Merge remote-tracking branch 'torvalds/master' into perf/core
[linux-2.6-microblaze.git] / drivers / regulator / core.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 //
3 // core.c  --  Voltage/Current Regulator framework.
4 //
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
7 //
8 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
9
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/async.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/of.h>
22 #include <linux/regmap.h>
23 #include <linux/regulator/of_regulator.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/coupler.h>
26 #include <linux/regulator/driver.h>
27 #include <linux/regulator/machine.h>
28 #include <linux/module.h>
29
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/regulator.h>
32
33 #include "dummy.h"
34 #include "internal.h"
35
36 #define rdev_crit(rdev, fmt, ...)                                       \
37         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38 #define rdev_err(rdev, fmt, ...)                                        \
39         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40 #define rdev_warn(rdev, fmt, ...)                                       \
41         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_info(rdev, fmt, ...)                                       \
43         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_dbg(rdev, fmt, ...)                                        \
45         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46
47 static DEFINE_WW_CLASS(regulator_ww_class);
48 static DEFINE_MUTEX(regulator_nesting_mutex);
49 static DEFINE_MUTEX(regulator_list_mutex);
50 static LIST_HEAD(regulator_map_list);
51 static LIST_HEAD(regulator_ena_gpio_list);
52 static LIST_HEAD(regulator_supply_alias_list);
53 static LIST_HEAD(regulator_coupler_list);
54 static bool has_full_constraints;
55
56 static struct dentry *debugfs_root;
57
58 /*
59  * struct regulator_map
60  *
61  * Used to provide symbolic supply names to devices.
62  */
63 struct regulator_map {
64         struct list_head list;
65         const char *dev_name;   /* The dev_name() for the consumer */
66         const char *supply;
67         struct regulator_dev *regulator;
68 };
69
70 /*
71  * struct regulator_enable_gpio
72  *
73  * Management for shared enable GPIO pin
74  */
75 struct regulator_enable_gpio {
76         struct list_head list;
77         struct gpio_desc *gpiod;
78         u32 enable_count;       /* a number of enabled shared GPIO */
79         u32 request_count;      /* a number of requested shared GPIO */
80 };
81
82 /*
83  * struct regulator_supply_alias
84  *
85  * Used to map lookups for a supply onto an alternative device.
86  */
87 struct regulator_supply_alias {
88         struct list_head list;
89         struct device *src_dev;
90         const char *src_supply;
91         struct device *alias_dev;
92         const char *alias_supply;
93 };
94
95 static int _regulator_is_enabled(struct regulator_dev *rdev);
96 static int _regulator_disable(struct regulator *regulator);
97 static int _regulator_get_current_limit(struct regulator_dev *rdev);
98 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
99 static int _notifier_call_chain(struct regulator_dev *rdev,
100                                   unsigned long event, void *data);
101 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
102                                      int min_uV, int max_uV);
103 static int regulator_balance_voltage(struct regulator_dev *rdev,
104                                      suspend_state_t state);
105 static struct regulator *create_regulator(struct regulator_dev *rdev,
106                                           struct device *dev,
107                                           const char *supply_name);
108 static void destroy_regulator(struct regulator *regulator);
109 static void _regulator_put(struct regulator *regulator);
110
111 const char *rdev_get_name(struct regulator_dev *rdev)
112 {
113         if (rdev->constraints && rdev->constraints->name)
114                 return rdev->constraints->name;
115         else if (rdev->desc->name)
116                 return rdev->desc->name;
117         else
118                 return "";
119 }
120
121 static bool have_full_constraints(void)
122 {
123         return has_full_constraints || of_have_populated_dt();
124 }
125
126 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
127 {
128         if (!rdev->constraints) {
129                 rdev_err(rdev, "no constraints\n");
130                 return false;
131         }
132
133         if (rdev->constraints->valid_ops_mask & ops)
134                 return true;
135
136         return false;
137 }
138
139 /**
140  * regulator_lock_nested - lock a single regulator
141  * @rdev:               regulator source
142  * @ww_ctx:             w/w mutex acquire context
143  *
144  * This function can be called many times by one task on
145  * a single regulator and its mutex will be locked only
146  * once. If a task, which is calling this function is other
147  * than the one, which initially locked the mutex, it will
148  * wait on mutex.
149  */
150 static inline int regulator_lock_nested(struct regulator_dev *rdev,
151                                         struct ww_acquire_ctx *ww_ctx)
152 {
153         bool lock = false;
154         int ret = 0;
155
156         mutex_lock(&regulator_nesting_mutex);
157
158         if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
159                 if (rdev->mutex_owner == current)
160                         rdev->ref_cnt++;
161                 else
162                         lock = true;
163
164                 if (lock) {
165                         mutex_unlock(&regulator_nesting_mutex);
166                         ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
167                         mutex_lock(&regulator_nesting_mutex);
168                 }
169         } else {
170                 lock = true;
171         }
172
173         if (lock && ret != -EDEADLK) {
174                 rdev->ref_cnt++;
175                 rdev->mutex_owner = current;
176         }
177
178         mutex_unlock(&regulator_nesting_mutex);
179
180         return ret;
181 }
182
183 /**
184  * regulator_lock - lock a single regulator
185  * @rdev:               regulator source
186  *
187  * This function can be called many times by one task on
188  * a single regulator and its mutex will be locked only
189  * once. If a task, which is calling this function is other
190  * than the one, which initially locked the mutex, it will
191  * wait on mutex.
192  */
193 static void regulator_lock(struct regulator_dev *rdev)
194 {
195         regulator_lock_nested(rdev, NULL);
196 }
197
198 /**
199  * regulator_unlock - unlock a single regulator
200  * @rdev:               regulator_source
201  *
202  * This function unlocks the mutex when the
203  * reference counter reaches 0.
204  */
205 static void regulator_unlock(struct regulator_dev *rdev)
206 {
207         mutex_lock(&regulator_nesting_mutex);
208
209         if (--rdev->ref_cnt == 0) {
210                 rdev->mutex_owner = NULL;
211                 ww_mutex_unlock(&rdev->mutex);
212         }
213
214         WARN_ON_ONCE(rdev->ref_cnt < 0);
215
216         mutex_unlock(&regulator_nesting_mutex);
217 }
218
219 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
220 {
221         struct regulator_dev *c_rdev;
222         int i;
223
224         for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
225                 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
226
227                 if (rdev->supply->rdev == c_rdev)
228                         return true;
229         }
230
231         return false;
232 }
233
234 static void regulator_unlock_recursive(struct regulator_dev *rdev,
235                                        unsigned int n_coupled)
236 {
237         struct regulator_dev *c_rdev, *supply_rdev;
238         int i, supply_n_coupled;
239
240         for (i = n_coupled; i > 0; i--) {
241                 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
242
243                 if (!c_rdev)
244                         continue;
245
246                 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
247                         supply_rdev = c_rdev->supply->rdev;
248                         supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
249
250                         regulator_unlock_recursive(supply_rdev,
251                                                    supply_n_coupled);
252                 }
253
254                 regulator_unlock(c_rdev);
255         }
256 }
257
258 static int regulator_lock_recursive(struct regulator_dev *rdev,
259                                     struct regulator_dev **new_contended_rdev,
260                                     struct regulator_dev **old_contended_rdev,
261                                     struct ww_acquire_ctx *ww_ctx)
262 {
263         struct regulator_dev *c_rdev;
264         int i, err;
265
266         for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
267                 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
268
269                 if (!c_rdev)
270                         continue;
271
272                 if (c_rdev != *old_contended_rdev) {
273                         err = regulator_lock_nested(c_rdev, ww_ctx);
274                         if (err) {
275                                 if (err == -EDEADLK) {
276                                         *new_contended_rdev = c_rdev;
277                                         goto err_unlock;
278                                 }
279
280                                 /* shouldn't happen */
281                                 WARN_ON_ONCE(err != -EALREADY);
282                         }
283                 } else {
284                         *old_contended_rdev = NULL;
285                 }
286
287                 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
288                         err = regulator_lock_recursive(c_rdev->supply->rdev,
289                                                        new_contended_rdev,
290                                                        old_contended_rdev,
291                                                        ww_ctx);
292                         if (err) {
293                                 regulator_unlock(c_rdev);
294                                 goto err_unlock;
295                         }
296                 }
297         }
298
299         return 0;
300
301 err_unlock:
302         regulator_unlock_recursive(rdev, i);
303
304         return err;
305 }
306
307 /**
308  * regulator_unlock_dependent - unlock regulator's suppliers and coupled
309  *                              regulators
310  * @rdev:                       regulator source
311  * @ww_ctx:                     w/w mutex acquire context
312  *
313  * Unlock all regulators related with rdev by coupling or supplying.
314  */
315 static void regulator_unlock_dependent(struct regulator_dev *rdev,
316                                        struct ww_acquire_ctx *ww_ctx)
317 {
318         regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
319         ww_acquire_fini(ww_ctx);
320 }
321
322 /**
323  * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
324  * @rdev:                       regulator source
325  * @ww_ctx:                     w/w mutex acquire context
326  *
327  * This function as a wrapper on regulator_lock_recursive(), which locks
328  * all regulators related with rdev by coupling or supplying.
329  */
330 static void regulator_lock_dependent(struct regulator_dev *rdev,
331                                      struct ww_acquire_ctx *ww_ctx)
332 {
333         struct regulator_dev *new_contended_rdev = NULL;
334         struct regulator_dev *old_contended_rdev = NULL;
335         int err;
336
337         mutex_lock(&regulator_list_mutex);
338
339         ww_acquire_init(ww_ctx, &regulator_ww_class);
340
341         do {
342                 if (new_contended_rdev) {
343                         ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
344                         old_contended_rdev = new_contended_rdev;
345                         old_contended_rdev->ref_cnt++;
346                 }
347
348                 err = regulator_lock_recursive(rdev,
349                                                &new_contended_rdev,
350                                                &old_contended_rdev,
351                                                ww_ctx);
352
353                 if (old_contended_rdev)
354                         regulator_unlock(old_contended_rdev);
355
356         } while (err == -EDEADLK);
357
358         ww_acquire_done(ww_ctx);
359
360         mutex_unlock(&regulator_list_mutex);
361 }
362
363 /**
364  * of_get_child_regulator - get a child regulator device node
365  * based on supply name
366  * @parent: Parent device node
367  * @prop_name: Combination regulator supply name and "-supply"
368  *
369  * Traverse all child nodes.
370  * Extract the child regulator device node corresponding to the supply name.
371  * returns the device node corresponding to the regulator if found, else
372  * returns NULL.
373  */
374 static struct device_node *of_get_child_regulator(struct device_node *parent,
375                                                   const char *prop_name)
376 {
377         struct device_node *regnode = NULL;
378         struct device_node *child = NULL;
379
380         for_each_child_of_node(parent, child) {
381                 regnode = of_parse_phandle(child, prop_name, 0);
382
383                 if (!regnode) {
384                         regnode = of_get_child_regulator(child, prop_name);
385                         if (regnode)
386                                 goto err_node_put;
387                 } else {
388                         goto err_node_put;
389                 }
390         }
391         return NULL;
392
393 err_node_put:
394         of_node_put(child);
395         return regnode;
396 }
397
398 /**
399  * of_get_regulator - get a regulator device node based on supply name
400  * @dev: Device pointer for the consumer (of regulator) device
401  * @supply: regulator supply name
402  *
403  * Extract the regulator device node corresponding to the supply name.
404  * returns the device node corresponding to the regulator if found, else
405  * returns NULL.
406  */
407 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
408 {
409         struct device_node *regnode = NULL;
410         char prop_name[64]; /* 64 is max size of property name */
411
412         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
413
414         snprintf(prop_name, 64, "%s-supply", supply);
415         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
416
417         if (!regnode) {
418                 regnode = of_get_child_regulator(dev->of_node, prop_name);
419                 if (regnode)
420                         return regnode;
421
422                 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
423                                 prop_name, dev->of_node);
424                 return NULL;
425         }
426         return regnode;
427 }
428
429 /* Platform voltage constraint check */
430 int regulator_check_voltage(struct regulator_dev *rdev,
431                             int *min_uV, int *max_uV)
432 {
433         BUG_ON(*min_uV > *max_uV);
434
435         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
436                 rdev_err(rdev, "voltage operation not allowed\n");
437                 return -EPERM;
438         }
439
440         if (*max_uV > rdev->constraints->max_uV)
441                 *max_uV = rdev->constraints->max_uV;
442         if (*min_uV < rdev->constraints->min_uV)
443                 *min_uV = rdev->constraints->min_uV;
444
445         if (*min_uV > *max_uV) {
446                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
447                          *min_uV, *max_uV);
448                 return -EINVAL;
449         }
450
451         return 0;
452 }
453
454 /* return 0 if the state is valid */
455 static int regulator_check_states(suspend_state_t state)
456 {
457         return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
458 }
459
460 /* Make sure we select a voltage that suits the needs of all
461  * regulator consumers
462  */
463 int regulator_check_consumers(struct regulator_dev *rdev,
464                               int *min_uV, int *max_uV,
465                               suspend_state_t state)
466 {
467         struct regulator *regulator;
468         struct regulator_voltage *voltage;
469
470         list_for_each_entry(regulator, &rdev->consumer_list, list) {
471                 voltage = &regulator->voltage[state];
472                 /*
473                  * Assume consumers that didn't say anything are OK
474                  * with anything in the constraint range.
475                  */
476                 if (!voltage->min_uV && !voltage->max_uV)
477                         continue;
478
479                 if (*max_uV > voltage->max_uV)
480                         *max_uV = voltage->max_uV;
481                 if (*min_uV < voltage->min_uV)
482                         *min_uV = voltage->min_uV;
483         }
484
485         if (*min_uV > *max_uV) {
486                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
487                         *min_uV, *max_uV);
488                 return -EINVAL;
489         }
490
491         return 0;
492 }
493
494 /* current constraint check */
495 static int regulator_check_current_limit(struct regulator_dev *rdev,
496                                         int *min_uA, int *max_uA)
497 {
498         BUG_ON(*min_uA > *max_uA);
499
500         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
501                 rdev_err(rdev, "current operation not allowed\n");
502                 return -EPERM;
503         }
504
505         if (*max_uA > rdev->constraints->max_uA)
506                 *max_uA = rdev->constraints->max_uA;
507         if (*min_uA < rdev->constraints->min_uA)
508                 *min_uA = rdev->constraints->min_uA;
509
510         if (*min_uA > *max_uA) {
511                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
512                          *min_uA, *max_uA);
513                 return -EINVAL;
514         }
515
516         return 0;
517 }
518
519 /* operating mode constraint check */
520 static int regulator_mode_constrain(struct regulator_dev *rdev,
521                                     unsigned int *mode)
522 {
523         switch (*mode) {
524         case REGULATOR_MODE_FAST:
525         case REGULATOR_MODE_NORMAL:
526         case REGULATOR_MODE_IDLE:
527         case REGULATOR_MODE_STANDBY:
528                 break;
529         default:
530                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
531                 return -EINVAL;
532         }
533
534         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
535                 rdev_err(rdev, "mode operation not allowed\n");
536                 return -EPERM;
537         }
538
539         /* The modes are bitmasks, the most power hungry modes having
540          * the lowest values. If the requested mode isn't supported
541          * try higher modes.
542          */
543         while (*mode) {
544                 if (rdev->constraints->valid_modes_mask & *mode)
545                         return 0;
546                 *mode /= 2;
547         }
548
549         return -EINVAL;
550 }
551
552 static inline struct regulator_state *
553 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
554 {
555         if (rdev->constraints == NULL)
556                 return NULL;
557
558         switch (state) {
559         case PM_SUSPEND_STANDBY:
560                 return &rdev->constraints->state_standby;
561         case PM_SUSPEND_MEM:
562                 return &rdev->constraints->state_mem;
563         case PM_SUSPEND_MAX:
564                 return &rdev->constraints->state_disk;
565         default:
566                 return NULL;
567         }
568 }
569
570 static const struct regulator_state *
571 regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
572 {
573         const struct regulator_state *rstate;
574
575         rstate = regulator_get_suspend_state(rdev, state);
576         if (rstate == NULL)
577                 return NULL;
578
579         /* If we have no suspend mode configuration don't set anything;
580          * only warn if the driver implements set_suspend_voltage or
581          * set_suspend_mode callback.
582          */
583         if (rstate->enabled != ENABLE_IN_SUSPEND &&
584             rstate->enabled != DISABLE_IN_SUSPEND) {
585                 if (rdev->desc->ops->set_suspend_voltage ||
586                     rdev->desc->ops->set_suspend_mode)
587                         rdev_warn(rdev, "No configuration\n");
588                 return NULL;
589         }
590
591         return rstate;
592 }
593
594 static ssize_t regulator_uV_show(struct device *dev,
595                                 struct device_attribute *attr, char *buf)
596 {
597         struct regulator_dev *rdev = dev_get_drvdata(dev);
598         int uV;
599
600         regulator_lock(rdev);
601         uV = regulator_get_voltage_rdev(rdev);
602         regulator_unlock(rdev);
603
604         if (uV < 0)
605                 return uV;
606         return sprintf(buf, "%d\n", uV);
607 }
608 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
609
610 static ssize_t regulator_uA_show(struct device *dev,
611                                 struct device_attribute *attr, char *buf)
612 {
613         struct regulator_dev *rdev = dev_get_drvdata(dev);
614
615         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
616 }
617 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
618
619 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
620                          char *buf)
621 {
622         struct regulator_dev *rdev = dev_get_drvdata(dev);
623
624         return sprintf(buf, "%s\n", rdev_get_name(rdev));
625 }
626 static DEVICE_ATTR_RO(name);
627
628 static const char *regulator_opmode_to_str(int mode)
629 {
630         switch (mode) {
631         case REGULATOR_MODE_FAST:
632                 return "fast";
633         case REGULATOR_MODE_NORMAL:
634                 return "normal";
635         case REGULATOR_MODE_IDLE:
636                 return "idle";
637         case REGULATOR_MODE_STANDBY:
638                 return "standby";
639         }
640         return "unknown";
641 }
642
643 static ssize_t regulator_print_opmode(char *buf, int mode)
644 {
645         return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
646 }
647
648 static ssize_t regulator_opmode_show(struct device *dev,
649                                     struct device_attribute *attr, char *buf)
650 {
651         struct regulator_dev *rdev = dev_get_drvdata(dev);
652
653         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
654 }
655 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
656
657 static ssize_t regulator_print_state(char *buf, int state)
658 {
659         if (state > 0)
660                 return sprintf(buf, "enabled\n");
661         else if (state == 0)
662                 return sprintf(buf, "disabled\n");
663         else
664                 return sprintf(buf, "unknown\n");
665 }
666
667 static ssize_t regulator_state_show(struct device *dev,
668                                    struct device_attribute *attr, char *buf)
669 {
670         struct regulator_dev *rdev = dev_get_drvdata(dev);
671         ssize_t ret;
672
673         regulator_lock(rdev);
674         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
675         regulator_unlock(rdev);
676
677         return ret;
678 }
679 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
680
681 static ssize_t regulator_status_show(struct device *dev,
682                                    struct device_attribute *attr, char *buf)
683 {
684         struct regulator_dev *rdev = dev_get_drvdata(dev);
685         int status;
686         char *label;
687
688         status = rdev->desc->ops->get_status(rdev);
689         if (status < 0)
690                 return status;
691
692         switch (status) {
693         case REGULATOR_STATUS_OFF:
694                 label = "off";
695                 break;
696         case REGULATOR_STATUS_ON:
697                 label = "on";
698                 break;
699         case REGULATOR_STATUS_ERROR:
700                 label = "error";
701                 break;
702         case REGULATOR_STATUS_FAST:
703                 label = "fast";
704                 break;
705         case REGULATOR_STATUS_NORMAL:
706                 label = "normal";
707                 break;
708         case REGULATOR_STATUS_IDLE:
709                 label = "idle";
710                 break;
711         case REGULATOR_STATUS_STANDBY:
712                 label = "standby";
713                 break;
714         case REGULATOR_STATUS_BYPASS:
715                 label = "bypass";
716                 break;
717         case REGULATOR_STATUS_UNDEFINED:
718                 label = "undefined";
719                 break;
720         default:
721                 return -ERANGE;
722         }
723
724         return sprintf(buf, "%s\n", label);
725 }
726 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
727
728 static ssize_t regulator_min_uA_show(struct device *dev,
729                                     struct device_attribute *attr, char *buf)
730 {
731         struct regulator_dev *rdev = dev_get_drvdata(dev);
732
733         if (!rdev->constraints)
734                 return sprintf(buf, "constraint not defined\n");
735
736         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
737 }
738 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
739
740 static ssize_t regulator_max_uA_show(struct device *dev,
741                                     struct device_attribute *attr, char *buf)
742 {
743         struct regulator_dev *rdev = dev_get_drvdata(dev);
744
745         if (!rdev->constraints)
746                 return sprintf(buf, "constraint not defined\n");
747
748         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
749 }
750 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
751
752 static ssize_t regulator_min_uV_show(struct device *dev,
753                                     struct device_attribute *attr, char *buf)
754 {
755         struct regulator_dev *rdev = dev_get_drvdata(dev);
756
757         if (!rdev->constraints)
758                 return sprintf(buf, "constraint not defined\n");
759
760         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
761 }
762 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
763
764 static ssize_t regulator_max_uV_show(struct device *dev,
765                                     struct device_attribute *attr, char *buf)
766 {
767         struct regulator_dev *rdev = dev_get_drvdata(dev);
768
769         if (!rdev->constraints)
770                 return sprintf(buf, "constraint not defined\n");
771
772         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
773 }
774 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
775
776 static ssize_t regulator_total_uA_show(struct device *dev,
777                                       struct device_attribute *attr, char *buf)
778 {
779         struct regulator_dev *rdev = dev_get_drvdata(dev);
780         struct regulator *regulator;
781         int uA = 0;
782
783         regulator_lock(rdev);
784         list_for_each_entry(regulator, &rdev->consumer_list, list) {
785                 if (regulator->enable_count)
786                         uA += regulator->uA_load;
787         }
788         regulator_unlock(rdev);
789         return sprintf(buf, "%d\n", uA);
790 }
791 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
792
793 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
794                               char *buf)
795 {
796         struct regulator_dev *rdev = dev_get_drvdata(dev);
797         return sprintf(buf, "%d\n", rdev->use_count);
798 }
799 static DEVICE_ATTR_RO(num_users);
800
801 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
802                          char *buf)
803 {
804         struct regulator_dev *rdev = dev_get_drvdata(dev);
805
806         switch (rdev->desc->type) {
807         case REGULATOR_VOLTAGE:
808                 return sprintf(buf, "voltage\n");
809         case REGULATOR_CURRENT:
810                 return sprintf(buf, "current\n");
811         }
812         return sprintf(buf, "unknown\n");
813 }
814 static DEVICE_ATTR_RO(type);
815
816 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
817                                 struct device_attribute *attr, char *buf)
818 {
819         struct regulator_dev *rdev = dev_get_drvdata(dev);
820
821         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
822 }
823 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
824                 regulator_suspend_mem_uV_show, NULL);
825
826 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
827                                 struct device_attribute *attr, char *buf)
828 {
829         struct regulator_dev *rdev = dev_get_drvdata(dev);
830
831         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
832 }
833 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
834                 regulator_suspend_disk_uV_show, NULL);
835
836 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
837                                 struct device_attribute *attr, char *buf)
838 {
839         struct regulator_dev *rdev = dev_get_drvdata(dev);
840
841         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
842 }
843 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
844                 regulator_suspend_standby_uV_show, NULL);
845
846 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
847                                 struct device_attribute *attr, char *buf)
848 {
849         struct regulator_dev *rdev = dev_get_drvdata(dev);
850
851         return regulator_print_opmode(buf,
852                 rdev->constraints->state_mem.mode);
853 }
854 static DEVICE_ATTR(suspend_mem_mode, 0444,
855                 regulator_suspend_mem_mode_show, NULL);
856
857 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
858                                 struct device_attribute *attr, char *buf)
859 {
860         struct regulator_dev *rdev = dev_get_drvdata(dev);
861
862         return regulator_print_opmode(buf,
863                 rdev->constraints->state_disk.mode);
864 }
865 static DEVICE_ATTR(suspend_disk_mode, 0444,
866                 regulator_suspend_disk_mode_show, NULL);
867
868 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
869                                 struct device_attribute *attr, char *buf)
870 {
871         struct regulator_dev *rdev = dev_get_drvdata(dev);
872
873         return regulator_print_opmode(buf,
874                 rdev->constraints->state_standby.mode);
875 }
876 static DEVICE_ATTR(suspend_standby_mode, 0444,
877                 regulator_suspend_standby_mode_show, NULL);
878
879 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
880                                    struct device_attribute *attr, char *buf)
881 {
882         struct regulator_dev *rdev = dev_get_drvdata(dev);
883
884         return regulator_print_state(buf,
885                         rdev->constraints->state_mem.enabled);
886 }
887 static DEVICE_ATTR(suspend_mem_state, 0444,
888                 regulator_suspend_mem_state_show, NULL);
889
890 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
891                                    struct device_attribute *attr, char *buf)
892 {
893         struct regulator_dev *rdev = dev_get_drvdata(dev);
894
895         return regulator_print_state(buf,
896                         rdev->constraints->state_disk.enabled);
897 }
898 static DEVICE_ATTR(suspend_disk_state, 0444,
899                 regulator_suspend_disk_state_show, NULL);
900
901 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
902                                    struct device_attribute *attr, char *buf)
903 {
904         struct regulator_dev *rdev = dev_get_drvdata(dev);
905
906         return regulator_print_state(buf,
907                         rdev->constraints->state_standby.enabled);
908 }
909 static DEVICE_ATTR(suspend_standby_state, 0444,
910                 regulator_suspend_standby_state_show, NULL);
911
912 static ssize_t regulator_bypass_show(struct device *dev,
913                                      struct device_attribute *attr, char *buf)
914 {
915         struct regulator_dev *rdev = dev_get_drvdata(dev);
916         const char *report;
917         bool bypass;
918         int ret;
919
920         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
921
922         if (ret != 0)
923                 report = "unknown";
924         else if (bypass)
925                 report = "enabled";
926         else
927                 report = "disabled";
928
929         return sprintf(buf, "%s\n", report);
930 }
931 static DEVICE_ATTR(bypass, 0444,
932                    regulator_bypass_show, NULL);
933
934 /* Calculate the new optimum regulator operating mode based on the new total
935  * consumer load. All locks held by caller
936  */
937 static int drms_uA_update(struct regulator_dev *rdev)
938 {
939         struct regulator *sibling;
940         int current_uA = 0, output_uV, input_uV, err;
941         unsigned int mode;
942
943         /*
944          * first check to see if we can set modes at all, otherwise just
945          * tell the consumer everything is OK.
946          */
947         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
948                 rdev_dbg(rdev, "DRMS operation not allowed\n");
949                 return 0;
950         }
951
952         if (!rdev->desc->ops->get_optimum_mode &&
953             !rdev->desc->ops->set_load)
954                 return 0;
955
956         if (!rdev->desc->ops->set_mode &&
957             !rdev->desc->ops->set_load)
958                 return -EINVAL;
959
960         /* calc total requested load */
961         list_for_each_entry(sibling, &rdev->consumer_list, list) {
962                 if (sibling->enable_count)
963                         current_uA += sibling->uA_load;
964         }
965
966         current_uA += rdev->constraints->system_load;
967
968         if (rdev->desc->ops->set_load) {
969                 /* set the optimum mode for our new total regulator load */
970                 err = rdev->desc->ops->set_load(rdev, current_uA);
971                 if (err < 0)
972                         rdev_err(rdev, "failed to set load %d: %pe\n",
973                                  current_uA, ERR_PTR(err));
974         } else {
975                 /* get output voltage */
976                 output_uV = regulator_get_voltage_rdev(rdev);
977                 if (output_uV <= 0) {
978                         rdev_err(rdev, "invalid output voltage found\n");
979                         return -EINVAL;
980                 }
981
982                 /* get input voltage */
983                 input_uV = 0;
984                 if (rdev->supply)
985                         input_uV = regulator_get_voltage(rdev->supply);
986                 if (input_uV <= 0)
987                         input_uV = rdev->constraints->input_uV;
988                 if (input_uV <= 0) {
989                         rdev_err(rdev, "invalid input voltage found\n");
990                         return -EINVAL;
991                 }
992
993                 /* now get the optimum mode for our new total regulator load */
994                 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
995                                                          output_uV, current_uA);
996
997                 /* check the new mode is allowed */
998                 err = regulator_mode_constrain(rdev, &mode);
999                 if (err < 0) {
1000                         rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
1001                                  current_uA, input_uV, output_uV, ERR_PTR(err));
1002                         return err;
1003                 }
1004
1005                 err = rdev->desc->ops->set_mode(rdev, mode);
1006                 if (err < 0)
1007                         rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1008                                  mode, ERR_PTR(err));
1009         }
1010
1011         return err;
1012 }
1013
1014 static int __suspend_set_state(struct regulator_dev *rdev,
1015                                const struct regulator_state *rstate)
1016 {
1017         int ret = 0;
1018
1019         if (rstate->enabled == ENABLE_IN_SUSPEND &&
1020                 rdev->desc->ops->set_suspend_enable)
1021                 ret = rdev->desc->ops->set_suspend_enable(rdev);
1022         else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1023                 rdev->desc->ops->set_suspend_disable)
1024                 ret = rdev->desc->ops->set_suspend_disable(rdev);
1025         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1026                 ret = 0;
1027
1028         if (ret < 0) {
1029                 rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1030                 return ret;
1031         }
1032
1033         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1034                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1035                 if (ret < 0) {
1036                         rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1037                         return ret;
1038                 }
1039         }
1040
1041         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1042                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1043                 if (ret < 0) {
1044                         rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1045                         return ret;
1046                 }
1047         }
1048
1049         return ret;
1050 }
1051
1052 static int suspend_set_initial_state(struct regulator_dev *rdev)
1053 {
1054         const struct regulator_state *rstate;
1055
1056         rstate = regulator_get_suspend_state_check(rdev,
1057                         rdev->constraints->initial_state);
1058         if (!rstate)
1059                 return 0;
1060
1061         return __suspend_set_state(rdev, rstate);
1062 }
1063
1064 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
1065 static void print_constraints_debug(struct regulator_dev *rdev)
1066 {
1067         struct regulation_constraints *constraints = rdev->constraints;
1068         char buf[160] = "";
1069         size_t len = sizeof(buf) - 1;
1070         int count = 0;
1071         int ret;
1072
1073         if (constraints->min_uV && constraints->max_uV) {
1074                 if (constraints->min_uV == constraints->max_uV)
1075                         count += scnprintf(buf + count, len - count, "%d mV ",
1076                                            constraints->min_uV / 1000);
1077                 else
1078                         count += scnprintf(buf + count, len - count,
1079                                            "%d <--> %d mV ",
1080                                            constraints->min_uV / 1000,
1081                                            constraints->max_uV / 1000);
1082         }
1083
1084         if (!constraints->min_uV ||
1085             constraints->min_uV != constraints->max_uV) {
1086                 ret = regulator_get_voltage_rdev(rdev);
1087                 if (ret > 0)
1088                         count += scnprintf(buf + count, len - count,
1089                                            "at %d mV ", ret / 1000);
1090         }
1091
1092         if (constraints->uV_offset)
1093                 count += scnprintf(buf + count, len - count, "%dmV offset ",
1094                                    constraints->uV_offset / 1000);
1095
1096         if (constraints->min_uA && constraints->max_uA) {
1097                 if (constraints->min_uA == constraints->max_uA)
1098                         count += scnprintf(buf + count, len - count, "%d mA ",
1099                                            constraints->min_uA / 1000);
1100                 else
1101                         count += scnprintf(buf + count, len - count,
1102                                            "%d <--> %d mA ",
1103                                            constraints->min_uA / 1000,
1104                                            constraints->max_uA / 1000);
1105         }
1106
1107         if (!constraints->min_uA ||
1108             constraints->min_uA != constraints->max_uA) {
1109                 ret = _regulator_get_current_limit(rdev);
1110                 if (ret > 0)
1111                         count += scnprintf(buf + count, len - count,
1112                                            "at %d mA ", ret / 1000);
1113         }
1114
1115         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1116                 count += scnprintf(buf + count, len - count, "fast ");
1117         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1118                 count += scnprintf(buf + count, len - count, "normal ");
1119         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1120                 count += scnprintf(buf + count, len - count, "idle ");
1121         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1122                 count += scnprintf(buf + count, len - count, "standby ");
1123
1124         if (!count)
1125                 count = scnprintf(buf, len, "no parameters");
1126         else
1127                 --count;
1128
1129         count += scnprintf(buf + count, len - count, ", %s",
1130                 _regulator_is_enabled(rdev) ? "enabled" : "disabled");
1131
1132         rdev_dbg(rdev, "%s\n", buf);
1133 }
1134 #else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1135 static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1136 #endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1137
1138 static void print_constraints(struct regulator_dev *rdev)
1139 {
1140         struct regulation_constraints *constraints = rdev->constraints;
1141
1142         print_constraints_debug(rdev);
1143
1144         if ((constraints->min_uV != constraints->max_uV) &&
1145             !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1146                 rdev_warn(rdev,
1147                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1148 }
1149
1150 static int machine_constraints_voltage(struct regulator_dev *rdev,
1151         struct regulation_constraints *constraints)
1152 {
1153         const struct regulator_ops *ops = rdev->desc->ops;
1154         int ret;
1155
1156         /* do we need to apply the constraint voltage */
1157         if (rdev->constraints->apply_uV &&
1158             rdev->constraints->min_uV && rdev->constraints->max_uV) {
1159                 int target_min, target_max;
1160                 int current_uV = regulator_get_voltage_rdev(rdev);
1161
1162                 if (current_uV == -ENOTRECOVERABLE) {
1163                         /* This regulator can't be read and must be initialized */
1164                         rdev_info(rdev, "Setting %d-%duV\n",
1165                                   rdev->constraints->min_uV,
1166                                   rdev->constraints->max_uV);
1167                         _regulator_do_set_voltage(rdev,
1168                                                   rdev->constraints->min_uV,
1169                                                   rdev->constraints->max_uV);
1170                         current_uV = regulator_get_voltage_rdev(rdev);
1171                 }
1172
1173                 if (current_uV < 0) {
1174                         rdev_err(rdev,
1175                                  "failed to get the current voltage: %pe\n",
1176                                  ERR_PTR(current_uV));
1177                         return current_uV;
1178                 }
1179
1180                 /*
1181                  * If we're below the minimum voltage move up to the
1182                  * minimum voltage, if we're above the maximum voltage
1183                  * then move down to the maximum.
1184                  */
1185                 target_min = current_uV;
1186                 target_max = current_uV;
1187
1188                 if (current_uV < rdev->constraints->min_uV) {
1189                         target_min = rdev->constraints->min_uV;
1190                         target_max = rdev->constraints->min_uV;
1191                 }
1192
1193                 if (current_uV > rdev->constraints->max_uV) {
1194                         target_min = rdev->constraints->max_uV;
1195                         target_max = rdev->constraints->max_uV;
1196                 }
1197
1198                 if (target_min != current_uV || target_max != current_uV) {
1199                         rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1200                                   current_uV, target_min, target_max);
1201                         ret = _regulator_do_set_voltage(
1202                                 rdev, target_min, target_max);
1203                         if (ret < 0) {
1204                                 rdev_err(rdev,
1205                                         "failed to apply %d-%duV constraint: %pe\n",
1206                                         target_min, target_max, ERR_PTR(ret));
1207                                 return ret;
1208                         }
1209                 }
1210         }
1211
1212         /* constrain machine-level voltage specs to fit
1213          * the actual range supported by this regulator.
1214          */
1215         if (ops->list_voltage && rdev->desc->n_voltages) {
1216                 int     count = rdev->desc->n_voltages;
1217                 int     i;
1218                 int     min_uV = INT_MAX;
1219                 int     max_uV = INT_MIN;
1220                 int     cmin = constraints->min_uV;
1221                 int     cmax = constraints->max_uV;
1222
1223                 /* it's safe to autoconfigure fixed-voltage supplies
1224                  * and the constraints are used by list_voltage.
1225                  */
1226                 if (count == 1 && !cmin) {
1227                         cmin = 1;
1228                         cmax = INT_MAX;
1229                         constraints->min_uV = cmin;
1230                         constraints->max_uV = cmax;
1231                 }
1232
1233                 /* voltage constraints are optional */
1234                 if ((cmin == 0) && (cmax == 0))
1235                         return 0;
1236
1237                 /* else require explicit machine-level constraints */
1238                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1239                         rdev_err(rdev, "invalid voltage constraints\n");
1240                         return -EINVAL;
1241                 }
1242
1243                 /* no need to loop voltages if range is continuous */
1244                 if (rdev->desc->continuous_voltage_range)
1245                         return 0;
1246
1247                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1248                 for (i = 0; i < count; i++) {
1249                         int     value;
1250
1251                         value = ops->list_voltage(rdev, i);
1252                         if (value <= 0)
1253                                 continue;
1254
1255                         /* maybe adjust [min_uV..max_uV] */
1256                         if (value >= cmin && value < min_uV)
1257                                 min_uV = value;
1258                         if (value <= cmax && value > max_uV)
1259                                 max_uV = value;
1260                 }
1261
1262                 /* final: [min_uV..max_uV] valid iff constraints valid */
1263                 if (max_uV < min_uV) {
1264                         rdev_err(rdev,
1265                                  "unsupportable voltage constraints %u-%uuV\n",
1266                                  min_uV, max_uV);
1267                         return -EINVAL;
1268                 }
1269
1270                 /* use regulator's subset of machine constraints */
1271                 if (constraints->min_uV < min_uV) {
1272                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1273                                  constraints->min_uV, min_uV);
1274                         constraints->min_uV = min_uV;
1275                 }
1276                 if (constraints->max_uV > max_uV) {
1277                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1278                                  constraints->max_uV, max_uV);
1279                         constraints->max_uV = max_uV;
1280                 }
1281         }
1282
1283         return 0;
1284 }
1285
1286 static int machine_constraints_current(struct regulator_dev *rdev,
1287         struct regulation_constraints *constraints)
1288 {
1289         const struct regulator_ops *ops = rdev->desc->ops;
1290         int ret;
1291
1292         if (!constraints->min_uA && !constraints->max_uA)
1293                 return 0;
1294
1295         if (constraints->min_uA > constraints->max_uA) {
1296                 rdev_err(rdev, "Invalid current constraints\n");
1297                 return -EINVAL;
1298         }
1299
1300         if (!ops->set_current_limit || !ops->get_current_limit) {
1301                 rdev_warn(rdev, "Operation of current configuration missing\n");
1302                 return 0;
1303         }
1304
1305         /* Set regulator current in constraints range */
1306         ret = ops->set_current_limit(rdev, constraints->min_uA,
1307                         constraints->max_uA);
1308         if (ret < 0) {
1309                 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1310                 return ret;
1311         }
1312
1313         return 0;
1314 }
1315
1316 static int _regulator_do_enable(struct regulator_dev *rdev);
1317
1318 /**
1319  * set_machine_constraints - sets regulator constraints
1320  * @rdev: regulator source
1321  *
1322  * Allows platform initialisation code to define and constrain
1323  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1324  * Constraints *must* be set by platform code in order for some
1325  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1326  * set_mode.
1327  */
1328 static int set_machine_constraints(struct regulator_dev *rdev)
1329 {
1330         int ret = 0;
1331         const struct regulator_ops *ops = rdev->desc->ops;
1332
1333         ret = machine_constraints_voltage(rdev, rdev->constraints);
1334         if (ret != 0)
1335                 return ret;
1336
1337         ret = machine_constraints_current(rdev, rdev->constraints);
1338         if (ret != 0)
1339                 return ret;
1340
1341         if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1342                 ret = ops->set_input_current_limit(rdev,
1343                                                    rdev->constraints->ilim_uA);
1344                 if (ret < 0) {
1345                         rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1346                         return ret;
1347                 }
1348         }
1349
1350         /* do we need to setup our suspend state */
1351         if (rdev->constraints->initial_state) {
1352                 ret = suspend_set_initial_state(rdev);
1353                 if (ret < 0) {
1354                         rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1355                         return ret;
1356                 }
1357         }
1358
1359         if (rdev->constraints->initial_mode) {
1360                 if (!ops->set_mode) {
1361                         rdev_err(rdev, "no set_mode operation\n");
1362                         return -EINVAL;
1363                 }
1364
1365                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1366                 if (ret < 0) {
1367                         rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1368                         return ret;
1369                 }
1370         } else if (rdev->constraints->system_load) {
1371                 /*
1372                  * We'll only apply the initial system load if an
1373                  * initial mode wasn't specified.
1374                  */
1375                 drms_uA_update(rdev);
1376         }
1377
1378         if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1379                 && ops->set_ramp_delay) {
1380                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1381                 if (ret < 0) {
1382                         rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1383                         return ret;
1384                 }
1385         }
1386
1387         if (rdev->constraints->pull_down && ops->set_pull_down) {
1388                 ret = ops->set_pull_down(rdev);
1389                 if (ret < 0) {
1390                         rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1391                         return ret;
1392                 }
1393         }
1394
1395         if (rdev->constraints->soft_start && ops->set_soft_start) {
1396                 ret = ops->set_soft_start(rdev);
1397                 if (ret < 0) {
1398                         rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1399                         return ret;
1400                 }
1401         }
1402
1403         if (rdev->constraints->over_current_protection
1404                 && ops->set_over_current_protection) {
1405                 ret = ops->set_over_current_protection(rdev);
1406                 if (ret < 0) {
1407                         rdev_err(rdev, "failed to set over current protection: %pe\n",
1408                                  ERR_PTR(ret));
1409                         return ret;
1410                 }
1411         }
1412
1413         if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1414                 bool ad_state = (rdev->constraints->active_discharge ==
1415                               REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1416
1417                 ret = ops->set_active_discharge(rdev, ad_state);
1418                 if (ret < 0) {
1419                         rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1420                         return ret;
1421                 }
1422         }
1423
1424         /* If the constraints say the regulator should be on at this point
1425          * and we have control then make sure it is enabled.
1426          */
1427         if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1428                 /* If we want to enable this regulator, make sure that we know
1429                  * the supplying regulator.
1430                  */
1431                 if (rdev->supply_name && !rdev->supply)
1432                         return -EPROBE_DEFER;
1433
1434                 if (rdev->supply) {
1435                         ret = regulator_enable(rdev->supply);
1436                         if (ret < 0) {
1437                                 _regulator_put(rdev->supply);
1438                                 rdev->supply = NULL;
1439                                 return ret;
1440                         }
1441                 }
1442
1443                 ret = _regulator_do_enable(rdev);
1444                 if (ret < 0 && ret != -EINVAL) {
1445                         rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1446                         return ret;
1447                 }
1448
1449                 if (rdev->constraints->always_on)
1450                         rdev->use_count++;
1451         } else if (rdev->desc->off_on_delay) {
1452                 rdev->last_off = ktime_get();
1453         }
1454
1455         print_constraints(rdev);
1456         return 0;
1457 }
1458
1459 /**
1460  * set_supply - set regulator supply regulator
1461  * @rdev: regulator name
1462  * @supply_rdev: supply regulator name
1463  *
1464  * Called by platform initialisation code to set the supply regulator for this
1465  * regulator. This ensures that a regulators supply will also be enabled by the
1466  * core if it's child is enabled.
1467  */
1468 static int set_supply(struct regulator_dev *rdev,
1469                       struct regulator_dev *supply_rdev)
1470 {
1471         int err;
1472
1473         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1474
1475         if (!try_module_get(supply_rdev->owner))
1476                 return -ENODEV;
1477
1478         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1479         if (rdev->supply == NULL) {
1480                 err = -ENOMEM;
1481                 return err;
1482         }
1483         supply_rdev->open_count++;
1484
1485         return 0;
1486 }
1487
1488 /**
1489  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1490  * @rdev:         regulator source
1491  * @consumer_dev_name: dev_name() string for device supply applies to
1492  * @supply:       symbolic name for supply
1493  *
1494  * Allows platform initialisation code to map physical regulator
1495  * sources to symbolic names for supplies for use by devices.  Devices
1496  * should use these symbolic names to request regulators, avoiding the
1497  * need to provide board-specific regulator names as platform data.
1498  */
1499 static int set_consumer_device_supply(struct regulator_dev *rdev,
1500                                       const char *consumer_dev_name,
1501                                       const char *supply)
1502 {
1503         struct regulator_map *node, *new_node;
1504         int has_dev;
1505
1506         if (supply == NULL)
1507                 return -EINVAL;
1508
1509         if (consumer_dev_name != NULL)
1510                 has_dev = 1;
1511         else
1512                 has_dev = 0;
1513
1514         new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1515         if (new_node == NULL)
1516                 return -ENOMEM;
1517
1518         new_node->regulator = rdev;
1519         new_node->supply = supply;
1520
1521         if (has_dev) {
1522                 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1523                 if (new_node->dev_name == NULL) {
1524                         kfree(new_node);
1525                         return -ENOMEM;
1526                 }
1527         }
1528
1529         mutex_lock(&regulator_list_mutex);
1530         list_for_each_entry(node, &regulator_map_list, list) {
1531                 if (node->dev_name && consumer_dev_name) {
1532                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1533                                 continue;
1534                 } else if (node->dev_name || consumer_dev_name) {
1535                         continue;
1536                 }
1537
1538                 if (strcmp(node->supply, supply) != 0)
1539                         continue;
1540
1541                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1542                          consumer_dev_name,
1543                          dev_name(&node->regulator->dev),
1544                          node->regulator->desc->name,
1545                          supply,
1546                          dev_name(&rdev->dev), rdev_get_name(rdev));
1547                 goto fail;
1548         }
1549
1550         list_add(&new_node->list, &regulator_map_list);
1551         mutex_unlock(&regulator_list_mutex);
1552
1553         return 0;
1554
1555 fail:
1556         mutex_unlock(&regulator_list_mutex);
1557         kfree(new_node->dev_name);
1558         kfree(new_node);
1559         return -EBUSY;
1560 }
1561
1562 static void unset_regulator_supplies(struct regulator_dev *rdev)
1563 {
1564         struct regulator_map *node, *n;
1565
1566         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1567                 if (rdev == node->regulator) {
1568                         list_del(&node->list);
1569                         kfree(node->dev_name);
1570                         kfree(node);
1571                 }
1572         }
1573 }
1574
1575 #ifdef CONFIG_DEBUG_FS
1576 static ssize_t constraint_flags_read_file(struct file *file,
1577                                           char __user *user_buf,
1578                                           size_t count, loff_t *ppos)
1579 {
1580         const struct regulator *regulator = file->private_data;
1581         const struct regulation_constraints *c = regulator->rdev->constraints;
1582         char *buf;
1583         ssize_t ret;
1584
1585         if (!c)
1586                 return 0;
1587
1588         buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1589         if (!buf)
1590                 return -ENOMEM;
1591
1592         ret = snprintf(buf, PAGE_SIZE,
1593                         "always_on: %u\n"
1594                         "boot_on: %u\n"
1595                         "apply_uV: %u\n"
1596                         "ramp_disable: %u\n"
1597                         "soft_start: %u\n"
1598                         "pull_down: %u\n"
1599                         "over_current_protection: %u\n",
1600                         c->always_on,
1601                         c->boot_on,
1602                         c->apply_uV,
1603                         c->ramp_disable,
1604                         c->soft_start,
1605                         c->pull_down,
1606                         c->over_current_protection);
1607
1608         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1609         kfree(buf);
1610
1611         return ret;
1612 }
1613
1614 #endif
1615
1616 static const struct file_operations constraint_flags_fops = {
1617 #ifdef CONFIG_DEBUG_FS
1618         .open = simple_open,
1619         .read = constraint_flags_read_file,
1620         .llseek = default_llseek,
1621 #endif
1622 };
1623
1624 #define REG_STR_SIZE    64
1625
1626 static struct regulator *create_regulator(struct regulator_dev *rdev,
1627                                           struct device *dev,
1628                                           const char *supply_name)
1629 {
1630         struct regulator *regulator;
1631         int err = 0;
1632
1633         if (dev) {
1634                 char buf[REG_STR_SIZE];
1635                 int size;
1636
1637                 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1638                                 dev->kobj.name, supply_name);
1639                 if (size >= REG_STR_SIZE)
1640                         return NULL;
1641
1642                 supply_name = kstrdup(buf, GFP_KERNEL);
1643                 if (supply_name == NULL)
1644                         return NULL;
1645         } else {
1646                 supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1647                 if (supply_name == NULL)
1648                         return NULL;
1649         }
1650
1651         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1652         if (regulator == NULL) {
1653                 kfree(supply_name);
1654                 return NULL;
1655         }
1656
1657         regulator->rdev = rdev;
1658         regulator->supply_name = supply_name;
1659
1660         regulator_lock(rdev);
1661         list_add(&regulator->list, &rdev->consumer_list);
1662         regulator_unlock(rdev);
1663
1664         if (dev) {
1665                 regulator->dev = dev;
1666
1667                 /* Add a link to the device sysfs entry */
1668                 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1669                                                supply_name);
1670                 if (err) {
1671                         rdev_dbg(rdev, "could not add device link %s: %pe\n",
1672                                   dev->kobj.name, ERR_PTR(err));
1673                         /* non-fatal */
1674                 }
1675         }
1676
1677         if (err != -EEXIST)
1678                 regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1679         if (!regulator->debugfs) {
1680                 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1681         } else {
1682                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1683                                    &regulator->uA_load);
1684                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1685                                    &regulator->voltage[PM_SUSPEND_ON].min_uV);
1686                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1687                                    &regulator->voltage[PM_SUSPEND_ON].max_uV);
1688                 debugfs_create_file("constraint_flags", 0444,
1689                                     regulator->debugfs, regulator,
1690                                     &constraint_flags_fops);
1691         }
1692
1693         /*
1694          * Check now if the regulator is an always on regulator - if
1695          * it is then we don't need to do nearly so much work for
1696          * enable/disable calls.
1697          */
1698         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1699             _regulator_is_enabled(rdev))
1700                 regulator->always_on = true;
1701
1702         return regulator;
1703 }
1704
1705 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1706 {
1707         if (rdev->constraints && rdev->constraints->enable_time)
1708                 return rdev->constraints->enable_time;
1709         if (rdev->desc->ops->enable_time)
1710                 return rdev->desc->ops->enable_time(rdev);
1711         return rdev->desc->enable_time;
1712 }
1713
1714 static struct regulator_supply_alias *regulator_find_supply_alias(
1715                 struct device *dev, const char *supply)
1716 {
1717         struct regulator_supply_alias *map;
1718
1719         list_for_each_entry(map, &regulator_supply_alias_list, list)
1720                 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1721                         return map;
1722
1723         return NULL;
1724 }
1725
1726 static void regulator_supply_alias(struct device **dev, const char **supply)
1727 {
1728         struct regulator_supply_alias *map;
1729
1730         map = regulator_find_supply_alias(*dev, *supply);
1731         if (map) {
1732                 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1733                                 *supply, map->alias_supply,
1734                                 dev_name(map->alias_dev));
1735                 *dev = map->alias_dev;
1736                 *supply = map->alias_supply;
1737         }
1738 }
1739
1740 static int regulator_match(struct device *dev, const void *data)
1741 {
1742         struct regulator_dev *r = dev_to_rdev(dev);
1743
1744         return strcmp(rdev_get_name(r), data) == 0;
1745 }
1746
1747 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1748 {
1749         struct device *dev;
1750
1751         dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1752
1753         return dev ? dev_to_rdev(dev) : NULL;
1754 }
1755
1756 /**
1757  * regulator_dev_lookup - lookup a regulator device.
1758  * @dev: device for regulator "consumer".
1759  * @supply: Supply name or regulator ID.
1760  *
1761  * If successful, returns a struct regulator_dev that corresponds to the name
1762  * @supply and with the embedded struct device refcount incremented by one.
1763  * The refcount must be dropped by calling put_device().
1764  * On failure one of the following ERR-PTR-encoded values is returned:
1765  * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1766  * in the future.
1767  */
1768 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1769                                                   const char *supply)
1770 {
1771         struct regulator_dev *r = NULL;
1772         struct device_node *node;
1773         struct regulator_map *map;
1774         const char *devname = NULL;
1775
1776         regulator_supply_alias(&dev, &supply);
1777
1778         /* first do a dt based lookup */
1779         if (dev && dev->of_node) {
1780                 node = of_get_regulator(dev, supply);
1781                 if (node) {
1782                         r = of_find_regulator_by_node(node);
1783                         if (r)
1784                                 return r;
1785
1786                         /*
1787                          * We have a node, but there is no device.
1788                          * assume it has not registered yet.
1789                          */
1790                         return ERR_PTR(-EPROBE_DEFER);
1791                 }
1792         }
1793
1794         /* if not found, try doing it non-dt way */
1795         if (dev)
1796                 devname = dev_name(dev);
1797
1798         mutex_lock(&regulator_list_mutex);
1799         list_for_each_entry(map, &regulator_map_list, list) {
1800                 /* If the mapping has a device set up it must match */
1801                 if (map->dev_name &&
1802                     (!devname || strcmp(map->dev_name, devname)))
1803                         continue;
1804
1805                 if (strcmp(map->supply, supply) == 0 &&
1806                     get_device(&map->regulator->dev)) {
1807                         r = map->regulator;
1808                         break;
1809                 }
1810         }
1811         mutex_unlock(&regulator_list_mutex);
1812
1813         if (r)
1814                 return r;
1815
1816         r = regulator_lookup_by_name(supply);
1817         if (r)
1818                 return r;
1819
1820         return ERR_PTR(-ENODEV);
1821 }
1822
1823 static int regulator_resolve_supply(struct regulator_dev *rdev)
1824 {
1825         struct regulator_dev *r;
1826         struct device *dev = rdev->dev.parent;
1827         int ret = 0;
1828
1829         /* No supply to resolve? */
1830         if (!rdev->supply_name)
1831                 return 0;
1832
1833         /* Supply already resolved? (fast-path without locking contention) */
1834         if (rdev->supply)
1835                 return 0;
1836
1837         r = regulator_dev_lookup(dev, rdev->supply_name);
1838         if (IS_ERR(r)) {
1839                 ret = PTR_ERR(r);
1840
1841                 /* Did the lookup explicitly defer for us? */
1842                 if (ret == -EPROBE_DEFER)
1843                         goto out;
1844
1845                 if (have_full_constraints()) {
1846                         r = dummy_regulator_rdev;
1847                         get_device(&r->dev);
1848                 } else {
1849                         dev_err(dev, "Failed to resolve %s-supply for %s\n",
1850                                 rdev->supply_name, rdev->desc->name);
1851                         ret = -EPROBE_DEFER;
1852                         goto out;
1853                 }
1854         }
1855
1856         if (r == rdev) {
1857                 dev_err(dev, "Supply for %s (%s) resolved to itself\n",
1858                         rdev->desc->name, rdev->supply_name);
1859                 if (!have_full_constraints()) {
1860                         ret = -EINVAL;
1861                         goto out;
1862                 }
1863                 r = dummy_regulator_rdev;
1864                 get_device(&r->dev);
1865         }
1866
1867         /*
1868          * If the supply's parent device is not the same as the
1869          * regulator's parent device, then ensure the parent device
1870          * is bound before we resolve the supply, in case the parent
1871          * device get probe deferred and unregisters the supply.
1872          */
1873         if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1874                 if (!device_is_bound(r->dev.parent)) {
1875                         put_device(&r->dev);
1876                         ret = -EPROBE_DEFER;
1877                         goto out;
1878                 }
1879         }
1880
1881         /* Recursively resolve the supply of the supply */
1882         ret = regulator_resolve_supply(r);
1883         if (ret < 0) {
1884                 put_device(&r->dev);
1885                 goto out;
1886         }
1887
1888         /*
1889          * Recheck rdev->supply with rdev->mutex lock held to avoid a race
1890          * between rdev->supply null check and setting rdev->supply in
1891          * set_supply() from concurrent tasks.
1892          */
1893         regulator_lock(rdev);
1894
1895         /* Supply just resolved by a concurrent task? */
1896         if (rdev->supply) {
1897                 regulator_unlock(rdev);
1898                 put_device(&r->dev);
1899                 goto out;
1900         }
1901
1902         ret = set_supply(rdev, r);
1903         if (ret < 0) {
1904                 regulator_unlock(rdev);
1905                 put_device(&r->dev);
1906                 goto out;
1907         }
1908
1909         regulator_unlock(rdev);
1910
1911         /*
1912          * In set_machine_constraints() we may have turned this regulator on
1913          * but we couldn't propagate to the supply if it hadn't been resolved
1914          * yet.  Do it now.
1915          */
1916         if (rdev->use_count) {
1917                 ret = regulator_enable(rdev->supply);
1918                 if (ret < 0) {
1919                         _regulator_put(rdev->supply);
1920                         rdev->supply = NULL;
1921                         goto out;
1922                 }
1923         }
1924
1925 out:
1926         return ret;
1927 }
1928
1929 /* Internal regulator request function */
1930 struct regulator *_regulator_get(struct device *dev, const char *id,
1931                                  enum regulator_get_type get_type)
1932 {
1933         struct regulator_dev *rdev;
1934         struct regulator *regulator;
1935         struct device_link *link;
1936         int ret;
1937
1938         if (get_type >= MAX_GET_TYPE) {
1939                 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1940                 return ERR_PTR(-EINVAL);
1941         }
1942
1943         if (id == NULL) {
1944                 pr_err("get() with no identifier\n");
1945                 return ERR_PTR(-EINVAL);
1946         }
1947
1948         rdev = regulator_dev_lookup(dev, id);
1949         if (IS_ERR(rdev)) {
1950                 ret = PTR_ERR(rdev);
1951
1952                 /*
1953                  * If regulator_dev_lookup() fails with error other
1954                  * than -ENODEV our job here is done, we simply return it.
1955                  */
1956                 if (ret != -ENODEV)
1957                         return ERR_PTR(ret);
1958
1959                 if (!have_full_constraints()) {
1960                         dev_warn(dev,
1961                                  "incomplete constraints, dummy supplies not allowed\n");
1962                         return ERR_PTR(-ENODEV);
1963                 }
1964
1965                 switch (get_type) {
1966                 case NORMAL_GET:
1967                         /*
1968                          * Assume that a regulator is physically present and
1969                          * enabled, even if it isn't hooked up, and just
1970                          * provide a dummy.
1971                          */
1972                         dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
1973                         rdev = dummy_regulator_rdev;
1974                         get_device(&rdev->dev);
1975                         break;
1976
1977                 case EXCLUSIVE_GET:
1978                         dev_warn(dev,
1979                                  "dummy supplies not allowed for exclusive requests\n");
1980                         fallthrough;
1981
1982                 default:
1983                         return ERR_PTR(-ENODEV);
1984                 }
1985         }
1986
1987         if (rdev->exclusive) {
1988                 regulator = ERR_PTR(-EPERM);
1989                 put_device(&rdev->dev);
1990                 return regulator;
1991         }
1992
1993         if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1994                 regulator = ERR_PTR(-EBUSY);
1995                 put_device(&rdev->dev);
1996                 return regulator;
1997         }
1998
1999         mutex_lock(&regulator_list_mutex);
2000         ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2001         mutex_unlock(&regulator_list_mutex);
2002
2003         if (ret != 0) {
2004                 regulator = ERR_PTR(-EPROBE_DEFER);
2005                 put_device(&rdev->dev);
2006                 return regulator;
2007         }
2008
2009         ret = regulator_resolve_supply(rdev);
2010         if (ret < 0) {
2011                 regulator = ERR_PTR(ret);
2012                 put_device(&rdev->dev);
2013                 return regulator;
2014         }
2015
2016         if (!try_module_get(rdev->owner)) {
2017                 regulator = ERR_PTR(-EPROBE_DEFER);
2018                 put_device(&rdev->dev);
2019                 return regulator;
2020         }
2021
2022         regulator = create_regulator(rdev, dev, id);
2023         if (regulator == NULL) {
2024                 regulator = ERR_PTR(-ENOMEM);
2025                 module_put(rdev->owner);
2026                 put_device(&rdev->dev);
2027                 return regulator;
2028         }
2029
2030         rdev->open_count++;
2031         if (get_type == EXCLUSIVE_GET) {
2032                 rdev->exclusive = 1;
2033
2034                 ret = _regulator_is_enabled(rdev);
2035                 if (ret > 0)
2036                         rdev->use_count = 1;
2037                 else
2038                         rdev->use_count = 0;
2039         }
2040
2041         link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2042         if (!IS_ERR_OR_NULL(link))
2043                 regulator->device_link = true;
2044
2045         return regulator;
2046 }
2047
2048 /**
2049  * regulator_get - lookup and obtain a reference to a regulator.
2050  * @dev: device for regulator "consumer"
2051  * @id: Supply name or regulator ID.
2052  *
2053  * Returns a struct regulator corresponding to the regulator producer,
2054  * or IS_ERR() condition containing errno.
2055  *
2056  * Use of supply names configured via set_consumer_device_supply() is
2057  * strongly encouraged.  It is recommended that the supply name used
2058  * should match the name used for the supply and/or the relevant
2059  * device pins in the datasheet.
2060  */
2061 struct regulator *regulator_get(struct device *dev, const char *id)
2062 {
2063         return _regulator_get(dev, id, NORMAL_GET);
2064 }
2065 EXPORT_SYMBOL_GPL(regulator_get);
2066
2067 /**
2068  * regulator_get_exclusive - obtain exclusive access to a regulator.
2069  * @dev: device for regulator "consumer"
2070  * @id: Supply name or regulator ID.
2071  *
2072  * Returns a struct regulator corresponding to the regulator producer,
2073  * or IS_ERR() condition containing errno.  Other consumers will be
2074  * unable to obtain this regulator while this reference is held and the
2075  * use count for the regulator will be initialised to reflect the current
2076  * state of the regulator.
2077  *
2078  * This is intended for use by consumers which cannot tolerate shared
2079  * use of the regulator such as those which need to force the
2080  * regulator off for correct operation of the hardware they are
2081  * controlling.
2082  *
2083  * Use of supply names configured via set_consumer_device_supply() is
2084  * strongly encouraged.  It is recommended that the supply name used
2085  * should match the name used for the supply and/or the relevant
2086  * device pins in the datasheet.
2087  */
2088 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2089 {
2090         return _regulator_get(dev, id, EXCLUSIVE_GET);
2091 }
2092 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2093
2094 /**
2095  * regulator_get_optional - obtain optional access to a regulator.
2096  * @dev: device for regulator "consumer"
2097  * @id: Supply name or regulator ID.
2098  *
2099  * Returns a struct regulator corresponding to the regulator producer,
2100  * or IS_ERR() condition containing errno.
2101  *
2102  * This is intended for use by consumers for devices which can have
2103  * some supplies unconnected in normal use, such as some MMC devices.
2104  * It can allow the regulator core to provide stub supplies for other
2105  * supplies requested using normal regulator_get() calls without
2106  * disrupting the operation of drivers that can handle absent
2107  * supplies.
2108  *
2109  * Use of supply names configured via set_consumer_device_supply() is
2110  * strongly encouraged.  It is recommended that the supply name used
2111  * should match the name used for the supply and/or the relevant
2112  * device pins in the datasheet.
2113  */
2114 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2115 {
2116         return _regulator_get(dev, id, OPTIONAL_GET);
2117 }
2118 EXPORT_SYMBOL_GPL(regulator_get_optional);
2119
2120 static void destroy_regulator(struct regulator *regulator)
2121 {
2122         struct regulator_dev *rdev = regulator->rdev;
2123
2124         debugfs_remove_recursive(regulator->debugfs);
2125
2126         if (regulator->dev) {
2127                 if (regulator->device_link)
2128                         device_link_remove(regulator->dev, &rdev->dev);
2129
2130                 /* remove any sysfs entries */
2131                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2132         }
2133
2134         regulator_lock(rdev);
2135         list_del(&regulator->list);
2136
2137         rdev->open_count--;
2138         rdev->exclusive = 0;
2139         regulator_unlock(rdev);
2140
2141         kfree_const(regulator->supply_name);
2142         kfree(regulator);
2143 }
2144
2145 /* regulator_list_mutex lock held by regulator_put() */
2146 static void _regulator_put(struct regulator *regulator)
2147 {
2148         struct regulator_dev *rdev;
2149
2150         if (IS_ERR_OR_NULL(regulator))
2151                 return;
2152
2153         lockdep_assert_held_once(&regulator_list_mutex);
2154
2155         /* Docs say you must disable before calling regulator_put() */
2156         WARN_ON(regulator->enable_count);
2157
2158         rdev = regulator->rdev;
2159
2160         destroy_regulator(regulator);
2161
2162         module_put(rdev->owner);
2163         put_device(&rdev->dev);
2164 }
2165
2166 /**
2167  * regulator_put - "free" the regulator source
2168  * @regulator: regulator source
2169  *
2170  * Note: drivers must ensure that all regulator_enable calls made on this
2171  * regulator source are balanced by regulator_disable calls prior to calling
2172  * this function.
2173  */
2174 void regulator_put(struct regulator *regulator)
2175 {
2176         mutex_lock(&regulator_list_mutex);
2177         _regulator_put(regulator);
2178         mutex_unlock(&regulator_list_mutex);
2179 }
2180 EXPORT_SYMBOL_GPL(regulator_put);
2181
2182 /**
2183  * regulator_register_supply_alias - Provide device alias for supply lookup
2184  *
2185  * @dev: device that will be given as the regulator "consumer"
2186  * @id: Supply name or regulator ID
2187  * @alias_dev: device that should be used to lookup the supply
2188  * @alias_id: Supply name or regulator ID that should be used to lookup the
2189  * supply
2190  *
2191  * All lookups for id on dev will instead be conducted for alias_id on
2192  * alias_dev.
2193  */
2194 int regulator_register_supply_alias(struct device *dev, const char *id,
2195                                     struct device *alias_dev,
2196                                     const char *alias_id)
2197 {
2198         struct regulator_supply_alias *map;
2199
2200         map = regulator_find_supply_alias(dev, id);
2201         if (map)
2202                 return -EEXIST;
2203
2204         map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2205         if (!map)
2206                 return -ENOMEM;
2207
2208         map->src_dev = dev;
2209         map->src_supply = id;
2210         map->alias_dev = alias_dev;
2211         map->alias_supply = alias_id;
2212
2213         list_add(&map->list, &regulator_supply_alias_list);
2214
2215         pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2216                 id, dev_name(dev), alias_id, dev_name(alias_dev));
2217
2218         return 0;
2219 }
2220 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2221
2222 /**
2223  * regulator_unregister_supply_alias - Remove device alias
2224  *
2225  * @dev: device that will be given as the regulator "consumer"
2226  * @id: Supply name or regulator ID
2227  *
2228  * Remove a lookup alias if one exists for id on dev.
2229  */
2230 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2231 {
2232         struct regulator_supply_alias *map;
2233
2234         map = regulator_find_supply_alias(dev, id);
2235         if (map) {
2236                 list_del(&map->list);
2237                 kfree(map);
2238         }
2239 }
2240 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2241
2242 /**
2243  * regulator_bulk_register_supply_alias - register multiple aliases
2244  *
2245  * @dev: device that will be given as the regulator "consumer"
2246  * @id: List of supply names or regulator IDs
2247  * @alias_dev: device that should be used to lookup the supply
2248  * @alias_id: List of supply names or regulator IDs that should be used to
2249  * lookup the supply
2250  * @num_id: Number of aliases to register
2251  *
2252  * @return 0 on success, an errno on failure.
2253  *
2254  * This helper function allows drivers to register several supply
2255  * aliases in one operation.  If any of the aliases cannot be
2256  * registered any aliases that were registered will be removed
2257  * before returning to the caller.
2258  */
2259 int regulator_bulk_register_supply_alias(struct device *dev,
2260                                          const char *const *id,
2261                                          struct device *alias_dev,
2262                                          const char *const *alias_id,
2263                                          int num_id)
2264 {
2265         int i;
2266         int ret;
2267
2268         for (i = 0; i < num_id; ++i) {
2269                 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2270                                                       alias_id[i]);
2271                 if (ret < 0)
2272                         goto err;
2273         }
2274
2275         return 0;
2276
2277 err:
2278         dev_err(dev,
2279                 "Failed to create supply alias %s,%s -> %s,%s\n",
2280                 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2281
2282         while (--i >= 0)
2283                 regulator_unregister_supply_alias(dev, id[i]);
2284
2285         return ret;
2286 }
2287 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2288
2289 /**
2290  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2291  *
2292  * @dev: device that will be given as the regulator "consumer"
2293  * @id: List of supply names or regulator IDs
2294  * @num_id: Number of aliases to unregister
2295  *
2296  * This helper function allows drivers to unregister several supply
2297  * aliases in one operation.
2298  */
2299 void regulator_bulk_unregister_supply_alias(struct device *dev,
2300                                             const char *const *id,
2301                                             int num_id)
2302 {
2303         int i;
2304
2305         for (i = 0; i < num_id; ++i)
2306                 regulator_unregister_supply_alias(dev, id[i]);
2307 }
2308 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2309
2310
2311 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2312 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2313                                 const struct regulator_config *config)
2314 {
2315         struct regulator_enable_gpio *pin, *new_pin;
2316         struct gpio_desc *gpiod;
2317
2318         gpiod = config->ena_gpiod;
2319         new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2320
2321         mutex_lock(&regulator_list_mutex);
2322
2323         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2324                 if (pin->gpiod == gpiod) {
2325                         rdev_dbg(rdev, "GPIO is already used\n");
2326                         goto update_ena_gpio_to_rdev;
2327                 }
2328         }
2329
2330         if (new_pin == NULL) {
2331                 mutex_unlock(&regulator_list_mutex);
2332                 return -ENOMEM;
2333         }
2334
2335         pin = new_pin;
2336         new_pin = NULL;
2337
2338         pin->gpiod = gpiod;
2339         list_add(&pin->list, &regulator_ena_gpio_list);
2340
2341 update_ena_gpio_to_rdev:
2342         pin->request_count++;
2343         rdev->ena_pin = pin;
2344
2345         mutex_unlock(&regulator_list_mutex);
2346         kfree(new_pin);
2347
2348         return 0;
2349 }
2350
2351 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2352 {
2353         struct regulator_enable_gpio *pin, *n;
2354
2355         if (!rdev->ena_pin)
2356                 return;
2357
2358         /* Free the GPIO only in case of no use */
2359         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2360                 if (pin != rdev->ena_pin)
2361                         continue;
2362
2363                 if (--pin->request_count)
2364                         break;
2365
2366                 gpiod_put(pin->gpiod);
2367                 list_del(&pin->list);
2368                 kfree(pin);
2369                 break;
2370         }
2371
2372         rdev->ena_pin = NULL;
2373 }
2374
2375 /**
2376  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2377  * @rdev: regulator_dev structure
2378  * @enable: enable GPIO at initial use?
2379  *
2380  * GPIO is enabled in case of initial use. (enable_count is 0)
2381  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2382  */
2383 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2384 {
2385         struct regulator_enable_gpio *pin = rdev->ena_pin;
2386
2387         if (!pin)
2388                 return -EINVAL;
2389
2390         if (enable) {
2391                 /* Enable GPIO at initial use */
2392                 if (pin->enable_count == 0)
2393                         gpiod_set_value_cansleep(pin->gpiod, 1);
2394
2395                 pin->enable_count++;
2396         } else {
2397                 if (pin->enable_count > 1) {
2398                         pin->enable_count--;
2399                         return 0;
2400                 }
2401
2402                 /* Disable GPIO if not used */
2403                 if (pin->enable_count <= 1) {
2404                         gpiod_set_value_cansleep(pin->gpiod, 0);
2405                         pin->enable_count = 0;
2406                 }
2407         }
2408
2409         return 0;
2410 }
2411
2412 /**
2413  * _regulator_enable_delay - a delay helper function
2414  * @delay: time to delay in microseconds
2415  *
2416  * Delay for the requested amount of time as per the guidelines in:
2417  *
2418  *     Documentation/timers/timers-howto.rst
2419  *
2420  * The assumption here is that regulators will never be enabled in
2421  * atomic context and therefore sleeping functions can be used.
2422  */
2423 static void _regulator_enable_delay(unsigned int delay)
2424 {
2425         unsigned int ms = delay / 1000;
2426         unsigned int us = delay % 1000;
2427
2428         if (ms > 0) {
2429                 /*
2430                  * For small enough values, handle super-millisecond
2431                  * delays in the usleep_range() call below.
2432                  */
2433                 if (ms < 20)
2434                         us += ms * 1000;
2435                 else
2436                         msleep(ms);
2437         }
2438
2439         /*
2440          * Give the scheduler some room to coalesce with any other
2441          * wakeup sources. For delays shorter than 10 us, don't even
2442          * bother setting up high-resolution timers and just busy-
2443          * loop.
2444          */
2445         if (us >= 10)
2446                 usleep_range(us, us + 100);
2447         else
2448                 udelay(us);
2449 }
2450
2451 /**
2452  * _regulator_check_status_enabled
2453  *
2454  * A helper function to check if the regulator status can be interpreted
2455  * as 'regulator is enabled'.
2456  * @rdev: the regulator device to check
2457  *
2458  * Return:
2459  * * 1                  - if status shows regulator is in enabled state
2460  * * 0                  - if not enabled state
2461  * * Error Value        - as received from ops->get_status()
2462  */
2463 static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2464 {
2465         int ret = rdev->desc->ops->get_status(rdev);
2466
2467         if (ret < 0) {
2468                 rdev_info(rdev, "get_status returned error: %d\n", ret);
2469                 return ret;
2470         }
2471
2472         switch (ret) {
2473         case REGULATOR_STATUS_OFF:
2474         case REGULATOR_STATUS_ERROR:
2475         case REGULATOR_STATUS_UNDEFINED:
2476                 return 0;
2477         default:
2478                 return 1;
2479         }
2480 }
2481
2482 static int _regulator_do_enable(struct regulator_dev *rdev)
2483 {
2484         int ret, delay;
2485
2486         /* Query before enabling in case configuration dependent.  */
2487         ret = _regulator_get_enable_time(rdev);
2488         if (ret >= 0) {
2489                 delay = ret;
2490         } else {
2491                 rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2492                 delay = 0;
2493         }
2494
2495         trace_regulator_enable(rdev_get_name(rdev));
2496
2497         if (rdev->desc->off_on_delay && rdev->last_off) {
2498                 /* if needed, keep a distance of off_on_delay from last time
2499                  * this regulator was disabled.
2500                  */
2501                 ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay);
2502                 s64 remaining = ktime_us_delta(end, ktime_get());
2503
2504                 if (remaining > 0)
2505                         _regulator_enable_delay(remaining);
2506         }
2507
2508         if (rdev->ena_pin) {
2509                 if (!rdev->ena_gpio_state) {
2510                         ret = regulator_ena_gpio_ctrl(rdev, true);
2511                         if (ret < 0)
2512                                 return ret;
2513                         rdev->ena_gpio_state = 1;
2514                 }
2515         } else if (rdev->desc->ops->enable) {
2516                 ret = rdev->desc->ops->enable(rdev);
2517                 if (ret < 0)
2518                         return ret;
2519         } else {
2520                 return -EINVAL;
2521         }
2522
2523         /* Allow the regulator to ramp; it would be useful to extend
2524          * this for bulk operations so that the regulators can ramp
2525          * together.
2526          */
2527         trace_regulator_enable_delay(rdev_get_name(rdev));
2528
2529         /* If poll_enabled_time is set, poll upto the delay calculated
2530          * above, delaying poll_enabled_time uS to check if the regulator
2531          * actually got enabled.
2532          * If the regulator isn't enabled after enable_delay has
2533          * expired, return -ETIMEDOUT.
2534          */
2535         if (rdev->desc->poll_enabled_time) {
2536                 unsigned int time_remaining = delay;
2537
2538                 while (time_remaining > 0) {
2539                         _regulator_enable_delay(rdev->desc->poll_enabled_time);
2540
2541                         if (rdev->desc->ops->get_status) {
2542                                 ret = _regulator_check_status_enabled(rdev);
2543                                 if (ret < 0)
2544                                         return ret;
2545                                 else if (ret)
2546                                         break;
2547                         } else if (rdev->desc->ops->is_enabled(rdev))
2548                                 break;
2549
2550                         time_remaining -= rdev->desc->poll_enabled_time;
2551                 }
2552
2553                 if (time_remaining <= 0) {
2554                         rdev_err(rdev, "Enabled check timed out\n");
2555                         return -ETIMEDOUT;
2556                 }
2557         } else {
2558                 _regulator_enable_delay(delay);
2559         }
2560
2561         trace_regulator_enable_complete(rdev_get_name(rdev));
2562
2563         return 0;
2564 }
2565
2566 /**
2567  * _regulator_handle_consumer_enable - handle that a consumer enabled
2568  * @regulator: regulator source
2569  *
2570  * Some things on a regulator consumer (like the contribution towards total
2571  * load on the regulator) only have an effect when the consumer wants the
2572  * regulator enabled.  Explained in example with two consumers of the same
2573  * regulator:
2574  *   consumer A: set_load(100);       => total load = 0
2575  *   consumer A: regulator_enable();  => total load = 100
2576  *   consumer B: set_load(1000);      => total load = 100
2577  *   consumer B: regulator_enable();  => total load = 1100
2578  *   consumer A: regulator_disable(); => total_load = 1000
2579  *
2580  * This function (together with _regulator_handle_consumer_disable) is
2581  * responsible for keeping track of the refcount for a given regulator consumer
2582  * and applying / unapplying these things.
2583  *
2584  * Returns 0 upon no error; -error upon error.
2585  */
2586 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2587 {
2588         struct regulator_dev *rdev = regulator->rdev;
2589
2590         lockdep_assert_held_once(&rdev->mutex.base);
2591
2592         regulator->enable_count++;
2593         if (regulator->uA_load && regulator->enable_count == 1)
2594                 return drms_uA_update(rdev);
2595
2596         return 0;
2597 }
2598
2599 /**
2600  * _regulator_handle_consumer_disable - handle that a consumer disabled
2601  * @regulator: regulator source
2602  *
2603  * The opposite of _regulator_handle_consumer_enable().
2604  *
2605  * Returns 0 upon no error; -error upon error.
2606  */
2607 static int _regulator_handle_consumer_disable(struct regulator *regulator)
2608 {
2609         struct regulator_dev *rdev = regulator->rdev;
2610
2611         lockdep_assert_held_once(&rdev->mutex.base);
2612
2613         if (!regulator->enable_count) {
2614                 rdev_err(rdev, "Underflow of regulator enable count\n");
2615                 return -EINVAL;
2616         }
2617
2618         regulator->enable_count--;
2619         if (regulator->uA_load && regulator->enable_count == 0)
2620                 return drms_uA_update(rdev);
2621
2622         return 0;
2623 }
2624
2625 /* locks held by regulator_enable() */
2626 static int _regulator_enable(struct regulator *regulator)
2627 {
2628         struct regulator_dev *rdev = regulator->rdev;
2629         int ret;
2630
2631         lockdep_assert_held_once(&rdev->mutex.base);
2632
2633         if (rdev->use_count == 0 && rdev->supply) {
2634                 ret = _regulator_enable(rdev->supply);
2635                 if (ret < 0)
2636                         return ret;
2637         }
2638
2639         /* balance only if there are regulators coupled */
2640         if (rdev->coupling_desc.n_coupled > 1) {
2641                 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2642                 if (ret < 0)
2643                         goto err_disable_supply;
2644         }
2645
2646         ret = _regulator_handle_consumer_enable(regulator);
2647         if (ret < 0)
2648                 goto err_disable_supply;
2649
2650         if (rdev->use_count == 0) {
2651                 /*
2652                  * The regulator may already be enabled if it's not switchable
2653                  * or was left on
2654                  */
2655                 ret = _regulator_is_enabled(rdev);
2656                 if (ret == -EINVAL || ret == 0) {
2657                         if (!regulator_ops_is_valid(rdev,
2658                                         REGULATOR_CHANGE_STATUS)) {
2659                                 ret = -EPERM;
2660                                 goto err_consumer_disable;
2661                         }
2662
2663                         ret = _regulator_do_enable(rdev);
2664                         if (ret < 0)
2665                                 goto err_consumer_disable;
2666
2667                         _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2668                                              NULL);
2669                 } else if (ret < 0) {
2670                         rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2671                         goto err_consumer_disable;
2672                 }
2673                 /* Fallthrough on positive return values - already enabled */
2674         }
2675
2676         rdev->use_count++;
2677
2678         return 0;
2679
2680 err_consumer_disable:
2681         _regulator_handle_consumer_disable(regulator);
2682
2683 err_disable_supply:
2684         if (rdev->use_count == 0 && rdev->supply)
2685                 _regulator_disable(rdev->supply);
2686
2687         return ret;
2688 }
2689
2690 /**
2691  * regulator_enable - enable regulator output
2692  * @regulator: regulator source
2693  *
2694  * Request that the regulator be enabled with the regulator output at
2695  * the predefined voltage or current value.  Calls to regulator_enable()
2696  * must be balanced with calls to regulator_disable().
2697  *
2698  * NOTE: the output value can be set by other drivers, boot loader or may be
2699  * hardwired in the regulator.
2700  */
2701 int regulator_enable(struct regulator *regulator)
2702 {
2703         struct regulator_dev *rdev = regulator->rdev;
2704         struct ww_acquire_ctx ww_ctx;
2705         int ret;
2706
2707         regulator_lock_dependent(rdev, &ww_ctx);
2708         ret = _regulator_enable(regulator);
2709         regulator_unlock_dependent(rdev, &ww_ctx);
2710
2711         return ret;
2712 }
2713 EXPORT_SYMBOL_GPL(regulator_enable);
2714
2715 static int _regulator_do_disable(struct regulator_dev *rdev)
2716 {
2717         int ret;
2718
2719         trace_regulator_disable(rdev_get_name(rdev));
2720
2721         if (rdev->ena_pin) {
2722                 if (rdev->ena_gpio_state) {
2723                         ret = regulator_ena_gpio_ctrl(rdev, false);
2724                         if (ret < 0)
2725                                 return ret;
2726                         rdev->ena_gpio_state = 0;
2727                 }
2728
2729         } else if (rdev->desc->ops->disable) {
2730                 ret = rdev->desc->ops->disable(rdev);
2731                 if (ret != 0)
2732                         return ret;
2733         }
2734
2735         if (rdev->desc->off_on_delay)
2736                 rdev->last_off = ktime_get();
2737
2738         trace_regulator_disable_complete(rdev_get_name(rdev));
2739
2740         return 0;
2741 }
2742
2743 /* locks held by regulator_disable() */
2744 static int _regulator_disable(struct regulator *regulator)
2745 {
2746         struct regulator_dev *rdev = regulator->rdev;
2747         int ret = 0;
2748
2749         lockdep_assert_held_once(&rdev->mutex.base);
2750
2751         if (WARN(rdev->use_count <= 0,
2752                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
2753                 return -EIO;
2754
2755         /* are we the last user and permitted to disable ? */
2756         if (rdev->use_count == 1 &&
2757             (rdev->constraints && !rdev->constraints->always_on)) {
2758
2759                 /* we are last user */
2760                 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2761                         ret = _notifier_call_chain(rdev,
2762                                                    REGULATOR_EVENT_PRE_DISABLE,
2763                                                    NULL);
2764                         if (ret & NOTIFY_STOP_MASK)
2765                                 return -EINVAL;
2766
2767                         ret = _regulator_do_disable(rdev);
2768                         if (ret < 0) {
2769                                 rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
2770                                 _notifier_call_chain(rdev,
2771                                                 REGULATOR_EVENT_ABORT_DISABLE,
2772                                                 NULL);
2773                                 return ret;
2774                         }
2775                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2776                                         NULL);
2777                 }
2778
2779                 rdev->use_count = 0;
2780         } else if (rdev->use_count > 1) {
2781                 rdev->use_count--;
2782         }
2783
2784         if (ret == 0)
2785                 ret = _regulator_handle_consumer_disable(regulator);
2786
2787         if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2788                 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2789
2790         if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2791                 ret = _regulator_disable(rdev->supply);
2792
2793         return ret;
2794 }
2795
2796 /**
2797  * regulator_disable - disable regulator output
2798  * @regulator: regulator source
2799  *
2800  * Disable the regulator output voltage or current.  Calls to
2801  * regulator_enable() must be balanced with calls to
2802  * regulator_disable().
2803  *
2804  * NOTE: this will only disable the regulator output if no other consumer
2805  * devices have it enabled, the regulator device supports disabling and
2806  * machine constraints permit this operation.
2807  */
2808 int regulator_disable(struct regulator *regulator)
2809 {
2810         struct regulator_dev *rdev = regulator->rdev;
2811         struct ww_acquire_ctx ww_ctx;
2812         int ret;
2813
2814         regulator_lock_dependent(rdev, &ww_ctx);
2815         ret = _regulator_disable(regulator);
2816         regulator_unlock_dependent(rdev, &ww_ctx);
2817
2818         return ret;
2819 }
2820 EXPORT_SYMBOL_GPL(regulator_disable);
2821
2822 /* locks held by regulator_force_disable() */
2823 static int _regulator_force_disable(struct regulator_dev *rdev)
2824 {
2825         int ret = 0;
2826
2827         lockdep_assert_held_once(&rdev->mutex.base);
2828
2829         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2830                         REGULATOR_EVENT_PRE_DISABLE, NULL);
2831         if (ret & NOTIFY_STOP_MASK)
2832                 return -EINVAL;
2833
2834         ret = _regulator_do_disable(rdev);
2835         if (ret < 0) {
2836                 rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
2837                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2838                                 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2839                 return ret;
2840         }
2841
2842         _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2843                         REGULATOR_EVENT_DISABLE, NULL);
2844
2845         return 0;
2846 }
2847
2848 /**
2849  * regulator_force_disable - force disable regulator output
2850  * @regulator: regulator source
2851  *
2852  * Forcibly disable the regulator output voltage or current.
2853  * NOTE: this *will* disable the regulator output even if other consumer
2854  * devices have it enabled. This should be used for situations when device
2855  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2856  */
2857 int regulator_force_disable(struct regulator *regulator)
2858 {
2859         struct regulator_dev *rdev = regulator->rdev;
2860         struct ww_acquire_ctx ww_ctx;
2861         int ret;
2862
2863         regulator_lock_dependent(rdev, &ww_ctx);
2864
2865         ret = _regulator_force_disable(regulator->rdev);
2866
2867         if (rdev->coupling_desc.n_coupled > 1)
2868                 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2869
2870         if (regulator->uA_load) {
2871                 regulator->uA_load = 0;
2872                 ret = drms_uA_update(rdev);
2873         }
2874
2875         if (rdev->use_count != 0 && rdev->supply)
2876                 _regulator_disable(rdev->supply);
2877
2878         regulator_unlock_dependent(rdev, &ww_ctx);
2879
2880         return ret;
2881 }
2882 EXPORT_SYMBOL_GPL(regulator_force_disable);
2883
2884 static void regulator_disable_work(struct work_struct *work)
2885 {
2886         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2887                                                   disable_work.work);
2888         struct ww_acquire_ctx ww_ctx;
2889         int count, i, ret;
2890         struct regulator *regulator;
2891         int total_count = 0;
2892
2893         regulator_lock_dependent(rdev, &ww_ctx);
2894
2895         /*
2896          * Workqueue functions queue the new work instance while the previous
2897          * work instance is being processed. Cancel the queued work instance
2898          * as the work instance under processing does the job of the queued
2899          * work instance.
2900          */
2901         cancel_delayed_work(&rdev->disable_work);
2902
2903         list_for_each_entry(regulator, &rdev->consumer_list, list) {
2904                 count = regulator->deferred_disables;
2905
2906                 if (!count)
2907                         continue;
2908
2909                 total_count += count;
2910                 regulator->deferred_disables = 0;
2911
2912                 for (i = 0; i < count; i++) {
2913                         ret = _regulator_disable(regulator);
2914                         if (ret != 0)
2915                                 rdev_err(rdev, "Deferred disable failed: %pe\n",
2916                                          ERR_PTR(ret));
2917                 }
2918         }
2919         WARN_ON(!total_count);
2920
2921         if (rdev->coupling_desc.n_coupled > 1)
2922                 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2923
2924         regulator_unlock_dependent(rdev, &ww_ctx);
2925 }
2926
2927 /**
2928  * regulator_disable_deferred - disable regulator output with delay
2929  * @regulator: regulator source
2930  * @ms: milliseconds until the regulator is disabled
2931  *
2932  * Execute regulator_disable() on the regulator after a delay.  This
2933  * is intended for use with devices that require some time to quiesce.
2934  *
2935  * NOTE: this will only disable the regulator output if no other consumer
2936  * devices have it enabled, the regulator device supports disabling and
2937  * machine constraints permit this operation.
2938  */
2939 int regulator_disable_deferred(struct regulator *regulator, int ms)
2940 {
2941         struct regulator_dev *rdev = regulator->rdev;
2942
2943         if (!ms)
2944                 return regulator_disable(regulator);
2945
2946         regulator_lock(rdev);
2947         regulator->deferred_disables++;
2948         mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2949                          msecs_to_jiffies(ms));
2950         regulator_unlock(rdev);
2951
2952         return 0;
2953 }
2954 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2955
2956 static int _regulator_is_enabled(struct regulator_dev *rdev)
2957 {
2958         /* A GPIO control always takes precedence */
2959         if (rdev->ena_pin)
2960                 return rdev->ena_gpio_state;
2961
2962         /* If we don't know then assume that the regulator is always on */
2963         if (!rdev->desc->ops->is_enabled)
2964                 return 1;
2965
2966         return rdev->desc->ops->is_enabled(rdev);
2967 }
2968
2969 static int _regulator_list_voltage(struct regulator_dev *rdev,
2970                                    unsigned selector, int lock)
2971 {
2972         const struct regulator_ops *ops = rdev->desc->ops;
2973         int ret;
2974
2975         if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2976                 return rdev->desc->fixed_uV;
2977
2978         if (ops->list_voltage) {
2979                 if (selector >= rdev->desc->n_voltages)
2980                         return -EINVAL;
2981                 if (selector < rdev->desc->linear_min_sel)
2982                         return 0;
2983                 if (lock)
2984                         regulator_lock(rdev);
2985                 ret = ops->list_voltage(rdev, selector);
2986                 if (lock)
2987                         regulator_unlock(rdev);
2988         } else if (rdev->is_switch && rdev->supply) {
2989                 ret = _regulator_list_voltage(rdev->supply->rdev,
2990                                               selector, lock);
2991         } else {
2992                 return -EINVAL;
2993         }
2994
2995         if (ret > 0) {
2996                 if (ret < rdev->constraints->min_uV)
2997                         ret = 0;
2998                 else if (ret > rdev->constraints->max_uV)
2999                         ret = 0;
3000         }
3001
3002         return ret;
3003 }
3004
3005 /**
3006  * regulator_is_enabled - is the regulator output enabled
3007  * @regulator: regulator source
3008  *
3009  * Returns positive if the regulator driver backing the source/client
3010  * has requested that the device be enabled, zero if it hasn't, else a
3011  * negative errno code.
3012  *
3013  * Note that the device backing this regulator handle can have multiple
3014  * users, so it might be enabled even if regulator_enable() was never
3015  * called for this particular source.
3016  */
3017 int regulator_is_enabled(struct regulator *regulator)
3018 {
3019         int ret;
3020
3021         if (regulator->always_on)
3022                 return 1;
3023
3024         regulator_lock(regulator->rdev);
3025         ret = _regulator_is_enabled(regulator->rdev);
3026         regulator_unlock(regulator->rdev);
3027
3028         return ret;
3029 }
3030 EXPORT_SYMBOL_GPL(regulator_is_enabled);
3031
3032 /**
3033  * regulator_count_voltages - count regulator_list_voltage() selectors
3034  * @regulator: regulator source
3035  *
3036  * Returns number of selectors, or negative errno.  Selectors are
3037  * numbered starting at zero, and typically correspond to bitfields
3038  * in hardware registers.
3039  */
3040 int regulator_count_voltages(struct regulator *regulator)
3041 {
3042         struct regulator_dev    *rdev = regulator->rdev;
3043
3044         if (rdev->desc->n_voltages)
3045                 return rdev->desc->n_voltages;
3046
3047         if (!rdev->is_switch || !rdev->supply)
3048                 return -EINVAL;
3049
3050         return regulator_count_voltages(rdev->supply);
3051 }
3052 EXPORT_SYMBOL_GPL(regulator_count_voltages);
3053
3054 /**
3055  * regulator_list_voltage - enumerate supported voltages
3056  * @regulator: regulator source
3057  * @selector: identify voltage to list
3058  * Context: can sleep
3059  *
3060  * Returns a voltage that can be passed to @regulator_set_voltage(),
3061  * zero if this selector code can't be used on this system, or a
3062  * negative errno.
3063  */
3064 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3065 {
3066         return _regulator_list_voltage(regulator->rdev, selector, 1);
3067 }
3068 EXPORT_SYMBOL_GPL(regulator_list_voltage);
3069
3070 /**
3071  * regulator_get_regmap - get the regulator's register map
3072  * @regulator: regulator source
3073  *
3074  * Returns the register map for the given regulator, or an ERR_PTR value
3075  * if the regulator doesn't use regmap.
3076  */
3077 struct regmap *regulator_get_regmap(struct regulator *regulator)
3078 {
3079         struct regmap *map = regulator->rdev->regmap;
3080
3081         return map ? map : ERR_PTR(-EOPNOTSUPP);
3082 }
3083
3084 /**
3085  * regulator_get_hardware_vsel_register - get the HW voltage selector register
3086  * @regulator: regulator source
3087  * @vsel_reg: voltage selector register, output parameter
3088  * @vsel_mask: mask for voltage selector bitfield, output parameter
3089  *
3090  * Returns the hardware register offset and bitmask used for setting the
3091  * regulator voltage. This might be useful when configuring voltage-scaling
3092  * hardware or firmware that can make I2C requests behind the kernel's back,
3093  * for example.
3094  *
3095  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3096  * and 0 is returned, otherwise a negative errno is returned.
3097  */
3098 int regulator_get_hardware_vsel_register(struct regulator *regulator,
3099                                          unsigned *vsel_reg,
3100                                          unsigned *vsel_mask)
3101 {
3102         struct regulator_dev *rdev = regulator->rdev;
3103         const struct regulator_ops *ops = rdev->desc->ops;
3104
3105         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3106                 return -EOPNOTSUPP;
3107
3108         *vsel_reg = rdev->desc->vsel_reg;
3109         *vsel_mask = rdev->desc->vsel_mask;
3110
3111         return 0;
3112 }
3113 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3114
3115 /**
3116  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3117  * @regulator: regulator source
3118  * @selector: identify voltage to list
3119  *
3120  * Converts the selector to a hardware-specific voltage selector that can be
3121  * directly written to the regulator registers. The address of the voltage
3122  * register can be determined by calling @regulator_get_hardware_vsel_register.
3123  *
3124  * On error a negative errno is returned.
3125  */
3126 int regulator_list_hardware_vsel(struct regulator *regulator,
3127                                  unsigned selector)
3128 {
3129         struct regulator_dev *rdev = regulator->rdev;
3130         const struct regulator_ops *ops = rdev->desc->ops;
3131
3132         if (selector >= rdev->desc->n_voltages)
3133                 return -EINVAL;
3134         if (selector < rdev->desc->linear_min_sel)
3135                 return 0;
3136         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3137                 return -EOPNOTSUPP;
3138
3139         return selector;
3140 }
3141 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3142
3143 /**
3144  * regulator_get_linear_step - return the voltage step size between VSEL values
3145  * @regulator: regulator source
3146  *
3147  * Returns the voltage step size between VSEL values for linear
3148  * regulators, or return 0 if the regulator isn't a linear regulator.
3149  */
3150 unsigned int regulator_get_linear_step(struct regulator *regulator)
3151 {
3152         struct regulator_dev *rdev = regulator->rdev;
3153
3154         return rdev->desc->uV_step;
3155 }
3156 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3157
3158 /**
3159  * regulator_is_supported_voltage - check if a voltage range can be supported
3160  *
3161  * @regulator: Regulator to check.
3162  * @min_uV: Minimum required voltage in uV.
3163  * @max_uV: Maximum required voltage in uV.
3164  *
3165  * Returns a boolean.
3166  */
3167 int regulator_is_supported_voltage(struct regulator *regulator,
3168                                    int min_uV, int max_uV)
3169 {
3170         struct regulator_dev *rdev = regulator->rdev;
3171         int i, voltages, ret;
3172
3173         /* If we can't change voltage check the current voltage */
3174         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3175                 ret = regulator_get_voltage(regulator);
3176                 if (ret >= 0)
3177                         return min_uV <= ret && ret <= max_uV;
3178                 else
3179                         return ret;
3180         }
3181
3182         /* Any voltage within constrains range is fine? */
3183         if (rdev->desc->continuous_voltage_range)
3184                 return min_uV >= rdev->constraints->min_uV &&
3185                                 max_uV <= rdev->constraints->max_uV;
3186
3187         ret = regulator_count_voltages(regulator);
3188         if (ret < 0)
3189                 return 0;
3190         voltages = ret;
3191
3192         for (i = 0; i < voltages; i++) {
3193                 ret = regulator_list_voltage(regulator, i);
3194
3195                 if (ret >= min_uV && ret <= max_uV)
3196                         return 1;
3197         }
3198
3199         return 0;
3200 }
3201 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3202
3203 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3204                                  int max_uV)
3205 {
3206         const struct regulator_desc *desc = rdev->desc;
3207
3208         if (desc->ops->map_voltage)
3209                 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3210
3211         if (desc->ops->list_voltage == regulator_list_voltage_linear)
3212                 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3213
3214         if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3215                 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3216
3217         if (desc->ops->list_voltage ==
3218                 regulator_list_voltage_pickable_linear_range)
3219                 return regulator_map_voltage_pickable_linear_range(rdev,
3220                                                         min_uV, max_uV);
3221
3222         return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3223 }
3224
3225 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3226                                        int min_uV, int max_uV,
3227                                        unsigned *selector)
3228 {
3229         struct pre_voltage_change_data data;
3230         int ret;
3231
3232         data.old_uV = regulator_get_voltage_rdev(rdev);
3233         data.min_uV = min_uV;
3234         data.max_uV = max_uV;
3235         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3236                                    &data);
3237         if (ret & NOTIFY_STOP_MASK)
3238                 return -EINVAL;
3239
3240         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3241         if (ret >= 0)
3242                 return ret;
3243
3244         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3245                              (void *)data.old_uV);
3246
3247         return ret;
3248 }
3249
3250 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3251                                            int uV, unsigned selector)
3252 {
3253         struct pre_voltage_change_data data;
3254         int ret;
3255
3256         data.old_uV = regulator_get_voltage_rdev(rdev);
3257         data.min_uV = uV;
3258         data.max_uV = uV;
3259         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3260                                    &data);
3261         if (ret & NOTIFY_STOP_MASK)
3262                 return -EINVAL;
3263
3264         ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3265         if (ret >= 0)
3266                 return ret;
3267
3268         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3269                              (void *)data.old_uV);
3270
3271         return ret;
3272 }
3273
3274 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3275                                            int uV, int new_selector)
3276 {
3277         const struct regulator_ops *ops = rdev->desc->ops;
3278         int diff, old_sel, curr_sel, ret;
3279
3280         /* Stepping is only needed if the regulator is enabled. */
3281         if (!_regulator_is_enabled(rdev))
3282                 goto final_set;
3283
3284         if (!ops->get_voltage_sel)
3285                 return -EINVAL;
3286
3287         old_sel = ops->get_voltage_sel(rdev);
3288         if (old_sel < 0)
3289                 return old_sel;
3290
3291         diff = new_selector - old_sel;
3292         if (diff == 0)
3293                 return 0; /* No change needed. */
3294
3295         if (diff > 0) {
3296                 /* Stepping up. */
3297                 for (curr_sel = old_sel + rdev->desc->vsel_step;
3298                      curr_sel < new_selector;
3299                      curr_sel += rdev->desc->vsel_step) {
3300                         /*
3301                          * Call the callback directly instead of using
3302                          * _regulator_call_set_voltage_sel() as we don't
3303                          * want to notify anyone yet. Same in the branch
3304                          * below.
3305                          */
3306                         ret = ops->set_voltage_sel(rdev, curr_sel);
3307                         if (ret)
3308                                 goto try_revert;
3309                 }
3310         } else {
3311                 /* Stepping down. */
3312                 for (curr_sel = old_sel - rdev->desc->vsel_step;
3313                      curr_sel > new_selector;
3314                      curr_sel -= rdev->desc->vsel_step) {
3315                         ret = ops->set_voltage_sel(rdev, curr_sel);
3316                         if (ret)
3317                                 goto try_revert;
3318                 }
3319         }
3320
3321 final_set:
3322         /* The final selector will trigger the notifiers. */
3323         return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3324
3325 try_revert:
3326         /*
3327          * At least try to return to the previous voltage if setting a new
3328          * one failed.
3329          */
3330         (void)ops->set_voltage_sel(rdev, old_sel);
3331         return ret;
3332 }
3333
3334 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3335                                        int old_uV, int new_uV)
3336 {
3337         unsigned int ramp_delay = 0;
3338
3339         if (rdev->constraints->ramp_delay)
3340                 ramp_delay = rdev->constraints->ramp_delay;
3341         else if (rdev->desc->ramp_delay)
3342                 ramp_delay = rdev->desc->ramp_delay;
3343         else if (rdev->constraints->settling_time)
3344                 return rdev->constraints->settling_time;
3345         else if (rdev->constraints->settling_time_up &&
3346                  (new_uV > old_uV))
3347                 return rdev->constraints->settling_time_up;
3348         else if (rdev->constraints->settling_time_down &&
3349                  (new_uV < old_uV))
3350                 return rdev->constraints->settling_time_down;
3351
3352         if (ramp_delay == 0) {
3353                 rdev_dbg(rdev, "ramp_delay not set\n");
3354                 return 0;
3355         }
3356
3357         return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3358 }
3359
3360 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3361                                      int min_uV, int max_uV)
3362 {
3363         int ret;
3364         int delay = 0;
3365         int best_val = 0;
3366         unsigned int selector;
3367         int old_selector = -1;
3368         const struct regulator_ops *ops = rdev->desc->ops;
3369         int old_uV = regulator_get_voltage_rdev(rdev);
3370
3371         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3372
3373         min_uV += rdev->constraints->uV_offset;
3374         max_uV += rdev->constraints->uV_offset;
3375
3376         /*
3377          * If we can't obtain the old selector there is not enough
3378          * info to call set_voltage_time_sel().
3379          */
3380         if (_regulator_is_enabled(rdev) &&
3381             ops->set_voltage_time_sel && ops->get_voltage_sel) {
3382                 old_selector = ops->get_voltage_sel(rdev);
3383                 if (old_selector < 0)
3384                         return old_selector;
3385         }
3386
3387         if (ops->set_voltage) {
3388                 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3389                                                   &selector);
3390
3391                 if (ret >= 0) {
3392                         if (ops->list_voltage)
3393                                 best_val = ops->list_voltage(rdev,
3394                                                              selector);
3395                         else
3396                                 best_val = regulator_get_voltage_rdev(rdev);
3397                 }
3398
3399         } else if (ops->set_voltage_sel) {
3400                 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3401                 if (ret >= 0) {
3402                         best_val = ops->list_voltage(rdev, ret);
3403                         if (min_uV <= best_val && max_uV >= best_val) {
3404                                 selector = ret;
3405                                 if (old_selector == selector)
3406                                         ret = 0;
3407                                 else if (rdev->desc->vsel_step)
3408                                         ret = _regulator_set_voltage_sel_step(
3409                                                 rdev, best_val, selector);
3410                                 else
3411                                         ret = _regulator_call_set_voltage_sel(
3412                                                 rdev, best_val, selector);
3413                         } else {
3414                                 ret = -EINVAL;
3415                         }
3416                 }
3417         } else {
3418                 ret = -EINVAL;
3419         }
3420
3421         if (ret)
3422                 goto out;
3423
3424         if (ops->set_voltage_time_sel) {
3425                 /*
3426                  * Call set_voltage_time_sel if successfully obtained
3427                  * old_selector
3428                  */
3429                 if (old_selector >= 0 && old_selector != selector)
3430                         delay = ops->set_voltage_time_sel(rdev, old_selector,
3431                                                           selector);
3432         } else {
3433                 if (old_uV != best_val) {
3434                         if (ops->set_voltage_time)
3435                                 delay = ops->set_voltage_time(rdev, old_uV,
3436                                                               best_val);
3437                         else
3438                                 delay = _regulator_set_voltage_time(rdev,
3439                                                                     old_uV,
3440                                                                     best_val);
3441                 }
3442         }
3443
3444         if (delay < 0) {
3445                 rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3446                 delay = 0;
3447         }
3448
3449         /* Insert any necessary delays */
3450         if (delay >= 1000) {
3451                 mdelay(delay / 1000);
3452                 udelay(delay % 1000);
3453         } else if (delay) {
3454                 udelay(delay);
3455         }
3456
3457         if (best_val >= 0) {
3458                 unsigned long data = best_val;
3459
3460                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3461                                      (void *)data);
3462         }
3463
3464 out:
3465         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3466
3467         return ret;
3468 }
3469
3470 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3471                                   int min_uV, int max_uV, suspend_state_t state)
3472 {
3473         struct regulator_state *rstate;
3474         int uV, sel;
3475
3476         rstate = regulator_get_suspend_state(rdev, state);
3477         if (rstate == NULL)
3478                 return -EINVAL;
3479
3480         if (min_uV < rstate->min_uV)
3481                 min_uV = rstate->min_uV;
3482         if (max_uV > rstate->max_uV)
3483                 max_uV = rstate->max_uV;
3484
3485         sel = regulator_map_voltage(rdev, min_uV, max_uV);
3486         if (sel < 0)
3487                 return sel;
3488
3489         uV = rdev->desc->ops->list_voltage(rdev, sel);
3490         if (uV >= min_uV && uV <= max_uV)
3491                 rstate->uV = uV;
3492
3493         return 0;
3494 }
3495
3496 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3497                                           int min_uV, int max_uV,
3498                                           suspend_state_t state)
3499 {
3500         struct regulator_dev *rdev = regulator->rdev;
3501         struct regulator_voltage *voltage = &regulator->voltage[state];
3502         int ret = 0;
3503         int old_min_uV, old_max_uV;
3504         int current_uV;
3505
3506         /* If we're setting the same range as last time the change
3507          * should be a noop (some cpufreq implementations use the same
3508          * voltage for multiple frequencies, for example).
3509          */
3510         if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3511                 goto out;
3512
3513         /* If we're trying to set a range that overlaps the current voltage,
3514          * return successfully even though the regulator does not support
3515          * changing the voltage.
3516          */
3517         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3518                 current_uV = regulator_get_voltage_rdev(rdev);
3519                 if (min_uV <= current_uV && current_uV <= max_uV) {
3520                         voltage->min_uV = min_uV;
3521                         voltage->max_uV = max_uV;
3522                         goto out;
3523                 }
3524         }
3525
3526         /* sanity check */
3527         if (!rdev->desc->ops->set_voltage &&
3528             !rdev->desc->ops->set_voltage_sel) {
3529                 ret = -EINVAL;
3530                 goto out;
3531         }
3532
3533         /* constraints check */
3534         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3535         if (ret < 0)
3536                 goto out;
3537
3538         /* restore original values in case of error */
3539         old_min_uV = voltage->min_uV;
3540         old_max_uV = voltage->max_uV;
3541         voltage->min_uV = min_uV;
3542         voltage->max_uV = max_uV;
3543
3544         /* for not coupled regulators this will just set the voltage */
3545         ret = regulator_balance_voltage(rdev, state);
3546         if (ret < 0) {
3547                 voltage->min_uV = old_min_uV;
3548                 voltage->max_uV = old_max_uV;
3549         }
3550
3551 out:
3552         return ret;
3553 }
3554
3555 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3556                                int max_uV, suspend_state_t state)
3557 {
3558         int best_supply_uV = 0;
3559         int supply_change_uV = 0;
3560         int ret;
3561
3562         if (rdev->supply &&
3563             regulator_ops_is_valid(rdev->supply->rdev,
3564                                    REGULATOR_CHANGE_VOLTAGE) &&
3565             (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3566                                            rdev->desc->ops->get_voltage_sel))) {
3567                 int current_supply_uV;
3568                 int selector;
3569
3570                 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3571                 if (selector < 0) {
3572                         ret = selector;
3573                         goto out;
3574                 }
3575
3576                 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3577                 if (best_supply_uV < 0) {
3578                         ret = best_supply_uV;
3579                         goto out;
3580                 }
3581
3582                 best_supply_uV += rdev->desc->min_dropout_uV;
3583
3584                 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3585                 if (current_supply_uV < 0) {
3586                         ret = current_supply_uV;
3587                         goto out;
3588                 }
3589
3590                 supply_change_uV = best_supply_uV - current_supply_uV;
3591         }
3592
3593         if (supply_change_uV > 0) {
3594                 ret = regulator_set_voltage_unlocked(rdev->supply,
3595                                 best_supply_uV, INT_MAX, state);
3596                 if (ret) {
3597                         dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3598                                 ERR_PTR(ret));
3599                         goto out;
3600                 }
3601         }
3602
3603         if (state == PM_SUSPEND_ON)
3604                 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3605         else
3606                 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3607                                                         max_uV, state);
3608         if (ret < 0)
3609                 goto out;
3610
3611         if (supply_change_uV < 0) {
3612                 ret = regulator_set_voltage_unlocked(rdev->supply,
3613                                 best_supply_uV, INT_MAX, state);
3614                 if (ret)
3615                         dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3616                                  ERR_PTR(ret));
3617                 /* No need to fail here */
3618                 ret = 0;
3619         }
3620
3621 out:
3622         return ret;
3623 }
3624 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3625
3626 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3627                                         int *current_uV, int *min_uV)
3628 {
3629         struct regulation_constraints *constraints = rdev->constraints;
3630
3631         /* Limit voltage change only if necessary */
3632         if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3633                 return 1;
3634
3635         if (*current_uV < 0) {
3636                 *current_uV = regulator_get_voltage_rdev(rdev);
3637
3638                 if (*current_uV < 0)
3639                         return *current_uV;
3640         }
3641
3642         if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3643                 return 1;
3644
3645         /* Clamp target voltage within the given step */
3646         if (*current_uV < *min_uV)
3647                 *min_uV = min(*current_uV + constraints->max_uV_step,
3648                               *min_uV);
3649         else
3650                 *min_uV = max(*current_uV - constraints->max_uV_step,
3651                               *min_uV);
3652
3653         return 0;
3654 }
3655
3656 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3657                                          int *current_uV,
3658                                          int *min_uV, int *max_uV,
3659                                          suspend_state_t state,
3660                                          int n_coupled)
3661 {
3662         struct coupling_desc *c_desc = &rdev->coupling_desc;
3663         struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3664         struct regulation_constraints *constraints = rdev->constraints;
3665         int desired_min_uV = 0, desired_max_uV = INT_MAX;
3666         int max_current_uV = 0, min_current_uV = INT_MAX;
3667         int highest_min_uV = 0, target_uV, possible_uV;
3668         int i, ret, max_spread;
3669         bool done;
3670
3671         *current_uV = -1;
3672
3673         /*
3674          * If there are no coupled regulators, simply set the voltage
3675          * demanded by consumers.
3676          */
3677         if (n_coupled == 1) {
3678                 /*
3679                  * If consumers don't provide any demands, set voltage
3680                  * to min_uV
3681                  */
3682                 desired_min_uV = constraints->min_uV;
3683                 desired_max_uV = constraints->max_uV;
3684
3685                 ret = regulator_check_consumers(rdev,
3686                                                 &desired_min_uV,
3687                                                 &desired_max_uV, state);
3688                 if (ret < 0)
3689                         return ret;
3690
3691                 possible_uV = desired_min_uV;
3692                 done = true;
3693
3694                 goto finish;
3695         }
3696
3697         /* Find highest min desired voltage */
3698         for (i = 0; i < n_coupled; i++) {
3699                 int tmp_min = 0;
3700                 int tmp_max = INT_MAX;
3701
3702                 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3703
3704                 ret = regulator_check_consumers(c_rdevs[i],
3705                                                 &tmp_min,
3706                                                 &tmp_max, state);
3707                 if (ret < 0)
3708                         return ret;
3709
3710                 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3711                 if (ret < 0)
3712                         return ret;
3713
3714                 highest_min_uV = max(highest_min_uV, tmp_min);
3715
3716                 if (i == 0) {
3717                         desired_min_uV = tmp_min;
3718                         desired_max_uV = tmp_max;
3719                 }
3720         }
3721
3722         max_spread = constraints->max_spread[0];
3723
3724         /*
3725          * Let target_uV be equal to the desired one if possible.
3726          * If not, set it to minimum voltage, allowed by other coupled
3727          * regulators.
3728          */
3729         target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3730
3731         /*
3732          * Find min and max voltages, which currently aren't violating
3733          * max_spread.
3734          */
3735         for (i = 1; i < n_coupled; i++) {
3736                 int tmp_act;
3737
3738                 if (!_regulator_is_enabled(c_rdevs[i]))
3739                         continue;
3740
3741                 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3742                 if (tmp_act < 0)
3743                         return tmp_act;
3744
3745                 min_current_uV = min(tmp_act, min_current_uV);
3746                 max_current_uV = max(tmp_act, max_current_uV);
3747         }
3748
3749         /* There aren't any other regulators enabled */
3750         if (max_current_uV == 0) {
3751                 possible_uV = target_uV;
3752         } else {
3753                 /*
3754                  * Correct target voltage, so as it currently isn't
3755                  * violating max_spread
3756                  */
3757                 possible_uV = max(target_uV, max_current_uV - max_spread);
3758                 possible_uV = min(possible_uV, min_current_uV + max_spread);
3759         }
3760
3761         if (possible_uV > desired_max_uV)
3762                 return -EINVAL;
3763
3764         done = (possible_uV == target_uV);
3765         desired_min_uV = possible_uV;
3766
3767 finish:
3768         /* Apply max_uV_step constraint if necessary */
3769         if (state == PM_SUSPEND_ON) {
3770                 ret = regulator_limit_voltage_step(rdev, current_uV,
3771                                                    &desired_min_uV);
3772                 if (ret < 0)
3773                         return ret;
3774
3775                 if (ret == 0)
3776                         done = false;
3777         }
3778
3779         /* Set current_uV if wasn't done earlier in the code and if necessary */
3780         if (n_coupled > 1 && *current_uV == -1) {
3781
3782                 if (_regulator_is_enabled(rdev)) {
3783                         ret = regulator_get_voltage_rdev(rdev);
3784                         if (ret < 0)
3785                                 return ret;
3786
3787                         *current_uV = ret;
3788                 } else {
3789                         *current_uV = desired_min_uV;
3790                 }
3791         }
3792
3793         *min_uV = desired_min_uV;
3794         *max_uV = desired_max_uV;
3795
3796         return done;
3797 }
3798
3799 int regulator_do_balance_voltage(struct regulator_dev *rdev,
3800                                  suspend_state_t state, bool skip_coupled)
3801 {
3802         struct regulator_dev **c_rdevs;
3803         struct regulator_dev *best_rdev;
3804         struct coupling_desc *c_desc = &rdev->coupling_desc;
3805         int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3806         unsigned int delta, best_delta;
3807         unsigned long c_rdev_done = 0;
3808         bool best_c_rdev_done;
3809
3810         c_rdevs = c_desc->coupled_rdevs;
3811         n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3812
3813         /*
3814          * Find the best possible voltage change on each loop. Leave the loop
3815          * if there isn't any possible change.
3816          */
3817         do {
3818                 best_c_rdev_done = false;
3819                 best_delta = 0;
3820                 best_min_uV = 0;
3821                 best_max_uV = 0;
3822                 best_c_rdev = 0;
3823                 best_rdev = NULL;
3824
3825                 /*
3826                  * Find highest difference between optimal voltage
3827                  * and current voltage.
3828                  */
3829                 for (i = 0; i < n_coupled; i++) {
3830                         /*
3831                          * optimal_uV is the best voltage that can be set for
3832                          * i-th regulator at the moment without violating
3833                          * max_spread constraint in order to balance
3834                          * the coupled voltages.
3835                          */
3836                         int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3837
3838                         if (test_bit(i, &c_rdev_done))
3839                                 continue;
3840
3841                         ret = regulator_get_optimal_voltage(c_rdevs[i],
3842                                                             &current_uV,
3843                                                             &optimal_uV,
3844                                                             &optimal_max_uV,
3845                                                             state, n_coupled);
3846                         if (ret < 0)
3847                                 goto out;
3848
3849                         delta = abs(optimal_uV - current_uV);
3850
3851                         if (delta && best_delta <= delta) {
3852                                 best_c_rdev_done = ret;
3853                                 best_delta = delta;
3854                                 best_rdev = c_rdevs[i];
3855                                 best_min_uV = optimal_uV;
3856                                 best_max_uV = optimal_max_uV;
3857                                 best_c_rdev = i;
3858                         }
3859                 }
3860
3861                 /* Nothing to change, return successfully */
3862                 if (!best_rdev) {
3863                         ret = 0;
3864                         goto out;
3865                 }
3866
3867                 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
3868                                                  best_max_uV, state);
3869
3870                 if (ret < 0)
3871                         goto out;
3872
3873                 if (best_c_rdev_done)
3874                         set_bit(best_c_rdev, &c_rdev_done);
3875
3876         } while (n_coupled > 1);
3877
3878 out:
3879         return ret;
3880 }
3881
3882 static int regulator_balance_voltage(struct regulator_dev *rdev,
3883                                      suspend_state_t state)
3884 {
3885         struct coupling_desc *c_desc = &rdev->coupling_desc;
3886         struct regulator_coupler *coupler = c_desc->coupler;
3887         bool skip_coupled = false;
3888
3889         /*
3890          * If system is in a state other than PM_SUSPEND_ON, don't check
3891          * other coupled regulators.
3892          */
3893         if (state != PM_SUSPEND_ON)
3894                 skip_coupled = true;
3895
3896         if (c_desc->n_resolved < c_desc->n_coupled) {
3897                 rdev_err(rdev, "Not all coupled regulators registered\n");
3898                 return -EPERM;
3899         }
3900
3901         /* Invoke custom balancer for customized couplers */
3902         if (coupler && coupler->balance_voltage)
3903                 return coupler->balance_voltage(coupler, rdev, state);
3904
3905         return regulator_do_balance_voltage(rdev, state, skip_coupled);
3906 }
3907
3908 /**
3909  * regulator_set_voltage - set regulator output voltage
3910  * @regulator: regulator source
3911  * @min_uV: Minimum required voltage in uV
3912  * @max_uV: Maximum acceptable voltage in uV
3913  *
3914  * Sets a voltage regulator to the desired output voltage. This can be set
3915  * during any regulator state. IOW, regulator can be disabled or enabled.
3916  *
3917  * If the regulator is enabled then the voltage will change to the new value
3918  * immediately otherwise if the regulator is disabled the regulator will
3919  * output at the new voltage when enabled.
3920  *
3921  * NOTE: If the regulator is shared between several devices then the lowest
3922  * request voltage that meets the system constraints will be used.
3923  * Regulator system constraints must be set for this regulator before
3924  * calling this function otherwise this call will fail.
3925  */
3926 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3927 {
3928         struct ww_acquire_ctx ww_ctx;
3929         int ret;
3930
3931         regulator_lock_dependent(regulator->rdev, &ww_ctx);
3932
3933         ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
3934                                              PM_SUSPEND_ON);
3935
3936         regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3937
3938         return ret;
3939 }
3940 EXPORT_SYMBOL_GPL(regulator_set_voltage);
3941
3942 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
3943                                            suspend_state_t state, bool en)
3944 {
3945         struct regulator_state *rstate;
3946
3947         rstate = regulator_get_suspend_state(rdev, state);
3948         if (rstate == NULL)
3949                 return -EINVAL;
3950
3951         if (!rstate->changeable)
3952                 return -EPERM;
3953
3954         rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3955
3956         return 0;
3957 }
3958
3959 int regulator_suspend_enable(struct regulator_dev *rdev,
3960                                     suspend_state_t state)
3961 {
3962         return regulator_suspend_toggle(rdev, state, true);
3963 }
3964 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
3965
3966 int regulator_suspend_disable(struct regulator_dev *rdev,
3967                                      suspend_state_t state)
3968 {
3969         struct regulator *regulator;
3970         struct regulator_voltage *voltage;
3971
3972         /*
3973          * if any consumer wants this regulator device keeping on in
3974          * suspend states, don't set it as disabled.
3975          */
3976         list_for_each_entry(regulator, &rdev->consumer_list, list) {
3977                 voltage = &regulator->voltage[state];
3978                 if (voltage->min_uV || voltage->max_uV)
3979                         return 0;
3980         }
3981
3982         return regulator_suspend_toggle(rdev, state, false);
3983 }
3984 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
3985
3986 static int _regulator_set_suspend_voltage(struct regulator *regulator,
3987                                           int min_uV, int max_uV,
3988                                           suspend_state_t state)
3989 {
3990         struct regulator_dev *rdev = regulator->rdev;
3991         struct regulator_state *rstate;
3992
3993         rstate = regulator_get_suspend_state(rdev, state);
3994         if (rstate == NULL)
3995                 return -EINVAL;
3996
3997         if (rstate->min_uV == rstate->max_uV) {
3998                 rdev_err(rdev, "The suspend voltage can't be changed!\n");
3999                 return -EPERM;
4000         }
4001
4002         return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4003 }
4004
4005 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4006                                   int max_uV, suspend_state_t state)
4007 {
4008         struct ww_acquire_ctx ww_ctx;
4009         int ret;
4010
4011         /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4012         if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4013                 return -EINVAL;
4014
4015         regulator_lock_dependent(regulator->rdev, &ww_ctx);
4016
4017         ret = _regulator_set_suspend_voltage(regulator, min_uV,
4018                                              max_uV, state);
4019
4020         regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4021
4022         return ret;
4023 }
4024 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4025
4026 /**
4027  * regulator_set_voltage_time - get raise/fall time
4028  * @regulator: regulator source
4029  * @old_uV: starting voltage in microvolts
4030  * @new_uV: target voltage in microvolts
4031  *
4032  * Provided with the starting and ending voltage, this function attempts to
4033  * calculate the time in microseconds required to rise or fall to this new
4034  * voltage.
4035  */
4036 int regulator_set_voltage_time(struct regulator *regulator,
4037                                int old_uV, int new_uV)
4038 {
4039         struct regulator_dev *rdev = regulator->rdev;
4040         const struct regulator_ops *ops = rdev->desc->ops;
4041         int old_sel = -1;
4042         int new_sel = -1;
4043         int voltage;
4044         int i;
4045
4046         if (ops->set_voltage_time)
4047                 return ops->set_voltage_time(rdev, old_uV, new_uV);
4048         else if (!ops->set_voltage_time_sel)
4049                 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4050
4051         /* Currently requires operations to do this */
4052         if (!ops->list_voltage || !rdev->desc->n_voltages)
4053                 return -EINVAL;
4054
4055         for (i = 0; i < rdev->desc->n_voltages; i++) {
4056                 /* We only look for exact voltage matches here */
4057                 if (i < rdev->desc->linear_min_sel)
4058                         continue;
4059
4060                 if (old_sel >= 0 && new_sel >= 0)
4061                         break;
4062
4063                 voltage = regulator_list_voltage(regulator, i);
4064                 if (voltage < 0)
4065                         return -EINVAL;
4066                 if (voltage == 0)
4067                         continue;
4068                 if (voltage == old_uV)
4069                         old_sel = i;
4070                 if (voltage == new_uV)
4071                         new_sel = i;
4072         }
4073
4074         if (old_sel < 0 || new_sel < 0)
4075                 return -EINVAL;
4076
4077         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4078 }
4079 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4080
4081 /**
4082  * regulator_set_voltage_time_sel - get raise/fall time
4083  * @rdev: regulator source device
4084  * @old_selector: selector for starting voltage
4085  * @new_selector: selector for target voltage
4086  *
4087  * Provided with the starting and target voltage selectors, this function
4088  * returns time in microseconds required to rise or fall to this new voltage
4089  *
4090  * Drivers providing ramp_delay in regulation_constraints can use this as their
4091  * set_voltage_time_sel() operation.
4092  */
4093 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4094                                    unsigned int old_selector,
4095                                    unsigned int new_selector)
4096 {
4097         int old_volt, new_volt;
4098
4099         /* sanity check */
4100         if (!rdev->desc->ops->list_voltage)
4101                 return -EINVAL;
4102
4103         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4104         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4105
4106         if (rdev->desc->ops->set_voltage_time)
4107                 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4108                                                          new_volt);
4109         else
4110                 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4111 }
4112 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4113
4114 /**
4115  * regulator_sync_voltage - re-apply last regulator output voltage
4116  * @regulator: regulator source
4117  *
4118  * Re-apply the last configured voltage.  This is intended to be used
4119  * where some external control source the consumer is cooperating with
4120  * has caused the configured voltage to change.
4121  */
4122 int regulator_sync_voltage(struct regulator *regulator)
4123 {
4124         struct regulator_dev *rdev = regulator->rdev;
4125         struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4126         int ret, min_uV, max_uV;
4127
4128         regulator_lock(rdev);
4129
4130         if (!rdev->desc->ops->set_voltage &&
4131             !rdev->desc->ops->set_voltage_sel) {
4132                 ret = -EINVAL;
4133                 goto out;
4134         }
4135
4136         /* This is only going to work if we've had a voltage configured. */
4137         if (!voltage->min_uV && !voltage->max_uV) {
4138                 ret = -EINVAL;
4139                 goto out;
4140         }
4141
4142         min_uV = voltage->min_uV;
4143         max_uV = voltage->max_uV;
4144
4145         /* This should be a paranoia check... */
4146         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4147         if (ret < 0)
4148                 goto out;
4149
4150         ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4151         if (ret < 0)
4152                 goto out;
4153
4154         /* balance only, if regulator is coupled */
4155         if (rdev->coupling_desc.n_coupled > 1)
4156                 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4157         else
4158                 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4159
4160 out:
4161         regulator_unlock(rdev);
4162         return ret;
4163 }
4164 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4165
4166 int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4167 {
4168         int sel, ret;
4169         bool bypassed;
4170
4171         if (rdev->desc->ops->get_bypass) {
4172                 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4173                 if (ret < 0)
4174                         return ret;
4175                 if (bypassed) {
4176                         /* if bypassed the regulator must have a supply */
4177                         if (!rdev->supply) {
4178                                 rdev_err(rdev,
4179                                          "bypassed regulator has no supply!\n");
4180                                 return -EPROBE_DEFER;
4181                         }
4182
4183                         return regulator_get_voltage_rdev(rdev->supply->rdev);
4184                 }
4185         }
4186
4187         if (rdev->desc->ops->get_voltage_sel) {
4188                 sel = rdev->desc->ops->get_voltage_sel(rdev);
4189                 if (sel < 0)
4190                         return sel;
4191                 ret = rdev->desc->ops->list_voltage(rdev, sel);
4192         } else if (rdev->desc->ops->get_voltage) {
4193                 ret = rdev->desc->ops->get_voltage(rdev);
4194         } else if (rdev->desc->ops->list_voltage) {
4195                 ret = rdev->desc->ops->list_voltage(rdev, 0);
4196         } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4197                 ret = rdev->desc->fixed_uV;
4198         } else if (rdev->supply) {
4199                 ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4200         } else if (rdev->supply_name) {
4201                 return -EPROBE_DEFER;
4202         } else {
4203                 return -EINVAL;
4204         }
4205
4206         if (ret < 0)
4207                 return ret;
4208         return ret - rdev->constraints->uV_offset;
4209 }
4210 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4211
4212 /**
4213  * regulator_get_voltage - get regulator output voltage
4214  * @regulator: regulator source
4215  *
4216  * This returns the current regulator voltage in uV.
4217  *
4218  * NOTE: If the regulator is disabled it will return the voltage value. This
4219  * function should not be used to determine regulator state.
4220  */
4221 int regulator_get_voltage(struct regulator *regulator)
4222 {
4223         struct ww_acquire_ctx ww_ctx;
4224         int ret;
4225
4226         regulator_lock_dependent(regulator->rdev, &ww_ctx);
4227         ret = regulator_get_voltage_rdev(regulator->rdev);
4228         regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4229
4230         return ret;
4231 }
4232 EXPORT_SYMBOL_GPL(regulator_get_voltage);
4233
4234 /**
4235  * regulator_set_current_limit - set regulator output current limit
4236  * @regulator: regulator source
4237  * @min_uA: Minimum supported current in uA
4238  * @max_uA: Maximum supported current in uA
4239  *
4240  * Sets current sink to the desired output current. This can be set during
4241  * any regulator state. IOW, regulator can be disabled or enabled.
4242  *
4243  * If the regulator is enabled then the current will change to the new value
4244  * immediately otherwise if the regulator is disabled the regulator will
4245  * output at the new current when enabled.
4246  *
4247  * NOTE: Regulator system constraints must be set for this regulator before
4248  * calling this function otherwise this call will fail.
4249  */
4250 int regulator_set_current_limit(struct regulator *regulator,
4251                                int min_uA, int max_uA)
4252 {
4253         struct regulator_dev *rdev = regulator->rdev;
4254         int ret;
4255
4256         regulator_lock(rdev);
4257
4258         /* sanity check */
4259         if (!rdev->desc->ops->set_current_limit) {
4260                 ret = -EINVAL;
4261                 goto out;
4262         }
4263
4264         /* constraints check */
4265         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4266         if (ret < 0)
4267                 goto out;
4268
4269         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4270 out:
4271         regulator_unlock(rdev);
4272         return ret;
4273 }
4274 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4275
4276 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4277 {
4278         /* sanity check */
4279         if (!rdev->desc->ops->get_current_limit)
4280                 return -EINVAL;
4281
4282         return rdev->desc->ops->get_current_limit(rdev);
4283 }
4284
4285 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4286 {
4287         int ret;
4288
4289         regulator_lock(rdev);
4290         ret = _regulator_get_current_limit_unlocked(rdev);
4291         regulator_unlock(rdev);
4292
4293         return ret;
4294 }
4295
4296 /**
4297  * regulator_get_current_limit - get regulator output current
4298  * @regulator: regulator source
4299  *
4300  * This returns the current supplied by the specified current sink in uA.
4301  *
4302  * NOTE: If the regulator is disabled it will return the current value. This
4303  * function should not be used to determine regulator state.
4304  */
4305 int regulator_get_current_limit(struct regulator *regulator)
4306 {
4307         return _regulator_get_current_limit(regulator->rdev);
4308 }
4309 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4310
4311 /**
4312  * regulator_set_mode - set regulator operating mode
4313  * @regulator: regulator source
4314  * @mode: operating mode - one of the REGULATOR_MODE constants
4315  *
4316  * Set regulator operating mode to increase regulator efficiency or improve
4317  * regulation performance.
4318  *
4319  * NOTE: Regulator system constraints must be set for this regulator before
4320  * calling this function otherwise this call will fail.
4321  */
4322 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4323 {
4324         struct regulator_dev *rdev = regulator->rdev;
4325         int ret;
4326         int regulator_curr_mode;
4327
4328         regulator_lock(rdev);
4329
4330         /* sanity check */
4331         if (!rdev->desc->ops->set_mode) {
4332                 ret = -EINVAL;
4333                 goto out;
4334         }
4335
4336         /* return if the same mode is requested */
4337         if (rdev->desc->ops->get_mode) {
4338                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4339                 if (regulator_curr_mode == mode) {
4340                         ret = 0;
4341                         goto out;
4342                 }
4343         }
4344
4345         /* constraints check */
4346         ret = regulator_mode_constrain(rdev, &mode);
4347         if (ret < 0)
4348                 goto out;
4349
4350         ret = rdev->desc->ops->set_mode(rdev, mode);
4351 out:
4352         regulator_unlock(rdev);
4353         return ret;
4354 }
4355 EXPORT_SYMBOL_GPL(regulator_set_mode);
4356
4357 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4358 {
4359         /* sanity check */
4360         if (!rdev->desc->ops->get_mode)
4361                 return -EINVAL;
4362
4363         return rdev->desc->ops->get_mode(rdev);
4364 }
4365
4366 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4367 {
4368         int ret;
4369
4370         regulator_lock(rdev);
4371         ret = _regulator_get_mode_unlocked(rdev);
4372         regulator_unlock(rdev);
4373
4374         return ret;
4375 }
4376
4377 /**
4378  * regulator_get_mode - get regulator operating mode
4379  * @regulator: regulator source
4380  *
4381  * Get the current regulator operating mode.
4382  */
4383 unsigned int regulator_get_mode(struct regulator *regulator)
4384 {
4385         return _regulator_get_mode(regulator->rdev);
4386 }
4387 EXPORT_SYMBOL_GPL(regulator_get_mode);
4388
4389 static int _regulator_get_error_flags(struct regulator_dev *rdev,
4390                                         unsigned int *flags)
4391 {
4392         int ret;
4393
4394         regulator_lock(rdev);
4395
4396         /* sanity check */
4397         if (!rdev->desc->ops->get_error_flags) {
4398                 ret = -EINVAL;
4399                 goto out;
4400         }
4401
4402         ret = rdev->desc->ops->get_error_flags(rdev, flags);
4403 out:
4404         regulator_unlock(rdev);
4405         return ret;
4406 }
4407
4408 /**
4409  * regulator_get_error_flags - get regulator error information
4410  * @regulator: regulator source
4411  * @flags: pointer to store error flags
4412  *
4413  * Get the current regulator error information.
4414  */
4415 int regulator_get_error_flags(struct regulator *regulator,
4416                                 unsigned int *flags)
4417 {
4418         return _regulator_get_error_flags(regulator->rdev, flags);
4419 }
4420 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4421
4422 /**
4423  * regulator_set_load - set regulator load
4424  * @regulator: regulator source
4425  * @uA_load: load current
4426  *
4427  * Notifies the regulator core of a new device load. This is then used by
4428  * DRMS (if enabled by constraints) to set the most efficient regulator
4429  * operating mode for the new regulator loading.
4430  *
4431  * Consumer devices notify their supply regulator of the maximum power
4432  * they will require (can be taken from device datasheet in the power
4433  * consumption tables) when they change operational status and hence power
4434  * state. Examples of operational state changes that can affect power
4435  * consumption are :-
4436  *
4437  *    o Device is opened / closed.
4438  *    o Device I/O is about to begin or has just finished.
4439  *    o Device is idling in between work.
4440  *
4441  * This information is also exported via sysfs to userspace.
4442  *
4443  * DRMS will sum the total requested load on the regulator and change
4444  * to the most efficient operating mode if platform constraints allow.
4445  *
4446  * NOTE: when a regulator consumer requests to have a regulator
4447  * disabled then any load that consumer requested no longer counts
4448  * toward the total requested load.  If the regulator is re-enabled
4449  * then the previously requested load will start counting again.
4450  *
4451  * If a regulator is an always-on regulator then an individual consumer's
4452  * load will still be removed if that consumer is fully disabled.
4453  *
4454  * On error a negative errno is returned.
4455  */
4456 int regulator_set_load(struct regulator *regulator, int uA_load)
4457 {
4458         struct regulator_dev *rdev = regulator->rdev;
4459         int old_uA_load;
4460         int ret = 0;
4461
4462         regulator_lock(rdev);
4463         old_uA_load = regulator->uA_load;
4464         regulator->uA_load = uA_load;
4465         if (regulator->enable_count && old_uA_load != uA_load) {
4466                 ret = drms_uA_update(rdev);
4467                 if (ret < 0)
4468                         regulator->uA_load = old_uA_load;
4469         }
4470         regulator_unlock(rdev);
4471
4472         return ret;
4473 }
4474 EXPORT_SYMBOL_GPL(regulator_set_load);
4475
4476 /**
4477  * regulator_allow_bypass - allow the regulator to go into bypass mode
4478  *
4479  * @regulator: Regulator to configure
4480  * @enable: enable or disable bypass mode
4481  *
4482  * Allow the regulator to go into bypass mode if all other consumers
4483  * for the regulator also enable bypass mode and the machine
4484  * constraints allow this.  Bypass mode means that the regulator is
4485  * simply passing the input directly to the output with no regulation.
4486  */
4487 int regulator_allow_bypass(struct regulator *regulator, bool enable)
4488 {
4489         struct regulator_dev *rdev = regulator->rdev;
4490         const char *name = rdev_get_name(rdev);
4491         int ret = 0;
4492
4493         if (!rdev->desc->ops->set_bypass)
4494                 return 0;
4495
4496         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4497                 return 0;
4498
4499         regulator_lock(rdev);
4500
4501         if (enable && !regulator->bypass) {
4502                 rdev->bypass_count++;
4503
4504                 if (rdev->bypass_count == rdev->open_count) {
4505                         trace_regulator_bypass_enable(name);
4506
4507                         ret = rdev->desc->ops->set_bypass(rdev, enable);
4508                         if (ret != 0)
4509                                 rdev->bypass_count--;
4510                         else
4511                                 trace_regulator_bypass_enable_complete(name);
4512                 }
4513
4514         } else if (!enable && regulator->bypass) {
4515                 rdev->bypass_count--;
4516
4517                 if (rdev->bypass_count != rdev->open_count) {
4518                         trace_regulator_bypass_disable(name);
4519
4520                         ret = rdev->desc->ops->set_bypass(rdev, enable);
4521                         if (ret != 0)
4522                                 rdev->bypass_count++;
4523                         else
4524                                 trace_regulator_bypass_disable_complete(name);
4525                 }
4526         }
4527
4528         if (ret == 0)
4529                 regulator->bypass = enable;
4530
4531         regulator_unlock(rdev);
4532
4533         return ret;
4534 }
4535 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4536
4537 /**
4538  * regulator_register_notifier - register regulator event notifier
4539  * @regulator: regulator source
4540  * @nb: notifier block
4541  *
4542  * Register notifier block to receive regulator events.
4543  */
4544 int regulator_register_notifier(struct regulator *regulator,
4545                               struct notifier_block *nb)
4546 {
4547         return blocking_notifier_chain_register(&regulator->rdev->notifier,
4548                                                 nb);
4549 }
4550 EXPORT_SYMBOL_GPL(regulator_register_notifier);
4551
4552 /**
4553  * regulator_unregister_notifier - unregister regulator event notifier
4554  * @regulator: regulator source
4555  * @nb: notifier block
4556  *
4557  * Unregister regulator event notifier block.
4558  */
4559 int regulator_unregister_notifier(struct regulator *regulator,
4560                                 struct notifier_block *nb)
4561 {
4562         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4563                                                   nb);
4564 }
4565 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4566
4567 /* notify regulator consumers and downstream regulator consumers.
4568  * Note mutex must be held by caller.
4569  */
4570 static int _notifier_call_chain(struct regulator_dev *rdev,
4571                                   unsigned long event, void *data)
4572 {
4573         /* call rdev chain first */
4574         return blocking_notifier_call_chain(&rdev->notifier, event, data);
4575 }
4576
4577 /**
4578  * regulator_bulk_get - get multiple regulator consumers
4579  *
4580  * @dev:           Device to supply
4581  * @num_consumers: Number of consumers to register
4582  * @consumers:     Configuration of consumers; clients are stored here.
4583  *
4584  * @return 0 on success, an errno on failure.
4585  *
4586  * This helper function allows drivers to get several regulator
4587  * consumers in one operation.  If any of the regulators cannot be
4588  * acquired then any regulators that were allocated will be freed
4589  * before returning to the caller.
4590  */
4591 int regulator_bulk_get(struct device *dev, int num_consumers,
4592                        struct regulator_bulk_data *consumers)
4593 {
4594         int i;
4595         int ret;
4596
4597         for (i = 0; i < num_consumers; i++)
4598                 consumers[i].consumer = NULL;
4599
4600         for (i = 0; i < num_consumers; i++) {
4601                 consumers[i].consumer = regulator_get(dev,
4602                                                       consumers[i].supply);
4603                 if (IS_ERR(consumers[i].consumer)) {
4604                         ret = PTR_ERR(consumers[i].consumer);
4605                         consumers[i].consumer = NULL;
4606                         goto err;
4607                 }
4608         }
4609
4610         return 0;
4611
4612 err:
4613         if (ret != -EPROBE_DEFER)
4614                 dev_err(dev, "Failed to get supply '%s': %pe\n",
4615                         consumers[i].supply, ERR_PTR(ret));
4616         else
4617                 dev_dbg(dev, "Failed to get supply '%s', deferring\n",
4618                         consumers[i].supply);
4619
4620         while (--i >= 0)
4621                 regulator_put(consumers[i].consumer);
4622
4623         return ret;
4624 }
4625 EXPORT_SYMBOL_GPL(regulator_bulk_get);
4626
4627 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4628 {
4629         struct regulator_bulk_data *bulk = data;
4630
4631         bulk->ret = regulator_enable(bulk->consumer);
4632 }
4633
4634 /**
4635  * regulator_bulk_enable - enable multiple regulator consumers
4636  *
4637  * @num_consumers: Number of consumers
4638  * @consumers:     Consumer data; clients are stored here.
4639  * @return         0 on success, an errno on failure
4640  *
4641  * This convenience API allows consumers to enable multiple regulator
4642  * clients in a single API call.  If any consumers cannot be enabled
4643  * then any others that were enabled will be disabled again prior to
4644  * return.
4645  */
4646 int regulator_bulk_enable(int num_consumers,
4647                           struct regulator_bulk_data *consumers)
4648 {
4649         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4650         int i;
4651         int ret = 0;
4652
4653         for (i = 0; i < num_consumers; i++) {
4654                 async_schedule_domain(regulator_bulk_enable_async,
4655                                       &consumers[i], &async_domain);
4656         }
4657
4658         async_synchronize_full_domain(&async_domain);
4659
4660         /* If any consumer failed we need to unwind any that succeeded */
4661         for (i = 0; i < num_consumers; i++) {
4662                 if (consumers[i].ret != 0) {
4663                         ret = consumers[i].ret;
4664                         goto err;
4665                 }
4666         }
4667
4668         return 0;
4669
4670 err:
4671         for (i = 0; i < num_consumers; i++) {
4672                 if (consumers[i].ret < 0)
4673                         pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4674                                ERR_PTR(consumers[i].ret));
4675                 else
4676                         regulator_disable(consumers[i].consumer);
4677         }
4678
4679         return ret;
4680 }
4681 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4682
4683 /**
4684  * regulator_bulk_disable - disable multiple regulator consumers
4685  *
4686  * @num_consumers: Number of consumers
4687  * @consumers:     Consumer data; clients are stored here.
4688  * @return         0 on success, an errno on failure
4689  *
4690  * This convenience API allows consumers to disable multiple regulator
4691  * clients in a single API call.  If any consumers cannot be disabled
4692  * then any others that were disabled will be enabled again prior to
4693  * return.
4694  */
4695 int regulator_bulk_disable(int num_consumers,
4696                            struct regulator_bulk_data *consumers)
4697 {
4698         int i;
4699         int ret, r;
4700
4701         for (i = num_consumers - 1; i >= 0; --i) {
4702                 ret = regulator_disable(consumers[i].consumer);
4703                 if (ret != 0)
4704                         goto err;
4705         }
4706
4707         return 0;
4708
4709 err:
4710         pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
4711         for (++i; i < num_consumers; ++i) {
4712                 r = regulator_enable(consumers[i].consumer);
4713                 if (r != 0)
4714                         pr_err("Failed to re-enable %s: %pe\n",
4715                                consumers[i].supply, ERR_PTR(r));
4716         }
4717
4718         return ret;
4719 }
4720 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4721
4722 /**
4723  * regulator_bulk_force_disable - force disable multiple regulator consumers
4724  *
4725  * @num_consumers: Number of consumers
4726  * @consumers:     Consumer data; clients are stored here.
4727  * @return         0 on success, an errno on failure
4728  *
4729  * This convenience API allows consumers to forcibly disable multiple regulator
4730  * clients in a single API call.
4731  * NOTE: This should be used for situations when device damage will
4732  * likely occur if the regulators are not disabled (e.g. over temp).
4733  * Although regulator_force_disable function call for some consumers can
4734  * return error numbers, the function is called for all consumers.
4735  */
4736 int regulator_bulk_force_disable(int num_consumers,
4737                            struct regulator_bulk_data *consumers)
4738 {
4739         int i;
4740         int ret = 0;
4741
4742         for (i = 0; i < num_consumers; i++) {
4743                 consumers[i].ret =
4744                             regulator_force_disable(consumers[i].consumer);
4745
4746                 /* Store first error for reporting */
4747                 if (consumers[i].ret && !ret)
4748                         ret = consumers[i].ret;
4749         }
4750
4751         return ret;
4752 }
4753 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4754
4755 /**
4756  * regulator_bulk_free - free multiple regulator consumers
4757  *
4758  * @num_consumers: Number of consumers
4759  * @consumers:     Consumer data; clients are stored here.
4760  *
4761  * This convenience API allows consumers to free multiple regulator
4762  * clients in a single API call.
4763  */
4764 void regulator_bulk_free(int num_consumers,
4765                          struct regulator_bulk_data *consumers)
4766 {
4767         int i;
4768
4769         for (i = 0; i < num_consumers; i++) {
4770                 regulator_put(consumers[i].consumer);
4771                 consumers[i].consumer = NULL;
4772         }
4773 }
4774 EXPORT_SYMBOL_GPL(regulator_bulk_free);
4775
4776 /**
4777  * regulator_notifier_call_chain - call regulator event notifier
4778  * @rdev: regulator source
4779  * @event: notifier block
4780  * @data: callback-specific data.
4781  *
4782  * Called by regulator drivers to notify clients a regulator event has
4783  * occurred.
4784  */
4785 int regulator_notifier_call_chain(struct regulator_dev *rdev,
4786                                   unsigned long event, void *data)
4787 {
4788         _notifier_call_chain(rdev, event, data);
4789         return NOTIFY_DONE;
4790
4791 }
4792 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4793
4794 /**
4795  * regulator_mode_to_status - convert a regulator mode into a status
4796  *
4797  * @mode: Mode to convert
4798  *
4799  * Convert a regulator mode into a status.
4800  */
4801 int regulator_mode_to_status(unsigned int mode)
4802 {
4803         switch (mode) {
4804         case REGULATOR_MODE_FAST:
4805                 return REGULATOR_STATUS_FAST;
4806         case REGULATOR_MODE_NORMAL:
4807                 return REGULATOR_STATUS_NORMAL;
4808         case REGULATOR_MODE_IDLE:
4809                 return REGULATOR_STATUS_IDLE;
4810         case REGULATOR_MODE_STANDBY:
4811                 return REGULATOR_STATUS_STANDBY;
4812         default:
4813                 return REGULATOR_STATUS_UNDEFINED;
4814         }
4815 }
4816 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4817
4818 static struct attribute *regulator_dev_attrs[] = {
4819         &dev_attr_name.attr,
4820         &dev_attr_num_users.attr,
4821         &dev_attr_type.attr,
4822         &dev_attr_microvolts.attr,
4823         &dev_attr_microamps.attr,
4824         &dev_attr_opmode.attr,
4825         &dev_attr_state.attr,
4826         &dev_attr_status.attr,
4827         &dev_attr_bypass.attr,
4828         &dev_attr_requested_microamps.attr,
4829         &dev_attr_min_microvolts.attr,
4830         &dev_attr_max_microvolts.attr,
4831         &dev_attr_min_microamps.attr,
4832         &dev_attr_max_microamps.attr,
4833         &dev_attr_suspend_standby_state.attr,
4834         &dev_attr_suspend_mem_state.attr,
4835         &dev_attr_suspend_disk_state.attr,
4836         &dev_attr_suspend_standby_microvolts.attr,
4837         &dev_attr_suspend_mem_microvolts.attr,
4838         &dev_attr_suspend_disk_microvolts.attr,
4839         &dev_attr_suspend_standby_mode.attr,
4840         &dev_attr_suspend_mem_mode.attr,
4841         &dev_attr_suspend_disk_mode.attr,
4842         NULL
4843 };
4844
4845 /*
4846  * To avoid cluttering sysfs (and memory) with useless state, only
4847  * create attributes that can be meaningfully displayed.
4848  */
4849 static umode_t regulator_attr_is_visible(struct kobject *kobj,
4850                                          struct attribute *attr, int idx)
4851 {
4852         struct device *dev = kobj_to_dev(kobj);
4853         struct regulator_dev *rdev = dev_to_rdev(dev);
4854         const struct regulator_ops *ops = rdev->desc->ops;
4855         umode_t mode = attr->mode;
4856
4857         /* these three are always present */
4858         if (attr == &dev_attr_name.attr ||
4859             attr == &dev_attr_num_users.attr ||
4860             attr == &dev_attr_type.attr)
4861                 return mode;
4862
4863         /* some attributes need specific methods to be displayed */
4864         if (attr == &dev_attr_microvolts.attr) {
4865                 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
4866                     (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
4867                     (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
4868                     (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
4869                         return mode;
4870                 return 0;
4871         }
4872
4873         if (attr == &dev_attr_microamps.attr)
4874                 return ops->get_current_limit ? mode : 0;
4875
4876         if (attr == &dev_attr_opmode.attr)
4877                 return ops->get_mode ? mode : 0;
4878
4879         if (attr == &dev_attr_state.attr)
4880                 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
4881
4882         if (attr == &dev_attr_status.attr)
4883                 return ops->get_status ? mode : 0;
4884
4885         if (attr == &dev_attr_bypass.attr)
4886                 return ops->get_bypass ? mode : 0;
4887
4888         /* constraints need specific supporting methods */
4889         if (attr == &dev_attr_min_microvolts.attr ||
4890             attr == &dev_attr_max_microvolts.attr)
4891                 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
4892
4893         if (attr == &dev_attr_min_microamps.attr ||
4894             attr == &dev_attr_max_microamps.attr)
4895                 return ops->set_current_limit ? mode : 0;
4896
4897         if (attr == &dev_attr_suspend_standby_state.attr ||
4898             attr == &dev_attr_suspend_mem_state.attr ||
4899             attr == &dev_attr_suspend_disk_state.attr)
4900                 return mode;
4901
4902         if (attr == &dev_attr_suspend_standby_microvolts.attr ||
4903             attr == &dev_attr_suspend_mem_microvolts.attr ||
4904             attr == &dev_attr_suspend_disk_microvolts.attr)
4905                 return ops->set_suspend_voltage ? mode : 0;
4906
4907         if (attr == &dev_attr_suspend_standby_mode.attr ||
4908             attr == &dev_attr_suspend_mem_mode.attr ||
4909             attr == &dev_attr_suspend_disk_mode.attr)
4910                 return ops->set_suspend_mode ? mode : 0;
4911
4912         return mode;
4913 }
4914
4915 static const struct attribute_group regulator_dev_group = {
4916         .attrs = regulator_dev_attrs,
4917         .is_visible = regulator_attr_is_visible,
4918 };
4919
4920 static const struct attribute_group *regulator_dev_groups[] = {
4921         &regulator_dev_group,
4922         NULL
4923 };
4924
4925 static void regulator_dev_release(struct device *dev)
4926 {
4927         struct regulator_dev *rdev = dev_get_drvdata(dev);
4928
4929         kfree(rdev->constraints);
4930         of_node_put(rdev->dev.of_node);
4931         kfree(rdev);
4932 }
4933
4934 static void rdev_init_debugfs(struct regulator_dev *rdev)
4935 {
4936         struct device *parent = rdev->dev.parent;
4937         const char *rname = rdev_get_name(rdev);
4938         char name[NAME_MAX];
4939
4940         /* Avoid duplicate debugfs directory names */
4941         if (parent && rname == rdev->desc->name) {
4942                 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4943                          rname);
4944                 rname = name;
4945         }
4946
4947         rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4948         if (!rdev->debugfs) {
4949                 rdev_warn(rdev, "Failed to create debugfs directory\n");
4950                 return;
4951         }
4952
4953         debugfs_create_u32("use_count", 0444, rdev->debugfs,
4954                            &rdev->use_count);
4955         debugfs_create_u32("open_count", 0444, rdev->debugfs,
4956                            &rdev->open_count);
4957         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
4958                            &rdev->bypass_count);
4959 }
4960
4961 static int regulator_register_resolve_supply(struct device *dev, void *data)
4962 {
4963         struct regulator_dev *rdev = dev_to_rdev(dev);
4964
4965         if (regulator_resolve_supply(rdev))
4966                 rdev_dbg(rdev, "unable to resolve supply\n");
4967
4968         return 0;
4969 }
4970
4971 int regulator_coupler_register(struct regulator_coupler *coupler)
4972 {
4973         mutex_lock(&regulator_list_mutex);
4974         list_add_tail(&coupler->list, &regulator_coupler_list);
4975         mutex_unlock(&regulator_list_mutex);
4976
4977         return 0;
4978 }
4979
4980 static struct regulator_coupler *
4981 regulator_find_coupler(struct regulator_dev *rdev)
4982 {
4983         struct regulator_coupler *coupler;
4984         int err;
4985
4986         /*
4987          * Note that regulators are appended to the list and the generic
4988          * coupler is registered first, hence it will be attached at last
4989          * if nobody cared.
4990          */
4991         list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
4992                 err = coupler->attach_regulator(coupler, rdev);
4993                 if (!err) {
4994                         if (!coupler->balance_voltage &&
4995                             rdev->coupling_desc.n_coupled > 2)
4996                                 goto err_unsupported;
4997
4998                         return coupler;
4999                 }
5000
5001                 if (err < 0)
5002                         return ERR_PTR(err);
5003
5004                 if (err == 1)
5005                         continue;
5006
5007                 break;
5008         }
5009
5010         return ERR_PTR(-EINVAL);
5011
5012 err_unsupported:
5013         if (coupler->detach_regulator)
5014                 coupler->detach_regulator(coupler, rdev);
5015
5016         rdev_err(rdev,
5017                 "Voltage balancing for multiple regulator couples is unimplemented\n");
5018
5019         return ERR_PTR(-EPERM);
5020 }
5021
5022 static void regulator_resolve_coupling(struct regulator_dev *rdev)
5023 {
5024         struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5025         struct coupling_desc *c_desc = &rdev->coupling_desc;
5026         int n_coupled = c_desc->n_coupled;
5027         struct regulator_dev *c_rdev;
5028         int i;
5029
5030         for (i = 1; i < n_coupled; i++) {
5031                 /* already resolved */
5032                 if (c_desc->coupled_rdevs[i])
5033                         continue;
5034
5035                 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5036
5037                 if (!c_rdev)
5038                         continue;
5039
5040                 if (c_rdev->coupling_desc.coupler != coupler) {
5041                         rdev_err(rdev, "coupler mismatch with %s\n",
5042                                  rdev_get_name(c_rdev));
5043                         return;
5044                 }
5045
5046                 c_desc->coupled_rdevs[i] = c_rdev;
5047                 c_desc->n_resolved++;
5048
5049                 regulator_resolve_coupling(c_rdev);
5050         }
5051 }
5052
5053 static void regulator_remove_coupling(struct regulator_dev *rdev)
5054 {
5055         struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5056         struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5057         struct regulator_dev *__c_rdev, *c_rdev;
5058         unsigned int __n_coupled, n_coupled;
5059         int i, k;
5060         int err;
5061
5062         n_coupled = c_desc->n_coupled;
5063
5064         for (i = 1; i < n_coupled; i++) {
5065                 c_rdev = c_desc->coupled_rdevs[i];
5066
5067                 if (!c_rdev)
5068                         continue;
5069
5070                 regulator_lock(c_rdev);
5071
5072                 __c_desc = &c_rdev->coupling_desc;
5073                 __n_coupled = __c_desc->n_coupled;
5074
5075                 for (k = 1; k < __n_coupled; k++) {
5076                         __c_rdev = __c_desc->coupled_rdevs[k];
5077
5078                         if (__c_rdev == rdev) {
5079                                 __c_desc->coupled_rdevs[k] = NULL;
5080                                 __c_desc->n_resolved--;
5081                                 break;
5082                         }
5083                 }
5084
5085                 regulator_unlock(c_rdev);
5086
5087                 c_desc->coupled_rdevs[i] = NULL;
5088                 c_desc->n_resolved--;
5089         }
5090
5091         if (coupler && coupler->detach_regulator) {
5092                 err = coupler->detach_regulator(coupler, rdev);
5093                 if (err)
5094                         rdev_err(rdev, "failed to detach from coupler: %pe\n",
5095                                  ERR_PTR(err));
5096         }
5097
5098         kfree(rdev->coupling_desc.coupled_rdevs);
5099         rdev->coupling_desc.coupled_rdevs = NULL;
5100 }
5101
5102 static int regulator_init_coupling(struct regulator_dev *rdev)
5103 {
5104         struct regulator_dev **coupled;
5105         int err, n_phandles;
5106
5107         if (!IS_ENABLED(CONFIG_OF))
5108                 n_phandles = 0;
5109         else
5110                 n_phandles = of_get_n_coupled(rdev);
5111
5112         coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5113         if (!coupled)
5114                 return -ENOMEM;
5115
5116         rdev->coupling_desc.coupled_rdevs = coupled;
5117
5118         /*
5119          * Every regulator should always have coupling descriptor filled with
5120          * at least pointer to itself.
5121          */
5122         rdev->coupling_desc.coupled_rdevs[0] = rdev;
5123         rdev->coupling_desc.n_coupled = n_phandles + 1;
5124         rdev->coupling_desc.n_resolved++;
5125
5126         /* regulator isn't coupled */
5127         if (n_phandles == 0)
5128                 return 0;
5129
5130         if (!of_check_coupling_data(rdev))
5131                 return -EPERM;
5132
5133         mutex_lock(&regulator_list_mutex);
5134         rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5135         mutex_unlock(&regulator_list_mutex);
5136
5137         if (IS_ERR(rdev->coupling_desc.coupler)) {
5138                 err = PTR_ERR(rdev->coupling_desc.coupler);
5139                 rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5140                 return err;
5141         }
5142
5143         return 0;
5144 }
5145
5146 static int generic_coupler_attach(struct regulator_coupler *coupler,
5147                                   struct regulator_dev *rdev)
5148 {
5149         if (rdev->coupling_desc.n_coupled > 2) {
5150                 rdev_err(rdev,
5151                          "Voltage balancing for multiple regulator couples is unimplemented\n");
5152                 return -EPERM;
5153         }
5154
5155         if (!rdev->constraints->always_on) {
5156                 rdev_err(rdev,
5157                          "Coupling of a non always-on regulator is unimplemented\n");
5158                 return -ENOTSUPP;
5159         }
5160
5161         return 0;
5162 }
5163
5164 static struct regulator_coupler generic_regulator_coupler = {
5165         .attach_regulator = generic_coupler_attach,
5166 };
5167
5168 /**
5169  * regulator_register - register regulator
5170  * @regulator_desc: regulator to register
5171  * @cfg: runtime configuration for regulator
5172  *
5173  * Called by regulator drivers to register a regulator.
5174  * Returns a valid pointer to struct regulator_dev on success
5175  * or an ERR_PTR() on error.
5176  */
5177 struct regulator_dev *
5178 regulator_register(const struct regulator_desc *regulator_desc,
5179                    const struct regulator_config *cfg)
5180 {
5181         const struct regulator_init_data *init_data;
5182         struct regulator_config *config = NULL;
5183         static atomic_t regulator_no = ATOMIC_INIT(-1);
5184         struct regulator_dev *rdev;
5185         bool dangling_cfg_gpiod = false;
5186         bool dangling_of_gpiod = false;
5187         struct device *dev;
5188         int ret, i;
5189
5190         if (cfg == NULL)
5191                 return ERR_PTR(-EINVAL);
5192         if (cfg->ena_gpiod)
5193                 dangling_cfg_gpiod = true;
5194         if (regulator_desc == NULL) {
5195                 ret = -EINVAL;
5196                 goto rinse;
5197         }
5198
5199         dev = cfg->dev;
5200         WARN_ON(!dev);
5201
5202         if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5203                 ret = -EINVAL;
5204                 goto rinse;
5205         }
5206
5207         if (regulator_desc->type != REGULATOR_VOLTAGE &&
5208             regulator_desc->type != REGULATOR_CURRENT) {
5209                 ret = -EINVAL;
5210                 goto rinse;
5211         }
5212
5213         /* Only one of each should be implemented */
5214         WARN_ON(regulator_desc->ops->get_voltage &&
5215                 regulator_desc->ops->get_voltage_sel);
5216         WARN_ON(regulator_desc->ops->set_voltage &&
5217                 regulator_desc->ops->set_voltage_sel);
5218
5219         /* If we're using selectors we must implement list_voltage. */
5220         if (regulator_desc->ops->get_voltage_sel &&
5221             !regulator_desc->ops->list_voltage) {
5222                 ret = -EINVAL;
5223                 goto rinse;
5224         }
5225         if (regulator_desc->ops->set_voltage_sel &&
5226             !regulator_desc->ops->list_voltage) {
5227                 ret = -EINVAL;
5228                 goto rinse;
5229         }
5230
5231         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5232         if (rdev == NULL) {
5233                 ret = -ENOMEM;
5234                 goto rinse;
5235         }
5236         device_initialize(&rdev->dev);
5237
5238         /*
5239          * Duplicate the config so the driver could override it after
5240          * parsing init data.
5241          */
5242         config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5243         if (config == NULL) {
5244                 ret = -ENOMEM;
5245                 goto clean;
5246         }
5247
5248         init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5249                                                &rdev->dev.of_node);
5250
5251         /*
5252          * Sometimes not all resources are probed already so we need to take
5253          * that into account. This happens most the time if the ena_gpiod comes
5254          * from a gpio extender or something else.
5255          */
5256         if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5257                 ret = -EPROBE_DEFER;
5258                 goto clean;
5259         }
5260
5261         /*
5262          * We need to keep track of any GPIO descriptor coming from the
5263          * device tree until we have handled it over to the core. If the
5264          * config that was passed in to this function DOES NOT contain
5265          * a descriptor, and the config after this call DOES contain
5266          * a descriptor, we definitely got one from parsing the device
5267          * tree.
5268          */
5269         if (!cfg->ena_gpiod && config->ena_gpiod)
5270                 dangling_of_gpiod = true;
5271         if (!init_data) {
5272                 init_data = config->init_data;
5273                 rdev->dev.of_node = of_node_get(config->of_node);
5274         }
5275
5276         ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5277         rdev->reg_data = config->driver_data;
5278         rdev->owner = regulator_desc->owner;
5279         rdev->desc = regulator_desc;
5280         if (config->regmap)
5281                 rdev->regmap = config->regmap;
5282         else if (dev_get_regmap(dev, NULL))
5283                 rdev->regmap = dev_get_regmap(dev, NULL);
5284         else if (dev->parent)
5285                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
5286         INIT_LIST_HEAD(&rdev->consumer_list);
5287         INIT_LIST_HEAD(&rdev->list);
5288         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5289         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5290
5291         /* preform any regulator specific init */
5292         if (init_data && init_data->regulator_init) {
5293                 ret = init_data->regulator_init(rdev->reg_data);
5294                 if (ret < 0)
5295                         goto clean;
5296         }
5297
5298         if (config->ena_gpiod) {
5299                 ret = regulator_ena_gpio_request(rdev, config);
5300                 if (ret != 0) {
5301                         rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5302                                  ERR_PTR(ret));
5303                         goto clean;
5304                 }
5305                 /* The regulator core took over the GPIO descriptor */
5306                 dangling_cfg_gpiod = false;
5307                 dangling_of_gpiod = false;
5308         }
5309
5310         /* register with sysfs */
5311         rdev->dev.class = &regulator_class;
5312         rdev->dev.parent = dev;
5313         dev_set_name(&rdev->dev, "regulator.%lu",
5314                     (unsigned long) atomic_inc_return(&regulator_no));
5315         dev_set_drvdata(&rdev->dev, rdev);
5316
5317         /* set regulator constraints */
5318         if (init_data)
5319                 rdev->constraints = kmemdup(&init_data->constraints,
5320                                             sizeof(*rdev->constraints),
5321                                             GFP_KERNEL);
5322         else
5323                 rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5324                                             GFP_KERNEL);
5325         if (!rdev->constraints) {
5326                 ret = -ENOMEM;
5327                 goto wash;
5328         }
5329
5330         if (init_data && init_data->supply_regulator)
5331                 rdev->supply_name = init_data->supply_regulator;
5332         else if (regulator_desc->supply_name)
5333                 rdev->supply_name = regulator_desc->supply_name;
5334
5335         ret = set_machine_constraints(rdev);
5336         if (ret == -EPROBE_DEFER) {
5337                 /* Regulator might be in bypass mode and so needs its supply
5338                  * to set the constraints
5339                  */
5340                 /* FIXME: this currently triggers a chicken-and-egg problem
5341                  * when creating -SUPPLY symlink in sysfs to a regulator
5342                  * that is just being created
5343                  */
5344                 rdev_dbg(rdev, "will resolve supply early: %s\n",
5345                          rdev->supply_name);
5346                 ret = regulator_resolve_supply(rdev);
5347                 if (!ret)
5348                         ret = set_machine_constraints(rdev);
5349                 else
5350                         rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5351                                  ERR_PTR(ret));
5352         }
5353         if (ret < 0)
5354                 goto wash;
5355
5356         ret = regulator_init_coupling(rdev);
5357         if (ret < 0)
5358                 goto wash;
5359
5360         /* add consumers devices */
5361         if (init_data) {
5362                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
5363                         ret = set_consumer_device_supply(rdev,
5364                                 init_data->consumer_supplies[i].dev_name,
5365                                 init_data->consumer_supplies[i].supply);
5366                         if (ret < 0) {
5367                                 dev_err(dev, "Failed to set supply %s\n",
5368                                         init_data->consumer_supplies[i].supply);
5369                                 goto unset_supplies;
5370                         }
5371                 }
5372         }
5373
5374         if (!rdev->desc->ops->get_voltage &&
5375             !rdev->desc->ops->list_voltage &&
5376             !rdev->desc->fixed_uV)
5377                 rdev->is_switch = true;
5378
5379         ret = device_add(&rdev->dev);
5380         if (ret != 0)
5381                 goto unset_supplies;
5382
5383         rdev_init_debugfs(rdev);
5384
5385         /* try to resolve regulators coupling since a new one was registered */
5386         mutex_lock(&regulator_list_mutex);
5387         regulator_resolve_coupling(rdev);
5388         mutex_unlock(&regulator_list_mutex);
5389
5390         /* try to resolve regulators supply since a new one was registered */
5391         class_for_each_device(&regulator_class, NULL, NULL,
5392                               regulator_register_resolve_supply);
5393         kfree(config);
5394         return rdev;
5395
5396 unset_supplies:
5397         mutex_lock(&regulator_list_mutex);
5398         unset_regulator_supplies(rdev);
5399         regulator_remove_coupling(rdev);
5400         mutex_unlock(&regulator_list_mutex);
5401 wash:
5402         kfree(rdev->coupling_desc.coupled_rdevs);
5403         mutex_lock(&regulator_list_mutex);
5404         regulator_ena_gpio_free(rdev);
5405         mutex_unlock(&regulator_list_mutex);
5406 clean:
5407         if (dangling_of_gpiod)
5408                 gpiod_put(config->ena_gpiod);
5409         kfree(config);
5410         put_device(&rdev->dev);
5411 rinse:
5412         if (dangling_cfg_gpiod)
5413                 gpiod_put(cfg->ena_gpiod);
5414         return ERR_PTR(ret);
5415 }
5416 EXPORT_SYMBOL_GPL(regulator_register);
5417
5418 /**
5419  * regulator_unregister - unregister regulator
5420  * @rdev: regulator to unregister
5421  *
5422  * Called by regulator drivers to unregister a regulator.
5423  */
5424 void regulator_unregister(struct regulator_dev *rdev)
5425 {
5426         if (rdev == NULL)
5427                 return;
5428
5429         if (rdev->supply) {
5430                 while (rdev->use_count--)
5431                         regulator_disable(rdev->supply);
5432                 regulator_put(rdev->supply);
5433         }
5434
5435         flush_work(&rdev->disable_work.work);
5436
5437         mutex_lock(&regulator_list_mutex);
5438
5439         debugfs_remove_recursive(rdev->debugfs);
5440         WARN_ON(rdev->open_count);
5441         regulator_remove_coupling(rdev);
5442         unset_regulator_supplies(rdev);
5443         list_del(&rdev->list);
5444         regulator_ena_gpio_free(rdev);
5445         device_unregister(&rdev->dev);
5446
5447         mutex_unlock(&regulator_list_mutex);
5448 }
5449 EXPORT_SYMBOL_GPL(regulator_unregister);
5450
5451 #ifdef CONFIG_SUSPEND
5452 /**
5453  * regulator_suspend - prepare regulators for system wide suspend
5454  * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5455  *
5456  * Configure each regulator with it's suspend operating parameters for state.
5457  */
5458 static int regulator_suspend(struct device *dev)
5459 {
5460         struct regulator_dev *rdev = dev_to_rdev(dev);
5461         suspend_state_t state = pm_suspend_target_state;
5462         int ret;
5463         const struct regulator_state *rstate;
5464
5465         rstate = regulator_get_suspend_state_check(rdev, state);
5466         if (!rstate)
5467                 return 0;
5468
5469         regulator_lock(rdev);
5470         ret = __suspend_set_state(rdev, rstate);
5471         regulator_unlock(rdev);
5472
5473         return ret;
5474 }
5475
5476 static int regulator_resume(struct device *dev)
5477 {
5478         suspend_state_t state = pm_suspend_target_state;
5479         struct regulator_dev *rdev = dev_to_rdev(dev);
5480         struct regulator_state *rstate;
5481         int ret = 0;
5482
5483         rstate = regulator_get_suspend_state(rdev, state);
5484         if (rstate == NULL)
5485                 return 0;
5486
5487         /* Avoid grabbing the lock if we don't need to */
5488         if (!rdev->desc->ops->resume)
5489                 return 0;
5490
5491         regulator_lock(rdev);
5492
5493         if (rstate->enabled == ENABLE_IN_SUSPEND ||
5494             rstate->enabled == DISABLE_IN_SUSPEND)
5495                 ret = rdev->desc->ops->resume(rdev);
5496
5497         regulator_unlock(rdev);
5498
5499         return ret;
5500 }
5501 #else /* !CONFIG_SUSPEND */
5502
5503 #define regulator_suspend       NULL
5504 #define regulator_resume        NULL
5505
5506 #endif /* !CONFIG_SUSPEND */
5507
5508 #ifdef CONFIG_PM
5509 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5510         .suspend        = regulator_suspend,
5511         .resume         = regulator_resume,
5512 };
5513 #endif
5514
5515 struct class regulator_class = {
5516         .name = "regulator",
5517         .dev_release = regulator_dev_release,
5518         .dev_groups = regulator_dev_groups,
5519 #ifdef CONFIG_PM
5520         .pm = &regulator_pm_ops,
5521 #endif
5522 };
5523 /**
5524  * regulator_has_full_constraints - the system has fully specified constraints
5525  *
5526  * Calling this function will cause the regulator API to disable all
5527  * regulators which have a zero use count and don't have an always_on
5528  * constraint in a late_initcall.
5529  *
5530  * The intention is that this will become the default behaviour in a
5531  * future kernel release so users are encouraged to use this facility
5532  * now.
5533  */
5534 void regulator_has_full_constraints(void)
5535 {
5536         has_full_constraints = 1;
5537 }
5538 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5539
5540 /**
5541  * rdev_get_drvdata - get rdev regulator driver data
5542  * @rdev: regulator
5543  *
5544  * Get rdev regulator driver private data. This call can be used in the
5545  * regulator driver context.
5546  */
5547 void *rdev_get_drvdata(struct regulator_dev *rdev)
5548 {
5549         return rdev->reg_data;
5550 }
5551 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5552
5553 /**
5554  * regulator_get_drvdata - get regulator driver data
5555  * @regulator: regulator
5556  *
5557  * Get regulator driver private data. This call can be used in the consumer
5558  * driver context when non API regulator specific functions need to be called.
5559  */
5560 void *regulator_get_drvdata(struct regulator *regulator)
5561 {
5562         return regulator->rdev->reg_data;
5563 }
5564 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5565
5566 /**
5567  * regulator_set_drvdata - set regulator driver data
5568  * @regulator: regulator
5569  * @data: data
5570  */
5571 void regulator_set_drvdata(struct regulator *regulator, void *data)
5572 {
5573         regulator->rdev->reg_data = data;
5574 }
5575 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5576
5577 /**
5578  * rdev_get_id - get regulator ID
5579  * @rdev: regulator
5580  */
5581 int rdev_get_id(struct regulator_dev *rdev)
5582 {
5583         return rdev->desc->id;
5584 }
5585 EXPORT_SYMBOL_GPL(rdev_get_id);
5586
5587 struct device *rdev_get_dev(struct regulator_dev *rdev)
5588 {
5589         return &rdev->dev;
5590 }
5591 EXPORT_SYMBOL_GPL(rdev_get_dev);
5592
5593 struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5594 {
5595         return rdev->regmap;
5596 }
5597 EXPORT_SYMBOL_GPL(rdev_get_regmap);
5598
5599 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5600 {
5601         return reg_init_data->driver_data;
5602 }
5603 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5604
5605 #ifdef CONFIG_DEBUG_FS
5606 static int supply_map_show(struct seq_file *sf, void *data)
5607 {
5608         struct regulator_map *map;
5609
5610         list_for_each_entry(map, &regulator_map_list, list) {
5611                 seq_printf(sf, "%s -> %s.%s\n",
5612                                 rdev_get_name(map->regulator), map->dev_name,
5613                                 map->supply);
5614         }
5615
5616         return 0;
5617 }
5618 DEFINE_SHOW_ATTRIBUTE(supply_map);
5619
5620 struct summary_data {
5621         struct seq_file *s;
5622         struct regulator_dev *parent;
5623         int level;
5624 };
5625
5626 static void regulator_summary_show_subtree(struct seq_file *s,
5627                                            struct regulator_dev *rdev,
5628                                            int level);
5629
5630 static int regulator_summary_show_children(struct device *dev, void *data)
5631 {
5632         struct regulator_dev *rdev = dev_to_rdev(dev);
5633         struct summary_data *summary_data = data;
5634
5635         if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5636                 regulator_summary_show_subtree(summary_data->s, rdev,
5637                                                summary_data->level + 1);
5638
5639         return 0;
5640 }
5641
5642 static void regulator_summary_show_subtree(struct seq_file *s,
5643                                            struct regulator_dev *rdev,
5644                                            int level)
5645 {
5646         struct regulation_constraints *c;
5647         struct regulator *consumer;
5648         struct summary_data summary_data;
5649         unsigned int opmode;
5650
5651         if (!rdev)
5652                 return;
5653
5654         opmode = _regulator_get_mode_unlocked(rdev);
5655         seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5656                    level * 3 + 1, "",
5657                    30 - level * 3, rdev_get_name(rdev),
5658                    rdev->use_count, rdev->open_count, rdev->bypass_count,
5659                    regulator_opmode_to_str(opmode));
5660
5661         seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5662         seq_printf(s, "%5dmA ",
5663                    _regulator_get_current_limit_unlocked(rdev) / 1000);
5664
5665         c = rdev->constraints;
5666         if (c) {
5667                 switch (rdev->desc->type) {
5668                 case REGULATOR_VOLTAGE:
5669                         seq_printf(s, "%5dmV %5dmV ",
5670                                    c->min_uV / 1000, c->max_uV / 1000);
5671                         break;
5672                 case REGULATOR_CURRENT:
5673                         seq_printf(s, "%5dmA %5dmA ",
5674                                    c->min_uA / 1000, c->max_uA / 1000);
5675                         break;
5676                 }
5677         }
5678
5679         seq_puts(s, "\n");
5680
5681         list_for_each_entry(consumer, &rdev->consumer_list, list) {
5682                 if (consumer->dev && consumer->dev->class == &regulator_class)
5683                         continue;
5684
5685                 seq_printf(s, "%*s%-*s ",
5686                            (level + 1) * 3 + 1, "",
5687                            30 - (level + 1) * 3,
5688                            consumer->supply_name ? consumer->supply_name :
5689                            consumer->dev ? dev_name(consumer->dev) : "deviceless");
5690
5691                 switch (rdev->desc->type) {
5692                 case REGULATOR_VOLTAGE:
5693                         seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5694                                    consumer->enable_count,
5695                                    consumer->uA_load / 1000,
5696                                    consumer->uA_load && !consumer->enable_count ?
5697                                    '*' : ' ',
5698                                    consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5699                                    consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5700                         break;
5701                 case REGULATOR_CURRENT:
5702                         break;
5703                 }
5704
5705                 seq_puts(s, "\n");
5706         }
5707
5708         summary_data.s = s;
5709         summary_data.level = level;
5710         summary_data.parent = rdev;
5711
5712         class_for_each_device(&regulator_class, NULL, &summary_data,
5713                               regulator_summary_show_children);
5714 }
5715
5716 struct summary_lock_data {
5717         struct ww_acquire_ctx *ww_ctx;
5718         struct regulator_dev **new_contended_rdev;
5719         struct regulator_dev **old_contended_rdev;
5720 };
5721
5722 static int regulator_summary_lock_one(struct device *dev, void *data)
5723 {
5724         struct regulator_dev *rdev = dev_to_rdev(dev);
5725         struct summary_lock_data *lock_data = data;
5726         int ret = 0;
5727
5728         if (rdev != *lock_data->old_contended_rdev) {
5729                 ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5730
5731                 if (ret == -EDEADLK)
5732                         *lock_data->new_contended_rdev = rdev;
5733                 else
5734                         WARN_ON_ONCE(ret);
5735         } else {
5736                 *lock_data->old_contended_rdev = NULL;
5737         }
5738
5739         return ret;
5740 }
5741
5742 static int regulator_summary_unlock_one(struct device *dev, void *data)
5743 {
5744         struct regulator_dev *rdev = dev_to_rdev(dev);
5745         struct summary_lock_data *lock_data = data;
5746
5747         if (lock_data) {
5748                 if (rdev == *lock_data->new_contended_rdev)
5749                         return -EDEADLK;
5750         }
5751
5752         regulator_unlock(rdev);
5753
5754         return 0;
5755 }
5756
5757 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5758                                       struct regulator_dev **new_contended_rdev,
5759                                       struct regulator_dev **old_contended_rdev)
5760 {
5761         struct summary_lock_data lock_data;
5762         int ret;
5763
5764         lock_data.ww_ctx = ww_ctx;
5765         lock_data.new_contended_rdev = new_contended_rdev;
5766         lock_data.old_contended_rdev = old_contended_rdev;
5767
5768         ret = class_for_each_device(&regulator_class, NULL, &lock_data,
5769                                     regulator_summary_lock_one);
5770         if (ret)
5771                 class_for_each_device(&regulator_class, NULL, &lock_data,
5772                                       regulator_summary_unlock_one);
5773
5774         return ret;
5775 }
5776
5777 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
5778 {
5779         struct regulator_dev *new_contended_rdev = NULL;
5780         struct regulator_dev *old_contended_rdev = NULL;
5781         int err;
5782
5783         mutex_lock(&regulator_list_mutex);
5784
5785         ww_acquire_init(ww_ctx, &regulator_ww_class);
5786
5787         do {
5788                 if (new_contended_rdev) {
5789                         ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
5790                         old_contended_rdev = new_contended_rdev;
5791                         old_contended_rdev->ref_cnt++;
5792                 }
5793
5794                 err = regulator_summary_lock_all(ww_ctx,
5795                                                  &new_contended_rdev,
5796                                                  &old_contended_rdev);
5797
5798                 if (old_contended_rdev)
5799                         regulator_unlock(old_contended_rdev);
5800
5801         } while (err == -EDEADLK);
5802
5803         ww_acquire_done(ww_ctx);
5804 }
5805
5806 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
5807 {
5808         class_for_each_device(&regulator_class, NULL, NULL,
5809                               regulator_summary_unlock_one);
5810         ww_acquire_fini(ww_ctx);
5811
5812         mutex_unlock(&regulator_list_mutex);
5813 }
5814
5815 static int regulator_summary_show_roots(struct device *dev, void *data)
5816 {
5817         struct regulator_dev *rdev = dev_to_rdev(dev);
5818         struct seq_file *s = data;
5819
5820         if (!rdev->supply)
5821                 regulator_summary_show_subtree(s, rdev, 0);
5822
5823         return 0;
5824 }
5825
5826 static int regulator_summary_show(struct seq_file *s, void *data)
5827 {
5828         struct ww_acquire_ctx ww_ctx;
5829
5830         seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
5831         seq_puts(s, "---------------------------------------------------------------------------------------\n");
5832
5833         regulator_summary_lock(&ww_ctx);
5834
5835         class_for_each_device(&regulator_class, NULL, s,
5836                               regulator_summary_show_roots);
5837
5838         regulator_summary_unlock(&ww_ctx);
5839
5840         return 0;
5841 }
5842 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
5843 #endif /* CONFIG_DEBUG_FS */
5844
5845 static int __init regulator_init(void)
5846 {
5847         int ret;
5848
5849         ret = class_register(&regulator_class);
5850
5851         debugfs_root = debugfs_create_dir("regulator", NULL);
5852         if (!debugfs_root)
5853                 pr_warn("regulator: Failed to create debugfs directory\n");
5854
5855 #ifdef CONFIG_DEBUG_FS
5856         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
5857                             &supply_map_fops);
5858
5859         debugfs_create_file("regulator_summary", 0444, debugfs_root,
5860                             NULL, &regulator_summary_fops);
5861 #endif
5862         regulator_dummy_init();
5863
5864         regulator_coupler_register(&generic_regulator_coupler);
5865
5866         return ret;
5867 }
5868
5869 /* init early to allow our consumers to complete system booting */
5870 core_initcall(regulator_init);
5871
5872 static int regulator_late_cleanup(struct device *dev, void *data)
5873 {
5874         struct regulator_dev *rdev = dev_to_rdev(dev);
5875         const struct regulator_ops *ops = rdev->desc->ops;
5876         struct regulation_constraints *c = rdev->constraints;
5877         int enabled, ret;
5878
5879         if (c && c->always_on)
5880                 return 0;
5881
5882         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5883                 return 0;
5884
5885         regulator_lock(rdev);
5886
5887         if (rdev->use_count)
5888                 goto unlock;
5889
5890         /* If we can't read the status assume it's always on. */
5891         if (ops->is_enabled)
5892                 enabled = ops->is_enabled(rdev);
5893         else
5894                 enabled = 1;
5895
5896         /* But if reading the status failed, assume that it's off. */
5897         if (enabled <= 0)
5898                 goto unlock;
5899
5900         if (have_full_constraints()) {
5901                 /* We log since this may kill the system if it goes
5902                  * wrong.
5903                  */
5904                 rdev_info(rdev, "disabling\n");
5905                 ret = _regulator_do_disable(rdev);
5906                 if (ret != 0)
5907                         rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
5908         } else {
5909                 /* The intention is that in future we will
5910                  * assume that full constraints are provided
5911                  * so warn even if we aren't going to do
5912                  * anything here.
5913                  */
5914                 rdev_warn(rdev, "incomplete constraints, leaving on\n");
5915         }
5916
5917 unlock:
5918         regulator_unlock(rdev);
5919
5920         return 0;
5921 }
5922
5923 static void regulator_init_complete_work_function(struct work_struct *work)
5924 {
5925         /*
5926          * Regulators may had failed to resolve their input supplies
5927          * when were registered, either because the input supply was
5928          * not registered yet or because its parent device was not
5929          * bound yet. So attempt to resolve the input supplies for
5930          * pending regulators before trying to disable unused ones.
5931          */
5932         class_for_each_device(&regulator_class, NULL, NULL,
5933                               regulator_register_resolve_supply);
5934
5935         /* If we have a full configuration then disable any regulators
5936          * we have permission to change the status for and which are
5937          * not in use or always_on.  This is effectively the default
5938          * for DT and ACPI as they have full constraints.
5939          */
5940         class_for_each_device(&regulator_class, NULL, NULL,
5941                               regulator_late_cleanup);
5942 }
5943
5944 static DECLARE_DELAYED_WORK(regulator_init_complete_work,
5945                             regulator_init_complete_work_function);
5946
5947 static int __init regulator_init_complete(void)
5948 {
5949         /*
5950          * Since DT doesn't provide an idiomatic mechanism for
5951          * enabling full constraints and since it's much more natural
5952          * with DT to provide them just assume that a DT enabled
5953          * system has full constraints.
5954          */
5955         if (of_have_populated_dt())
5956                 has_full_constraints = true;
5957
5958         /*
5959          * We punt completion for an arbitrary amount of time since
5960          * systems like distros will load many drivers from userspace
5961          * so consumers might not always be ready yet, this is
5962          * particularly an issue with laptops where this might bounce
5963          * the display off then on.  Ideally we'd get a notification
5964          * from userspace when this happens but we don't so just wait
5965          * a bit and hope we waited long enough.  It'd be better if
5966          * we'd only do this on systems that need it, and a kernel
5967          * command line option might be useful.
5968          */
5969         schedule_delayed_work(&regulator_init_complete_work,
5970                               msecs_to_jiffies(30000));
5971
5972         return 0;
5973 }
5974 late_initcall_sync(regulator_init_complete);