Merge tag 'io_uring-5.15-2021-09-11' of git://git.kernel.dk/linux-block
[linux-2.6-microblaze.git] / drivers / pci / controller / vmd.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Volume Management Device driver
4  * Copyright (c) 2015, Intel Corporation.
5  */
6
7 #include <linux/device.h>
8 #include <linux/interrupt.h>
9 #include <linux/irq.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/msi.h>
13 #include <linux/pci.h>
14 #include <linux/pci-acpi.h>
15 #include <linux/pci-ecam.h>
16 #include <linux/srcu.h>
17 #include <linux/rculist.h>
18 #include <linux/rcupdate.h>
19
20 #include <asm/irqdomain.h>
21 #include <asm/device.h>
22 #include <asm/msi.h>
23
24 #define VMD_CFGBAR      0
25 #define VMD_MEMBAR1     2
26 #define VMD_MEMBAR2     4
27
28 #define PCI_REG_VMCAP           0x40
29 #define BUS_RESTRICT_CAP(vmcap) (vmcap & 0x1)
30 #define PCI_REG_VMCONFIG        0x44
31 #define BUS_RESTRICT_CFG(vmcfg) ((vmcfg >> 8) & 0x3)
32 #define VMCONFIG_MSI_REMAP      0x2
33 #define PCI_REG_VMLOCK          0x70
34 #define MB2_SHADOW_EN(vmlock)   (vmlock & 0x2)
35
36 #define MB2_SHADOW_OFFSET       0x2000
37 #define MB2_SHADOW_SIZE         16
38
39 enum vmd_features {
40         /*
41          * Device may contain registers which hint the physical location of the
42          * membars, in order to allow proper address translation during
43          * resource assignment to enable guest virtualization
44          */
45         VMD_FEAT_HAS_MEMBAR_SHADOW              = (1 << 0),
46
47         /*
48          * Device may provide root port configuration information which limits
49          * bus numbering
50          */
51         VMD_FEAT_HAS_BUS_RESTRICTIONS           = (1 << 1),
52
53         /*
54          * Device contains physical location shadow registers in
55          * vendor-specific capability space
56          */
57         VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP        = (1 << 2),
58
59         /*
60          * Device may use MSI-X vector 0 for software triggering and will not
61          * be used for MSI remapping
62          */
63         VMD_FEAT_OFFSET_FIRST_VECTOR            = (1 << 3),
64
65         /*
66          * Device can bypass remapping MSI-X transactions into its MSI-X table,
67          * avoiding the requirement of a VMD MSI domain for child device
68          * interrupt handling.
69          */
70         VMD_FEAT_CAN_BYPASS_MSI_REMAP           = (1 << 4),
71 };
72
73 /*
74  * Lock for manipulating VMD IRQ lists.
75  */
76 static DEFINE_RAW_SPINLOCK(list_lock);
77
78 /**
79  * struct vmd_irq - private data to map driver IRQ to the VMD shared vector
80  * @node:       list item for parent traversal.
81  * @irq:        back pointer to parent.
82  * @enabled:    true if driver enabled IRQ
83  * @virq:       the virtual IRQ value provided to the requesting driver.
84  *
85  * Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to
86  * a VMD IRQ using this structure.
87  */
88 struct vmd_irq {
89         struct list_head        node;
90         struct vmd_irq_list     *irq;
91         bool                    enabled;
92         unsigned int            virq;
93 };
94
95 /**
96  * struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector
97  * @irq_list:   the list of irq's the VMD one demuxes to.
98  * @srcu:       SRCU struct for local synchronization.
99  * @count:      number of child IRQs assigned to this vector; used to track
100  *              sharing.
101  */
102 struct vmd_irq_list {
103         struct list_head        irq_list;
104         struct srcu_struct      srcu;
105         unsigned int            count;
106 };
107
108 struct vmd_dev {
109         struct pci_dev          *dev;
110
111         spinlock_t              cfg_lock;
112         void __iomem            *cfgbar;
113
114         int msix_count;
115         struct vmd_irq_list     *irqs;
116
117         struct pci_sysdata      sysdata;
118         struct resource         resources[3];
119         struct irq_domain       *irq_domain;
120         struct pci_bus          *bus;
121         u8                      busn_start;
122         u8                      first_vec;
123 };
124
125 static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus)
126 {
127         return container_of(bus->sysdata, struct vmd_dev, sysdata);
128 }
129
130 static inline unsigned int index_from_irqs(struct vmd_dev *vmd,
131                                            struct vmd_irq_list *irqs)
132 {
133         return irqs - vmd->irqs;
134 }
135
136 /*
137  * Drivers managing a device in a VMD domain allocate their own IRQs as before,
138  * but the MSI entry for the hardware it's driving will be programmed with a
139  * destination ID for the VMD MSI-X table.  The VMD muxes interrupts in its
140  * domain into one of its own, and the VMD driver de-muxes these for the
141  * handlers sharing that VMD IRQ.  The vmd irq_domain provides the operations
142  * and irq_chip to set this up.
143  */
144 static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
145 {
146         struct vmd_irq *vmdirq = data->chip_data;
147         struct vmd_irq_list *irq = vmdirq->irq;
148         struct vmd_dev *vmd = irq_data_get_irq_handler_data(data);
149
150         memset(msg, 0, sizeof(*msg));
151         msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
152         msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW;
153         msg->arch_addr_lo.destid_0_7 = index_from_irqs(vmd, irq);
154 }
155
156 /*
157  * We rely on MSI_FLAG_USE_DEF_CHIP_OPS to set the IRQ mask/unmask ops.
158  */
159 static void vmd_irq_enable(struct irq_data *data)
160 {
161         struct vmd_irq *vmdirq = data->chip_data;
162         unsigned long flags;
163
164         raw_spin_lock_irqsave(&list_lock, flags);
165         WARN_ON(vmdirq->enabled);
166         list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list);
167         vmdirq->enabled = true;
168         raw_spin_unlock_irqrestore(&list_lock, flags);
169
170         data->chip->irq_unmask(data);
171 }
172
173 static void vmd_irq_disable(struct irq_data *data)
174 {
175         struct vmd_irq *vmdirq = data->chip_data;
176         unsigned long flags;
177
178         data->chip->irq_mask(data);
179
180         raw_spin_lock_irqsave(&list_lock, flags);
181         if (vmdirq->enabled) {
182                 list_del_rcu(&vmdirq->node);
183                 vmdirq->enabled = false;
184         }
185         raw_spin_unlock_irqrestore(&list_lock, flags);
186 }
187
188 /*
189  * XXX: Stubbed until we develop acceptable way to not create conflicts with
190  * other devices sharing the same vector.
191  */
192 static int vmd_irq_set_affinity(struct irq_data *data,
193                                 const struct cpumask *dest, bool force)
194 {
195         return -EINVAL;
196 }
197
198 static struct irq_chip vmd_msi_controller = {
199         .name                   = "VMD-MSI",
200         .irq_enable             = vmd_irq_enable,
201         .irq_disable            = vmd_irq_disable,
202         .irq_compose_msi_msg    = vmd_compose_msi_msg,
203         .irq_set_affinity       = vmd_irq_set_affinity,
204 };
205
206 static irq_hw_number_t vmd_get_hwirq(struct msi_domain_info *info,
207                                      msi_alloc_info_t *arg)
208 {
209         return 0;
210 }
211
212 /*
213  * XXX: We can be even smarter selecting the best IRQ once we solve the
214  * affinity problem.
215  */
216 static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd, struct msi_desc *desc)
217 {
218         unsigned long flags;
219         int i, best;
220
221         if (vmd->msix_count == 1 + vmd->first_vec)
222                 return &vmd->irqs[vmd->first_vec];
223
224         /*
225          * White list for fast-interrupt handlers. All others will share the
226          * "slow" interrupt vector.
227          */
228         switch (msi_desc_to_pci_dev(desc)->class) {
229         case PCI_CLASS_STORAGE_EXPRESS:
230                 break;
231         default:
232                 return &vmd->irqs[vmd->first_vec];
233         }
234
235         raw_spin_lock_irqsave(&list_lock, flags);
236         best = vmd->first_vec + 1;
237         for (i = best; i < vmd->msix_count; i++)
238                 if (vmd->irqs[i].count < vmd->irqs[best].count)
239                         best = i;
240         vmd->irqs[best].count++;
241         raw_spin_unlock_irqrestore(&list_lock, flags);
242
243         return &vmd->irqs[best];
244 }
245
246 static int vmd_msi_init(struct irq_domain *domain, struct msi_domain_info *info,
247                         unsigned int virq, irq_hw_number_t hwirq,
248                         msi_alloc_info_t *arg)
249 {
250         struct msi_desc *desc = arg->desc;
251         struct vmd_dev *vmd = vmd_from_bus(msi_desc_to_pci_dev(desc)->bus);
252         struct vmd_irq *vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL);
253         unsigned int index, vector;
254
255         if (!vmdirq)
256                 return -ENOMEM;
257
258         INIT_LIST_HEAD(&vmdirq->node);
259         vmdirq->irq = vmd_next_irq(vmd, desc);
260         vmdirq->virq = virq;
261         index = index_from_irqs(vmd, vmdirq->irq);
262         vector = pci_irq_vector(vmd->dev, index);
263
264         irq_domain_set_info(domain, virq, vector, info->chip, vmdirq,
265                             handle_untracked_irq, vmd, NULL);
266         return 0;
267 }
268
269 static void vmd_msi_free(struct irq_domain *domain,
270                         struct msi_domain_info *info, unsigned int virq)
271 {
272         struct vmd_irq *vmdirq = irq_get_chip_data(virq);
273         unsigned long flags;
274
275         synchronize_srcu(&vmdirq->irq->srcu);
276
277         /* XXX: Potential optimization to rebalance */
278         raw_spin_lock_irqsave(&list_lock, flags);
279         vmdirq->irq->count--;
280         raw_spin_unlock_irqrestore(&list_lock, flags);
281
282         kfree(vmdirq);
283 }
284
285 static int vmd_msi_prepare(struct irq_domain *domain, struct device *dev,
286                            int nvec, msi_alloc_info_t *arg)
287 {
288         struct pci_dev *pdev = to_pci_dev(dev);
289         struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
290
291         if (nvec > vmd->msix_count)
292                 return vmd->msix_count;
293
294         memset(arg, 0, sizeof(*arg));
295         return 0;
296 }
297
298 static void vmd_set_desc(msi_alloc_info_t *arg, struct msi_desc *desc)
299 {
300         arg->desc = desc;
301 }
302
303 static struct msi_domain_ops vmd_msi_domain_ops = {
304         .get_hwirq      = vmd_get_hwirq,
305         .msi_init       = vmd_msi_init,
306         .msi_free       = vmd_msi_free,
307         .msi_prepare    = vmd_msi_prepare,
308         .set_desc       = vmd_set_desc,
309 };
310
311 static struct msi_domain_info vmd_msi_domain_info = {
312         .flags          = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
313                           MSI_FLAG_PCI_MSIX,
314         .ops            = &vmd_msi_domain_ops,
315         .chip           = &vmd_msi_controller,
316 };
317
318 static void vmd_set_msi_remapping(struct vmd_dev *vmd, bool enable)
319 {
320         u16 reg;
321
322         pci_read_config_word(vmd->dev, PCI_REG_VMCONFIG, &reg);
323         reg = enable ? (reg & ~VMCONFIG_MSI_REMAP) :
324                        (reg | VMCONFIG_MSI_REMAP);
325         pci_write_config_word(vmd->dev, PCI_REG_VMCONFIG, reg);
326 }
327
328 static int vmd_create_irq_domain(struct vmd_dev *vmd)
329 {
330         struct fwnode_handle *fn;
331
332         fn = irq_domain_alloc_named_id_fwnode("VMD-MSI", vmd->sysdata.domain);
333         if (!fn)
334                 return -ENODEV;
335
336         vmd->irq_domain = pci_msi_create_irq_domain(fn, &vmd_msi_domain_info, NULL);
337         if (!vmd->irq_domain) {
338                 irq_domain_free_fwnode(fn);
339                 return -ENODEV;
340         }
341
342         return 0;
343 }
344
345 static void vmd_remove_irq_domain(struct vmd_dev *vmd)
346 {
347         /*
348          * Some production BIOS won't enable remapping between soft reboots.
349          * Ensure remapping is restored before unloading the driver.
350          */
351         if (!vmd->msix_count)
352                 vmd_set_msi_remapping(vmd, true);
353
354         if (vmd->irq_domain) {
355                 struct fwnode_handle *fn = vmd->irq_domain->fwnode;
356
357                 irq_domain_remove(vmd->irq_domain);
358                 irq_domain_free_fwnode(fn);
359         }
360 }
361
362 static void __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus,
363                                   unsigned int devfn, int reg, int len)
364 {
365         unsigned int busnr_ecam = bus->number - vmd->busn_start;
366         u32 offset = PCIE_ECAM_OFFSET(busnr_ecam, devfn, reg);
367
368         if (offset + len >= resource_size(&vmd->dev->resource[VMD_CFGBAR]))
369                 return NULL;
370
371         return vmd->cfgbar + offset;
372 }
373
374 /*
375  * CPU may deadlock if config space is not serialized on some versions of this
376  * hardware, so all config space access is done under a spinlock.
377  */
378 static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg,
379                         int len, u32 *value)
380 {
381         struct vmd_dev *vmd = vmd_from_bus(bus);
382         void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
383         unsigned long flags;
384         int ret = 0;
385
386         if (!addr)
387                 return -EFAULT;
388
389         spin_lock_irqsave(&vmd->cfg_lock, flags);
390         switch (len) {
391         case 1:
392                 *value = readb(addr);
393                 break;
394         case 2:
395                 *value = readw(addr);
396                 break;
397         case 4:
398                 *value = readl(addr);
399                 break;
400         default:
401                 ret = -EINVAL;
402                 break;
403         }
404         spin_unlock_irqrestore(&vmd->cfg_lock, flags);
405         return ret;
406 }
407
408 /*
409  * VMD h/w converts non-posted config writes to posted memory writes. The
410  * read-back in this function forces the completion so it returns only after
411  * the config space was written, as expected.
412  */
413 static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg,
414                          int len, u32 value)
415 {
416         struct vmd_dev *vmd = vmd_from_bus(bus);
417         void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
418         unsigned long flags;
419         int ret = 0;
420
421         if (!addr)
422                 return -EFAULT;
423
424         spin_lock_irqsave(&vmd->cfg_lock, flags);
425         switch (len) {
426         case 1:
427                 writeb(value, addr);
428                 readb(addr);
429                 break;
430         case 2:
431                 writew(value, addr);
432                 readw(addr);
433                 break;
434         case 4:
435                 writel(value, addr);
436                 readl(addr);
437                 break;
438         default:
439                 ret = -EINVAL;
440                 break;
441         }
442         spin_unlock_irqrestore(&vmd->cfg_lock, flags);
443         return ret;
444 }
445
446 static struct pci_ops vmd_ops = {
447         .read           = vmd_pci_read,
448         .write          = vmd_pci_write,
449 };
450
451 #ifdef CONFIG_ACPI
452 static struct acpi_device *vmd_acpi_find_companion(struct pci_dev *pci_dev)
453 {
454         struct pci_host_bridge *bridge;
455         u32 busnr, addr;
456
457         if (pci_dev->bus->ops != &vmd_ops)
458                 return NULL;
459
460         bridge = pci_find_host_bridge(pci_dev->bus);
461         busnr = pci_dev->bus->number - bridge->bus->number;
462         /*
463          * The address computation below is only applicable to relative bus
464          * numbers below 32.
465          */
466         if (busnr > 31)
467                 return NULL;
468
469         addr = (busnr << 24) | ((u32)pci_dev->devfn << 16) | 0x8000FFFFU;
470
471         dev_dbg(&pci_dev->dev, "Looking for ACPI companion (address 0x%x)\n",
472                 addr);
473
474         return acpi_find_child_device(ACPI_COMPANION(bridge->dev.parent), addr,
475                                       false);
476 }
477
478 static bool hook_installed;
479
480 static void vmd_acpi_begin(void)
481 {
482         if (pci_acpi_set_companion_lookup_hook(vmd_acpi_find_companion))
483                 return;
484
485         hook_installed = true;
486 }
487
488 static void vmd_acpi_end(void)
489 {
490         if (!hook_installed)
491                 return;
492
493         pci_acpi_clear_companion_lookup_hook();
494         hook_installed = false;
495 }
496 #else
497 static inline void vmd_acpi_begin(void) { }
498 static inline void vmd_acpi_end(void) { }
499 #endif /* CONFIG_ACPI */
500
501 static void vmd_attach_resources(struct vmd_dev *vmd)
502 {
503         vmd->dev->resource[VMD_MEMBAR1].child = &vmd->resources[1];
504         vmd->dev->resource[VMD_MEMBAR2].child = &vmd->resources[2];
505 }
506
507 static void vmd_detach_resources(struct vmd_dev *vmd)
508 {
509         vmd->dev->resource[VMD_MEMBAR1].child = NULL;
510         vmd->dev->resource[VMD_MEMBAR2].child = NULL;
511 }
512
513 /*
514  * VMD domains start at 0x10000 to not clash with ACPI _SEG domains.
515  * Per ACPI r6.0, sec 6.5.6,  _SEG returns an integer, of which the lower
516  * 16 bits are the PCI Segment Group (domain) number.  Other bits are
517  * currently reserved.
518  */
519 static int vmd_find_free_domain(void)
520 {
521         int domain = 0xffff;
522         struct pci_bus *bus = NULL;
523
524         while ((bus = pci_find_next_bus(bus)) != NULL)
525                 domain = max_t(int, domain, pci_domain_nr(bus));
526         return domain + 1;
527 }
528
529 static int vmd_get_phys_offsets(struct vmd_dev *vmd, bool native_hint,
530                                 resource_size_t *offset1,
531                                 resource_size_t *offset2)
532 {
533         struct pci_dev *dev = vmd->dev;
534         u64 phys1, phys2;
535
536         if (native_hint) {
537                 u32 vmlock;
538                 int ret;
539
540                 ret = pci_read_config_dword(dev, PCI_REG_VMLOCK, &vmlock);
541                 if (ret || vmlock == ~0)
542                         return -ENODEV;
543
544                 if (MB2_SHADOW_EN(vmlock)) {
545                         void __iomem *membar2;
546
547                         membar2 = pci_iomap(dev, VMD_MEMBAR2, 0);
548                         if (!membar2)
549                                 return -ENOMEM;
550                         phys1 = readq(membar2 + MB2_SHADOW_OFFSET);
551                         phys2 = readq(membar2 + MB2_SHADOW_OFFSET + 8);
552                         pci_iounmap(dev, membar2);
553                 } else
554                         return 0;
555         } else {
556                 /* Hypervisor-Emulated Vendor-Specific Capability */
557                 int pos = pci_find_capability(dev, PCI_CAP_ID_VNDR);
558                 u32 reg, regu;
559
560                 pci_read_config_dword(dev, pos + 4, &reg);
561
562                 /* "SHDW" */
563                 if (pos && reg == 0x53484457) {
564                         pci_read_config_dword(dev, pos + 8, &reg);
565                         pci_read_config_dword(dev, pos + 12, &regu);
566                         phys1 = (u64) regu << 32 | reg;
567
568                         pci_read_config_dword(dev, pos + 16, &reg);
569                         pci_read_config_dword(dev, pos + 20, &regu);
570                         phys2 = (u64) regu << 32 | reg;
571                 } else
572                         return 0;
573         }
574
575         *offset1 = dev->resource[VMD_MEMBAR1].start -
576                         (phys1 & PCI_BASE_ADDRESS_MEM_MASK);
577         *offset2 = dev->resource[VMD_MEMBAR2].start -
578                         (phys2 & PCI_BASE_ADDRESS_MEM_MASK);
579
580         return 0;
581 }
582
583 static int vmd_get_bus_number_start(struct vmd_dev *vmd)
584 {
585         struct pci_dev *dev = vmd->dev;
586         u16 reg;
587
588         pci_read_config_word(dev, PCI_REG_VMCAP, &reg);
589         if (BUS_RESTRICT_CAP(reg)) {
590                 pci_read_config_word(dev, PCI_REG_VMCONFIG, &reg);
591
592                 switch (BUS_RESTRICT_CFG(reg)) {
593                 case 0:
594                         vmd->busn_start = 0;
595                         break;
596                 case 1:
597                         vmd->busn_start = 128;
598                         break;
599                 case 2:
600                         vmd->busn_start = 224;
601                         break;
602                 default:
603                         pci_err(dev, "Unknown Bus Offset Setting (%d)\n",
604                                 BUS_RESTRICT_CFG(reg));
605                         return -ENODEV;
606                 }
607         }
608
609         return 0;
610 }
611
612 static irqreturn_t vmd_irq(int irq, void *data)
613 {
614         struct vmd_irq_list *irqs = data;
615         struct vmd_irq *vmdirq;
616         int idx;
617
618         idx = srcu_read_lock(&irqs->srcu);
619         list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node)
620                 generic_handle_irq(vmdirq->virq);
621         srcu_read_unlock(&irqs->srcu, idx);
622
623         return IRQ_HANDLED;
624 }
625
626 static int vmd_alloc_irqs(struct vmd_dev *vmd)
627 {
628         struct pci_dev *dev = vmd->dev;
629         int i, err;
630
631         vmd->msix_count = pci_msix_vec_count(dev);
632         if (vmd->msix_count < 0)
633                 return -ENODEV;
634
635         vmd->msix_count = pci_alloc_irq_vectors(dev, vmd->first_vec + 1,
636                                                 vmd->msix_count, PCI_IRQ_MSIX);
637         if (vmd->msix_count < 0)
638                 return vmd->msix_count;
639
640         vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs),
641                                  GFP_KERNEL);
642         if (!vmd->irqs)
643                 return -ENOMEM;
644
645         for (i = 0; i < vmd->msix_count; i++) {
646                 err = init_srcu_struct(&vmd->irqs[i].srcu);
647                 if (err)
648                         return err;
649
650                 INIT_LIST_HEAD(&vmd->irqs[i].irq_list);
651                 err = devm_request_irq(&dev->dev, pci_irq_vector(dev, i),
652                                        vmd_irq, IRQF_NO_THREAD,
653                                        "vmd", &vmd->irqs[i]);
654                 if (err)
655                         return err;
656         }
657
658         return 0;
659 }
660
661 static int vmd_enable_domain(struct vmd_dev *vmd, unsigned long features)
662 {
663         struct pci_sysdata *sd = &vmd->sysdata;
664         struct resource *res;
665         u32 upper_bits;
666         unsigned long flags;
667         LIST_HEAD(resources);
668         resource_size_t offset[2] = {0};
669         resource_size_t membar2_offset = 0x2000;
670         struct pci_bus *child;
671         int ret;
672
673         /*
674          * Shadow registers may exist in certain VMD device ids which allow
675          * guests to correctly assign host physical addresses to the root ports
676          * and child devices. These registers will either return the host value
677          * or 0, depending on an enable bit in the VMD device.
678          */
679         if (features & VMD_FEAT_HAS_MEMBAR_SHADOW) {
680                 membar2_offset = MB2_SHADOW_OFFSET + MB2_SHADOW_SIZE;
681                 ret = vmd_get_phys_offsets(vmd, true, &offset[0], &offset[1]);
682                 if (ret)
683                         return ret;
684         } else if (features & VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP) {
685                 ret = vmd_get_phys_offsets(vmd, false, &offset[0], &offset[1]);
686                 if (ret)
687                         return ret;
688         }
689
690         /*
691          * Certain VMD devices may have a root port configuration option which
692          * limits the bus range to between 0-127, 128-255, or 224-255
693          */
694         if (features & VMD_FEAT_HAS_BUS_RESTRICTIONS) {
695                 ret = vmd_get_bus_number_start(vmd);
696                 if (ret)
697                         return ret;
698         }
699
700         res = &vmd->dev->resource[VMD_CFGBAR];
701         vmd->resources[0] = (struct resource) {
702                 .name  = "VMD CFGBAR",
703                 .start = vmd->busn_start,
704                 .end   = vmd->busn_start + (resource_size(res) >> 20) - 1,
705                 .flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED,
706         };
707
708         /*
709          * If the window is below 4GB, clear IORESOURCE_MEM_64 so we can
710          * put 32-bit resources in the window.
711          *
712          * There's no hardware reason why a 64-bit window *couldn't*
713          * contain a 32-bit resource, but pbus_size_mem() computes the
714          * bridge window size assuming a 64-bit window will contain no
715          * 32-bit resources.  __pci_assign_resource() enforces that
716          * artificial restriction to make sure everything will fit.
717          *
718          * The only way we could use a 64-bit non-prefetchable MEMBAR is
719          * if its address is <4GB so that we can convert it to a 32-bit
720          * resource.  To be visible to the host OS, all VMD endpoints must
721          * be initially configured by platform BIOS, which includes setting
722          * up these resources.  We can assume the device is configured
723          * according to the platform needs.
724          */
725         res = &vmd->dev->resource[VMD_MEMBAR1];
726         upper_bits = upper_32_bits(res->end);
727         flags = res->flags & ~IORESOURCE_SIZEALIGN;
728         if (!upper_bits)
729                 flags &= ~IORESOURCE_MEM_64;
730         vmd->resources[1] = (struct resource) {
731                 .name  = "VMD MEMBAR1",
732                 .start = res->start,
733                 .end   = res->end,
734                 .flags = flags,
735                 .parent = res,
736         };
737
738         res = &vmd->dev->resource[VMD_MEMBAR2];
739         upper_bits = upper_32_bits(res->end);
740         flags = res->flags & ~IORESOURCE_SIZEALIGN;
741         if (!upper_bits)
742                 flags &= ~IORESOURCE_MEM_64;
743         vmd->resources[2] = (struct resource) {
744                 .name  = "VMD MEMBAR2",
745                 .start = res->start + membar2_offset,
746                 .end   = res->end,
747                 .flags = flags,
748                 .parent = res,
749         };
750
751         sd->vmd_dev = vmd->dev;
752         sd->domain = vmd_find_free_domain();
753         if (sd->domain < 0)
754                 return sd->domain;
755
756         sd->node = pcibus_to_node(vmd->dev->bus);
757
758         /*
759          * Currently MSI remapping must be enabled in guest passthrough mode
760          * due to some missing interrupt remapping plumbing. This is probably
761          * acceptable because the guest is usually CPU-limited and MSI
762          * remapping doesn't become a performance bottleneck.
763          */
764         if (!(features & VMD_FEAT_CAN_BYPASS_MSI_REMAP) ||
765             offset[0] || offset[1]) {
766                 ret = vmd_alloc_irqs(vmd);
767                 if (ret)
768                         return ret;
769
770                 vmd_set_msi_remapping(vmd, true);
771
772                 ret = vmd_create_irq_domain(vmd);
773                 if (ret)
774                         return ret;
775
776                 /*
777                  * Override the IRQ domain bus token so the domain can be
778                  * distinguished from a regular PCI/MSI domain.
779                  */
780                 irq_domain_update_bus_token(vmd->irq_domain, DOMAIN_BUS_VMD_MSI);
781         } else {
782                 vmd_set_msi_remapping(vmd, false);
783         }
784
785         pci_add_resource(&resources, &vmd->resources[0]);
786         pci_add_resource_offset(&resources, &vmd->resources[1], offset[0]);
787         pci_add_resource_offset(&resources, &vmd->resources[2], offset[1]);
788
789         vmd->bus = pci_create_root_bus(&vmd->dev->dev, vmd->busn_start,
790                                        &vmd_ops, sd, &resources);
791         if (!vmd->bus) {
792                 pci_free_resource_list(&resources);
793                 vmd_remove_irq_domain(vmd);
794                 return -ENODEV;
795         }
796
797         vmd_attach_resources(vmd);
798         if (vmd->irq_domain)
799                 dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain);
800
801         vmd_acpi_begin();
802
803         pci_scan_child_bus(vmd->bus);
804         pci_assign_unassigned_bus_resources(vmd->bus);
805
806         /*
807          * VMD root buses are virtual and don't return true on pci_is_pcie()
808          * and will fail pcie_bus_configure_settings() early. It can instead be
809          * run on each of the real root ports.
810          */
811         list_for_each_entry(child, &vmd->bus->children, node)
812                 pcie_bus_configure_settings(child);
813
814         pci_bus_add_devices(vmd->bus);
815
816         vmd_acpi_end();
817
818         WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj,
819                                "domain"), "Can't create symlink to domain\n");
820         return 0;
821 }
822
823 static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id)
824 {
825         unsigned long features = (unsigned long) id->driver_data;
826         struct vmd_dev *vmd;
827         int err;
828
829         if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20))
830                 return -ENOMEM;
831
832         vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL);
833         if (!vmd)
834                 return -ENOMEM;
835
836         vmd->dev = dev;
837         err = pcim_enable_device(dev);
838         if (err < 0)
839                 return err;
840
841         vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0);
842         if (!vmd->cfgbar)
843                 return -ENOMEM;
844
845         pci_set_master(dev);
846         if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) &&
847             dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32)))
848                 return -ENODEV;
849
850         if (features & VMD_FEAT_OFFSET_FIRST_VECTOR)
851                 vmd->first_vec = 1;
852
853         spin_lock_init(&vmd->cfg_lock);
854         pci_set_drvdata(dev, vmd);
855         err = vmd_enable_domain(vmd, features);
856         if (err)
857                 return err;
858
859         dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n",
860                  vmd->sysdata.domain);
861         return 0;
862 }
863
864 static void vmd_cleanup_srcu(struct vmd_dev *vmd)
865 {
866         int i;
867
868         for (i = 0; i < vmd->msix_count; i++)
869                 cleanup_srcu_struct(&vmd->irqs[i].srcu);
870 }
871
872 static void vmd_remove(struct pci_dev *dev)
873 {
874         struct vmd_dev *vmd = pci_get_drvdata(dev);
875
876         sysfs_remove_link(&vmd->dev->dev.kobj, "domain");
877         pci_stop_root_bus(vmd->bus);
878         pci_remove_root_bus(vmd->bus);
879         vmd_cleanup_srcu(vmd);
880         vmd_detach_resources(vmd);
881         vmd_remove_irq_domain(vmd);
882 }
883
884 #ifdef CONFIG_PM_SLEEP
885 static int vmd_suspend(struct device *dev)
886 {
887         struct pci_dev *pdev = to_pci_dev(dev);
888         struct vmd_dev *vmd = pci_get_drvdata(pdev);
889         int i;
890
891         for (i = 0; i < vmd->msix_count; i++)
892                 devm_free_irq(dev, pci_irq_vector(pdev, i), &vmd->irqs[i]);
893
894         return 0;
895 }
896
897 static int vmd_resume(struct device *dev)
898 {
899         struct pci_dev *pdev = to_pci_dev(dev);
900         struct vmd_dev *vmd = pci_get_drvdata(pdev);
901         int err, i;
902
903         for (i = 0; i < vmd->msix_count; i++) {
904                 err = devm_request_irq(dev, pci_irq_vector(pdev, i),
905                                        vmd_irq, IRQF_NO_THREAD,
906                                        "vmd", &vmd->irqs[i]);
907                 if (err)
908                         return err;
909         }
910
911         return 0;
912 }
913 #endif
914 static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume);
915
916 static const struct pci_device_id vmd_ids[] = {
917         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_201D),
918                 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP,},
919         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_28C0),
920                 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW |
921                                 VMD_FEAT_HAS_BUS_RESTRICTIONS |
922                                 VMD_FEAT_CAN_BYPASS_MSI_REMAP,},
923         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x467f),
924                 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |
925                                 VMD_FEAT_HAS_BUS_RESTRICTIONS |
926                                 VMD_FEAT_OFFSET_FIRST_VECTOR,},
927         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x4c3d),
928                 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |
929                                 VMD_FEAT_HAS_BUS_RESTRICTIONS |
930                                 VMD_FEAT_OFFSET_FIRST_VECTOR,},
931         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_9A0B),
932                 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |
933                                 VMD_FEAT_HAS_BUS_RESTRICTIONS |
934                                 VMD_FEAT_OFFSET_FIRST_VECTOR,},
935         {0,}
936 };
937 MODULE_DEVICE_TABLE(pci, vmd_ids);
938
939 static struct pci_driver vmd_drv = {
940         .name           = "vmd",
941         .id_table       = vmd_ids,
942         .probe          = vmd_probe,
943         .remove         = vmd_remove,
944         .driver         = {
945                 .pm     = &vmd_dev_pm_ops,
946         },
947 };
948 module_pci_driver(vmd_drv);
949
950 MODULE_AUTHOR("Intel Corporation");
951 MODULE_LICENSE("GPL v2");
952 MODULE_VERSION("0.6");