Merge tag 'io_uring-5.15-2021-09-11' of git://git.kernel.dk/linux-block
[linux-2.6-microblaze.git] / drivers / platform / chrome / cros_ec_sensorhub_ring.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for Chrome OS EC Sensor hub FIFO.
4  *
5  * Copyright 2020 Google LLC
6  */
7
8 #include <linux/delay.h>
9 #include <linux/device.h>
10 #include <linux/iio/iio.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/platform_data/cros_ec_commands.h>
14 #include <linux/platform_data/cros_ec_proto.h>
15 #include <linux/platform_data/cros_ec_sensorhub.h>
16 #include <linux/platform_device.h>
17 #include <linux/sort.h>
18 #include <linux/slab.h>
19
20 #include "cros_ec_trace.h"
21
22 /* Precision of fixed point for the m values from the filter */
23 #define M_PRECISION BIT(23)
24
25 /* Only activate the filter once we have at least this many elements. */
26 #define TS_HISTORY_THRESHOLD 8
27
28 /*
29  * If we don't have any history entries for this long, empty the filter to
30  * make sure there are no big discontinuities.
31  */
32 #define TS_HISTORY_BORED_US 500000
33
34 /* To measure by how much the filter is overshooting, if it happens. */
35 #define FUTURE_TS_ANALYTICS_COUNT_MAX 100
36
37 static inline int
38 cros_sensorhub_send_sample(struct cros_ec_sensorhub *sensorhub,
39                            struct cros_ec_sensors_ring_sample *sample)
40 {
41         cros_ec_sensorhub_push_data_cb_t cb;
42         int id = sample->sensor_id;
43         struct iio_dev *indio_dev;
44
45         if (id >= sensorhub->sensor_num)
46                 return -EINVAL;
47
48         cb = sensorhub->push_data[id].push_data_cb;
49         if (!cb)
50                 return 0;
51
52         indio_dev = sensorhub->push_data[id].indio_dev;
53
54         if (sample->flag & MOTIONSENSE_SENSOR_FLAG_FLUSH)
55                 return 0;
56
57         return cb(indio_dev, sample->vector, sample->timestamp);
58 }
59
60 /**
61  * cros_ec_sensorhub_register_push_data() - register the callback to the hub.
62  *
63  * @sensorhub : Sensor Hub object
64  * @sensor_num : The sensor the caller is interested in.
65  * @indio_dev : The iio device to use when a sample arrives.
66  * @cb : The callback to call when a sample arrives.
67  *
68  * The callback cb will be used by cros_ec_sensorhub_ring to distribute events
69  * from the EC.
70  *
71  * Return: 0 when callback is registered.
72  *         EINVAL is the sensor number is invalid or the slot already used.
73  */
74 int cros_ec_sensorhub_register_push_data(struct cros_ec_sensorhub *sensorhub,
75                                          u8 sensor_num,
76                                          struct iio_dev *indio_dev,
77                                          cros_ec_sensorhub_push_data_cb_t cb)
78 {
79         if (sensor_num >= sensorhub->sensor_num)
80                 return -EINVAL;
81         if (sensorhub->push_data[sensor_num].indio_dev)
82                 return -EINVAL;
83
84         sensorhub->push_data[sensor_num].indio_dev = indio_dev;
85         sensorhub->push_data[sensor_num].push_data_cb = cb;
86
87         return 0;
88 }
89 EXPORT_SYMBOL_GPL(cros_ec_sensorhub_register_push_data);
90
91 void cros_ec_sensorhub_unregister_push_data(struct cros_ec_sensorhub *sensorhub,
92                                             u8 sensor_num)
93 {
94         sensorhub->push_data[sensor_num].indio_dev = NULL;
95         sensorhub->push_data[sensor_num].push_data_cb = NULL;
96 }
97 EXPORT_SYMBOL_GPL(cros_ec_sensorhub_unregister_push_data);
98
99 /**
100  * cros_ec_sensorhub_ring_fifo_enable() - Enable or disable interrupt generation
101  *                                        for FIFO events.
102  * @sensorhub: Sensor Hub object
103  * @on: true when events are requested.
104  *
105  * To be called before sleeping or when noone is listening.
106  * Return: 0 on success, or an error when we can not communicate with the EC.
107  *
108  */
109 int cros_ec_sensorhub_ring_fifo_enable(struct cros_ec_sensorhub *sensorhub,
110                                        bool on)
111 {
112         int ret, i;
113
114         mutex_lock(&sensorhub->cmd_lock);
115         if (sensorhub->tight_timestamps)
116                 for (i = 0; i < sensorhub->sensor_num; i++)
117                         sensorhub->batch_state[i].last_len = 0;
118
119         sensorhub->params->cmd = MOTIONSENSE_CMD_FIFO_INT_ENABLE;
120         sensorhub->params->fifo_int_enable.enable = on;
121
122         sensorhub->msg->outsize = sizeof(struct ec_params_motion_sense);
123         sensorhub->msg->insize = sizeof(struct ec_response_motion_sense);
124
125         ret = cros_ec_cmd_xfer_status(sensorhub->ec->ec_dev, sensorhub->msg);
126         mutex_unlock(&sensorhub->cmd_lock);
127
128         /* We expect to receive a payload of 4 bytes, ignore. */
129         if (ret > 0)
130                 ret = 0;
131
132         return ret;
133 }
134
135 static int cros_ec_sensor_ring_median_cmp(const void *pv1, const void *pv2)
136 {
137         s64 v1 = *(s64 *)pv1;
138         s64 v2 = *(s64 *)pv2;
139
140         if (v1 > v2)
141                 return 1;
142         else if (v1 < v2)
143                 return -1;
144         else
145                 return 0;
146 }
147
148 /*
149  * cros_ec_sensor_ring_median: Gets median of an array of numbers
150  *
151  * For now it's implemented using an inefficient > O(n) sort then return
152  * the middle element. A more optimal method would be something like
153  * quickselect, but given that n = 64 we can probably live with it in the
154  * name of clarity.
155  *
156  * Warning: the input array gets modified (sorted)!
157  */
158 static s64 cros_ec_sensor_ring_median(s64 *array, size_t length)
159 {
160         sort(array, length, sizeof(s64), cros_ec_sensor_ring_median_cmp, NULL);
161         return array[length / 2];
162 }
163
164 /*
165  * IRQ Timestamp Filtering
166  *
167  * Lower down in cros_ec_sensor_ring_process_event(), for each sensor event
168  * we have to calculate it's timestamp in the AP timebase. There are 3 time
169  * points:
170  *   a - EC timebase, sensor event
171  *   b - EC timebase, IRQ
172  *   c - AP timebase, IRQ
173  *   a' - what we want: sensor even in AP timebase
174  *
175  * While a and b are recorded at accurate times (due to the EC real time
176  * nature); c is pretty untrustworthy, even though it's recorded the
177  * first thing in ec_irq_handler(). There is a very good change we'll get
178  * added lantency due to:
179  *   other irqs
180  *   ddrfreq
181  *   cpuidle
182  *
183  * Normally a' = c - b + a, but if we do that naive math any jitter in c
184  * will get coupled in a', which we don't want. We want a function
185  * a' = cros_ec_sensor_ring_ts_filter(a) which will filter out outliers in c.
186  *
187  * Think of a graph of AP time(b) on the y axis vs EC time(c) on the x axis.
188  * The slope of the line won't be exactly 1, there will be some clock drift
189  * between the 2 chips for various reasons (mechanical stress, temperature,
190  * voltage). We need to extrapolate values for a future x, without trusting
191  * recent y values too much.
192  *
193  * We use a median filter for the slope, then another median filter for the
194  * y-intercept to calculate this function:
195  *   dx[n] = x[n-1] - x[n]
196  *   dy[n] = x[n-1] - x[n]
197  *   m[n] = dy[n] / dx[n]
198  *   median_m = median(m[n-k:n])
199  *   error[i] = y[n-i] - median_m * x[n-i]
200  *   median_error = median(error[:k])
201  *   predicted_y = median_m * x + median_error
202  *
203  * Implementation differences from above:
204  * - Redefined y to be actually c - b, this gives us a lot more precision
205  * to do the math. (c-b)/b variations are more obvious than c/b variations.
206  * - Since we don't have floating point, any operations involving slope are
207  * done using fixed point math (*M_PRECISION)
208  * - Since x and y grow with time, we keep zeroing the graph (relative to
209  * the last sample), this way math involving *x[n-i] will not overflow
210  * - EC timestamps are kept in us, it improves the slope calculation precision
211  */
212
213 /**
214  * cros_ec_sensor_ring_ts_filter_update() - Update filter history.
215  *
216  * @state: Filter information.
217  * @b: IRQ timestamp, EC timebase (us)
218  * @c: IRQ timestamp, AP timebase (ns)
219  *
220  * Given a new IRQ timestamp pair (EC and AP timebases), add it to the filter
221  * history.
222  */
223 static void
224 cros_ec_sensor_ring_ts_filter_update(struct cros_ec_sensors_ts_filter_state
225                                      *state,
226                                      s64 b, s64 c)
227 {
228         s64 x, y;
229         s64 dx, dy;
230         s64 m; /* stored as *M_PRECISION */
231         s64 *m_history_copy = state->temp_buf;
232         s64 *error = state->temp_buf;
233         int i;
234
235         /* we trust b the most, that'll be our independent variable */
236         x = b;
237         /* y is the offset between AP and EC times, in ns */
238         y = c - b * 1000;
239
240         dx = (state->x_history[0] + state->x_offset) - x;
241         if (dx == 0)
242                 return; /* we already have this irq in the history */
243         dy = (state->y_history[0] + state->y_offset) - y;
244         m = div64_s64(dy * M_PRECISION, dx);
245
246         /* Empty filter if we haven't seen any action in a while. */
247         if (-dx > TS_HISTORY_BORED_US)
248                 state->history_len = 0;
249
250         /* Move everything over, also update offset to all absolute coords .*/
251         for (i = state->history_len - 1; i >= 1; i--) {
252                 state->x_history[i] = state->x_history[i - 1] + dx;
253                 state->y_history[i] = state->y_history[i - 1] + dy;
254
255                 state->m_history[i] = state->m_history[i - 1];
256                 /*
257                  * Also use the same loop to copy m_history for future
258                  * median extraction.
259                  */
260                 m_history_copy[i] = state->m_history[i - 1];
261         }
262
263         /* Store the x and y, but remember offset is actually last sample. */
264         state->x_offset = x;
265         state->y_offset = y;
266         state->x_history[0] = 0;
267         state->y_history[0] = 0;
268
269         state->m_history[0] = m;
270         m_history_copy[0] = m;
271
272         if (state->history_len < CROS_EC_SENSORHUB_TS_HISTORY_SIZE)
273                 state->history_len++;
274
275         /* Precalculate things for the filter. */
276         if (state->history_len > TS_HISTORY_THRESHOLD) {
277                 state->median_m =
278                     cros_ec_sensor_ring_median(m_history_copy,
279                                                state->history_len - 1);
280
281                 /*
282                  * Calculate y-intercepts as if m_median is the slope and
283                  * points in the history are on the line. median_error will
284                  * still be in the offset coordinate system.
285                  */
286                 for (i = 0; i < state->history_len; i++)
287                         error[i] = state->y_history[i] -
288                                 div_s64(state->median_m * state->x_history[i],
289                                         M_PRECISION);
290                 state->median_error =
291                         cros_ec_sensor_ring_median(error, state->history_len);
292         } else {
293                 state->median_m = 0;
294                 state->median_error = 0;
295         }
296         trace_cros_ec_sensorhub_filter(state, dx, dy);
297 }
298
299 /**
300  * cros_ec_sensor_ring_ts_filter() - Translate EC timebase timestamp to AP
301  *                                   timebase
302  *
303  * @state: filter information.
304  * @x: any ec timestamp (us):
305  *
306  * cros_ec_sensor_ring_ts_filter(a) => a' event timestamp, AP timebase
307  * cros_ec_sensor_ring_ts_filter(b) => calculated timestamp when the EC IRQ
308  *                           should have happened on the AP, with low jitter
309  *
310  * Note: The filter will only activate once state->history_len goes
311  * over TS_HISTORY_THRESHOLD. Otherwise it'll just do the naive c - b + a
312  * transform.
313  *
314  * How to derive the formula, starting from:
315  *   f(x) = median_m * x + median_error
316  * That's the calculated AP - EC offset (at the x point in time)
317  * Undo the coordinate system transform:
318  *   f(x) = median_m * (x - x_offset) + median_error + y_offset
319  * Remember to undo the "y = c - b * 1000" modification:
320  *   f(x) = median_m * (x - x_offset) + median_error + y_offset + x * 1000
321  *
322  * Return: timestamp in AP timebase (ns)
323  */
324 static s64
325 cros_ec_sensor_ring_ts_filter(struct cros_ec_sensors_ts_filter_state *state,
326                               s64 x)
327 {
328         return div_s64(state->median_m * (x - state->x_offset), M_PRECISION)
329                + state->median_error + state->y_offset + x * 1000;
330 }
331
332 /*
333  * Since a and b were originally 32 bit values from the EC,
334  * they overflow relatively often, casting is not enough, so we need to
335  * add an offset.
336  */
337 static void
338 cros_ec_sensor_ring_fix_overflow(s64 *ts,
339                                  const s64 overflow_period,
340                                  struct cros_ec_sensors_ec_overflow_state
341                                  *state)
342 {
343         s64 adjust;
344
345         *ts += state->offset;
346         if (abs(state->last - *ts) > (overflow_period / 2)) {
347                 adjust = state->last > *ts ? overflow_period : -overflow_period;
348                 state->offset += adjust;
349                 *ts += adjust;
350         }
351         state->last = *ts;
352 }
353
354 static void
355 cros_ec_sensor_ring_check_for_past_timestamp(struct cros_ec_sensorhub
356                                              *sensorhub,
357                                              struct cros_ec_sensors_ring_sample
358                                              *sample)
359 {
360         const u8 sensor_id = sample->sensor_id;
361
362         /* If this event is earlier than one we saw before... */
363         if (sensorhub->batch_state[sensor_id].newest_sensor_event >
364             sample->timestamp)
365                 /* mark it for spreading. */
366                 sample->timestamp =
367                         sensorhub->batch_state[sensor_id].last_ts;
368         else
369                 sensorhub->batch_state[sensor_id].newest_sensor_event =
370                         sample->timestamp;
371 }
372
373 /**
374  * cros_ec_sensor_ring_process_event() - Process one EC FIFO event
375  *
376  * @sensorhub: Sensor Hub object.
377  * @fifo_info: FIFO information from the EC (includes b point, EC timebase).
378  * @fifo_timestamp: EC IRQ, kernel timebase (aka c).
379  * @current_timestamp: calculated event timestamp, kernel timebase (aka a').
380  * @in: incoming FIFO event from EC (includes a point, EC timebase).
381  * @out: outgoing event to user space (includes a').
382  *
383  * Process one EC event, add it in the ring if necessary.
384  *
385  * Return: true if out event has been populated.
386  */
387 static bool
388 cros_ec_sensor_ring_process_event(struct cros_ec_sensorhub *sensorhub,
389                                 const struct ec_response_motion_sense_fifo_info
390                                 *fifo_info,
391                                 const ktime_t fifo_timestamp,
392                                 ktime_t *current_timestamp,
393                                 struct ec_response_motion_sensor_data *in,
394                                 struct cros_ec_sensors_ring_sample *out)
395 {
396         const s64 now = cros_ec_get_time_ns();
397         int axis, async_flags;
398
399         /* Do not populate the filter based on asynchronous events. */
400         async_flags = in->flags &
401                 (MOTIONSENSE_SENSOR_FLAG_ODR | MOTIONSENSE_SENSOR_FLAG_FLUSH);
402
403         if (in->flags & MOTIONSENSE_SENSOR_FLAG_TIMESTAMP && !async_flags) {
404                 s64 a = in->timestamp;
405                 s64 b = fifo_info->timestamp;
406                 s64 c = fifo_timestamp;
407
408                 cros_ec_sensor_ring_fix_overflow(&a, 1LL << 32,
409                                           &sensorhub->overflow_a);
410                 cros_ec_sensor_ring_fix_overflow(&b, 1LL << 32,
411                                           &sensorhub->overflow_b);
412
413                 if (sensorhub->tight_timestamps) {
414                         cros_ec_sensor_ring_ts_filter_update(
415                                         &sensorhub->filter, b, c);
416                         *current_timestamp = cros_ec_sensor_ring_ts_filter(
417                                         &sensorhub->filter, a);
418                 } else {
419                         s64 new_timestamp;
420
421                         /*
422                          * Disable filtering since we might add more jitter
423                          * if b is in a random point in time.
424                          */
425                         new_timestamp = c - b * 1000 + a * 1000;
426                         /*
427                          * The timestamp can be stale if we had to use the fifo
428                          * info timestamp.
429                          */
430                         if (new_timestamp - *current_timestamp > 0)
431                                 *current_timestamp = new_timestamp;
432                 }
433                 trace_cros_ec_sensorhub_timestamp(in->timestamp,
434                                                   fifo_info->timestamp,
435                                                   fifo_timestamp,
436                                                   *current_timestamp,
437                                                   now);
438         }
439
440         if (in->flags & MOTIONSENSE_SENSOR_FLAG_ODR) {
441                 if (sensorhub->tight_timestamps) {
442                         sensorhub->batch_state[in->sensor_num].last_len = 0;
443                         sensorhub->batch_state[in->sensor_num].penul_len = 0;
444                 }
445                 /*
446                  * ODR change is only useful for the sensor_ring, it does not
447                  * convey information to clients.
448                  */
449                 return false;
450         }
451
452         if (in->flags & MOTIONSENSE_SENSOR_FLAG_FLUSH) {
453                 out->sensor_id = in->sensor_num;
454                 out->timestamp = *current_timestamp;
455                 out->flag = in->flags;
456                 if (sensorhub->tight_timestamps)
457                         sensorhub->batch_state[out->sensor_id].last_len = 0;
458                 /*
459                  * No other payload information provided with
460                  * flush ack.
461                  */
462                 return true;
463         }
464
465         if (in->flags & MOTIONSENSE_SENSOR_FLAG_TIMESTAMP)
466                 /* If we just have a timestamp, skip this entry. */
467                 return false;
468
469         /* Regular sample */
470         out->sensor_id = in->sensor_num;
471         trace_cros_ec_sensorhub_data(in->sensor_num,
472                                      fifo_info->timestamp,
473                                      fifo_timestamp,
474                                      *current_timestamp,
475                                      now);
476
477         if (*current_timestamp - now > 0) {
478                 /*
479                  * This fix is needed to overcome the timestamp filter putting
480                  * events in the future.
481                  */
482                 sensorhub->future_timestamp_total_ns +=
483                         *current_timestamp - now;
484                 if (++sensorhub->future_timestamp_count ==
485                                 FUTURE_TS_ANALYTICS_COUNT_MAX) {
486                         s64 avg = div_s64(sensorhub->future_timestamp_total_ns,
487                                         sensorhub->future_timestamp_count);
488                         dev_warn_ratelimited(sensorhub->dev,
489                                              "100 timestamps in the future, %lldns shaved on average\n",
490                                              avg);
491                         sensorhub->future_timestamp_count = 0;
492                         sensorhub->future_timestamp_total_ns = 0;
493                 }
494                 out->timestamp = now;
495         } else {
496                 out->timestamp = *current_timestamp;
497         }
498
499         out->flag = in->flags;
500         for (axis = 0; axis < 3; axis++)
501                 out->vector[axis] = in->data[axis];
502
503         if (sensorhub->tight_timestamps)
504                 cros_ec_sensor_ring_check_for_past_timestamp(sensorhub, out);
505         return true;
506 }
507
508 /*
509  * cros_ec_sensor_ring_spread_add: Calculate proper timestamps then add to
510  *                                 ringbuffer.
511  *
512  * This is the new spreading code, assumes every sample's timestamp
513  * preceeds the sample. Run if tight_timestamps == true.
514  *
515  * Sometimes the EC receives only one interrupt (hence timestamp) for
516  * a batch of samples. Only the first sample will have the correct
517  * timestamp. So we must interpolate the other samples.
518  * We use the previous batch timestamp and our current batch timestamp
519  * as a way to calculate period, then spread the samples evenly.
520  *
521  * s0 int, 0ms
522  * s1 int, 10ms
523  * s2 int, 20ms
524  * 30ms point goes by, no interrupt, previous one is still asserted
525  * downloading s2 and s3
526  * s3 sample, 20ms (incorrect timestamp)
527  * s4 int, 40ms
528  *
529  * The batches are [(s0), (s1), (s2, s3), (s4)]. Since the 3rd batch
530  * has 2 samples in them, we adjust the timestamp of s3.
531  * s2 - s1 = 10ms, so s3 must be s2 + 10ms => 20ms. If s1 would have
532  * been part of a bigger batch things would have gotten a little
533  * more complicated.
534  *
535  * Note: we also assume another sensor sample doesn't break up a batch
536  * in 2 or more partitions. Example, there can't ever be a sync sensor
537  * in between S2 and S3. This simplifies the following code.
538  */
539 static void
540 cros_ec_sensor_ring_spread_add(struct cros_ec_sensorhub *sensorhub,
541                                unsigned long sensor_mask,
542                                struct cros_ec_sensors_ring_sample *last_out)
543 {
544         struct cros_ec_sensors_ring_sample *batch_start, *next_batch_start;
545         int id;
546
547         for_each_set_bit(id, &sensor_mask, sensorhub->sensor_num) {
548                 for (batch_start = sensorhub->ring; batch_start < last_out;
549                      batch_start = next_batch_start) {
550                         /*
551                          * For each batch (where all samples have the same
552                          * timestamp).
553                          */
554                         int batch_len, sample_idx;
555                         struct cros_ec_sensors_ring_sample *batch_end =
556                                 batch_start;
557                         struct cros_ec_sensors_ring_sample *s;
558                         s64 batch_timestamp = batch_start->timestamp;
559                         s64 sample_period;
560
561                         /*
562                          * Skip over batches that start with the sensor types
563                          * we're not looking at right now.
564                          */
565                         if (batch_start->sensor_id != id) {
566                                 next_batch_start = batch_start + 1;
567                                 continue;
568                         }
569
570                         /*
571                          * Do not start a batch
572                          * from a flush, as it happens asynchronously to the
573                          * regular flow of events.
574                          */
575                         if (batch_start->flag & MOTIONSENSE_SENSOR_FLAG_FLUSH) {
576                                 cros_sensorhub_send_sample(sensorhub,
577                                                            batch_start);
578                                 next_batch_start = batch_start + 1;
579                                 continue;
580                         }
581
582                         if (batch_start->timestamp <=
583                             sensorhub->batch_state[id].last_ts) {
584                                 batch_timestamp =
585                                         sensorhub->batch_state[id].last_ts;
586                                 batch_len = sensorhub->batch_state[id].last_len;
587
588                                 sample_idx = batch_len;
589
590                                 sensorhub->batch_state[id].last_ts =
591                                   sensorhub->batch_state[id].penul_ts;
592                                 sensorhub->batch_state[id].last_len =
593                                   sensorhub->batch_state[id].penul_len;
594                         } else {
595                                 /*
596                                  * Push first sample in the batch to the,
597                                  * kifo, it's guaranteed to be correct, the
598                                  * rest will follow later on.
599                                  */
600                                 sample_idx = 1;
601                                 batch_len = 1;
602                                 cros_sensorhub_send_sample(sensorhub,
603                                                            batch_start);
604                                 batch_start++;
605                         }
606
607                         /* Find all samples have the same timestamp. */
608                         for (s = batch_start; s < last_out; s++) {
609                                 if (s->sensor_id != id)
610                                         /*
611                                          * Skip over other sensor types that
612                                          * are interleaved, don't count them.
613                                          */
614                                         continue;
615                                 if (s->timestamp != batch_timestamp)
616                                         /* we discovered the next batch */
617                                         break;
618                                 if (s->flag & MOTIONSENSE_SENSOR_FLAG_FLUSH)
619                                         /* break on flush packets */
620                                         break;
621                                 batch_end = s;
622                                 batch_len++;
623                         }
624
625                         if (batch_len == 1)
626                                 goto done_with_this_batch;
627
628                         /* Can we calculate period? */
629                         if (sensorhub->batch_state[id].last_len == 0) {
630                                 dev_warn(sensorhub->dev, "Sensor %d: lost %d samples when spreading\n",
631                                          id, batch_len - 1);
632                                 goto done_with_this_batch;
633                                 /*
634                                  * Note: we're dropping the rest of the samples
635                                  * in this batch since we have no idea where
636                                  * they're supposed to go without a period
637                                  * calculation.
638                                  */
639                         }
640
641                         sample_period = div_s64(batch_timestamp -
642                                 sensorhub->batch_state[id].last_ts,
643                                 sensorhub->batch_state[id].last_len);
644                         dev_dbg(sensorhub->dev,
645                                 "Adjusting %d samples, sensor %d last_batch @%lld (%d samples) batch_timestamp=%lld => period=%lld\n",
646                                 batch_len, id,
647                                 sensorhub->batch_state[id].last_ts,
648                                 sensorhub->batch_state[id].last_len,
649                                 batch_timestamp,
650                                 sample_period);
651
652                         /*
653                          * Adjust timestamps of the samples then push them to
654                          * kfifo.
655                          */
656                         for (s = batch_start; s <= batch_end; s++) {
657                                 if (s->sensor_id != id)
658                                         /*
659                                          * Skip over other sensor types that
660                                          * are interleaved, don't change them.
661                                          */
662                                         continue;
663
664                                 s->timestamp = batch_timestamp +
665                                         sample_period * sample_idx;
666                                 sample_idx++;
667
668                                 cros_sensorhub_send_sample(sensorhub, s);
669                         }
670
671 done_with_this_batch:
672                         sensorhub->batch_state[id].penul_ts =
673                                 sensorhub->batch_state[id].last_ts;
674                         sensorhub->batch_state[id].penul_len =
675                                 sensorhub->batch_state[id].last_len;
676
677                         sensorhub->batch_state[id].last_ts =
678                                 batch_timestamp;
679                         sensorhub->batch_state[id].last_len = batch_len;
680
681                         next_batch_start = batch_end + 1;
682                 }
683         }
684 }
685
686 /*
687  * cros_ec_sensor_ring_spread_add_legacy: Calculate proper timestamps then
688  * add to ringbuffer (legacy).
689  *
690  * Note: This assumes we're running old firmware, where timestamp
691  * is inserted after its sample(s)e. There can be several samples between
692  * timestamps, so several samples can have the same timestamp.
693  *
694  *                        timestamp | count
695  *                        -----------------
696  *          1st sample --> TS1      | 1
697  *                         TS2      | 2
698  *                         TS2      | 3
699  *                         TS3      | 4
700  *           last_out -->
701  *
702  *
703  * We spread time for the samples using perod p = (current - TS1)/4.
704  * between TS1 and TS2: [TS1+p/4, TS1+2p/4, TS1+3p/4, current_timestamp].
705  *
706  */
707 static void
708 cros_ec_sensor_ring_spread_add_legacy(struct cros_ec_sensorhub *sensorhub,
709                                       unsigned long sensor_mask,
710                                       s64 current_timestamp,
711                                       struct cros_ec_sensors_ring_sample
712                                       *last_out)
713 {
714         struct cros_ec_sensors_ring_sample *out;
715         int i;
716
717         for_each_set_bit(i, &sensor_mask, sensorhub->sensor_num) {
718                 s64 timestamp;
719                 int count = 0;
720                 s64 time_period;
721
722                 for (out = sensorhub->ring; out < last_out; out++) {
723                         if (out->sensor_id != i)
724                                 continue;
725
726                         /* Timestamp to start with */
727                         timestamp = out->timestamp;
728                         out++;
729                         count = 1;
730                         break;
731                 }
732                 for (; out < last_out; out++) {
733                         /* Find last sample. */
734                         if (out->sensor_id != i)
735                                 continue;
736                         count++;
737                 }
738                 if (count == 0)
739                         continue;
740
741                 /* Spread uniformly between the first and last samples. */
742                 time_period = div_s64(current_timestamp - timestamp, count);
743
744                 for (out = sensorhub->ring; out < last_out; out++) {
745                         if (out->sensor_id != i)
746                                 continue;
747                         timestamp += time_period;
748                         out->timestamp = timestamp;
749                 }
750         }
751
752         /* Push the event into the kfifo */
753         for (out = sensorhub->ring; out < last_out; out++)
754                 cros_sensorhub_send_sample(sensorhub, out);
755 }
756
757 /**
758  * cros_ec_sensorhub_ring_handler() - The trigger handler function
759  *
760  * @sensorhub: Sensor Hub object.
761  *
762  * Called by the notifier, process the EC sensor FIFO queue.
763  */
764 static void cros_ec_sensorhub_ring_handler(struct cros_ec_sensorhub *sensorhub)
765 {
766         struct ec_response_motion_sense_fifo_info *fifo_info =
767                 sensorhub->fifo_info;
768         struct cros_ec_dev *ec = sensorhub->ec;
769         ktime_t fifo_timestamp, current_timestamp;
770         int i, j, number_data, ret;
771         unsigned long sensor_mask = 0;
772         struct ec_response_motion_sensor_data *in;
773         struct cros_ec_sensors_ring_sample *out, *last_out;
774
775         mutex_lock(&sensorhub->cmd_lock);
776
777         /* Get FIFO information if there are lost vectors. */
778         if (fifo_info->total_lost) {
779                 int fifo_info_length =
780                         sizeof(struct ec_response_motion_sense_fifo_info) +
781                         sizeof(u16) * sensorhub->sensor_num;
782
783                 /* Need to retrieve the number of lost vectors per sensor */
784                 sensorhub->params->cmd = MOTIONSENSE_CMD_FIFO_INFO;
785                 sensorhub->msg->outsize = 1;
786                 sensorhub->msg->insize = fifo_info_length;
787
788                 if (cros_ec_cmd_xfer_status(ec->ec_dev, sensorhub->msg) < 0)
789                         goto error;
790
791                 memcpy(fifo_info, &sensorhub->resp->fifo_info,
792                        fifo_info_length);
793
794                 /*
795                  * Update collection time, will not be as precise as the
796                  * non-error case.
797                  */
798                 fifo_timestamp = cros_ec_get_time_ns();
799         } else {
800                 fifo_timestamp = sensorhub->fifo_timestamp[
801                         CROS_EC_SENSOR_NEW_TS];
802         }
803
804         if (fifo_info->count > sensorhub->fifo_size ||
805             fifo_info->size != sensorhub->fifo_size) {
806                 dev_warn(sensorhub->dev,
807                          "Mismatch EC data: count %d, size %d - expected %d\n",
808                          fifo_info->count, fifo_info->size,
809                          sensorhub->fifo_size);
810                 goto error;
811         }
812
813         /* Copy elements in the main fifo */
814         current_timestamp = sensorhub->fifo_timestamp[CROS_EC_SENSOR_LAST_TS];
815         out = sensorhub->ring;
816         for (i = 0; i < fifo_info->count; i += number_data) {
817                 sensorhub->params->cmd = MOTIONSENSE_CMD_FIFO_READ;
818                 sensorhub->params->fifo_read.max_data_vector =
819                         fifo_info->count - i;
820                 sensorhub->msg->outsize =
821                         sizeof(struct ec_params_motion_sense);
822                 sensorhub->msg->insize =
823                         sizeof(sensorhub->resp->fifo_read) +
824                         sensorhub->params->fifo_read.max_data_vector *
825                           sizeof(struct ec_response_motion_sensor_data);
826                 ret = cros_ec_cmd_xfer_status(ec->ec_dev, sensorhub->msg);
827                 if (ret < 0) {
828                         dev_warn(sensorhub->dev, "Fifo error: %d\n", ret);
829                         break;
830                 }
831                 number_data = sensorhub->resp->fifo_read.number_data;
832                 if (number_data == 0) {
833                         dev_dbg(sensorhub->dev, "Unexpected empty FIFO\n");
834                         break;
835                 }
836                 if (number_data > fifo_info->count - i) {
837                         dev_warn(sensorhub->dev,
838                                  "Invalid EC data: too many entry received: %d, expected %d\n",
839                                  number_data, fifo_info->count - i);
840                         break;
841                 }
842                 if (out + number_data >
843                     sensorhub->ring + fifo_info->count) {
844                         dev_warn(sensorhub->dev,
845                                  "Too many samples: %d (%zd data) to %d entries for expected %d entries\n",
846                                  i, out - sensorhub->ring, i + number_data,
847                                  fifo_info->count);
848                         break;
849                 }
850
851                 for (in = sensorhub->resp->fifo_read.data, j = 0;
852                      j < number_data; j++, in++) {
853                         if (cros_ec_sensor_ring_process_event(
854                                                 sensorhub, fifo_info,
855                                                 fifo_timestamp,
856                                                 &current_timestamp,
857                                                 in, out)) {
858                                 sensor_mask |= BIT(in->sensor_num);
859                                 out++;
860                         }
861                 }
862         }
863         mutex_unlock(&sensorhub->cmd_lock);
864         last_out = out;
865
866         if (out == sensorhub->ring)
867                 /* Unexpected empty FIFO. */
868                 goto ring_handler_end;
869
870         /*
871          * Check if current_timestamp is ahead of the last sample. Normally,
872          * the EC appends a timestamp after the last sample, but if the AP
873          * is slow to respond to the IRQ, the EC may have added new samples.
874          * Use the FIFO info timestamp as last timestamp then.
875          */
876         if (!sensorhub->tight_timestamps &&
877             (last_out - 1)->timestamp == current_timestamp)
878                 current_timestamp = fifo_timestamp;
879
880         /* Warn on lost samples. */
881         if (fifo_info->total_lost)
882                 for (i = 0; i < sensorhub->sensor_num; i++) {
883                         if (fifo_info->lost[i]) {
884                                 dev_warn_ratelimited(sensorhub->dev,
885                                                      "Sensor %d: lost: %d out of %d\n",
886                                                      i, fifo_info->lost[i],
887                                                      fifo_info->total_lost);
888                                 if (sensorhub->tight_timestamps)
889                                         sensorhub->batch_state[i].last_len = 0;
890                         }
891                 }
892
893         /*
894          * Spread samples in case of batching, then add them to the
895          * ringbuffer.
896          */
897         if (sensorhub->tight_timestamps)
898                 cros_ec_sensor_ring_spread_add(sensorhub, sensor_mask,
899                                                last_out);
900         else
901                 cros_ec_sensor_ring_spread_add_legacy(sensorhub, sensor_mask,
902                                                       current_timestamp,
903                                                       last_out);
904
905 ring_handler_end:
906         sensorhub->fifo_timestamp[CROS_EC_SENSOR_LAST_TS] = current_timestamp;
907         return;
908
909 error:
910         mutex_unlock(&sensorhub->cmd_lock);
911 }
912
913 static int cros_ec_sensorhub_event(struct notifier_block *nb,
914                                    unsigned long queued_during_suspend,
915                                    void *_notify)
916 {
917         struct cros_ec_sensorhub *sensorhub;
918         struct cros_ec_device *ec_dev;
919
920         sensorhub = container_of(nb, struct cros_ec_sensorhub, notifier);
921         ec_dev = sensorhub->ec->ec_dev;
922
923         if (ec_dev->event_data.event_type != EC_MKBP_EVENT_SENSOR_FIFO)
924                 return NOTIFY_DONE;
925
926         if (ec_dev->event_size != sizeof(ec_dev->event_data.data.sensor_fifo)) {
927                 dev_warn(ec_dev->dev, "Invalid fifo info size\n");
928                 return NOTIFY_DONE;
929         }
930
931         if (queued_during_suspend)
932                 return NOTIFY_OK;
933
934         memcpy(sensorhub->fifo_info, &ec_dev->event_data.data.sensor_fifo.info,
935                sizeof(*sensorhub->fifo_info));
936         sensorhub->fifo_timestamp[CROS_EC_SENSOR_NEW_TS] =
937                 ec_dev->last_event_time;
938         cros_ec_sensorhub_ring_handler(sensorhub);
939
940         return NOTIFY_OK;
941 }
942
943 /**
944  * cros_ec_sensorhub_ring_allocate() - Prepare the FIFO functionality if the EC
945  *                                     supports it.
946  *
947  * @sensorhub : Sensor Hub object.
948  *
949  * Return: 0 on success.
950  */
951 int cros_ec_sensorhub_ring_allocate(struct cros_ec_sensorhub *sensorhub)
952 {
953         int fifo_info_length =
954                 sizeof(struct ec_response_motion_sense_fifo_info) +
955                 sizeof(u16) * sensorhub->sensor_num;
956
957         /* Allocate the array for lost events. */
958         sensorhub->fifo_info = devm_kzalloc(sensorhub->dev, fifo_info_length,
959                                             GFP_KERNEL);
960         if (!sensorhub->fifo_info)
961                 return -ENOMEM;
962
963         /*
964          * Allocate the callback area based on the number of sensors.
965          * Add one for the sensor ring.
966          */
967         sensorhub->push_data = devm_kcalloc(sensorhub->dev,
968                         sensorhub->sensor_num,
969                         sizeof(*sensorhub->push_data),
970                         GFP_KERNEL);
971         if (!sensorhub->push_data)
972                 return -ENOMEM;
973
974         sensorhub->tight_timestamps = cros_ec_check_features(
975                         sensorhub->ec,
976                         EC_FEATURE_MOTION_SENSE_TIGHT_TIMESTAMPS);
977
978         if (sensorhub->tight_timestamps) {
979                 sensorhub->batch_state = devm_kcalloc(sensorhub->dev,
980                                 sensorhub->sensor_num,
981                                 sizeof(*sensorhub->batch_state),
982                                 GFP_KERNEL);
983                 if (!sensorhub->batch_state)
984                         return -ENOMEM;
985         }
986
987         return 0;
988 }
989
990 /**
991  * cros_ec_sensorhub_ring_add() - Add the FIFO functionality if the EC
992  *                                supports it.
993  *
994  * @sensorhub : Sensor Hub object.
995  *
996  * Return: 0 on success.
997  */
998 int cros_ec_sensorhub_ring_add(struct cros_ec_sensorhub *sensorhub)
999 {
1000         struct cros_ec_dev *ec = sensorhub->ec;
1001         int ret;
1002         int fifo_info_length =
1003                 sizeof(struct ec_response_motion_sense_fifo_info) +
1004                 sizeof(u16) * sensorhub->sensor_num;
1005
1006         /* Retrieve FIFO information */
1007         sensorhub->msg->version = 2;
1008         sensorhub->params->cmd = MOTIONSENSE_CMD_FIFO_INFO;
1009         sensorhub->msg->outsize = 1;
1010         sensorhub->msg->insize = fifo_info_length;
1011
1012         ret = cros_ec_cmd_xfer_status(ec->ec_dev, sensorhub->msg);
1013         if (ret < 0)
1014                 return ret;
1015
1016         /*
1017          * Allocate the full fifo. We need to copy the whole FIFO to set
1018          * timestamps properly.
1019          */
1020         sensorhub->fifo_size = sensorhub->resp->fifo_info.size;
1021         sensorhub->ring = devm_kcalloc(sensorhub->dev, sensorhub->fifo_size,
1022                                        sizeof(*sensorhub->ring), GFP_KERNEL);
1023         if (!sensorhub->ring)
1024                 return -ENOMEM;
1025
1026         sensorhub->fifo_timestamp[CROS_EC_SENSOR_LAST_TS] =
1027                 cros_ec_get_time_ns();
1028
1029         /* Register the notifier that will act as a top half interrupt. */
1030         sensorhub->notifier.notifier_call = cros_ec_sensorhub_event;
1031         ret = blocking_notifier_chain_register(&ec->ec_dev->event_notifier,
1032                                                &sensorhub->notifier);
1033         if (ret < 0)
1034                 return ret;
1035
1036         /* Start collection samples. */
1037         return cros_ec_sensorhub_ring_fifo_enable(sensorhub, true);
1038 }
1039
1040 void cros_ec_sensorhub_ring_remove(void *arg)
1041 {
1042         struct cros_ec_sensorhub *sensorhub = arg;
1043         struct cros_ec_device *ec_dev = sensorhub->ec->ec_dev;
1044
1045         /* Disable the ring, prevent EC interrupt to the AP for nothing. */
1046         cros_ec_sensorhub_ring_fifo_enable(sensorhub, false);
1047         blocking_notifier_chain_unregister(&ec_dev->event_notifier,
1048                                            &sensorhub->notifier);
1049 }