Merge tag 'perf-tools-for-v5.15-2021-09-11' of git://git.kernel.org/pub/scm/linux...
[linux-2.6-microblaze.git] / drivers / nvme / host / tcp.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics TCP host.
4  * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/nvme-tcp.h>
12 #include <net/sock.h>
13 #include <net/tcp.h>
14 #include <linux/blk-mq.h>
15 #include <crypto/hash.h>
16 #include <net/busy_poll.h>
17
18 #include "nvme.h"
19 #include "fabrics.h"
20
21 struct nvme_tcp_queue;
22
23 /* Define the socket priority to use for connections were it is desirable
24  * that the NIC consider performing optimized packet processing or filtering.
25  * A non-zero value being sufficient to indicate general consideration of any
26  * possible optimization.  Making it a module param allows for alternative
27  * values that may be unique for some NIC implementations.
28  */
29 static int so_priority;
30 module_param(so_priority, int, 0644);
31 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority");
32
33 enum nvme_tcp_send_state {
34         NVME_TCP_SEND_CMD_PDU = 0,
35         NVME_TCP_SEND_H2C_PDU,
36         NVME_TCP_SEND_DATA,
37         NVME_TCP_SEND_DDGST,
38 };
39
40 struct nvme_tcp_request {
41         struct nvme_request     req;
42         void                    *pdu;
43         struct nvme_tcp_queue   *queue;
44         u32                     data_len;
45         u32                     pdu_len;
46         u32                     pdu_sent;
47         u16                     ttag;
48         __le16                  status;
49         struct list_head        entry;
50         struct llist_node       lentry;
51         __le32                  ddgst;
52
53         struct bio              *curr_bio;
54         struct iov_iter         iter;
55
56         /* send state */
57         size_t                  offset;
58         size_t                  data_sent;
59         enum nvme_tcp_send_state state;
60 };
61
62 enum nvme_tcp_queue_flags {
63         NVME_TCP_Q_ALLOCATED    = 0,
64         NVME_TCP_Q_LIVE         = 1,
65         NVME_TCP_Q_POLLING      = 2,
66 };
67
68 enum nvme_tcp_recv_state {
69         NVME_TCP_RECV_PDU = 0,
70         NVME_TCP_RECV_DATA,
71         NVME_TCP_RECV_DDGST,
72 };
73
74 struct nvme_tcp_ctrl;
75 struct nvme_tcp_queue {
76         struct socket           *sock;
77         struct work_struct      io_work;
78         int                     io_cpu;
79
80         struct mutex            queue_lock;
81         struct mutex            send_mutex;
82         struct llist_head       req_list;
83         struct list_head        send_list;
84         bool                    more_requests;
85
86         /* recv state */
87         void                    *pdu;
88         int                     pdu_remaining;
89         int                     pdu_offset;
90         size_t                  data_remaining;
91         size_t                  ddgst_remaining;
92         unsigned int            nr_cqe;
93
94         /* send state */
95         struct nvme_tcp_request *request;
96
97         int                     queue_size;
98         size_t                  cmnd_capsule_len;
99         struct nvme_tcp_ctrl    *ctrl;
100         unsigned long           flags;
101         bool                    rd_enabled;
102
103         bool                    hdr_digest;
104         bool                    data_digest;
105         struct ahash_request    *rcv_hash;
106         struct ahash_request    *snd_hash;
107         __le32                  exp_ddgst;
108         __le32                  recv_ddgst;
109
110         struct page_frag_cache  pf_cache;
111
112         void (*state_change)(struct sock *);
113         void (*data_ready)(struct sock *);
114         void (*write_space)(struct sock *);
115 };
116
117 struct nvme_tcp_ctrl {
118         /* read only in the hot path */
119         struct nvme_tcp_queue   *queues;
120         struct blk_mq_tag_set   tag_set;
121
122         /* other member variables */
123         struct list_head        list;
124         struct blk_mq_tag_set   admin_tag_set;
125         struct sockaddr_storage addr;
126         struct sockaddr_storage src_addr;
127         struct nvme_ctrl        ctrl;
128
129         struct work_struct      err_work;
130         struct delayed_work     connect_work;
131         struct nvme_tcp_request async_req;
132         u32                     io_queues[HCTX_MAX_TYPES];
133 };
134
135 static LIST_HEAD(nvme_tcp_ctrl_list);
136 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex);
137 static struct workqueue_struct *nvme_tcp_wq;
138 static const struct blk_mq_ops nvme_tcp_mq_ops;
139 static const struct blk_mq_ops nvme_tcp_admin_mq_ops;
140 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue);
141
142 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl)
143 {
144         return container_of(ctrl, struct nvme_tcp_ctrl, ctrl);
145 }
146
147 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue)
148 {
149         return queue - queue->ctrl->queues;
150 }
151
152 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue)
153 {
154         u32 queue_idx = nvme_tcp_queue_id(queue);
155
156         if (queue_idx == 0)
157                 return queue->ctrl->admin_tag_set.tags[queue_idx];
158         return queue->ctrl->tag_set.tags[queue_idx - 1];
159 }
160
161 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue)
162 {
163         return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
164 }
165
166 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue)
167 {
168         return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
169 }
170
171 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_queue *queue)
172 {
173         return queue->cmnd_capsule_len - sizeof(struct nvme_command);
174 }
175
176 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req)
177 {
178         return req == &req->queue->ctrl->async_req;
179 }
180
181 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req)
182 {
183         struct request *rq;
184
185         if (unlikely(nvme_tcp_async_req(req)))
186                 return false; /* async events don't have a request */
187
188         rq = blk_mq_rq_from_pdu(req);
189
190         return rq_data_dir(rq) == WRITE && req->data_len &&
191                 req->data_len <= nvme_tcp_inline_data_size(req->queue);
192 }
193
194 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req)
195 {
196         return req->iter.bvec->bv_page;
197 }
198
199 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req)
200 {
201         return req->iter.bvec->bv_offset + req->iter.iov_offset;
202 }
203
204 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req)
205 {
206         return min_t(size_t, iov_iter_single_seg_count(&req->iter),
207                         req->pdu_len - req->pdu_sent);
208 }
209
210 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req)
211 {
212         return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ?
213                         req->pdu_len - req->pdu_sent : 0;
214 }
215
216 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req,
217                 int len)
218 {
219         return nvme_tcp_pdu_data_left(req) <= len;
220 }
221
222 static void nvme_tcp_init_iter(struct nvme_tcp_request *req,
223                 unsigned int dir)
224 {
225         struct request *rq = blk_mq_rq_from_pdu(req);
226         struct bio_vec *vec;
227         unsigned int size;
228         int nr_bvec;
229         size_t offset;
230
231         if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) {
232                 vec = &rq->special_vec;
233                 nr_bvec = 1;
234                 size = blk_rq_payload_bytes(rq);
235                 offset = 0;
236         } else {
237                 struct bio *bio = req->curr_bio;
238                 struct bvec_iter bi;
239                 struct bio_vec bv;
240
241                 vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
242                 nr_bvec = 0;
243                 bio_for_each_bvec(bv, bio, bi) {
244                         nr_bvec++;
245                 }
246                 size = bio->bi_iter.bi_size;
247                 offset = bio->bi_iter.bi_bvec_done;
248         }
249
250         iov_iter_bvec(&req->iter, dir, vec, nr_bvec, size);
251         req->iter.iov_offset = offset;
252 }
253
254 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req,
255                 int len)
256 {
257         req->data_sent += len;
258         req->pdu_sent += len;
259         iov_iter_advance(&req->iter, len);
260         if (!iov_iter_count(&req->iter) &&
261             req->data_sent < req->data_len) {
262                 req->curr_bio = req->curr_bio->bi_next;
263                 nvme_tcp_init_iter(req, WRITE);
264         }
265 }
266
267 static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue)
268 {
269         int ret;
270
271         /* drain the send queue as much as we can... */
272         do {
273                 ret = nvme_tcp_try_send(queue);
274         } while (ret > 0);
275 }
276
277 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req,
278                 bool sync, bool last)
279 {
280         struct nvme_tcp_queue *queue = req->queue;
281         bool empty;
282
283         empty = llist_add(&req->lentry, &queue->req_list) &&
284                 list_empty(&queue->send_list) && !queue->request;
285
286         /*
287          * if we're the first on the send_list and we can try to send
288          * directly, otherwise queue io_work. Also, only do that if we
289          * are on the same cpu, so we don't introduce contention.
290          */
291         if (queue->io_cpu == raw_smp_processor_id() &&
292             sync && empty && mutex_trylock(&queue->send_mutex)) {
293                 queue->more_requests = !last;
294                 nvme_tcp_send_all(queue);
295                 queue->more_requests = false;
296                 mutex_unlock(&queue->send_mutex);
297         } else if (last) {
298                 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
299         }
300 }
301
302 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue)
303 {
304         struct nvme_tcp_request *req;
305         struct llist_node *node;
306
307         for (node = llist_del_all(&queue->req_list); node; node = node->next) {
308                 req = llist_entry(node, struct nvme_tcp_request, lentry);
309                 list_add(&req->entry, &queue->send_list);
310         }
311 }
312
313 static inline struct nvme_tcp_request *
314 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue)
315 {
316         struct nvme_tcp_request *req;
317
318         req = list_first_entry_or_null(&queue->send_list,
319                         struct nvme_tcp_request, entry);
320         if (!req) {
321                 nvme_tcp_process_req_list(queue);
322                 req = list_first_entry_or_null(&queue->send_list,
323                                 struct nvme_tcp_request, entry);
324                 if (unlikely(!req))
325                         return NULL;
326         }
327
328         list_del(&req->entry);
329         return req;
330 }
331
332 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash,
333                 __le32 *dgst)
334 {
335         ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0);
336         crypto_ahash_final(hash);
337 }
338
339 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash,
340                 struct page *page, off_t off, size_t len)
341 {
342         struct scatterlist sg;
343
344         sg_init_marker(&sg, 1);
345         sg_set_page(&sg, page, len, off);
346         ahash_request_set_crypt(hash, &sg, NULL, len);
347         crypto_ahash_update(hash);
348 }
349
350 static inline void nvme_tcp_hdgst(struct ahash_request *hash,
351                 void *pdu, size_t len)
352 {
353         struct scatterlist sg;
354
355         sg_init_one(&sg, pdu, len);
356         ahash_request_set_crypt(hash, &sg, pdu + len, len);
357         crypto_ahash_digest(hash);
358 }
359
360 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue,
361                 void *pdu, size_t pdu_len)
362 {
363         struct nvme_tcp_hdr *hdr = pdu;
364         __le32 recv_digest;
365         __le32 exp_digest;
366
367         if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
368                 dev_err(queue->ctrl->ctrl.device,
369                         "queue %d: header digest flag is cleared\n",
370                         nvme_tcp_queue_id(queue));
371                 return -EPROTO;
372         }
373
374         recv_digest = *(__le32 *)(pdu + hdr->hlen);
375         nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len);
376         exp_digest = *(__le32 *)(pdu + hdr->hlen);
377         if (recv_digest != exp_digest) {
378                 dev_err(queue->ctrl->ctrl.device,
379                         "header digest error: recv %#x expected %#x\n",
380                         le32_to_cpu(recv_digest), le32_to_cpu(exp_digest));
381                 return -EIO;
382         }
383
384         return 0;
385 }
386
387 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu)
388 {
389         struct nvme_tcp_hdr *hdr = pdu;
390         u8 digest_len = nvme_tcp_hdgst_len(queue);
391         u32 len;
392
393         len = le32_to_cpu(hdr->plen) - hdr->hlen -
394                 ((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0);
395
396         if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
397                 dev_err(queue->ctrl->ctrl.device,
398                         "queue %d: data digest flag is cleared\n",
399                 nvme_tcp_queue_id(queue));
400                 return -EPROTO;
401         }
402         crypto_ahash_init(queue->rcv_hash);
403
404         return 0;
405 }
406
407 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set,
408                 struct request *rq, unsigned int hctx_idx)
409 {
410         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
411
412         page_frag_free(req->pdu);
413 }
414
415 static int nvme_tcp_init_request(struct blk_mq_tag_set *set,
416                 struct request *rq, unsigned int hctx_idx,
417                 unsigned int numa_node)
418 {
419         struct nvme_tcp_ctrl *ctrl = set->driver_data;
420         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
421         struct nvme_tcp_cmd_pdu *pdu;
422         int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
423         struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx];
424         u8 hdgst = nvme_tcp_hdgst_len(queue);
425
426         req->pdu = page_frag_alloc(&queue->pf_cache,
427                 sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
428                 GFP_KERNEL | __GFP_ZERO);
429         if (!req->pdu)
430                 return -ENOMEM;
431
432         pdu = req->pdu;
433         req->queue = queue;
434         nvme_req(rq)->ctrl = &ctrl->ctrl;
435         nvme_req(rq)->cmd = &pdu->cmd;
436
437         return 0;
438 }
439
440 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
441                 unsigned int hctx_idx)
442 {
443         struct nvme_tcp_ctrl *ctrl = data;
444         struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1];
445
446         hctx->driver_data = queue;
447         return 0;
448 }
449
450 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
451                 unsigned int hctx_idx)
452 {
453         struct nvme_tcp_ctrl *ctrl = data;
454         struct nvme_tcp_queue *queue = &ctrl->queues[0];
455
456         hctx->driver_data = queue;
457         return 0;
458 }
459
460 static enum nvme_tcp_recv_state
461 nvme_tcp_recv_state(struct nvme_tcp_queue *queue)
462 {
463         return  (queue->pdu_remaining) ? NVME_TCP_RECV_PDU :
464                 (queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST :
465                 NVME_TCP_RECV_DATA;
466 }
467
468 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue)
469 {
470         queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) +
471                                 nvme_tcp_hdgst_len(queue);
472         queue->pdu_offset = 0;
473         queue->data_remaining = -1;
474         queue->ddgst_remaining = 0;
475 }
476
477 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl)
478 {
479         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
480                 return;
481
482         dev_warn(ctrl->device, "starting error recovery\n");
483         queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work);
484 }
485
486 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue,
487                 struct nvme_completion *cqe)
488 {
489         struct nvme_tcp_request *req;
490         struct request *rq;
491
492         rq = nvme_find_rq(nvme_tcp_tagset(queue), cqe->command_id);
493         if (!rq) {
494                 dev_err(queue->ctrl->ctrl.device,
495                         "got bad cqe.command_id %#x on queue %d\n",
496                         cqe->command_id, nvme_tcp_queue_id(queue));
497                 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
498                 return -EINVAL;
499         }
500
501         req = blk_mq_rq_to_pdu(rq);
502         if (req->status == cpu_to_le16(NVME_SC_SUCCESS))
503                 req->status = cqe->status;
504
505         if (!nvme_try_complete_req(rq, req->status, cqe->result))
506                 nvme_complete_rq(rq);
507         queue->nr_cqe++;
508
509         return 0;
510 }
511
512 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue,
513                 struct nvme_tcp_data_pdu *pdu)
514 {
515         struct request *rq;
516
517         rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
518         if (!rq) {
519                 dev_err(queue->ctrl->ctrl.device,
520                         "got bad c2hdata.command_id %#x on queue %d\n",
521                         pdu->command_id, nvme_tcp_queue_id(queue));
522                 return -ENOENT;
523         }
524
525         if (!blk_rq_payload_bytes(rq)) {
526                 dev_err(queue->ctrl->ctrl.device,
527                         "queue %d tag %#x unexpected data\n",
528                         nvme_tcp_queue_id(queue), rq->tag);
529                 return -EIO;
530         }
531
532         queue->data_remaining = le32_to_cpu(pdu->data_length);
533
534         if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS &&
535             unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) {
536                 dev_err(queue->ctrl->ctrl.device,
537                         "queue %d tag %#x SUCCESS set but not last PDU\n",
538                         nvme_tcp_queue_id(queue), rq->tag);
539                 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
540                 return -EPROTO;
541         }
542
543         return 0;
544 }
545
546 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue,
547                 struct nvme_tcp_rsp_pdu *pdu)
548 {
549         struct nvme_completion *cqe = &pdu->cqe;
550         int ret = 0;
551
552         /*
553          * AEN requests are special as they don't time out and can
554          * survive any kind of queue freeze and often don't respond to
555          * aborts.  We don't even bother to allocate a struct request
556          * for them but rather special case them here.
557          */
558         if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue),
559                                      cqe->command_id)))
560                 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
561                                 &cqe->result);
562         else
563                 ret = nvme_tcp_process_nvme_cqe(queue, cqe);
564
565         return ret;
566 }
567
568 static int nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req,
569                 struct nvme_tcp_r2t_pdu *pdu)
570 {
571         struct nvme_tcp_data_pdu *data = req->pdu;
572         struct nvme_tcp_queue *queue = req->queue;
573         struct request *rq = blk_mq_rq_from_pdu(req);
574         u8 hdgst = nvme_tcp_hdgst_len(queue);
575         u8 ddgst = nvme_tcp_ddgst_len(queue);
576
577         req->pdu_len = le32_to_cpu(pdu->r2t_length);
578         req->pdu_sent = 0;
579
580         if (unlikely(!req->pdu_len)) {
581                 dev_err(queue->ctrl->ctrl.device,
582                         "req %d r2t len is %u, probably a bug...\n",
583                         rq->tag, req->pdu_len);
584                 return -EPROTO;
585         }
586
587         if (unlikely(req->data_sent + req->pdu_len > req->data_len)) {
588                 dev_err(queue->ctrl->ctrl.device,
589                         "req %d r2t len %u exceeded data len %u (%zu sent)\n",
590                         rq->tag, req->pdu_len, req->data_len,
591                         req->data_sent);
592                 return -EPROTO;
593         }
594
595         if (unlikely(le32_to_cpu(pdu->r2t_offset) < req->data_sent)) {
596                 dev_err(queue->ctrl->ctrl.device,
597                         "req %d unexpected r2t offset %u (expected %zu)\n",
598                         rq->tag, le32_to_cpu(pdu->r2t_offset),
599                         req->data_sent);
600                 return -EPROTO;
601         }
602
603         memset(data, 0, sizeof(*data));
604         data->hdr.type = nvme_tcp_h2c_data;
605         data->hdr.flags = NVME_TCP_F_DATA_LAST;
606         if (queue->hdr_digest)
607                 data->hdr.flags |= NVME_TCP_F_HDGST;
608         if (queue->data_digest)
609                 data->hdr.flags |= NVME_TCP_F_DDGST;
610         data->hdr.hlen = sizeof(*data);
611         data->hdr.pdo = data->hdr.hlen + hdgst;
612         data->hdr.plen =
613                 cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst);
614         data->ttag = pdu->ttag;
615         data->command_id = nvme_cid(rq);
616         data->data_offset = cpu_to_le32(req->data_sent);
617         data->data_length = cpu_to_le32(req->pdu_len);
618         return 0;
619 }
620
621 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue,
622                 struct nvme_tcp_r2t_pdu *pdu)
623 {
624         struct nvme_tcp_request *req;
625         struct request *rq;
626         int ret;
627
628         rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
629         if (!rq) {
630                 dev_err(queue->ctrl->ctrl.device,
631                         "got bad r2t.command_id %#x on queue %d\n",
632                         pdu->command_id, nvme_tcp_queue_id(queue));
633                 return -ENOENT;
634         }
635         req = blk_mq_rq_to_pdu(rq);
636
637         ret = nvme_tcp_setup_h2c_data_pdu(req, pdu);
638         if (unlikely(ret))
639                 return ret;
640
641         req->state = NVME_TCP_SEND_H2C_PDU;
642         req->offset = 0;
643
644         nvme_tcp_queue_request(req, false, true);
645
646         return 0;
647 }
648
649 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb,
650                 unsigned int *offset, size_t *len)
651 {
652         struct nvme_tcp_hdr *hdr;
653         char *pdu = queue->pdu;
654         size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining);
655         int ret;
656
657         ret = skb_copy_bits(skb, *offset,
658                 &pdu[queue->pdu_offset], rcv_len);
659         if (unlikely(ret))
660                 return ret;
661
662         queue->pdu_remaining -= rcv_len;
663         queue->pdu_offset += rcv_len;
664         *offset += rcv_len;
665         *len -= rcv_len;
666         if (queue->pdu_remaining)
667                 return 0;
668
669         hdr = queue->pdu;
670         if (queue->hdr_digest) {
671                 ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen);
672                 if (unlikely(ret))
673                         return ret;
674         }
675
676
677         if (queue->data_digest) {
678                 ret = nvme_tcp_check_ddgst(queue, queue->pdu);
679                 if (unlikely(ret))
680                         return ret;
681         }
682
683         switch (hdr->type) {
684         case nvme_tcp_c2h_data:
685                 return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu);
686         case nvme_tcp_rsp:
687                 nvme_tcp_init_recv_ctx(queue);
688                 return nvme_tcp_handle_comp(queue, (void *)queue->pdu);
689         case nvme_tcp_r2t:
690                 nvme_tcp_init_recv_ctx(queue);
691                 return nvme_tcp_handle_r2t(queue, (void *)queue->pdu);
692         default:
693                 dev_err(queue->ctrl->ctrl.device,
694                         "unsupported pdu type (%d)\n", hdr->type);
695                 return -EINVAL;
696         }
697 }
698
699 static inline void nvme_tcp_end_request(struct request *rq, u16 status)
700 {
701         union nvme_result res = {};
702
703         if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res))
704                 nvme_complete_rq(rq);
705 }
706
707 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb,
708                               unsigned int *offset, size_t *len)
709 {
710         struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
711         struct request *rq =
712                 nvme_cid_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
713         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
714
715         while (true) {
716                 int recv_len, ret;
717
718                 recv_len = min_t(size_t, *len, queue->data_remaining);
719                 if (!recv_len)
720                         break;
721
722                 if (!iov_iter_count(&req->iter)) {
723                         req->curr_bio = req->curr_bio->bi_next;
724
725                         /*
726                          * If we don`t have any bios it means that controller
727                          * sent more data than we requested, hence error
728                          */
729                         if (!req->curr_bio) {
730                                 dev_err(queue->ctrl->ctrl.device,
731                                         "queue %d no space in request %#x",
732                                         nvme_tcp_queue_id(queue), rq->tag);
733                                 nvme_tcp_init_recv_ctx(queue);
734                                 return -EIO;
735                         }
736                         nvme_tcp_init_iter(req, READ);
737                 }
738
739                 /* we can read only from what is left in this bio */
740                 recv_len = min_t(size_t, recv_len,
741                                 iov_iter_count(&req->iter));
742
743                 if (queue->data_digest)
744                         ret = skb_copy_and_hash_datagram_iter(skb, *offset,
745                                 &req->iter, recv_len, queue->rcv_hash);
746                 else
747                         ret = skb_copy_datagram_iter(skb, *offset,
748                                         &req->iter, recv_len);
749                 if (ret) {
750                         dev_err(queue->ctrl->ctrl.device,
751                                 "queue %d failed to copy request %#x data",
752                                 nvme_tcp_queue_id(queue), rq->tag);
753                         return ret;
754                 }
755
756                 *len -= recv_len;
757                 *offset += recv_len;
758                 queue->data_remaining -= recv_len;
759         }
760
761         if (!queue->data_remaining) {
762                 if (queue->data_digest) {
763                         nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst);
764                         queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH;
765                 } else {
766                         if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
767                                 nvme_tcp_end_request(rq,
768                                                 le16_to_cpu(req->status));
769                                 queue->nr_cqe++;
770                         }
771                         nvme_tcp_init_recv_ctx(queue);
772                 }
773         }
774
775         return 0;
776 }
777
778 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue,
779                 struct sk_buff *skb, unsigned int *offset, size_t *len)
780 {
781         struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
782         char *ddgst = (char *)&queue->recv_ddgst;
783         size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining);
784         off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining;
785         int ret;
786
787         ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len);
788         if (unlikely(ret))
789                 return ret;
790
791         queue->ddgst_remaining -= recv_len;
792         *offset += recv_len;
793         *len -= recv_len;
794         if (queue->ddgst_remaining)
795                 return 0;
796
797         if (queue->recv_ddgst != queue->exp_ddgst) {
798                 struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
799                                         pdu->command_id);
800                 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
801
802                 req->status = cpu_to_le16(NVME_SC_DATA_XFER_ERROR);
803
804                 dev_err(queue->ctrl->ctrl.device,
805                         "data digest error: recv %#x expected %#x\n",
806                         le32_to_cpu(queue->recv_ddgst),
807                         le32_to_cpu(queue->exp_ddgst));
808         }
809
810         if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
811                 struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
812                                         pdu->command_id);
813                 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
814
815                 nvme_tcp_end_request(rq, le16_to_cpu(req->status));
816                 queue->nr_cqe++;
817         }
818
819         nvme_tcp_init_recv_ctx(queue);
820         return 0;
821 }
822
823 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb,
824                              unsigned int offset, size_t len)
825 {
826         struct nvme_tcp_queue *queue = desc->arg.data;
827         size_t consumed = len;
828         int result;
829
830         while (len) {
831                 switch (nvme_tcp_recv_state(queue)) {
832                 case NVME_TCP_RECV_PDU:
833                         result = nvme_tcp_recv_pdu(queue, skb, &offset, &len);
834                         break;
835                 case NVME_TCP_RECV_DATA:
836                         result = nvme_tcp_recv_data(queue, skb, &offset, &len);
837                         break;
838                 case NVME_TCP_RECV_DDGST:
839                         result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len);
840                         break;
841                 default:
842                         result = -EFAULT;
843                 }
844                 if (result) {
845                         dev_err(queue->ctrl->ctrl.device,
846                                 "receive failed:  %d\n", result);
847                         queue->rd_enabled = false;
848                         nvme_tcp_error_recovery(&queue->ctrl->ctrl);
849                         return result;
850                 }
851         }
852
853         return consumed;
854 }
855
856 static void nvme_tcp_data_ready(struct sock *sk)
857 {
858         struct nvme_tcp_queue *queue;
859
860         read_lock_bh(&sk->sk_callback_lock);
861         queue = sk->sk_user_data;
862         if (likely(queue && queue->rd_enabled) &&
863             !test_bit(NVME_TCP_Q_POLLING, &queue->flags))
864                 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
865         read_unlock_bh(&sk->sk_callback_lock);
866 }
867
868 static void nvme_tcp_write_space(struct sock *sk)
869 {
870         struct nvme_tcp_queue *queue;
871
872         read_lock_bh(&sk->sk_callback_lock);
873         queue = sk->sk_user_data;
874         if (likely(queue && sk_stream_is_writeable(sk))) {
875                 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
876                 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
877         }
878         read_unlock_bh(&sk->sk_callback_lock);
879 }
880
881 static void nvme_tcp_state_change(struct sock *sk)
882 {
883         struct nvme_tcp_queue *queue;
884
885         read_lock_bh(&sk->sk_callback_lock);
886         queue = sk->sk_user_data;
887         if (!queue)
888                 goto done;
889
890         switch (sk->sk_state) {
891         case TCP_CLOSE:
892         case TCP_CLOSE_WAIT:
893         case TCP_LAST_ACK:
894         case TCP_FIN_WAIT1:
895         case TCP_FIN_WAIT2:
896                 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
897                 break;
898         default:
899                 dev_info(queue->ctrl->ctrl.device,
900                         "queue %d socket state %d\n",
901                         nvme_tcp_queue_id(queue), sk->sk_state);
902         }
903
904         queue->state_change(sk);
905 done:
906         read_unlock_bh(&sk->sk_callback_lock);
907 }
908
909 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue)
910 {
911         return !list_empty(&queue->send_list) ||
912                 !llist_empty(&queue->req_list) || queue->more_requests;
913 }
914
915 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue)
916 {
917         queue->request = NULL;
918 }
919
920 static void nvme_tcp_fail_request(struct nvme_tcp_request *req)
921 {
922         nvme_tcp_end_request(blk_mq_rq_from_pdu(req), NVME_SC_HOST_PATH_ERROR);
923 }
924
925 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req)
926 {
927         struct nvme_tcp_queue *queue = req->queue;
928
929         while (true) {
930                 struct page *page = nvme_tcp_req_cur_page(req);
931                 size_t offset = nvme_tcp_req_cur_offset(req);
932                 size_t len = nvme_tcp_req_cur_length(req);
933                 bool last = nvme_tcp_pdu_last_send(req, len);
934                 int ret, flags = MSG_DONTWAIT;
935
936                 if (last && !queue->data_digest && !nvme_tcp_queue_more(queue))
937                         flags |= MSG_EOR;
938                 else
939                         flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
940
941                 if (sendpage_ok(page)) {
942                         ret = kernel_sendpage(queue->sock, page, offset, len,
943                                         flags);
944                 } else {
945                         ret = sock_no_sendpage(queue->sock, page, offset, len,
946                                         flags);
947                 }
948                 if (ret <= 0)
949                         return ret;
950
951                 if (queue->data_digest)
952                         nvme_tcp_ddgst_update(queue->snd_hash, page,
953                                         offset, ret);
954
955                 /* fully successful last write*/
956                 if (last && ret == len) {
957                         if (queue->data_digest) {
958                                 nvme_tcp_ddgst_final(queue->snd_hash,
959                                         &req->ddgst);
960                                 req->state = NVME_TCP_SEND_DDGST;
961                                 req->offset = 0;
962                         } else {
963                                 nvme_tcp_done_send_req(queue);
964                         }
965                         return 1;
966                 }
967                 nvme_tcp_advance_req(req, ret);
968         }
969         return -EAGAIN;
970 }
971
972 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req)
973 {
974         struct nvme_tcp_queue *queue = req->queue;
975         struct nvme_tcp_cmd_pdu *pdu = req->pdu;
976         bool inline_data = nvme_tcp_has_inline_data(req);
977         u8 hdgst = nvme_tcp_hdgst_len(queue);
978         int len = sizeof(*pdu) + hdgst - req->offset;
979         int flags = MSG_DONTWAIT;
980         int ret;
981
982         if (inline_data || nvme_tcp_queue_more(queue))
983                 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
984         else
985                 flags |= MSG_EOR;
986
987         if (queue->hdr_digest && !req->offset)
988                 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
989
990         ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
991                         offset_in_page(pdu) + req->offset, len,  flags);
992         if (unlikely(ret <= 0))
993                 return ret;
994
995         len -= ret;
996         if (!len) {
997                 if (inline_data) {
998                         req->state = NVME_TCP_SEND_DATA;
999                         if (queue->data_digest)
1000                                 crypto_ahash_init(queue->snd_hash);
1001                 } else {
1002                         nvme_tcp_done_send_req(queue);
1003                 }
1004                 return 1;
1005         }
1006         req->offset += ret;
1007
1008         return -EAGAIN;
1009 }
1010
1011 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req)
1012 {
1013         struct nvme_tcp_queue *queue = req->queue;
1014         struct nvme_tcp_data_pdu *pdu = req->pdu;
1015         u8 hdgst = nvme_tcp_hdgst_len(queue);
1016         int len = sizeof(*pdu) - req->offset + hdgst;
1017         int ret;
1018
1019         if (queue->hdr_digest && !req->offset)
1020                 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1021
1022         ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
1023                         offset_in_page(pdu) + req->offset, len,
1024                         MSG_DONTWAIT | MSG_MORE | MSG_SENDPAGE_NOTLAST);
1025         if (unlikely(ret <= 0))
1026                 return ret;
1027
1028         len -= ret;
1029         if (!len) {
1030                 req->state = NVME_TCP_SEND_DATA;
1031                 if (queue->data_digest)
1032                         crypto_ahash_init(queue->snd_hash);
1033                 return 1;
1034         }
1035         req->offset += ret;
1036
1037         return -EAGAIN;
1038 }
1039
1040 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req)
1041 {
1042         struct nvme_tcp_queue *queue = req->queue;
1043         int ret;
1044         struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1045         struct kvec iov = {
1046                 .iov_base = &req->ddgst + req->offset,
1047                 .iov_len = NVME_TCP_DIGEST_LENGTH - req->offset
1048         };
1049
1050         if (nvme_tcp_queue_more(queue))
1051                 msg.msg_flags |= MSG_MORE;
1052         else
1053                 msg.msg_flags |= MSG_EOR;
1054
1055         ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1056         if (unlikely(ret <= 0))
1057                 return ret;
1058
1059         if (req->offset + ret == NVME_TCP_DIGEST_LENGTH) {
1060                 nvme_tcp_done_send_req(queue);
1061                 return 1;
1062         }
1063
1064         req->offset += ret;
1065         return -EAGAIN;
1066 }
1067
1068 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue)
1069 {
1070         struct nvme_tcp_request *req;
1071         int ret = 1;
1072
1073         if (!queue->request) {
1074                 queue->request = nvme_tcp_fetch_request(queue);
1075                 if (!queue->request)
1076                         return 0;
1077         }
1078         req = queue->request;
1079
1080         if (req->state == NVME_TCP_SEND_CMD_PDU) {
1081                 ret = nvme_tcp_try_send_cmd_pdu(req);
1082                 if (ret <= 0)
1083                         goto done;
1084                 if (!nvme_tcp_has_inline_data(req))
1085                         return ret;
1086         }
1087
1088         if (req->state == NVME_TCP_SEND_H2C_PDU) {
1089                 ret = nvme_tcp_try_send_data_pdu(req);
1090                 if (ret <= 0)
1091                         goto done;
1092         }
1093
1094         if (req->state == NVME_TCP_SEND_DATA) {
1095                 ret = nvme_tcp_try_send_data(req);
1096                 if (ret <= 0)
1097                         goto done;
1098         }
1099
1100         if (req->state == NVME_TCP_SEND_DDGST)
1101                 ret = nvme_tcp_try_send_ddgst(req);
1102 done:
1103         if (ret == -EAGAIN) {
1104                 ret = 0;
1105         } else if (ret < 0) {
1106                 dev_err(queue->ctrl->ctrl.device,
1107                         "failed to send request %d\n", ret);
1108                 if (ret != -EPIPE && ret != -ECONNRESET)
1109                         nvme_tcp_fail_request(queue->request);
1110                 nvme_tcp_done_send_req(queue);
1111         }
1112         return ret;
1113 }
1114
1115 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue)
1116 {
1117         struct socket *sock = queue->sock;
1118         struct sock *sk = sock->sk;
1119         read_descriptor_t rd_desc;
1120         int consumed;
1121
1122         rd_desc.arg.data = queue;
1123         rd_desc.count = 1;
1124         lock_sock(sk);
1125         queue->nr_cqe = 0;
1126         consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb);
1127         release_sock(sk);
1128         return consumed;
1129 }
1130
1131 static void nvme_tcp_io_work(struct work_struct *w)
1132 {
1133         struct nvme_tcp_queue *queue =
1134                 container_of(w, struct nvme_tcp_queue, io_work);
1135         unsigned long deadline = jiffies + msecs_to_jiffies(1);
1136
1137         do {
1138                 bool pending = false;
1139                 int result;
1140
1141                 if (mutex_trylock(&queue->send_mutex)) {
1142                         result = nvme_tcp_try_send(queue);
1143                         mutex_unlock(&queue->send_mutex);
1144                         if (result > 0)
1145                                 pending = true;
1146                         else if (unlikely(result < 0))
1147                                 break;
1148                 } else
1149                         pending = !llist_empty(&queue->req_list);
1150
1151                 result = nvme_tcp_try_recv(queue);
1152                 if (result > 0)
1153                         pending = true;
1154                 else if (unlikely(result < 0))
1155                         return;
1156
1157                 if (!pending)
1158                         return;
1159
1160         } while (!time_after(jiffies, deadline)); /* quota is exhausted */
1161
1162         queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1163 }
1164
1165 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue)
1166 {
1167         struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
1168
1169         ahash_request_free(queue->rcv_hash);
1170         ahash_request_free(queue->snd_hash);
1171         crypto_free_ahash(tfm);
1172 }
1173
1174 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue)
1175 {
1176         struct crypto_ahash *tfm;
1177
1178         tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
1179         if (IS_ERR(tfm))
1180                 return PTR_ERR(tfm);
1181
1182         queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1183         if (!queue->snd_hash)
1184                 goto free_tfm;
1185         ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
1186
1187         queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1188         if (!queue->rcv_hash)
1189                 goto free_snd_hash;
1190         ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
1191
1192         return 0;
1193 free_snd_hash:
1194         ahash_request_free(queue->snd_hash);
1195 free_tfm:
1196         crypto_free_ahash(tfm);
1197         return -ENOMEM;
1198 }
1199
1200 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl)
1201 {
1202         struct nvme_tcp_request *async = &ctrl->async_req;
1203
1204         page_frag_free(async->pdu);
1205 }
1206
1207 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl)
1208 {
1209         struct nvme_tcp_queue *queue = &ctrl->queues[0];
1210         struct nvme_tcp_request *async = &ctrl->async_req;
1211         u8 hdgst = nvme_tcp_hdgst_len(queue);
1212
1213         async->pdu = page_frag_alloc(&queue->pf_cache,
1214                 sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
1215                 GFP_KERNEL | __GFP_ZERO);
1216         if (!async->pdu)
1217                 return -ENOMEM;
1218
1219         async->queue = &ctrl->queues[0];
1220         return 0;
1221 }
1222
1223 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid)
1224 {
1225         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1226         struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1227
1228         if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1229                 return;
1230
1231         if (queue->hdr_digest || queue->data_digest)
1232                 nvme_tcp_free_crypto(queue);
1233
1234         sock_release(queue->sock);
1235         kfree(queue->pdu);
1236         mutex_destroy(&queue->send_mutex);
1237         mutex_destroy(&queue->queue_lock);
1238 }
1239
1240 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue)
1241 {
1242         struct nvme_tcp_icreq_pdu *icreq;
1243         struct nvme_tcp_icresp_pdu *icresp;
1244         struct msghdr msg = {};
1245         struct kvec iov;
1246         bool ctrl_hdgst, ctrl_ddgst;
1247         int ret;
1248
1249         icreq = kzalloc(sizeof(*icreq), GFP_KERNEL);
1250         if (!icreq)
1251                 return -ENOMEM;
1252
1253         icresp = kzalloc(sizeof(*icresp), GFP_KERNEL);
1254         if (!icresp) {
1255                 ret = -ENOMEM;
1256                 goto free_icreq;
1257         }
1258
1259         icreq->hdr.type = nvme_tcp_icreq;
1260         icreq->hdr.hlen = sizeof(*icreq);
1261         icreq->hdr.pdo = 0;
1262         icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen);
1263         icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
1264         icreq->maxr2t = 0; /* single inflight r2t supported */
1265         icreq->hpda = 0; /* no alignment constraint */
1266         if (queue->hdr_digest)
1267                 icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
1268         if (queue->data_digest)
1269                 icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
1270
1271         iov.iov_base = icreq;
1272         iov.iov_len = sizeof(*icreq);
1273         ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1274         if (ret < 0)
1275                 goto free_icresp;
1276
1277         memset(&msg, 0, sizeof(msg));
1278         iov.iov_base = icresp;
1279         iov.iov_len = sizeof(*icresp);
1280         ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1281                         iov.iov_len, msg.msg_flags);
1282         if (ret < 0)
1283                 goto free_icresp;
1284
1285         ret = -EINVAL;
1286         if (icresp->hdr.type != nvme_tcp_icresp) {
1287                 pr_err("queue %d: bad type returned %d\n",
1288                         nvme_tcp_queue_id(queue), icresp->hdr.type);
1289                 goto free_icresp;
1290         }
1291
1292         if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) {
1293                 pr_err("queue %d: bad pdu length returned %d\n",
1294                         nvme_tcp_queue_id(queue), icresp->hdr.plen);
1295                 goto free_icresp;
1296         }
1297
1298         if (icresp->pfv != NVME_TCP_PFV_1_0) {
1299                 pr_err("queue %d: bad pfv returned %d\n",
1300                         nvme_tcp_queue_id(queue), icresp->pfv);
1301                 goto free_icresp;
1302         }
1303
1304         ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE);
1305         if ((queue->data_digest && !ctrl_ddgst) ||
1306             (!queue->data_digest && ctrl_ddgst)) {
1307                 pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n",
1308                         nvme_tcp_queue_id(queue),
1309                         queue->data_digest ? "enabled" : "disabled",
1310                         ctrl_ddgst ? "enabled" : "disabled");
1311                 goto free_icresp;
1312         }
1313
1314         ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE);
1315         if ((queue->hdr_digest && !ctrl_hdgst) ||
1316             (!queue->hdr_digest && ctrl_hdgst)) {
1317                 pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n",
1318                         nvme_tcp_queue_id(queue),
1319                         queue->hdr_digest ? "enabled" : "disabled",
1320                         ctrl_hdgst ? "enabled" : "disabled");
1321                 goto free_icresp;
1322         }
1323
1324         if (icresp->cpda != 0) {
1325                 pr_err("queue %d: unsupported cpda returned %d\n",
1326                         nvme_tcp_queue_id(queue), icresp->cpda);
1327                 goto free_icresp;
1328         }
1329
1330         ret = 0;
1331 free_icresp:
1332         kfree(icresp);
1333 free_icreq:
1334         kfree(icreq);
1335         return ret;
1336 }
1337
1338 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue)
1339 {
1340         return nvme_tcp_queue_id(queue) == 0;
1341 }
1342
1343 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue)
1344 {
1345         struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1346         int qid = nvme_tcp_queue_id(queue);
1347
1348         return !nvme_tcp_admin_queue(queue) &&
1349                 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT];
1350 }
1351
1352 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue)
1353 {
1354         struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1355         int qid = nvme_tcp_queue_id(queue);
1356
1357         return !nvme_tcp_admin_queue(queue) &&
1358                 !nvme_tcp_default_queue(queue) &&
1359                 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1360                           ctrl->io_queues[HCTX_TYPE_READ];
1361 }
1362
1363 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue)
1364 {
1365         struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1366         int qid = nvme_tcp_queue_id(queue);
1367
1368         return !nvme_tcp_admin_queue(queue) &&
1369                 !nvme_tcp_default_queue(queue) &&
1370                 !nvme_tcp_read_queue(queue) &&
1371                 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1372                           ctrl->io_queues[HCTX_TYPE_READ] +
1373                           ctrl->io_queues[HCTX_TYPE_POLL];
1374 }
1375
1376 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue)
1377 {
1378         struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1379         int qid = nvme_tcp_queue_id(queue);
1380         int n = 0;
1381
1382         if (nvme_tcp_default_queue(queue))
1383                 n = qid - 1;
1384         else if (nvme_tcp_read_queue(queue))
1385                 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1;
1386         else if (nvme_tcp_poll_queue(queue))
1387                 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] -
1388                                 ctrl->io_queues[HCTX_TYPE_READ] - 1;
1389         queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false);
1390 }
1391
1392 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl,
1393                 int qid, size_t queue_size)
1394 {
1395         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1396         struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1397         int ret, rcv_pdu_size;
1398
1399         mutex_init(&queue->queue_lock);
1400         queue->ctrl = ctrl;
1401         init_llist_head(&queue->req_list);
1402         INIT_LIST_HEAD(&queue->send_list);
1403         mutex_init(&queue->send_mutex);
1404         INIT_WORK(&queue->io_work, nvme_tcp_io_work);
1405         queue->queue_size = queue_size;
1406
1407         if (qid > 0)
1408                 queue->cmnd_capsule_len = nctrl->ioccsz * 16;
1409         else
1410                 queue->cmnd_capsule_len = sizeof(struct nvme_command) +
1411                                                 NVME_TCP_ADMIN_CCSZ;
1412
1413         ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM,
1414                         IPPROTO_TCP, &queue->sock);
1415         if (ret) {
1416                 dev_err(nctrl->device,
1417                         "failed to create socket: %d\n", ret);
1418                 goto err_destroy_mutex;
1419         }
1420
1421         /* Single syn retry */
1422         tcp_sock_set_syncnt(queue->sock->sk, 1);
1423
1424         /* Set TCP no delay */
1425         tcp_sock_set_nodelay(queue->sock->sk);
1426
1427         /*
1428          * Cleanup whatever is sitting in the TCP transmit queue on socket
1429          * close. This is done to prevent stale data from being sent should
1430          * the network connection be restored before TCP times out.
1431          */
1432         sock_no_linger(queue->sock->sk);
1433
1434         if (so_priority > 0)
1435                 sock_set_priority(queue->sock->sk, so_priority);
1436
1437         /* Set socket type of service */
1438         if (nctrl->opts->tos >= 0)
1439                 ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos);
1440
1441         /* Set 10 seconds timeout for icresp recvmsg */
1442         queue->sock->sk->sk_rcvtimeo = 10 * HZ;
1443
1444         queue->sock->sk->sk_allocation = GFP_ATOMIC;
1445         nvme_tcp_set_queue_io_cpu(queue);
1446         queue->request = NULL;
1447         queue->data_remaining = 0;
1448         queue->ddgst_remaining = 0;
1449         queue->pdu_remaining = 0;
1450         queue->pdu_offset = 0;
1451         sk_set_memalloc(queue->sock->sk);
1452
1453         if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) {
1454                 ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr,
1455                         sizeof(ctrl->src_addr));
1456                 if (ret) {
1457                         dev_err(nctrl->device,
1458                                 "failed to bind queue %d socket %d\n",
1459                                 qid, ret);
1460                         goto err_sock;
1461                 }
1462         }
1463
1464         if (nctrl->opts->mask & NVMF_OPT_HOST_IFACE) {
1465                 char *iface = nctrl->opts->host_iface;
1466                 sockptr_t optval = KERNEL_SOCKPTR(iface);
1467
1468                 ret = sock_setsockopt(queue->sock, SOL_SOCKET, SO_BINDTODEVICE,
1469                                       optval, strlen(iface));
1470                 if (ret) {
1471                         dev_err(nctrl->device,
1472                           "failed to bind to interface %s queue %d err %d\n",
1473                           iface, qid, ret);
1474                         goto err_sock;
1475                 }
1476         }
1477
1478         queue->hdr_digest = nctrl->opts->hdr_digest;
1479         queue->data_digest = nctrl->opts->data_digest;
1480         if (queue->hdr_digest || queue->data_digest) {
1481                 ret = nvme_tcp_alloc_crypto(queue);
1482                 if (ret) {
1483                         dev_err(nctrl->device,
1484                                 "failed to allocate queue %d crypto\n", qid);
1485                         goto err_sock;
1486                 }
1487         }
1488
1489         rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) +
1490                         nvme_tcp_hdgst_len(queue);
1491         queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL);
1492         if (!queue->pdu) {
1493                 ret = -ENOMEM;
1494                 goto err_crypto;
1495         }
1496
1497         dev_dbg(nctrl->device, "connecting queue %d\n",
1498                         nvme_tcp_queue_id(queue));
1499
1500         ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr,
1501                 sizeof(ctrl->addr), 0);
1502         if (ret) {
1503                 dev_err(nctrl->device,
1504                         "failed to connect socket: %d\n", ret);
1505                 goto err_rcv_pdu;
1506         }
1507
1508         ret = nvme_tcp_init_connection(queue);
1509         if (ret)
1510                 goto err_init_connect;
1511
1512         queue->rd_enabled = true;
1513         set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags);
1514         nvme_tcp_init_recv_ctx(queue);
1515
1516         write_lock_bh(&queue->sock->sk->sk_callback_lock);
1517         queue->sock->sk->sk_user_data = queue;
1518         queue->state_change = queue->sock->sk->sk_state_change;
1519         queue->data_ready = queue->sock->sk->sk_data_ready;
1520         queue->write_space = queue->sock->sk->sk_write_space;
1521         queue->sock->sk->sk_data_ready = nvme_tcp_data_ready;
1522         queue->sock->sk->sk_state_change = nvme_tcp_state_change;
1523         queue->sock->sk->sk_write_space = nvme_tcp_write_space;
1524 #ifdef CONFIG_NET_RX_BUSY_POLL
1525         queue->sock->sk->sk_ll_usec = 1;
1526 #endif
1527         write_unlock_bh(&queue->sock->sk->sk_callback_lock);
1528
1529         return 0;
1530
1531 err_init_connect:
1532         kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1533 err_rcv_pdu:
1534         kfree(queue->pdu);
1535 err_crypto:
1536         if (queue->hdr_digest || queue->data_digest)
1537                 nvme_tcp_free_crypto(queue);
1538 err_sock:
1539         sock_release(queue->sock);
1540         queue->sock = NULL;
1541 err_destroy_mutex:
1542         mutex_destroy(&queue->send_mutex);
1543         mutex_destroy(&queue->queue_lock);
1544         return ret;
1545 }
1546
1547 static void nvme_tcp_restore_sock_calls(struct nvme_tcp_queue *queue)
1548 {
1549         struct socket *sock = queue->sock;
1550
1551         write_lock_bh(&sock->sk->sk_callback_lock);
1552         sock->sk->sk_user_data  = NULL;
1553         sock->sk->sk_data_ready = queue->data_ready;
1554         sock->sk->sk_state_change = queue->state_change;
1555         sock->sk->sk_write_space  = queue->write_space;
1556         write_unlock_bh(&sock->sk->sk_callback_lock);
1557 }
1558
1559 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue)
1560 {
1561         kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1562         nvme_tcp_restore_sock_calls(queue);
1563         cancel_work_sync(&queue->io_work);
1564 }
1565
1566 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid)
1567 {
1568         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1569         struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1570
1571         mutex_lock(&queue->queue_lock);
1572         if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags))
1573                 __nvme_tcp_stop_queue(queue);
1574         mutex_unlock(&queue->queue_lock);
1575 }
1576
1577 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx)
1578 {
1579         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1580         int ret;
1581
1582         if (idx)
1583                 ret = nvmf_connect_io_queue(nctrl, idx);
1584         else
1585                 ret = nvmf_connect_admin_queue(nctrl);
1586
1587         if (!ret) {
1588                 set_bit(NVME_TCP_Q_LIVE, &ctrl->queues[idx].flags);
1589         } else {
1590                 if (test_bit(NVME_TCP_Q_ALLOCATED, &ctrl->queues[idx].flags))
1591                         __nvme_tcp_stop_queue(&ctrl->queues[idx]);
1592                 dev_err(nctrl->device,
1593                         "failed to connect queue: %d ret=%d\n", idx, ret);
1594         }
1595         return ret;
1596 }
1597
1598 static struct blk_mq_tag_set *nvme_tcp_alloc_tagset(struct nvme_ctrl *nctrl,
1599                 bool admin)
1600 {
1601         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1602         struct blk_mq_tag_set *set;
1603         int ret;
1604
1605         if (admin) {
1606                 set = &ctrl->admin_tag_set;
1607                 memset(set, 0, sizeof(*set));
1608                 set->ops = &nvme_tcp_admin_mq_ops;
1609                 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1610                 set->reserved_tags = NVMF_RESERVED_TAGS;
1611                 set->numa_node = nctrl->numa_node;
1612                 set->flags = BLK_MQ_F_BLOCKING;
1613                 set->cmd_size = sizeof(struct nvme_tcp_request);
1614                 set->driver_data = ctrl;
1615                 set->nr_hw_queues = 1;
1616                 set->timeout = NVME_ADMIN_TIMEOUT;
1617         } else {
1618                 set = &ctrl->tag_set;
1619                 memset(set, 0, sizeof(*set));
1620                 set->ops = &nvme_tcp_mq_ops;
1621                 set->queue_depth = nctrl->sqsize + 1;
1622                 set->reserved_tags = NVMF_RESERVED_TAGS;
1623                 set->numa_node = nctrl->numa_node;
1624                 set->flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING;
1625                 set->cmd_size = sizeof(struct nvme_tcp_request);
1626                 set->driver_data = ctrl;
1627                 set->nr_hw_queues = nctrl->queue_count - 1;
1628                 set->timeout = NVME_IO_TIMEOUT;
1629                 set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2;
1630         }
1631
1632         ret = blk_mq_alloc_tag_set(set);
1633         if (ret)
1634                 return ERR_PTR(ret);
1635
1636         return set;
1637 }
1638
1639 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl)
1640 {
1641         if (to_tcp_ctrl(ctrl)->async_req.pdu) {
1642                 cancel_work_sync(&ctrl->async_event_work);
1643                 nvme_tcp_free_async_req(to_tcp_ctrl(ctrl));
1644                 to_tcp_ctrl(ctrl)->async_req.pdu = NULL;
1645         }
1646
1647         nvme_tcp_free_queue(ctrl, 0);
1648 }
1649
1650 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl)
1651 {
1652         int i;
1653
1654         for (i = 1; i < ctrl->queue_count; i++)
1655                 nvme_tcp_free_queue(ctrl, i);
1656 }
1657
1658 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl)
1659 {
1660         int i;
1661
1662         for (i = 1; i < ctrl->queue_count; i++)
1663                 nvme_tcp_stop_queue(ctrl, i);
1664 }
1665
1666 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl)
1667 {
1668         int i, ret = 0;
1669
1670         for (i = 1; i < ctrl->queue_count; i++) {
1671                 ret = nvme_tcp_start_queue(ctrl, i);
1672                 if (ret)
1673                         goto out_stop_queues;
1674         }
1675
1676         return 0;
1677
1678 out_stop_queues:
1679         for (i--; i >= 1; i--)
1680                 nvme_tcp_stop_queue(ctrl, i);
1681         return ret;
1682 }
1683
1684 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl)
1685 {
1686         int ret;
1687
1688         ret = nvme_tcp_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
1689         if (ret)
1690                 return ret;
1691
1692         ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl));
1693         if (ret)
1694                 goto out_free_queue;
1695
1696         return 0;
1697
1698 out_free_queue:
1699         nvme_tcp_free_queue(ctrl, 0);
1700         return ret;
1701 }
1702
1703 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1704 {
1705         int i, ret;
1706
1707         for (i = 1; i < ctrl->queue_count; i++) {
1708                 ret = nvme_tcp_alloc_queue(ctrl, i,
1709                                 ctrl->sqsize + 1);
1710                 if (ret)
1711                         goto out_free_queues;
1712         }
1713
1714         return 0;
1715
1716 out_free_queues:
1717         for (i--; i >= 1; i--)
1718                 nvme_tcp_free_queue(ctrl, i);
1719
1720         return ret;
1721 }
1722
1723 static unsigned int nvme_tcp_nr_io_queues(struct nvme_ctrl *ctrl)
1724 {
1725         unsigned int nr_io_queues;
1726
1727         nr_io_queues = min(ctrl->opts->nr_io_queues, num_online_cpus());
1728         nr_io_queues += min(ctrl->opts->nr_write_queues, num_online_cpus());
1729         nr_io_queues += min(ctrl->opts->nr_poll_queues, num_online_cpus());
1730
1731         return nr_io_queues;
1732 }
1733
1734 static void nvme_tcp_set_io_queues(struct nvme_ctrl *nctrl,
1735                 unsigned int nr_io_queues)
1736 {
1737         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1738         struct nvmf_ctrl_options *opts = nctrl->opts;
1739
1740         if (opts->nr_write_queues && opts->nr_io_queues < nr_io_queues) {
1741                 /*
1742                  * separate read/write queues
1743                  * hand out dedicated default queues only after we have
1744                  * sufficient read queues.
1745                  */
1746                 ctrl->io_queues[HCTX_TYPE_READ] = opts->nr_io_queues;
1747                 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
1748                 ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1749                         min(opts->nr_write_queues, nr_io_queues);
1750                 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1751         } else {
1752                 /*
1753                  * shared read/write queues
1754                  * either no write queues were requested, or we don't have
1755                  * sufficient queue count to have dedicated default queues.
1756                  */
1757                 ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1758                         min(opts->nr_io_queues, nr_io_queues);
1759                 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1760         }
1761
1762         if (opts->nr_poll_queues && nr_io_queues) {
1763                 /* map dedicated poll queues only if we have queues left */
1764                 ctrl->io_queues[HCTX_TYPE_POLL] =
1765                         min(opts->nr_poll_queues, nr_io_queues);
1766         }
1767 }
1768
1769 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1770 {
1771         unsigned int nr_io_queues;
1772         int ret;
1773
1774         nr_io_queues = nvme_tcp_nr_io_queues(ctrl);
1775         ret = nvme_set_queue_count(ctrl, &nr_io_queues);
1776         if (ret)
1777                 return ret;
1778
1779         if (nr_io_queues == 0) {
1780                 dev_err(ctrl->device,
1781                         "unable to set any I/O queues\n");
1782                 return -ENOMEM;
1783         }
1784
1785         ctrl->queue_count = nr_io_queues + 1;
1786         dev_info(ctrl->device,
1787                 "creating %d I/O queues.\n", nr_io_queues);
1788
1789         nvme_tcp_set_io_queues(ctrl, nr_io_queues);
1790
1791         return __nvme_tcp_alloc_io_queues(ctrl);
1792 }
1793
1794 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove)
1795 {
1796         nvme_tcp_stop_io_queues(ctrl);
1797         if (remove) {
1798                 blk_cleanup_queue(ctrl->connect_q);
1799                 blk_mq_free_tag_set(ctrl->tagset);
1800         }
1801         nvme_tcp_free_io_queues(ctrl);
1802 }
1803
1804 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new)
1805 {
1806         int ret;
1807
1808         ret = nvme_tcp_alloc_io_queues(ctrl);
1809         if (ret)
1810                 return ret;
1811
1812         if (new) {
1813                 ctrl->tagset = nvme_tcp_alloc_tagset(ctrl, false);
1814                 if (IS_ERR(ctrl->tagset)) {
1815                         ret = PTR_ERR(ctrl->tagset);
1816                         goto out_free_io_queues;
1817                 }
1818
1819                 ctrl->connect_q = blk_mq_init_queue(ctrl->tagset);
1820                 if (IS_ERR(ctrl->connect_q)) {
1821                         ret = PTR_ERR(ctrl->connect_q);
1822                         goto out_free_tag_set;
1823                 }
1824         }
1825
1826         ret = nvme_tcp_start_io_queues(ctrl);
1827         if (ret)
1828                 goto out_cleanup_connect_q;
1829
1830         if (!new) {
1831                 nvme_start_queues(ctrl);
1832                 if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) {
1833                         /*
1834                          * If we timed out waiting for freeze we are likely to
1835                          * be stuck.  Fail the controller initialization just
1836                          * to be safe.
1837                          */
1838                         ret = -ENODEV;
1839                         goto out_wait_freeze_timed_out;
1840                 }
1841                 blk_mq_update_nr_hw_queues(ctrl->tagset,
1842                         ctrl->queue_count - 1);
1843                 nvme_unfreeze(ctrl);
1844         }
1845
1846         return 0;
1847
1848 out_wait_freeze_timed_out:
1849         nvme_stop_queues(ctrl);
1850         nvme_sync_io_queues(ctrl);
1851         nvme_tcp_stop_io_queues(ctrl);
1852 out_cleanup_connect_q:
1853         nvme_cancel_tagset(ctrl);
1854         if (new)
1855                 blk_cleanup_queue(ctrl->connect_q);
1856 out_free_tag_set:
1857         if (new)
1858                 blk_mq_free_tag_set(ctrl->tagset);
1859 out_free_io_queues:
1860         nvme_tcp_free_io_queues(ctrl);
1861         return ret;
1862 }
1863
1864 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove)
1865 {
1866         nvme_tcp_stop_queue(ctrl, 0);
1867         if (remove) {
1868                 blk_cleanup_queue(ctrl->admin_q);
1869                 blk_cleanup_queue(ctrl->fabrics_q);
1870                 blk_mq_free_tag_set(ctrl->admin_tagset);
1871         }
1872         nvme_tcp_free_admin_queue(ctrl);
1873 }
1874
1875 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new)
1876 {
1877         int error;
1878
1879         error = nvme_tcp_alloc_admin_queue(ctrl);
1880         if (error)
1881                 return error;
1882
1883         if (new) {
1884                 ctrl->admin_tagset = nvme_tcp_alloc_tagset(ctrl, true);
1885                 if (IS_ERR(ctrl->admin_tagset)) {
1886                         error = PTR_ERR(ctrl->admin_tagset);
1887                         goto out_free_queue;
1888                 }
1889
1890                 ctrl->fabrics_q = blk_mq_init_queue(ctrl->admin_tagset);
1891                 if (IS_ERR(ctrl->fabrics_q)) {
1892                         error = PTR_ERR(ctrl->fabrics_q);
1893                         goto out_free_tagset;
1894                 }
1895
1896                 ctrl->admin_q = blk_mq_init_queue(ctrl->admin_tagset);
1897                 if (IS_ERR(ctrl->admin_q)) {
1898                         error = PTR_ERR(ctrl->admin_q);
1899                         goto out_cleanup_fabrics_q;
1900                 }
1901         }
1902
1903         error = nvme_tcp_start_queue(ctrl, 0);
1904         if (error)
1905                 goto out_cleanup_queue;
1906
1907         error = nvme_enable_ctrl(ctrl);
1908         if (error)
1909                 goto out_stop_queue;
1910
1911         blk_mq_unquiesce_queue(ctrl->admin_q);
1912
1913         error = nvme_init_ctrl_finish(ctrl);
1914         if (error)
1915                 goto out_quiesce_queue;
1916
1917         return 0;
1918
1919 out_quiesce_queue:
1920         blk_mq_quiesce_queue(ctrl->admin_q);
1921         blk_sync_queue(ctrl->admin_q);
1922 out_stop_queue:
1923         nvme_tcp_stop_queue(ctrl, 0);
1924         nvme_cancel_admin_tagset(ctrl);
1925 out_cleanup_queue:
1926         if (new)
1927                 blk_cleanup_queue(ctrl->admin_q);
1928 out_cleanup_fabrics_q:
1929         if (new)
1930                 blk_cleanup_queue(ctrl->fabrics_q);
1931 out_free_tagset:
1932         if (new)
1933                 blk_mq_free_tag_set(ctrl->admin_tagset);
1934 out_free_queue:
1935         nvme_tcp_free_admin_queue(ctrl);
1936         return error;
1937 }
1938
1939 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl,
1940                 bool remove)
1941 {
1942         blk_mq_quiesce_queue(ctrl->admin_q);
1943         blk_sync_queue(ctrl->admin_q);
1944         nvme_tcp_stop_queue(ctrl, 0);
1945         nvme_cancel_admin_tagset(ctrl);
1946         if (remove)
1947                 blk_mq_unquiesce_queue(ctrl->admin_q);
1948         nvme_tcp_destroy_admin_queue(ctrl, remove);
1949 }
1950
1951 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl,
1952                 bool remove)
1953 {
1954         if (ctrl->queue_count <= 1)
1955                 return;
1956         blk_mq_quiesce_queue(ctrl->admin_q);
1957         nvme_start_freeze(ctrl);
1958         nvme_stop_queues(ctrl);
1959         nvme_sync_io_queues(ctrl);
1960         nvme_tcp_stop_io_queues(ctrl);
1961         nvme_cancel_tagset(ctrl);
1962         if (remove)
1963                 nvme_start_queues(ctrl);
1964         nvme_tcp_destroy_io_queues(ctrl, remove);
1965 }
1966
1967 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl)
1968 {
1969         /* If we are resetting/deleting then do nothing */
1970         if (ctrl->state != NVME_CTRL_CONNECTING) {
1971                 WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW ||
1972                         ctrl->state == NVME_CTRL_LIVE);
1973                 return;
1974         }
1975
1976         if (nvmf_should_reconnect(ctrl)) {
1977                 dev_info(ctrl->device, "Reconnecting in %d seconds...\n",
1978                         ctrl->opts->reconnect_delay);
1979                 queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work,
1980                                 ctrl->opts->reconnect_delay * HZ);
1981         } else {
1982                 dev_info(ctrl->device, "Removing controller...\n");
1983                 nvme_delete_ctrl(ctrl);
1984         }
1985 }
1986
1987 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new)
1988 {
1989         struct nvmf_ctrl_options *opts = ctrl->opts;
1990         int ret;
1991
1992         ret = nvme_tcp_configure_admin_queue(ctrl, new);
1993         if (ret)
1994                 return ret;
1995
1996         if (ctrl->icdoff) {
1997                 ret = -EOPNOTSUPP;
1998                 dev_err(ctrl->device, "icdoff is not supported!\n");
1999                 goto destroy_admin;
2000         }
2001
2002         if (!nvme_ctrl_sgl_supported(ctrl)) {
2003                 ret = -EOPNOTSUPP;
2004                 dev_err(ctrl->device, "Mandatory sgls are not supported!\n");
2005                 goto destroy_admin;
2006         }
2007
2008         if (opts->queue_size > ctrl->sqsize + 1)
2009                 dev_warn(ctrl->device,
2010                         "queue_size %zu > ctrl sqsize %u, clamping down\n",
2011                         opts->queue_size, ctrl->sqsize + 1);
2012
2013         if (ctrl->sqsize + 1 > ctrl->maxcmd) {
2014                 dev_warn(ctrl->device,
2015                         "sqsize %u > ctrl maxcmd %u, clamping down\n",
2016                         ctrl->sqsize + 1, ctrl->maxcmd);
2017                 ctrl->sqsize = ctrl->maxcmd - 1;
2018         }
2019
2020         if (ctrl->queue_count > 1) {
2021                 ret = nvme_tcp_configure_io_queues(ctrl, new);
2022                 if (ret)
2023                         goto destroy_admin;
2024         }
2025
2026         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) {
2027                 /*
2028                  * state change failure is ok if we started ctrl delete,
2029                  * unless we're during creation of a new controller to
2030                  * avoid races with teardown flow.
2031                  */
2032                 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2033                              ctrl->state != NVME_CTRL_DELETING_NOIO);
2034                 WARN_ON_ONCE(new);
2035                 ret = -EINVAL;
2036                 goto destroy_io;
2037         }
2038
2039         nvme_start_ctrl(ctrl);
2040         return 0;
2041
2042 destroy_io:
2043         if (ctrl->queue_count > 1) {
2044                 nvme_stop_queues(ctrl);
2045                 nvme_sync_io_queues(ctrl);
2046                 nvme_tcp_stop_io_queues(ctrl);
2047                 nvme_cancel_tagset(ctrl);
2048                 nvme_tcp_destroy_io_queues(ctrl, new);
2049         }
2050 destroy_admin:
2051         blk_mq_quiesce_queue(ctrl->admin_q);
2052         blk_sync_queue(ctrl->admin_q);
2053         nvme_tcp_stop_queue(ctrl, 0);
2054         nvme_cancel_admin_tagset(ctrl);
2055         nvme_tcp_destroy_admin_queue(ctrl, new);
2056         return ret;
2057 }
2058
2059 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work)
2060 {
2061         struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work),
2062                         struct nvme_tcp_ctrl, connect_work);
2063         struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2064
2065         ++ctrl->nr_reconnects;
2066
2067         if (nvme_tcp_setup_ctrl(ctrl, false))
2068                 goto requeue;
2069
2070         dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n",
2071                         ctrl->nr_reconnects);
2072
2073         ctrl->nr_reconnects = 0;
2074
2075         return;
2076
2077 requeue:
2078         dev_info(ctrl->device, "Failed reconnect attempt %d\n",
2079                         ctrl->nr_reconnects);
2080         nvme_tcp_reconnect_or_remove(ctrl);
2081 }
2082
2083 static void nvme_tcp_error_recovery_work(struct work_struct *work)
2084 {
2085         struct nvme_tcp_ctrl *tcp_ctrl = container_of(work,
2086                                 struct nvme_tcp_ctrl, err_work);
2087         struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2088
2089         nvme_stop_keep_alive(ctrl);
2090         nvme_tcp_teardown_io_queues(ctrl, false);
2091         /* unquiesce to fail fast pending requests */
2092         nvme_start_queues(ctrl);
2093         nvme_tcp_teardown_admin_queue(ctrl, false);
2094         blk_mq_unquiesce_queue(ctrl->admin_q);
2095
2096         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2097                 /* state change failure is ok if we started ctrl delete */
2098                 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2099                              ctrl->state != NVME_CTRL_DELETING_NOIO);
2100                 return;
2101         }
2102
2103         nvme_tcp_reconnect_or_remove(ctrl);
2104 }
2105
2106 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2107 {
2108         cancel_work_sync(&to_tcp_ctrl(ctrl)->err_work);
2109         cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work);
2110
2111         nvme_tcp_teardown_io_queues(ctrl, shutdown);
2112         blk_mq_quiesce_queue(ctrl->admin_q);
2113         if (shutdown)
2114                 nvme_shutdown_ctrl(ctrl);
2115         else
2116                 nvme_disable_ctrl(ctrl);
2117         nvme_tcp_teardown_admin_queue(ctrl, shutdown);
2118 }
2119
2120 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl)
2121 {
2122         nvme_tcp_teardown_ctrl(ctrl, true);
2123 }
2124
2125 static void nvme_reset_ctrl_work(struct work_struct *work)
2126 {
2127         struct nvme_ctrl *ctrl =
2128                 container_of(work, struct nvme_ctrl, reset_work);
2129
2130         nvme_stop_ctrl(ctrl);
2131         nvme_tcp_teardown_ctrl(ctrl, false);
2132
2133         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2134                 /* state change failure is ok if we started ctrl delete */
2135                 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2136                              ctrl->state != NVME_CTRL_DELETING_NOIO);
2137                 return;
2138         }
2139
2140         if (nvme_tcp_setup_ctrl(ctrl, false))
2141                 goto out_fail;
2142
2143         return;
2144
2145 out_fail:
2146         ++ctrl->nr_reconnects;
2147         nvme_tcp_reconnect_or_remove(ctrl);
2148 }
2149
2150 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl)
2151 {
2152         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
2153
2154         if (list_empty(&ctrl->list))
2155                 goto free_ctrl;
2156
2157         mutex_lock(&nvme_tcp_ctrl_mutex);
2158         list_del(&ctrl->list);
2159         mutex_unlock(&nvme_tcp_ctrl_mutex);
2160
2161         nvmf_free_options(nctrl->opts);
2162 free_ctrl:
2163         kfree(ctrl->queues);
2164         kfree(ctrl);
2165 }
2166
2167 static void nvme_tcp_set_sg_null(struct nvme_command *c)
2168 {
2169         struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2170
2171         sg->addr = 0;
2172         sg->length = 0;
2173         sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2174                         NVME_SGL_FMT_TRANSPORT_A;
2175 }
2176
2177 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue,
2178                 struct nvme_command *c, u32 data_len)
2179 {
2180         struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2181
2182         sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
2183         sg->length = cpu_to_le32(data_len);
2184         sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
2185 }
2186
2187 static void nvme_tcp_set_sg_host_data(struct nvme_command *c,
2188                 u32 data_len)
2189 {
2190         struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2191
2192         sg->addr = 0;
2193         sg->length = cpu_to_le32(data_len);
2194         sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2195                         NVME_SGL_FMT_TRANSPORT_A;
2196 }
2197
2198 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg)
2199 {
2200         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg);
2201         struct nvme_tcp_queue *queue = &ctrl->queues[0];
2202         struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu;
2203         struct nvme_command *cmd = &pdu->cmd;
2204         u8 hdgst = nvme_tcp_hdgst_len(queue);
2205
2206         memset(pdu, 0, sizeof(*pdu));
2207         pdu->hdr.type = nvme_tcp_cmd;
2208         if (queue->hdr_digest)
2209                 pdu->hdr.flags |= NVME_TCP_F_HDGST;
2210         pdu->hdr.hlen = sizeof(*pdu);
2211         pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
2212
2213         cmd->common.opcode = nvme_admin_async_event;
2214         cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
2215         cmd->common.flags |= NVME_CMD_SGL_METABUF;
2216         nvme_tcp_set_sg_null(cmd);
2217
2218         ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU;
2219         ctrl->async_req.offset = 0;
2220         ctrl->async_req.curr_bio = NULL;
2221         ctrl->async_req.data_len = 0;
2222
2223         nvme_tcp_queue_request(&ctrl->async_req, true, true);
2224 }
2225
2226 static void nvme_tcp_complete_timed_out(struct request *rq)
2227 {
2228         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2229         struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2230
2231         nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue));
2232         if (blk_mq_request_started(rq) && !blk_mq_request_completed(rq)) {
2233                 nvme_req(rq)->status = NVME_SC_HOST_ABORTED_CMD;
2234                 blk_mq_complete_request(rq);
2235         }
2236 }
2237
2238 static enum blk_eh_timer_return
2239 nvme_tcp_timeout(struct request *rq, bool reserved)
2240 {
2241         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2242         struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2243         struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2244
2245         dev_warn(ctrl->device,
2246                 "queue %d: timeout request %#x type %d\n",
2247                 nvme_tcp_queue_id(req->queue), rq->tag, pdu->hdr.type);
2248
2249         if (ctrl->state != NVME_CTRL_LIVE) {
2250                 /*
2251                  * If we are resetting, connecting or deleting we should
2252                  * complete immediately because we may block controller
2253                  * teardown or setup sequence
2254                  * - ctrl disable/shutdown fabrics requests
2255                  * - connect requests
2256                  * - initialization admin requests
2257                  * - I/O requests that entered after unquiescing and
2258                  *   the controller stopped responding
2259                  *
2260                  * All other requests should be cancelled by the error
2261                  * recovery work, so it's fine that we fail it here.
2262                  */
2263                 nvme_tcp_complete_timed_out(rq);
2264                 return BLK_EH_DONE;
2265         }
2266
2267         /*
2268          * LIVE state should trigger the normal error recovery which will
2269          * handle completing this request.
2270          */
2271         nvme_tcp_error_recovery(ctrl);
2272         return BLK_EH_RESET_TIMER;
2273 }
2274
2275 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue,
2276                         struct request *rq)
2277 {
2278         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2279         struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2280         struct nvme_command *c = &pdu->cmd;
2281
2282         c->common.flags |= NVME_CMD_SGL_METABUF;
2283
2284         if (!blk_rq_nr_phys_segments(rq))
2285                 nvme_tcp_set_sg_null(c);
2286         else if (rq_data_dir(rq) == WRITE &&
2287             req->data_len <= nvme_tcp_inline_data_size(queue))
2288                 nvme_tcp_set_sg_inline(queue, c, req->data_len);
2289         else
2290                 nvme_tcp_set_sg_host_data(c, req->data_len);
2291
2292         return 0;
2293 }
2294
2295 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns,
2296                 struct request *rq)
2297 {
2298         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2299         struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2300         struct nvme_tcp_queue *queue = req->queue;
2301         u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0;
2302         blk_status_t ret;
2303
2304         ret = nvme_setup_cmd(ns, rq);
2305         if (ret)
2306                 return ret;
2307
2308         req->state = NVME_TCP_SEND_CMD_PDU;
2309         req->status = cpu_to_le16(NVME_SC_SUCCESS);
2310         req->offset = 0;
2311         req->data_sent = 0;
2312         req->pdu_len = 0;
2313         req->pdu_sent = 0;
2314         req->data_len = blk_rq_nr_phys_segments(rq) ?
2315                                 blk_rq_payload_bytes(rq) : 0;
2316         req->curr_bio = rq->bio;
2317         if (req->curr_bio && req->data_len)
2318                 nvme_tcp_init_iter(req, rq_data_dir(rq));
2319
2320         if (rq_data_dir(rq) == WRITE &&
2321             req->data_len <= nvme_tcp_inline_data_size(queue))
2322                 req->pdu_len = req->data_len;
2323
2324         pdu->hdr.type = nvme_tcp_cmd;
2325         pdu->hdr.flags = 0;
2326         if (queue->hdr_digest)
2327                 pdu->hdr.flags |= NVME_TCP_F_HDGST;
2328         if (queue->data_digest && req->pdu_len) {
2329                 pdu->hdr.flags |= NVME_TCP_F_DDGST;
2330                 ddgst = nvme_tcp_ddgst_len(queue);
2331         }
2332         pdu->hdr.hlen = sizeof(*pdu);
2333         pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0;
2334         pdu->hdr.plen =
2335                 cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst);
2336
2337         ret = nvme_tcp_map_data(queue, rq);
2338         if (unlikely(ret)) {
2339                 nvme_cleanup_cmd(rq);
2340                 dev_err(queue->ctrl->ctrl.device,
2341                         "Failed to map data (%d)\n", ret);
2342                 return ret;
2343         }
2344
2345         return 0;
2346 }
2347
2348 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx)
2349 {
2350         struct nvme_tcp_queue *queue = hctx->driver_data;
2351
2352         if (!llist_empty(&queue->req_list))
2353                 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
2354 }
2355
2356 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx,
2357                 const struct blk_mq_queue_data *bd)
2358 {
2359         struct nvme_ns *ns = hctx->queue->queuedata;
2360         struct nvme_tcp_queue *queue = hctx->driver_data;
2361         struct request *rq = bd->rq;
2362         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2363         bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags);
2364         blk_status_t ret;
2365
2366         if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2367                 return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
2368
2369         ret = nvme_tcp_setup_cmd_pdu(ns, rq);
2370         if (unlikely(ret))
2371                 return ret;
2372
2373         blk_mq_start_request(rq);
2374
2375         nvme_tcp_queue_request(req, true, bd->last);
2376
2377         return BLK_STS_OK;
2378 }
2379
2380 static int nvme_tcp_map_queues(struct blk_mq_tag_set *set)
2381 {
2382         struct nvme_tcp_ctrl *ctrl = set->driver_data;
2383         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2384
2385         if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
2386                 /* separate read/write queues */
2387                 set->map[HCTX_TYPE_DEFAULT].nr_queues =
2388                         ctrl->io_queues[HCTX_TYPE_DEFAULT];
2389                 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2390                 set->map[HCTX_TYPE_READ].nr_queues =
2391                         ctrl->io_queues[HCTX_TYPE_READ];
2392                 set->map[HCTX_TYPE_READ].queue_offset =
2393                         ctrl->io_queues[HCTX_TYPE_DEFAULT];
2394         } else {
2395                 /* shared read/write queues */
2396                 set->map[HCTX_TYPE_DEFAULT].nr_queues =
2397                         ctrl->io_queues[HCTX_TYPE_DEFAULT];
2398                 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2399                 set->map[HCTX_TYPE_READ].nr_queues =
2400                         ctrl->io_queues[HCTX_TYPE_DEFAULT];
2401                 set->map[HCTX_TYPE_READ].queue_offset = 0;
2402         }
2403         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
2404         blk_mq_map_queues(&set->map[HCTX_TYPE_READ]);
2405
2406         if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
2407                 /* map dedicated poll queues only if we have queues left */
2408                 set->map[HCTX_TYPE_POLL].nr_queues =
2409                                 ctrl->io_queues[HCTX_TYPE_POLL];
2410                 set->map[HCTX_TYPE_POLL].queue_offset =
2411                         ctrl->io_queues[HCTX_TYPE_DEFAULT] +
2412                         ctrl->io_queues[HCTX_TYPE_READ];
2413                 blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
2414         }
2415
2416         dev_info(ctrl->ctrl.device,
2417                 "mapped %d/%d/%d default/read/poll queues.\n",
2418                 ctrl->io_queues[HCTX_TYPE_DEFAULT],
2419                 ctrl->io_queues[HCTX_TYPE_READ],
2420                 ctrl->io_queues[HCTX_TYPE_POLL]);
2421
2422         return 0;
2423 }
2424
2425 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx)
2426 {
2427         struct nvme_tcp_queue *queue = hctx->driver_data;
2428         struct sock *sk = queue->sock->sk;
2429
2430         if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2431                 return 0;
2432
2433         set_bit(NVME_TCP_Q_POLLING, &queue->flags);
2434         if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue))
2435                 sk_busy_loop(sk, true);
2436         nvme_tcp_try_recv(queue);
2437         clear_bit(NVME_TCP_Q_POLLING, &queue->flags);
2438         return queue->nr_cqe;
2439 }
2440
2441 static const struct blk_mq_ops nvme_tcp_mq_ops = {
2442         .queue_rq       = nvme_tcp_queue_rq,
2443         .commit_rqs     = nvme_tcp_commit_rqs,
2444         .complete       = nvme_complete_rq,
2445         .init_request   = nvme_tcp_init_request,
2446         .exit_request   = nvme_tcp_exit_request,
2447         .init_hctx      = nvme_tcp_init_hctx,
2448         .timeout        = nvme_tcp_timeout,
2449         .map_queues     = nvme_tcp_map_queues,
2450         .poll           = nvme_tcp_poll,
2451 };
2452
2453 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = {
2454         .queue_rq       = nvme_tcp_queue_rq,
2455         .complete       = nvme_complete_rq,
2456         .init_request   = nvme_tcp_init_request,
2457         .exit_request   = nvme_tcp_exit_request,
2458         .init_hctx      = nvme_tcp_init_admin_hctx,
2459         .timeout        = nvme_tcp_timeout,
2460 };
2461
2462 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = {
2463         .name                   = "tcp",
2464         .module                 = THIS_MODULE,
2465         .flags                  = NVME_F_FABRICS,
2466         .reg_read32             = nvmf_reg_read32,
2467         .reg_read64             = nvmf_reg_read64,
2468         .reg_write32            = nvmf_reg_write32,
2469         .free_ctrl              = nvme_tcp_free_ctrl,
2470         .submit_async_event     = nvme_tcp_submit_async_event,
2471         .delete_ctrl            = nvme_tcp_delete_ctrl,
2472         .get_address            = nvmf_get_address,
2473 };
2474
2475 static bool
2476 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts)
2477 {
2478         struct nvme_tcp_ctrl *ctrl;
2479         bool found = false;
2480
2481         mutex_lock(&nvme_tcp_ctrl_mutex);
2482         list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) {
2483                 found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2484                 if (found)
2485                         break;
2486         }
2487         mutex_unlock(&nvme_tcp_ctrl_mutex);
2488
2489         return found;
2490 }
2491
2492 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev,
2493                 struct nvmf_ctrl_options *opts)
2494 {
2495         struct nvme_tcp_ctrl *ctrl;
2496         int ret;
2497
2498         ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2499         if (!ctrl)
2500                 return ERR_PTR(-ENOMEM);
2501
2502         INIT_LIST_HEAD(&ctrl->list);
2503         ctrl->ctrl.opts = opts;
2504         ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2505                                 opts->nr_poll_queues + 1;
2506         ctrl->ctrl.sqsize = opts->queue_size - 1;
2507         ctrl->ctrl.kato = opts->kato;
2508
2509         INIT_DELAYED_WORK(&ctrl->connect_work,
2510                         nvme_tcp_reconnect_ctrl_work);
2511         INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work);
2512         INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work);
2513
2514         if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2515                 opts->trsvcid =
2516                         kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL);
2517                 if (!opts->trsvcid) {
2518                         ret = -ENOMEM;
2519                         goto out_free_ctrl;
2520                 }
2521                 opts->mask |= NVMF_OPT_TRSVCID;
2522         }
2523
2524         ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2525                         opts->traddr, opts->trsvcid, &ctrl->addr);
2526         if (ret) {
2527                 pr_err("malformed address passed: %s:%s\n",
2528                         opts->traddr, opts->trsvcid);
2529                 goto out_free_ctrl;
2530         }
2531
2532         if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2533                 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2534                         opts->host_traddr, NULL, &ctrl->src_addr);
2535                 if (ret) {
2536                         pr_err("malformed src address passed: %s\n",
2537                                opts->host_traddr);
2538                         goto out_free_ctrl;
2539                 }
2540         }
2541
2542         if (opts->mask & NVMF_OPT_HOST_IFACE) {
2543                 if (!__dev_get_by_name(&init_net, opts->host_iface)) {
2544                         pr_err("invalid interface passed: %s\n",
2545                                opts->host_iface);
2546                         ret = -ENODEV;
2547                         goto out_free_ctrl;
2548                 }
2549         }
2550
2551         if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) {
2552                 ret = -EALREADY;
2553                 goto out_free_ctrl;
2554         }
2555
2556         ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2557                                 GFP_KERNEL);
2558         if (!ctrl->queues) {
2559                 ret = -ENOMEM;
2560                 goto out_free_ctrl;
2561         }
2562
2563         ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0);
2564         if (ret)
2565                 goto out_kfree_queues;
2566
2567         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2568                 WARN_ON_ONCE(1);
2569                 ret = -EINTR;
2570                 goto out_uninit_ctrl;
2571         }
2572
2573         ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true);
2574         if (ret)
2575                 goto out_uninit_ctrl;
2576
2577         dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n",
2578                 ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2579
2580         mutex_lock(&nvme_tcp_ctrl_mutex);
2581         list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list);
2582         mutex_unlock(&nvme_tcp_ctrl_mutex);
2583
2584         return &ctrl->ctrl;
2585
2586 out_uninit_ctrl:
2587         nvme_uninit_ctrl(&ctrl->ctrl);
2588         nvme_put_ctrl(&ctrl->ctrl);
2589         if (ret > 0)
2590                 ret = -EIO;
2591         return ERR_PTR(ret);
2592 out_kfree_queues:
2593         kfree(ctrl->queues);
2594 out_free_ctrl:
2595         kfree(ctrl);
2596         return ERR_PTR(ret);
2597 }
2598
2599 static struct nvmf_transport_ops nvme_tcp_transport = {
2600         .name           = "tcp",
2601         .module         = THIS_MODULE,
2602         .required_opts  = NVMF_OPT_TRADDR,
2603         .allowed_opts   = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2604                           NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2605                           NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST |
2606                           NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2607                           NVMF_OPT_TOS | NVMF_OPT_HOST_IFACE,
2608         .create_ctrl    = nvme_tcp_create_ctrl,
2609 };
2610
2611 static int __init nvme_tcp_init_module(void)
2612 {
2613         nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq",
2614                         WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2615         if (!nvme_tcp_wq)
2616                 return -ENOMEM;
2617
2618         nvmf_register_transport(&nvme_tcp_transport);
2619         return 0;
2620 }
2621
2622 static void __exit nvme_tcp_cleanup_module(void)
2623 {
2624         struct nvme_tcp_ctrl *ctrl;
2625
2626         nvmf_unregister_transport(&nvme_tcp_transport);
2627
2628         mutex_lock(&nvme_tcp_ctrl_mutex);
2629         list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list)
2630                 nvme_delete_ctrl(&ctrl->ctrl);
2631         mutex_unlock(&nvme_tcp_ctrl_mutex);
2632         flush_workqueue(nvme_delete_wq);
2633
2634         destroy_workqueue(nvme_tcp_wq);
2635 }
2636
2637 module_init(nvme_tcp_init_module);
2638 module_exit(nvme_tcp_cleanup_module);
2639
2640 MODULE_LICENSE("GPL v2");