Merge branch 'misc.namei' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[linux-2.6-microblaze.git] / drivers / rtc / rtc-cmos.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * RTC class driver for "CMOS RTC":  PCs, ACPI, etc
4  *
5  * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
6  * Copyright (C) 2006 David Brownell (convert to new framework)
7  */
8
9 /*
10  * The original "cmos clock" chip was an MC146818 chip, now obsolete.
11  * That defined the register interface now provided by all PCs, some
12  * non-PC systems, and incorporated into ACPI.  Modern PC chipsets
13  * integrate an MC146818 clone in their southbridge, and boards use
14  * that instead of discrete clones like the DS12887 or M48T86.  There
15  * are also clones that connect using the LPC bus.
16  *
17  * That register API is also used directly by various other drivers
18  * (notably for integrated NVRAM), infrastructure (x86 has code to
19  * bypass the RTC framework, directly reading the RTC during boot
20  * and updating minutes/seconds for systems using NTP synch) and
21  * utilities (like userspace 'hwclock', if no /dev node exists).
22  *
23  * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
24  * interrupts disabled, holding the global rtc_lock, to exclude those
25  * other drivers and utilities on correctly configured systems.
26  */
27
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/spinlock.h>
35 #include <linux/platform_device.h>
36 #include <linux/log2.h>
37 #include <linux/pm.h>
38 #include <linux/of.h>
39 #include <linux/of_platform.h>
40 #ifdef CONFIG_X86
41 #include <asm/i8259.h>
42 #include <asm/processor.h>
43 #include <linux/dmi.h>
44 #endif
45
46 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
47 #include <linux/mc146818rtc.h>
48
49 #ifdef CONFIG_ACPI
50 /*
51  * Use ACPI SCI to replace HPET interrupt for RTC Alarm event
52  *
53  * If cleared, ACPI SCI is only used to wake up the system from suspend
54  *
55  * If set, ACPI SCI is used to handle UIE/AIE and system wakeup
56  */
57
58 static bool use_acpi_alarm;
59 module_param(use_acpi_alarm, bool, 0444);
60
61 static inline int cmos_use_acpi_alarm(void)
62 {
63         return use_acpi_alarm;
64 }
65 #else /* !CONFIG_ACPI */
66
67 static inline int cmos_use_acpi_alarm(void)
68 {
69         return 0;
70 }
71 #endif
72
73 struct cmos_rtc {
74         struct rtc_device       *rtc;
75         struct device           *dev;
76         int                     irq;
77         struct resource         *iomem;
78         time64_t                alarm_expires;
79
80         void                    (*wake_on)(struct device *);
81         void                    (*wake_off)(struct device *);
82
83         u8                      enabled_wake;
84         u8                      suspend_ctrl;
85
86         /* newer hardware extends the original register set */
87         u8                      day_alrm;
88         u8                      mon_alrm;
89         u8                      century;
90
91         struct rtc_wkalrm       saved_wkalrm;
92 };
93
94 /* both platform and pnp busses use negative numbers for invalid irqs */
95 #define is_valid_irq(n)         ((n) > 0)
96
97 static const char driver_name[] = "rtc_cmos";
98
99 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
100  * always mask it against the irq enable bits in RTC_CONTROL.  Bit values
101  * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
102  */
103 #define RTC_IRQMASK     (RTC_PF | RTC_AF | RTC_UF)
104
105 static inline int is_intr(u8 rtc_intr)
106 {
107         if (!(rtc_intr & RTC_IRQF))
108                 return 0;
109         return rtc_intr & RTC_IRQMASK;
110 }
111
112 /*----------------------------------------------------------------*/
113
114 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
115  * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
116  * used in a broken "legacy replacement" mode.  The breakage includes
117  * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
118  * other (better) use.
119  *
120  * When that broken mode is in use, platform glue provides a partial
121  * emulation of hardware RTC IRQ facilities using HPET #1.  We don't
122  * want to use HPET for anything except those IRQs though...
123  */
124 #ifdef CONFIG_HPET_EMULATE_RTC
125 #include <asm/hpet.h>
126 #else
127
128 static inline int is_hpet_enabled(void)
129 {
130         return 0;
131 }
132
133 static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
134 {
135         return 0;
136 }
137
138 static inline int hpet_set_rtc_irq_bit(unsigned long mask)
139 {
140         return 0;
141 }
142
143 static inline int
144 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
145 {
146         return 0;
147 }
148
149 static inline int hpet_set_periodic_freq(unsigned long freq)
150 {
151         return 0;
152 }
153
154 static inline int hpet_rtc_dropped_irq(void)
155 {
156         return 0;
157 }
158
159 static inline int hpet_rtc_timer_init(void)
160 {
161         return 0;
162 }
163
164 extern irq_handler_t hpet_rtc_interrupt;
165
166 static inline int hpet_register_irq_handler(irq_handler_t handler)
167 {
168         return 0;
169 }
170
171 static inline int hpet_unregister_irq_handler(irq_handler_t handler)
172 {
173         return 0;
174 }
175
176 #endif
177
178 /* Don't use HPET for RTC Alarm event if ACPI Fixed event is used */
179 static inline int use_hpet_alarm(void)
180 {
181         return is_hpet_enabled() && !cmos_use_acpi_alarm();
182 }
183
184 /*----------------------------------------------------------------*/
185
186 #ifdef RTC_PORT
187
188 /* Most newer x86 systems have two register banks, the first used
189  * for RTC and NVRAM and the second only for NVRAM.  Caller must
190  * own rtc_lock ... and we won't worry about access during NMI.
191  */
192 #define can_bank2       true
193
194 static inline unsigned char cmos_read_bank2(unsigned char addr)
195 {
196         outb(addr, RTC_PORT(2));
197         return inb(RTC_PORT(3));
198 }
199
200 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
201 {
202         outb(addr, RTC_PORT(2));
203         outb(val, RTC_PORT(3));
204 }
205
206 #else
207
208 #define can_bank2       false
209
210 static inline unsigned char cmos_read_bank2(unsigned char addr)
211 {
212         return 0;
213 }
214
215 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
216 {
217 }
218
219 #endif
220
221 /*----------------------------------------------------------------*/
222
223 static int cmos_read_time(struct device *dev, struct rtc_time *t)
224 {
225         /*
226          * If pm_trace abused the RTC for storage, set the timespec to 0,
227          * which tells the caller that this RTC value is unusable.
228          */
229         if (!pm_trace_rtc_valid())
230                 return -EIO;
231
232         mc146818_get_time(t);
233         return 0;
234 }
235
236 static int cmos_set_time(struct device *dev, struct rtc_time *t)
237 {
238         /* NOTE: this ignores the issue whereby updating the seconds
239          * takes effect exactly 500ms after we write the register.
240          * (Also queueing and other delays before we get this far.)
241          */
242         return mc146818_set_time(t);
243 }
244
245 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
246 {
247         struct cmos_rtc *cmos = dev_get_drvdata(dev);
248         unsigned char   rtc_control;
249
250         /* This not only a rtc_op, but also called directly */
251         if (!is_valid_irq(cmos->irq))
252                 return -EIO;
253
254         /* Basic alarms only support hour, minute, and seconds fields.
255          * Some also support day and month, for alarms up to a year in
256          * the future.
257          */
258
259         spin_lock_irq(&rtc_lock);
260         t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
261         t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
262         t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
263
264         if (cmos->day_alrm) {
265                 /* ignore upper bits on readback per ACPI spec */
266                 t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
267                 if (!t->time.tm_mday)
268                         t->time.tm_mday = -1;
269
270                 if (cmos->mon_alrm) {
271                         t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
272                         if (!t->time.tm_mon)
273                                 t->time.tm_mon = -1;
274                 }
275         }
276
277         rtc_control = CMOS_READ(RTC_CONTROL);
278         spin_unlock_irq(&rtc_lock);
279
280         if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
281                 if (((unsigned)t->time.tm_sec) < 0x60)
282                         t->time.tm_sec = bcd2bin(t->time.tm_sec);
283                 else
284                         t->time.tm_sec = -1;
285                 if (((unsigned)t->time.tm_min) < 0x60)
286                         t->time.tm_min = bcd2bin(t->time.tm_min);
287                 else
288                         t->time.tm_min = -1;
289                 if (((unsigned)t->time.tm_hour) < 0x24)
290                         t->time.tm_hour = bcd2bin(t->time.tm_hour);
291                 else
292                         t->time.tm_hour = -1;
293
294                 if (cmos->day_alrm) {
295                         if (((unsigned)t->time.tm_mday) <= 0x31)
296                                 t->time.tm_mday = bcd2bin(t->time.tm_mday);
297                         else
298                                 t->time.tm_mday = -1;
299
300                         if (cmos->mon_alrm) {
301                                 if (((unsigned)t->time.tm_mon) <= 0x12)
302                                         t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
303                                 else
304                                         t->time.tm_mon = -1;
305                         }
306                 }
307         }
308
309         t->enabled = !!(rtc_control & RTC_AIE);
310         t->pending = 0;
311
312         return 0;
313 }
314
315 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
316 {
317         unsigned char   rtc_intr;
318
319         /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
320          * allegedly some older rtcs need that to handle irqs properly
321          */
322         rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
323
324         if (use_hpet_alarm())
325                 return;
326
327         rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
328         if (is_intr(rtc_intr))
329                 rtc_update_irq(cmos->rtc, 1, rtc_intr);
330 }
331
332 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
333 {
334         unsigned char   rtc_control;
335
336         /* flush any pending IRQ status, notably for update irqs,
337          * before we enable new IRQs
338          */
339         rtc_control = CMOS_READ(RTC_CONTROL);
340         cmos_checkintr(cmos, rtc_control);
341
342         rtc_control |= mask;
343         CMOS_WRITE(rtc_control, RTC_CONTROL);
344         if (use_hpet_alarm())
345                 hpet_set_rtc_irq_bit(mask);
346
347         if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
348                 if (cmos->wake_on)
349                         cmos->wake_on(cmos->dev);
350         }
351
352         cmos_checkintr(cmos, rtc_control);
353 }
354
355 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
356 {
357         unsigned char   rtc_control;
358
359         rtc_control = CMOS_READ(RTC_CONTROL);
360         rtc_control &= ~mask;
361         CMOS_WRITE(rtc_control, RTC_CONTROL);
362         if (use_hpet_alarm())
363                 hpet_mask_rtc_irq_bit(mask);
364
365         if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
366                 if (cmos->wake_off)
367                         cmos->wake_off(cmos->dev);
368         }
369
370         cmos_checkintr(cmos, rtc_control);
371 }
372
373 static int cmos_validate_alarm(struct device *dev, struct rtc_wkalrm *t)
374 {
375         struct cmos_rtc *cmos = dev_get_drvdata(dev);
376         struct rtc_time now;
377
378         cmos_read_time(dev, &now);
379
380         if (!cmos->day_alrm) {
381                 time64_t t_max_date;
382                 time64_t t_alrm;
383
384                 t_max_date = rtc_tm_to_time64(&now);
385                 t_max_date += 24 * 60 * 60 - 1;
386                 t_alrm = rtc_tm_to_time64(&t->time);
387                 if (t_alrm > t_max_date) {
388                         dev_err(dev,
389                                 "Alarms can be up to one day in the future\n");
390                         return -EINVAL;
391                 }
392         } else if (!cmos->mon_alrm) {
393                 struct rtc_time max_date = now;
394                 time64_t t_max_date;
395                 time64_t t_alrm;
396                 int max_mday;
397
398                 if (max_date.tm_mon == 11) {
399                         max_date.tm_mon = 0;
400                         max_date.tm_year += 1;
401                 } else {
402                         max_date.tm_mon += 1;
403                 }
404                 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
405                 if (max_date.tm_mday > max_mday)
406                         max_date.tm_mday = max_mday;
407
408                 t_max_date = rtc_tm_to_time64(&max_date);
409                 t_max_date -= 1;
410                 t_alrm = rtc_tm_to_time64(&t->time);
411                 if (t_alrm > t_max_date) {
412                         dev_err(dev,
413                                 "Alarms can be up to one month in the future\n");
414                         return -EINVAL;
415                 }
416         } else {
417                 struct rtc_time max_date = now;
418                 time64_t t_max_date;
419                 time64_t t_alrm;
420                 int max_mday;
421
422                 max_date.tm_year += 1;
423                 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
424                 if (max_date.tm_mday > max_mday)
425                         max_date.tm_mday = max_mday;
426
427                 t_max_date = rtc_tm_to_time64(&max_date);
428                 t_max_date -= 1;
429                 t_alrm = rtc_tm_to_time64(&t->time);
430                 if (t_alrm > t_max_date) {
431                         dev_err(dev,
432                                 "Alarms can be up to one year in the future\n");
433                         return -EINVAL;
434                 }
435         }
436
437         return 0;
438 }
439
440 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
441 {
442         struct cmos_rtc *cmos = dev_get_drvdata(dev);
443         unsigned char mon, mday, hrs, min, sec, rtc_control;
444         int ret;
445
446         /* This not only a rtc_op, but also called directly */
447         if (!is_valid_irq(cmos->irq))
448                 return -EIO;
449
450         ret = cmos_validate_alarm(dev, t);
451         if (ret < 0)
452                 return ret;
453
454         mon = t->time.tm_mon + 1;
455         mday = t->time.tm_mday;
456         hrs = t->time.tm_hour;
457         min = t->time.tm_min;
458         sec = t->time.tm_sec;
459
460         rtc_control = CMOS_READ(RTC_CONTROL);
461         if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
462                 /* Writing 0xff means "don't care" or "match all".  */
463                 mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
464                 mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
465                 hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
466                 min = (min < 60) ? bin2bcd(min) : 0xff;
467                 sec = (sec < 60) ? bin2bcd(sec) : 0xff;
468         }
469
470         spin_lock_irq(&rtc_lock);
471
472         /* next rtc irq must not be from previous alarm setting */
473         cmos_irq_disable(cmos, RTC_AIE);
474
475         /* update alarm */
476         CMOS_WRITE(hrs, RTC_HOURS_ALARM);
477         CMOS_WRITE(min, RTC_MINUTES_ALARM);
478         CMOS_WRITE(sec, RTC_SECONDS_ALARM);
479
480         /* the system may support an "enhanced" alarm */
481         if (cmos->day_alrm) {
482                 CMOS_WRITE(mday, cmos->day_alrm);
483                 if (cmos->mon_alrm)
484                         CMOS_WRITE(mon, cmos->mon_alrm);
485         }
486
487         if (use_hpet_alarm()) {
488                 /*
489                  * FIXME the HPET alarm glue currently ignores day_alrm
490                  * and mon_alrm ...
491                  */
492                 hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min,
493                                     t->time.tm_sec);
494         }
495
496         if (t->enabled)
497                 cmos_irq_enable(cmos, RTC_AIE);
498
499         spin_unlock_irq(&rtc_lock);
500
501         cmos->alarm_expires = rtc_tm_to_time64(&t->time);
502
503         return 0;
504 }
505
506 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
507 {
508         struct cmos_rtc *cmos = dev_get_drvdata(dev);
509         unsigned long   flags;
510
511         spin_lock_irqsave(&rtc_lock, flags);
512
513         if (enabled)
514                 cmos_irq_enable(cmos, RTC_AIE);
515         else
516                 cmos_irq_disable(cmos, RTC_AIE);
517
518         spin_unlock_irqrestore(&rtc_lock, flags);
519         return 0;
520 }
521
522 #if IS_ENABLED(CONFIG_RTC_INTF_PROC)
523
524 static int cmos_procfs(struct device *dev, struct seq_file *seq)
525 {
526         struct cmos_rtc *cmos = dev_get_drvdata(dev);
527         unsigned char   rtc_control, valid;
528
529         spin_lock_irq(&rtc_lock);
530         rtc_control = CMOS_READ(RTC_CONTROL);
531         valid = CMOS_READ(RTC_VALID);
532         spin_unlock_irq(&rtc_lock);
533
534         /* NOTE:  at least ICH6 reports battery status using a different
535          * (non-RTC) bit; and SQWE is ignored on many current systems.
536          */
537         seq_printf(seq,
538                    "periodic_IRQ\t: %s\n"
539                    "update_IRQ\t: %s\n"
540                    "HPET_emulated\t: %s\n"
541                    // "square_wave\t: %s\n"
542                    "BCD\t\t: %s\n"
543                    "DST_enable\t: %s\n"
544                    "periodic_freq\t: %d\n"
545                    "batt_status\t: %s\n",
546                    (rtc_control & RTC_PIE) ? "yes" : "no",
547                    (rtc_control & RTC_UIE) ? "yes" : "no",
548                    use_hpet_alarm() ? "yes" : "no",
549                    // (rtc_control & RTC_SQWE) ? "yes" : "no",
550                    (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
551                    (rtc_control & RTC_DST_EN) ? "yes" : "no",
552                    cmos->rtc->irq_freq,
553                    (valid & RTC_VRT) ? "okay" : "dead");
554
555         return 0;
556 }
557
558 #else
559 #define cmos_procfs     NULL
560 #endif
561
562 static const struct rtc_class_ops cmos_rtc_ops = {
563         .read_time              = cmos_read_time,
564         .set_time               = cmos_set_time,
565         .read_alarm             = cmos_read_alarm,
566         .set_alarm              = cmos_set_alarm,
567         .proc                   = cmos_procfs,
568         .alarm_irq_enable       = cmos_alarm_irq_enable,
569 };
570
571 /*----------------------------------------------------------------*/
572
573 /*
574  * All these chips have at least 64 bytes of address space, shared by
575  * RTC registers and NVRAM.  Most of those bytes of NVRAM are used
576  * by boot firmware.  Modern chips have 128 or 256 bytes.
577  */
578
579 #define NVRAM_OFFSET    (RTC_REG_D + 1)
580
581 static int cmos_nvram_read(void *priv, unsigned int off, void *val,
582                            size_t count)
583 {
584         unsigned char *buf = val;
585         int     retval;
586
587         off += NVRAM_OFFSET;
588         spin_lock_irq(&rtc_lock);
589         for (retval = 0; count; count--, off++, retval++) {
590                 if (off < 128)
591                         *buf++ = CMOS_READ(off);
592                 else if (can_bank2)
593                         *buf++ = cmos_read_bank2(off);
594                 else
595                         break;
596         }
597         spin_unlock_irq(&rtc_lock);
598
599         return retval;
600 }
601
602 static int cmos_nvram_write(void *priv, unsigned int off, void *val,
603                             size_t count)
604 {
605         struct cmos_rtc *cmos = priv;
606         unsigned char   *buf = val;
607         int             retval;
608
609         /* NOTE:  on at least PCs and Ataris, the boot firmware uses a
610          * checksum on part of the NVRAM data.  That's currently ignored
611          * here.  If userspace is smart enough to know what fields of
612          * NVRAM to update, updating checksums is also part of its job.
613          */
614         off += NVRAM_OFFSET;
615         spin_lock_irq(&rtc_lock);
616         for (retval = 0; count; count--, off++, retval++) {
617                 /* don't trash RTC registers */
618                 if (off == cmos->day_alrm
619                                 || off == cmos->mon_alrm
620                                 || off == cmos->century)
621                         buf++;
622                 else if (off < 128)
623                         CMOS_WRITE(*buf++, off);
624                 else if (can_bank2)
625                         cmos_write_bank2(*buf++, off);
626                 else
627                         break;
628         }
629         spin_unlock_irq(&rtc_lock);
630
631         return retval;
632 }
633
634 /*----------------------------------------------------------------*/
635
636 static struct cmos_rtc  cmos_rtc;
637
638 static irqreturn_t cmos_interrupt(int irq, void *p)
639 {
640         u8              irqstat;
641         u8              rtc_control;
642
643         spin_lock(&rtc_lock);
644
645         /* When the HPET interrupt handler calls us, the interrupt
646          * status is passed as arg1 instead of the irq number.  But
647          * always clear irq status, even when HPET is in the way.
648          *
649          * Note that HPET and RTC are almost certainly out of phase,
650          * giving different IRQ status ...
651          */
652         irqstat = CMOS_READ(RTC_INTR_FLAGS);
653         rtc_control = CMOS_READ(RTC_CONTROL);
654         if (use_hpet_alarm())
655                 irqstat = (unsigned long)irq & 0xF0;
656
657         /* If we were suspended, RTC_CONTROL may not be accurate since the
658          * bios may have cleared it.
659          */
660         if (!cmos_rtc.suspend_ctrl)
661                 irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
662         else
663                 irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
664
665         /* All Linux RTC alarms should be treated as if they were oneshot.
666          * Similar code may be needed in system wakeup paths, in case the
667          * alarm woke the system.
668          */
669         if (irqstat & RTC_AIE) {
670                 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
671                 rtc_control &= ~RTC_AIE;
672                 CMOS_WRITE(rtc_control, RTC_CONTROL);
673                 if (use_hpet_alarm())
674                         hpet_mask_rtc_irq_bit(RTC_AIE);
675                 CMOS_READ(RTC_INTR_FLAGS);
676         }
677         spin_unlock(&rtc_lock);
678
679         if (is_intr(irqstat)) {
680                 rtc_update_irq(p, 1, irqstat);
681                 return IRQ_HANDLED;
682         } else
683                 return IRQ_NONE;
684 }
685
686 #ifdef  CONFIG_PNP
687 #define INITSECTION
688
689 #else
690 #define INITSECTION     __init
691 #endif
692
693 static int INITSECTION
694 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
695 {
696         struct cmos_rtc_board_info      *info = dev_get_platdata(dev);
697         int                             retval = 0;
698         unsigned char                   rtc_control;
699         unsigned                        address_space;
700         u32                             flags = 0;
701         struct nvmem_config nvmem_cfg = {
702                 .name = "cmos_nvram",
703                 .word_size = 1,
704                 .stride = 1,
705                 .reg_read = cmos_nvram_read,
706                 .reg_write = cmos_nvram_write,
707                 .priv = &cmos_rtc,
708         };
709
710         /* there can be only one ... */
711         if (cmos_rtc.dev)
712                 return -EBUSY;
713
714         if (!ports)
715                 return -ENODEV;
716
717         /* Claim I/O ports ASAP, minimizing conflict with legacy driver.
718          *
719          * REVISIT non-x86 systems may instead use memory space resources
720          * (needing ioremap etc), not i/o space resources like this ...
721          */
722         if (RTC_IOMAPPED)
723                 ports = request_region(ports->start, resource_size(ports),
724                                        driver_name);
725         else
726                 ports = request_mem_region(ports->start, resource_size(ports),
727                                            driver_name);
728         if (!ports) {
729                 dev_dbg(dev, "i/o registers already in use\n");
730                 return -EBUSY;
731         }
732
733         cmos_rtc.irq = rtc_irq;
734         cmos_rtc.iomem = ports;
735
736         /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
737          * driver did, but don't reject unknown configs.   Old hardware
738          * won't address 128 bytes.  Newer chips have multiple banks,
739          * though they may not be listed in one I/O resource.
740          */
741 #if     defined(CONFIG_ATARI)
742         address_space = 64;
743 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
744                         || defined(__sparc__) || defined(__mips__) \
745                         || defined(__powerpc__)
746         address_space = 128;
747 #else
748 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
749         address_space = 128;
750 #endif
751         if (can_bank2 && ports->end > (ports->start + 1))
752                 address_space = 256;
753
754         /* For ACPI systems extension info comes from the FADT.  On others,
755          * board specific setup provides it as appropriate.  Systems where
756          * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
757          * some almost-clones) can provide hooks to make that behave.
758          *
759          * Note that ACPI doesn't preclude putting these registers into
760          * "extended" areas of the chip, including some that we won't yet
761          * expect CMOS_READ and friends to handle.
762          */
763         if (info) {
764                 if (info->flags)
765                         flags = info->flags;
766                 if (info->address_space)
767                         address_space = info->address_space;
768
769                 if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
770                         cmos_rtc.day_alrm = info->rtc_day_alarm;
771                 if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
772                         cmos_rtc.mon_alrm = info->rtc_mon_alarm;
773                 if (info->rtc_century && info->rtc_century < 128)
774                         cmos_rtc.century = info->rtc_century;
775
776                 if (info->wake_on && info->wake_off) {
777                         cmos_rtc.wake_on = info->wake_on;
778                         cmos_rtc.wake_off = info->wake_off;
779                 }
780         }
781
782         cmos_rtc.dev = dev;
783         dev_set_drvdata(dev, &cmos_rtc);
784
785         cmos_rtc.rtc = devm_rtc_allocate_device(dev);
786         if (IS_ERR(cmos_rtc.rtc)) {
787                 retval = PTR_ERR(cmos_rtc.rtc);
788                 goto cleanup0;
789         }
790
791         rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
792
793         spin_lock_irq(&rtc_lock);
794
795         /* Ensure that the RTC is accessible. Bit 6 must be 0! */
796         if ((CMOS_READ(RTC_VALID) & 0x40) != 0) {
797                 spin_unlock_irq(&rtc_lock);
798                 dev_warn(dev, "not accessible\n");
799                 retval = -ENXIO;
800                 goto cleanup1;
801         }
802
803         if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
804                 /* force periodic irq to CMOS reset default of 1024Hz;
805                  *
806                  * REVISIT it's been reported that at least one x86_64 ALI
807                  * mobo doesn't use 32KHz here ... for portability we might
808                  * need to do something about other clock frequencies.
809                  */
810                 cmos_rtc.rtc->irq_freq = 1024;
811                 if (use_hpet_alarm())
812                         hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
813                 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
814         }
815
816         /* disable irqs */
817         if (is_valid_irq(rtc_irq))
818                 cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
819
820         rtc_control = CMOS_READ(RTC_CONTROL);
821
822         spin_unlock_irq(&rtc_lock);
823
824         if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
825                 dev_warn(dev, "only 24-hr supported\n");
826                 retval = -ENXIO;
827                 goto cleanup1;
828         }
829
830         if (use_hpet_alarm())
831                 hpet_rtc_timer_init();
832
833         if (is_valid_irq(rtc_irq)) {
834                 irq_handler_t rtc_cmos_int_handler;
835
836                 if (use_hpet_alarm()) {
837                         rtc_cmos_int_handler = hpet_rtc_interrupt;
838                         retval = hpet_register_irq_handler(cmos_interrupt);
839                         if (retval) {
840                                 hpet_mask_rtc_irq_bit(RTC_IRQMASK);
841                                 dev_warn(dev, "hpet_register_irq_handler "
842                                                 " failed in rtc_init().");
843                                 goto cleanup1;
844                         }
845                 } else
846                         rtc_cmos_int_handler = cmos_interrupt;
847
848                 retval = request_irq(rtc_irq, rtc_cmos_int_handler,
849                                 0, dev_name(&cmos_rtc.rtc->dev),
850                                 cmos_rtc.rtc);
851                 if (retval < 0) {
852                         dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
853                         goto cleanup1;
854                 }
855         } else {
856                 clear_bit(RTC_FEATURE_ALARM, cmos_rtc.rtc->features);
857         }
858
859         cmos_rtc.rtc->ops = &cmos_rtc_ops;
860
861         retval = devm_rtc_register_device(cmos_rtc.rtc);
862         if (retval)
863                 goto cleanup2;
864
865         /* Set the sync offset for the periodic 11min update correct */
866         cmos_rtc.rtc->set_offset_nsec = NSEC_PER_SEC / 2;
867
868         /* export at least the first block of NVRAM */
869         nvmem_cfg.size = address_space - NVRAM_OFFSET;
870         devm_rtc_nvmem_register(cmos_rtc.rtc, &nvmem_cfg);
871
872         dev_info(dev, "%s%s, %d bytes nvram%s\n",
873                  !is_valid_irq(rtc_irq) ? "no alarms" :
874                  cmos_rtc.mon_alrm ? "alarms up to one year" :
875                  cmos_rtc.day_alrm ? "alarms up to one month" :
876                  "alarms up to one day",
877                  cmos_rtc.century ? ", y3k" : "",
878                  nvmem_cfg.size,
879                  use_hpet_alarm() ? ", hpet irqs" : "");
880
881         return 0;
882
883 cleanup2:
884         if (is_valid_irq(rtc_irq))
885                 free_irq(rtc_irq, cmos_rtc.rtc);
886 cleanup1:
887         cmos_rtc.dev = NULL;
888 cleanup0:
889         if (RTC_IOMAPPED)
890                 release_region(ports->start, resource_size(ports));
891         else
892                 release_mem_region(ports->start, resource_size(ports));
893         return retval;
894 }
895
896 static void cmos_do_shutdown(int rtc_irq)
897 {
898         spin_lock_irq(&rtc_lock);
899         if (is_valid_irq(rtc_irq))
900                 cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
901         spin_unlock_irq(&rtc_lock);
902 }
903
904 static void cmos_do_remove(struct device *dev)
905 {
906         struct cmos_rtc *cmos = dev_get_drvdata(dev);
907         struct resource *ports;
908
909         cmos_do_shutdown(cmos->irq);
910
911         if (is_valid_irq(cmos->irq)) {
912                 free_irq(cmos->irq, cmos->rtc);
913                 if (use_hpet_alarm())
914                         hpet_unregister_irq_handler(cmos_interrupt);
915         }
916
917         cmos->rtc = NULL;
918
919         ports = cmos->iomem;
920         if (RTC_IOMAPPED)
921                 release_region(ports->start, resource_size(ports));
922         else
923                 release_mem_region(ports->start, resource_size(ports));
924         cmos->iomem = NULL;
925
926         cmos->dev = NULL;
927 }
928
929 static int cmos_aie_poweroff(struct device *dev)
930 {
931         struct cmos_rtc *cmos = dev_get_drvdata(dev);
932         struct rtc_time now;
933         time64_t t_now;
934         int retval = 0;
935         unsigned char rtc_control;
936
937         if (!cmos->alarm_expires)
938                 return -EINVAL;
939
940         spin_lock_irq(&rtc_lock);
941         rtc_control = CMOS_READ(RTC_CONTROL);
942         spin_unlock_irq(&rtc_lock);
943
944         /* We only care about the situation where AIE is disabled. */
945         if (rtc_control & RTC_AIE)
946                 return -EBUSY;
947
948         cmos_read_time(dev, &now);
949         t_now = rtc_tm_to_time64(&now);
950
951         /*
952          * When enabling "RTC wake-up" in BIOS setup, the machine reboots
953          * automatically right after shutdown on some buggy boxes.
954          * This automatic rebooting issue won't happen when the alarm
955          * time is larger than now+1 seconds.
956          *
957          * If the alarm time is equal to now+1 seconds, the issue can be
958          * prevented by cancelling the alarm.
959          */
960         if (cmos->alarm_expires == t_now + 1) {
961                 struct rtc_wkalrm alarm;
962
963                 /* Cancel the AIE timer by configuring the past time. */
964                 rtc_time64_to_tm(t_now - 1, &alarm.time);
965                 alarm.enabled = 0;
966                 retval = cmos_set_alarm(dev, &alarm);
967         } else if (cmos->alarm_expires > t_now + 1) {
968                 retval = -EBUSY;
969         }
970
971         return retval;
972 }
973
974 static int cmos_suspend(struct device *dev)
975 {
976         struct cmos_rtc *cmos = dev_get_drvdata(dev);
977         unsigned char   tmp;
978
979         /* only the alarm might be a wakeup event source */
980         spin_lock_irq(&rtc_lock);
981         cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
982         if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
983                 unsigned char   mask;
984
985                 if (device_may_wakeup(dev))
986                         mask = RTC_IRQMASK & ~RTC_AIE;
987                 else
988                         mask = RTC_IRQMASK;
989                 tmp &= ~mask;
990                 CMOS_WRITE(tmp, RTC_CONTROL);
991                 if (use_hpet_alarm())
992                         hpet_mask_rtc_irq_bit(mask);
993                 cmos_checkintr(cmos, tmp);
994         }
995         spin_unlock_irq(&rtc_lock);
996
997         if ((tmp & RTC_AIE) && !cmos_use_acpi_alarm()) {
998                 cmos->enabled_wake = 1;
999                 if (cmos->wake_on)
1000                         cmos->wake_on(dev);
1001                 else
1002                         enable_irq_wake(cmos->irq);
1003         }
1004
1005         memset(&cmos->saved_wkalrm, 0, sizeof(struct rtc_wkalrm));
1006         cmos_read_alarm(dev, &cmos->saved_wkalrm);
1007
1008         dev_dbg(dev, "suspend%s, ctrl %02x\n",
1009                         (tmp & RTC_AIE) ? ", alarm may wake" : "",
1010                         tmp);
1011
1012         return 0;
1013 }
1014
1015 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
1016  * after a detour through G3 "mechanical off", although the ACPI spec
1017  * says wakeup should only work from G1/S4 "hibernate".  To most users,
1018  * distinctions between S4 and S5 are pointless.  So when the hardware
1019  * allows, don't draw that distinction.
1020  */
1021 static inline int cmos_poweroff(struct device *dev)
1022 {
1023         if (!IS_ENABLED(CONFIG_PM))
1024                 return -ENOSYS;
1025
1026         return cmos_suspend(dev);
1027 }
1028
1029 static void cmos_check_wkalrm(struct device *dev)
1030 {
1031         struct cmos_rtc *cmos = dev_get_drvdata(dev);
1032         struct rtc_wkalrm current_alarm;
1033         time64_t t_now;
1034         time64_t t_current_expires;
1035         time64_t t_saved_expires;
1036         struct rtc_time now;
1037
1038         /* Check if we have RTC Alarm armed */
1039         if (!(cmos->suspend_ctrl & RTC_AIE))
1040                 return;
1041
1042         cmos_read_time(dev, &now);
1043         t_now = rtc_tm_to_time64(&now);
1044
1045         /*
1046          * ACPI RTC wake event is cleared after resume from STR,
1047          * ACK the rtc irq here
1048          */
1049         if (t_now >= cmos->alarm_expires && cmos_use_acpi_alarm()) {
1050                 cmos_interrupt(0, (void *)cmos->rtc);
1051                 return;
1052         }
1053
1054         memset(&current_alarm, 0, sizeof(struct rtc_wkalrm));
1055         cmos_read_alarm(dev, &current_alarm);
1056         t_current_expires = rtc_tm_to_time64(&current_alarm.time);
1057         t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time);
1058         if (t_current_expires != t_saved_expires ||
1059             cmos->saved_wkalrm.enabled != current_alarm.enabled) {
1060                 cmos_set_alarm(dev, &cmos->saved_wkalrm);
1061         }
1062 }
1063
1064 static void cmos_check_acpi_rtc_status(struct device *dev,
1065                                        unsigned char *rtc_control);
1066
1067 static int __maybe_unused cmos_resume(struct device *dev)
1068 {
1069         struct cmos_rtc *cmos = dev_get_drvdata(dev);
1070         unsigned char tmp;
1071
1072         if (cmos->enabled_wake && !cmos_use_acpi_alarm()) {
1073                 if (cmos->wake_off)
1074                         cmos->wake_off(dev);
1075                 else
1076                         disable_irq_wake(cmos->irq);
1077                 cmos->enabled_wake = 0;
1078         }
1079
1080         /* The BIOS might have changed the alarm, restore it */
1081         cmos_check_wkalrm(dev);
1082
1083         spin_lock_irq(&rtc_lock);
1084         tmp = cmos->suspend_ctrl;
1085         cmos->suspend_ctrl = 0;
1086         /* re-enable any irqs previously active */
1087         if (tmp & RTC_IRQMASK) {
1088                 unsigned char   mask;
1089
1090                 if (device_may_wakeup(dev) && use_hpet_alarm())
1091                         hpet_rtc_timer_init();
1092
1093                 do {
1094                         CMOS_WRITE(tmp, RTC_CONTROL);
1095                         if (use_hpet_alarm())
1096                                 hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
1097
1098                         mask = CMOS_READ(RTC_INTR_FLAGS);
1099                         mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
1100                         if (!use_hpet_alarm() || !is_intr(mask))
1101                                 break;
1102
1103                         /* force one-shot behavior if HPET blocked
1104                          * the wake alarm's irq
1105                          */
1106                         rtc_update_irq(cmos->rtc, 1, mask);
1107                         tmp &= ~RTC_AIE;
1108                         hpet_mask_rtc_irq_bit(RTC_AIE);
1109                 } while (mask & RTC_AIE);
1110
1111                 if (tmp & RTC_AIE)
1112                         cmos_check_acpi_rtc_status(dev, &tmp);
1113         }
1114         spin_unlock_irq(&rtc_lock);
1115
1116         dev_dbg(dev, "resume, ctrl %02x\n", tmp);
1117
1118         return 0;
1119 }
1120
1121 static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
1122
1123 /*----------------------------------------------------------------*/
1124
1125 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
1126  * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
1127  * probably list them in similar PNPBIOS tables; so PNP is more common.
1128  *
1129  * We don't use legacy "poke at the hardware" probing.  Ancient PCs that
1130  * predate even PNPBIOS should set up platform_bus devices.
1131  */
1132
1133 #ifdef  CONFIG_ACPI
1134
1135 #include <linux/acpi.h>
1136
1137 static u32 rtc_handler(void *context)
1138 {
1139         struct device *dev = context;
1140         struct cmos_rtc *cmos = dev_get_drvdata(dev);
1141         unsigned char rtc_control = 0;
1142         unsigned char rtc_intr;
1143         unsigned long flags;
1144
1145
1146         /*
1147          * Always update rtc irq when ACPI is used as RTC Alarm.
1148          * Or else, ACPI SCI is enabled during suspend/resume only,
1149          * update rtc irq in that case.
1150          */
1151         if (cmos_use_acpi_alarm())
1152                 cmos_interrupt(0, (void *)cmos->rtc);
1153         else {
1154                 /* Fix me: can we use cmos_interrupt() here as well? */
1155                 spin_lock_irqsave(&rtc_lock, flags);
1156                 if (cmos_rtc.suspend_ctrl)
1157                         rtc_control = CMOS_READ(RTC_CONTROL);
1158                 if (rtc_control & RTC_AIE) {
1159                         cmos_rtc.suspend_ctrl &= ~RTC_AIE;
1160                         CMOS_WRITE(rtc_control, RTC_CONTROL);
1161                         rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
1162                         rtc_update_irq(cmos->rtc, 1, rtc_intr);
1163                 }
1164                 spin_unlock_irqrestore(&rtc_lock, flags);
1165         }
1166
1167         pm_wakeup_hard_event(dev);
1168         acpi_clear_event(ACPI_EVENT_RTC);
1169         acpi_disable_event(ACPI_EVENT_RTC, 0);
1170         return ACPI_INTERRUPT_HANDLED;
1171 }
1172
1173 static inline void rtc_wake_setup(struct device *dev)
1174 {
1175         acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
1176         /*
1177          * After the RTC handler is installed, the Fixed_RTC event should
1178          * be disabled. Only when the RTC alarm is set will it be enabled.
1179          */
1180         acpi_clear_event(ACPI_EVENT_RTC);
1181         acpi_disable_event(ACPI_EVENT_RTC, 0);
1182 }
1183
1184 static void rtc_wake_on(struct device *dev)
1185 {
1186         acpi_clear_event(ACPI_EVENT_RTC);
1187         acpi_enable_event(ACPI_EVENT_RTC, 0);
1188 }
1189
1190 static void rtc_wake_off(struct device *dev)
1191 {
1192         acpi_disable_event(ACPI_EVENT_RTC, 0);
1193 }
1194
1195 #ifdef CONFIG_X86
1196 /* Enable use_acpi_alarm mode for Intel platforms no earlier than 2015 */
1197 static void use_acpi_alarm_quirks(void)
1198 {
1199         if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
1200                 return;
1201
1202         if (!(acpi_gbl_FADT.flags & ACPI_FADT_LOW_POWER_S0))
1203                 return;
1204
1205         if (!is_hpet_enabled())
1206                 return;
1207
1208         if (dmi_get_bios_year() < 2015)
1209                 return;
1210
1211         use_acpi_alarm = true;
1212 }
1213 #else
1214 static inline void use_acpi_alarm_quirks(void) { }
1215 #endif
1216
1217 /* Every ACPI platform has a mc146818 compatible "cmos rtc".  Here we find
1218  * its device node and pass extra config data.  This helps its driver use
1219  * capabilities that the now-obsolete mc146818 didn't have, and informs it
1220  * that this board's RTC is wakeup-capable (per ACPI spec).
1221  */
1222 static struct cmos_rtc_board_info acpi_rtc_info;
1223
1224 static void cmos_wake_setup(struct device *dev)
1225 {
1226         if (acpi_disabled)
1227                 return;
1228
1229         use_acpi_alarm_quirks();
1230
1231         rtc_wake_setup(dev);
1232         acpi_rtc_info.wake_on = rtc_wake_on;
1233         acpi_rtc_info.wake_off = rtc_wake_off;
1234
1235         /* workaround bug in some ACPI tables */
1236         if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1237                 dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1238                         acpi_gbl_FADT.month_alarm);
1239                 acpi_gbl_FADT.month_alarm = 0;
1240         }
1241
1242         acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1243         acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1244         acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1245
1246         /* NOTE:  S4_RTC_WAKE is NOT currently useful to Linux */
1247         if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1248                 dev_info(dev, "RTC can wake from S4\n");
1249
1250         dev->platform_data = &acpi_rtc_info;
1251
1252         /* RTC always wakes from S1/S2/S3, and often S4/STD */
1253         device_init_wakeup(dev, 1);
1254 }
1255
1256 static void cmos_check_acpi_rtc_status(struct device *dev,
1257                                        unsigned char *rtc_control)
1258 {
1259         struct cmos_rtc *cmos = dev_get_drvdata(dev);
1260         acpi_event_status rtc_status;
1261         acpi_status status;
1262
1263         if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC)
1264                 return;
1265
1266         status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status);
1267         if (ACPI_FAILURE(status)) {
1268                 dev_err(dev, "Could not get RTC status\n");
1269         } else if (rtc_status & ACPI_EVENT_FLAG_SET) {
1270                 unsigned char mask;
1271                 *rtc_control &= ~RTC_AIE;
1272                 CMOS_WRITE(*rtc_control, RTC_CONTROL);
1273                 mask = CMOS_READ(RTC_INTR_FLAGS);
1274                 rtc_update_irq(cmos->rtc, 1, mask);
1275         }
1276 }
1277
1278 #else
1279
1280 static void cmos_wake_setup(struct device *dev)
1281 {
1282 }
1283
1284 static void cmos_check_acpi_rtc_status(struct device *dev,
1285                                        unsigned char *rtc_control)
1286 {
1287 }
1288
1289 #endif
1290
1291 #ifdef  CONFIG_PNP
1292
1293 #include <linux/pnp.h>
1294
1295 static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1296 {
1297         cmos_wake_setup(&pnp->dev);
1298
1299         if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) {
1300                 unsigned int irq = 0;
1301 #ifdef CONFIG_X86
1302                 /* Some machines contain a PNP entry for the RTC, but
1303                  * don't define the IRQ. It should always be safe to
1304                  * hardcode it on systems with a legacy PIC.
1305                  */
1306                 if (nr_legacy_irqs())
1307                         irq = RTC_IRQ;
1308 #endif
1309                 return cmos_do_probe(&pnp->dev,
1310                                 pnp_get_resource(pnp, IORESOURCE_IO, 0), irq);
1311         } else {
1312                 return cmos_do_probe(&pnp->dev,
1313                                 pnp_get_resource(pnp, IORESOURCE_IO, 0),
1314                                 pnp_irq(pnp, 0));
1315         }
1316 }
1317
1318 static void cmos_pnp_remove(struct pnp_dev *pnp)
1319 {
1320         cmos_do_remove(&pnp->dev);
1321 }
1322
1323 static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1324 {
1325         struct device *dev = &pnp->dev;
1326         struct cmos_rtc *cmos = dev_get_drvdata(dev);
1327
1328         if (system_state == SYSTEM_POWER_OFF) {
1329                 int retval = cmos_poweroff(dev);
1330
1331                 if (cmos_aie_poweroff(dev) < 0 && !retval)
1332                         return;
1333         }
1334
1335         cmos_do_shutdown(cmos->irq);
1336 }
1337
1338 static const struct pnp_device_id rtc_ids[] = {
1339         { .id = "PNP0b00", },
1340         { .id = "PNP0b01", },
1341         { .id = "PNP0b02", },
1342         { },
1343 };
1344 MODULE_DEVICE_TABLE(pnp, rtc_ids);
1345
1346 static struct pnp_driver cmos_pnp_driver = {
1347         .name           = driver_name,
1348         .id_table       = rtc_ids,
1349         .probe          = cmos_pnp_probe,
1350         .remove         = cmos_pnp_remove,
1351         .shutdown       = cmos_pnp_shutdown,
1352
1353         /* flag ensures resume() gets called, and stops syslog spam */
1354         .flags          = PNP_DRIVER_RES_DO_NOT_CHANGE,
1355         .driver         = {
1356                         .pm = &cmos_pm_ops,
1357         },
1358 };
1359
1360 #endif  /* CONFIG_PNP */
1361
1362 #ifdef CONFIG_OF
1363 static const struct of_device_id of_cmos_match[] = {
1364         {
1365                 .compatible = "motorola,mc146818",
1366         },
1367         { },
1368 };
1369 MODULE_DEVICE_TABLE(of, of_cmos_match);
1370
1371 static __init void cmos_of_init(struct platform_device *pdev)
1372 {
1373         struct device_node *node = pdev->dev.of_node;
1374         const __be32 *val;
1375
1376         if (!node)
1377                 return;
1378
1379         val = of_get_property(node, "ctrl-reg", NULL);
1380         if (val)
1381                 CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1382
1383         val = of_get_property(node, "freq-reg", NULL);
1384         if (val)
1385                 CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1386 }
1387 #else
1388 static inline void cmos_of_init(struct platform_device *pdev) {}
1389 #endif
1390 /*----------------------------------------------------------------*/
1391
1392 /* Platform setup should have set up an RTC device, when PNP is
1393  * unavailable ... this could happen even on (older) PCs.
1394  */
1395
1396 static int __init cmos_platform_probe(struct platform_device *pdev)
1397 {
1398         struct resource *resource;
1399         int irq;
1400
1401         cmos_of_init(pdev);
1402         cmos_wake_setup(&pdev->dev);
1403
1404         if (RTC_IOMAPPED)
1405                 resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1406         else
1407                 resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1408         irq = platform_get_irq(pdev, 0);
1409         if (irq < 0)
1410                 irq = -1;
1411
1412         return cmos_do_probe(&pdev->dev, resource, irq);
1413 }
1414
1415 static int cmos_platform_remove(struct platform_device *pdev)
1416 {
1417         cmos_do_remove(&pdev->dev);
1418         return 0;
1419 }
1420
1421 static void cmos_platform_shutdown(struct platform_device *pdev)
1422 {
1423         struct device *dev = &pdev->dev;
1424         struct cmos_rtc *cmos = dev_get_drvdata(dev);
1425
1426         if (system_state == SYSTEM_POWER_OFF) {
1427                 int retval = cmos_poweroff(dev);
1428
1429                 if (cmos_aie_poweroff(dev) < 0 && !retval)
1430                         return;
1431         }
1432
1433         cmos_do_shutdown(cmos->irq);
1434 }
1435
1436 /* work with hotplug and coldplug */
1437 MODULE_ALIAS("platform:rtc_cmos");
1438
1439 static struct platform_driver cmos_platform_driver = {
1440         .remove         = cmos_platform_remove,
1441         .shutdown       = cmos_platform_shutdown,
1442         .driver = {
1443                 .name           = driver_name,
1444                 .pm             = &cmos_pm_ops,
1445                 .of_match_table = of_match_ptr(of_cmos_match),
1446         }
1447 };
1448
1449 #ifdef CONFIG_PNP
1450 static bool pnp_driver_registered;
1451 #endif
1452 static bool platform_driver_registered;
1453
1454 static int __init cmos_init(void)
1455 {
1456         int retval = 0;
1457
1458 #ifdef  CONFIG_PNP
1459         retval = pnp_register_driver(&cmos_pnp_driver);
1460         if (retval == 0)
1461                 pnp_driver_registered = true;
1462 #endif
1463
1464         if (!cmos_rtc.dev) {
1465                 retval = platform_driver_probe(&cmos_platform_driver,
1466                                                cmos_platform_probe);
1467                 if (retval == 0)
1468                         platform_driver_registered = true;
1469         }
1470
1471         if (retval == 0)
1472                 return 0;
1473
1474 #ifdef  CONFIG_PNP
1475         if (pnp_driver_registered)
1476                 pnp_unregister_driver(&cmos_pnp_driver);
1477 #endif
1478         return retval;
1479 }
1480 module_init(cmos_init);
1481
1482 static void __exit cmos_exit(void)
1483 {
1484 #ifdef  CONFIG_PNP
1485         if (pnp_driver_registered)
1486                 pnp_unregister_driver(&cmos_pnp_driver);
1487 #endif
1488         if (platform_driver_registered)
1489                 platform_driver_unregister(&cmos_platform_driver);
1490 }
1491 module_exit(cmos_exit);
1492
1493
1494 MODULE_AUTHOR("David Brownell");
1495 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1496 MODULE_LICENSE("GPL");