
6967                             le32_to_cpu(mfp[i]));
6968         }
6969         return 0;
6970 }
6971
6972 /**
6973  * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
6974  * @ioc: per adapter object
6975  * @mpi_reply: the reply payload from FW
6976  * @mpi_request: the request payload sent to FW
6977  *
6978  * The SAS IO Unit Control Request message allows the host to perform low-level
6979  * operations, such as resets on the PHYs of the IO Unit, also allows the host
6980  * to obtain the IOC assigned device handles for a device if it has other
6981  * identifying information about the device, in addition allows the host to
6982  * remove IOC resources associated with the device.
6983  *
6984  * Return: 0 for success, non-zero for failure.
6985  */
6986 int
6987 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
6988         Mpi2SasIoUnitControlReply_t *mpi_reply,
6989         Mpi2SasIoUnitControlRequest_t *mpi_request)
6990 {
6991         u16 smid;
6992         u8 issue_reset = 0;
6993         int rc;
6994         void *request;
6995
6996         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6997
6998         mutex_lock(&ioc->base_cmds.mutex);
6999
7000         if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
7001                 ioc_err(ioc, "%s: base_cmd in use\n", __func__);
7002                 rc = -EAGAIN;
7003                 goto out;
7004         }
7005
7006         rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
7007         if (rc)
7008                 goto out;
7009
7010         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
7011         if (!smid) {
7012                 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7013                 rc = -EAGAIN;
7014                 goto out;
7015         }
7016
7017         rc = 0;
7018         ioc->base_cmds.status = MPT3_CMD_PENDING;
7019         request = mpt3sas_base_get_msg_frame(ioc, smid);
7020         ioc->base_cmds.smid = smid;
7021         memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
7022         if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
7023             mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
7024                 ioc->ioc_link_reset_in_progress = 1;
7025         init_completion(&ioc->base_cmds.done);
7026         ioc->put_smid_default(ioc, smid);
7027         wait_for_completion_timeout(&ioc->base_cmds.done,
7028             msecs_to_jiffies(10000));
7029         if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
7030             mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
7031             ioc->ioc_link_reset_in_progress)
7032                 ioc->ioc_link_reset_in_progress = 0;
7033         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
7034                 mpt3sas_check_cmd_timeout(ioc, ioc->base_cmds.status,
7035                     mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)/4,
7036                     issue_reset);
7037                 goto issue_host_reset;
7038         }
7039         if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
7040                 memcpy(mpi_reply, ioc->base_cmds.reply,
7041                     sizeof(Mpi2SasIoUnitControlReply_t));
7042         else
7043                 memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
7044         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7045         goto out;
7046
7047  issue_host_reset:
7048         if (issue_reset)
7049                 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
7050         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7051         rc = -EFAULT;
7052  out:
7053         mutex_unlock(&ioc->base_cmds.mutex);
7054         return rc;
7055 }
7056
7057 /**
7058  * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
7059  * @ioc: per adapter object
7060  * @mpi_reply: the reply payload from FW
7061  * @mpi_request: the request payload sent to FW
7062  *
7063  * The SCSI Enclosure Processor request message causes the IOC to
7064  * communicate with SES devices to control LED status signals.
7065  *
7066  * Return: 0 for success, non-zero for failure.
7067  */
7068 int
7069 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
7070         Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
7071 {
7072         u16 smid;
7073         u8 issue_reset = 0;
7074         int rc;
7075         void *request;
7076
7077         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7078
7079         mutex_lock(&ioc->base_cmds.mutex);
7080
7081         if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
7082                 ioc_err(ioc, "%s: base_cmd in use\n", __func__);
7083                 rc = -EAGAIN;
7084                 goto out;
7085         }
7086
7087         rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
7088         if (rc)
7089                 goto out;
7090
7091         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
7092         if (!smid) {
7093                 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7094                 rc = -EAGAIN;
7095                 goto out;
7096         }
7097
7098         rc = 0;
7099         ioc->base_cmds.status = MPT3_CMD_PENDING;
7100         request = mpt3sas_base_get_msg_frame(ioc, smid);
7101         ioc->base_cmds.smid = smid;
7102         memset(request, 0, ioc->request_sz);
7103         memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
7104         init_completion(&ioc->base_cmds.done);
7105         ioc->put_smid_default(ioc, smid);
7106         wait_for_completion_timeout(&ioc->base_cmds.done,
7107             msecs_to_jiffies(10000));
7108         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
7109                 mpt3sas_check_cmd_timeout(ioc,
7110                     ioc->base_cmds.status, mpi_request,
7111                     sizeof(Mpi2SepRequest_t)/4, issue_reset);
7112                 goto issue_host_reset;
7113         }
7114         if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
7115                 memcpy(mpi_reply, ioc->base_cmds.reply,
7116                     sizeof(Mpi2SepReply_t));
7117         else
7118                 memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
7119         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7120         goto out;
7121
7122  issue_host_reset:
7123         if (issue_reset)
7124                 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
7125         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7126         rc = -EFAULT;
7127  out:
7128         mutex_unlock(&ioc->base_cmds.mutex);
7129         return rc;
7130 }
7131
7132 /**
7133  * _base_get_port_facts - obtain port facts reply and save in ioc
7134  * @ioc: per adapter object
7135  * @port: ?
7136  *
7137  * Return: 0 for success, non-zero for failure.
7138  */
7139 static int
7140 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port)
7141 {
7142         Mpi2PortFactsRequest_t mpi_request;
7143         Mpi2PortFactsReply_t mpi_reply;
7144         struct mpt3sas_port_facts *pfacts;
7145         int mpi_reply_sz, mpi_request_sz, r;
7146
7147         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7148
7149         mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
7150         mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
7151         memset(&mpi_request, 0, mpi_request_sz);
7152         mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
7153         mpi_request.PortNumber = port;
7154         r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
7155             (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
7156
7157         if (r != 0) {
7158                 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
7159                 return r;
7160         }
7161
7162         pfacts = &ioc->pfacts[port];
7163         memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
7164         pfacts->PortNumber = mpi_reply.PortNumber;
7165         pfacts->VP_ID = mpi_reply.VP_ID;
7166         pfacts->VF_ID = mpi_reply.VF_ID;
7167         pfacts->MaxPostedCmdBuffers =
7168             le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
7169
7170         return 0;
7171 }
7172
7173 /**
7174  * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
7175  * @ioc: per adapter object
7176  * @timeout:
7177  *
7178  * Return: 0 for success, non-zero for failure.
7179  */
7180 static int
7181 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout)
7182 {
7183         u32 ioc_state;
7184         int rc;
7185
7186         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7187
7188         if (ioc->pci_error_recovery) {
7189                 dfailprintk(ioc,
7190                             ioc_info(ioc, "%s: host in pci error recovery\n",
7191                                      __func__));
7192                 return -EFAULT;
7193         }
7194
7195         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7196         dhsprintk(ioc,
7197                   ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
7198                            __func__, ioc_state));
7199
7200         if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) ||
7201             (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
7202                 return 0;
7203
7204         if (ioc_state & MPI2_DOORBELL_USED) {
7205                 dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n"));
7206                 goto issue_diag_reset;
7207         }
7208
7209         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
7210                 mpt3sas_print_fault_code(ioc, ioc_state &
7211                     MPI2_DOORBELL_DATA_MASK);
7212                 goto issue_diag_reset;
7213         } else if ((ioc_state & MPI2_IOC_STATE_MASK) ==
7214             MPI2_IOC_STATE_COREDUMP) {
7215                 ioc_info(ioc,
7216                     "%s: Skipping the diag reset here. (ioc_state=0x%x)\n",
7217                     __func__, ioc_state);
7218                 return -EFAULT;
7219         }
7220
7221         ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
7222         if (ioc_state) {
7223                 dfailprintk(ioc,
7224                             ioc_info(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
7225                                      __func__, ioc_state));
7226                 return -EFAULT;
7227         }
7228
7229  issue_diag_reset:
7230         rc = _base_diag_reset(ioc);
7231         return rc;
7232 }
7233
7234 /**
7235  * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
7236  * @ioc: per adapter object
7237  *
7238  * Return: 0 for success, non-zero for failure.
7239  */
7240 static int
7241 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc)
7242 {
7243         Mpi2IOCFactsRequest_t mpi_request;
7244         Mpi2IOCFactsReply_t mpi_reply;
7245         struct mpt3sas_facts *facts;
7246         int mpi_reply_sz, mpi_request_sz, r;
7247
7248         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7249
7250         r = _base_wait_for_iocstate(ioc, 10);
7251         if (r) {
7252                 dfailprintk(ioc,
7253                             ioc_info(ioc, "%s: failed getting to correct state\n",
7254                                      __func__));
7255                 return r;
7256         }
7257         mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
7258         mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
7259         memset(&mpi_request, 0, mpi_request_sz);
7260         mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
7261         r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
7262             (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
7263
7264         if (r != 0) {
7265                 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
7266                 return r;
7267         }
7268
7269         facts = &ioc->facts;
7270         memset(facts, 0, sizeof(struct mpt3sas_facts));
7271         facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
7272         facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
7273         facts->VP_ID = mpi_reply.VP_ID;
7274         facts->VF_ID = mpi_reply.VF_ID;
7275         facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
7276         facts->MaxChainDepth = mpi_reply.MaxChainDepth;
7277         facts->WhoInit = mpi_reply.WhoInit;
7278         facts->NumberOfPorts = mpi_reply.NumberOfPorts;
7279         facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
7280         if (ioc->msix_enable && (facts->MaxMSIxVectors <=
7281             MAX_COMBINED_MSIX_VECTORS(ioc->is_gen35_ioc)))
7282                 ioc->combined_reply_queue = 0;
7283         facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
7284         facts->MaxReplyDescriptorPostQueueDepth =
7285             le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
7286         facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
7287         facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
7288         if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
7289                 ioc->ir_firmware = 1;
7290         if ((facts->IOCCapabilities &
7291               MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices))
7292                 ioc->rdpq_array_capable = 1;
7293         if ((facts->IOCCapabilities & MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ)
7294             && ioc->is_aero_ioc)
7295                 ioc->atomic_desc_capable = 1;
7296         facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
7297         facts->IOCRequestFrameSize =
7298             le16_to_cpu(mpi_reply.IOCRequestFrameSize);
7299         if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
7300                 facts->IOCMaxChainSegmentSize =
7301                         le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize);
7302         }
7303         facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
7304         facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
7305         ioc->shost->max_id = -1;
7306         facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
7307         facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
7308         facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
7309         facts->HighPriorityCredit =
7310             le16_to_cpu(mpi_reply.HighPriorityCredit);
7311         facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
7312         facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
7313         facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize;
7314
7315         /*
7316          * Get the Page Size from IOC Facts. If it's 0, default to 4k.
7317          */
7318         ioc->page_size = 1 << facts->CurrentHostPageSize;
7319         if (ioc->page_size == 1) {
7320                 ioc_info(ioc, "CurrentHostPageSize is 0: Setting default host page size to 4k\n");
7321                 ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K;
7322         }
7323         dinitprintk(ioc,
7324                     ioc_info(ioc, "CurrentHostPageSize(%d)\n",
7325                              facts->CurrentHostPageSize));
7326
7327         dinitprintk(ioc,
7328                     ioc_info(ioc, "hba queue depth(%d), max chains per io(%d)\n",
7329                              facts->RequestCredit, facts->MaxChainDepth));
7330         dinitprintk(ioc,
7331                     ioc_info(ioc, "request frame size(%d), reply frame size(%d)\n",
7332                              facts->IOCRequestFrameSize * 4,
7333                              facts->ReplyFrameSize * 4));
7334         return 0;
7335 }
7336
7337 /**
7338  * _base_send_ioc_init - send ioc_init to firmware
7339  * @ioc: per adapter object
7340  *
7341  * Return: 0 for success, non-zero for failure.
7342  */
7343 static int
7344 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc)
7345 {
7346         Mpi2IOCInitRequest_t mpi_request;
7347         Mpi2IOCInitReply_t mpi_reply;
7348         int i, r = 0;
7349         ktime_t current_time;
7350         u16 ioc_status;
7351         u32 reply_post_free_array_sz = 0;
7352
7353         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7354
7355         memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
7356         mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
7357         mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
7358         mpi_request.VF_ID = 0; /* TODO */
7359         mpi_request.VP_ID = 0;
7360         mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged);
7361         mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
7362         mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K;
7363
7364         if (_base_is_controller_msix_enabled(ioc))
7365                 mpi_request.HostMSIxVectors = ioc->reply_queue_count;
7366         mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
7367         mpi_request.ReplyDescriptorPostQueueDepth =
7368             cpu_to_le16(ioc->reply_post_queue_depth);
7369         mpi_request.ReplyFreeQueueDepth =
7370             cpu_to_le16(ioc->reply_free_queue_depth);
7371
7372         mpi_request.SenseBufferAddressHigh =
7373             cpu_to_le32((u64)ioc->sense_dma >> 32);
7374         mpi_request.SystemReplyAddressHigh =
7375             cpu_to_le32((u64)ioc->reply_dma >> 32);
7376         mpi_request.SystemRequestFrameBaseAddress =
7377             cpu_to_le64((u64)ioc->request_dma);
7378         mpi_request.ReplyFreeQueueAddress =
7379             cpu_to_le64((u64)ioc->reply_free_dma);
7380
7381         if (ioc->rdpq_array_enable) {
7382                 reply_post_free_array_sz = ioc->reply_queue_count *
7383                     sizeof(Mpi2IOCInitRDPQArrayEntry);
7384                 memset(ioc->reply_post_free_array, 0, reply_post_free_array_sz);
7385                 for (i = 0; i < ioc->reply_queue_count; i++)
7386                         ioc->reply_post_free_array[i].RDPQBaseAddress =
7387                             cpu_to_le64(
7388                                 (u64)ioc->reply_post[i].reply_post_free_dma);
7389                 mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
7390                 mpi_request.ReplyDescriptorPostQueueAddress =
7391                     cpu_to_le64((u64)ioc->reply_post_free_array_dma);
7392         } else {
7393                 mpi_request.ReplyDescriptorPostQueueAddress =
7394                     cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
7395         }
7396
7397         /*
7398          * Set the flag to enable CoreDump state feature in IOC firmware.
7399          */
7400         mpi_request.ConfigurationFlags |=
7401             cpu_to_le16(MPI26_IOCINIT_CFGFLAGS_COREDUMP_ENABLE);
7402
7403         /* This time stamp specifies number of milliseconds
7404          * since epoch ~ midnight January 1, 1970.
7405          */
7406         current_time = ktime_get_real();
7407         mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time));
7408
7409         if (ioc->logging_level & MPT_DEBUG_INIT) {
7410                 __le32 *mfp;
7411                 int i;
7412
7413                 mfp = (__le32 *)&mpi_request;
7414                 ioc_info(ioc, "\toffset:data\n");
7415                 for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
7416                         ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4,
7417                             le32_to_cpu(mfp[i]));
7418         }
7419
7420         r = _base_handshake_req_reply_wait(ioc,
7421             sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
7422             sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 30);
7423
7424         if (r != 0) {
7425                 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
7426                 return r;
7427         }
7428
7429         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
7430         if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
7431             mpi_reply.IOCLogInfo) {
7432                 ioc_err(ioc, "%s: failed\n", __func__);
7433                 r = -EIO;
7434         }
7435
7436         /* Reset TimeSync Counter*/
7437         ioc->timestamp_update_count = 0;
7438         return r;
7439 }
7440
7441 /**
7442  * mpt3sas_port_enable_done - command completion routine for port enable
7443  * @ioc: per adapter object
7444  * @smid: system request message index
7445  * @msix_index: MSIX table index supplied by the OS
7446  * @reply: reply message frame(lower 32bit addr)
7447  *
7448  * Return: 1 meaning mf should be freed from _base_interrupt
7449  *          0 means the mf is freed from this function.
7450  */
7451 u8
7452 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
7453         u32 reply)
7454 {
7455         MPI2DefaultReply_t *mpi_reply;
7456         u16 ioc_status;
7457
7458         if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
7459                 return 1;
7460
7461         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
7462         if (!mpi_reply)
7463                 return 1;
7464
7465         if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
7466                 return 1;
7467
7468         ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
7469         ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
7470         ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
7471         memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
7472         ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
7473         if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
7474                 ioc->port_enable_failed = 1;
7475
7476         if (ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE_ASYNC) {
7477                 ioc->port_enable_cmds.status &= ~MPT3_CMD_COMPLETE_ASYNC;
7478                 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
7479                         mpt3sas_port_enable_complete(ioc);
7480                         return 1;
7481                 } else {
7482                         ioc->start_scan_failed = ioc_status;
7483                         ioc->start_scan = 0;
7484                         return 1;
7485                 }
7486         }
7487         complete(&ioc->port_enable_cmds.done);
7488         return 1;
7489 }
7490
7491 /**
7492  * _base_send_port_enable - send port_enable(discovery stuff) to firmware
7493  * @ioc: per adapter object
7494  *
7495  * Return: 0 for success, non-zero for failure.
7496  */
7497 static int
7498 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc)
7499 {
7500         Mpi2PortEnableRequest_t *mpi_request;
7501         Mpi2PortEnableReply_t *mpi_reply;
7502         int r = 0;
7503         u16 smid;
7504         u16 ioc_status;
7505
7506         ioc_info(ioc, "sending port enable !!\n");
7507
7508         if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
7509                 ioc_err(ioc, "%s: internal command already in use\n", __func__);
7510                 return -EAGAIN;
7511         }
7512
7513         smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
7514         if (!smid) {
7515                 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7516                 return -EAGAIN;
7517         }
7518
7519         ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
7520         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
7521         ioc->port_enable_cmds.smid = smid;
7522         memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
7523         mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
7524
7525         init_completion(&ioc->port_enable_cmds.done);
7526         ioc->put_smid_default(ioc, smid);
7527         wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ);
7528         if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
7529                 ioc_err(ioc, "%s: timeout\n", __func__);
7530                 _debug_dump_mf(mpi_request,
7531                     sizeof(Mpi2PortEnableRequest_t)/4);
7532                 if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
7533                         r = -EFAULT;
7534                 else
7535                         r = -ETIME;
7536                 goto out;
7537         }
7538
7539         mpi_reply = ioc->port_enable_cmds.reply;
7540         ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
7541         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
7542                 ioc_err(ioc, "%s: failed with (ioc_status=0x%08x)\n",
7543                         __func__, ioc_status);
7544                 r = -EFAULT;
7545                 goto out;
7546         }
7547
7548  out:
7549         ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
7550         ioc_info(ioc, "port enable: %s\n", r == 0 ? "SUCCESS" : "FAILED");
7551         return r;
7552 }
7553
7554 /**
7555  * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
7556  * @ioc: per adapter object
7557  *
7558  * Return: 0 for success, non-zero for failure.
7559  */
7560 int
7561 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
7562 {
7563         Mpi2PortEnableRequest_t *mpi_request;
7564         u16 smid;
7565
7566         ioc_info(ioc, "sending port enable !!\n");
7567
7568         if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
7569                 ioc_err(ioc, "%s: internal command already in use\n", __func__);
7570                 return -EAGAIN;
7571         }
7572
7573         smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
7574         if (!smid) {
7575                 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7576                 return -EAGAIN;
7577         }
7578         ioc->drv_internal_flags |= MPT_DRV_INTERNAL_FIRST_PE_ISSUED;
7579         ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
7580         ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE_ASYNC;
7581         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
7582         ioc->port_enable_cmds.smid = smid;
7583         memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
7584         mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
7585
7586         ioc->put_smid_default(ioc, smid);
7587         return 0;
7588 }
7589
7590 /**
7591  * _base_determine_wait_on_discovery - desposition
7592  * @ioc: per adapter object
7593  *
7594  * Decide whether to wait on discovery to complete. Used to either
7595  * locate boot device, or report volumes ahead of physical devices.
7596  *
7597  * Return: 1 for wait, 0 for don't wait.
7598  */
7599 static int
7600 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
7601 {
7602         /* We wait for discovery to complete if IR firmware is loaded.
7603          * The sas topology events arrive before PD events, so we need time to
7604          * turn on the bit in ioc->pd_handles to indicate PD
7605          * Also, it maybe required to report Volumes ahead of physical
7606          * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
7607          */
7608         if (ioc->ir_firmware)
7609                 return 1;
7610
7611         /* if no Bios, then we don't need to wait */
7612         if (!ioc->bios_pg3.BiosVersion)
7613                 return 0;
7614
7615         /* Bios is present, then we drop down here.
7616          *
7617          * If there any entries in the Bios Page 2, then we wait
7618          * for discovery to complete.
7619          */
7620
7621         /* Current Boot Device */
7622         if ((ioc->bios_pg2.CurrentBootDeviceForm &
7623             MPI2_BIOSPAGE2_FORM_MASK) ==
7624             MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
7625         /* Request Boot Device */
7626            (ioc->bios_pg2.ReqBootDeviceForm &
7627             MPI2_BIOSPAGE2_FORM_MASK) ==
7628             MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
7629         /* Alternate Request Boot Device */
7630            (ioc->bios_pg2.ReqAltBootDeviceForm &
7631             MPI2_BIOSPAGE2_FORM_MASK) ==
7632             MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
7633                 return 0;
7634
7635         return 1;
7636 }
7637
7638 /**
7639  * _base_unmask_events - turn on notification for this event
7640  * @ioc: per adapter object
7641  * @event: firmware event
7642  *
7643  * The mask is stored in ioc->event_masks.
7644  */
7645 static void
7646 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
7647 {
7648         u32 desired_event;
7649
7650         if (event >= 128)
7651                 return;
7652
7653         desired_event = (1 << (event % 32));
7654
7655         if (event < 32)
7656                 ioc->event_masks[0] &= ~desired_event;
7657         else if (event < 64)
7658                 ioc->event_masks[1] &= ~desired_event;
7659         else if (event < 96)
7660                 ioc->event_masks[2] &= ~desired_event;
7661         else if (event < 128)
7662                 ioc->event_masks[3] &= ~desired_event;
7663 }
7664
7665 /**
7666  * _base_event_notification - send event notification
7667  * @ioc: per adapter object
7668  *
7669  * Return: 0 for success, non-zero for failure.
7670  */
7671 static int
7672 _base_event_notification(struct MPT3SAS_ADAPTER *ioc)
7673 {
7674         Mpi2EventNotificationRequest_t *mpi_request;
7675         u16 smid;
7676         int r = 0;
7677         int i, issue_diag_reset = 0;
7678
7679         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7680
7681         if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
7682                 ioc_err(ioc, "%s: internal command already in use\n", __func__);
7683                 return -EAGAIN;
7684         }
7685
7686         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
7687         if (!smid) {
7688                 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7689                 return -EAGAIN;
7690         }
7691         ioc->base_cmds.status = MPT3_CMD_PENDING;
7692         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
7693         ioc->base_cmds.smid = smid;
7694         memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
7695         mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
7696         mpi_request->VF_ID = 0; /* TODO */
7697         mpi_request->VP_ID = 0;
7698         for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
7699                 mpi_request->EventMasks[i] =
7700                     cpu_to_le32(ioc->event_masks[i]);
7701         init_completion(&ioc->base_cmds.done);
7702         ioc->put_smid_default(ioc, smid);
7703         wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
7704         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
7705                 ioc_err(ioc, "%s: timeout\n", __func__);
7706                 _debug_dump_mf(mpi_request,
7707                     sizeof(Mpi2EventNotificationRequest_t)/4);
7708                 if (ioc->base_cmds.status & MPT3_CMD_RESET)
7709                         r = -EFAULT;
7710                 else
7711                         issue_diag_reset = 1;
7712
7713         } else
7714                 dinitprintk(ioc, ioc_info(ioc, "%s: complete\n", __func__));
7715         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7716
7717         if (issue_diag_reset) {
7718                 if (ioc->drv_internal_flags & MPT_DRV_INTERNAL_FIRST_PE_ISSUED)
7719                         return -EFAULT;
7720                 if (mpt3sas_base_check_for_fault_and_issue_reset(ioc))
7721                         return -EFAULT;
7722                 r = -EAGAIN;
7723         }
7724         return r;
7725 }
7726
7727 /**
7728  * mpt3sas_base_validate_event_type - validating event types
7729  * @ioc: per adapter object
7730  * @event_type: firmware event
7731  *
7732  * This will turn on firmware event notification when application
7733  * ask for that event. We don't mask events that are already enabled.
7734  */
7735 void
7736 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
7737 {
7738         int i, j;
7739         u32 event_mask, desired_event;
7740         u8 send_update_to_fw;
7741
7742         for (i = 0, send_update_to_fw = 0; i <
7743             MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
7744                 event_mask = ~event_type[i];
7745                 desired_event = 1;
7746                 for (j = 0; j < 32; j++) {
7747                         if (!(event_mask & desired_event) &&
7748                             (ioc->event_masks[i] & desired_event)) {
7749                                 ioc->event_masks[i] &= ~desired_event;
7750                                 send_update_to_fw = 1;
7751                         }
7752                         desired_event = (desired_event << 1);
7753                 }
7754         }
7755
7756         if (!send_update_to_fw)
7757                 return;
7758
7759         mutex_lock(&ioc->base_cmds.mutex);
7760         _base_event_notification(ioc);
7761         mutex_unlock(&ioc->base_cmds.mutex);
7762 }
7763
7764 /**
7765  * _base_diag_reset - the "big hammer" start of day reset
7766  * @ioc: per adapter object
7767  *
7768  * Return: 0 for success, non-zero for failure.
7769  */
7770 static int
7771 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc)
7772 {
7773         u32 host_diagnostic;
7774         u32 ioc_state;
7775         u32 count;
7776         u32 hcb_size;
7777
7778         ioc_info(ioc, "sending diag reset !!\n");
7779
7780         pci_cfg_access_lock(ioc->pdev);
7781
7782         drsprintk(ioc, ioc_info(ioc, "clear interrupts\n"));
7783
7784         count = 0;
7785         do {
7786                 /* Write magic sequence to WriteSequence register
7787                  * Loop until in diagnostic mode
7788                  */
7789                 drsprintk(ioc, ioc_info(ioc, "write magic sequence\n"));
7790                 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
7791                 writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
7792                 writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
7793                 writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
7794                 writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
7795                 writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
7796                 writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
7797
7798                 /* wait 100 msec */
7799                 msleep(100);
7800
7801                 if (count++ > 20) {
7802                         ioc_info(ioc,
7803                             "Stop writing magic sequence after 20 retries\n");
7804                         _base_dump_reg_set(ioc);
7805                         goto out;
7806                 }
7807
7808                 host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic);
7809                 drsprintk(ioc,
7810                           ioc_info(ioc, "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
7811                                    count, host_diagnostic));
7812
7813         } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
7814
7815         hcb_size = ioc->base_readl(&ioc->chip->HCBSize);
7816
7817         drsprintk(ioc, ioc_info(ioc, "diag reset: issued\n"));
7818         writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
7819              &ioc->chip->HostDiagnostic);
7820
7821         /*This delay allows the chip PCIe hardware time to finish reset tasks*/
7822         msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
7823
7824         /* Approximately 300 second max wait */
7825         for (count = 0; count < (300000000 /
7826                 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
7827
7828                 host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic);
7829
7830                 if (host_diagnostic == 0xFFFFFFFF) {
7831                         ioc_info(ioc,
7832                             "Invalid host diagnostic register value\n");
7833                         _base_dump_reg_set(ioc);
7834                         goto out;
7835                 }
7836                 if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
7837                         break;
7838
7839                 msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000);
7840         }
7841
7842         if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
7843
7844                 drsprintk(ioc,
7845                           ioc_info(ioc, "restart the adapter assuming the HCB Address points to good F/W\n"));
7846                 host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
7847                 host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
7848                 writel(host_diagnostic, &ioc->chip->HostDiagnostic);
7849
7850                 drsprintk(ioc, ioc_info(ioc, "re-enable the HCDW\n"));
7851                 writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
7852                     &ioc->chip->HCBSize);
7853         }
7854
7855         drsprintk(ioc, ioc_info(ioc, "restart the adapter\n"));
7856         writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
7857             &ioc->chip->HostDiagnostic);
7858
7859         drsprintk(ioc,
7860                   ioc_info(ioc, "disable writes to the diagnostic register\n"));
7861         writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
7862
7863         drsprintk(ioc, ioc_info(ioc, "Wait for FW to go to the READY state\n"));
7864         ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20);
7865         if (ioc_state) {
7866                 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
7867                         __func__, ioc_state);
7868                 _base_dump_reg_set(ioc);
7869                 goto out;
7870         }
7871
7872         pci_cfg_access_unlock(ioc->pdev);
7873         ioc_info(ioc, "diag reset: SUCCESS\n");
7874         return 0;
7875
7876  out:
7877         pci_cfg_access_unlock(ioc->pdev);
7878         ioc_err(ioc, "diag reset: FAILED\n");
7879         return -EFAULT;
7880 }
7881
7882 /**
7883  * mpt3sas_base_make_ioc_ready - put controller in READY state
7884  * @ioc: per adapter object
7885  * @type: FORCE_BIG_HAMMER or SOFT_RESET
7886  *
7887  * Return: 0 for success, non-zero for failure.
7888  */
7889 int
7890 mpt3sas_base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type)
7891 {
7892         u32 ioc_state;
7893         int rc;
7894         int count;
7895
7896         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7897
7898         if (ioc->pci_error_recovery)
7899                 return 0;
7900
7901         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7902         dhsprintk(ioc,
7903                   ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
7904                            __func__, ioc_state));
7905
7906         /* if in RESET state, it should move to READY state shortly */
7907         count = 0;
7908         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
7909                 while ((ioc_state & MPI2_IOC_STATE_MASK) !=
7910                     MPI2_IOC_STATE_READY) {
7911                         if (count++ == 10) {
7912                                 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
7913                                         __func__, ioc_state);
7914                                 return -EFAULT;
7915                         }
7916                         ssleep(1);
7917                         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7918                 }
7919         }
7920
7921         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
7922                 return 0;
7923
7924         if (ioc_state & MPI2_DOORBELL_USED) {
7925                 ioc_info(ioc, "unexpected doorbell active!\n");
7926                 goto issue_diag_reset;
7927         }
7928
7929         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
7930                 mpt3sas_print_fault_code(ioc, ioc_state &
7931                     MPI2_DOORBELL_DATA_MASK);
7932                 goto issue_diag_reset;
7933         }
7934
7935         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
7936                 /*
7937                  * if host reset is invoked while watch dog thread is waiting
7938                  * for IOC state to be changed to Fault state then driver has
7939                  * to wait here for CoreDump state to clear otherwise reset
7940                  * will be issued to the FW and FW move the IOC state to
7941                  * reset state without copying the FW logs to coredump region.
7942                  */
7943                 if (ioc->ioc_coredump_loop != MPT3SAS_COREDUMP_LOOP_DONE) {
7944                         mpt3sas_print_coredump_info(ioc, ioc_state &
7945                             MPI2_DOORBELL_DATA_MASK);
7946                         mpt3sas_base_wait_for_coredump_completion(ioc,
7947                             __func__);
7948                 }
7949                 goto issue_diag_reset;
7950         }
7951
7952         if (type == FORCE_BIG_HAMMER)
7953                 goto issue_diag_reset;
7954
7955         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
7956                 if (!(_base_send_ioc_reset(ioc,
7957                     MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) {
7958                         return 0;
7959         }
7960
7961  issue_diag_reset:
7962         rc = _base_diag_reset(ioc);
7963         return rc;
7964 }
7965
7966 /**
7967  * _base_make_ioc_operational - put controller in OPERATIONAL state
7968  * @ioc: per adapter object
7969  *
7970  * Return: 0 for success, non-zero for failure.
7971  */
7972 static int
7973 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc)
7974 {
7975         int r, i, index, rc;
7976         unsigned long   flags;
7977         u32 reply_address;
7978         u16 smid;
7979         struct _tr_list *delayed_tr, *delayed_tr_next;
7980         struct _sc_list *delayed_sc, *delayed_sc_next;
7981         struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next;
7982         u8 hide_flag;
7983         struct adapter_reply_queue *reply_q;
7984         Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig;
7985
7986         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7987
7988         /* clean the delayed target reset list */
7989         list_for_each_entry_safe(delayed_tr, delayed_tr_next,
7990             &ioc->delayed_tr_list, list) {
7991                 list_del(&delayed_tr->list);
7992                 kfree(delayed_tr);
7993         }
7994
7995
7996         list_for_each_entry_safe(delayed_tr, delayed_tr_next,
7997             &ioc->delayed_tr_volume_list, list) {
7998                 list_del(&delayed_tr->list);
7999                 kfree(delayed_tr);
8000         }
8001
8002         list_for_each_entry_safe(delayed_sc, delayed_sc_next,
8003             &ioc->delayed_sc_list, list) {
8004                 list_del(&delayed_sc->list);
8005                 kfree(delayed_sc);
8006         }
8007
8008         list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next,
8009             &ioc->delayed_event_ack_list, list) {
8010                 list_del(&delayed_event_ack->list);
8011                 kfree(delayed_event_ack);
8012         }
8013
8014         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
8015
8016         /* hi-priority queue */
8017         INIT_LIST_HEAD(&ioc->hpr_free_list);
8018         smid = ioc->hi_priority_smid;
8019         for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
8020                 ioc->hpr_lookup[i].cb_idx = 0xFF;
8021                 ioc->hpr_lookup[i].smid = smid;
8022                 list_add_tail(&ioc->hpr_lookup[i].tracker_list,
8023                     &ioc->hpr_free_list);
8024         }
8025
8026         /* internal queue */
8027         INIT_LIST_HEAD(&ioc->internal_free_list);
8028         smid = ioc->internal_smid;
8029         for (i = 0; i < ioc->internal_depth; i++, smid++) {
8030                 ioc->internal_lookup[i].cb_idx = 0xFF;
8031                 ioc->internal_lookup[i].smid = smid;
8032                 list_add_tail(&ioc->internal_lookup[i].tracker_list,
8033                     &ioc->internal_free_list);
8034         }
8035
8036         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
8037
8038         /* initialize Reply Free Queue */
8039         for (i = 0, reply_address = (u32)ioc->reply_dma ;
8040             i < ioc->reply_free_queue_depth ; i++, reply_address +=
8041             ioc->reply_sz) {
8042                 ioc->reply_free[i] = cpu_to_le32(reply_address);
8043                 if (ioc->is_mcpu_endpoint)
8044                         _base_clone_reply_to_sys_mem(ioc,
8045                                         reply_address, i);
8046         }
8047
8048         /* initialize reply queues */
8049         if (ioc->is_driver_loading)
8050                 _base_assign_reply_queues(ioc);
8051
8052         /* initialize Reply Post Free Queue */
8053         index = 0;
8054         reply_post_free_contig = ioc->reply_post[0].reply_post_free;
8055         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
8056                 /*
8057                  * If RDPQ is enabled, switch to the next allocation.
8058                  * Otherwise advance within the contiguous region.
8059                  */
8060                 if (ioc->rdpq_array_enable) {
8061                         reply_q->reply_post_free =
8062                                 ioc->reply_post[index++].reply_post_free;
8063                 } else {
8064                         reply_q->reply_post_free = reply_post_free_contig;
8065                         reply_post_free_contig += ioc->reply_post_queue_depth;
8066                 }
8067
8068                 reply_q->reply_post_host_index = 0;
8069                 for (i = 0; i < ioc->reply_post_queue_depth; i++)
8070                         reply_q->reply_post_free[i].Words =
8071                             cpu_to_le64(ULLONG_MAX);
8072                 if (!_base_is_controller_msix_enabled(ioc))
8073                         goto skip_init_reply_post_free_queue;
8074         }
8075  skip_init_reply_post_free_queue:
8076
8077         r = _base_send_ioc_init(ioc);
8078         if (r) {
8079                 /*
8080                  * No need to check IOC state for fault state & issue
8081                  * diag reset during host reset. This check is need
8082                  * only during driver load time.
8083                  */
8084                 if (!ioc->is_driver_loading)
8085                         return r;
8086
8087                 rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
8088                 if (rc || (_base_send_ioc_init(ioc)))
8089                         return r;
8090         }
8091
8092         /* initialize reply free host index */
8093         ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
8094         writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
8095
8096         /* initialize reply post host index */
8097         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
8098                 if (ioc->combined_reply_queue)
8099                         writel((reply_q->msix_index & 7)<<
8100                            MPI2_RPHI_MSIX_INDEX_SHIFT,
8101                            ioc->replyPostRegisterIndex[reply_q->msix_index/8]);
8102                 else
8103                         writel(reply_q->msix_index <<
8104                                 MPI2_RPHI_MSIX_INDEX_SHIFT,
8105                                 &ioc->chip->ReplyPostHostIndex);
8106
8107                 if (!_base_is_controller_msix_enabled(ioc))
8108                         goto skip_init_reply_post_host_index;
8109         }
8110
8111  skip_init_reply_post_host_index:
8112
8113         mpt3sas_base_unmask_interrupts(ioc);
8114
8115         if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
8116                 r = _base_display_fwpkg_version(ioc);
8117                 if (r)
8118                         return r;
8119         }
8120
8121         r = _base_static_config_pages(ioc);
8122         if (r)
8123                 return r;
8124
8125         r = _base_event_notification(ioc);
8126         if (r)
8127                 return r;
8128
8129         if (!ioc->shost_recovery) {
8130
8131                 if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier
8132                     == 0x80) {
8133                         hide_flag = (u8) (
8134                             le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) &
8135                             MFG_PAGE10_HIDE_SSDS_MASK);
8136                         if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK)
8137                                 ioc->mfg_pg10_hide_flag = hide_flag;
8138                 }
8139
8140                 ioc->wait_for_discovery_to_complete =
8141                     _base_determine_wait_on_discovery(ioc);
8142
8143                 return r; /* scan_start and scan_finished support */
8144         }
8145
8146         r = _base_send_port_enable(ioc);
8147         if (r)
8148                 return r;
8149
8150         return r;
8151 }
8152
8153 /**
8154  * mpt3sas_base_free_resources - free resources controller resources
8155  * @ioc: per adapter object
8156  */
8157 void
8158 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
8159 {
8160         dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8161
8162         /* synchronizing freeing resource with pci_access_mutex lock */
8163         mutex_lock(&ioc->pci_access_mutex);
8164         if (ioc->chip_phys && ioc->chip) {
8165                 mpt3sas_base_mask_interrupts(ioc);
8166                 ioc->shost_recovery = 1;
8167                 mpt3sas_base_make_ioc_ready(ioc, SOFT_RESET);
8168                 ioc->shost_recovery = 0;
8169         }
8170
8171         mpt3sas_base_unmap_resources(ioc);
8172         mutex_unlock(&ioc->pci_access_mutex);
8173         return;
8174 }
8175
8176 /**
8177  * mpt3sas_base_attach - attach controller instance
8178  * @ioc: per adapter object
8179  *
8180  * Return: 0 for success, non-zero for failure.
8181  */
8182 int
8183 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
8184 {
8185         int r, i, rc;
8186         int cpu_id, last_cpu_id = 0;
8187
8188         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8189
8190         /* setup cpu_msix_table */
8191         ioc->cpu_count = num_online_cpus();
8192         for_each_online_cpu(cpu_id)
8193                 last_cpu_id = cpu_id;
8194         ioc->cpu_msix_table_sz = last_cpu_id + 1;
8195         ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
8196         ioc->reply_queue_count = 1;
8197         if (!ioc->cpu_msix_table) {
8198                 ioc_info(ioc, "Allocation for cpu_msix_table failed!!!\n");
8199                 r = -ENOMEM;
8200                 goto out_free_resources;
8201         }
8202
8203         if (ioc->is_warpdrive) {
8204                 ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz,
8205                     sizeof(resource_size_t *), GFP_KERNEL);
8206                 if (!ioc->reply_post_host_index) {
8207                         ioc_info(ioc, "Allocation for reply_post_host_index failed!!!\n");
8208                         r = -ENOMEM;
8209                         goto out_free_resources;
8210                 }
8211         }
8212
8213         ioc->smp_affinity_enable = smp_affinity_enable;
8214
8215         ioc->rdpq_array_enable_assigned = 0;
8216         ioc->use_32bit_dma = false;
8217         ioc->dma_mask = 64;
8218         if (ioc->is_aero_ioc)
8219                 ioc->base_readl = &_base_readl_aero;
8220         else
8221                 ioc->base_readl = &_base_readl;
8222         r = mpt3sas_base_map_resources(ioc);
8223         if (r)
8224                 goto out_free_resources;
8225
8226         pci_set_drvdata(ioc->pdev, ioc->shost);
8227         r = _base_get_ioc_facts(ioc);
8228         if (r) {
8229                 rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
8230                 if (rc || (_base_get_ioc_facts(ioc)))
8231                         goto out_free_resources;
8232         }
8233
8234         switch (ioc->hba_mpi_version_belonged) {
8235         case MPI2_VERSION:
8236                 ioc->build_sg_scmd = &_base_build_sg_scmd;
8237                 ioc->build_sg = &_base_build_sg;
8238                 ioc->build_zero_len_sge = &_base_build_zero_len_sge;
8239                 ioc->get_msix_index_for_smlio = &_base_get_msix_index;
8240                 break;
8241         case MPI25_VERSION:
8242         case MPI26_VERSION:
8243                 /*
8244                  * In SAS3.0,
8245                  * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
8246                  * Target Status - all require the IEEE formatted scatter gather
8247                  * elements.
8248                  */
8249                 ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
8250                 ioc->build_sg = &_base_build_sg_ieee;
8251                 ioc->build_nvme_prp = &_base_build_nvme_prp;
8252                 ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
8253                 ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
8254                 if (ioc->high_iops_queues)
8255                         ioc->get_msix_index_for_smlio =
8256                                         &_base_get_high_iops_msix_index;
8257                 else
8258                         ioc->get_msix_index_for_smlio = &_base_get_msix_index;
8259                 break;
8260         }
8261         if (ioc->atomic_desc_capable) {
8262                 ioc->put_smid_default = &_base_put_smid_default_atomic;
8263                 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io_atomic;
8264                 ioc->put_smid_fast_path =
8265                                 &_base_put_smid_fast_path_atomic;
8266                 ioc->put_smid_hi_priority =
8267                                 &_base_put_smid_hi_priority_atomic;
8268         } else {
8269                 ioc->put_smid_default = &_base_put_smid_default;
8270                 ioc->put_smid_fast_path = &_base_put_smid_fast_path;
8271                 ioc->put_smid_hi_priority = &_base_put_smid_hi_priority;
8272                 if (ioc->is_mcpu_endpoint)
8273                         ioc->put_smid_scsi_io =
8274                                 &_base_put_smid_mpi_ep_scsi_io;
8275                 else
8276                         ioc->put_smid_scsi_io = &_base_put_smid_scsi_io;
8277         }
8278         /*
8279          * These function pointers for other requests that don't
8280          * the require IEEE scatter gather elements.
8281          *
8282          * For example Configuration Pages and SAS IOUNIT Control don't.
8283          */
8284         ioc->build_sg_mpi = &_base_build_sg;
8285         ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
8286
8287         r = mpt3sas_base_make_ioc_ready(ioc, SOFT_RESET);
8288         if (r)
8289                 goto out_free_resources;
8290
8291         ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
8292             sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
8293         if (!ioc->pfacts) {
8294                 r = -ENOMEM;
8295                 goto out_free_resources;
8296         }
8297
8298         for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
8299                 r = _base_get_port_facts(ioc, i);
8300                 if (r) {
8301                         rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
8302                         if (rc || (_base_get_port_facts(ioc, i)))
8303                                 goto out_free_resources;
8304                 }
8305         }
8306
8307         r = _base_allocate_memory_pools(ioc);
8308         if (r)
8309                 goto out_free_resources;
8310
8311         if (irqpoll_weight > 0)
8312                 ioc->thresh_hold = irqpoll_weight;
8313         else
8314                 ioc->thresh_hold = ioc->hba_queue_depth/4;
8315
8316         _base_init_irqpolls(ioc);
8317         init_waitqueue_head(&ioc->reset_wq);
8318
8319         /* allocate memory pd handle bitmask list */
8320         ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
8321         if (ioc->facts.MaxDevHandle % 8)
8322                 ioc->pd_handles_sz++;
8323         ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
8324             GFP_KERNEL);
8325         if (!ioc->pd_handles) {
8326                 r = -ENOMEM;
8327                 goto out_free_resources;
8328         }
8329         ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
8330             GFP_KERNEL);
8331         if (!ioc->blocking_handles) {
8332                 r = -ENOMEM;
8333                 goto out_free_resources;
8334         }
8335
8336         /* allocate memory for pending OS device add list */
8337         ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8);
8338         if (ioc->facts.MaxDevHandle % 8)
8339                 ioc->pend_os_device_add_sz++;
8340         ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz,
8341             GFP_KERNEL);
8342         if (!ioc->pend_os_device_add) {
8343                 r = -ENOMEM;
8344                 goto out_free_resources;
8345         }
8346
8347         ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz;
8348         ioc->device_remove_in_progress =
8349                 kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL);
8350         if (!ioc->device_remove_in_progress) {
8351                 r = -ENOMEM;
8352                 goto out_free_resources;
8353         }
8354
8355         ioc->fwfault_debug = mpt3sas_fwfault_debug;
8356
8357         /* base internal command bits */
8358         mutex_init(&ioc->base_cmds.mutex);
8359         ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8360         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
8361
8362         /* port_enable command bits */
8363         ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8364         ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
8365
8366         /* transport internal command bits */
8367         ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8368         ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
8369         mutex_init(&ioc->transport_cmds.mutex);
8370
8371         /* scsih internal command bits */
8372         ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8373         ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
8374         mutex_init(&ioc->scsih_cmds.mutex);
8375
8376         /* task management internal command bits */
8377         ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8378         ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
8379         mutex_init(&ioc->tm_cmds.mutex);
8380
8381         /* config page internal command bits */
8382         ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8383         ioc->config_cmds.status = MPT3_CMD_NOT_USED;
8384         mutex_init(&ioc->config_cmds.mutex);
8385
8386         /* ctl module internal command bits */
8387         ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8388         ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
8389         ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
8390         mutex_init(&ioc->ctl_cmds.mutex);
8391
8392         if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply ||
8393             !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply ||
8394             !ioc->tm_cmds.reply || !ioc->config_cmds.reply ||
8395             !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) {
8396                 r = -ENOMEM;
8397                 goto out_free_resources;
8398         }
8399
8400         for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
8401                 ioc->event_masks[i] = -1;
8402
8403         /* here we enable the events we care about */
8404         _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
8405         _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
8406         _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
8407         _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
8408         _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
8409         _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
8410         _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
8411         _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
8412         _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
8413         _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
8414         _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
8415         _base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION);
8416         _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR);
8417         if (ioc->hba_mpi_version_belonged == MPI26_VERSION) {
8418                 if (ioc->is_gen35_ioc) {
8419                         _base_unmask_events(ioc,
8420                                 MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE);
8421                         _base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION);
8422                         _base_unmask_events(ioc,
8423                                 MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST);
8424                 }
8425         }
8426         r = _base_make_ioc_operational(ioc);
8427         if (r == -EAGAIN) {
8428                 r = _base_make_ioc_operational(ioc);
8429                 if (r)
8430                         goto out_free_resources;
8431         }
8432
8433         /*
8434          * Copy current copy of IOCFacts in prev_fw_facts
8435          * and it will be used during online firmware upgrade.
8436          */
8437         memcpy(&ioc->prev_fw_facts, &ioc->facts,
8438             sizeof(struct mpt3sas_facts));
8439
8440         ioc->non_operational_loop = 0;
8441         ioc->ioc_coredump_loop = 0;
8442         ioc->got_task_abort_from_ioctl = 0;
8443         return 0;
8444
8445  out_free_resources:
8446
8447         ioc->remove_host = 1;
8448
8449         mpt3sas_base_free_resources(ioc);
8450         _base_release_memory_pools(ioc);
8451         pci_set_drvdata(ioc->pdev, NULL);
8452         kfree(ioc->cpu_msix_table);
8453         if (ioc->is_warpdrive)
8454                 kfree(ioc->reply_post_host_index);
8455         kfree(ioc->pd_handles);
8456         kfree(ioc->blocking_handles);
8457         kfree(ioc->device_remove_in_progress);
8458         kfree(ioc->pend_os_device_add);
8459         kfree(ioc->tm_cmds.reply);
8460         kfree(ioc->transport_cmds.reply);
8461         kfree(ioc->scsih_cmds.reply);
8462         kfree(ioc->config_cmds.reply);
8463         kfree(ioc->base_cmds.reply);
8464         kfree(ioc->port_enable_cmds.reply);
8465         kfree(ioc->ctl_cmds.reply);
8466         kfree(ioc->ctl_cmds.sense);
8467         kfree(ioc->pfacts);
8468         ioc->ctl_cmds.reply = NULL;
8469         ioc->base_cmds.reply = NULL;
8470         ioc->tm_cmds.reply = NULL;
8471         ioc->scsih_cmds.reply = NULL;
8472         ioc->transport_cmds.reply = NULL;
8473         ioc->config_cmds.reply = NULL;
8474         ioc->pfacts = NULL;
8475         return r;
8476 }
8477
8478
8479 /**
8480  * mpt3sas_base_detach - remove controller instance
8481  * @ioc: per adapter object
8482  */
8483 void
8484 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
8485 {
8486         dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8487
8488         mpt3sas_base_stop_watchdog(ioc);
8489         mpt3sas_base_free_resources(ioc);
8490         _base_release_memory_pools(ioc);
8491         mpt3sas_free_enclosure_list(ioc);
8492         pci_set_drvdata(ioc->pdev, NULL);
8493         kfree(ioc->cpu_msix_table);
8494         if (ioc->is_warpdrive)
8495                 kfree(ioc->reply_post_host_index);
8496         kfree(ioc->pd_handles);
8497         kfree(ioc->blocking_handles);
8498         kfree(ioc->device_remove_in_progress);
8499         kfree(ioc->pend_os_device_add);
8500         kfree(ioc->pfacts);
8501         kfree(ioc->ctl_cmds.reply);
8502         kfree(ioc->ctl_cmds.sense);
8503         kfree(ioc->base_cmds.reply);
8504         kfree(ioc->port_enable_cmds.reply);
8505         kfree(ioc->tm_cmds.reply);
8506         kfree(ioc->transport_cmds.reply);
8507         kfree(ioc->scsih_cmds.reply);
8508         kfree(ioc->config_cmds.reply);
8509 }
8510
8511 /**
8512  * _base_pre_reset_handler - pre reset handler
8513  * @ioc: per adapter object
8514  */
8515 static void _base_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc)
8516 {
8517         mpt3sas_scsih_pre_reset_handler(ioc);
8518         mpt3sas_ctl_pre_reset_handler(ioc);
8519         dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_PRE_RESET\n", __func__));
8520 }
8521
8522 /**
8523  * _base_clear_outstanding_mpt_commands - clears outstanding mpt commands
8524  * @ioc: per adapter object
8525  */
8526 static void
8527 _base_clear_outstanding_mpt_commands(struct MPT3SAS_ADAPTER *ioc)
8528 {
8529         dtmprintk(ioc,
8530             ioc_info(ioc, "%s: clear outstanding mpt cmds\n", __func__));
8531         if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
8532                 ioc->transport_cmds.status |= MPT3_CMD_RESET;
8533                 mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
8534                 complete(&ioc->transport_cmds.done);
8535         }
8536         if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
8537                 ioc->base_cmds.status |= MPT3_CMD_RESET;
8538                 mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
8539                 complete(&ioc->base_cmds.done);
8540         }
8541         if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
8542                 ioc->port_enable_failed = 1;
8543                 ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
8544                 mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
8545                 if (ioc->is_driver_loading) {
8546                         ioc->start_scan_failed =
8547                                 MPI2_IOCSTATUS_INTERNAL_ERROR;
8548                         ioc->start_scan = 0;
8549                 } else {
8550                         complete(&ioc->port_enable_cmds.done);
8551                 }
8552         }
8553         if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
8554                 ioc->config_cmds.status |= MPT3_CMD_RESET;
8555                 mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
8556                 ioc->config_cmds.smid = USHRT_MAX;
8557                 complete(&ioc->config_cmds.done);
8558         }
8559 }
8560
8561 /**
8562  * _base_clear_outstanding_commands - clear all outstanding commands
8563  * @ioc: per adapter object
8564  */
8565 static void _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc)
8566 {
8567         mpt3sas_scsih_clear_outstanding_scsi_tm_commands(ioc);
8568         mpt3sas_ctl_clear_outstanding_ioctls(ioc);
8569         _base_clear_outstanding_mpt_commands(ioc);
8570 }
8571
8572 /**
8573  * _base_reset_done_handler - reset done handler
8574  * @ioc: per adapter object
8575  */
8576 static void _base_reset_done_handler(struct MPT3SAS_ADAPTER *ioc)
8577 {
8578         mpt3sas_scsih_reset_done_handler(ioc);
8579         mpt3sas_ctl_reset_done_handler(ioc);
8580         dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_DONE_RESET\n", __func__));
8581 }
8582
8583 /**
8584  * mpt3sas_wait_for_commands_to_complete - reset controller
8585  * @ioc: Pointer to MPT_ADAPTER structure
8586  *
8587  * This function is waiting 10s for all pending commands to complete
8588  * prior to putting controller in reset.
8589  */
8590 void
8591 mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc)
8592 {
8593         u32 ioc_state;
8594
8595         ioc->pending_io_count = 0;
8596
8597         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
8598         if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
8599                 return;
8600
8601         /* pending command count */
8602         ioc->pending_io_count = scsi_host_busy(ioc->shost);
8603
8604         if (!ioc->pending_io_count)
8605                 return;
8606
8607         /* wait for pending commands to complete */
8608         wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
8609 }
8610
8611 /**
8612  * _base_check_ioc_facts_changes - Look for increase/decrease of IOCFacts
8613  *     attributes during online firmware upgrade and update the corresponding
8614  *     IOC variables accordingly.
8615  *
8616  * @ioc: Pointer to MPT_ADAPTER structure
8617  */
8618 static int
8619 _base_check_ioc_facts_changes(struct MPT3SAS_ADAPTER *ioc)
8620 {
8621         u16 pd_handles_sz;
8622         void *pd_handles = NULL, *blocking_handles = NULL;
8623         void *pend_os_device_add = NULL, *device_remove_in_progress = NULL;
8624         struct mpt3sas_facts *old_facts = &ioc->prev_fw_facts;
8625
8626         if (ioc->facts.MaxDevHandle > old_facts->MaxDevHandle) {
8627                 pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
8628                 if (ioc->facts.MaxDevHandle % 8)
8629                         pd_handles_sz++;
8630
8631                 pd_handles = krealloc(ioc->pd_handles, pd_handles_sz,
8632                     GFP_KERNEL);
8633                 if (!pd_handles) {
8634                         ioc_info(ioc,
8635                             "Unable to allocate the memory for pd_handles of sz: %d\n",
8636                             pd_handles_sz);
8637                         return -ENOMEM;
8638                 }
8639                 memset(pd_handles + ioc->pd_handles_sz, 0,
8640                     (pd_handles_sz - ioc->pd_handles_sz));
8641                 ioc->pd_handles = pd_handles;
8642
8643                 blocking_handles = krealloc(ioc->blocking_handles,
8644                     pd_handles_sz, GFP_KERNEL);
8645                 if (!blocking_handles) {
8646                         ioc_info(ioc,
8647                             "Unable to allocate the memory for "
8648                             "blocking_handles of sz: %d\n",
8649                             pd_handles_sz);
8650                         return -ENOMEM;
8651                 }
8652                 memset(blocking_handles + ioc->pd_handles_sz, 0,
8653                     (pd_handles_sz - ioc->pd_handles_sz));
8654                 ioc->blocking_handles = blocking_handles;
8655                 ioc->pd_handles_sz = pd_handles_sz;
8656
8657                 pend_os_device_add = krealloc(ioc->pend_os_device_add,
8658                     pd_handles_sz, GFP_KERNEL);
8659                 if (!pend_os_device_add) {
8660                         ioc_info(ioc,
8661                             "Unable to allocate the memory for pend_os_device_add of sz: %d\n",
8662                             pd_handles_sz);
8663                         return -ENOMEM;
8664                 }
8665                 memset(pend_os_device_add + ioc->pend_os_device_add_sz, 0,
8666                     (pd_handles_sz - ioc->pend_os_device_add_sz));
8667                 ioc->pend_os_device_add = pend_os_device_add;
8668                 ioc->pend_os_device_add_sz = pd_handles_sz;
8669
8670                 device_remove_in_progress = krealloc(
8671                     ioc->device_remove_in_progress, pd_handles_sz, GFP_KERNEL);
8672                 if (!device_remove_in_progress) {
8673                         ioc_info(ioc,
8674                             "Unable to allocate the memory for "
8675                             "device_remove_in_progress of sz: %d\n "
8676                             , pd_handles_sz);
8677                         return -ENOMEM;
8678                 }
8679                 memset(device_remove_in_progress +
8680                     ioc->device_remove_in_progress_sz, 0,
8681                     (pd_handles_sz - ioc->device_remove_in_progress_sz));
8682                 ioc->device_remove_in_progress = device_remove_in_progress;
8683                 ioc->device_remove_in_progress_sz = pd_handles_sz;
8684         }
8685
8686         memcpy(&ioc->prev_fw_facts, &ioc->facts, sizeof(struct mpt3sas_facts));
8687         return 0;
8688 }
8689
8690 /**
8691  * mpt3sas_base_hard_reset_handler - reset controller
8692  * @ioc: Pointer to MPT_ADAPTER structure
8693  * @type: FORCE_BIG_HAMMER or SOFT_RESET
8694  *
8695  * Return: 0 for success, non-zero for failure.
8696  */
8697 int
8698 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc,
8699         enum reset_type type)
8700 {
8701         int r;
8702         unsigned long flags;
8703         u32 ioc_state;
8704         u8 is_fault = 0, is_trigger = 0;
8705
8706         dtmprintk(ioc, ioc_info(ioc, "%s: enter\n", __func__));
8707
8708         if (ioc->pci_error_recovery) {
8709                 ioc_err(ioc, "%s: pci error recovery reset\n", __func__);
8710                 r = 0;
8711                 goto out_unlocked;
8712         }
8713
8714         if (mpt3sas_fwfault_debug)
8715                 mpt3sas_halt_firmware(ioc);
8716
8717         /* wait for an active reset in progress to complete */
8718         mutex_lock(&ioc->reset_in_progress_mutex);
8719
8720         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
8721         ioc->shost_recovery = 1;
8722         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
8723
8724         if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
8725             MPT3_DIAG_BUFFER_IS_REGISTERED) &&
8726             (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
8727             MPT3_DIAG_BUFFER_IS_RELEASED))) {
8728                 is_trigger = 1;
8729                 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
8730                 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT ||
8731                     (ioc_state & MPI2_IOC_STATE_MASK) ==
8732                     MPI2_IOC_STATE_COREDUMP) {
8733                         is_fault = 1;
8734                         ioc->htb_rel.trigger_info_dwords[1] =
8735                             (ioc_state & MPI2_DOORBELL_DATA_MASK);
8736                 }
8737         }
8738         _base_pre_reset_handler(ioc);
8739         mpt3sas_wait_for_commands_to_complete(ioc);
8740         mpt3sas_base_mask_interrupts(ioc);
8741         mpt3sas_base_pause_mq_polling(ioc);
8742         r = mpt3sas_base_make_ioc_ready(ioc, type);
8743         if (r)
8744                 goto out;
8745         _base_clear_outstanding_commands(ioc);
8746
8747         /* If this hard reset is called while port enable is active, then
8748          * there is no reason to call make_ioc_operational
8749          */
8750         if (ioc->is_driver_loading && ioc->port_enable_failed) {
8751                 ioc->remove_host = 1;
8752                 r = -EFAULT;
8753                 goto out;
8754         }
8755         r = _base_get_ioc_facts(ioc);
8756         if (r)
8757                 goto out;
8758
8759         r = _base_check_ioc_facts_changes(ioc);
8760         if (r) {
8761                 ioc_info(ioc,
8762                     "Some of the parameters got changed in this new firmware"
8763                     " image and it requires system reboot\n");
8764                 goto out;
8765         }
8766         if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
8767                 panic("%s: Issue occurred with flashing controller firmware."
8768                       "Please reboot the system and ensure that the correct"
8769                       " firmware version is running\n", ioc->name);
8770
8771         r = _base_make_ioc_operational(ioc);
8772         if (!r)
8773                 _base_reset_done_handler(ioc);
8774
8775  out:
8776         ioc_info(ioc, "%s: %s\n", __func__, r == 0 ? "SUCCESS" : "FAILED");
8777
8778         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
8779         ioc->shost_recovery = 0;
8780         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
8781         ioc->ioc_reset_count++;
8782         mutex_unlock(&ioc->reset_in_progress_mutex);
8783         mpt3sas_base_resume_mq_polling(ioc);
8784
8785  out_unlocked:
8786         if ((r == 0) && is_trigger) {
8787                 if (is_fault)
8788                         mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
8789                 else
8790                         mpt3sas_trigger_master(ioc,
8791                             MASTER_TRIGGER_ADAPTER_RESET);
8792         }
8793         dtmprintk(ioc, ioc_info(ioc, "%s: exit\n", __func__));
8794         return r;
8795 }