Merge remote-tracking branch 'torvalds/master' into perf/core
[linux-2.6-microblaze.git] / drivers / net / ethernet / intel / igc / igc_main.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c)  2018 Intel Corporation */
3
4 #include <linux/module.h>
5 #include <linux/types.h>
6 #include <linux/if_vlan.h>
7 #include <linux/aer.h>
8 #include <linux/tcp.h>
9 #include <linux/udp.h>
10 #include <linux/ip.h>
11 #include <linux/pm_runtime.h>
12 #include <net/pkt_sched.h>
13 #include <linux/bpf_trace.h>
14
15 #include <net/ipv6.h>
16
17 #include "igc.h"
18 #include "igc_hw.h"
19 #include "igc_tsn.h"
20 #include "igc_xdp.h"
21
22 #define DRV_SUMMARY     "Intel(R) 2.5G Ethernet Linux Driver"
23
24 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
25
26 #define IGC_XDP_PASS            0
27 #define IGC_XDP_CONSUMED        BIT(0)
28 #define IGC_XDP_TX              BIT(1)
29 #define IGC_XDP_REDIRECT        BIT(2)
30
31 static int debug = -1;
32
33 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
34 MODULE_DESCRIPTION(DRV_SUMMARY);
35 MODULE_LICENSE("GPL v2");
36 module_param(debug, int, 0);
37 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
38
39 char igc_driver_name[] = "igc";
40 static const char igc_driver_string[] = DRV_SUMMARY;
41 static const char igc_copyright[] =
42         "Copyright(c) 2018 Intel Corporation.";
43
44 static const struct igc_info *igc_info_tbl[] = {
45         [board_base] = &igc_base_info,
46 };
47
48 static const struct pci_device_id igc_pci_tbl[] = {
49         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base },
50         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base },
51         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base },
52         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base },
53         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base },
54         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K2), board_base },
55         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_K), board_base },
56         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LMVP), board_base },
57         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_IT), board_base },
58         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LM), board_base },
59         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_V), board_base },
60         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_IT), board_base },
61         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I221_V), board_base },
62         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_BLANK_NVM), board_base },
63         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_BLANK_NVM), board_base },
64         /* required last entry */
65         {0, }
66 };
67
68 MODULE_DEVICE_TABLE(pci, igc_pci_tbl);
69
70 enum latency_range {
71         lowest_latency = 0,
72         low_latency = 1,
73         bulk_latency = 2,
74         latency_invalid = 255
75 };
76
77 void igc_reset(struct igc_adapter *adapter)
78 {
79         struct net_device *dev = adapter->netdev;
80         struct igc_hw *hw = &adapter->hw;
81         struct igc_fc_info *fc = &hw->fc;
82         u32 pba, hwm;
83
84         /* Repartition PBA for greater than 9k MTU if required */
85         pba = IGC_PBA_34K;
86
87         /* flow control settings
88          * The high water mark must be low enough to fit one full frame
89          * after transmitting the pause frame.  As such we must have enough
90          * space to allow for us to complete our current transmit and then
91          * receive the frame that is in progress from the link partner.
92          * Set it to:
93          * - the full Rx FIFO size minus one full Tx plus one full Rx frame
94          */
95         hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
96
97         fc->high_water = hwm & 0xFFFFFFF0;      /* 16-byte granularity */
98         fc->low_water = fc->high_water - 16;
99         fc->pause_time = 0xFFFF;
100         fc->send_xon = 1;
101         fc->current_mode = fc->requested_mode;
102
103         hw->mac.ops.reset_hw(hw);
104
105         if (hw->mac.ops.init_hw(hw))
106                 netdev_err(dev, "Error on hardware initialization\n");
107
108         /* Re-establish EEE setting */
109         igc_set_eee_i225(hw, true, true, true);
110
111         if (!netif_running(adapter->netdev))
112                 igc_power_down_phy_copper_base(&adapter->hw);
113
114         /* Re-enable PTP, where applicable. */
115         igc_ptp_reset(adapter);
116
117         /* Re-enable TSN offloading, where applicable. */
118         igc_tsn_offload_apply(adapter);
119
120         igc_get_phy_info(hw);
121 }
122
123 /**
124  * igc_power_up_link - Power up the phy link
125  * @adapter: address of board private structure
126  */
127 static void igc_power_up_link(struct igc_adapter *adapter)
128 {
129         igc_reset_phy(&adapter->hw);
130
131         igc_power_up_phy_copper(&adapter->hw);
132
133         igc_setup_link(&adapter->hw);
134 }
135
136 /**
137  * igc_release_hw_control - release control of the h/w to f/w
138  * @adapter: address of board private structure
139  *
140  * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
141  * For ASF and Pass Through versions of f/w this means that the
142  * driver is no longer loaded.
143  */
144 static void igc_release_hw_control(struct igc_adapter *adapter)
145 {
146         struct igc_hw *hw = &adapter->hw;
147         u32 ctrl_ext;
148
149         /* Let firmware take over control of h/w */
150         ctrl_ext = rd32(IGC_CTRL_EXT);
151         wr32(IGC_CTRL_EXT,
152              ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
153 }
154
155 /**
156  * igc_get_hw_control - get control of the h/w from f/w
157  * @adapter: address of board private structure
158  *
159  * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
160  * For ASF and Pass Through versions of f/w this means that
161  * the driver is loaded.
162  */
163 static void igc_get_hw_control(struct igc_adapter *adapter)
164 {
165         struct igc_hw *hw = &adapter->hw;
166         u32 ctrl_ext;
167
168         /* Let firmware know the driver has taken over */
169         ctrl_ext = rd32(IGC_CTRL_EXT);
170         wr32(IGC_CTRL_EXT,
171              ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
172 }
173
174 /**
175  * igc_clean_tx_ring - Free Tx Buffers
176  * @tx_ring: ring to be cleaned
177  */
178 static void igc_clean_tx_ring(struct igc_ring *tx_ring)
179 {
180         u16 i = tx_ring->next_to_clean;
181         struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
182
183         while (i != tx_ring->next_to_use) {
184                 union igc_adv_tx_desc *eop_desc, *tx_desc;
185
186                 if (tx_buffer->tx_flags & IGC_TX_FLAGS_XDP)
187                         xdp_return_frame(tx_buffer->xdpf);
188                 else
189                         dev_kfree_skb_any(tx_buffer->skb);
190
191                 /* unmap skb header data */
192                 dma_unmap_single(tx_ring->dev,
193                                  dma_unmap_addr(tx_buffer, dma),
194                                  dma_unmap_len(tx_buffer, len),
195                                  DMA_TO_DEVICE);
196
197                 /* check for eop_desc to determine the end of the packet */
198                 eop_desc = tx_buffer->next_to_watch;
199                 tx_desc = IGC_TX_DESC(tx_ring, i);
200
201                 /* unmap remaining buffers */
202                 while (tx_desc != eop_desc) {
203                         tx_buffer++;
204                         tx_desc++;
205                         i++;
206                         if (unlikely(i == tx_ring->count)) {
207                                 i = 0;
208                                 tx_buffer = tx_ring->tx_buffer_info;
209                                 tx_desc = IGC_TX_DESC(tx_ring, 0);
210                         }
211
212                         /* unmap any remaining paged data */
213                         if (dma_unmap_len(tx_buffer, len))
214                                 dma_unmap_page(tx_ring->dev,
215                                                dma_unmap_addr(tx_buffer, dma),
216                                                dma_unmap_len(tx_buffer, len),
217                                                DMA_TO_DEVICE);
218                 }
219
220                 /* move us one more past the eop_desc for start of next pkt */
221                 tx_buffer++;
222                 i++;
223                 if (unlikely(i == tx_ring->count)) {
224                         i = 0;
225                         tx_buffer = tx_ring->tx_buffer_info;
226                 }
227         }
228
229         /* reset BQL for queue */
230         netdev_tx_reset_queue(txring_txq(tx_ring));
231
232         /* reset next_to_use and next_to_clean */
233         tx_ring->next_to_use = 0;
234         tx_ring->next_to_clean = 0;
235 }
236
237 /**
238  * igc_free_tx_resources - Free Tx Resources per Queue
239  * @tx_ring: Tx descriptor ring for a specific queue
240  *
241  * Free all transmit software resources
242  */
243 void igc_free_tx_resources(struct igc_ring *tx_ring)
244 {
245         igc_clean_tx_ring(tx_ring);
246
247         vfree(tx_ring->tx_buffer_info);
248         tx_ring->tx_buffer_info = NULL;
249
250         /* if not set, then don't free */
251         if (!tx_ring->desc)
252                 return;
253
254         dma_free_coherent(tx_ring->dev, tx_ring->size,
255                           tx_ring->desc, tx_ring->dma);
256
257         tx_ring->desc = NULL;
258 }
259
260 /**
261  * igc_free_all_tx_resources - Free Tx Resources for All Queues
262  * @adapter: board private structure
263  *
264  * Free all transmit software resources
265  */
266 static void igc_free_all_tx_resources(struct igc_adapter *adapter)
267 {
268         int i;
269
270         for (i = 0; i < adapter->num_tx_queues; i++)
271                 igc_free_tx_resources(adapter->tx_ring[i]);
272 }
273
274 /**
275  * igc_clean_all_tx_rings - Free Tx Buffers for all queues
276  * @adapter: board private structure
277  */
278 static void igc_clean_all_tx_rings(struct igc_adapter *adapter)
279 {
280         int i;
281
282         for (i = 0; i < adapter->num_tx_queues; i++)
283                 if (adapter->tx_ring[i])
284                         igc_clean_tx_ring(adapter->tx_ring[i]);
285 }
286
287 /**
288  * igc_setup_tx_resources - allocate Tx resources (Descriptors)
289  * @tx_ring: tx descriptor ring (for a specific queue) to setup
290  *
291  * Return 0 on success, negative on failure
292  */
293 int igc_setup_tx_resources(struct igc_ring *tx_ring)
294 {
295         struct net_device *ndev = tx_ring->netdev;
296         struct device *dev = tx_ring->dev;
297         int size = 0;
298
299         size = sizeof(struct igc_tx_buffer) * tx_ring->count;
300         tx_ring->tx_buffer_info = vzalloc(size);
301         if (!tx_ring->tx_buffer_info)
302                 goto err;
303
304         /* round up to nearest 4K */
305         tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc);
306         tx_ring->size = ALIGN(tx_ring->size, 4096);
307
308         tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
309                                            &tx_ring->dma, GFP_KERNEL);
310
311         if (!tx_ring->desc)
312                 goto err;
313
314         tx_ring->next_to_use = 0;
315         tx_ring->next_to_clean = 0;
316
317         return 0;
318
319 err:
320         vfree(tx_ring->tx_buffer_info);
321         netdev_err(ndev, "Unable to allocate memory for Tx descriptor ring\n");
322         return -ENOMEM;
323 }
324
325 /**
326  * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues
327  * @adapter: board private structure
328  *
329  * Return 0 on success, negative on failure
330  */
331 static int igc_setup_all_tx_resources(struct igc_adapter *adapter)
332 {
333         struct net_device *dev = adapter->netdev;
334         int i, err = 0;
335
336         for (i = 0; i < adapter->num_tx_queues; i++) {
337                 err = igc_setup_tx_resources(adapter->tx_ring[i]);
338                 if (err) {
339                         netdev_err(dev, "Error on Tx queue %u setup\n", i);
340                         for (i--; i >= 0; i--)
341                                 igc_free_tx_resources(adapter->tx_ring[i]);
342                         break;
343                 }
344         }
345
346         return err;
347 }
348
349 /**
350  * igc_clean_rx_ring - Free Rx Buffers per Queue
351  * @rx_ring: ring to free buffers from
352  */
353 static void igc_clean_rx_ring(struct igc_ring *rx_ring)
354 {
355         u16 i = rx_ring->next_to_clean;
356
357         dev_kfree_skb(rx_ring->skb);
358         rx_ring->skb = NULL;
359
360         /* Free all the Rx ring sk_buffs */
361         while (i != rx_ring->next_to_alloc) {
362                 struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
363
364                 /* Invalidate cache lines that may have been written to by
365                  * device so that we avoid corrupting memory.
366                  */
367                 dma_sync_single_range_for_cpu(rx_ring->dev,
368                                               buffer_info->dma,
369                                               buffer_info->page_offset,
370                                               igc_rx_bufsz(rx_ring),
371                                               DMA_FROM_DEVICE);
372
373                 /* free resources associated with mapping */
374                 dma_unmap_page_attrs(rx_ring->dev,
375                                      buffer_info->dma,
376                                      igc_rx_pg_size(rx_ring),
377                                      DMA_FROM_DEVICE,
378                                      IGC_RX_DMA_ATTR);
379                 __page_frag_cache_drain(buffer_info->page,
380                                         buffer_info->pagecnt_bias);
381
382                 i++;
383                 if (i == rx_ring->count)
384                         i = 0;
385         }
386
387         clear_ring_uses_large_buffer(rx_ring);
388
389         rx_ring->next_to_alloc = 0;
390         rx_ring->next_to_clean = 0;
391         rx_ring->next_to_use = 0;
392 }
393
394 /**
395  * igc_clean_all_rx_rings - Free Rx Buffers for all queues
396  * @adapter: board private structure
397  */
398 static void igc_clean_all_rx_rings(struct igc_adapter *adapter)
399 {
400         int i;
401
402         for (i = 0; i < adapter->num_rx_queues; i++)
403                 if (adapter->rx_ring[i])
404                         igc_clean_rx_ring(adapter->rx_ring[i]);
405 }
406
407 /**
408  * igc_free_rx_resources - Free Rx Resources
409  * @rx_ring: ring to clean the resources from
410  *
411  * Free all receive software resources
412  */
413 void igc_free_rx_resources(struct igc_ring *rx_ring)
414 {
415         igc_clean_rx_ring(rx_ring);
416
417         igc_xdp_unregister_rxq_info(rx_ring);
418
419         vfree(rx_ring->rx_buffer_info);
420         rx_ring->rx_buffer_info = NULL;
421
422         /* if not set, then don't free */
423         if (!rx_ring->desc)
424                 return;
425
426         dma_free_coherent(rx_ring->dev, rx_ring->size,
427                           rx_ring->desc, rx_ring->dma);
428
429         rx_ring->desc = NULL;
430 }
431
432 /**
433  * igc_free_all_rx_resources - Free Rx Resources for All Queues
434  * @adapter: board private structure
435  *
436  * Free all receive software resources
437  */
438 static void igc_free_all_rx_resources(struct igc_adapter *adapter)
439 {
440         int i;
441
442         for (i = 0; i < adapter->num_rx_queues; i++)
443                 igc_free_rx_resources(adapter->rx_ring[i]);
444 }
445
446 /**
447  * igc_setup_rx_resources - allocate Rx resources (Descriptors)
448  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
449  *
450  * Returns 0 on success, negative on failure
451  */
452 int igc_setup_rx_resources(struct igc_ring *rx_ring)
453 {
454         struct net_device *ndev = rx_ring->netdev;
455         struct device *dev = rx_ring->dev;
456         int size, desc_len, res;
457
458         res = igc_xdp_register_rxq_info(rx_ring);
459         if (res < 0)
460                 return res;
461
462         size = sizeof(struct igc_rx_buffer) * rx_ring->count;
463         rx_ring->rx_buffer_info = vzalloc(size);
464         if (!rx_ring->rx_buffer_info)
465                 goto err;
466
467         desc_len = sizeof(union igc_adv_rx_desc);
468
469         /* Round up to nearest 4K */
470         rx_ring->size = rx_ring->count * desc_len;
471         rx_ring->size = ALIGN(rx_ring->size, 4096);
472
473         rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
474                                            &rx_ring->dma, GFP_KERNEL);
475
476         if (!rx_ring->desc)
477                 goto err;
478
479         rx_ring->next_to_alloc = 0;
480         rx_ring->next_to_clean = 0;
481         rx_ring->next_to_use = 0;
482
483         return 0;
484
485 err:
486         igc_xdp_unregister_rxq_info(rx_ring);
487         vfree(rx_ring->rx_buffer_info);
488         rx_ring->rx_buffer_info = NULL;
489         netdev_err(ndev, "Unable to allocate memory for Rx descriptor ring\n");
490         return -ENOMEM;
491 }
492
493 /**
494  * igc_setup_all_rx_resources - wrapper to allocate Rx resources
495  *                                (Descriptors) for all queues
496  * @adapter: board private structure
497  *
498  * Return 0 on success, negative on failure
499  */
500 static int igc_setup_all_rx_resources(struct igc_adapter *adapter)
501 {
502         struct net_device *dev = adapter->netdev;
503         int i, err = 0;
504
505         for (i = 0; i < adapter->num_rx_queues; i++) {
506                 err = igc_setup_rx_resources(adapter->rx_ring[i]);
507                 if (err) {
508                         netdev_err(dev, "Error on Rx queue %u setup\n", i);
509                         for (i--; i >= 0; i--)
510                                 igc_free_rx_resources(adapter->rx_ring[i]);
511                         break;
512                 }
513         }
514
515         return err;
516 }
517
518 static bool igc_xdp_is_enabled(struct igc_adapter *adapter)
519 {
520         return !!adapter->xdp_prog;
521 }
522
523 /**
524  * igc_configure_rx_ring - Configure a receive ring after Reset
525  * @adapter: board private structure
526  * @ring: receive ring to be configured
527  *
528  * Configure the Rx unit of the MAC after a reset.
529  */
530 static void igc_configure_rx_ring(struct igc_adapter *adapter,
531                                   struct igc_ring *ring)
532 {
533         struct igc_hw *hw = &adapter->hw;
534         union igc_adv_rx_desc *rx_desc;
535         int reg_idx = ring->reg_idx;
536         u32 srrctl = 0, rxdctl = 0;
537         u64 rdba = ring->dma;
538
539         if (igc_xdp_is_enabled(adapter))
540                 set_ring_uses_large_buffer(ring);
541
542         /* disable the queue */
543         wr32(IGC_RXDCTL(reg_idx), 0);
544
545         /* Set DMA base address registers */
546         wr32(IGC_RDBAL(reg_idx),
547              rdba & 0x00000000ffffffffULL);
548         wr32(IGC_RDBAH(reg_idx), rdba >> 32);
549         wr32(IGC_RDLEN(reg_idx),
550              ring->count * sizeof(union igc_adv_rx_desc));
551
552         /* initialize head and tail */
553         ring->tail = adapter->io_addr + IGC_RDT(reg_idx);
554         wr32(IGC_RDH(reg_idx), 0);
555         writel(0, ring->tail);
556
557         /* reset next-to- use/clean to place SW in sync with hardware */
558         ring->next_to_clean = 0;
559         ring->next_to_use = 0;
560
561         /* set descriptor configuration */
562         srrctl = IGC_RX_HDR_LEN << IGC_SRRCTL_BSIZEHDRSIZE_SHIFT;
563         if (ring_uses_large_buffer(ring))
564                 srrctl |= IGC_RXBUFFER_3072 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
565         else
566                 srrctl |= IGC_RXBUFFER_2048 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
567         srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
568
569         wr32(IGC_SRRCTL(reg_idx), srrctl);
570
571         rxdctl |= IGC_RX_PTHRESH;
572         rxdctl |= IGC_RX_HTHRESH << 8;
573         rxdctl |= IGC_RX_WTHRESH << 16;
574
575         /* initialize rx_buffer_info */
576         memset(ring->rx_buffer_info, 0,
577                sizeof(struct igc_rx_buffer) * ring->count);
578
579         /* initialize Rx descriptor 0 */
580         rx_desc = IGC_RX_DESC(ring, 0);
581         rx_desc->wb.upper.length = 0;
582
583         /* enable receive descriptor fetching */
584         rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
585
586         wr32(IGC_RXDCTL(reg_idx), rxdctl);
587 }
588
589 /**
590  * igc_configure_rx - Configure receive Unit after Reset
591  * @adapter: board private structure
592  *
593  * Configure the Rx unit of the MAC after a reset.
594  */
595 static void igc_configure_rx(struct igc_adapter *adapter)
596 {
597         int i;
598
599         /* Setup the HW Rx Head and Tail Descriptor Pointers and
600          * the Base and Length of the Rx Descriptor Ring
601          */
602         for (i = 0; i < adapter->num_rx_queues; i++)
603                 igc_configure_rx_ring(adapter, adapter->rx_ring[i]);
604 }
605
606 /**
607  * igc_configure_tx_ring - Configure transmit ring after Reset
608  * @adapter: board private structure
609  * @ring: tx ring to configure
610  *
611  * Configure a transmit ring after a reset.
612  */
613 static void igc_configure_tx_ring(struct igc_adapter *adapter,
614                                   struct igc_ring *ring)
615 {
616         struct igc_hw *hw = &adapter->hw;
617         int reg_idx = ring->reg_idx;
618         u64 tdba = ring->dma;
619         u32 txdctl = 0;
620
621         /* disable the queue */
622         wr32(IGC_TXDCTL(reg_idx), 0);
623         wrfl();
624         mdelay(10);
625
626         wr32(IGC_TDLEN(reg_idx),
627              ring->count * sizeof(union igc_adv_tx_desc));
628         wr32(IGC_TDBAL(reg_idx),
629              tdba & 0x00000000ffffffffULL);
630         wr32(IGC_TDBAH(reg_idx), tdba >> 32);
631
632         ring->tail = adapter->io_addr + IGC_TDT(reg_idx);
633         wr32(IGC_TDH(reg_idx), 0);
634         writel(0, ring->tail);
635
636         txdctl |= IGC_TX_PTHRESH;
637         txdctl |= IGC_TX_HTHRESH << 8;
638         txdctl |= IGC_TX_WTHRESH << 16;
639
640         txdctl |= IGC_TXDCTL_QUEUE_ENABLE;
641         wr32(IGC_TXDCTL(reg_idx), txdctl);
642 }
643
644 /**
645  * igc_configure_tx - Configure transmit Unit after Reset
646  * @adapter: board private structure
647  *
648  * Configure the Tx unit of the MAC after a reset.
649  */
650 static void igc_configure_tx(struct igc_adapter *adapter)
651 {
652         int i;
653
654         for (i = 0; i < adapter->num_tx_queues; i++)
655                 igc_configure_tx_ring(adapter, adapter->tx_ring[i]);
656 }
657
658 /**
659  * igc_setup_mrqc - configure the multiple receive queue control registers
660  * @adapter: Board private structure
661  */
662 static void igc_setup_mrqc(struct igc_adapter *adapter)
663 {
664         struct igc_hw *hw = &adapter->hw;
665         u32 j, num_rx_queues;
666         u32 mrqc, rxcsum;
667         u32 rss_key[10];
668
669         netdev_rss_key_fill(rss_key, sizeof(rss_key));
670         for (j = 0; j < 10; j++)
671                 wr32(IGC_RSSRK(j), rss_key[j]);
672
673         num_rx_queues = adapter->rss_queues;
674
675         if (adapter->rss_indir_tbl_init != num_rx_queues) {
676                 for (j = 0; j < IGC_RETA_SIZE; j++)
677                         adapter->rss_indir_tbl[j] =
678                         (j * num_rx_queues) / IGC_RETA_SIZE;
679                 adapter->rss_indir_tbl_init = num_rx_queues;
680         }
681         igc_write_rss_indir_tbl(adapter);
682
683         /* Disable raw packet checksumming so that RSS hash is placed in
684          * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
685          * offloads as they are enabled by default
686          */
687         rxcsum = rd32(IGC_RXCSUM);
688         rxcsum |= IGC_RXCSUM_PCSD;
689
690         /* Enable Receive Checksum Offload for SCTP */
691         rxcsum |= IGC_RXCSUM_CRCOFL;
692
693         /* Don't need to set TUOFL or IPOFL, they default to 1 */
694         wr32(IGC_RXCSUM, rxcsum);
695
696         /* Generate RSS hash based on packet types, TCP/UDP
697          * port numbers and/or IPv4/v6 src and dst addresses
698          */
699         mrqc = IGC_MRQC_RSS_FIELD_IPV4 |
700                IGC_MRQC_RSS_FIELD_IPV4_TCP |
701                IGC_MRQC_RSS_FIELD_IPV6 |
702                IGC_MRQC_RSS_FIELD_IPV6_TCP |
703                IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
704
705         if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP)
706                 mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP;
707         if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP)
708                 mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP;
709
710         mrqc |= IGC_MRQC_ENABLE_RSS_MQ;
711
712         wr32(IGC_MRQC, mrqc);
713 }
714
715 /**
716  * igc_setup_rctl - configure the receive control registers
717  * @adapter: Board private structure
718  */
719 static void igc_setup_rctl(struct igc_adapter *adapter)
720 {
721         struct igc_hw *hw = &adapter->hw;
722         u32 rctl;
723
724         rctl = rd32(IGC_RCTL);
725
726         rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
727         rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC);
728
729         rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF |
730                 (hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
731
732         /* enable stripping of CRC. Newer features require
733          * that the HW strips the CRC.
734          */
735         rctl |= IGC_RCTL_SECRC;
736
737         /* disable store bad packets and clear size bits. */
738         rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256);
739
740         /* enable LPE to allow for reception of jumbo frames */
741         rctl |= IGC_RCTL_LPE;
742
743         /* disable queue 0 to prevent tail write w/o re-config */
744         wr32(IGC_RXDCTL(0), 0);
745
746         /* This is useful for sniffing bad packets. */
747         if (adapter->netdev->features & NETIF_F_RXALL) {
748                 /* UPE and MPE will be handled by normal PROMISC logic
749                  * in set_rx_mode
750                  */
751                 rctl |= (IGC_RCTL_SBP | /* Receive bad packets */
752                          IGC_RCTL_BAM | /* RX All Bcast Pkts */
753                          IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
754
755                 rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */
756                           IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */
757         }
758
759         wr32(IGC_RCTL, rctl);
760 }
761
762 /**
763  * igc_setup_tctl - configure the transmit control registers
764  * @adapter: Board private structure
765  */
766 static void igc_setup_tctl(struct igc_adapter *adapter)
767 {
768         struct igc_hw *hw = &adapter->hw;
769         u32 tctl;
770
771         /* disable queue 0 which icould be enabled by default */
772         wr32(IGC_TXDCTL(0), 0);
773
774         /* Program the Transmit Control Register */
775         tctl = rd32(IGC_TCTL);
776         tctl &= ~IGC_TCTL_CT;
777         tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC |
778                 (IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT);
779
780         /* Enable transmits */
781         tctl |= IGC_TCTL_EN;
782
783         wr32(IGC_TCTL, tctl);
784 }
785
786 /**
787  * igc_set_mac_filter_hw() - Set MAC address filter in hardware
788  * @adapter: Pointer to adapter where the filter should be set
789  * @index: Filter index
790  * @type: MAC address filter type (source or destination)
791  * @addr: MAC address
792  * @queue: If non-negative, queue assignment feature is enabled and frames
793  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
794  *         assignment is disabled.
795  */
796 static void igc_set_mac_filter_hw(struct igc_adapter *adapter, int index,
797                                   enum igc_mac_filter_type type,
798                                   const u8 *addr, int queue)
799 {
800         struct net_device *dev = adapter->netdev;
801         struct igc_hw *hw = &adapter->hw;
802         u32 ral, rah;
803
804         if (WARN_ON(index >= hw->mac.rar_entry_count))
805                 return;
806
807         ral = le32_to_cpup((__le32 *)(addr));
808         rah = le16_to_cpup((__le16 *)(addr + 4));
809
810         if (type == IGC_MAC_FILTER_TYPE_SRC) {
811                 rah &= ~IGC_RAH_ASEL_MASK;
812                 rah |= IGC_RAH_ASEL_SRC_ADDR;
813         }
814
815         if (queue >= 0) {
816                 rah &= ~IGC_RAH_QSEL_MASK;
817                 rah |= (queue << IGC_RAH_QSEL_SHIFT);
818                 rah |= IGC_RAH_QSEL_ENABLE;
819         }
820
821         rah |= IGC_RAH_AV;
822
823         wr32(IGC_RAL(index), ral);
824         wr32(IGC_RAH(index), rah);
825
826         netdev_dbg(dev, "MAC address filter set in HW: index %d", index);
827 }
828
829 /**
830  * igc_clear_mac_filter_hw() - Clear MAC address filter in hardware
831  * @adapter: Pointer to adapter where the filter should be cleared
832  * @index: Filter index
833  */
834 static void igc_clear_mac_filter_hw(struct igc_adapter *adapter, int index)
835 {
836         struct net_device *dev = adapter->netdev;
837         struct igc_hw *hw = &adapter->hw;
838
839         if (WARN_ON(index >= hw->mac.rar_entry_count))
840                 return;
841
842         wr32(IGC_RAL(index), 0);
843         wr32(IGC_RAH(index), 0);
844
845         netdev_dbg(dev, "MAC address filter cleared in HW: index %d", index);
846 }
847
848 /* Set default MAC address for the PF in the first RAR entry */
849 static void igc_set_default_mac_filter(struct igc_adapter *adapter)
850 {
851         struct net_device *dev = adapter->netdev;
852         u8 *addr = adapter->hw.mac.addr;
853
854         netdev_dbg(dev, "Set default MAC address filter: address %pM", addr);
855
856         igc_set_mac_filter_hw(adapter, 0, IGC_MAC_FILTER_TYPE_DST, addr, -1);
857 }
858
859 /**
860  * igc_set_mac - Change the Ethernet Address of the NIC
861  * @netdev: network interface device structure
862  * @p: pointer to an address structure
863  *
864  * Returns 0 on success, negative on failure
865  */
866 static int igc_set_mac(struct net_device *netdev, void *p)
867 {
868         struct igc_adapter *adapter = netdev_priv(netdev);
869         struct igc_hw *hw = &adapter->hw;
870         struct sockaddr *addr = p;
871
872         if (!is_valid_ether_addr(addr->sa_data))
873                 return -EADDRNOTAVAIL;
874
875         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
876         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
877
878         /* set the correct pool for the new PF MAC address in entry 0 */
879         igc_set_default_mac_filter(adapter);
880
881         return 0;
882 }
883
884 /**
885  *  igc_write_mc_addr_list - write multicast addresses to MTA
886  *  @netdev: network interface device structure
887  *
888  *  Writes multicast address list to the MTA hash table.
889  *  Returns: -ENOMEM on failure
890  *           0 on no addresses written
891  *           X on writing X addresses to MTA
892  **/
893 static int igc_write_mc_addr_list(struct net_device *netdev)
894 {
895         struct igc_adapter *adapter = netdev_priv(netdev);
896         struct igc_hw *hw = &adapter->hw;
897         struct netdev_hw_addr *ha;
898         u8  *mta_list;
899         int i;
900
901         if (netdev_mc_empty(netdev)) {
902                 /* nothing to program, so clear mc list */
903                 igc_update_mc_addr_list(hw, NULL, 0);
904                 return 0;
905         }
906
907         mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
908         if (!mta_list)
909                 return -ENOMEM;
910
911         /* The shared function expects a packed array of only addresses. */
912         i = 0;
913         netdev_for_each_mc_addr(ha, netdev)
914                 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
915
916         igc_update_mc_addr_list(hw, mta_list, i);
917         kfree(mta_list);
918
919         return netdev_mc_count(netdev);
920 }
921
922 static __le32 igc_tx_launchtime(struct igc_adapter *adapter, ktime_t txtime)
923 {
924         ktime_t cycle_time = adapter->cycle_time;
925         ktime_t base_time = adapter->base_time;
926         u32 launchtime;
927
928         /* FIXME: when using ETF together with taprio, we may have a
929          * case where 'delta' is larger than the cycle_time, this may
930          * cause problems if we don't read the current value of
931          * IGC_BASET, as the value writen into the launchtime
932          * descriptor field may be misinterpreted.
933          */
934         div_s64_rem(ktime_sub_ns(txtime, base_time), cycle_time, &launchtime);
935
936         return cpu_to_le32(launchtime);
937 }
938
939 static void igc_tx_ctxtdesc(struct igc_ring *tx_ring,
940                             struct igc_tx_buffer *first,
941                             u32 vlan_macip_lens, u32 type_tucmd,
942                             u32 mss_l4len_idx)
943 {
944         struct igc_adv_tx_context_desc *context_desc;
945         u16 i = tx_ring->next_to_use;
946
947         context_desc = IGC_TX_CTXTDESC(tx_ring, i);
948
949         i++;
950         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
951
952         /* set bits to identify this as an advanced context descriptor */
953         type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
954
955         /* For i225, context index must be unique per ring. */
956         if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
957                 mss_l4len_idx |= tx_ring->reg_idx << 4;
958
959         context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
960         context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
961         context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
962
963         /* We assume there is always a valid Tx time available. Invalid times
964          * should have been handled by the upper layers.
965          */
966         if (tx_ring->launchtime_enable) {
967                 struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
968                 ktime_t txtime = first->skb->tstamp;
969
970                 skb_txtime_consumed(first->skb);
971                 context_desc->launch_time = igc_tx_launchtime(adapter,
972                                                               txtime);
973         } else {
974                 context_desc->launch_time = 0;
975         }
976 }
977
978 static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first)
979 {
980         struct sk_buff *skb = first->skb;
981         u32 vlan_macip_lens = 0;
982         u32 type_tucmd = 0;
983
984         if (skb->ip_summed != CHECKSUM_PARTIAL) {
985 csum_failed:
986                 if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) &&
987                     !tx_ring->launchtime_enable)
988                         return;
989                 goto no_csum;
990         }
991
992         switch (skb->csum_offset) {
993         case offsetof(struct tcphdr, check):
994                 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
995                 fallthrough;
996         case offsetof(struct udphdr, check):
997                 break;
998         case offsetof(struct sctphdr, checksum):
999                 /* validate that this is actually an SCTP request */
1000                 if (skb_csum_is_sctp(skb)) {
1001                         type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP;
1002                         break;
1003                 }
1004                 fallthrough;
1005         default:
1006                 skb_checksum_help(skb);
1007                 goto csum_failed;
1008         }
1009
1010         /* update TX checksum flag */
1011         first->tx_flags |= IGC_TX_FLAGS_CSUM;
1012         vlan_macip_lens = skb_checksum_start_offset(skb) -
1013                           skb_network_offset(skb);
1014 no_csum:
1015         vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT;
1016         vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1017
1018         igc_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
1019 }
1020
1021 static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1022 {
1023         struct net_device *netdev = tx_ring->netdev;
1024
1025         netif_stop_subqueue(netdev, tx_ring->queue_index);
1026
1027         /* memory barriier comment */
1028         smp_mb();
1029
1030         /* We need to check again in a case another CPU has just
1031          * made room available.
1032          */
1033         if (igc_desc_unused(tx_ring) < size)
1034                 return -EBUSY;
1035
1036         /* A reprieve! */
1037         netif_wake_subqueue(netdev, tx_ring->queue_index);
1038
1039         u64_stats_update_begin(&tx_ring->tx_syncp2);
1040         tx_ring->tx_stats.restart_queue2++;
1041         u64_stats_update_end(&tx_ring->tx_syncp2);
1042
1043         return 0;
1044 }
1045
1046 static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1047 {
1048         if (igc_desc_unused(tx_ring) >= size)
1049                 return 0;
1050         return __igc_maybe_stop_tx(tx_ring, size);
1051 }
1052
1053 #define IGC_SET_FLAG(_input, _flag, _result) \
1054         (((_flag) <= (_result)) ?                               \
1055          ((u32)((_input) & (_flag)) * ((_result) / (_flag))) :  \
1056          ((u32)((_input) & (_flag)) / ((_flag) / (_result))))
1057
1058 static u32 igc_tx_cmd_type(u32 tx_flags)
1059 {
1060         /* set type for advanced descriptor with frame checksum insertion */
1061         u32 cmd_type = IGC_ADVTXD_DTYP_DATA |
1062                        IGC_ADVTXD_DCMD_DEXT |
1063                        IGC_ADVTXD_DCMD_IFCS;
1064
1065         /* set segmentation bits for TSO */
1066         cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSO,
1067                                  (IGC_ADVTXD_DCMD_TSE));
1068
1069         /* set timestamp bit if present */
1070         cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP,
1071                                  (IGC_ADVTXD_MAC_TSTAMP));
1072
1073         return cmd_type;
1074 }
1075
1076 static void igc_tx_olinfo_status(struct igc_ring *tx_ring,
1077                                  union igc_adv_tx_desc *tx_desc,
1078                                  u32 tx_flags, unsigned int paylen)
1079 {
1080         u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT;
1081
1082         /* insert L4 checksum */
1083         olinfo_status |= (tx_flags & IGC_TX_FLAGS_CSUM) *
1084                           ((IGC_TXD_POPTS_TXSM << 8) /
1085                           IGC_TX_FLAGS_CSUM);
1086
1087         /* insert IPv4 checksum */
1088         olinfo_status |= (tx_flags & IGC_TX_FLAGS_IPV4) *
1089                           (((IGC_TXD_POPTS_IXSM << 8)) /
1090                           IGC_TX_FLAGS_IPV4);
1091
1092         tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1093 }
1094
1095 static int igc_tx_map(struct igc_ring *tx_ring,
1096                       struct igc_tx_buffer *first,
1097                       const u8 hdr_len)
1098 {
1099         struct sk_buff *skb = first->skb;
1100         struct igc_tx_buffer *tx_buffer;
1101         union igc_adv_tx_desc *tx_desc;
1102         u32 tx_flags = first->tx_flags;
1103         skb_frag_t *frag;
1104         u16 i = tx_ring->next_to_use;
1105         unsigned int data_len, size;
1106         dma_addr_t dma;
1107         u32 cmd_type = igc_tx_cmd_type(tx_flags);
1108
1109         tx_desc = IGC_TX_DESC(tx_ring, i);
1110
1111         igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
1112
1113         size = skb_headlen(skb);
1114         data_len = skb->data_len;
1115
1116         dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1117
1118         tx_buffer = first;
1119
1120         for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1121                 if (dma_mapping_error(tx_ring->dev, dma))
1122                         goto dma_error;
1123
1124                 /* record length, and DMA address */
1125                 dma_unmap_len_set(tx_buffer, len, size);
1126                 dma_unmap_addr_set(tx_buffer, dma, dma);
1127
1128                 tx_desc->read.buffer_addr = cpu_to_le64(dma);
1129
1130                 while (unlikely(size > IGC_MAX_DATA_PER_TXD)) {
1131                         tx_desc->read.cmd_type_len =
1132                                 cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD);
1133
1134                         i++;
1135                         tx_desc++;
1136                         if (i == tx_ring->count) {
1137                                 tx_desc = IGC_TX_DESC(tx_ring, 0);
1138                                 i = 0;
1139                         }
1140                         tx_desc->read.olinfo_status = 0;
1141
1142                         dma += IGC_MAX_DATA_PER_TXD;
1143                         size -= IGC_MAX_DATA_PER_TXD;
1144
1145                         tx_desc->read.buffer_addr = cpu_to_le64(dma);
1146                 }
1147
1148                 if (likely(!data_len))
1149                         break;
1150
1151                 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
1152
1153                 i++;
1154                 tx_desc++;
1155                 if (i == tx_ring->count) {
1156                         tx_desc = IGC_TX_DESC(tx_ring, 0);
1157                         i = 0;
1158                 }
1159                 tx_desc->read.olinfo_status = 0;
1160
1161                 size = skb_frag_size(frag);
1162                 data_len -= size;
1163
1164                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
1165                                        size, DMA_TO_DEVICE);
1166
1167                 tx_buffer = &tx_ring->tx_buffer_info[i];
1168         }
1169
1170         /* write last descriptor with RS and EOP bits */
1171         cmd_type |= size | IGC_TXD_DCMD;
1172         tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1173
1174         netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1175
1176         /* set the timestamp */
1177         first->time_stamp = jiffies;
1178
1179         skb_tx_timestamp(skb);
1180
1181         /* Force memory writes to complete before letting h/w know there
1182          * are new descriptors to fetch.  (Only applicable for weak-ordered
1183          * memory model archs, such as IA-64).
1184          *
1185          * We also need this memory barrier to make certain all of the
1186          * status bits have been updated before next_to_watch is written.
1187          */
1188         wmb();
1189
1190         /* set next_to_watch value indicating a packet is present */
1191         first->next_to_watch = tx_desc;
1192
1193         i++;
1194         if (i == tx_ring->count)
1195                 i = 0;
1196
1197         tx_ring->next_to_use = i;
1198
1199         /* Make sure there is space in the ring for the next send. */
1200         igc_maybe_stop_tx(tx_ring, DESC_NEEDED);
1201
1202         if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1203                 writel(i, tx_ring->tail);
1204         }
1205
1206         return 0;
1207 dma_error:
1208         netdev_err(tx_ring->netdev, "TX DMA map failed\n");
1209         tx_buffer = &tx_ring->tx_buffer_info[i];
1210
1211         /* clear dma mappings for failed tx_buffer_info map */
1212         while (tx_buffer != first) {
1213                 if (dma_unmap_len(tx_buffer, len))
1214                         dma_unmap_page(tx_ring->dev,
1215                                        dma_unmap_addr(tx_buffer, dma),
1216                                        dma_unmap_len(tx_buffer, len),
1217                                        DMA_TO_DEVICE);
1218                 dma_unmap_len_set(tx_buffer, len, 0);
1219
1220                 if (i-- == 0)
1221                         i += tx_ring->count;
1222                 tx_buffer = &tx_ring->tx_buffer_info[i];
1223         }
1224
1225         if (dma_unmap_len(tx_buffer, len))
1226                 dma_unmap_single(tx_ring->dev,
1227                                  dma_unmap_addr(tx_buffer, dma),
1228                                  dma_unmap_len(tx_buffer, len),
1229                                  DMA_TO_DEVICE);
1230         dma_unmap_len_set(tx_buffer, len, 0);
1231
1232         dev_kfree_skb_any(tx_buffer->skb);
1233         tx_buffer->skb = NULL;
1234
1235         tx_ring->next_to_use = i;
1236
1237         return -1;
1238 }
1239
1240 static int igc_tso(struct igc_ring *tx_ring,
1241                    struct igc_tx_buffer *first,
1242                    u8 *hdr_len)
1243 {
1244         u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1245         struct sk_buff *skb = first->skb;
1246         union {
1247                 struct iphdr *v4;
1248                 struct ipv6hdr *v6;
1249                 unsigned char *hdr;
1250         } ip;
1251         union {
1252                 struct tcphdr *tcp;
1253                 struct udphdr *udp;
1254                 unsigned char *hdr;
1255         } l4;
1256         u32 paylen, l4_offset;
1257         int err;
1258
1259         if (skb->ip_summed != CHECKSUM_PARTIAL)
1260                 return 0;
1261
1262         if (!skb_is_gso(skb))
1263                 return 0;
1264
1265         err = skb_cow_head(skb, 0);
1266         if (err < 0)
1267                 return err;
1268
1269         ip.hdr = skb_network_header(skb);
1270         l4.hdr = skb_checksum_start(skb);
1271
1272         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1273         type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1274
1275         /* initialize outer IP header fields */
1276         if (ip.v4->version == 4) {
1277                 unsigned char *csum_start = skb_checksum_start(skb);
1278                 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
1279
1280                 /* IP header will have to cancel out any data that
1281                  * is not a part of the outer IP header
1282                  */
1283                 ip.v4->check = csum_fold(csum_partial(trans_start,
1284                                                       csum_start - trans_start,
1285                                                       0));
1286                 type_tucmd |= IGC_ADVTXD_TUCMD_IPV4;
1287
1288                 ip.v4->tot_len = 0;
1289                 first->tx_flags |= IGC_TX_FLAGS_TSO |
1290                                    IGC_TX_FLAGS_CSUM |
1291                                    IGC_TX_FLAGS_IPV4;
1292         } else {
1293                 ip.v6->payload_len = 0;
1294                 first->tx_flags |= IGC_TX_FLAGS_TSO |
1295                                    IGC_TX_FLAGS_CSUM;
1296         }
1297
1298         /* determine offset of inner transport header */
1299         l4_offset = l4.hdr - skb->data;
1300
1301         /* remove payload length from inner checksum */
1302         paylen = skb->len - l4_offset;
1303         if (type_tucmd & IGC_ADVTXD_TUCMD_L4T_TCP) {
1304                 /* compute length of segmentation header */
1305                 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
1306                 csum_replace_by_diff(&l4.tcp->check,
1307                                      (__force __wsum)htonl(paylen));
1308         } else {
1309                 /* compute length of segmentation header */
1310                 *hdr_len = sizeof(*l4.udp) + l4_offset;
1311                 csum_replace_by_diff(&l4.udp->check,
1312                                      (__force __wsum)htonl(paylen));
1313         }
1314
1315         /* update gso size and bytecount with header size */
1316         first->gso_segs = skb_shinfo(skb)->gso_segs;
1317         first->bytecount += (first->gso_segs - 1) * *hdr_len;
1318
1319         /* MSS L4LEN IDX */
1320         mss_l4len_idx = (*hdr_len - l4_offset) << IGC_ADVTXD_L4LEN_SHIFT;
1321         mss_l4len_idx |= skb_shinfo(skb)->gso_size << IGC_ADVTXD_MSS_SHIFT;
1322
1323         /* VLAN MACLEN IPLEN */
1324         vlan_macip_lens = l4.hdr - ip.hdr;
1325         vlan_macip_lens |= (ip.hdr - skb->data) << IGC_ADVTXD_MACLEN_SHIFT;
1326         vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1327
1328         igc_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
1329                         type_tucmd, mss_l4len_idx);
1330
1331         return 1;
1332 }
1333
1334 static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb,
1335                                        struct igc_ring *tx_ring)
1336 {
1337         u16 count = TXD_USE_COUNT(skb_headlen(skb));
1338         __be16 protocol = vlan_get_protocol(skb);
1339         struct igc_tx_buffer *first;
1340         u32 tx_flags = 0;
1341         unsigned short f;
1342         u8 hdr_len = 0;
1343         int tso = 0;
1344
1345         /* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD,
1346          *      + 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD,
1347          *      + 2 desc gap to keep tail from touching head,
1348          *      + 1 desc for context descriptor,
1349          * otherwise try next time
1350          */
1351         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1352                 count += TXD_USE_COUNT(skb_frag_size(
1353                                                 &skb_shinfo(skb)->frags[f]));
1354
1355         if (igc_maybe_stop_tx(tx_ring, count + 3)) {
1356                 /* this is a hard error */
1357                 return NETDEV_TX_BUSY;
1358         }
1359
1360         /* record the location of the first descriptor for this packet */
1361         first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1362         first->skb = skb;
1363         first->bytecount = skb->len;
1364         first->gso_segs = 1;
1365
1366         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
1367                 struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
1368
1369                 /* FIXME: add support for retrieving timestamps from
1370                  * the other timer registers before skipping the
1371                  * timestamping request.
1372                  */
1373                 if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
1374                     !test_and_set_bit_lock(__IGC_PTP_TX_IN_PROGRESS,
1375                                            &adapter->state)) {
1376                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1377                         tx_flags |= IGC_TX_FLAGS_TSTAMP;
1378
1379                         adapter->ptp_tx_skb = skb_get(skb);
1380                         adapter->ptp_tx_start = jiffies;
1381                 } else {
1382                         adapter->tx_hwtstamp_skipped++;
1383                 }
1384         }
1385
1386         /* record initial flags and protocol */
1387         first->tx_flags = tx_flags;
1388         first->protocol = protocol;
1389
1390         tso = igc_tso(tx_ring, first, &hdr_len);
1391         if (tso < 0)
1392                 goto out_drop;
1393         else if (!tso)
1394                 igc_tx_csum(tx_ring, first);
1395
1396         igc_tx_map(tx_ring, first, hdr_len);
1397
1398         return NETDEV_TX_OK;
1399
1400 out_drop:
1401         dev_kfree_skb_any(first->skb);
1402         first->skb = NULL;
1403
1404         return NETDEV_TX_OK;
1405 }
1406
1407 static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter,
1408                                                     struct sk_buff *skb)
1409 {
1410         unsigned int r_idx = skb->queue_mapping;
1411
1412         if (r_idx >= adapter->num_tx_queues)
1413                 r_idx = r_idx % adapter->num_tx_queues;
1414
1415         return adapter->tx_ring[r_idx];
1416 }
1417
1418 static netdev_tx_t igc_xmit_frame(struct sk_buff *skb,
1419                                   struct net_device *netdev)
1420 {
1421         struct igc_adapter *adapter = netdev_priv(netdev);
1422
1423         /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1424          * in order to meet this minimum size requirement.
1425          */
1426         if (skb->len < 17) {
1427                 if (skb_padto(skb, 17))
1428                         return NETDEV_TX_OK;
1429                 skb->len = 17;
1430         }
1431
1432         return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb));
1433 }
1434
1435 static void igc_rx_checksum(struct igc_ring *ring,
1436                             union igc_adv_rx_desc *rx_desc,
1437                             struct sk_buff *skb)
1438 {
1439         skb_checksum_none_assert(skb);
1440
1441         /* Ignore Checksum bit is set */
1442         if (igc_test_staterr(rx_desc, IGC_RXD_STAT_IXSM))
1443                 return;
1444
1445         /* Rx checksum disabled via ethtool */
1446         if (!(ring->netdev->features & NETIF_F_RXCSUM))
1447                 return;
1448
1449         /* TCP/UDP checksum error bit is set */
1450         if (igc_test_staterr(rx_desc,
1451                              IGC_RXDEXT_STATERR_L4E |
1452                              IGC_RXDEXT_STATERR_IPE)) {
1453                 /* work around errata with sctp packets where the TCPE aka
1454                  * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
1455                  * packets (aka let the stack check the crc32c)
1456                  */
1457                 if (!(skb->len == 60 &&
1458                       test_bit(IGC_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
1459                         u64_stats_update_begin(&ring->rx_syncp);
1460                         ring->rx_stats.csum_err++;
1461                         u64_stats_update_end(&ring->rx_syncp);
1462                 }
1463                 /* let the stack verify checksum errors */
1464                 return;
1465         }
1466         /* It must be a TCP or UDP packet with a valid checksum */
1467         if (igc_test_staterr(rx_desc, IGC_RXD_STAT_TCPCS |
1468                                       IGC_RXD_STAT_UDPCS))
1469                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1470
1471         netdev_dbg(ring->netdev, "cksum success: bits %08X\n",
1472                    le32_to_cpu(rx_desc->wb.upper.status_error));
1473 }
1474
1475 static inline void igc_rx_hash(struct igc_ring *ring,
1476                                union igc_adv_rx_desc *rx_desc,
1477                                struct sk_buff *skb)
1478 {
1479         if (ring->netdev->features & NETIF_F_RXHASH)
1480                 skb_set_hash(skb,
1481                              le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
1482                              PKT_HASH_TYPE_L3);
1483 }
1484
1485 /**
1486  * igc_process_skb_fields - Populate skb header fields from Rx descriptor
1487  * @rx_ring: rx descriptor ring packet is being transacted on
1488  * @rx_desc: pointer to the EOP Rx descriptor
1489  * @skb: pointer to current skb being populated
1490  *
1491  * This function checks the ring, descriptor, and packet information in order
1492  * to populate the hash, checksum, VLAN, protocol, and other fields within the
1493  * skb.
1494  */
1495 static void igc_process_skb_fields(struct igc_ring *rx_ring,
1496                                    union igc_adv_rx_desc *rx_desc,
1497                                    struct sk_buff *skb)
1498 {
1499         igc_rx_hash(rx_ring, rx_desc, skb);
1500
1501         igc_rx_checksum(rx_ring, rx_desc, skb);
1502
1503         skb_record_rx_queue(skb, rx_ring->queue_index);
1504
1505         skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1506 }
1507
1508 static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring,
1509                                                const unsigned int size,
1510                                                int *rx_buffer_pgcnt)
1511 {
1512         struct igc_rx_buffer *rx_buffer;
1513
1514         rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
1515         *rx_buffer_pgcnt =
1516 #if (PAGE_SIZE < 8192)
1517                 page_count(rx_buffer->page);
1518 #else
1519                 0;
1520 #endif
1521         prefetchw(rx_buffer->page);
1522
1523         /* we are reusing so sync this buffer for CPU use */
1524         dma_sync_single_range_for_cpu(rx_ring->dev,
1525                                       rx_buffer->dma,
1526                                       rx_buffer->page_offset,
1527                                       size,
1528                                       DMA_FROM_DEVICE);
1529
1530         rx_buffer->pagecnt_bias--;
1531
1532         return rx_buffer;
1533 }
1534
1535 static void igc_rx_buffer_flip(struct igc_rx_buffer *buffer,
1536                                unsigned int truesize)
1537 {
1538 #if (PAGE_SIZE < 8192)
1539         buffer->page_offset ^= truesize;
1540 #else
1541         buffer->page_offset += truesize;
1542 #endif
1543 }
1544
1545 static unsigned int igc_get_rx_frame_truesize(struct igc_ring *ring,
1546                                               unsigned int size)
1547 {
1548         unsigned int truesize;
1549
1550 #if (PAGE_SIZE < 8192)
1551         truesize = igc_rx_pg_size(ring) / 2;
1552 #else
1553         truesize = ring_uses_build_skb(ring) ?
1554                    SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1555                    SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1556                    SKB_DATA_ALIGN(size);
1557 #endif
1558         return truesize;
1559 }
1560
1561 /**
1562  * igc_add_rx_frag - Add contents of Rx buffer to sk_buff
1563  * @rx_ring: rx descriptor ring to transact packets on
1564  * @rx_buffer: buffer containing page to add
1565  * @skb: sk_buff to place the data into
1566  * @size: size of buffer to be added
1567  *
1568  * This function will add the data contained in rx_buffer->page to the skb.
1569  */
1570 static void igc_add_rx_frag(struct igc_ring *rx_ring,
1571                             struct igc_rx_buffer *rx_buffer,
1572                             struct sk_buff *skb,
1573                             unsigned int size)
1574 {
1575         unsigned int truesize;
1576
1577 #if (PAGE_SIZE < 8192)
1578         truesize = igc_rx_pg_size(rx_ring) / 2;
1579 #else
1580         truesize = ring_uses_build_skb(rx_ring) ?
1581                    SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1582                    SKB_DATA_ALIGN(size);
1583 #endif
1584         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1585                         rx_buffer->page_offset, size, truesize);
1586
1587         igc_rx_buffer_flip(rx_buffer, truesize);
1588 }
1589
1590 static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring,
1591                                      struct igc_rx_buffer *rx_buffer,
1592                                      union igc_adv_rx_desc *rx_desc,
1593                                      unsigned int size)
1594 {
1595         void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1596         unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1597         struct sk_buff *skb;
1598
1599         /* prefetch first cache line of first page */
1600         net_prefetch(va);
1601
1602         /* build an skb around the page buffer */
1603         skb = build_skb(va - IGC_SKB_PAD, truesize);
1604         if (unlikely(!skb))
1605                 return NULL;
1606
1607         /* update pointers within the skb to store the data */
1608         skb_reserve(skb, IGC_SKB_PAD);
1609         __skb_put(skb, size);
1610
1611         igc_rx_buffer_flip(rx_buffer, truesize);
1612         return skb;
1613 }
1614
1615 static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring,
1616                                          struct igc_rx_buffer *rx_buffer,
1617                                          struct xdp_buff *xdp,
1618                                          ktime_t timestamp)
1619 {
1620         unsigned int size = xdp->data_end - xdp->data;
1621         unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1622         void *va = xdp->data;
1623         unsigned int headlen;
1624         struct sk_buff *skb;
1625
1626         /* prefetch first cache line of first page */
1627         net_prefetch(va);
1628
1629         /* allocate a skb to store the frags */
1630         skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGC_RX_HDR_LEN);
1631         if (unlikely(!skb))
1632                 return NULL;
1633
1634         if (timestamp)
1635                 skb_hwtstamps(skb)->hwtstamp = timestamp;
1636
1637         /* Determine available headroom for copy */
1638         headlen = size;
1639         if (headlen > IGC_RX_HDR_LEN)
1640                 headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN);
1641
1642         /* align pull length to size of long to optimize memcpy performance */
1643         memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
1644
1645         /* update all of the pointers */
1646         size -= headlen;
1647         if (size) {
1648                 skb_add_rx_frag(skb, 0, rx_buffer->page,
1649                                 (va + headlen) - page_address(rx_buffer->page),
1650                                 size, truesize);
1651                 igc_rx_buffer_flip(rx_buffer, truesize);
1652         } else {
1653                 rx_buffer->pagecnt_bias++;
1654         }
1655
1656         return skb;
1657 }
1658
1659 /**
1660  * igc_reuse_rx_page - page flip buffer and store it back on the ring
1661  * @rx_ring: rx descriptor ring to store buffers on
1662  * @old_buff: donor buffer to have page reused
1663  *
1664  * Synchronizes page for reuse by the adapter
1665  */
1666 static void igc_reuse_rx_page(struct igc_ring *rx_ring,
1667                               struct igc_rx_buffer *old_buff)
1668 {
1669         u16 nta = rx_ring->next_to_alloc;
1670         struct igc_rx_buffer *new_buff;
1671
1672         new_buff = &rx_ring->rx_buffer_info[nta];
1673
1674         /* update, and store next to alloc */
1675         nta++;
1676         rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1677
1678         /* Transfer page from old buffer to new buffer.
1679          * Move each member individually to avoid possible store
1680          * forwarding stalls.
1681          */
1682         new_buff->dma           = old_buff->dma;
1683         new_buff->page          = old_buff->page;
1684         new_buff->page_offset   = old_buff->page_offset;
1685         new_buff->pagecnt_bias  = old_buff->pagecnt_bias;
1686 }
1687
1688 static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer,
1689                                   int rx_buffer_pgcnt)
1690 {
1691         unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1692         struct page *page = rx_buffer->page;
1693
1694         /* avoid re-using remote and pfmemalloc pages */
1695         if (!dev_page_is_reusable(page))
1696                 return false;
1697
1698 #if (PAGE_SIZE < 8192)
1699         /* if we are only owner of page we can reuse it */
1700         if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1))
1701                 return false;
1702 #else
1703 #define IGC_LAST_OFFSET \
1704         (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048)
1705
1706         if (rx_buffer->page_offset > IGC_LAST_OFFSET)
1707                 return false;
1708 #endif
1709
1710         /* If we have drained the page fragment pool we need to update
1711          * the pagecnt_bias and page count so that we fully restock the
1712          * number of references the driver holds.
1713          */
1714         if (unlikely(pagecnt_bias == 1)) {
1715                 page_ref_add(page, USHRT_MAX - 1);
1716                 rx_buffer->pagecnt_bias = USHRT_MAX;
1717         }
1718
1719         return true;
1720 }
1721
1722 /**
1723  * igc_is_non_eop - process handling of non-EOP buffers
1724  * @rx_ring: Rx ring being processed
1725  * @rx_desc: Rx descriptor for current buffer
1726  *
1727  * This function updates next to clean.  If the buffer is an EOP buffer
1728  * this function exits returning false, otherwise it will place the
1729  * sk_buff in the next buffer to be chained and return true indicating
1730  * that this is in fact a non-EOP buffer.
1731  */
1732 static bool igc_is_non_eop(struct igc_ring *rx_ring,
1733                            union igc_adv_rx_desc *rx_desc)
1734 {
1735         u32 ntc = rx_ring->next_to_clean + 1;
1736
1737         /* fetch, update, and store next to clean */
1738         ntc = (ntc < rx_ring->count) ? ntc : 0;
1739         rx_ring->next_to_clean = ntc;
1740
1741         prefetch(IGC_RX_DESC(rx_ring, ntc));
1742
1743         if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP)))
1744                 return false;
1745
1746         return true;
1747 }
1748
1749 /**
1750  * igc_cleanup_headers - Correct corrupted or empty headers
1751  * @rx_ring: rx descriptor ring packet is being transacted on
1752  * @rx_desc: pointer to the EOP Rx descriptor
1753  * @skb: pointer to current skb being fixed
1754  *
1755  * Address the case where we are pulling data in on pages only
1756  * and as such no data is present in the skb header.
1757  *
1758  * In addition if skb is not at least 60 bytes we need to pad it so that
1759  * it is large enough to qualify as a valid Ethernet frame.
1760  *
1761  * Returns true if an error was encountered and skb was freed.
1762  */
1763 static bool igc_cleanup_headers(struct igc_ring *rx_ring,
1764                                 union igc_adv_rx_desc *rx_desc,
1765                                 struct sk_buff *skb)
1766 {
1767         /* XDP packets use error pointer so abort at this point */
1768         if (IS_ERR(skb))
1769                 return true;
1770
1771         if (unlikely(igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_RXE))) {
1772                 struct net_device *netdev = rx_ring->netdev;
1773
1774                 if (!(netdev->features & NETIF_F_RXALL)) {
1775                         dev_kfree_skb_any(skb);
1776                         return true;
1777                 }
1778         }
1779
1780         /* if eth_skb_pad returns an error the skb was freed */
1781         if (eth_skb_pad(skb))
1782                 return true;
1783
1784         return false;
1785 }
1786
1787 static void igc_put_rx_buffer(struct igc_ring *rx_ring,
1788                               struct igc_rx_buffer *rx_buffer,
1789                               int rx_buffer_pgcnt)
1790 {
1791         if (igc_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) {
1792                 /* hand second half of page back to the ring */
1793                 igc_reuse_rx_page(rx_ring, rx_buffer);
1794         } else {
1795                 /* We are not reusing the buffer so unmap it and free
1796                  * any references we are holding to it
1797                  */
1798                 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
1799                                      igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
1800                                      IGC_RX_DMA_ATTR);
1801                 __page_frag_cache_drain(rx_buffer->page,
1802                                         rx_buffer->pagecnt_bias);
1803         }
1804
1805         /* clear contents of rx_buffer */
1806         rx_buffer->page = NULL;
1807 }
1808
1809 static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring)
1810 {
1811         struct igc_adapter *adapter = rx_ring->q_vector->adapter;
1812
1813         if (ring_uses_build_skb(rx_ring))
1814                 return IGC_SKB_PAD;
1815         if (igc_xdp_is_enabled(adapter))
1816                 return XDP_PACKET_HEADROOM;
1817
1818         return 0;
1819 }
1820
1821 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
1822                                   struct igc_rx_buffer *bi)
1823 {
1824         struct page *page = bi->page;
1825         dma_addr_t dma;
1826
1827         /* since we are recycling buffers we should seldom need to alloc */
1828         if (likely(page))
1829                 return true;
1830
1831         /* alloc new page for storage */
1832         page = dev_alloc_pages(igc_rx_pg_order(rx_ring));
1833         if (unlikely(!page)) {
1834                 rx_ring->rx_stats.alloc_failed++;
1835                 return false;
1836         }
1837
1838         /* map page for use */
1839         dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1840                                  igc_rx_pg_size(rx_ring),
1841                                  DMA_FROM_DEVICE,
1842                                  IGC_RX_DMA_ATTR);
1843
1844         /* if mapping failed free memory back to system since
1845          * there isn't much point in holding memory we can't use
1846          */
1847         if (dma_mapping_error(rx_ring->dev, dma)) {
1848                 __free_page(page);
1849
1850                 rx_ring->rx_stats.alloc_failed++;
1851                 return false;
1852         }
1853
1854         bi->dma = dma;
1855         bi->page = page;
1856         bi->page_offset = igc_rx_offset(rx_ring);
1857         page_ref_add(page, USHRT_MAX - 1);
1858         bi->pagecnt_bias = USHRT_MAX;
1859
1860         return true;
1861 }
1862
1863 /**
1864  * igc_alloc_rx_buffers - Replace used receive buffers; packet split
1865  * @rx_ring: rx descriptor ring
1866  * @cleaned_count: number of buffers to clean
1867  */
1868 static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count)
1869 {
1870         union igc_adv_rx_desc *rx_desc;
1871         u16 i = rx_ring->next_to_use;
1872         struct igc_rx_buffer *bi;
1873         u16 bufsz;
1874
1875         /* nothing to do */
1876         if (!cleaned_count)
1877                 return;
1878
1879         rx_desc = IGC_RX_DESC(rx_ring, i);
1880         bi = &rx_ring->rx_buffer_info[i];
1881         i -= rx_ring->count;
1882
1883         bufsz = igc_rx_bufsz(rx_ring);
1884
1885         do {
1886                 if (!igc_alloc_mapped_page(rx_ring, bi))
1887                         break;
1888
1889                 /* sync the buffer for use by the device */
1890                 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1891                                                  bi->page_offset, bufsz,
1892                                                  DMA_FROM_DEVICE);
1893
1894                 /* Refresh the desc even if buffer_addrs didn't change
1895                  * because each write-back erases this info.
1896                  */
1897                 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1898
1899                 rx_desc++;
1900                 bi++;
1901                 i++;
1902                 if (unlikely(!i)) {
1903                         rx_desc = IGC_RX_DESC(rx_ring, 0);
1904                         bi = rx_ring->rx_buffer_info;
1905                         i -= rx_ring->count;
1906                 }
1907
1908                 /* clear the length for the next_to_use descriptor */
1909                 rx_desc->wb.upper.length = 0;
1910
1911                 cleaned_count--;
1912         } while (cleaned_count);
1913
1914         i += rx_ring->count;
1915
1916         if (rx_ring->next_to_use != i) {
1917                 /* record the next descriptor to use */
1918                 rx_ring->next_to_use = i;
1919
1920                 /* update next to alloc since we have filled the ring */
1921                 rx_ring->next_to_alloc = i;
1922
1923                 /* Force memory writes to complete before letting h/w
1924                  * know there are new descriptors to fetch.  (Only
1925                  * applicable for weak-ordered memory model archs,
1926                  * such as IA-64).
1927                  */
1928                 wmb();
1929                 writel(i, rx_ring->tail);
1930         }
1931 }
1932
1933 static int igc_xdp_init_tx_buffer(struct igc_tx_buffer *buffer,
1934                                   struct xdp_frame *xdpf,
1935                                   struct igc_ring *ring)
1936 {
1937         dma_addr_t dma;
1938
1939         dma = dma_map_single(ring->dev, xdpf->data, xdpf->len, DMA_TO_DEVICE);
1940         if (dma_mapping_error(ring->dev, dma)) {
1941                 netdev_err_once(ring->netdev, "Failed to map DMA for TX\n");
1942                 return -ENOMEM;
1943         }
1944
1945         buffer->xdpf = xdpf;
1946         buffer->tx_flags = IGC_TX_FLAGS_XDP;
1947         buffer->protocol = 0;
1948         buffer->bytecount = xdpf->len;
1949         buffer->gso_segs = 1;
1950         buffer->time_stamp = jiffies;
1951         dma_unmap_len_set(buffer, len, xdpf->len);
1952         dma_unmap_addr_set(buffer, dma, dma);
1953         return 0;
1954 }
1955
1956 /* This function requires __netif_tx_lock is held by the caller. */
1957 static int igc_xdp_init_tx_descriptor(struct igc_ring *ring,
1958                                       struct xdp_frame *xdpf)
1959 {
1960         struct igc_tx_buffer *buffer;
1961         union igc_adv_tx_desc *desc;
1962         u32 cmd_type, olinfo_status;
1963         int err;
1964
1965         if (!igc_desc_unused(ring))
1966                 return -EBUSY;
1967
1968         buffer = &ring->tx_buffer_info[ring->next_to_use];
1969         err = igc_xdp_init_tx_buffer(buffer, xdpf, ring);
1970         if (err)
1971                 return err;
1972
1973         cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
1974                    IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
1975                    buffer->bytecount;
1976         olinfo_status = buffer->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
1977
1978         desc = IGC_TX_DESC(ring, ring->next_to_use);
1979         desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1980         desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1981         desc->read.buffer_addr = cpu_to_le64(dma_unmap_addr(buffer, dma));
1982
1983         netdev_tx_sent_queue(txring_txq(ring), buffer->bytecount);
1984
1985         buffer->next_to_watch = desc;
1986
1987         ring->next_to_use++;
1988         if (ring->next_to_use == ring->count)
1989                 ring->next_to_use = 0;
1990
1991         return 0;
1992 }
1993
1994 static struct igc_ring *igc_xdp_get_tx_ring(struct igc_adapter *adapter,
1995                                             int cpu)
1996 {
1997         int index = cpu;
1998
1999         if (unlikely(index < 0))
2000                 index = 0;
2001
2002         while (index >= adapter->num_tx_queues)
2003                 index -= adapter->num_tx_queues;
2004
2005         return adapter->tx_ring[index];
2006 }
2007
2008 static int igc_xdp_xmit_back(struct igc_adapter *adapter, struct xdp_buff *xdp)
2009 {
2010         struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2011         int cpu = smp_processor_id();
2012         struct netdev_queue *nq;
2013         struct igc_ring *ring;
2014         int res;
2015
2016         if (unlikely(!xdpf))
2017                 return -EFAULT;
2018
2019         ring = igc_xdp_get_tx_ring(adapter, cpu);
2020         nq = txring_txq(ring);
2021
2022         __netif_tx_lock(nq, cpu);
2023         res = igc_xdp_init_tx_descriptor(ring, xdpf);
2024         __netif_tx_unlock(nq);
2025         return res;
2026 }
2027
2028 static struct sk_buff *igc_xdp_run_prog(struct igc_adapter *adapter,
2029                                         struct xdp_buff *xdp)
2030 {
2031         struct bpf_prog *prog;
2032         int res;
2033         u32 act;
2034
2035         rcu_read_lock();
2036
2037         prog = READ_ONCE(adapter->xdp_prog);
2038         if (!prog) {
2039                 res = IGC_XDP_PASS;
2040                 goto unlock;
2041         }
2042
2043         act = bpf_prog_run_xdp(prog, xdp);
2044         switch (act) {
2045         case XDP_PASS:
2046                 res = IGC_XDP_PASS;
2047                 break;
2048         case XDP_TX:
2049                 if (igc_xdp_xmit_back(adapter, xdp) < 0)
2050                         goto out_failure;
2051                 res = IGC_XDP_TX;
2052                 break;
2053         case XDP_REDIRECT:
2054                 if (xdp_do_redirect(adapter->netdev, xdp, prog) < 0)
2055                         goto out_failure;
2056                 res = IGC_XDP_REDIRECT;
2057                 break;
2058         default:
2059                 bpf_warn_invalid_xdp_action(act);
2060                 fallthrough;
2061         case XDP_ABORTED:
2062 out_failure:
2063                 trace_xdp_exception(adapter->netdev, prog, act);
2064                 fallthrough;
2065         case XDP_DROP:
2066                 res = IGC_XDP_CONSUMED;
2067                 break;
2068         }
2069
2070 unlock:
2071         rcu_read_unlock();
2072         return ERR_PTR(-res);
2073 }
2074
2075 /* This function assumes __netif_tx_lock is held by the caller. */
2076 static void igc_flush_tx_descriptors(struct igc_ring *ring)
2077 {
2078         /* Once tail pointer is updated, hardware can fetch the descriptors
2079          * any time so we issue a write membar here to ensure all memory
2080          * writes are complete before the tail pointer is updated.
2081          */
2082         wmb();
2083         writel(ring->next_to_use, ring->tail);
2084 }
2085
2086 static void igc_finalize_xdp(struct igc_adapter *adapter, int status)
2087 {
2088         int cpu = smp_processor_id();
2089         struct netdev_queue *nq;
2090         struct igc_ring *ring;
2091
2092         if (status & IGC_XDP_TX) {
2093                 ring = igc_xdp_get_tx_ring(adapter, cpu);
2094                 nq = txring_txq(ring);
2095
2096                 __netif_tx_lock(nq, cpu);
2097                 igc_flush_tx_descriptors(ring);
2098                 __netif_tx_unlock(nq);
2099         }
2100
2101         if (status & IGC_XDP_REDIRECT)
2102                 xdp_do_flush();
2103 }
2104
2105 static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget)
2106 {
2107         unsigned int total_bytes = 0, total_packets = 0;
2108         struct igc_adapter *adapter = q_vector->adapter;
2109         struct igc_ring *rx_ring = q_vector->rx.ring;
2110         struct sk_buff *skb = rx_ring->skb;
2111         u16 cleaned_count = igc_desc_unused(rx_ring);
2112         int xdp_status = 0, rx_buffer_pgcnt;
2113
2114         while (likely(total_packets < budget)) {
2115                 union igc_adv_rx_desc *rx_desc;
2116                 struct igc_rx_buffer *rx_buffer;
2117                 unsigned int size, truesize;
2118                 ktime_t timestamp = 0;
2119                 struct xdp_buff xdp;
2120                 int pkt_offset = 0;
2121                 void *pktbuf;
2122
2123                 /* return some buffers to hardware, one at a time is too slow */
2124                 if (cleaned_count >= IGC_RX_BUFFER_WRITE) {
2125                         igc_alloc_rx_buffers(rx_ring, cleaned_count);
2126                         cleaned_count = 0;
2127                 }
2128
2129                 rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean);
2130                 size = le16_to_cpu(rx_desc->wb.upper.length);
2131                 if (!size)
2132                         break;
2133
2134                 /* This memory barrier is needed to keep us from reading
2135                  * any other fields out of the rx_desc until we know the
2136                  * descriptor has been written back
2137                  */
2138                 dma_rmb();
2139
2140                 rx_buffer = igc_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt);
2141                 truesize = igc_get_rx_frame_truesize(rx_ring, size);
2142
2143                 pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
2144
2145                 if (igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP)) {
2146                         timestamp = igc_ptp_rx_pktstamp(q_vector->adapter,
2147                                                         pktbuf);
2148                         pkt_offset = IGC_TS_HDR_LEN;
2149                         size -= IGC_TS_HDR_LEN;
2150                 }
2151
2152                 if (!skb) {
2153                         xdp.data = pktbuf + pkt_offset;
2154                         xdp.data_end = xdp.data + size;
2155                         xdp.data_hard_start = pktbuf - igc_rx_offset(rx_ring);
2156                         xdp_set_data_meta_invalid(&xdp);
2157                         xdp.frame_sz = truesize;
2158                         xdp.rxq = &rx_ring->xdp_rxq;
2159
2160                         skb = igc_xdp_run_prog(adapter, &xdp);
2161                 }
2162
2163                 if (IS_ERR(skb)) {
2164                         unsigned int xdp_res = -PTR_ERR(skb);
2165
2166                         switch (xdp_res) {
2167                         case IGC_XDP_CONSUMED:
2168                                 rx_buffer->pagecnt_bias++;
2169                                 break;
2170                         case IGC_XDP_TX:
2171                         case IGC_XDP_REDIRECT:
2172                                 igc_rx_buffer_flip(rx_buffer, truesize);
2173                                 xdp_status |= xdp_res;
2174                                 break;
2175                         }
2176
2177                         total_packets++;
2178                         total_bytes += size;
2179                 } else if (skb)
2180                         igc_add_rx_frag(rx_ring, rx_buffer, skb, size);
2181                 else if (ring_uses_build_skb(rx_ring))
2182                         skb = igc_build_skb(rx_ring, rx_buffer, rx_desc, size);
2183                 else
2184                         skb = igc_construct_skb(rx_ring, rx_buffer, &xdp,
2185                                                 timestamp);
2186
2187                 /* exit if we failed to retrieve a buffer */
2188                 if (!skb) {
2189                         rx_ring->rx_stats.alloc_failed++;
2190                         rx_buffer->pagecnt_bias++;
2191                         break;
2192                 }
2193
2194                 igc_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt);
2195                 cleaned_count++;
2196
2197                 /* fetch next buffer in frame if non-eop */
2198                 if (igc_is_non_eop(rx_ring, rx_desc))
2199                         continue;
2200
2201                 /* verify the packet layout is correct */
2202                 if (igc_cleanup_headers(rx_ring, rx_desc, skb)) {
2203                         skb = NULL;
2204                         continue;
2205                 }
2206
2207                 /* probably a little skewed due to removing CRC */
2208                 total_bytes += skb->len;
2209
2210                 /* populate checksum, VLAN, and protocol */
2211                 igc_process_skb_fields(rx_ring, rx_desc, skb);
2212
2213                 napi_gro_receive(&q_vector->napi, skb);
2214
2215                 /* reset skb pointer */
2216                 skb = NULL;
2217
2218                 /* update budget accounting */
2219                 total_packets++;
2220         }
2221
2222         if (xdp_status)
2223                 igc_finalize_xdp(adapter, xdp_status);
2224
2225         /* place incomplete frames back on ring for completion */
2226         rx_ring->skb = skb;
2227
2228         u64_stats_update_begin(&rx_ring->rx_syncp);
2229         rx_ring->rx_stats.packets += total_packets;
2230         rx_ring->rx_stats.bytes += total_bytes;
2231         u64_stats_update_end(&rx_ring->rx_syncp);
2232         q_vector->rx.total_packets += total_packets;
2233         q_vector->rx.total_bytes += total_bytes;
2234
2235         if (cleaned_count)
2236                 igc_alloc_rx_buffers(rx_ring, cleaned_count);
2237
2238         return total_packets;
2239 }
2240
2241 /**
2242  * igc_clean_tx_irq - Reclaim resources after transmit completes
2243  * @q_vector: pointer to q_vector containing needed info
2244  * @napi_budget: Used to determine if we are in netpoll
2245  *
2246  * returns true if ring is completely cleaned
2247  */
2248 static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget)
2249 {
2250         struct igc_adapter *adapter = q_vector->adapter;
2251         unsigned int total_bytes = 0, total_packets = 0;
2252         unsigned int budget = q_vector->tx.work_limit;
2253         struct igc_ring *tx_ring = q_vector->tx.ring;
2254         unsigned int i = tx_ring->next_to_clean;
2255         struct igc_tx_buffer *tx_buffer;
2256         union igc_adv_tx_desc *tx_desc;
2257
2258         if (test_bit(__IGC_DOWN, &adapter->state))
2259                 return true;
2260
2261         tx_buffer = &tx_ring->tx_buffer_info[i];
2262         tx_desc = IGC_TX_DESC(tx_ring, i);
2263         i -= tx_ring->count;
2264
2265         do {
2266                 union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
2267
2268                 /* if next_to_watch is not set then there is no work pending */
2269                 if (!eop_desc)
2270                         break;
2271
2272                 /* prevent any other reads prior to eop_desc */
2273                 smp_rmb();
2274
2275                 /* if DD is not set pending work has not been completed */
2276                 if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD)))
2277                         break;
2278
2279                 /* clear next_to_watch to prevent false hangs */
2280                 tx_buffer->next_to_watch = NULL;
2281
2282                 /* update the statistics for this packet */
2283                 total_bytes += tx_buffer->bytecount;
2284                 total_packets += tx_buffer->gso_segs;
2285
2286                 if (tx_buffer->tx_flags & IGC_TX_FLAGS_XDP)
2287                         xdp_return_frame(tx_buffer->xdpf);
2288                 else
2289                         napi_consume_skb(tx_buffer->skb, napi_budget);
2290
2291                 /* unmap skb header data */
2292                 dma_unmap_single(tx_ring->dev,
2293                                  dma_unmap_addr(tx_buffer, dma),
2294                                  dma_unmap_len(tx_buffer, len),
2295                                  DMA_TO_DEVICE);
2296
2297                 /* clear tx_buffer data */
2298                 dma_unmap_len_set(tx_buffer, len, 0);
2299
2300                 /* clear last DMA location and unmap remaining buffers */
2301                 while (tx_desc != eop_desc) {
2302                         tx_buffer++;
2303                         tx_desc++;
2304                         i++;
2305                         if (unlikely(!i)) {
2306                                 i -= tx_ring->count;
2307                                 tx_buffer = tx_ring->tx_buffer_info;
2308                                 tx_desc = IGC_TX_DESC(tx_ring, 0);
2309                         }
2310
2311                         /* unmap any remaining paged data */
2312                         if (dma_unmap_len(tx_buffer, len)) {
2313                                 dma_unmap_page(tx_ring->dev,
2314                                                dma_unmap_addr(tx_buffer, dma),
2315                                                dma_unmap_len(tx_buffer, len),
2316                                                DMA_TO_DEVICE);
2317                                 dma_unmap_len_set(tx_buffer, len, 0);
2318                         }
2319                 }
2320
2321                 /* move us one more past the eop_desc for start of next pkt */
2322                 tx_buffer++;
2323                 tx_desc++;
2324                 i++;
2325                 if (unlikely(!i)) {
2326                         i -= tx_ring->count;
2327                         tx_buffer = tx_ring->tx_buffer_info;
2328                         tx_desc = IGC_TX_DESC(tx_ring, 0);
2329                 }
2330
2331                 /* issue prefetch for next Tx descriptor */
2332                 prefetch(tx_desc);
2333
2334                 /* update budget accounting */
2335                 budget--;
2336         } while (likely(budget));
2337
2338         netdev_tx_completed_queue(txring_txq(tx_ring),
2339                                   total_packets, total_bytes);
2340
2341         i += tx_ring->count;
2342         tx_ring->next_to_clean = i;
2343         u64_stats_update_begin(&tx_ring->tx_syncp);
2344         tx_ring->tx_stats.bytes += total_bytes;
2345         tx_ring->tx_stats.packets += total_packets;
2346         u64_stats_update_end(&tx_ring->tx_syncp);
2347         q_vector->tx.total_bytes += total_bytes;
2348         q_vector->tx.total_packets += total_packets;
2349
2350         if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
2351                 struct igc_hw *hw = &adapter->hw;
2352
2353                 /* Detect a transmit hang in hardware, this serializes the
2354                  * check with the clearing of time_stamp and movement of i
2355                  */
2356                 clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
2357                 if (tx_buffer->next_to_watch &&
2358                     time_after(jiffies, tx_buffer->time_stamp +
2359                     (adapter->tx_timeout_factor * HZ)) &&
2360                     !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF)) {
2361                         /* detected Tx unit hang */
2362                         netdev_err(tx_ring->netdev,
2363                                    "Detected Tx Unit Hang\n"
2364                                    "  Tx Queue             <%d>\n"
2365                                    "  TDH                  <%x>\n"
2366                                    "  TDT                  <%x>\n"
2367                                    "  next_to_use          <%x>\n"
2368                                    "  next_to_clean        <%x>\n"
2369                                    "buffer_info[next_to_clean]\n"
2370                                    "  time_stamp           <%lx>\n"
2371                                    "  next_to_watch        <%p>\n"
2372                                    "  jiffies              <%lx>\n"
2373                                    "  desc.status          <%x>\n",
2374                                    tx_ring->queue_index,
2375                                    rd32(IGC_TDH(tx_ring->reg_idx)),
2376                                    readl(tx_ring->tail),
2377                                    tx_ring->next_to_use,
2378                                    tx_ring->next_to_clean,
2379                                    tx_buffer->time_stamp,
2380                                    tx_buffer->next_to_watch,
2381                                    jiffies,
2382                                    tx_buffer->next_to_watch->wb.status);
2383                         netif_stop_subqueue(tx_ring->netdev,
2384                                             tx_ring->queue_index);
2385
2386                         /* we are about to reset, no point in enabling stuff */
2387                         return true;
2388                 }
2389         }
2390
2391 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
2392         if (unlikely(total_packets &&
2393                      netif_carrier_ok(tx_ring->netdev) &&
2394                      igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
2395                 /* Make sure that anybody stopping the queue after this
2396                  * sees the new next_to_clean.
2397                  */
2398                 smp_mb();
2399                 if (__netif_subqueue_stopped(tx_ring->netdev,
2400                                              tx_ring->queue_index) &&
2401                     !(test_bit(__IGC_DOWN, &adapter->state))) {
2402                         netif_wake_subqueue(tx_ring->netdev,
2403                                             tx_ring->queue_index);
2404
2405                         u64_stats_update_begin(&tx_ring->tx_syncp);
2406                         tx_ring->tx_stats.restart_queue++;
2407                         u64_stats_update_end(&tx_ring->tx_syncp);
2408                 }
2409         }
2410
2411         return !!budget;
2412 }
2413
2414 static int igc_find_mac_filter(struct igc_adapter *adapter,
2415                                enum igc_mac_filter_type type, const u8 *addr)
2416 {
2417         struct igc_hw *hw = &adapter->hw;
2418         int max_entries = hw->mac.rar_entry_count;
2419         u32 ral, rah;
2420         int i;
2421
2422         for (i = 0; i < max_entries; i++) {
2423                 ral = rd32(IGC_RAL(i));
2424                 rah = rd32(IGC_RAH(i));
2425
2426                 if (!(rah & IGC_RAH_AV))
2427                         continue;
2428                 if (!!(rah & IGC_RAH_ASEL_SRC_ADDR) != type)
2429                         continue;
2430                 if ((rah & IGC_RAH_RAH_MASK) !=
2431                     le16_to_cpup((__le16 *)(addr + 4)))
2432                         continue;
2433                 if (ral != le32_to_cpup((__le32 *)(addr)))
2434                         continue;
2435
2436                 return i;
2437         }
2438
2439         return -1;
2440 }
2441
2442 static int igc_get_avail_mac_filter_slot(struct igc_adapter *adapter)
2443 {
2444         struct igc_hw *hw = &adapter->hw;
2445         int max_entries = hw->mac.rar_entry_count;
2446         u32 rah;
2447         int i;
2448
2449         for (i = 0; i < max_entries; i++) {
2450                 rah = rd32(IGC_RAH(i));
2451
2452                 if (!(rah & IGC_RAH_AV))
2453                         return i;
2454         }
2455
2456         return -1;
2457 }
2458
2459 /**
2460  * igc_add_mac_filter() - Add MAC address filter
2461  * @adapter: Pointer to adapter where the filter should be added
2462  * @type: MAC address filter type (source or destination)
2463  * @addr: MAC address
2464  * @queue: If non-negative, queue assignment feature is enabled and frames
2465  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
2466  *         assignment is disabled.
2467  *
2468  * Return: 0 in case of success, negative errno code otherwise.
2469  */
2470 static int igc_add_mac_filter(struct igc_adapter *adapter,
2471                               enum igc_mac_filter_type type, const u8 *addr,
2472                               int queue)
2473 {
2474         struct net_device *dev = adapter->netdev;
2475         int index;
2476
2477         index = igc_find_mac_filter(adapter, type, addr);
2478         if (index >= 0)
2479                 goto update_filter;
2480
2481         index = igc_get_avail_mac_filter_slot(adapter);
2482         if (index < 0)
2483                 return -ENOSPC;
2484
2485         netdev_dbg(dev, "Add MAC address filter: index %d type %s address %pM queue %d\n",
2486                    index, type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
2487                    addr, queue);
2488
2489 update_filter:
2490         igc_set_mac_filter_hw(adapter, index, type, addr, queue);
2491         return 0;
2492 }
2493
2494 /**
2495  * igc_del_mac_filter() - Delete MAC address filter
2496  * @adapter: Pointer to adapter where the filter should be deleted from
2497  * @type: MAC address filter type (source or destination)
2498  * @addr: MAC address
2499  */
2500 static void igc_del_mac_filter(struct igc_adapter *adapter,
2501                                enum igc_mac_filter_type type, const u8 *addr)
2502 {
2503         struct net_device *dev = adapter->netdev;
2504         int index;
2505
2506         index = igc_find_mac_filter(adapter, type, addr);
2507         if (index < 0)
2508                 return;
2509
2510         if (index == 0) {
2511                 /* If this is the default filter, we don't actually delete it.
2512                  * We just reset to its default value i.e. disable queue
2513                  * assignment.
2514                  */
2515                 netdev_dbg(dev, "Disable default MAC filter queue assignment");
2516
2517                 igc_set_mac_filter_hw(adapter, 0, type, addr, -1);
2518         } else {
2519                 netdev_dbg(dev, "Delete MAC address filter: index %d type %s address %pM\n",
2520                            index,
2521                            type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
2522                            addr);
2523
2524                 igc_clear_mac_filter_hw(adapter, index);
2525         }
2526 }
2527
2528 /**
2529  * igc_add_vlan_prio_filter() - Add VLAN priority filter
2530  * @adapter: Pointer to adapter where the filter should be added
2531  * @prio: VLAN priority value
2532  * @queue: Queue number which matching frames are assigned to
2533  *
2534  * Return: 0 in case of success, negative errno code otherwise.
2535  */
2536 static int igc_add_vlan_prio_filter(struct igc_adapter *adapter, int prio,
2537                                     int queue)
2538 {
2539         struct net_device *dev = adapter->netdev;
2540         struct igc_hw *hw = &adapter->hw;
2541         u32 vlanpqf;
2542
2543         vlanpqf = rd32(IGC_VLANPQF);
2544
2545         if (vlanpqf & IGC_VLANPQF_VALID(prio)) {
2546                 netdev_dbg(dev, "VLAN priority filter already in use\n");
2547                 return -EEXIST;
2548         }
2549
2550         vlanpqf |= IGC_VLANPQF_QSEL(prio, queue);
2551         vlanpqf |= IGC_VLANPQF_VALID(prio);
2552
2553         wr32(IGC_VLANPQF, vlanpqf);
2554
2555         netdev_dbg(dev, "Add VLAN priority filter: prio %d queue %d\n",
2556                    prio, queue);
2557         return 0;
2558 }
2559
2560 /**
2561  * igc_del_vlan_prio_filter() - Delete VLAN priority filter
2562  * @adapter: Pointer to adapter where the filter should be deleted from
2563  * @prio: VLAN priority value
2564  */
2565 static void igc_del_vlan_prio_filter(struct igc_adapter *adapter, int prio)
2566 {
2567         struct igc_hw *hw = &adapter->hw;
2568         u32 vlanpqf;
2569
2570         vlanpqf = rd32(IGC_VLANPQF);
2571
2572         vlanpqf &= ~IGC_VLANPQF_VALID(prio);
2573         vlanpqf &= ~IGC_VLANPQF_QSEL(prio, IGC_VLANPQF_QUEUE_MASK);
2574
2575         wr32(IGC_VLANPQF, vlanpqf);
2576
2577         netdev_dbg(adapter->netdev, "Delete VLAN priority filter: prio %d\n",
2578                    prio);
2579 }
2580
2581 static int igc_get_avail_etype_filter_slot(struct igc_adapter *adapter)
2582 {
2583         struct igc_hw *hw = &adapter->hw;
2584         int i;
2585
2586         for (i = 0; i < MAX_ETYPE_FILTER; i++) {
2587                 u32 etqf = rd32(IGC_ETQF(i));
2588
2589                 if (!(etqf & IGC_ETQF_FILTER_ENABLE))
2590                         return i;
2591         }
2592
2593         return -1;
2594 }
2595
2596 /**
2597  * igc_add_etype_filter() - Add ethertype filter
2598  * @adapter: Pointer to adapter where the filter should be added
2599  * @etype: Ethertype value
2600  * @queue: If non-negative, queue assignment feature is enabled and frames
2601  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
2602  *         assignment is disabled.
2603  *
2604  * Return: 0 in case of success, negative errno code otherwise.
2605  */
2606 static int igc_add_etype_filter(struct igc_adapter *adapter, u16 etype,
2607                                 int queue)
2608 {
2609         struct igc_hw *hw = &adapter->hw;
2610         int index;
2611         u32 etqf;
2612
2613         index = igc_get_avail_etype_filter_slot(adapter);
2614         if (index < 0)
2615                 return -ENOSPC;
2616
2617         etqf = rd32(IGC_ETQF(index));
2618
2619         etqf &= ~IGC_ETQF_ETYPE_MASK;
2620         etqf |= etype;
2621
2622         if (queue >= 0) {
2623                 etqf &= ~IGC_ETQF_QUEUE_MASK;
2624                 etqf |= (queue << IGC_ETQF_QUEUE_SHIFT);
2625                 etqf |= IGC_ETQF_QUEUE_ENABLE;
2626         }
2627
2628         etqf |= IGC_ETQF_FILTER_ENABLE;
2629
2630         wr32(IGC_ETQF(index), etqf);
2631
2632         netdev_dbg(adapter->netdev, "Add ethertype filter: etype %04x queue %d\n",
2633                    etype, queue);
2634         return 0;
2635 }
2636
2637 static int igc_find_etype_filter(struct igc_adapter *adapter, u16 etype)
2638 {
2639         struct igc_hw *hw = &adapter->hw;
2640         int i;
2641
2642         for (i = 0; i < MAX_ETYPE_FILTER; i++) {
2643                 u32 etqf = rd32(IGC_ETQF(i));
2644
2645                 if ((etqf & IGC_ETQF_ETYPE_MASK) == etype)
2646                         return i;
2647         }
2648
2649         return -1;
2650 }
2651
2652 /**
2653  * igc_del_etype_filter() - Delete ethertype filter
2654  * @adapter: Pointer to adapter where the filter should be deleted from
2655  * @etype: Ethertype value
2656  */
2657 static void igc_del_etype_filter(struct igc_adapter *adapter, u16 etype)
2658 {
2659         struct igc_hw *hw = &adapter->hw;
2660         int index;
2661
2662         index = igc_find_etype_filter(adapter, etype);
2663         if (index < 0)
2664                 return;
2665
2666         wr32(IGC_ETQF(index), 0);
2667
2668         netdev_dbg(adapter->netdev, "Delete ethertype filter: etype %04x\n",
2669                    etype);
2670 }
2671
2672 static int igc_enable_nfc_rule(struct igc_adapter *adapter,
2673                                const struct igc_nfc_rule *rule)
2674 {
2675         int err;
2676
2677         if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
2678                 err = igc_add_etype_filter(adapter, rule->filter.etype,
2679                                            rule->action);
2680                 if (err)
2681                         return err;
2682         }
2683
2684         if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) {
2685                 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
2686                                          rule->filter.src_addr, rule->action);
2687                 if (err)
2688                         return err;
2689         }
2690
2691         if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) {
2692                 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
2693                                          rule->filter.dst_addr, rule->action);
2694                 if (err)
2695                         return err;
2696         }
2697
2698         if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
2699                 int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
2700                            VLAN_PRIO_SHIFT;
2701
2702                 err = igc_add_vlan_prio_filter(adapter, prio, rule->action);
2703                 if (err)
2704                         return err;
2705         }
2706
2707         return 0;
2708 }
2709
2710 static void igc_disable_nfc_rule(struct igc_adapter *adapter,
2711                                  const struct igc_nfc_rule *rule)
2712 {
2713         if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE)
2714                 igc_del_etype_filter(adapter, rule->filter.etype);
2715
2716         if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
2717                 int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
2718                            VLAN_PRIO_SHIFT;
2719
2720                 igc_del_vlan_prio_filter(adapter, prio);
2721         }
2722
2723         if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
2724                 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
2725                                    rule->filter.src_addr);
2726
2727         if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
2728                 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
2729                                    rule->filter.dst_addr);
2730 }
2731
2732 /**
2733  * igc_get_nfc_rule() - Get NFC rule
2734  * @adapter: Pointer to adapter
2735  * @location: Rule location
2736  *
2737  * Context: Expects adapter->nfc_rule_lock to be held by caller.
2738  *
2739  * Return: Pointer to NFC rule at @location. If not found, NULL.
2740  */
2741 struct igc_nfc_rule *igc_get_nfc_rule(struct igc_adapter *adapter,
2742                                       u32 location)
2743 {
2744         struct igc_nfc_rule *rule;
2745
2746         list_for_each_entry(rule, &adapter->nfc_rule_list, list) {
2747                 if (rule->location == location)
2748                         return rule;
2749                 if (rule->location > location)
2750                         break;
2751         }
2752
2753         return NULL;
2754 }
2755
2756 /**
2757  * igc_del_nfc_rule() - Delete NFC rule
2758  * @adapter: Pointer to adapter
2759  * @rule: Pointer to rule to be deleted
2760  *
2761  * Disable NFC rule in hardware and delete it from adapter.
2762  *
2763  * Context: Expects adapter->nfc_rule_lock to be held by caller.
2764  */
2765 void igc_del_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
2766 {
2767         igc_disable_nfc_rule(adapter, rule);
2768
2769         list_del(&rule->list);
2770         adapter->nfc_rule_count--;
2771
2772         kfree(rule);
2773 }
2774
2775 static void igc_flush_nfc_rules(struct igc_adapter *adapter)
2776 {
2777         struct igc_nfc_rule *rule, *tmp;
2778
2779         mutex_lock(&adapter->nfc_rule_lock);
2780
2781         list_for_each_entry_safe(rule, tmp, &adapter->nfc_rule_list, list)
2782                 igc_del_nfc_rule(adapter, rule);
2783
2784         mutex_unlock(&adapter->nfc_rule_lock);
2785 }
2786
2787 /**
2788  * igc_add_nfc_rule() - Add NFC rule
2789  * @adapter: Pointer to adapter
2790  * @rule: Pointer to rule to be added
2791  *
2792  * Enable NFC rule in hardware and add it to adapter.
2793  *
2794  * Context: Expects adapter->nfc_rule_lock to be held by caller.
2795  *
2796  * Return: 0 on success, negative errno on failure.
2797  */
2798 int igc_add_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
2799 {
2800         struct igc_nfc_rule *pred, *cur;
2801         int err;
2802
2803         err = igc_enable_nfc_rule(adapter, rule);
2804         if (err)
2805                 return err;
2806
2807         pred = NULL;
2808         list_for_each_entry(cur, &adapter->nfc_rule_list, list) {
2809                 if (cur->location >= rule->location)
2810                         break;
2811                 pred = cur;
2812         }
2813
2814         list_add(&rule->list, pred ? &pred->list : &adapter->nfc_rule_list);
2815         adapter->nfc_rule_count++;
2816         return 0;
2817 }
2818
2819 static void igc_restore_nfc_rules(struct igc_adapter *adapter)
2820 {
2821         struct igc_nfc_rule *rule;
2822
2823         mutex_lock(&adapter->nfc_rule_lock);
2824
2825         list_for_each_entry_reverse(rule, &adapter->nfc_rule_list, list)
2826                 igc_enable_nfc_rule(adapter, rule);
2827
2828         mutex_unlock(&adapter->nfc_rule_lock);
2829 }
2830
2831 static int igc_uc_sync(struct net_device *netdev, const unsigned char *addr)
2832 {
2833         struct igc_adapter *adapter = netdev_priv(netdev);
2834
2835         return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr, -1);
2836 }
2837
2838 static int igc_uc_unsync(struct net_device *netdev, const unsigned char *addr)
2839 {
2840         struct igc_adapter *adapter = netdev_priv(netdev);
2841
2842         igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr);
2843         return 0;
2844 }
2845
2846 /**
2847  * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2848  * @netdev: network interface device structure
2849  *
2850  * The set_rx_mode entry point is called whenever the unicast or multicast
2851  * address lists or the network interface flags are updated.  This routine is
2852  * responsible for configuring the hardware for proper unicast, multicast,
2853  * promiscuous mode, and all-multi behavior.
2854  */
2855 static void igc_set_rx_mode(struct net_device *netdev)
2856 {
2857         struct igc_adapter *adapter = netdev_priv(netdev);
2858         struct igc_hw *hw = &adapter->hw;
2859         u32 rctl = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
2860         int count;
2861
2862         /* Check for Promiscuous and All Multicast modes */
2863         if (netdev->flags & IFF_PROMISC) {
2864                 rctl |= IGC_RCTL_UPE | IGC_RCTL_MPE;
2865         } else {
2866                 if (netdev->flags & IFF_ALLMULTI) {
2867                         rctl |= IGC_RCTL_MPE;
2868                 } else {
2869                         /* Write addresses to the MTA, if the attempt fails
2870                          * then we should just turn on promiscuous mode so
2871                          * that we can at least receive multicast traffic
2872                          */
2873                         count = igc_write_mc_addr_list(netdev);
2874                         if (count < 0)
2875                                 rctl |= IGC_RCTL_MPE;
2876                 }
2877         }
2878
2879         /* Write addresses to available RAR registers, if there is not
2880          * sufficient space to store all the addresses then enable
2881          * unicast promiscuous mode
2882          */
2883         if (__dev_uc_sync(netdev, igc_uc_sync, igc_uc_unsync))
2884                 rctl |= IGC_RCTL_UPE;
2885
2886         /* update state of unicast and multicast */
2887         rctl |= rd32(IGC_RCTL) & ~(IGC_RCTL_UPE | IGC_RCTL_MPE);
2888         wr32(IGC_RCTL, rctl);
2889
2890 #if (PAGE_SIZE < 8192)
2891         if (adapter->max_frame_size <= IGC_MAX_FRAME_BUILD_SKB)
2892                 rlpml = IGC_MAX_FRAME_BUILD_SKB;
2893 #endif
2894         wr32(IGC_RLPML, rlpml);
2895 }
2896
2897 /**
2898  * igc_configure - configure the hardware for RX and TX
2899  * @adapter: private board structure
2900  */
2901 static void igc_configure(struct igc_adapter *adapter)
2902 {
2903         struct net_device *netdev = adapter->netdev;
2904         int i = 0;
2905
2906         igc_get_hw_control(adapter);
2907         igc_set_rx_mode(netdev);
2908
2909         igc_setup_tctl(adapter);
2910         igc_setup_mrqc(adapter);
2911         igc_setup_rctl(adapter);
2912
2913         igc_set_default_mac_filter(adapter);
2914         igc_restore_nfc_rules(adapter);
2915
2916         igc_configure_tx(adapter);
2917         igc_configure_rx(adapter);
2918
2919         igc_rx_fifo_flush_base(&adapter->hw);
2920
2921         /* call igc_desc_unused which always leaves
2922          * at least 1 descriptor unused to make sure
2923          * next_to_use != next_to_clean
2924          */
2925         for (i = 0; i < adapter->num_rx_queues; i++) {
2926                 struct igc_ring *ring = adapter->rx_ring[i];
2927
2928                 igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
2929         }
2930 }
2931
2932 /**
2933  * igc_write_ivar - configure ivar for given MSI-X vector
2934  * @hw: pointer to the HW structure
2935  * @msix_vector: vector number we are allocating to a given ring
2936  * @index: row index of IVAR register to write within IVAR table
2937  * @offset: column offset of in IVAR, should be multiple of 8
2938  *
2939  * The IVAR table consists of 2 columns,
2940  * each containing an cause allocation for an Rx and Tx ring, and a
2941  * variable number of rows depending on the number of queues supported.
2942  */
2943 static void igc_write_ivar(struct igc_hw *hw, int msix_vector,
2944                            int index, int offset)
2945 {
2946         u32 ivar = array_rd32(IGC_IVAR0, index);
2947
2948         /* clear any bits that are currently set */
2949         ivar &= ~((u32)0xFF << offset);
2950
2951         /* write vector and valid bit */
2952         ivar |= (msix_vector | IGC_IVAR_VALID) << offset;
2953
2954         array_wr32(IGC_IVAR0, index, ivar);
2955 }
2956
2957 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector)
2958 {
2959         struct igc_adapter *adapter = q_vector->adapter;
2960         struct igc_hw *hw = &adapter->hw;
2961         int rx_queue = IGC_N0_QUEUE;
2962         int tx_queue = IGC_N0_QUEUE;
2963
2964         if (q_vector->rx.ring)
2965                 rx_queue = q_vector->rx.ring->reg_idx;
2966         if (q_vector->tx.ring)
2967                 tx_queue = q_vector->tx.ring->reg_idx;
2968
2969         switch (hw->mac.type) {
2970         case igc_i225:
2971                 if (rx_queue > IGC_N0_QUEUE)
2972                         igc_write_ivar(hw, msix_vector,
2973                                        rx_queue >> 1,
2974                                        (rx_queue & 0x1) << 4);
2975                 if (tx_queue > IGC_N0_QUEUE)
2976                         igc_write_ivar(hw, msix_vector,
2977                                        tx_queue >> 1,
2978                                        ((tx_queue & 0x1) << 4) + 8);
2979                 q_vector->eims_value = BIT(msix_vector);
2980                 break;
2981         default:
2982                 WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n");
2983                 break;
2984         }
2985
2986         /* add q_vector eims value to global eims_enable_mask */
2987         adapter->eims_enable_mask |= q_vector->eims_value;
2988
2989         /* configure q_vector to set itr on first interrupt */
2990         q_vector->set_itr = 1;
2991 }
2992
2993 /**
2994  * igc_configure_msix - Configure MSI-X hardware
2995  * @adapter: Pointer to adapter structure
2996  *
2997  * igc_configure_msix sets up the hardware to properly
2998  * generate MSI-X interrupts.
2999  */
3000 static void igc_configure_msix(struct igc_adapter *adapter)
3001 {
3002         struct igc_hw *hw = &adapter->hw;
3003         int i, vector = 0;
3004         u32 tmp;
3005
3006         adapter->eims_enable_mask = 0;
3007
3008         /* set vector for other causes, i.e. link changes */
3009         switch (hw->mac.type) {
3010         case igc_i225:
3011                 /* Turn on MSI-X capability first, or our settings
3012                  * won't stick.  And it will take days to debug.
3013                  */
3014                 wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE |
3015                      IGC_GPIE_PBA | IGC_GPIE_EIAME |
3016                      IGC_GPIE_NSICR);
3017
3018                 /* enable msix_other interrupt */
3019                 adapter->eims_other = BIT(vector);
3020                 tmp = (vector++ | IGC_IVAR_VALID) << 8;
3021
3022                 wr32(IGC_IVAR_MISC, tmp);
3023                 break;
3024         default:
3025                 /* do nothing, since nothing else supports MSI-X */
3026                 break;
3027         } /* switch (hw->mac.type) */
3028
3029         adapter->eims_enable_mask |= adapter->eims_other;
3030
3031         for (i = 0; i < adapter->num_q_vectors; i++)
3032                 igc_assign_vector(adapter->q_vector[i], vector++);
3033
3034         wrfl();
3035 }
3036
3037 /**
3038  * igc_irq_enable - Enable default interrupt generation settings
3039  * @adapter: board private structure
3040  */
3041 static void igc_irq_enable(struct igc_adapter *adapter)
3042 {
3043         struct igc_hw *hw = &adapter->hw;
3044
3045         if (adapter->msix_entries) {
3046                 u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA;
3047                 u32 regval = rd32(IGC_EIAC);
3048
3049                 wr32(IGC_EIAC, regval | adapter->eims_enable_mask);
3050                 regval = rd32(IGC_EIAM);
3051                 wr32(IGC_EIAM, regval | adapter->eims_enable_mask);
3052                 wr32(IGC_EIMS, adapter->eims_enable_mask);
3053                 wr32(IGC_IMS, ims);
3054         } else {
3055                 wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
3056                 wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
3057         }
3058 }
3059
3060 /**
3061  * igc_irq_disable - Mask off interrupt generation on the NIC
3062  * @adapter: board private structure
3063  */
3064 static void igc_irq_disable(struct igc_adapter *adapter)
3065 {
3066         struct igc_hw *hw = &adapter->hw;
3067
3068         if (adapter->msix_entries) {
3069                 u32 regval = rd32(IGC_EIAM);
3070
3071                 wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask);
3072                 wr32(IGC_EIMC, adapter->eims_enable_mask);
3073                 regval = rd32(IGC_EIAC);
3074                 wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask);
3075         }
3076
3077         wr32(IGC_IAM, 0);
3078         wr32(IGC_IMC, ~0);
3079         wrfl();
3080
3081         if (adapter->msix_entries) {
3082                 int vector = 0, i;
3083
3084                 synchronize_irq(adapter->msix_entries[vector++].vector);
3085
3086                 for (i = 0; i < adapter->num_q_vectors; i++)
3087                         synchronize_irq(adapter->msix_entries[vector++].vector);
3088         } else {
3089                 synchronize_irq(adapter->pdev->irq);
3090         }
3091 }
3092
3093 void igc_set_flag_queue_pairs(struct igc_adapter *adapter,
3094                               const u32 max_rss_queues)
3095 {
3096         /* Determine if we need to pair queues. */
3097         /* If rss_queues > half of max_rss_queues, pair the queues in
3098          * order to conserve interrupts due to limited supply.
3099          */
3100         if (adapter->rss_queues > (max_rss_queues / 2))
3101                 adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
3102         else
3103                 adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS;
3104 }
3105
3106 unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter)
3107 {
3108         return IGC_MAX_RX_QUEUES;
3109 }
3110
3111 static void igc_init_queue_configuration(struct igc_adapter *adapter)
3112 {
3113         u32 max_rss_queues;
3114
3115         max_rss_queues = igc_get_max_rss_queues(adapter);
3116         adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3117
3118         igc_set_flag_queue_pairs(adapter, max_rss_queues);
3119 }
3120
3121 /**
3122  * igc_reset_q_vector - Reset config for interrupt vector
3123  * @adapter: board private structure to initialize
3124  * @v_idx: Index of vector to be reset
3125  *
3126  * If NAPI is enabled it will delete any references to the
3127  * NAPI struct. This is preparation for igc_free_q_vector.
3128  */
3129 static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx)
3130 {
3131         struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
3132
3133         /* if we're coming from igc_set_interrupt_capability, the vectors are
3134          * not yet allocated
3135          */
3136         if (!q_vector)
3137                 return;
3138
3139         if (q_vector->tx.ring)
3140                 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
3141
3142         if (q_vector->rx.ring)
3143                 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
3144
3145         netif_napi_del(&q_vector->napi);
3146 }
3147
3148 /**
3149  * igc_free_q_vector - Free memory allocated for specific interrupt vector
3150  * @adapter: board private structure to initialize
3151  * @v_idx: Index of vector to be freed
3152  *
3153  * This function frees the memory allocated to the q_vector.
3154  */
3155 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx)
3156 {
3157         struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
3158
3159         adapter->q_vector[v_idx] = NULL;
3160
3161         /* igc_get_stats64() might access the rings on this vector,
3162          * we must wait a grace period before freeing it.
3163          */
3164         if (q_vector)
3165                 kfree_rcu(q_vector, rcu);
3166 }
3167
3168 /**
3169  * igc_free_q_vectors - Free memory allocated for interrupt vectors
3170  * @adapter: board private structure to initialize
3171  *
3172  * This function frees the memory allocated to the q_vectors.  In addition if
3173  * NAPI is enabled it will delete any references to the NAPI struct prior
3174  * to freeing the q_vector.
3175  */
3176 static void igc_free_q_vectors(struct igc_adapter *adapter)
3177 {
3178         int v_idx = adapter->num_q_vectors;
3179
3180         adapter->num_tx_queues = 0;
3181         adapter->num_rx_queues = 0;
3182         adapter->num_q_vectors = 0;
3183
3184         while (v_idx--) {
3185                 igc_reset_q_vector(adapter, v_idx);
3186                 igc_free_q_vector(adapter, v_idx);
3187         }
3188 }
3189
3190 /**
3191  * igc_update_itr - update the dynamic ITR value based on statistics
3192  * @q_vector: pointer to q_vector
3193  * @ring_container: ring info to update the itr for
3194  *
3195  * Stores a new ITR value based on packets and byte
3196  * counts during the last interrupt.  The advantage of per interrupt
3197  * computation is faster updates and more accurate ITR for the current
3198  * traffic pattern.  Constants in this function were computed
3199  * based on theoretical maximum wire speed and thresholds were set based
3200  * on testing data as well as attempting to minimize response time
3201  * while increasing bulk throughput.
3202  * NOTE: These calculations are only valid when operating in a single-
3203  * queue environment.
3204  */
3205 static void igc_update_itr(struct igc_q_vector *q_vector,
3206                            struct igc_ring_container *ring_container)
3207 {
3208         unsigned int packets = ring_container->total_packets;
3209         unsigned int bytes = ring_container->total_bytes;
3210         u8 itrval = ring_container->itr;
3211
3212         /* no packets, exit with status unchanged */
3213         if (packets == 0)
3214                 return;
3215
3216         switch (itrval) {
3217         case lowest_latency:
3218                 /* handle TSO and jumbo frames */
3219                 if (bytes / packets > 8000)
3220                         itrval = bulk_latency;
3221                 else if ((packets < 5) && (bytes > 512))
3222                         itrval = low_latency;
3223                 break;
3224         case low_latency:  /* 50 usec aka 20000 ints/s */
3225                 if (bytes > 10000) {
3226                         /* this if handles the TSO accounting */
3227                         if (bytes / packets > 8000)
3228                                 itrval = bulk_latency;
3229                         else if ((packets < 10) || ((bytes / packets) > 1200))
3230                                 itrval = bulk_latency;
3231                         else if ((packets > 35))
3232                                 itrval = lowest_latency;
3233                 } else if (bytes / packets > 2000) {
3234                         itrval = bulk_latency;
3235                 } else if (packets <= 2 && bytes < 512) {
3236                         itrval = lowest_latency;
3237                 }
3238                 break;
3239         case bulk_latency: /* 250 usec aka 4000 ints/s */
3240                 if (bytes > 25000) {
3241                         if (packets > 35)
3242                                 itrval = low_latency;
3243                 } else if (bytes < 1500) {
3244                         itrval = low_latency;
3245                 }
3246                 break;
3247         }
3248
3249         /* clear work counters since we have the values we need */
3250         ring_container->total_bytes = 0;
3251         ring_container->total_packets = 0;
3252
3253         /* write updated itr to ring container */
3254         ring_container->itr = itrval;
3255 }
3256
3257 static void igc_set_itr(struct igc_q_vector *q_vector)
3258 {
3259         struct igc_adapter *adapter = q_vector->adapter;
3260         u32 new_itr = q_vector->itr_val;
3261         u8 current_itr = 0;
3262
3263         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3264         switch (adapter->link_speed) {
3265         case SPEED_10:
3266         case SPEED_100:
3267                 current_itr = 0;
3268                 new_itr = IGC_4K_ITR;
3269                 goto set_itr_now;
3270         default:
3271                 break;
3272         }
3273
3274         igc_update_itr(q_vector, &q_vector->tx);
3275         igc_update_itr(q_vector, &q_vector->rx);
3276
3277         current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
3278
3279         /* conservative mode (itr 3) eliminates the lowest_latency setting */
3280         if (current_itr == lowest_latency &&
3281             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3282             (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3283                 current_itr = low_latency;
3284
3285         switch (current_itr) {
3286         /* counts and packets in update_itr are dependent on these numbers */
3287         case lowest_latency:
3288                 new_itr = IGC_70K_ITR; /* 70,000 ints/sec */
3289                 break;
3290         case low_latency:
3291                 new_itr = IGC_20K_ITR; /* 20,000 ints/sec */
3292                 break;
3293         case bulk_latency:
3294                 new_itr = IGC_4K_ITR;  /* 4,000 ints/sec */
3295                 break;
3296         default:
3297                 break;
3298         }
3299
3300 set_itr_now:
3301         if (new_itr != q_vector->itr_val) {
3302                 /* this attempts to bias the interrupt rate towards Bulk
3303                  * by adding intermediate steps when interrupt rate is
3304                  * increasing
3305                  */
3306                 new_itr = new_itr > q_vector->itr_val ?
3307                           max((new_itr * q_vector->itr_val) /
3308                           (new_itr + (q_vector->itr_val >> 2)),
3309                           new_itr) : new_itr;
3310                 /* Don't write the value here; it resets the adapter's
3311                  * internal timer, and causes us to delay far longer than
3312                  * we should between interrupts.  Instead, we write the ITR
3313                  * value at the beginning of the next interrupt so the timing
3314                  * ends up being correct.
3315                  */
3316                 q_vector->itr_val = new_itr;
3317                 q_vector->set_itr = 1;
3318         }
3319 }
3320
3321 static void igc_reset_interrupt_capability(struct igc_adapter *adapter)
3322 {
3323         int v_idx = adapter->num_q_vectors;
3324
3325         if (adapter->msix_entries) {
3326                 pci_disable_msix(adapter->pdev);
3327                 kfree(adapter->msix_entries);
3328                 adapter->msix_entries = NULL;
3329         } else if (adapter->flags & IGC_FLAG_HAS_MSI) {
3330                 pci_disable_msi(adapter->pdev);
3331         }
3332
3333         while (v_idx--)
3334                 igc_reset_q_vector(adapter, v_idx);
3335 }
3336
3337 /**
3338  * igc_set_interrupt_capability - set MSI or MSI-X if supported
3339  * @adapter: Pointer to adapter structure
3340  * @msix: boolean value for MSI-X capability
3341  *
3342  * Attempt to configure interrupts using the best available
3343  * capabilities of the hardware and kernel.
3344  */
3345 static void igc_set_interrupt_capability(struct igc_adapter *adapter,
3346                                          bool msix)
3347 {
3348         int numvecs, i;
3349         int err;
3350
3351         if (!msix)
3352                 goto msi_only;
3353         adapter->flags |= IGC_FLAG_HAS_MSIX;
3354
3355         /* Number of supported queues. */
3356         adapter->num_rx_queues = adapter->rss_queues;
3357
3358         adapter->num_tx_queues = adapter->rss_queues;
3359
3360         /* start with one vector for every Rx queue */
3361         numvecs = adapter->num_rx_queues;
3362
3363         /* if Tx handler is separate add 1 for every Tx queue */
3364         if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS))
3365                 numvecs += adapter->num_tx_queues;
3366
3367         /* store the number of vectors reserved for queues */
3368         adapter->num_q_vectors = numvecs;
3369
3370         /* add 1 vector for link status interrupts */
3371         numvecs++;
3372
3373         adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
3374                                         GFP_KERNEL);
3375
3376         if (!adapter->msix_entries)
3377                 return;
3378
3379         /* populate entry values */
3380         for (i = 0; i < numvecs; i++)
3381                 adapter->msix_entries[i].entry = i;
3382
3383         err = pci_enable_msix_range(adapter->pdev,
3384                                     adapter->msix_entries,
3385                                     numvecs,
3386                                     numvecs);
3387         if (err > 0)
3388                 return;
3389
3390         kfree(adapter->msix_entries);
3391         adapter->msix_entries = NULL;
3392
3393         igc_reset_interrupt_capability(adapter);
3394
3395 msi_only:
3396         adapter->flags &= ~IGC_FLAG_HAS_MSIX;
3397
3398         adapter->rss_queues = 1;
3399         adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
3400         adapter->num_rx_queues = 1;
3401         adapter->num_tx_queues = 1;
3402         adapter->num_q_vectors = 1;
3403         if (!pci_enable_msi(adapter->pdev))
3404                 adapter->flags |= IGC_FLAG_HAS_MSI;
3405 }
3406
3407 /**
3408  * igc_update_ring_itr - update the dynamic ITR value based on packet size
3409  * @q_vector: pointer to q_vector
3410  *
3411  * Stores a new ITR value based on strictly on packet size.  This
3412  * algorithm is less sophisticated than that used in igc_update_itr,
3413  * due to the difficulty of synchronizing statistics across multiple
3414  * receive rings.  The divisors and thresholds used by this function
3415  * were determined based on theoretical maximum wire speed and testing
3416  * data, in order to minimize response time while increasing bulk
3417  * throughput.
3418  * NOTE: This function is called only when operating in a multiqueue
3419  * receive environment.
3420  */
3421 static void igc_update_ring_itr(struct igc_q_vector *q_vector)
3422 {
3423         struct igc_adapter *adapter = q_vector->adapter;
3424         int new_val = q_vector->itr_val;
3425         int avg_wire_size = 0;
3426         unsigned int packets;
3427
3428         /* For non-gigabit speeds, just fix the interrupt rate at 4000
3429          * ints/sec - ITR timer value of 120 ticks.
3430          */
3431         switch (adapter->link_speed) {
3432         case SPEED_10:
3433         case SPEED_100:
3434                 new_val = IGC_4K_ITR;
3435                 goto set_itr_val;
3436         default:
3437                 break;
3438         }
3439
3440         packets = q_vector->rx.total_packets;
3441         if (packets)
3442                 avg_wire_size = q_vector->rx.total_bytes / packets;
3443
3444         packets = q_vector->tx.total_packets;
3445         if (packets)
3446                 avg_wire_size = max_t(u32, avg_wire_size,
3447                                       q_vector->tx.total_bytes / packets);
3448
3449         /* if avg_wire_size isn't set no work was done */
3450         if (!avg_wire_size)
3451                 goto clear_counts;
3452
3453         /* Add 24 bytes to size to account for CRC, preamble, and gap */
3454         avg_wire_size += 24;
3455
3456         /* Don't starve jumbo frames */
3457         avg_wire_size = min(avg_wire_size, 3000);
3458
3459         /* Give a little boost to mid-size frames */
3460         if (avg_wire_size > 300 && avg_wire_size < 1200)
3461                 new_val = avg_wire_size / 3;
3462         else
3463                 new_val = avg_wire_size / 2;
3464
3465         /* conservative mode (itr 3) eliminates the lowest_latency setting */
3466         if (new_val < IGC_20K_ITR &&
3467             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3468             (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3469                 new_val = IGC_20K_ITR;
3470
3471 set_itr_val:
3472         if (new_val != q_vector->itr_val) {
3473                 q_vector->itr_val = new_val;
3474                 q_vector->set_itr = 1;
3475         }
3476 clear_counts:
3477         q_vector->rx.total_bytes = 0;
3478         q_vector->rx.total_packets = 0;
3479         q_vector->tx.total_bytes = 0;
3480         q_vector->tx.total_packets = 0;
3481 }
3482
3483 static void igc_ring_irq_enable(struct igc_q_vector *q_vector)
3484 {
3485         struct igc_adapter *adapter = q_vector->adapter;
3486         struct igc_hw *hw = &adapter->hw;
3487
3488         if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
3489             (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
3490                 if (adapter->num_q_vectors == 1)
3491                         igc_set_itr(q_vector);
3492                 else
3493                         igc_update_ring_itr(q_vector);
3494         }
3495
3496         if (!test_bit(__IGC_DOWN, &adapter->state)) {
3497                 if (adapter->msix_entries)
3498                         wr32(IGC_EIMS, q_vector->eims_value);
3499                 else
3500                         igc_irq_enable(adapter);
3501         }
3502 }
3503
3504 static void igc_add_ring(struct igc_ring *ring,
3505                          struct igc_ring_container *head)
3506 {
3507         head->ring = ring;
3508         head->count++;
3509 }
3510
3511 /**
3512  * igc_cache_ring_register - Descriptor ring to register mapping
3513  * @adapter: board private structure to initialize
3514  *
3515  * Once we know the feature-set enabled for the device, we'll cache
3516  * the register offset the descriptor ring is assigned to.
3517  */
3518 static void igc_cache_ring_register(struct igc_adapter *adapter)
3519 {
3520         int i = 0, j = 0;
3521
3522         switch (adapter->hw.mac.type) {
3523         case igc_i225:
3524         default:
3525                 for (; i < adapter->num_rx_queues; i++)
3526                         adapter->rx_ring[i]->reg_idx = i;
3527                 for (; j < adapter->num_tx_queues; j++)
3528                         adapter->tx_ring[j]->reg_idx = j;
3529                 break;
3530         }
3531 }
3532
3533 /**
3534  * igc_poll - NAPI Rx polling callback
3535  * @napi: napi polling structure
3536  * @budget: count of how many packets we should handle
3537  */
3538 static int igc_poll(struct napi_struct *napi, int budget)
3539 {
3540         struct igc_q_vector *q_vector = container_of(napi,
3541                                                      struct igc_q_vector,
3542                                                      napi);
3543         bool clean_complete = true;
3544         int work_done = 0;
3545
3546         if (q_vector->tx.ring)
3547                 clean_complete = igc_clean_tx_irq(q_vector, budget);
3548
3549         if (q_vector->rx.ring) {
3550                 int cleaned = igc_clean_rx_irq(q_vector, budget);
3551
3552                 work_done += cleaned;
3553                 if (cleaned >= budget)
3554                         clean_complete = false;
3555         }
3556
3557         /* If all work not completed, return budget and keep polling */
3558         if (!clean_complete)
3559                 return budget;
3560
3561         /* Exit the polling mode, but don't re-enable interrupts if stack might
3562          * poll us due to busy-polling
3563          */
3564         if (likely(napi_complete_done(napi, work_done)))
3565                 igc_ring_irq_enable(q_vector);
3566
3567         return min(work_done, budget - 1);
3568 }
3569
3570 /**
3571  * igc_alloc_q_vector - Allocate memory for a single interrupt vector
3572  * @adapter: board private structure to initialize
3573  * @v_count: q_vectors allocated on adapter, used for ring interleaving
3574  * @v_idx: index of vector in adapter struct
3575  * @txr_count: total number of Tx rings to allocate
3576  * @txr_idx: index of first Tx ring to allocate
3577  * @rxr_count: total number of Rx rings to allocate
3578  * @rxr_idx: index of first Rx ring to allocate
3579  *
3580  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
3581  */
3582 static int igc_alloc_q_vector(struct igc_adapter *adapter,
3583                               unsigned int v_count, unsigned int v_idx,
3584                               unsigned int txr_count, unsigned int txr_idx,
3585                               unsigned int rxr_count, unsigned int rxr_idx)
3586 {
3587         struct igc_q_vector *q_vector;
3588         struct igc_ring *ring;
3589         int ring_count;
3590
3591         /* igc only supports 1 Tx and/or 1 Rx queue per vector */
3592         if (txr_count > 1 || rxr_count > 1)
3593                 return -ENOMEM;
3594
3595         ring_count = txr_count + rxr_count;
3596
3597         /* allocate q_vector and rings */
3598         q_vector = adapter->q_vector[v_idx];
3599         if (!q_vector)
3600                 q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
3601                                    GFP_KERNEL);
3602         else
3603                 memset(q_vector, 0, struct_size(q_vector, ring, ring_count));
3604         if (!q_vector)
3605                 return -ENOMEM;
3606
3607         /* initialize NAPI */
3608         netif_napi_add(adapter->netdev, &q_vector->napi,
3609                        igc_poll, 64);
3610
3611         /* tie q_vector and adapter together */
3612         adapter->q_vector[v_idx] = q_vector;
3613         q_vector->adapter = adapter;
3614
3615         /* initialize work limits */
3616         q_vector->tx.work_limit = adapter->tx_work_limit;
3617
3618         /* initialize ITR configuration */
3619         q_vector->itr_register = adapter->io_addr + IGC_EITR(0);
3620         q_vector->itr_val = IGC_START_ITR;
3621
3622         /* initialize pointer to rings */
3623         ring = q_vector->ring;
3624
3625         /* initialize ITR */
3626         if (rxr_count) {
3627                 /* rx or rx/tx vector */
3628                 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
3629                         q_vector->itr_val = adapter->rx_itr_setting;
3630         } else {
3631                 /* tx only vector */
3632                 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
3633                         q_vector->itr_val = adapter->tx_itr_setting;
3634         }
3635
3636         if (txr_count) {
3637                 /* assign generic ring traits */
3638                 ring->dev = &adapter->pdev->dev;
3639                 ring->netdev = adapter->netdev;
3640
3641                 /* configure backlink on ring */
3642                 ring->q_vector = q_vector;
3643
3644                 /* update q_vector Tx values */
3645                 igc_add_ring(ring, &q_vector->tx);
3646
3647                 /* apply Tx specific ring traits */
3648                 ring->count = adapter->tx_ring_count;
3649                 ring->queue_index = txr_idx;
3650
3651                 /* assign ring to adapter */
3652                 adapter->tx_ring[txr_idx] = ring;
3653
3654                 /* push pointer to next ring */
3655                 ring++;
3656         }
3657
3658         if (rxr_count) {
3659                 /* assign generic ring traits */
3660                 ring->dev = &adapter->pdev->dev;
3661                 ring->netdev = adapter->netdev;
3662
3663                 /* configure backlink on ring */
3664                 ring->q_vector = q_vector;
3665
3666                 /* update q_vector Rx values */
3667                 igc_add_ring(ring, &q_vector->rx);
3668
3669                 /* apply Rx specific ring traits */
3670                 ring->count = adapter->rx_ring_count;
3671                 ring->queue_index = rxr_idx;
3672
3673                 /* assign ring to adapter */
3674                 adapter->rx_ring[rxr_idx] = ring;
3675         }
3676
3677         return 0;
3678 }
3679
3680 /**
3681  * igc_alloc_q_vectors - Allocate memory for interrupt vectors
3682  * @adapter: board private structure to initialize
3683  *
3684  * We allocate one q_vector per queue interrupt.  If allocation fails we
3685  * return -ENOMEM.
3686  */
3687 static int igc_alloc_q_vectors(struct igc_adapter *adapter)
3688 {
3689         int rxr_remaining = adapter->num_rx_queues;
3690         int txr_remaining = adapter->num_tx_queues;
3691         int rxr_idx = 0, txr_idx = 0, v_idx = 0;
3692         int q_vectors = adapter->num_q_vectors;
3693         int err;
3694
3695         if (q_vectors >= (rxr_remaining + txr_remaining)) {
3696                 for (; rxr_remaining; v_idx++) {
3697                         err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
3698                                                  0, 0, 1, rxr_idx);
3699
3700                         if (err)
3701                                 goto err_out;
3702
3703                         /* update counts and index */
3704                         rxr_remaining--;
3705                         rxr_idx++;
3706                 }
3707         }
3708
3709         for (; v_idx < q_vectors; v_idx++) {
3710                 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
3711                 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
3712
3713                 err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
3714                                          tqpv, txr_idx, rqpv, rxr_idx);
3715
3716                 if (err)
3717                         goto err_out;
3718
3719                 /* update counts and index */
3720                 rxr_remaining -= rqpv;
3721                 txr_remaining -= tqpv;
3722                 rxr_idx++;
3723                 txr_idx++;
3724         }
3725
3726         return 0;
3727
3728 err_out:
3729         adapter->num_tx_queues = 0;
3730         adapter->num_rx_queues = 0;
3731         adapter->num_q_vectors = 0;
3732
3733         while (v_idx--)
3734                 igc_free_q_vector(adapter, v_idx);
3735
3736         return -ENOMEM;
3737 }
3738
3739 /**
3740  * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
3741  * @adapter: Pointer to adapter structure
3742  * @msix: boolean for MSI-X capability
3743  *
3744  * This function initializes the interrupts and allocates all of the queues.
3745  */
3746 static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix)
3747 {
3748         struct net_device *dev = adapter->netdev;
3749         int err = 0;
3750
3751         igc_set_interrupt_capability(adapter, msix);
3752
3753         err = igc_alloc_q_vectors(adapter);
3754         if (err) {
3755                 netdev_err(dev, "Unable to allocate memory for vectors\n");
3756                 goto err_alloc_q_vectors;
3757         }
3758
3759         igc_cache_ring_register(adapter);
3760
3761         return 0;
3762
3763 err_alloc_q_vectors:
3764         igc_reset_interrupt_capability(adapter);
3765         return err;
3766 }
3767
3768 /**
3769  * igc_sw_init - Initialize general software structures (struct igc_adapter)
3770  * @adapter: board private structure to initialize
3771  *
3772  * igc_sw_init initializes the Adapter private data structure.
3773  * Fields are initialized based on PCI device information and
3774  * OS network device settings (MTU size).
3775  */
3776 static int igc_sw_init(struct igc_adapter *adapter)
3777 {
3778         struct net_device *netdev = adapter->netdev;
3779         struct pci_dev *pdev = adapter->pdev;
3780         struct igc_hw *hw = &adapter->hw;
3781
3782         pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3783
3784         /* set default ring sizes */
3785         adapter->tx_ring_count = IGC_DEFAULT_TXD;
3786         adapter->rx_ring_count = IGC_DEFAULT_RXD;
3787
3788         /* set default ITR values */
3789         adapter->rx_itr_setting = IGC_DEFAULT_ITR;
3790         adapter->tx_itr_setting = IGC_DEFAULT_ITR;
3791
3792         /* set default work limits */
3793         adapter->tx_work_limit = IGC_DEFAULT_TX_WORK;
3794
3795         /* adjust max frame to be at least the size of a standard frame */
3796         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
3797                                 VLAN_HLEN;
3798         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3799
3800         mutex_init(&adapter->nfc_rule_lock);
3801         INIT_LIST_HEAD(&adapter->nfc_rule_list);
3802         adapter->nfc_rule_count = 0;
3803
3804         spin_lock_init(&adapter->stats64_lock);
3805         /* Assume MSI-X interrupts, will be checked during IRQ allocation */
3806         adapter->flags |= IGC_FLAG_HAS_MSIX;
3807
3808         igc_init_queue_configuration(adapter);
3809
3810         /* This call may decrease the number of queues */
3811         if (igc_init_interrupt_scheme(adapter, true)) {
3812                 netdev_err(netdev, "Unable to allocate memory for queues\n");
3813                 return -ENOMEM;
3814         }
3815
3816         /* Explicitly disable IRQ since the NIC can be in any state. */
3817         igc_irq_disable(adapter);
3818
3819         set_bit(__IGC_DOWN, &adapter->state);
3820
3821         return 0;
3822 }
3823
3824 /**
3825  * igc_up - Open the interface and prepare it to handle traffic
3826  * @adapter: board private structure
3827  */
3828 void igc_up(struct igc_adapter *adapter)
3829 {
3830         struct igc_hw *hw = &adapter->hw;
3831         int i = 0;
3832
3833         /* hardware has been reset, we need to reload some things */
3834         igc_configure(adapter);
3835
3836         clear_bit(__IGC_DOWN, &adapter->state);
3837
3838         for (i = 0; i < adapter->num_q_vectors; i++)
3839                 napi_enable(&adapter->q_vector[i]->napi);
3840
3841         if (adapter->msix_entries)
3842                 igc_configure_msix(adapter);
3843         else
3844                 igc_assign_vector(adapter->q_vector[0], 0);
3845
3846         /* Clear any pending interrupts. */
3847         rd32(IGC_ICR);
3848         igc_irq_enable(adapter);
3849
3850         netif_tx_start_all_queues(adapter->netdev);
3851
3852         /* start the watchdog. */
3853         hw->mac.get_link_status = true;
3854         schedule_work(&adapter->watchdog_task);
3855 }
3856
3857 /**
3858  * igc_update_stats - Update the board statistics counters
3859  * @adapter: board private structure
3860  */
3861 void igc_update_stats(struct igc_adapter *adapter)
3862 {
3863         struct rtnl_link_stats64 *net_stats = &adapter->stats64;
3864         struct pci_dev *pdev = adapter->pdev;
3865         struct igc_hw *hw = &adapter->hw;
3866         u64 _bytes, _packets;
3867         u64 bytes, packets;
3868         unsigned int start;
3869         u32 mpc;
3870         int i;
3871
3872         /* Prevent stats update while adapter is being reset, or if the pci
3873          * connection is down.
3874          */
3875         if (adapter->link_speed == 0)
3876                 return;
3877         if (pci_channel_offline(pdev))
3878                 return;
3879
3880         packets = 0;
3881         bytes = 0;
3882
3883         rcu_read_lock();
3884         for (i = 0; i < adapter->num_rx_queues; i++) {
3885                 struct igc_ring *ring = adapter->rx_ring[i];
3886                 u32 rqdpc = rd32(IGC_RQDPC(i));
3887
3888                 if (hw->mac.type >= igc_i225)
3889                         wr32(IGC_RQDPC(i), 0);
3890
3891                 if (rqdpc) {
3892                         ring->rx_stats.drops += rqdpc;
3893                         net_stats->rx_fifo_errors += rqdpc;
3894                 }
3895
3896                 do {
3897                         start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
3898                         _bytes = ring->rx_stats.bytes;
3899                         _packets = ring->rx_stats.packets;
3900                 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
3901                 bytes += _bytes;
3902                 packets += _packets;
3903         }
3904
3905         net_stats->rx_bytes = bytes;
3906         net_stats->rx_packets = packets;
3907
3908         packets = 0;
3909         bytes = 0;
3910         for (i = 0; i < adapter->num_tx_queues; i++) {
3911                 struct igc_ring *ring = adapter->tx_ring[i];
3912
3913                 do {
3914                         start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
3915                         _bytes = ring->tx_stats.bytes;
3916                         _packets = ring->tx_stats.packets;
3917                 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
3918                 bytes += _bytes;
3919                 packets += _packets;
3920         }
3921         net_stats->tx_bytes = bytes;
3922         net_stats->tx_packets = packets;
3923         rcu_read_unlock();
3924
3925         /* read stats registers */
3926         adapter->stats.crcerrs += rd32(IGC_CRCERRS);
3927         adapter->stats.gprc += rd32(IGC_GPRC);
3928         adapter->stats.gorc += rd32(IGC_GORCL);
3929         rd32(IGC_GORCH); /* clear GORCL */
3930         adapter->stats.bprc += rd32(IGC_BPRC);
3931         adapter->stats.mprc += rd32(IGC_MPRC);
3932         adapter->stats.roc += rd32(IGC_ROC);
3933
3934         adapter->stats.prc64 += rd32(IGC_PRC64);
3935         adapter->stats.prc127 += rd32(IGC_PRC127);
3936         adapter->stats.prc255 += rd32(IGC_PRC255);
3937         adapter->stats.prc511 += rd32(IGC_PRC511);
3938         adapter->stats.prc1023 += rd32(IGC_PRC1023);
3939         adapter->stats.prc1522 += rd32(IGC_PRC1522);
3940         adapter->stats.tlpic += rd32(IGC_TLPIC);
3941         adapter->stats.rlpic += rd32(IGC_RLPIC);
3942         adapter->stats.hgptc += rd32(IGC_HGPTC);
3943
3944         mpc = rd32(IGC_MPC);
3945         adapter->stats.mpc += mpc;
3946         net_stats->rx_fifo_errors += mpc;
3947         adapter->stats.scc += rd32(IGC_SCC);
3948         adapter->stats.ecol += rd32(IGC_ECOL);
3949         adapter->stats.mcc += rd32(IGC_MCC);
3950         adapter->stats.latecol += rd32(IGC_LATECOL);
3951         adapter->stats.dc += rd32(IGC_DC);
3952         adapter->stats.rlec += rd32(IGC_RLEC);
3953         adapter->stats.xonrxc += rd32(IGC_XONRXC);
3954         adapter->stats.xontxc += rd32(IGC_XONTXC);
3955         adapter->stats.xoffrxc += rd32(IGC_XOFFRXC);
3956         adapter->stats.xofftxc += rd32(IGC_XOFFTXC);
3957         adapter->stats.fcruc += rd32(IGC_FCRUC);
3958         adapter->stats.gptc += rd32(IGC_GPTC);
3959         adapter->stats.gotc += rd32(IGC_GOTCL);
3960         rd32(IGC_GOTCH); /* clear GOTCL */
3961         adapter->stats.rnbc += rd32(IGC_RNBC);
3962         adapter->stats.ruc += rd32(IGC_RUC);
3963         adapter->stats.rfc += rd32(IGC_RFC);
3964         adapter->stats.rjc += rd32(IGC_RJC);
3965         adapter->stats.tor += rd32(IGC_TORH);
3966         adapter->stats.tot += rd32(IGC_TOTH);
3967         adapter->stats.tpr += rd32(IGC_TPR);
3968
3969         adapter->stats.ptc64 += rd32(IGC_PTC64);
3970         adapter->stats.ptc127 += rd32(IGC_PTC127);
3971         adapter->stats.ptc255 += rd32(IGC_PTC255);
3972         adapter->stats.ptc511 += rd32(IGC_PTC511);
3973         adapter->stats.ptc1023 += rd32(IGC_PTC1023);
3974         adapter->stats.ptc1522 += rd32(IGC_PTC1522);
3975
3976         adapter->stats.mptc += rd32(IGC_MPTC);
3977         adapter->stats.bptc += rd32(IGC_BPTC);
3978
3979         adapter->stats.tpt += rd32(IGC_TPT);
3980         adapter->stats.colc += rd32(IGC_COLC);
3981         adapter->stats.colc += rd32(IGC_RERC);
3982
3983         adapter->stats.algnerrc += rd32(IGC_ALGNERRC);
3984
3985         adapter->stats.tsctc += rd32(IGC_TSCTC);
3986
3987         adapter->stats.iac += rd32(IGC_IAC);
3988
3989         /* Fill out the OS statistics structure */
3990         net_stats->multicast = adapter->stats.mprc;
3991         net_stats->collisions = adapter->stats.colc;
3992
3993         /* Rx Errors */
3994
3995         /* RLEC on some newer hardware can be incorrect so build
3996          * our own version based on RUC and ROC
3997          */
3998         net_stats->rx_errors = adapter->stats.rxerrc +
3999                 adapter->stats.crcerrs + adapter->stats.algnerrc +
4000                 adapter->stats.ruc + adapter->stats.roc +
4001                 adapter->stats.cexterr;
4002         net_stats->rx_length_errors = adapter->stats.ruc +
4003                                       adapter->stats.roc;
4004         net_stats->rx_crc_errors = adapter->stats.crcerrs;
4005         net_stats->rx_frame_errors = adapter->stats.algnerrc;
4006         net_stats->rx_missed_errors = adapter->stats.mpc;
4007
4008         /* Tx Errors */
4009         net_stats->tx_errors = adapter->stats.ecol +
4010                                adapter->stats.latecol;
4011         net_stats->tx_aborted_errors = adapter->stats.ecol;
4012         net_stats->tx_window_errors = adapter->stats.latecol;
4013         net_stats->tx_carrier_errors = adapter->stats.tncrs;
4014
4015         /* Tx Dropped needs to be maintained elsewhere */
4016
4017         /* Management Stats */
4018         adapter->stats.mgptc += rd32(IGC_MGTPTC);
4019         adapter->stats.mgprc += rd32(IGC_MGTPRC);
4020         adapter->stats.mgpdc += rd32(IGC_MGTPDC);
4021 }
4022
4023 /**
4024  * igc_down - Close the interface
4025  * @adapter: board private structure
4026  */
4027 void igc_down(struct igc_adapter *adapter)
4028 {
4029         struct net_device *netdev = adapter->netdev;
4030         struct igc_hw *hw = &adapter->hw;
4031         u32 tctl, rctl;
4032         int i = 0;
4033
4034         set_bit(__IGC_DOWN, &adapter->state);
4035
4036         igc_ptp_suspend(adapter);
4037
4038         /* disable receives in the hardware */
4039         rctl = rd32(IGC_RCTL);
4040         wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN);
4041         /* flush and sleep below */
4042
4043         /* set trans_start so we don't get spurious watchdogs during reset */
4044         netif_trans_update(netdev);
4045
4046         netif_carrier_off(netdev);
4047         netif_tx_stop_all_queues(netdev);
4048
4049         /* disable transmits in the hardware */
4050         tctl = rd32(IGC_TCTL);
4051         tctl &= ~IGC_TCTL_EN;
4052         wr32(IGC_TCTL, tctl);
4053         /* flush both disables and wait for them to finish */
4054         wrfl();
4055         usleep_range(10000, 20000);
4056
4057         igc_irq_disable(adapter);
4058
4059         adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
4060
4061         for (i = 0; i < adapter->num_q_vectors; i++) {
4062                 if (adapter->q_vector[i]) {
4063                         napi_synchronize(&adapter->q_vector[i]->napi);
4064                         napi_disable(&adapter->q_vector[i]->napi);
4065                 }
4066         }
4067
4068         del_timer_sync(&adapter->watchdog_timer);
4069         del_timer_sync(&adapter->phy_info_timer);
4070
4071         /* record the stats before reset*/
4072         spin_lock(&adapter->stats64_lock);
4073         igc_update_stats(adapter);
4074         spin_unlock(&adapter->stats64_lock);
4075
4076         adapter->link_speed = 0;
4077         adapter->link_duplex = 0;
4078
4079         if (!pci_channel_offline(adapter->pdev))
4080                 igc_reset(adapter);
4081
4082         /* clear VLAN promisc flag so VFTA will be updated if necessary */
4083         adapter->flags &= ~IGC_FLAG_VLAN_PROMISC;
4084
4085         igc_clean_all_tx_rings(adapter);
4086         igc_clean_all_rx_rings(adapter);
4087 }
4088
4089 void igc_reinit_locked(struct igc_adapter *adapter)
4090 {
4091         while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
4092                 usleep_range(1000, 2000);
4093         igc_down(adapter);
4094         igc_up(adapter);
4095         clear_bit(__IGC_RESETTING, &adapter->state);
4096 }
4097
4098 static void igc_reset_task(struct work_struct *work)
4099 {
4100         struct igc_adapter *adapter;
4101
4102         adapter = container_of(work, struct igc_adapter, reset_task);
4103
4104         rtnl_lock();
4105         /* If we're already down or resetting, just bail */
4106         if (test_bit(__IGC_DOWN, &adapter->state) ||
4107             test_bit(__IGC_RESETTING, &adapter->state)) {
4108                 rtnl_unlock();
4109                 return;
4110         }
4111
4112         igc_rings_dump(adapter);
4113         igc_regs_dump(adapter);
4114         netdev_err(adapter->netdev, "Reset adapter\n");
4115         igc_reinit_locked(adapter);
4116         rtnl_unlock();
4117 }
4118
4119 /**
4120  * igc_change_mtu - Change the Maximum Transfer Unit
4121  * @netdev: network interface device structure
4122  * @new_mtu: new value for maximum frame size
4123  *
4124  * Returns 0 on success, negative on failure
4125  */
4126 static int igc_change_mtu(struct net_device *netdev, int new_mtu)
4127 {
4128         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4129         struct igc_adapter *adapter = netdev_priv(netdev);
4130
4131         if (igc_xdp_is_enabled(adapter) && new_mtu > ETH_DATA_LEN) {
4132                 netdev_dbg(netdev, "Jumbo frames not supported with XDP");
4133                 return -EINVAL;
4134         }
4135
4136         /* adjust max frame to be at least the size of a standard frame */
4137         if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
4138                 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
4139
4140         while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
4141                 usleep_range(1000, 2000);
4142
4143         /* igc_down has a dependency on max_frame_size */
4144         adapter->max_frame_size = max_frame;
4145
4146         if (netif_running(netdev))
4147                 igc_down(adapter);
4148
4149         netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu);
4150         netdev->mtu = new_mtu;
4151
4152         if (netif_running(netdev))
4153                 igc_up(adapter);
4154         else
4155                 igc_reset(adapter);
4156
4157         clear_bit(__IGC_RESETTING, &adapter->state);
4158
4159         return 0;
4160 }
4161
4162 /**
4163  * igc_get_stats64 - Get System Network Statistics
4164  * @netdev: network interface device structure
4165  * @stats: rtnl_link_stats64 pointer
4166  *
4167  * Returns the address of the device statistics structure.
4168  * The statistics are updated here and also from the timer callback.
4169  */
4170 static void igc_get_stats64(struct net_device *netdev,
4171                             struct rtnl_link_stats64 *stats)
4172 {
4173         struct igc_adapter *adapter = netdev_priv(netdev);
4174
4175         spin_lock(&adapter->stats64_lock);
4176         if (!test_bit(__IGC_RESETTING, &adapter->state))
4177                 igc_update_stats(adapter);
4178         memcpy(stats, &adapter->stats64, sizeof(*stats));
4179         spin_unlock(&adapter->stats64_lock);
4180 }
4181
4182 static netdev_features_t igc_fix_features(struct net_device *netdev,
4183                                           netdev_features_t features)
4184 {
4185         /* Since there is no support for separate Rx/Tx vlan accel
4186          * enable/disable make sure Tx flag is always in same state as Rx.
4187          */
4188         if (features & NETIF_F_HW_VLAN_CTAG_RX)
4189                 features |= NETIF_F_HW_VLAN_CTAG_TX;
4190         else
4191                 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
4192
4193         return features;
4194 }
4195
4196 static int igc_set_features(struct net_device *netdev,
4197                             netdev_features_t features)
4198 {
4199         netdev_features_t changed = netdev->features ^ features;
4200         struct igc_adapter *adapter = netdev_priv(netdev);
4201
4202         /* Add VLAN support */
4203         if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
4204                 return 0;
4205
4206         if (!(features & NETIF_F_NTUPLE))
4207                 igc_flush_nfc_rules(adapter);
4208
4209         netdev->features = features;
4210
4211         if (netif_running(netdev))
4212                 igc_reinit_locked(adapter);
4213         else
4214                 igc_reset(adapter);
4215
4216         return 1;
4217 }
4218
4219 static netdev_features_t
4220 igc_features_check(struct sk_buff *skb, struct net_device *dev,
4221                    netdev_features_t features)
4222 {
4223         unsigned int network_hdr_len, mac_hdr_len;
4224
4225         /* Make certain the headers can be described by a context descriptor */
4226         mac_hdr_len = skb_network_header(skb) - skb->data;
4227         if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN))
4228                 return features & ~(NETIF_F_HW_CSUM |
4229                                     NETIF_F_SCTP_CRC |
4230                                     NETIF_F_HW_VLAN_CTAG_TX |
4231                                     NETIF_F_TSO |
4232                                     NETIF_F_TSO6);
4233
4234         network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
4235         if (unlikely(network_hdr_len >  IGC_MAX_NETWORK_HDR_LEN))
4236                 return features & ~(NETIF_F_HW_CSUM |
4237                                     NETIF_F_SCTP_CRC |
4238                                     NETIF_F_TSO |
4239                                     NETIF_F_TSO6);
4240
4241         /* We can only support IPv4 TSO in tunnels if we can mangle the
4242          * inner IP ID field, so strip TSO if MANGLEID is not supported.
4243          */
4244         if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
4245                 features &= ~NETIF_F_TSO;
4246
4247         return features;
4248 }
4249
4250 static void igc_tsync_interrupt(struct igc_adapter *adapter)
4251 {
4252         u32 ack, tsauxc, sec, nsec, tsicr;
4253         struct igc_hw *hw = &adapter->hw;
4254         struct ptp_clock_event event;
4255         struct timespec64 ts;
4256
4257         tsicr = rd32(IGC_TSICR);
4258         ack = 0;
4259
4260         if (tsicr & IGC_TSICR_SYS_WRAP) {
4261                 event.type = PTP_CLOCK_PPS;
4262                 if (adapter->ptp_caps.pps)
4263                         ptp_clock_event(adapter->ptp_clock, &event);
4264                 ack |= IGC_TSICR_SYS_WRAP;
4265         }
4266
4267         if (tsicr & IGC_TSICR_TXTS) {
4268                 /* retrieve hardware timestamp */
4269                 schedule_work(&adapter->ptp_tx_work);
4270                 ack |= IGC_TSICR_TXTS;
4271         }
4272
4273         if (tsicr & IGC_TSICR_TT0) {
4274                 spin_lock(&adapter->tmreg_lock);
4275                 ts = timespec64_add(adapter->perout[0].start,
4276                                     adapter->perout[0].period);
4277                 wr32(IGC_TRGTTIML0, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
4278                 wr32(IGC_TRGTTIMH0, (u32)ts.tv_sec);
4279                 tsauxc = rd32(IGC_TSAUXC);
4280                 tsauxc |= IGC_TSAUXC_EN_TT0;
4281                 wr32(IGC_TSAUXC, tsauxc);
4282                 adapter->perout[0].start = ts;
4283                 spin_unlock(&adapter->tmreg_lock);
4284                 ack |= IGC_TSICR_TT0;
4285         }
4286
4287         if (tsicr & IGC_TSICR_TT1) {
4288                 spin_lock(&adapter->tmreg_lock);
4289                 ts = timespec64_add(adapter->perout[1].start,
4290                                     adapter->perout[1].period);
4291                 wr32(IGC_TRGTTIML1, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
4292                 wr32(IGC_TRGTTIMH1, (u32)ts.tv_sec);
4293                 tsauxc = rd32(IGC_TSAUXC);
4294                 tsauxc |= IGC_TSAUXC_EN_TT1;
4295                 wr32(IGC_TSAUXC, tsauxc);
4296                 adapter->perout[1].start = ts;
4297                 spin_unlock(&adapter->tmreg_lock);
4298                 ack |= IGC_TSICR_TT1;
4299         }
4300
4301         if (tsicr & IGC_TSICR_AUTT0) {
4302                 nsec = rd32(IGC_AUXSTMPL0);
4303                 sec  = rd32(IGC_AUXSTMPH0);
4304                 event.type = PTP_CLOCK_EXTTS;
4305                 event.index = 0;
4306                 event.timestamp = sec * NSEC_PER_SEC + nsec;
4307                 ptp_clock_event(adapter->ptp_clock, &event);
4308                 ack |= IGC_TSICR_AUTT0;
4309         }
4310
4311         if (tsicr & IGC_TSICR_AUTT1) {
4312                 nsec = rd32(IGC_AUXSTMPL1);
4313                 sec  = rd32(IGC_AUXSTMPH1);
4314                 event.type = PTP_CLOCK_EXTTS;
4315                 event.index = 1;
4316                 event.timestamp = sec * NSEC_PER_SEC + nsec;
4317                 ptp_clock_event(adapter->ptp_clock, &event);
4318                 ack |= IGC_TSICR_AUTT1;
4319         }
4320
4321         /* acknowledge the interrupts */
4322         wr32(IGC_TSICR, ack);
4323 }
4324
4325 /**
4326  * igc_msix_other - msix other interrupt handler
4327  * @irq: interrupt number
4328  * @data: pointer to a q_vector
4329  */
4330 static irqreturn_t igc_msix_other(int irq, void *data)
4331 {
4332         struct igc_adapter *adapter = data;
4333         struct igc_hw *hw = &adapter->hw;
4334         u32 icr = rd32(IGC_ICR);
4335
4336         /* reading ICR causes bit 31 of EICR to be cleared */
4337         if (icr & IGC_ICR_DRSTA)
4338                 schedule_work(&adapter->reset_task);
4339
4340         if (icr & IGC_ICR_DOUTSYNC) {
4341                 /* HW is reporting DMA is out of sync */
4342                 adapter->stats.doosync++;
4343         }
4344
4345         if (icr & IGC_ICR_LSC) {
4346                 hw->mac.get_link_status = true;
4347                 /* guard against interrupt when we're going down */
4348                 if (!test_bit(__IGC_DOWN, &adapter->state))
4349                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
4350         }
4351
4352         if (icr & IGC_ICR_TS)
4353                 igc_tsync_interrupt(adapter);
4354
4355         wr32(IGC_EIMS, adapter->eims_other);
4356
4357         return IRQ_HANDLED;
4358 }
4359
4360 static void igc_write_itr(struct igc_q_vector *q_vector)
4361 {
4362         u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK;
4363
4364         if (!q_vector->set_itr)
4365                 return;
4366
4367         if (!itr_val)
4368                 itr_val = IGC_ITR_VAL_MASK;
4369
4370         itr_val |= IGC_EITR_CNT_IGNR;
4371
4372         writel(itr_val, q_vector->itr_register);
4373         q_vector->set_itr = 0;
4374 }
4375
4376 static irqreturn_t igc_msix_ring(int irq, void *data)
4377 {
4378         struct igc_q_vector *q_vector = data;
4379
4380         /* Write the ITR value calculated from the previous interrupt. */
4381         igc_write_itr(q_vector);
4382
4383         napi_schedule(&q_vector->napi);
4384
4385         return IRQ_HANDLED;
4386 }
4387
4388 /**
4389  * igc_request_msix - Initialize MSI-X interrupts
4390  * @adapter: Pointer to adapter structure
4391  *
4392  * igc_request_msix allocates MSI-X vectors and requests interrupts from the
4393  * kernel.
4394  */
4395 static int igc_request_msix(struct igc_adapter *adapter)
4396 {
4397         int i = 0, err = 0, vector = 0, free_vector = 0;
4398         struct net_device *netdev = adapter->netdev;
4399
4400         err = request_irq(adapter->msix_entries[vector].vector,
4401                           &igc_msix_other, 0, netdev->name, adapter);
4402         if (err)
4403                 goto err_out;
4404
4405         for (i = 0; i < adapter->num_q_vectors; i++) {
4406                 struct igc_q_vector *q_vector = adapter->q_vector[i];
4407
4408                 vector++;
4409
4410                 q_vector->itr_register = adapter->io_addr + IGC_EITR(vector);
4411
4412                 if (q_vector->rx.ring && q_vector->tx.ring)
4413                         sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
4414                                 q_vector->rx.ring->queue_index);
4415                 else if (q_vector->tx.ring)
4416                         sprintf(q_vector->name, "%s-tx-%u", netdev->name,
4417                                 q_vector->tx.ring->queue_index);
4418                 else if (q_vector->rx.ring)
4419                         sprintf(q_vector->name, "%s-rx-%u", netdev->name,
4420                                 q_vector->rx.ring->queue_index);
4421                 else
4422                         sprintf(q_vector->name, "%s-unused", netdev->name);
4423
4424                 err = request_irq(adapter->msix_entries[vector].vector,
4425                                   igc_msix_ring, 0, q_vector->name,
4426                                   q_vector);
4427                 if (err)
4428                         goto err_free;
4429         }
4430
4431         igc_configure_msix(adapter);
4432         return 0;
4433
4434 err_free:
4435         /* free already assigned IRQs */
4436         free_irq(adapter->msix_entries[free_vector++].vector, adapter);
4437
4438         vector--;
4439         for (i = 0; i < vector; i++) {
4440                 free_irq(adapter->msix_entries[free_vector++].vector,
4441                          adapter->q_vector[i]);
4442         }
4443 err_out:
4444         return err;
4445 }
4446
4447 /**
4448  * igc_clear_interrupt_scheme - reset the device to a state of no interrupts
4449  * @adapter: Pointer to adapter structure
4450  *
4451  * This function resets the device so that it has 0 rx queues, tx queues, and
4452  * MSI-X interrupts allocated.
4453  */
4454 static void igc_clear_interrupt_scheme(struct igc_adapter *adapter)
4455 {
4456         igc_free_q_vectors(adapter);
4457         igc_reset_interrupt_capability(adapter);
4458 }
4459
4460 /* Need to wait a few seconds after link up to get diagnostic information from
4461  * the phy
4462  */
4463 static void igc_update_phy_info(struct timer_list *t)
4464 {
4465         struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer);
4466
4467         igc_get_phy_info(&adapter->hw);
4468 }
4469
4470 /**
4471  * igc_has_link - check shared code for link and determine up/down
4472  * @adapter: pointer to driver private info
4473  */
4474 bool igc_has_link(struct igc_adapter *adapter)
4475 {
4476         struct igc_hw *hw = &adapter->hw;
4477         bool link_active = false;
4478
4479         /* get_link_status is set on LSC (link status) interrupt or
4480          * rx sequence error interrupt.  get_link_status will stay
4481          * false until the igc_check_for_link establishes link
4482          * for copper adapters ONLY
4483          */
4484         switch (hw->phy.media_type) {
4485         case igc_media_type_copper:
4486                 if (!hw->mac.get_link_status)
4487                         return true;
4488                 hw->mac.ops.check_for_link(hw);
4489                 link_active = !hw->mac.get_link_status;
4490                 break;
4491         default:
4492         case igc_media_type_unknown:
4493                 break;
4494         }
4495
4496         if (hw->mac.type == igc_i225 &&
4497             hw->phy.id == I225_I_PHY_ID) {
4498                 if (!netif_carrier_ok(adapter->netdev)) {
4499                         adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
4500                 } else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) {
4501                         adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE;
4502                         adapter->link_check_timeout = jiffies;
4503                 }
4504         }
4505
4506         return link_active;
4507 }
4508
4509 /**
4510  * igc_watchdog - Timer Call-back
4511  * @t: timer for the watchdog
4512  */
4513 static void igc_watchdog(struct timer_list *t)
4514 {
4515         struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer);
4516         /* Do the rest outside of interrupt context */
4517         schedule_work(&adapter->watchdog_task);
4518 }
4519
4520 static void igc_watchdog_task(struct work_struct *work)
4521 {
4522         struct igc_adapter *adapter = container_of(work,
4523                                                    struct igc_adapter,
4524                                                    watchdog_task);
4525         struct net_device *netdev = adapter->netdev;
4526         struct igc_hw *hw = &adapter->hw;
4527         struct igc_phy_info *phy = &hw->phy;
4528         u16 phy_data, retry_count = 20;
4529         u32 link;
4530         int i;
4531
4532         link = igc_has_link(adapter);
4533
4534         if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) {
4535                 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4536                         adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
4537                 else
4538                         link = false;
4539         }
4540
4541         if (link) {
4542                 /* Cancel scheduled suspend requests. */
4543                 pm_runtime_resume(netdev->dev.parent);
4544
4545                 if (!netif_carrier_ok(netdev)) {
4546                         u32 ctrl;
4547
4548                         hw->mac.ops.get_speed_and_duplex(hw,
4549                                                          &adapter->link_speed,
4550                                                          &adapter->link_duplex);
4551
4552                         ctrl = rd32(IGC_CTRL);
4553                         /* Link status message must follow this format */
4554                         netdev_info(netdev,
4555                                     "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4556                                     adapter->link_speed,
4557                                     adapter->link_duplex == FULL_DUPLEX ?
4558                                     "Full" : "Half",
4559                                     (ctrl & IGC_CTRL_TFCE) &&
4560                                     (ctrl & IGC_CTRL_RFCE) ? "RX/TX" :
4561                                     (ctrl & IGC_CTRL_RFCE) ?  "RX" :
4562                                     (ctrl & IGC_CTRL_TFCE) ?  "TX" : "None");
4563
4564                         /* disable EEE if enabled */
4565                         if ((adapter->flags & IGC_FLAG_EEE) &&
4566                             adapter->link_duplex == HALF_DUPLEX) {
4567                                 netdev_info(netdev,
4568                                             "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex\n");
4569                                 adapter->hw.dev_spec._base.eee_enable = false;
4570                                 adapter->flags &= ~IGC_FLAG_EEE;
4571                         }
4572
4573                         /* check if SmartSpeed worked */
4574                         igc_check_downshift(hw);
4575                         if (phy->speed_downgraded)
4576                                 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4577
4578                         /* adjust timeout factor according to speed/duplex */
4579                         adapter->tx_timeout_factor = 1;
4580                         switch (adapter->link_speed) {
4581                         case SPEED_10:
4582                                 adapter->tx_timeout_factor = 14;
4583                                 break;
4584                         case SPEED_100:
4585                                 /* maybe add some timeout factor ? */
4586                                 break;
4587                         }
4588
4589                         if (adapter->link_speed != SPEED_1000)
4590                                 goto no_wait;
4591
4592                         /* wait for Remote receiver status OK */
4593 retry_read_status:
4594                         if (!igc_read_phy_reg(hw, PHY_1000T_STATUS,
4595                                               &phy_data)) {
4596                                 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
4597                                     retry_count) {
4598                                         msleep(100);
4599                                         retry_count--;
4600                                         goto retry_read_status;
4601                                 } else if (!retry_count) {
4602                                         netdev_err(netdev, "exceed max 2 second\n");
4603                                 }
4604                         } else {
4605                                 netdev_err(netdev, "read 1000Base-T Status Reg\n");
4606                         }
4607 no_wait:
4608                         netif_carrier_on(netdev);
4609
4610                         /* link state has changed, schedule phy info update */
4611                         if (!test_bit(__IGC_DOWN, &adapter->state))
4612                                 mod_timer(&adapter->phy_info_timer,
4613                                           round_jiffies(jiffies + 2 * HZ));
4614                 }
4615         } else {
4616                 if (netif_carrier_ok(netdev)) {
4617                         adapter->link_speed = 0;
4618                         adapter->link_duplex = 0;
4619
4620                         /* Links status message must follow this format */
4621                         netdev_info(netdev, "NIC Link is Down\n");
4622                         netif_carrier_off(netdev);
4623
4624                         /* link state has changed, schedule phy info update */
4625                         if (!test_bit(__IGC_DOWN, &adapter->state))
4626                                 mod_timer(&adapter->phy_info_timer,
4627                                           round_jiffies(jiffies + 2 * HZ));
4628
4629                         /* link is down, time to check for alternate media */
4630                         if (adapter->flags & IGC_FLAG_MAS_ENABLE) {
4631                                 if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
4632                                         schedule_work(&adapter->reset_task);
4633                                         /* return immediately */
4634                                         return;
4635                                 }
4636                         }
4637                         pm_schedule_suspend(netdev->dev.parent,
4638                                             MSEC_PER_SEC * 5);
4639
4640                 /* also check for alternate media here */
4641                 } else if (!netif_carrier_ok(netdev) &&
4642                            (adapter->flags & IGC_FLAG_MAS_ENABLE)) {
4643                         if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
4644                                 schedule_work(&adapter->reset_task);
4645                                 /* return immediately */
4646                                 return;
4647                         }
4648                 }
4649         }
4650
4651         spin_lock(&adapter->stats64_lock);
4652         igc_update_stats(adapter);
4653         spin_unlock(&adapter->stats64_lock);
4654
4655         for (i = 0; i < adapter->num_tx_queues; i++) {
4656                 struct igc_ring *tx_ring = adapter->tx_ring[i];
4657
4658                 if (!netif_carrier_ok(netdev)) {
4659                         /* We've lost link, so the controller stops DMA,
4660                          * but we've got queued Tx work that's never going
4661                          * to get done, so reset controller to flush Tx.
4662                          * (Do the reset outside of interrupt context).
4663                          */
4664                         if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) {
4665                                 adapter->tx_timeout_count++;
4666                                 schedule_work(&adapter->reset_task);
4667                                 /* return immediately since reset is imminent */
4668                                 return;
4669                         }
4670                 }
4671
4672                 /* Force detection of hung controller every watchdog period */
4673                 set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4674         }
4675
4676         /* Cause software interrupt to ensure Rx ring is cleaned */
4677         if (adapter->flags & IGC_FLAG_HAS_MSIX) {
4678                 u32 eics = 0;
4679
4680                 for (i = 0; i < adapter->num_q_vectors; i++)
4681                         eics |= adapter->q_vector[i]->eims_value;
4682                 wr32(IGC_EICS, eics);
4683         } else {
4684                 wr32(IGC_ICS, IGC_ICS_RXDMT0);
4685         }
4686
4687         igc_ptp_tx_hang(adapter);
4688
4689         /* Reset the timer */
4690         if (!test_bit(__IGC_DOWN, &adapter->state)) {
4691                 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)
4692                         mod_timer(&adapter->watchdog_timer,
4693                                   round_jiffies(jiffies +  HZ));
4694                 else
4695                         mod_timer(&adapter->watchdog_timer,
4696                                   round_jiffies(jiffies + 2 * HZ));
4697         }
4698 }
4699
4700 /**
4701  * igc_intr_msi - Interrupt Handler
4702  * @irq: interrupt number
4703  * @data: pointer to a network interface device structure
4704  */
4705 static irqreturn_t igc_intr_msi(int irq, void *data)
4706 {
4707         struct igc_adapter *adapter = data;
4708         struct igc_q_vector *q_vector = adapter->q_vector[0];
4709         struct igc_hw *hw = &adapter->hw;
4710         /* read ICR disables interrupts using IAM */
4711         u32 icr = rd32(IGC_ICR);
4712
4713         igc_write_itr(q_vector);
4714
4715         if (icr & IGC_ICR_DRSTA)
4716                 schedule_work(&adapter->reset_task);
4717
4718         if (icr & IGC_ICR_DOUTSYNC) {
4719                 /* HW is reporting DMA is out of sync */
4720                 adapter->stats.doosync++;
4721         }
4722
4723         if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
4724                 hw->mac.get_link_status = true;
4725                 if (!test_bit(__IGC_DOWN, &adapter->state))
4726                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
4727         }
4728
4729         napi_schedule(&q_vector->napi);
4730
4731         return IRQ_HANDLED;
4732 }
4733
4734 /**
4735  * igc_intr - Legacy Interrupt Handler
4736  * @irq: interrupt number
4737  * @data: pointer to a network interface device structure
4738  */
4739 static irqreturn_t igc_intr(int irq, void *data)
4740 {
4741         struct igc_adapter *adapter = data;
4742         struct igc_q_vector *q_vector = adapter->q_vector[0];
4743         struct igc_hw *hw = &adapter->hw;
4744         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
4745          * need for the IMC write
4746          */
4747         u32 icr = rd32(IGC_ICR);
4748
4749         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
4750          * not set, then the adapter didn't send an interrupt
4751          */
4752         if (!(icr & IGC_ICR_INT_ASSERTED))
4753                 return IRQ_NONE;
4754
4755         igc_write_itr(q_vector);
4756
4757         if (icr & IGC_ICR_DRSTA)
4758                 schedule_work(&adapter->reset_task);
4759
4760         if (icr & IGC_ICR_DOUTSYNC) {
4761                 /* HW is reporting DMA is out of sync */
4762                 adapter->stats.doosync++;
4763         }
4764
4765         if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
4766                 hw->mac.get_link_status = true;
4767                 /* guard against interrupt when we're going down */
4768                 if (!test_bit(__IGC_DOWN, &adapter->state))
4769                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
4770         }
4771
4772         napi_schedule(&q_vector->napi);
4773
4774         return IRQ_HANDLED;
4775 }
4776
4777 static void igc_free_irq(struct igc_adapter *adapter)
4778 {
4779         if (adapter->msix_entries) {
4780                 int vector = 0, i;
4781
4782                 free_irq(adapter->msix_entries[vector++].vector, adapter);
4783
4784                 for (i = 0; i < adapter->num_q_vectors; i++)
4785                         free_irq(adapter->msix_entries[vector++].vector,
4786                                  adapter->q_vector[i]);
4787         } else {
4788                 free_irq(adapter->pdev->irq, adapter);
4789         }
4790 }
4791
4792 /**
4793  * igc_request_irq - initialize interrupts
4794  * @adapter: Pointer to adapter structure
4795  *
4796  * Attempts to configure interrupts using the best available
4797  * capabilities of the hardware and kernel.
4798  */
4799 static int igc_request_irq(struct igc_adapter *adapter)
4800 {
4801         struct net_device *netdev = adapter->netdev;
4802         struct pci_dev *pdev = adapter->pdev;
4803         int err = 0;
4804
4805         if (adapter->flags & IGC_FLAG_HAS_MSIX) {
4806                 err = igc_request_msix(adapter);
4807                 if (!err)
4808                         goto request_done;
4809                 /* fall back to MSI */
4810                 igc_free_all_tx_resources(adapter);
4811                 igc_free_all_rx_resources(adapter);
4812
4813                 igc_clear_interrupt_scheme(adapter);
4814                 err = igc_init_interrupt_scheme(adapter, false);
4815                 if (err)
4816                         goto request_done;
4817                 igc_setup_all_tx_resources(adapter);
4818                 igc_setup_all_rx_resources(adapter);
4819                 igc_configure(adapter);
4820         }
4821
4822         igc_assign_vector(adapter->q_vector[0], 0);
4823
4824         if (adapter->flags & IGC_FLAG_HAS_MSI) {
4825                 err = request_irq(pdev->irq, &igc_intr_msi, 0,
4826                                   netdev->name, adapter);
4827                 if (!err)
4828                         goto request_done;
4829
4830                 /* fall back to legacy interrupts */
4831                 igc_reset_interrupt_capability(adapter);
4832                 adapter->flags &= ~IGC_FLAG_HAS_MSI;
4833         }
4834
4835         err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED,
4836                           netdev->name, adapter);
4837
4838         if (err)
4839                 netdev_err(netdev, "Error %d getting interrupt\n", err);
4840
4841 request_done:
4842         return err;
4843 }
4844
4845 /**
4846  * __igc_open - Called when a network interface is made active
4847  * @netdev: network interface device structure
4848  * @resuming: boolean indicating if the device is resuming
4849  *
4850  * Returns 0 on success, negative value on failure
4851  *
4852  * The open entry point is called when a network interface is made
4853  * active by the system (IFF_UP).  At this point all resources needed
4854  * for transmit and receive operations are allocated, the interrupt
4855  * handler is registered with the OS, the watchdog timer is started,
4856  * and the stack is notified that the interface is ready.
4857  */
4858 static int __igc_open(struct net_device *netdev, bool resuming)
4859 {
4860         struct igc_adapter *adapter = netdev_priv(netdev);
4861         struct pci_dev *pdev = adapter->pdev;
4862         struct igc_hw *hw = &adapter->hw;
4863         int err = 0;
4864         int i = 0;
4865
4866         /* disallow open during test */
4867
4868         if (test_bit(__IGC_TESTING, &adapter->state)) {
4869                 WARN_ON(resuming);
4870                 return -EBUSY;
4871         }
4872
4873         if (!resuming)
4874                 pm_runtime_get_sync(&pdev->dev);
4875
4876         netif_carrier_off(netdev);
4877
4878         /* allocate transmit descriptors */
4879         err = igc_setup_all_tx_resources(adapter);
4880         if (err)
4881                 goto err_setup_tx;
4882
4883         /* allocate receive descriptors */
4884         err = igc_setup_all_rx_resources(adapter);
4885         if (err)
4886                 goto err_setup_rx;
4887
4888         igc_power_up_link(adapter);
4889
4890         igc_configure(adapter);
4891
4892         err = igc_request_irq(adapter);
4893         if (err)
4894                 goto err_req_irq;
4895
4896         /* Notify the stack of the actual queue counts. */
4897         err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
4898         if (err)
4899                 goto err_set_queues;
4900
4901         err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
4902         if (err)
4903                 goto err_set_queues;
4904
4905         clear_bit(__IGC_DOWN, &adapter->state);
4906
4907         for (i = 0; i < adapter->num_q_vectors; i++)
4908                 napi_enable(&adapter->q_vector[i]->napi);
4909
4910         /* Clear any pending interrupts. */
4911         rd32(IGC_ICR);
4912         igc_irq_enable(adapter);
4913
4914         if (!resuming)
4915                 pm_runtime_put(&pdev->dev);
4916
4917         netif_tx_start_all_queues(netdev);
4918
4919         /* start the watchdog. */
4920         hw->mac.get_link_status = true;
4921         schedule_work(&adapter->watchdog_task);
4922
4923         return IGC_SUCCESS;
4924
4925 err_set_queues:
4926         igc_free_irq(adapter);
4927 err_req_irq:
4928         igc_release_hw_control(adapter);
4929         igc_power_down_phy_copper_base(&adapter->hw);
4930         igc_free_all_rx_resources(adapter);
4931 err_setup_rx:
4932         igc_free_all_tx_resources(adapter);
4933 err_setup_tx:
4934         igc_reset(adapter);
4935         if (!resuming)
4936                 pm_runtime_put(&pdev->dev);
4937
4938         return err;
4939 }
4940
4941 int igc_open(struct net_device *netdev)
4942 {
4943         return __igc_open(netdev, false);
4944 }
4945
4946 /**
4947  * __igc_close - Disables a network interface
4948  * @netdev: network interface device structure
4949  * @suspending: boolean indicating the device is suspending
4950  *
4951  * Returns 0, this is not allowed to fail
4952  *
4953  * The close entry point is called when an interface is de-activated
4954  * by the OS.  The hardware is still under the driver's control, but
4955  * needs to be disabled.  A global MAC reset is issued to stop the
4956  * hardware, and all transmit and receive resources are freed.
4957  */
4958 static int __igc_close(struct net_device *netdev, bool suspending)
4959 {
4960         struct igc_adapter *adapter = netdev_priv(netdev);
4961         struct pci_dev *pdev = adapter->pdev;
4962
4963         WARN_ON(test_bit(__IGC_RESETTING, &adapter->state));
4964
4965         if (!suspending)
4966                 pm_runtime_get_sync(&pdev->dev);
4967
4968         igc_down(adapter);
4969
4970         igc_release_hw_control(adapter);
4971
4972         igc_free_irq(adapter);
4973
4974         igc_free_all_tx_resources(adapter);
4975         igc_free_all_rx_resources(adapter);
4976
4977         if (!suspending)
4978                 pm_runtime_put_sync(&pdev->dev);
4979
4980         return 0;
4981 }
4982
4983 int igc_close(struct net_device *netdev)
4984 {
4985         if (netif_device_present(netdev) || netdev->dismantle)
4986                 return __igc_close(netdev, false);
4987         return 0;
4988 }
4989
4990 /**
4991  * igc_ioctl - Access the hwtstamp interface
4992  * @netdev: network interface device structure
4993  * @ifr: interface request data
4994  * @cmd: ioctl command
4995  **/
4996 static int igc_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4997 {
4998         switch (cmd) {
4999         case SIOCGHWTSTAMP:
5000                 return igc_ptp_get_ts_config(netdev, ifr);
5001         case SIOCSHWTSTAMP:
5002                 return igc_ptp_set_ts_config(netdev, ifr);
5003         default:
5004                 return -EOPNOTSUPP;
5005         }
5006 }
5007
5008 static int igc_save_launchtime_params(struct igc_adapter *adapter, int queue,
5009                                       bool enable)
5010 {
5011         struct igc_ring *ring;
5012         int i;
5013
5014         if (queue < 0 || queue >= adapter->num_tx_queues)
5015                 return -EINVAL;
5016
5017         ring = adapter->tx_ring[queue];
5018         ring->launchtime_enable = enable;
5019
5020         if (adapter->base_time)
5021                 return 0;
5022
5023         adapter->cycle_time = NSEC_PER_SEC;
5024
5025         for (i = 0; i < adapter->num_tx_queues; i++) {
5026                 ring = adapter->tx_ring[i];
5027                 ring->start_time = 0;
5028                 ring->end_time = NSEC_PER_SEC;
5029         }
5030
5031         return 0;
5032 }
5033
5034 static bool is_base_time_past(ktime_t base_time, const struct timespec64 *now)
5035 {
5036         struct timespec64 b;
5037
5038         b = ktime_to_timespec64(base_time);
5039
5040         return timespec64_compare(now, &b) > 0;
5041 }
5042
5043 static bool validate_schedule(struct igc_adapter *adapter,
5044                               const struct tc_taprio_qopt_offload *qopt)
5045 {
5046         int queue_uses[IGC_MAX_TX_QUEUES] = { };
5047         struct timespec64 now;
5048         size_t n;
5049
5050         if (qopt->cycle_time_extension)
5051                 return false;
5052
5053         igc_ptp_read(adapter, &now);
5054
5055         /* If we program the controller's BASET registers with a time
5056          * in the future, it will hold all the packets until that
5057          * time, causing a lot of TX Hangs, so to avoid that, we
5058          * reject schedules that would start in the future.
5059          */
5060         if (!is_base_time_past(qopt->base_time, &now))
5061                 return false;
5062
5063         for (n = 0; n < qopt->num_entries; n++) {
5064                 const struct tc_taprio_sched_entry *e;
5065                 int i;
5066
5067                 e = &qopt->entries[n];
5068
5069                 /* i225 only supports "global" frame preemption
5070                  * settings.
5071                  */
5072                 if (e->command != TC_TAPRIO_CMD_SET_GATES)
5073                         return false;
5074
5075                 for (i = 0; i < IGC_MAX_TX_QUEUES; i++) {
5076                         if (e->gate_mask & BIT(i))
5077                                 queue_uses[i]++;
5078
5079                         if (queue_uses[i] > 1)
5080                                 return false;
5081                 }
5082         }
5083
5084         return true;
5085 }
5086
5087 static int igc_tsn_enable_launchtime(struct igc_adapter *adapter,
5088                                      struct tc_etf_qopt_offload *qopt)
5089 {
5090         struct igc_hw *hw = &adapter->hw;
5091         int err;
5092
5093         if (hw->mac.type != igc_i225)
5094                 return -EOPNOTSUPP;
5095
5096         err = igc_save_launchtime_params(adapter, qopt->queue, qopt->enable);
5097         if (err)
5098                 return err;
5099
5100         return igc_tsn_offload_apply(adapter);
5101 }
5102
5103 static int igc_save_qbv_schedule(struct igc_adapter *adapter,
5104                                  struct tc_taprio_qopt_offload *qopt)
5105 {
5106         u32 start_time = 0, end_time = 0;
5107         size_t n;
5108
5109         if (!qopt->enable) {
5110                 adapter->base_time = 0;
5111                 return 0;
5112         }
5113
5114         if (adapter->base_time)
5115                 return -EALREADY;
5116
5117         if (!validate_schedule(adapter, qopt))
5118                 return -EINVAL;
5119
5120         adapter->cycle_time = qopt->cycle_time;
5121         adapter->base_time = qopt->base_time;
5122
5123         /* FIXME: be a little smarter about cases when the gate for a
5124          * queue stays open for more than one entry.
5125          */
5126         for (n = 0; n < qopt->num_entries; n++) {
5127                 struct tc_taprio_sched_entry *e = &qopt->entries[n];
5128                 int i;
5129
5130                 end_time += e->interval;
5131
5132                 for (i = 0; i < IGC_MAX_TX_QUEUES; i++) {
5133                         struct igc_ring *ring = adapter->tx_ring[i];
5134
5135                         if (!(e->gate_mask & BIT(i)))
5136                                 continue;
5137
5138                         ring->start_time = start_time;
5139                         ring->end_time = end_time;
5140                 }
5141
5142                 start_time += e->interval;
5143         }
5144
5145         return 0;
5146 }
5147
5148 static int igc_tsn_enable_qbv_scheduling(struct igc_adapter *adapter,
5149                                          struct tc_taprio_qopt_offload *qopt)
5150 {
5151         struct igc_hw *hw = &adapter->hw;
5152         int err;
5153
5154         if (hw->mac.type != igc_i225)
5155                 return -EOPNOTSUPP;
5156
5157         err = igc_save_qbv_schedule(adapter, qopt);
5158         if (err)
5159                 return err;
5160
5161         return igc_tsn_offload_apply(adapter);
5162 }
5163
5164 static int igc_setup_tc(struct net_device *dev, enum tc_setup_type type,
5165                         void *type_data)
5166 {
5167         struct igc_adapter *adapter = netdev_priv(dev);
5168
5169         switch (type) {
5170         case TC_SETUP_QDISC_TAPRIO:
5171                 return igc_tsn_enable_qbv_scheduling(adapter, type_data);
5172
5173         case TC_SETUP_QDISC_ETF:
5174                 return igc_tsn_enable_launchtime(adapter, type_data);
5175
5176         default:
5177                 return -EOPNOTSUPP;
5178         }
5179 }
5180
5181 static int igc_bpf(struct net_device *dev, struct netdev_bpf *bpf)
5182 {
5183         struct igc_adapter *adapter = netdev_priv(dev);
5184
5185         switch (bpf->command) {
5186         case XDP_SETUP_PROG:
5187                 return igc_xdp_set_prog(adapter, bpf->prog, bpf->extack);
5188         default:
5189                 return -EOPNOTSUPP;
5190         }
5191 }
5192
5193 static int igc_xdp_xmit(struct net_device *dev, int num_frames,
5194                         struct xdp_frame **frames, u32 flags)
5195 {
5196         struct igc_adapter *adapter = netdev_priv(dev);
5197         int cpu = smp_processor_id();
5198         struct netdev_queue *nq;
5199         struct igc_ring *ring;
5200         int i, drops;
5201
5202         if (unlikely(test_bit(__IGC_DOWN, &adapter->state)))
5203                 return -ENETDOWN;
5204
5205         if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
5206                 return -EINVAL;
5207
5208         ring = igc_xdp_get_tx_ring(adapter, cpu);
5209         nq = txring_txq(ring);
5210
5211         __netif_tx_lock(nq, cpu);
5212
5213         drops = 0;
5214         for (i = 0; i < num_frames; i++) {
5215                 int err;
5216                 struct xdp_frame *xdpf = frames[i];
5217
5218                 err = igc_xdp_init_tx_descriptor(ring, xdpf);
5219                 if (err) {
5220                         xdp_return_frame_rx_napi(xdpf);
5221                         drops++;
5222                 }
5223         }
5224
5225         if (flags & XDP_XMIT_FLUSH)
5226                 igc_flush_tx_descriptors(ring);
5227
5228         __netif_tx_unlock(nq);
5229
5230         return num_frames - drops;
5231 }
5232
5233 static const struct net_device_ops igc_netdev_ops = {
5234         .ndo_open               = igc_open,
5235         .ndo_stop               = igc_close,
5236         .ndo_start_xmit         = igc_xmit_frame,
5237         .ndo_set_rx_mode        = igc_set_rx_mode,
5238         .ndo_set_mac_address    = igc_set_mac,
5239         .ndo_change_mtu         = igc_change_mtu,
5240         .ndo_get_stats64        = igc_get_stats64,
5241         .ndo_fix_features       = igc_fix_features,
5242         .ndo_set_features       = igc_set_features,
5243         .ndo_features_check     = igc_features_check,
5244         .ndo_do_ioctl           = igc_ioctl,
5245         .ndo_setup_tc           = igc_setup_tc,
5246         .ndo_bpf                = igc_bpf,
5247         .ndo_xdp_xmit           = igc_xdp_xmit,
5248 };
5249
5250 /* PCIe configuration access */
5251 void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
5252 {
5253         struct igc_adapter *adapter = hw->back;
5254
5255         pci_read_config_word(adapter->pdev, reg, value);
5256 }
5257
5258 void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
5259 {
5260         struct igc_adapter *adapter = hw->back;
5261
5262         pci_write_config_word(adapter->pdev, reg, *value);
5263 }
5264
5265 s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
5266 {
5267         struct igc_adapter *adapter = hw->back;
5268
5269         if (!pci_is_pcie(adapter->pdev))
5270                 return -IGC_ERR_CONFIG;
5271
5272         pcie_capability_read_word(adapter->pdev, reg, value);
5273
5274         return IGC_SUCCESS;
5275 }
5276
5277 s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
5278 {
5279         struct igc_adapter *adapter = hw->back;
5280
5281         if (!pci_is_pcie(adapter->pdev))
5282                 return -IGC_ERR_CONFIG;
5283
5284         pcie_capability_write_word(adapter->pdev, reg, *value);
5285
5286         return IGC_SUCCESS;
5287 }
5288
5289 u32 igc_rd32(struct igc_hw *hw, u32 reg)
5290 {
5291         struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw);
5292         u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
5293         u32 value = 0;
5294
5295         value = readl(&hw_addr[reg]);
5296
5297         /* reads should not return all F's */
5298         if (!(~value) && (!reg || !(~readl(hw_addr)))) {
5299                 struct net_device *netdev = igc->netdev;
5300
5301                 hw->hw_addr = NULL;
5302                 netif_device_detach(netdev);
5303                 netdev_err(netdev, "PCIe link lost, device now detached\n");
5304                 WARN(pci_device_is_present(igc->pdev),
5305                      "igc: Failed to read reg 0x%x!\n", reg);
5306         }
5307
5308         return value;
5309 }
5310
5311 int igc_set_spd_dplx(struct igc_adapter *adapter, u32 spd, u8 dplx)
5312 {
5313         struct igc_mac_info *mac = &adapter->hw.mac;
5314
5315         mac->autoneg = false;
5316
5317         /* Make sure dplx is at most 1 bit and lsb of speed is not set
5318          * for the switch() below to work
5319          */
5320         if ((spd & 1) || (dplx & ~1))
5321                 goto err_inval;
5322
5323         switch (spd + dplx) {
5324         case SPEED_10 + DUPLEX_HALF:
5325                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
5326                 break;
5327         case SPEED_10 + DUPLEX_FULL:
5328                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
5329                 break;
5330         case SPEED_100 + DUPLEX_HALF:
5331                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
5332                 break;
5333         case SPEED_100 + DUPLEX_FULL:
5334                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
5335                 break;
5336         case SPEED_1000 + DUPLEX_FULL:
5337                 mac->autoneg = true;
5338                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
5339                 break;
5340         case SPEED_1000 + DUPLEX_HALF: /* not supported */
5341                 goto err_inval;
5342         case SPEED_2500 + DUPLEX_FULL:
5343                 mac->autoneg = true;
5344                 adapter->hw.phy.autoneg_advertised = ADVERTISE_2500_FULL;
5345                 break;
5346         case SPEED_2500 + DUPLEX_HALF: /* not supported */
5347         default:
5348                 goto err_inval;
5349         }
5350
5351         /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5352         adapter->hw.phy.mdix = AUTO_ALL_MODES;
5353
5354         return 0;
5355
5356 err_inval:
5357         netdev_err(adapter->netdev, "Unsupported Speed/Duplex configuration\n");
5358         return -EINVAL;
5359 }
5360
5361 /**
5362  * igc_probe - Device Initialization Routine
5363  * @pdev: PCI device information struct
5364  * @ent: entry in igc_pci_tbl
5365  *
5366  * Returns 0 on success, negative on failure
5367  *
5368  * igc_probe initializes an adapter identified by a pci_dev structure.
5369  * The OS initialization, configuring the adapter private structure,
5370  * and a hardware reset occur.
5371  */
5372 static int igc_probe(struct pci_dev *pdev,
5373                      const struct pci_device_id *ent)
5374 {
5375         struct igc_adapter *adapter;
5376         struct net_device *netdev;
5377         struct igc_hw *hw;
5378         const struct igc_info *ei = igc_info_tbl[ent->driver_data];
5379         int err, pci_using_dac;
5380
5381         err = pci_enable_device_mem(pdev);
5382         if (err)
5383                 return err;
5384
5385         pci_using_dac = 0;
5386         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
5387         if (!err) {
5388                 pci_using_dac = 1;
5389         } else {
5390                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
5391                 if (err) {
5392                         dev_err(&pdev->dev,
5393                                 "No usable DMA configuration, aborting\n");
5394                         goto err_dma;
5395                 }
5396         }
5397
5398         err = pci_request_mem_regions(pdev, igc_driver_name);
5399         if (err)
5400                 goto err_pci_reg;
5401
5402         pci_enable_pcie_error_reporting(pdev);
5403
5404         pci_set_master(pdev);
5405
5406         err = -ENOMEM;
5407         netdev = alloc_etherdev_mq(sizeof(struct igc_adapter),
5408                                    IGC_MAX_TX_QUEUES);
5409
5410         if (!netdev)
5411                 goto err_alloc_etherdev;
5412
5413         SET_NETDEV_DEV(netdev, &pdev->dev);
5414
5415         pci_set_drvdata(pdev, netdev);
5416         adapter = netdev_priv(netdev);
5417         adapter->netdev = netdev;
5418         adapter->pdev = pdev;
5419         hw = &adapter->hw;
5420         hw->back = adapter;
5421         adapter->port_num = hw->bus.func;
5422         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
5423
5424         err = pci_save_state(pdev);
5425         if (err)
5426                 goto err_ioremap;
5427
5428         err = -EIO;
5429         adapter->io_addr = ioremap(pci_resource_start(pdev, 0),
5430                                    pci_resource_len(pdev, 0));
5431         if (!adapter->io_addr)
5432                 goto err_ioremap;
5433
5434         /* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */
5435         hw->hw_addr = adapter->io_addr;
5436
5437         netdev->netdev_ops = &igc_netdev_ops;
5438         igc_ethtool_set_ops(netdev);
5439         netdev->watchdog_timeo = 5 * HZ;
5440
5441         netdev->mem_start = pci_resource_start(pdev, 0);
5442         netdev->mem_end = pci_resource_end(pdev, 0);
5443
5444         /* PCI config space info */
5445         hw->vendor_id = pdev->vendor;
5446         hw->device_id = pdev->device;
5447         hw->revision_id = pdev->revision;
5448         hw->subsystem_vendor_id = pdev->subsystem_vendor;
5449         hw->subsystem_device_id = pdev->subsystem_device;
5450
5451         /* Copy the default MAC and PHY function pointers */
5452         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
5453         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
5454
5455         /* Initialize skew-specific constants */
5456         err = ei->get_invariants(hw);
5457         if (err)
5458                 goto err_sw_init;
5459
5460         /* Add supported features to the features list*/
5461         netdev->features |= NETIF_F_SG;
5462         netdev->features |= NETIF_F_TSO;
5463         netdev->features |= NETIF_F_TSO6;
5464         netdev->features |= NETIF_F_TSO_ECN;
5465         netdev->features |= NETIF_F_RXCSUM;
5466         netdev->features |= NETIF_F_HW_CSUM;
5467         netdev->features |= NETIF_F_SCTP_CRC;
5468         netdev->features |= NETIF_F_HW_TC;
5469
5470 #define IGC_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
5471                                   NETIF_F_GSO_GRE_CSUM | \
5472                                   NETIF_F_GSO_IPXIP4 | \
5473                                   NETIF_F_GSO_IPXIP6 | \
5474                                   NETIF_F_GSO_UDP_TUNNEL | \
5475                                   NETIF_F_GSO_UDP_TUNNEL_CSUM)
5476
5477         netdev->gso_partial_features = IGC_GSO_PARTIAL_FEATURES;
5478         netdev->features |= NETIF_F_GSO_PARTIAL | IGC_GSO_PARTIAL_FEATURES;
5479
5480         /* setup the private structure */
5481         err = igc_sw_init(adapter);
5482         if (err)
5483                 goto err_sw_init;
5484
5485         /* copy netdev features into list of user selectable features */
5486         netdev->hw_features |= NETIF_F_NTUPLE;
5487         netdev->hw_features |= netdev->features;
5488
5489         if (pci_using_dac)
5490                 netdev->features |= NETIF_F_HIGHDMA;
5491
5492         /* MTU range: 68 - 9216 */
5493         netdev->min_mtu = ETH_MIN_MTU;
5494         netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
5495
5496         /* before reading the NVM, reset the controller to put the device in a
5497          * known good starting state
5498          */
5499         hw->mac.ops.reset_hw(hw);
5500
5501         if (igc_get_flash_presence_i225(hw)) {
5502                 if (hw->nvm.ops.validate(hw) < 0) {
5503                         dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
5504                         err = -EIO;
5505                         goto err_eeprom;
5506                 }
5507         }
5508
5509         if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
5510                 /* copy the MAC address out of the NVM */
5511                 if (hw->mac.ops.read_mac_addr(hw))
5512                         dev_err(&pdev->dev, "NVM Read Error\n");
5513         }
5514
5515         memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
5516
5517         if (!is_valid_ether_addr(netdev->dev_addr)) {
5518                 dev_err(&pdev->dev, "Invalid MAC Address\n");
5519                 err = -EIO;
5520                 goto err_eeprom;
5521         }
5522
5523         /* configure RXPBSIZE and TXPBSIZE */
5524         wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT);
5525         wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT);
5526
5527         timer_setup(&adapter->watchdog_timer, igc_watchdog, 0);
5528         timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0);
5529
5530         INIT_WORK(&adapter->reset_task, igc_reset_task);
5531         INIT_WORK(&adapter->watchdog_task, igc_watchdog_task);
5532
5533         /* Initialize link properties that are user-changeable */
5534         adapter->fc_autoneg = true;
5535         hw->mac.autoneg = true;
5536         hw->phy.autoneg_advertised = 0xaf;
5537
5538         hw->fc.requested_mode = igc_fc_default;
5539         hw->fc.current_mode = igc_fc_default;
5540
5541         /* By default, support wake on port A */
5542         adapter->flags |= IGC_FLAG_WOL_SUPPORTED;
5543
5544         /* initialize the wol settings based on the eeprom settings */
5545         if (adapter->flags & IGC_FLAG_WOL_SUPPORTED)
5546                 adapter->wol |= IGC_WUFC_MAG;
5547
5548         device_set_wakeup_enable(&adapter->pdev->dev,
5549                                  adapter->flags & IGC_FLAG_WOL_SUPPORTED);
5550
5551         igc_ptp_init(adapter);
5552
5553         /* reset the hardware with the new settings */
5554         igc_reset(adapter);
5555
5556         /* let the f/w know that the h/w is now under the control of the
5557          * driver.
5558          */
5559         igc_get_hw_control(adapter);
5560
5561         strncpy(netdev->name, "eth%d", IFNAMSIZ);
5562         err = register_netdev(netdev);
5563         if (err)
5564                 goto err_register;
5565
5566          /* carrier off reporting is important to ethtool even BEFORE open */
5567         netif_carrier_off(netdev);
5568
5569         /* Check if Media Autosense is enabled */
5570         adapter->ei = *ei;
5571
5572         /* print pcie link status and MAC address */
5573         pcie_print_link_status(pdev);
5574         netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr);
5575
5576         dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
5577         /* Disable EEE for internal PHY devices */
5578         hw->dev_spec._base.eee_enable = false;
5579         adapter->flags &= ~IGC_FLAG_EEE;
5580         igc_set_eee_i225(hw, false, false, false);
5581
5582         pm_runtime_put_noidle(&pdev->dev);
5583
5584         return 0;
5585
5586 err_register:
5587         igc_release_hw_control(adapter);
5588 err_eeprom:
5589         if (!igc_check_reset_block(hw))
5590                 igc_reset_phy(hw);
5591 err_sw_init:
5592         igc_clear_interrupt_scheme(adapter);
5593         iounmap(adapter->io_addr);
5594 err_ioremap:
5595         free_netdev(netdev);
5596 err_alloc_etherdev:
5597         pci_release_mem_regions(pdev);
5598 err_pci_reg:
5599 err_dma:
5600         pci_disable_device(pdev);
5601         return err;
5602 }
5603
5604 /**
5605  * igc_remove - Device Removal Routine
5606  * @pdev: PCI device information struct
5607  *
5608  * igc_remove is called by the PCI subsystem to alert the driver
5609  * that it should release a PCI device.  This could be caused by a
5610  * Hot-Plug event, or because the driver is going to be removed from
5611  * memory.
5612  */
5613 static void igc_remove(struct pci_dev *pdev)
5614 {
5615         struct net_device *netdev = pci_get_drvdata(pdev);
5616         struct igc_adapter *adapter = netdev_priv(netdev);
5617
5618         pm_runtime_get_noresume(&pdev->dev);
5619
5620         igc_flush_nfc_rules(adapter);
5621
5622         igc_ptp_stop(adapter);
5623
5624         set_bit(__IGC_DOWN, &adapter->state);
5625
5626         del_timer_sync(&adapter->watchdog_timer);
5627         del_timer_sync(&adapter->phy_info_timer);
5628
5629         cancel_work_sync(&adapter->reset_task);
5630         cancel_work_sync(&adapter->watchdog_task);
5631
5632         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
5633          * would have already happened in close and is redundant.
5634          */
5635         igc_release_hw_control(adapter);
5636         unregister_netdev(netdev);
5637
5638         igc_clear_interrupt_scheme(adapter);
5639         pci_iounmap(pdev, adapter->io_addr);
5640         pci_release_mem_regions(pdev);
5641
5642         free_netdev(netdev);
5643
5644         pci_disable_pcie_error_reporting(pdev);
5645
5646         pci_disable_device(pdev);
5647 }
5648
5649 static int __igc_shutdown(struct pci_dev *pdev, bool *enable_wake,
5650                           bool runtime)
5651 {
5652         struct net_device *netdev = pci_get_drvdata(pdev);
5653         struct igc_adapter *adapter = netdev_priv(netdev);
5654         u32 wufc = runtime ? IGC_WUFC_LNKC : adapter->wol;
5655         struct igc_hw *hw = &adapter->hw;
5656         u32 ctrl, rctl, status;
5657         bool wake;
5658
5659         rtnl_lock();
5660         netif_device_detach(netdev);
5661
5662         if (netif_running(netdev))
5663                 __igc_close(netdev, true);
5664
5665         igc_ptp_suspend(adapter);
5666
5667         igc_clear_interrupt_scheme(adapter);
5668         rtnl_unlock();
5669
5670         status = rd32(IGC_STATUS);
5671         if (status & IGC_STATUS_LU)
5672                 wufc &= ~IGC_WUFC_LNKC;
5673
5674         if (wufc) {
5675                 igc_setup_rctl(adapter);
5676                 igc_set_rx_mode(netdev);
5677
5678                 /* turn on all-multi mode if wake on multicast is enabled */
5679                 if (wufc & IGC_WUFC_MC) {
5680                         rctl = rd32(IGC_RCTL);
5681                         rctl |= IGC_RCTL_MPE;
5682                         wr32(IGC_RCTL, rctl);
5683                 }
5684
5685                 ctrl = rd32(IGC_CTRL);
5686                 ctrl |= IGC_CTRL_ADVD3WUC;
5687                 wr32(IGC_CTRL, ctrl);
5688
5689                 /* Allow time for pending master requests to run */
5690                 igc_disable_pcie_master(hw);
5691
5692                 wr32(IGC_WUC, IGC_WUC_PME_EN);
5693                 wr32(IGC_WUFC, wufc);
5694         } else {
5695                 wr32(IGC_WUC, 0);
5696                 wr32(IGC_WUFC, 0);
5697         }
5698
5699         wake = wufc || adapter->en_mng_pt;
5700         if (!wake)
5701                 igc_power_down_phy_copper_base(&adapter->hw);
5702         else
5703                 igc_power_up_link(adapter);
5704
5705         if (enable_wake)
5706                 *enable_wake = wake;
5707
5708         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
5709          * would have already happened in close and is redundant.
5710          */
5711         igc_release_hw_control(adapter);
5712
5713         pci_disable_device(pdev);
5714
5715         return 0;
5716 }
5717
5718 #ifdef CONFIG_PM
5719 static int __maybe_unused igc_runtime_suspend(struct device *dev)
5720 {
5721         return __igc_shutdown(to_pci_dev(dev), NULL, 1);
5722 }
5723
5724 static void igc_deliver_wake_packet(struct net_device *netdev)
5725 {
5726         struct igc_adapter *adapter = netdev_priv(netdev);
5727         struct igc_hw *hw = &adapter->hw;
5728         struct sk_buff *skb;
5729         u32 wupl;
5730
5731         wupl = rd32(IGC_WUPL) & IGC_WUPL_MASK;
5732
5733         /* WUPM stores only the first 128 bytes of the wake packet.
5734          * Read the packet only if we have the whole thing.
5735          */
5736         if (wupl == 0 || wupl > IGC_WUPM_BYTES)
5737                 return;
5738
5739         skb = netdev_alloc_skb_ip_align(netdev, IGC_WUPM_BYTES);
5740         if (!skb)
5741                 return;
5742
5743         skb_put(skb, wupl);
5744
5745         /* Ensure reads are 32-bit aligned */
5746         wupl = roundup(wupl, 4);
5747
5748         memcpy_fromio(skb->data, hw->hw_addr + IGC_WUPM_REG(0), wupl);
5749
5750         skb->protocol = eth_type_trans(skb, netdev);
5751         netif_rx(skb);
5752 }
5753
5754 static int __maybe_unused igc_resume(struct device *dev)
5755 {
5756         struct pci_dev *pdev = to_pci_dev(dev);
5757         struct net_device *netdev = pci_get_drvdata(pdev);
5758         struct igc_adapter *adapter = netdev_priv(netdev);
5759         struct igc_hw *hw = &adapter->hw;
5760         u32 err, val;
5761
5762         pci_set_power_state(pdev, PCI_D0);
5763         pci_restore_state(pdev);
5764         pci_save_state(pdev);
5765
5766         if (!pci_device_is_present(pdev))
5767                 return -ENODEV;
5768         err = pci_enable_device_mem(pdev);
5769         if (err) {
5770                 netdev_err(netdev, "Cannot enable PCI device from suspend\n");
5771                 return err;
5772         }
5773         pci_set_master(pdev);
5774
5775         pci_enable_wake(pdev, PCI_D3hot, 0);
5776         pci_enable_wake(pdev, PCI_D3cold, 0);
5777
5778         if (igc_init_interrupt_scheme(adapter, true)) {
5779                 netdev_err(netdev, "Unable to allocate memory for queues\n");
5780                 return -ENOMEM;
5781         }
5782
5783         igc_reset(adapter);
5784
5785         /* let the f/w know that the h/w is now under the control of the
5786          * driver.
5787          */
5788         igc_get_hw_control(adapter);
5789
5790         val = rd32(IGC_WUS);
5791         if (val & WAKE_PKT_WUS)
5792                 igc_deliver_wake_packet(netdev);
5793
5794         wr32(IGC_WUS, ~0);
5795
5796         rtnl_lock();
5797         if (!err && netif_running(netdev))
5798                 err = __igc_open(netdev, true);
5799
5800         if (!err)
5801                 netif_device_attach(netdev);
5802         rtnl_unlock();
5803
5804         return err;
5805 }
5806
5807 static int __maybe_unused igc_runtime_resume(struct device *dev)
5808 {
5809         return igc_resume(dev);
5810 }
5811
5812 static int __maybe_unused igc_suspend(struct device *dev)
5813 {
5814         return __igc_shutdown(to_pci_dev(dev), NULL, 0);
5815 }
5816
5817 static int __maybe_unused igc_runtime_idle(struct device *dev)
5818 {
5819         struct net_device *netdev = dev_get_drvdata(dev);
5820         struct igc_adapter *adapter = netdev_priv(netdev);
5821
5822         if (!igc_has_link(adapter))
5823                 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
5824
5825         return -EBUSY;
5826 }
5827 #endif /* CONFIG_PM */
5828
5829 static void igc_shutdown(struct pci_dev *pdev)
5830 {
5831         bool wake;
5832
5833         __igc_shutdown(pdev, &wake, 0);
5834
5835         if (system_state == SYSTEM_POWER_OFF) {
5836                 pci_wake_from_d3(pdev, wake);
5837                 pci_set_power_state(pdev, PCI_D3hot);
5838         }
5839 }
5840
5841 /**
5842  *  igc_io_error_detected - called when PCI error is detected
5843  *  @pdev: Pointer to PCI device
5844  *  @state: The current PCI connection state
5845  *
5846  *  This function is called after a PCI bus error affecting
5847  *  this device has been detected.
5848  **/
5849 static pci_ers_result_t igc_io_error_detected(struct pci_dev *pdev,
5850                                               pci_channel_state_t state)
5851 {
5852         struct net_device *netdev = pci_get_drvdata(pdev);
5853         struct igc_adapter *adapter = netdev_priv(netdev);
5854
5855         netif_device_detach(netdev);
5856
5857         if (state == pci_channel_io_perm_failure)
5858                 return PCI_ERS_RESULT_DISCONNECT;
5859
5860         if (netif_running(netdev))
5861                 igc_down(adapter);
5862         pci_disable_device(pdev);
5863
5864         /* Request a slot reset. */
5865         return PCI_ERS_RESULT_NEED_RESET;
5866 }
5867
5868 /**
5869  *  igc_io_slot_reset - called after the PCI bus has been reset.
5870  *  @pdev: Pointer to PCI device
5871  *
5872  *  Restart the card from scratch, as if from a cold-boot. Implementation
5873  *  resembles the first-half of the igc_resume routine.
5874  **/
5875 static pci_ers_result_t igc_io_slot_reset(struct pci_dev *pdev)
5876 {
5877         struct net_device *netdev = pci_get_drvdata(pdev);
5878         struct igc_adapter *adapter = netdev_priv(netdev);
5879         struct igc_hw *hw = &adapter->hw;
5880         pci_ers_result_t result;
5881
5882         if (pci_enable_device_mem(pdev)) {
5883                 netdev_err(netdev, "Could not re-enable PCI device after reset\n");
5884                 result = PCI_ERS_RESULT_DISCONNECT;
5885         } else {
5886                 pci_set_master(pdev);
5887                 pci_restore_state(pdev);
5888                 pci_save_state(pdev);
5889
5890                 pci_enable_wake(pdev, PCI_D3hot, 0);
5891                 pci_enable_wake(pdev, PCI_D3cold, 0);
5892
5893                 /* In case of PCI error, adapter loses its HW address
5894                  * so we should re-assign it here.
5895                  */
5896                 hw->hw_addr = adapter->io_addr;
5897
5898                 igc_reset(adapter);
5899                 wr32(IGC_WUS, ~0);
5900                 result = PCI_ERS_RESULT_RECOVERED;
5901         }
5902
5903         return result;
5904 }
5905
5906 /**
5907  *  igc_io_resume - called when traffic can start to flow again.
5908  *  @pdev: Pointer to PCI device
5909  *
5910  *  This callback is called when the error recovery driver tells us that
5911  *  its OK to resume normal operation. Implementation resembles the
5912  *  second-half of the igc_resume routine.
5913  */
5914 static void igc_io_resume(struct pci_dev *pdev)
5915 {
5916         struct net_device *netdev = pci_get_drvdata(pdev);
5917         struct igc_adapter *adapter = netdev_priv(netdev);
5918
5919         rtnl_lock();
5920         if (netif_running(netdev)) {
5921                 if (igc_open(netdev)) {
5922                         netdev_err(netdev, "igc_open failed after reset\n");
5923                         return;
5924                 }
5925         }
5926
5927         netif_device_attach(netdev);
5928
5929         /* let the f/w know that the h/w is now under the control of the
5930          * driver.
5931          */
5932         igc_get_hw_control(adapter);
5933         rtnl_unlock();
5934 }
5935
5936 static const struct pci_error_handlers igc_err_handler = {
5937         .error_detected = igc_io_error_detected,
5938         .slot_reset = igc_io_slot_reset,
5939         .resume = igc_io_resume,
5940 };
5941
5942 #ifdef CONFIG_PM
5943 static const struct dev_pm_ops igc_pm_ops = {
5944         SET_SYSTEM_SLEEP_PM_OPS(igc_suspend, igc_resume)
5945         SET_RUNTIME_PM_OPS(igc_runtime_suspend, igc_runtime_resume,
5946                            igc_runtime_idle)
5947 };
5948 #endif
5949
5950 static struct pci_driver igc_driver = {
5951         .name     = igc_driver_name,
5952         .id_table = igc_pci_tbl,
5953         .probe    = igc_probe,
5954         .remove   = igc_remove,
5955 #ifdef CONFIG_PM
5956         .driver.pm = &igc_pm_ops,
5957 #endif
5958         .shutdown = igc_shutdown,
5959         .err_handler = &igc_err_handler,
5960 };
5961
5962 /**
5963  * igc_reinit_queues - return error
5964  * @adapter: pointer to adapter structure
5965  */
5966 int igc_reinit_queues(struct igc_adapter *adapter)
5967 {
5968         struct net_device *netdev = adapter->netdev;
5969         int err = 0;
5970
5971         if (netif_running(netdev))
5972                 igc_close(netdev);
5973
5974         igc_reset_interrupt_capability(adapter);
5975
5976         if (igc_init_interrupt_scheme(adapter, true)) {
5977                 netdev_err(netdev, "Unable to allocate memory for queues\n");
5978                 return -ENOMEM;
5979         }
5980
5981         if (netif_running(netdev))
5982                 err = igc_open(netdev);
5983
5984         return err;
5985 }
5986
5987 /**
5988  * igc_get_hw_dev - return device
5989  * @hw: pointer to hardware structure
5990  *
5991  * used by hardware layer to print debugging information
5992  */
5993 struct net_device *igc_get_hw_dev(struct igc_hw *hw)
5994 {
5995         struct igc_adapter *adapter = hw->back;
5996
5997         return adapter->netdev;
5998 }
5999
6000 /**
6001  * igc_init_module - Driver Registration Routine
6002  *
6003  * igc_init_module is the first routine called when the driver is
6004  * loaded. All it does is register with the PCI subsystem.
6005  */
6006 static int __init igc_init_module(void)
6007 {
6008         int ret;
6009
6010         pr_info("%s\n", igc_driver_string);
6011         pr_info("%s\n", igc_copyright);
6012
6013         ret = pci_register_driver(&igc_driver);
6014         return ret;
6015 }
6016
6017 module_init(igc_init_module);
6018
6019 /**
6020  * igc_exit_module - Driver Exit Cleanup Routine
6021  *
6022  * igc_exit_module is called just before the driver is removed
6023  * from memory.
6024  */
6025 static void __exit igc_exit_module(void)
6026 {
6027         pci_unregister_driver(&igc_driver);
6028 }
6029
6030 module_exit(igc_exit_module);
6031 /* igc_main.c */