Merge branch 'misc.namei' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[linux-2.6-microblaze.git] / drivers / net / ethernet / chelsio / cxgb4 / t4_hw.c
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34
35 #include <linux/delay.h>
36 #include "cxgb4.h"
37 #include "t4_regs.h"
38 #include "t4_values.h"
39 #include "t4fw_api.h"
40 #include "t4fw_version.h"
41
42 /**
43  *      t4_wait_op_done_val - wait until an operation is completed
44  *      @adapter: the adapter performing the operation
45  *      @reg: the register to check for completion
46  *      @mask: a single-bit field within @reg that indicates completion
47  *      @polarity: the value of the field when the operation is completed
48  *      @attempts: number of check iterations
49  *      @delay: delay in usecs between iterations
50  *      @valp: where to store the value of the register at completion time
51  *
52  *      Wait until an operation is completed by checking a bit in a register
53  *      up to @attempts times.  If @valp is not NULL the value of the register
54  *      at the time it indicated completion is stored there.  Returns 0 if the
55  *      operation completes and -EAGAIN otherwise.
56  */
57 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
58                                int polarity, int attempts, int delay, u32 *valp)
59 {
60         while (1) {
61                 u32 val = t4_read_reg(adapter, reg);
62
63                 if (!!(val & mask) == polarity) {
64                         if (valp)
65                                 *valp = val;
66                         return 0;
67                 }
68                 if (--attempts == 0)
69                         return -EAGAIN;
70                 if (delay)
71                         udelay(delay);
72         }
73 }
74
75 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
76                                   int polarity, int attempts, int delay)
77 {
78         return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
79                                    delay, NULL);
80 }
81
82 /**
83  *      t4_set_reg_field - set a register field to a value
84  *      @adapter: the adapter to program
85  *      @addr: the register address
86  *      @mask: specifies the portion of the register to modify
87  *      @val: the new value for the register field
88  *
89  *      Sets a register field specified by the supplied mask to the
90  *      given value.
91  */
92 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
93                       u32 val)
94 {
95         u32 v = t4_read_reg(adapter, addr) & ~mask;
96
97         t4_write_reg(adapter, addr, v | val);
98         (void) t4_read_reg(adapter, addr);      /* flush */
99 }
100
101 /**
102  *      t4_read_indirect - read indirectly addressed registers
103  *      @adap: the adapter
104  *      @addr_reg: register holding the indirect address
105  *      @data_reg: register holding the value of the indirect register
106  *      @vals: where the read register values are stored
107  *      @nregs: how many indirect registers to read
108  *      @start_idx: index of first indirect register to read
109  *
110  *      Reads registers that are accessed indirectly through an address/data
111  *      register pair.
112  */
113 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
114                              unsigned int data_reg, u32 *vals,
115                              unsigned int nregs, unsigned int start_idx)
116 {
117         while (nregs--) {
118                 t4_write_reg(adap, addr_reg, start_idx);
119                 *vals++ = t4_read_reg(adap, data_reg);
120                 start_idx++;
121         }
122 }
123
124 /**
125  *      t4_write_indirect - write indirectly addressed registers
126  *      @adap: the adapter
127  *      @addr_reg: register holding the indirect addresses
128  *      @data_reg: register holding the value for the indirect registers
129  *      @vals: values to write
130  *      @nregs: how many indirect registers to write
131  *      @start_idx: address of first indirect register to write
132  *
133  *      Writes a sequential block of registers that are accessed indirectly
134  *      through an address/data register pair.
135  */
136 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
137                        unsigned int data_reg, const u32 *vals,
138                        unsigned int nregs, unsigned int start_idx)
139 {
140         while (nregs--) {
141                 t4_write_reg(adap, addr_reg, start_idx++);
142                 t4_write_reg(adap, data_reg, *vals++);
143         }
144 }
145
146 /*
147  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
148  * mechanism.  This guarantees that we get the real value even if we're
149  * operating within a Virtual Machine and the Hypervisor is trapping our
150  * Configuration Space accesses.
151  */
152 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
153 {
154         u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg);
155
156         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
157                 req |= ENABLE_F;
158         else
159                 req |= T6_ENABLE_F;
160
161         if (is_t4(adap->params.chip))
162                 req |= LOCALCFG_F;
163
164         t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
165         *val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
166
167         /* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
168          * Configuration Space read.  (None of the other fields matter when
169          * ENABLE is 0 so a simple register write is easier than a
170          * read-modify-write via t4_set_reg_field().)
171          */
172         t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
173 }
174
175 /*
176  * t4_report_fw_error - report firmware error
177  * @adap: the adapter
178  *
179  * The adapter firmware can indicate error conditions to the host.
180  * If the firmware has indicated an error, print out the reason for
181  * the firmware error.
182  */
183 static void t4_report_fw_error(struct adapter *adap)
184 {
185         static const char *const reason[] = {
186                 "Crash",                        /* PCIE_FW_EVAL_CRASH */
187                 "During Device Preparation",    /* PCIE_FW_EVAL_PREP */
188                 "During Device Configuration",  /* PCIE_FW_EVAL_CONF */
189                 "During Device Initialization", /* PCIE_FW_EVAL_INIT */
190                 "Unexpected Event",             /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
191                 "Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
192                 "Device Shutdown",              /* PCIE_FW_EVAL_DEVICESHUTDOWN */
193                 "Reserved",                     /* reserved */
194         };
195         u32 pcie_fw;
196
197         pcie_fw = t4_read_reg(adap, PCIE_FW_A);
198         if (pcie_fw & PCIE_FW_ERR_F) {
199                 dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
200                         reason[PCIE_FW_EVAL_G(pcie_fw)]);
201                 adap->flags &= ~CXGB4_FW_OK;
202         }
203 }
204
205 /*
206  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
207  */
208 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
209                          u32 mbox_addr)
210 {
211         for ( ; nflit; nflit--, mbox_addr += 8)
212                 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
213 }
214
215 /*
216  * Handle a FW assertion reported in a mailbox.
217  */
218 static void fw_asrt(struct adapter *adap, u32 mbox_addr)
219 {
220         struct fw_debug_cmd asrt;
221
222         get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
223         dev_alert(adap->pdev_dev,
224                   "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
225                   asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
226                   be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
227 }
228
229 /**
230  *      t4_record_mbox - record a Firmware Mailbox Command/Reply in the log
231  *      @adapter: the adapter
232  *      @cmd: the Firmware Mailbox Command or Reply
233  *      @size: command length in bytes
234  *      @access: the time (ms) needed to access the Firmware Mailbox
235  *      @execute: the time (ms) the command spent being executed
236  */
237 static void t4_record_mbox(struct adapter *adapter,
238                            const __be64 *cmd, unsigned int size,
239                            int access, int execute)
240 {
241         struct mbox_cmd_log *log = adapter->mbox_log;
242         struct mbox_cmd *entry;
243         int i;
244
245         entry = mbox_cmd_log_entry(log, log->cursor++);
246         if (log->cursor == log->size)
247                 log->cursor = 0;
248
249         for (i = 0; i < size / 8; i++)
250                 entry->cmd[i] = be64_to_cpu(cmd[i]);
251         while (i < MBOX_LEN / 8)
252                 entry->cmd[i++] = 0;
253         entry->timestamp = jiffies;
254         entry->seqno = log->seqno++;
255         entry->access = access;
256         entry->execute = execute;
257 }
258
259 /**
260  *      t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
261  *      @adap: the adapter
262  *      @mbox: index of the mailbox to use
263  *      @cmd: the command to write
264  *      @size: command length in bytes
265  *      @rpl: where to optionally store the reply
266  *      @sleep_ok: if true we may sleep while awaiting command completion
267  *      @timeout: time to wait for command to finish before timing out
268  *
269  *      Sends the given command to FW through the selected mailbox and waits
270  *      for the FW to execute the command.  If @rpl is not %NULL it is used to
271  *      store the FW's reply to the command.  The command and its optional
272  *      reply are of the same length.  FW can take up to %FW_CMD_MAX_TIMEOUT ms
273  *      to respond.  @sleep_ok determines whether we may sleep while awaiting
274  *      the response.  If sleeping is allowed we use progressive backoff
275  *      otherwise we spin.
276  *
277  *      The return value is 0 on success or a negative errno on failure.  A
278  *      failure can happen either because we are not able to execute the
279  *      command or FW executes it but signals an error.  In the latter case
280  *      the return value is the error code indicated by FW (negated).
281  */
282 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
283                             int size, void *rpl, bool sleep_ok, int timeout)
284 {
285         static const int delay[] = {
286                 1, 1, 3, 5, 10, 10, 20, 50, 100, 200
287         };
288
289         struct mbox_list entry;
290         u16 access = 0;
291         u16 execute = 0;
292         u32 v;
293         u64 res;
294         int i, ms, delay_idx, ret;
295         const __be64 *p = cmd;
296         u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
297         u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
298         __be64 cmd_rpl[MBOX_LEN / 8];
299         u32 pcie_fw;
300
301         if ((size & 15) || size > MBOX_LEN)
302                 return -EINVAL;
303
304         /*
305          * If the device is off-line, as in EEH, commands will time out.
306          * Fail them early so we don't waste time waiting.
307          */
308         if (adap->pdev->error_state != pci_channel_io_normal)
309                 return -EIO;
310
311         /* If we have a negative timeout, that implies that we can't sleep. */
312         if (timeout < 0) {
313                 sleep_ok = false;
314                 timeout = -timeout;
315         }
316
317         /* Queue ourselves onto the mailbox access list.  When our entry is at
318          * the front of the list, we have rights to access the mailbox.  So we
319          * wait [for a while] till we're at the front [or bail out with an
320          * EBUSY] ...
321          */
322         spin_lock_bh(&adap->mbox_lock);
323         list_add_tail(&entry.list, &adap->mlist.list);
324         spin_unlock_bh(&adap->mbox_lock);
325
326         delay_idx = 0;
327         ms = delay[0];
328
329         for (i = 0; ; i += ms) {
330                 /* If we've waited too long, return a busy indication.  This
331                  * really ought to be based on our initial position in the
332                  * mailbox access list but this is a start.  We very rarely
333                  * contend on access to the mailbox ...
334                  */
335                 pcie_fw = t4_read_reg(adap, PCIE_FW_A);
336                 if (i > FW_CMD_MAX_TIMEOUT || (pcie_fw & PCIE_FW_ERR_F)) {
337                         spin_lock_bh(&adap->mbox_lock);
338                         list_del(&entry.list);
339                         spin_unlock_bh(&adap->mbox_lock);
340                         ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -EBUSY;
341                         t4_record_mbox(adap, cmd, size, access, ret);
342                         return ret;
343                 }
344
345                 /* If we're at the head, break out and start the mailbox
346                  * protocol.
347                  */
348                 if (list_first_entry(&adap->mlist.list, struct mbox_list,
349                                      list) == &entry)
350                         break;
351
352                 /* Delay for a bit before checking again ... */
353                 if (sleep_ok) {
354                         ms = delay[delay_idx];  /* last element may repeat */
355                         if (delay_idx < ARRAY_SIZE(delay) - 1)
356                                 delay_idx++;
357                         msleep(ms);
358                 } else {
359                         mdelay(ms);
360                 }
361         }
362
363         /* Loop trying to get ownership of the mailbox.  Return an error
364          * if we can't gain ownership.
365          */
366         v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
367         for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
368                 v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
369         if (v != MBOX_OWNER_DRV) {
370                 spin_lock_bh(&adap->mbox_lock);
371                 list_del(&entry.list);
372                 spin_unlock_bh(&adap->mbox_lock);
373                 ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
374                 t4_record_mbox(adap, cmd, size, access, ret);
375                 return ret;
376         }
377
378         /* Copy in the new mailbox command and send it on its way ... */
379         t4_record_mbox(adap, cmd, size, access, 0);
380         for (i = 0; i < size; i += 8)
381                 t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
382
383         t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
384         t4_read_reg(adap, ctl_reg);          /* flush write */
385
386         delay_idx = 0;
387         ms = delay[0];
388
389         for (i = 0;
390              !((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) &&
391              i < timeout;
392              i += ms) {
393                 if (sleep_ok) {
394                         ms = delay[delay_idx];  /* last element may repeat */
395                         if (delay_idx < ARRAY_SIZE(delay) - 1)
396                                 delay_idx++;
397                         msleep(ms);
398                 } else
399                         mdelay(ms);
400
401                 v = t4_read_reg(adap, ctl_reg);
402                 if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
403                         if (!(v & MBMSGVALID_F)) {
404                                 t4_write_reg(adap, ctl_reg, 0);
405                                 continue;
406                         }
407
408                         get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg);
409                         res = be64_to_cpu(cmd_rpl[0]);
410
411                         if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
412                                 fw_asrt(adap, data_reg);
413                                 res = FW_CMD_RETVAL_V(EIO);
414                         } else if (rpl) {
415                                 memcpy(rpl, cmd_rpl, size);
416                         }
417
418                         t4_write_reg(adap, ctl_reg, 0);
419
420                         execute = i + ms;
421                         t4_record_mbox(adap, cmd_rpl,
422                                        MBOX_LEN, access, execute);
423                         spin_lock_bh(&adap->mbox_lock);
424                         list_del(&entry.list);
425                         spin_unlock_bh(&adap->mbox_lock);
426                         return -FW_CMD_RETVAL_G((int)res);
427                 }
428         }
429
430         ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT;
431         t4_record_mbox(adap, cmd, size, access, ret);
432         dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
433                 *(const u8 *)cmd, mbox);
434         t4_report_fw_error(adap);
435         spin_lock_bh(&adap->mbox_lock);
436         list_del(&entry.list);
437         spin_unlock_bh(&adap->mbox_lock);
438         t4_fatal_err(adap);
439         return ret;
440 }
441
442 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
443                     void *rpl, bool sleep_ok)
444 {
445         return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
446                                        FW_CMD_MAX_TIMEOUT);
447 }
448
449 static int t4_edc_err_read(struct adapter *adap, int idx)
450 {
451         u32 edc_ecc_err_addr_reg;
452         u32 rdata_reg;
453
454         if (is_t4(adap->params.chip)) {
455                 CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
456                 return 0;
457         }
458         if (idx != 0 && idx != 1) {
459                 CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
460                 return 0;
461         }
462
463         edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx);
464         rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx);
465
466         CH_WARN(adap,
467                 "edc%d err addr 0x%x: 0x%x.\n",
468                 idx, edc_ecc_err_addr_reg,
469                 t4_read_reg(adap, edc_ecc_err_addr_reg));
470         CH_WARN(adap,
471                 "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
472                 rdata_reg,
473                 (unsigned long long)t4_read_reg64(adap, rdata_reg),
474                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 8),
475                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 16),
476                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 24),
477                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 32),
478                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 40),
479                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 48),
480                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 56),
481                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 64));
482
483         return 0;
484 }
485
486 /**
487  * t4_memory_rw_init - Get memory window relative offset, base, and size.
488  * @adap: the adapter
489  * @win: PCI-E Memory Window to use
490  * @mtype: memory type: MEM_EDC0, MEM_EDC1, MEM_HMA or MEM_MC
491  * @mem_off: memory relative offset with respect to @mtype.
492  * @mem_base: configured memory base address.
493  * @mem_aperture: configured memory window aperture.
494  *
495  * Get the configured memory window's relative offset, base, and size.
496  */
497 int t4_memory_rw_init(struct adapter *adap, int win, int mtype, u32 *mem_off,
498                       u32 *mem_base, u32 *mem_aperture)
499 {
500         u32 edc_size, mc_size, mem_reg;
501
502         /* Offset into the region of memory which is being accessed
503          * MEM_EDC0 = 0
504          * MEM_EDC1 = 1
505          * MEM_MC   = 2 -- MEM_MC for chips with only 1 memory controller
506          * MEM_MC1  = 3 -- for chips with 2 memory controllers (e.g. T5)
507          * MEM_HMA  = 4
508          */
509         edc_size  = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
510         if (mtype == MEM_HMA) {
511                 *mem_off = 2 * (edc_size * 1024 * 1024);
512         } else if (mtype != MEM_MC1) {
513                 *mem_off = (mtype * (edc_size * 1024 * 1024));
514         } else {
515                 mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
516                                                       MA_EXT_MEMORY0_BAR_A));
517                 *mem_off = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
518         }
519
520         /* Each PCI-E Memory Window is programmed with a window size -- or
521          * "aperture" -- which controls the granularity of its mapping onto
522          * adapter memory.  We need to grab that aperture in order to know
523          * how to use the specified window.  The window is also programmed
524          * with the base address of the Memory Window in BAR0's address
525          * space.  For T4 this is an absolute PCI-E Bus Address.  For T5
526          * the address is relative to BAR0.
527          */
528         mem_reg = t4_read_reg(adap,
529                               PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
530                                                   win));
531         /* a dead adapter will return 0xffffffff for PIO reads */
532         if (mem_reg == 0xffffffff)
533                 return -ENXIO;
534
535         *mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
536         *mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
537         if (is_t4(adap->params.chip))
538                 *mem_base -= adap->t4_bar0;
539
540         return 0;
541 }
542
543 /**
544  * t4_memory_update_win - Move memory window to specified address.
545  * @adap: the adapter
546  * @win: PCI-E Memory Window to use
547  * @addr: location to move.
548  *
549  * Move memory window to specified address.
550  */
551 void t4_memory_update_win(struct adapter *adap, int win, u32 addr)
552 {
553         t4_write_reg(adap,
554                      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
555                      addr);
556         /* Read it back to ensure that changes propagate before we
557          * attempt to use the new value.
558          */
559         t4_read_reg(adap,
560                     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
561 }
562
563 /**
564  * t4_memory_rw_residual - Read/Write residual data.
565  * @adap: the adapter
566  * @off: relative offset within residual to start read/write.
567  * @addr: address within indicated memory type.
568  * @buf: host memory buffer
569  * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
570  *
571  * Read/Write residual data less than 32-bits.
572  */
573 void t4_memory_rw_residual(struct adapter *adap, u32 off, u32 addr, u8 *buf,
574                            int dir)
575 {
576         union {
577                 u32 word;
578                 char byte[4];
579         } last;
580         unsigned char *bp;
581         int i;
582
583         if (dir == T4_MEMORY_READ) {
584                 last.word = le32_to_cpu((__force __le32)
585                                         t4_read_reg(adap, addr));
586                 for (bp = (unsigned char *)buf, i = off; i < 4; i++)
587                         bp[i] = last.byte[i];
588         } else {
589                 last.word = *buf;
590                 for (i = off; i < 4; i++)
591                         last.byte[i] = 0;
592                 t4_write_reg(adap, addr,
593                              (__force u32)cpu_to_le32(last.word));
594         }
595 }
596
597 /**
598  *      t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
599  *      @adap: the adapter
600  *      @win: PCI-E Memory Window to use
601  *      @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
602  *      @addr: address within indicated memory type
603  *      @len: amount of memory to transfer
604  *      @hbuf: host memory buffer
605  *      @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
606  *
607  *      Reads/writes an [almost] arbitrary memory region in the firmware: the
608  *      firmware memory address and host buffer must be aligned on 32-bit
609  *      boundaries; the length may be arbitrary.  The memory is transferred as
610  *      a raw byte sequence from/to the firmware's memory.  If this memory
611  *      contains data structures which contain multi-byte integers, it's the
612  *      caller's responsibility to perform appropriate byte order conversions.
613  */
614 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
615                  u32 len, void *hbuf, int dir)
616 {
617         u32 pos, offset, resid, memoffset;
618         u32 win_pf, mem_aperture, mem_base;
619         u32 *buf;
620         int ret;
621
622         /* Argument sanity checks ...
623          */
624         if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
625                 return -EINVAL;
626         buf = (u32 *)hbuf;
627
628         /* It's convenient to be able to handle lengths which aren't a
629          * multiple of 32-bits because we often end up transferring files to
630          * the firmware.  So we'll handle that by normalizing the length here
631          * and then handling any residual transfer at the end.
632          */
633         resid = len & 0x3;
634         len -= resid;
635
636         ret = t4_memory_rw_init(adap, win, mtype, &memoffset, &mem_base,
637                                 &mem_aperture);
638         if (ret)
639                 return ret;
640
641         /* Determine the PCIE_MEM_ACCESS_OFFSET */
642         addr = addr + memoffset;
643
644         win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf);
645
646         /* Calculate our initial PCI-E Memory Window Position and Offset into
647          * that Window.
648          */
649         pos = addr & ~(mem_aperture - 1);
650         offset = addr - pos;
651
652         /* Set up initial PCI-E Memory Window to cover the start of our
653          * transfer.
654          */
655         t4_memory_update_win(adap, win, pos | win_pf);
656
657         /* Transfer data to/from the adapter as long as there's an integral
658          * number of 32-bit transfers to complete.
659          *
660          * A note on Endianness issues:
661          *
662          * The "register" reads and writes below from/to the PCI-E Memory
663          * Window invoke the standard adapter Big-Endian to PCI-E Link
664          * Little-Endian "swizzel."  As a result, if we have the following
665          * data in adapter memory:
666          *
667          *     Memory:  ... | b0 | b1 | b2 | b3 | ...
668          *     Address:      i+0  i+1  i+2  i+3
669          *
670          * Then a read of the adapter memory via the PCI-E Memory Window
671          * will yield:
672          *
673          *     x = readl(i)
674          *         31                  0
675          *         [ b3 | b2 | b1 | b0 ]
676          *
677          * If this value is stored into local memory on a Little-Endian system
678          * it will show up correctly in local memory as:
679          *
680          *     ( ..., b0, b1, b2, b3, ... )
681          *
682          * But on a Big-Endian system, the store will show up in memory
683          * incorrectly swizzled as:
684          *
685          *     ( ..., b3, b2, b1, b0, ... )
686          *
687          * So we need to account for this in the reads and writes to the
688          * PCI-E Memory Window below by undoing the register read/write
689          * swizzels.
690          */
691         while (len > 0) {
692                 if (dir == T4_MEMORY_READ)
693                         *buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
694                                                 mem_base + offset));
695                 else
696                         t4_write_reg(adap, mem_base + offset,
697                                      (__force u32)cpu_to_le32(*buf++));
698                 offset += sizeof(__be32);
699                 len -= sizeof(__be32);
700
701                 /* If we've reached the end of our current window aperture,
702                  * move the PCI-E Memory Window on to the next.  Note that
703                  * doing this here after "len" may be 0 allows us to set up
704                  * the PCI-E Memory Window for a possible final residual
705                  * transfer below ...
706                  */
707                 if (offset == mem_aperture) {
708                         pos += mem_aperture;
709                         offset = 0;
710                         t4_memory_update_win(adap, win, pos | win_pf);
711                 }
712         }
713
714         /* If the original transfer had a length which wasn't a multiple of
715          * 32-bits, now's where we need to finish off the transfer of the
716          * residual amount.  The PCI-E Memory Window has already been moved
717          * above (if necessary) to cover this final transfer.
718          */
719         if (resid)
720                 t4_memory_rw_residual(adap, resid, mem_base + offset,
721                                       (u8 *)buf, dir);
722
723         return 0;
724 }
725
726 /* Return the specified PCI-E Configuration Space register from our Physical
727  * Function.  We try first via a Firmware LDST Command since we prefer to let
728  * the firmware own all of these registers, but if that fails we go for it
729  * directly ourselves.
730  */
731 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
732 {
733         u32 val, ldst_addrspace;
734
735         /* If fw_attach != 0, construct and send the Firmware LDST Command to
736          * retrieve the specified PCI-E Configuration Space register.
737          */
738         struct fw_ldst_cmd ldst_cmd;
739         int ret;
740
741         memset(&ldst_cmd, 0, sizeof(ldst_cmd));
742         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE);
743         ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
744                                                FW_CMD_REQUEST_F |
745                                                FW_CMD_READ_F |
746                                                ldst_addrspace);
747         ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
748         ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
749         ldst_cmd.u.pcie.ctrl_to_fn =
750                 (FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf));
751         ldst_cmd.u.pcie.r = reg;
752
753         /* If the LDST Command succeeds, return the result, otherwise
754          * fall through to reading it directly ourselves ...
755          */
756         ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
757                          &ldst_cmd);
758         if (ret == 0)
759                 val = be32_to_cpu(ldst_cmd.u.pcie.data[0]);
760         else
761                 /* Read the desired Configuration Space register via the PCI-E
762                  * Backdoor mechanism.
763                  */
764                 t4_hw_pci_read_cfg4(adap, reg, &val);
765         return val;
766 }
767
768 /* Get the window based on base passed to it.
769  * Window aperture is currently unhandled, but there is no use case for it
770  * right now
771  */
772 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask,
773                          u32 memwin_base)
774 {
775         u32 ret;
776
777         if (is_t4(adap->params.chip)) {
778                 u32 bar0;
779
780                 /* Truncation intentional: we only read the bottom 32-bits of
781                  * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
782                  * mechanism to read BAR0 instead of using
783                  * pci_resource_start() because we could be operating from
784                  * within a Virtual Machine which is trapping our accesses to
785                  * our Configuration Space and we need to set up the PCI-E
786                  * Memory Window decoders with the actual addresses which will
787                  * be coming across the PCI-E link.
788                  */
789                 bar0 = t4_read_pcie_cfg4(adap, pci_base);
790                 bar0 &= pci_mask;
791                 adap->t4_bar0 = bar0;
792
793                 ret = bar0 + memwin_base;
794         } else {
795                 /* For T5, only relative offset inside the PCIe BAR is passed */
796                 ret = memwin_base;
797         }
798         return ret;
799 }
800
801 /* Get the default utility window (win0) used by everyone */
802 u32 t4_get_util_window(struct adapter *adap)
803 {
804         return t4_get_window(adap, PCI_BASE_ADDRESS_0,
805                              PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE);
806 }
807
808 /* Set up memory window for accessing adapter memory ranges.  (Read
809  * back MA register to ensure that changes propagate before we attempt
810  * to use the new values.)
811  */
812 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window)
813 {
814         t4_write_reg(adap,
815                      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window),
816                      memwin_base | BIR_V(0) |
817                      WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X));
818         t4_read_reg(adap,
819                     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window));
820 }
821
822 /**
823  *      t4_get_regs_len - return the size of the chips register set
824  *      @adapter: the adapter
825  *
826  *      Returns the size of the chip's BAR0 register space.
827  */
828 unsigned int t4_get_regs_len(struct adapter *adapter)
829 {
830         unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
831
832         switch (chip_version) {
833         case CHELSIO_T4:
834                 return T4_REGMAP_SIZE;
835
836         case CHELSIO_T5:
837         case CHELSIO_T6:
838                 return T5_REGMAP_SIZE;
839         }
840
841         dev_err(adapter->pdev_dev,
842                 "Unsupported chip version %d\n", chip_version);
843         return 0;
844 }
845
846 /**
847  *      t4_get_regs - read chip registers into provided buffer
848  *      @adap: the adapter
849  *      @buf: register buffer
850  *      @buf_size: size (in bytes) of register buffer
851  *
852  *      If the provided register buffer isn't large enough for the chip's
853  *      full register range, the register dump will be truncated to the
854  *      register buffer's size.
855  */
856 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
857 {
858         static const unsigned int t4_reg_ranges[] = {
859                 0x1008, 0x1108,
860                 0x1180, 0x1184,
861                 0x1190, 0x1194,
862                 0x11a0, 0x11a4,
863                 0x11b0, 0x11b4,
864                 0x11fc, 0x123c,
865                 0x1300, 0x173c,
866                 0x1800, 0x18fc,
867                 0x3000, 0x30d8,
868                 0x30e0, 0x30e4,
869                 0x30ec, 0x5910,
870                 0x5920, 0x5924,
871                 0x5960, 0x5960,
872                 0x5968, 0x5968,
873                 0x5970, 0x5970,
874                 0x5978, 0x5978,
875                 0x5980, 0x5980,
876                 0x5988, 0x5988,
877                 0x5990, 0x5990,
878                 0x5998, 0x5998,
879                 0x59a0, 0x59d4,
880                 0x5a00, 0x5ae0,
881                 0x5ae8, 0x5ae8,
882                 0x5af0, 0x5af0,
883                 0x5af8, 0x5af8,
884                 0x6000, 0x6098,
885                 0x6100, 0x6150,
886                 0x6200, 0x6208,
887                 0x6240, 0x6248,
888                 0x6280, 0x62b0,
889                 0x62c0, 0x6338,
890                 0x6370, 0x638c,
891                 0x6400, 0x643c,
892                 0x6500, 0x6524,
893                 0x6a00, 0x6a04,
894                 0x6a14, 0x6a38,
895                 0x6a60, 0x6a70,
896                 0x6a78, 0x6a78,
897                 0x6b00, 0x6b0c,
898                 0x6b1c, 0x6b84,
899                 0x6bf0, 0x6bf8,
900                 0x6c00, 0x6c0c,
901                 0x6c1c, 0x6c84,
902                 0x6cf0, 0x6cf8,
903                 0x6d00, 0x6d0c,
904                 0x6d1c, 0x6d84,
905                 0x6df0, 0x6df8,
906                 0x6e00, 0x6e0c,
907                 0x6e1c, 0x6e84,
908                 0x6ef0, 0x6ef8,
909                 0x6f00, 0x6f0c,
910                 0x6f1c, 0x6f84,
911                 0x6ff0, 0x6ff8,
912                 0x7000, 0x700c,
913                 0x701c, 0x7084,
914                 0x70f0, 0x70f8,
915                 0x7100, 0x710c,
916                 0x711c, 0x7184,
917                 0x71f0, 0x71f8,
918                 0x7200, 0x720c,
919                 0x721c, 0x7284,
920                 0x72f0, 0x72f8,
921                 0x7300, 0x730c,
922                 0x731c, 0x7384,
923                 0x73f0, 0x73f8,
924                 0x7400, 0x7450,
925                 0x7500, 0x7530,
926                 0x7600, 0x760c,
927                 0x7614, 0x761c,
928                 0x7680, 0x76cc,
929                 0x7700, 0x7798,
930                 0x77c0, 0x77fc,
931                 0x7900, 0x79fc,
932                 0x7b00, 0x7b58,
933                 0x7b60, 0x7b84,
934                 0x7b8c, 0x7c38,
935                 0x7d00, 0x7d38,
936                 0x7d40, 0x7d80,
937                 0x7d8c, 0x7ddc,
938                 0x7de4, 0x7e04,
939                 0x7e10, 0x7e1c,
940                 0x7e24, 0x7e38,
941                 0x7e40, 0x7e44,
942                 0x7e4c, 0x7e78,
943                 0x7e80, 0x7ea4,
944                 0x7eac, 0x7edc,
945                 0x7ee8, 0x7efc,
946                 0x8dc0, 0x8e04,
947                 0x8e10, 0x8e1c,
948                 0x8e30, 0x8e78,
949                 0x8ea0, 0x8eb8,
950                 0x8ec0, 0x8f6c,
951                 0x8fc0, 0x9008,
952                 0x9010, 0x9058,
953                 0x9060, 0x9060,
954                 0x9068, 0x9074,
955                 0x90fc, 0x90fc,
956                 0x9400, 0x9408,
957                 0x9410, 0x9458,
958                 0x9600, 0x9600,
959                 0x9608, 0x9638,
960                 0x9640, 0x96bc,
961                 0x9800, 0x9808,
962                 0x9820, 0x983c,
963                 0x9850, 0x9864,
964                 0x9c00, 0x9c6c,
965                 0x9c80, 0x9cec,
966                 0x9d00, 0x9d6c,
967                 0x9d80, 0x9dec,
968                 0x9e00, 0x9e6c,
969                 0x9e80, 0x9eec,
970                 0x9f00, 0x9f6c,
971                 0x9f80, 0x9fec,
972                 0xd004, 0xd004,
973                 0xd010, 0xd03c,
974                 0xdfc0, 0xdfe0,
975                 0xe000, 0xea7c,
976                 0xf000, 0x11110,
977                 0x11118, 0x11190,
978                 0x19040, 0x1906c,
979                 0x19078, 0x19080,
980                 0x1908c, 0x190e4,
981                 0x190f0, 0x190f8,
982                 0x19100, 0x19110,
983                 0x19120, 0x19124,
984                 0x19150, 0x19194,
985                 0x1919c, 0x191b0,
986                 0x191d0, 0x191e8,
987                 0x19238, 0x1924c,
988                 0x193f8, 0x1943c,
989                 0x1944c, 0x19474,
990                 0x19490, 0x194e0,
991                 0x194f0, 0x194f8,
992                 0x19800, 0x19c08,
993                 0x19c10, 0x19c90,
994                 0x19ca0, 0x19ce4,
995                 0x19cf0, 0x19d40,
996                 0x19d50, 0x19d94,
997                 0x19da0, 0x19de8,
998                 0x19df0, 0x19e40,
999                 0x19e50, 0x19e90,
1000                 0x19ea0, 0x19f4c,
1001                 0x1a000, 0x1a004,
1002                 0x1a010, 0x1a06c,
1003                 0x1a0b0, 0x1a0e4,
1004                 0x1a0ec, 0x1a0f4,
1005                 0x1a100, 0x1a108,
1006                 0x1a114, 0x1a120,
1007                 0x1a128, 0x1a130,
1008                 0x1a138, 0x1a138,
1009                 0x1a190, 0x1a1c4,
1010                 0x1a1fc, 0x1a1fc,
1011                 0x1e040, 0x1e04c,
1012                 0x1e284, 0x1e28c,
1013                 0x1e2c0, 0x1e2c0,
1014                 0x1e2e0, 0x1e2e0,
1015                 0x1e300, 0x1e384,
1016                 0x1e3c0, 0x1e3c8,
1017                 0x1e440, 0x1e44c,
1018                 0x1e684, 0x1e68c,
1019                 0x1e6c0, 0x1e6c0,
1020                 0x1e6e0, 0x1e6e0,
1021                 0x1e700, 0x1e784,
1022                 0x1e7c0, 0x1e7c8,
1023                 0x1e840, 0x1e84c,
1024                 0x1ea84, 0x1ea8c,
1025                 0x1eac0, 0x1eac0,
1026                 0x1eae0, 0x1eae0,
1027                 0x1eb00, 0x1eb84,
1028                 0x1ebc0, 0x1ebc8,
1029                 0x1ec40, 0x1ec4c,
1030                 0x1ee84, 0x1ee8c,
1031                 0x1eec0, 0x1eec0,
1032                 0x1eee0, 0x1eee0,
1033                 0x1ef00, 0x1ef84,
1034                 0x1efc0, 0x1efc8,
1035                 0x1f040, 0x1f04c,
1036                 0x1f284, 0x1f28c,
1037                 0x1f2c0, 0x1f2c0,
1038                 0x1f2e0, 0x1f2e0,
1039                 0x1f300, 0x1f384,
1040                 0x1f3c0, 0x1f3c8,
1041                 0x1f440, 0x1f44c,
1042                 0x1f684, 0x1f68c,
1043                 0x1f6c0, 0x1f6c0,
1044                 0x1f6e0, 0x1f6e0,
1045                 0x1f700, 0x1f784,
1046                 0x1f7c0, 0x1f7c8,
1047                 0x1f840, 0x1f84c,
1048                 0x1fa84, 0x1fa8c,
1049                 0x1fac0, 0x1fac0,
1050                 0x1fae0, 0x1fae0,
1051                 0x1fb00, 0x1fb84,
1052                 0x1fbc0, 0x1fbc8,
1053                 0x1fc40, 0x1fc4c,
1054                 0x1fe84, 0x1fe8c,
1055                 0x1fec0, 0x1fec0,
1056                 0x1fee0, 0x1fee0,
1057                 0x1ff00, 0x1ff84,
1058                 0x1ffc0, 0x1ffc8,
1059                 0x20000, 0x2002c,
1060                 0x20100, 0x2013c,
1061                 0x20190, 0x201a0,
1062                 0x201a8, 0x201b8,
1063                 0x201c4, 0x201c8,
1064                 0x20200, 0x20318,
1065                 0x20400, 0x204b4,
1066                 0x204c0, 0x20528,
1067                 0x20540, 0x20614,
1068                 0x21000, 0x21040,
1069                 0x2104c, 0x21060,
1070                 0x210c0, 0x210ec,
1071                 0x21200, 0x21268,
1072                 0x21270, 0x21284,
1073                 0x212fc, 0x21388,
1074                 0x21400, 0x21404,
1075                 0x21500, 0x21500,
1076                 0x21510, 0x21518,
1077                 0x2152c, 0x21530,
1078                 0x2153c, 0x2153c,
1079                 0x21550, 0x21554,
1080                 0x21600, 0x21600,
1081                 0x21608, 0x2161c,
1082                 0x21624, 0x21628,
1083                 0x21630, 0x21634,
1084                 0x2163c, 0x2163c,
1085                 0x21700, 0x2171c,
1086                 0x21780, 0x2178c,
1087                 0x21800, 0x21818,
1088                 0x21820, 0x21828,
1089                 0x21830, 0x21848,
1090                 0x21850, 0x21854,
1091                 0x21860, 0x21868,
1092                 0x21870, 0x21870,
1093                 0x21878, 0x21898,
1094                 0x218a0, 0x218a8,
1095                 0x218b0, 0x218c8,
1096                 0x218d0, 0x218d4,
1097                 0x218e0, 0x218e8,
1098                 0x218f0, 0x218f0,
1099                 0x218f8, 0x21a18,
1100                 0x21a20, 0x21a28,
1101                 0x21a30, 0x21a48,
1102                 0x21a50, 0x21a54,
1103                 0x21a60, 0x21a68,
1104                 0x21a70, 0x21a70,
1105                 0x21a78, 0x21a98,
1106                 0x21aa0, 0x21aa8,
1107                 0x21ab0, 0x21ac8,
1108                 0x21ad0, 0x21ad4,
1109                 0x21ae0, 0x21ae8,
1110                 0x21af0, 0x21af0,
1111                 0x21af8, 0x21c18,
1112                 0x21c20, 0x21c20,
1113                 0x21c28, 0x21c30,
1114                 0x21c38, 0x21c38,
1115                 0x21c80, 0x21c98,
1116                 0x21ca0, 0x21ca8,
1117                 0x21cb0, 0x21cc8,
1118                 0x21cd0, 0x21cd4,
1119                 0x21ce0, 0x21ce8,
1120                 0x21cf0, 0x21cf0,
1121                 0x21cf8, 0x21d7c,
1122                 0x21e00, 0x21e04,
1123                 0x22000, 0x2202c,
1124                 0x22100, 0x2213c,
1125                 0x22190, 0x221a0,
1126                 0x221a8, 0x221b8,
1127                 0x221c4, 0x221c8,
1128                 0x22200, 0x22318,
1129                 0x22400, 0x224b4,
1130                 0x224c0, 0x22528,
1131                 0x22540, 0x22614,
1132                 0x23000, 0x23040,
1133                 0x2304c, 0x23060,
1134                 0x230c0, 0x230ec,
1135                 0x23200, 0x23268,
1136                 0x23270, 0x23284,
1137                 0x232fc, 0x23388,
1138                 0x23400, 0x23404,
1139                 0x23500, 0x23500,
1140                 0x23510, 0x23518,
1141                 0x2352c, 0x23530,
1142                 0x2353c, 0x2353c,
1143                 0x23550, 0x23554,
1144                 0x23600, 0x23600,
1145                 0x23608, 0x2361c,
1146                 0x23624, 0x23628,
1147                 0x23630, 0x23634,
1148                 0x2363c, 0x2363c,
1149                 0x23700, 0x2371c,
1150                 0x23780, 0x2378c,
1151                 0x23800, 0x23818,
1152                 0x23820, 0x23828,
1153                 0x23830, 0x23848,
1154                 0x23850, 0x23854,
1155                 0x23860, 0x23868,
1156                 0x23870, 0x23870,
1157                 0x23878, 0x23898,
1158                 0x238a0, 0x238a8,
1159                 0x238b0, 0x238c8,
1160                 0x238d0, 0x238d4,
1161                 0x238e0, 0x238e8,
1162                 0x238f0, 0x238f0,
1163                 0x238f8, 0x23a18,
1164                 0x23a20, 0x23a28,
1165                 0x23a30, 0x23a48,
1166                 0x23a50, 0x23a54,
1167                 0x23a60, 0x23a68,
1168                 0x23a70, 0x23a70,
1169                 0x23a78, 0x23a98,
1170                 0x23aa0, 0x23aa8,
1171                 0x23ab0, 0x23ac8,
1172                 0x23ad0, 0x23ad4,
1173                 0x23ae0, 0x23ae8,
1174                 0x23af0, 0x23af0,
1175                 0x23af8, 0x23c18,
1176                 0x23c20, 0x23c20,
1177                 0x23c28, 0x23c30,
1178                 0x23c38, 0x23c38,
1179                 0x23c80, 0x23c98,
1180                 0x23ca0, 0x23ca8,
1181                 0x23cb0, 0x23cc8,
1182                 0x23cd0, 0x23cd4,
1183                 0x23ce0, 0x23ce8,
1184                 0x23cf0, 0x23cf0,
1185                 0x23cf8, 0x23d7c,
1186                 0x23e00, 0x23e04,
1187                 0x24000, 0x2402c,
1188                 0x24100, 0x2413c,
1189                 0x24190, 0x241a0,
1190                 0x241a8, 0x241b8,
1191                 0x241c4, 0x241c8,
1192                 0x24200, 0x24318,
1193                 0x24400, 0x244b4,
1194                 0x244c0, 0x24528,
1195                 0x24540, 0x24614,
1196                 0x25000, 0x25040,
1197                 0x2504c, 0x25060,
1198                 0x250c0, 0x250ec,
1199                 0x25200, 0x25268,
1200                 0x25270, 0x25284,
1201                 0x252fc, 0x25388,
1202                 0x25400, 0x25404,
1203                 0x25500, 0x25500,
1204                 0x25510, 0x25518,
1205                 0x2552c, 0x25530,
1206                 0x2553c, 0x2553c,
1207                 0x25550, 0x25554,
1208                 0x25600, 0x25600,
1209                 0x25608, 0x2561c,
1210                 0x25624, 0x25628,
1211                 0x25630, 0x25634,
1212                 0x2563c, 0x2563c,
1213                 0x25700, 0x2571c,
1214                 0x25780, 0x2578c,
1215                 0x25800, 0x25818,
1216                 0x25820, 0x25828,
1217                 0x25830, 0x25848,
1218                 0x25850, 0x25854,
1219                 0x25860, 0x25868,
1220                 0x25870, 0x25870,
1221                 0x25878, 0x25898,
1222                 0x258a0, 0x258a8,
1223                 0x258b0, 0x258c8,
1224                 0x258d0, 0x258d4,
1225                 0x258e0, 0x258e8,
1226                 0x258f0, 0x258f0,
1227                 0x258f8, 0x25a18,
1228                 0x25a20, 0x25a28,
1229                 0x25a30, 0x25a48,
1230                 0x25a50, 0x25a54,
1231                 0x25a60, 0x25a68,
1232                 0x25a70, 0x25a70,
1233                 0x25a78, 0x25a98,
1234                 0x25aa0, 0x25aa8,
1235                 0x25ab0, 0x25ac8,
1236                 0x25ad0, 0x25ad4,
1237                 0x25ae0, 0x25ae8,
1238                 0x25af0, 0x25af0,
1239                 0x25af8, 0x25c18,
1240                 0x25c20, 0x25c20,
1241                 0x25c28, 0x25c30,
1242                 0x25c38, 0x25c38,
1243                 0x25c80, 0x25c98,
1244                 0x25ca0, 0x25ca8,
1245                 0x25cb0, 0x25cc8,
1246                 0x25cd0, 0x25cd4,
1247                 0x25ce0, 0x25ce8,
1248                 0x25cf0, 0x25cf0,
1249                 0x25cf8, 0x25d7c,
1250                 0x25e00, 0x25e04,
1251                 0x26000, 0x2602c,
1252                 0x26100, 0x2613c,
1253                 0x26190, 0x261a0,
1254                 0x261a8, 0x261b8,
1255                 0x261c4, 0x261c8,
1256                 0x26200, 0x26318,
1257                 0x26400, 0x264b4,
1258                 0x264c0, 0x26528,
1259                 0x26540, 0x26614,
1260                 0x27000, 0x27040,
1261                 0x2704c, 0x27060,
1262                 0x270c0, 0x270ec,
1263                 0x27200, 0x27268,
1264                 0x27270, 0x27284,
1265                 0x272fc, 0x27388,
1266                 0x27400, 0x27404,
1267                 0x27500, 0x27500,
1268                 0x27510, 0x27518,
1269                 0x2752c, 0x27530,
1270                 0x2753c, 0x2753c,
1271                 0x27550, 0x27554,
1272                 0x27600, 0x27600,
1273                 0x27608, 0x2761c,
1274                 0x27624, 0x27628,
1275                 0x27630, 0x27634,
1276                 0x2763c, 0x2763c,
1277                 0x27700, 0x2771c,
1278                 0x27780, 0x2778c,
1279                 0x27800, 0x27818,
1280                 0x27820, 0x27828,
1281                 0x27830, 0x27848,
1282                 0x27850, 0x27854,
1283                 0x27860, 0x27868,
1284                 0x27870, 0x27870,
1285                 0x27878, 0x27898,
1286                 0x278a0, 0x278a8,
1287                 0x278b0, 0x278c8,
1288                 0x278d0, 0x278d4,
1289                 0x278e0, 0x278e8,
1290                 0x278f0, 0x278f0,
1291                 0x278f8, 0x27a18,
1292                 0x27a20, 0x27a28,
1293                 0x27a30, 0x27a48,
1294                 0x27a50, 0x27a54,
1295                 0x27a60, 0x27a68,
1296                 0x27a70, 0x27a70,
1297                 0x27a78, 0x27a98,
1298                 0x27aa0, 0x27aa8,
1299                 0x27ab0, 0x27ac8,
1300                 0x27ad0, 0x27ad4,
1301                 0x27ae0, 0x27ae8,
1302                 0x27af0, 0x27af0,
1303                 0x27af8, 0x27c18,
1304                 0x27c20, 0x27c20,
1305                 0x27c28, 0x27c30,
1306                 0x27c38, 0x27c38,
1307                 0x27c80, 0x27c98,
1308                 0x27ca0, 0x27ca8,
1309                 0x27cb0, 0x27cc8,
1310                 0x27cd0, 0x27cd4,
1311                 0x27ce0, 0x27ce8,
1312                 0x27cf0, 0x27cf0,
1313                 0x27cf8, 0x27d7c,
1314                 0x27e00, 0x27e04,
1315         };
1316
1317         static const unsigned int t5_reg_ranges[] = {
1318                 0x1008, 0x10c0,
1319                 0x10cc, 0x10f8,
1320                 0x1100, 0x1100,
1321                 0x110c, 0x1148,
1322                 0x1180, 0x1184,
1323                 0x1190, 0x1194,
1324                 0x11a0, 0x11a4,
1325                 0x11b0, 0x11b4,
1326                 0x11fc, 0x123c,
1327                 0x1280, 0x173c,
1328                 0x1800, 0x18fc,
1329                 0x3000, 0x3028,
1330                 0x3060, 0x30b0,
1331                 0x30b8, 0x30d8,
1332                 0x30e0, 0x30fc,
1333                 0x3140, 0x357c,
1334                 0x35a8, 0x35cc,
1335                 0x35ec, 0x35ec,
1336                 0x3600, 0x5624,
1337                 0x56cc, 0x56ec,
1338                 0x56f4, 0x5720,
1339                 0x5728, 0x575c,
1340                 0x580c, 0x5814,
1341                 0x5890, 0x589c,
1342                 0x58a4, 0x58ac,
1343                 0x58b8, 0x58bc,
1344                 0x5940, 0x59c8,
1345                 0x59d0, 0x59dc,
1346                 0x59fc, 0x5a18,
1347                 0x5a60, 0x5a70,
1348                 0x5a80, 0x5a9c,
1349                 0x5b94, 0x5bfc,
1350                 0x6000, 0x6020,
1351                 0x6028, 0x6040,
1352                 0x6058, 0x609c,
1353                 0x60a8, 0x614c,
1354                 0x7700, 0x7798,
1355                 0x77c0, 0x78fc,
1356                 0x7b00, 0x7b58,
1357                 0x7b60, 0x7b84,
1358                 0x7b8c, 0x7c54,
1359                 0x7d00, 0x7d38,
1360                 0x7d40, 0x7d80,
1361                 0x7d8c, 0x7ddc,
1362                 0x7de4, 0x7e04,
1363                 0x7e10, 0x7e1c,
1364                 0x7e24, 0x7e38,
1365                 0x7e40, 0x7e44,
1366                 0x7e4c, 0x7e78,
1367                 0x7e80, 0x7edc,
1368                 0x7ee8, 0x7efc,
1369                 0x8dc0, 0x8de0,
1370                 0x8df8, 0x8e04,
1371                 0x8e10, 0x8e84,
1372                 0x8ea0, 0x8f84,
1373                 0x8fc0, 0x9058,
1374                 0x9060, 0x9060,
1375                 0x9068, 0x90f8,
1376                 0x9400, 0x9408,
1377                 0x9410, 0x9470,
1378                 0x9600, 0x9600,
1379                 0x9608, 0x9638,
1380                 0x9640, 0x96f4,
1381                 0x9800, 0x9808,
1382                 0x9810, 0x9864,
1383                 0x9c00, 0x9c6c,
1384                 0x9c80, 0x9cec,
1385                 0x9d00, 0x9d6c,
1386                 0x9d80, 0x9dec,
1387                 0x9e00, 0x9e6c,
1388                 0x9e80, 0x9eec,
1389                 0x9f00, 0x9f6c,
1390                 0x9f80, 0xa020,
1391                 0xd000, 0xd004,
1392                 0xd010, 0xd03c,
1393                 0xdfc0, 0xdfe0,
1394                 0xe000, 0x1106c,
1395                 0x11074, 0x11088,
1396                 0x1109c, 0x1117c,
1397                 0x11190, 0x11204,
1398                 0x19040, 0x1906c,
1399                 0x19078, 0x19080,
1400                 0x1908c, 0x190e8,
1401                 0x190f0, 0x190f8,
1402                 0x19100, 0x19110,
1403                 0x19120, 0x19124,
1404                 0x19150, 0x19194,
1405                 0x1919c, 0x191b0,
1406                 0x191d0, 0x191e8,
1407                 0x19238, 0x19290,
1408                 0x193f8, 0x19428,
1409                 0x19430, 0x19444,
1410                 0x1944c, 0x1946c,
1411                 0x19474, 0x19474,
1412                 0x19490, 0x194cc,
1413                 0x194f0, 0x194f8,
1414                 0x19c00, 0x19c08,
1415                 0x19c10, 0x19c60,
1416                 0x19c94, 0x19ce4,
1417                 0x19cf0, 0x19d40,
1418                 0x19d50, 0x19d94,
1419                 0x19da0, 0x19de8,
1420                 0x19df0, 0x19e10,
1421                 0x19e50, 0x19e90,
1422                 0x19ea0, 0x19f24,
1423                 0x19f34, 0x19f34,
1424                 0x19f40, 0x19f50,
1425                 0x19f90, 0x19fb4,
1426                 0x19fc4, 0x19fe4,
1427                 0x1a000, 0x1a004,
1428                 0x1a010, 0x1a06c,
1429                 0x1a0b0, 0x1a0e4,
1430                 0x1a0ec, 0x1a0f8,
1431                 0x1a100, 0x1a108,
1432                 0x1a114, 0x1a130,
1433                 0x1a138, 0x1a1c4,
1434                 0x1a1fc, 0x1a1fc,
1435                 0x1e008, 0x1e00c,
1436                 0x1e040, 0x1e044,
1437                 0x1e04c, 0x1e04c,
1438                 0x1e284, 0x1e290,
1439                 0x1e2c0, 0x1e2c0,
1440                 0x1e2e0, 0x1e2e0,
1441                 0x1e300, 0x1e384,
1442                 0x1e3c0, 0x1e3c8,
1443                 0x1e408, 0x1e40c,
1444                 0x1e440, 0x1e444,
1445                 0x1e44c, 0x1e44c,
1446                 0x1e684, 0x1e690,
1447                 0x1e6c0, 0x1e6c0,
1448                 0x1e6e0, 0x1e6e0,
1449                 0x1e700, 0x1e784,
1450                 0x1e7c0, 0x1e7c8,
1451                 0x1e808, 0x1e80c,
1452                 0x1e840, 0x1e844,
1453                 0x1e84c, 0x1e84c,
1454                 0x1ea84, 0x1ea90,
1455                 0x1eac0, 0x1eac0,
1456                 0x1eae0, 0x1eae0,
1457                 0x1eb00, 0x1eb84,
1458                 0x1ebc0, 0x1ebc8,
1459                 0x1ec08, 0x1ec0c,
1460                 0x1ec40, 0x1ec44,
1461                 0x1ec4c, 0x1ec4c,
1462                 0x1ee84, 0x1ee90,
1463                 0x1eec0, 0x1eec0,
1464                 0x1eee0, 0x1eee0,
1465                 0x1ef00, 0x1ef84,
1466                 0x1efc0, 0x1efc8,
1467                 0x1f008, 0x1f00c,
1468                 0x1f040, 0x1f044,
1469                 0x1f04c, 0x1f04c,
1470                 0x1f284, 0x1f290,
1471                 0x1f2c0, 0x1f2c0,
1472                 0x1f2e0, 0x1f2e0,
1473                 0x1f300, 0x1f384,
1474                 0x1f3c0, 0x1f3c8,
1475                 0x1f408, 0x1f40c,
1476                 0x1f440, 0x1f444,
1477                 0x1f44c, 0x1f44c,
1478                 0x1f684, 0x1f690,
1479                 0x1f6c0, 0x1f6c0,
1480                 0x1f6e0, 0x1f6e0,
1481                 0x1f700, 0x1f784,
1482                 0x1f7c0, 0x1f7c8,
1483                 0x1f808, 0x1f80c,
1484                 0x1f840, 0x1f844,
1485                 0x1f84c, 0x1f84c,
1486                 0x1fa84, 0x1fa90,
1487                 0x1fac0, 0x1fac0,
1488                 0x1fae0, 0x1fae0,
1489                 0x1fb00, 0x1fb84,
1490                 0x1fbc0, 0x1fbc8,
1491                 0x1fc08, 0x1fc0c,
1492                 0x1fc40, 0x1fc44,
1493                 0x1fc4c, 0x1fc4c,
1494                 0x1fe84, 0x1fe90,
1495                 0x1fec0, 0x1fec0,
1496                 0x1fee0, 0x1fee0,
1497                 0x1ff00, 0x1ff84,
1498                 0x1ffc0, 0x1ffc8,
1499                 0x30000, 0x30030,
1500                 0x30100, 0x30144,
1501                 0x30190, 0x301a0,
1502                 0x301a8, 0x301b8,
1503                 0x301c4, 0x301c8,
1504                 0x301d0, 0x301d0,
1505                 0x30200, 0x30318,
1506                 0x30400, 0x304b4,
1507                 0x304c0, 0x3052c,
1508                 0x30540, 0x3061c,
1509                 0x30800, 0x30828,
1510                 0x30834, 0x30834,
1511                 0x308c0, 0x30908,
1512                 0x30910, 0x309ac,
1513                 0x30a00, 0x30a14,
1514                 0x30a1c, 0x30a2c,
1515                 0x30a44, 0x30a50,
1516                 0x30a74, 0x30a74,
1517                 0x30a7c, 0x30afc,
1518                 0x30b08, 0x30c24,
1519                 0x30d00, 0x30d00,
1520                 0x30d08, 0x30d14,
1521                 0x30d1c, 0x30d20,
1522                 0x30d3c, 0x30d3c,
1523                 0x30d48, 0x30d50,
1524                 0x31200, 0x3120c,
1525                 0x31220, 0x31220,
1526                 0x31240, 0x31240,
1527                 0x31600, 0x3160c,
1528                 0x31a00, 0x31a1c,
1529                 0x31e00, 0x31e20,
1530                 0x31e38, 0x31e3c,
1531                 0x31e80, 0x31e80,
1532                 0x31e88, 0x31ea8,
1533                 0x31eb0, 0x31eb4,
1534                 0x31ec8, 0x31ed4,
1535                 0x31fb8, 0x32004,
1536                 0x32200, 0x32200,
1537                 0x32208, 0x32240,
1538                 0x32248, 0x32280,
1539                 0x32288, 0x322c0,
1540                 0x322c8, 0x322fc,
1541                 0x32600, 0x32630,
1542                 0x32a00, 0x32abc,
1543                 0x32b00, 0x32b10,
1544                 0x32b20, 0x32b30,
1545                 0x32b40, 0x32b50,
1546                 0x32b60, 0x32b70,
1547                 0x33000, 0x33028,
1548                 0x33030, 0x33048,
1549                 0x33060, 0x33068,
1550                 0x33070, 0x3309c,
1551                 0x330f0, 0x33128,
1552                 0x33130, 0x33148,
1553                 0x33160, 0x33168,
1554                 0x33170, 0x3319c,
1555                 0x331f0, 0x33238,
1556                 0x33240, 0x33240,
1557                 0x33248, 0x33250,
1558                 0x3325c, 0x33264,
1559                 0x33270, 0x332b8,
1560                 0x332c0, 0x332e4,
1561                 0x332f8, 0x33338,
1562                 0x33340, 0x33340,
1563                 0x33348, 0x33350,
1564                 0x3335c, 0x33364,
1565                 0x33370, 0x333b8,
1566                 0x333c0, 0x333e4,
1567                 0x333f8, 0x33428,
1568                 0x33430, 0x33448,
1569                 0x33460, 0x33468,
1570                 0x33470, 0x3349c,
1571                 0x334f0, 0x33528,
1572                 0x33530, 0x33548,
1573                 0x33560, 0x33568,
1574                 0x33570, 0x3359c,
1575                 0x335f0, 0x33638,
1576                 0x33640, 0x33640,
1577                 0x33648, 0x33650,
1578                 0x3365c, 0x33664,
1579                 0x33670, 0x336b8,
1580                 0x336c0, 0x336e4,
1581                 0x336f8, 0x33738,
1582                 0x33740, 0x33740,
1583                 0x33748, 0x33750,
1584                 0x3375c, 0x33764,
1585                 0x33770, 0x337b8,
1586                 0x337c0, 0x337e4,
1587                 0x337f8, 0x337fc,
1588                 0x33814, 0x33814,
1589                 0x3382c, 0x3382c,
1590                 0x33880, 0x3388c,
1591                 0x338e8, 0x338ec,
1592                 0x33900, 0x33928,
1593                 0x33930, 0x33948,
1594                 0x33960, 0x33968,
1595                 0x33970, 0x3399c,
1596                 0x339f0, 0x33a38,
1597                 0x33a40, 0x33a40,
1598                 0x33a48, 0x33a50,
1599                 0x33a5c, 0x33a64,
1600                 0x33a70, 0x33ab8,
1601                 0x33ac0, 0x33ae4,
1602                 0x33af8, 0x33b10,
1603                 0x33b28, 0x33b28,
1604                 0x33b3c, 0x33b50,
1605                 0x33bf0, 0x33c10,
1606                 0x33c28, 0x33c28,
1607                 0x33c3c, 0x33c50,
1608                 0x33cf0, 0x33cfc,
1609                 0x34000, 0x34030,
1610                 0x34100, 0x34144,
1611                 0x34190, 0x341a0,
1612                 0x341a8, 0x341b8,
1613                 0x341c4, 0x341c8,
1614                 0x341d0, 0x341d0,
1615                 0x34200, 0x34318,
1616                 0x34400, 0x344b4,
1617                 0x344c0, 0x3452c,
1618                 0x34540, 0x3461c,
1619                 0x34800, 0x34828,
1620                 0x34834, 0x34834,
1621                 0x348c0, 0x34908,
1622                 0x34910, 0x349ac,
1623                 0x34a00, 0x34a14,
1624                 0x34a1c, 0x34a2c,
1625                 0x34a44, 0x34a50,
1626                 0x34a74, 0x34a74,
1627                 0x34a7c, 0x34afc,
1628                 0x34b08, 0x34c24,
1629                 0x34d00, 0x34d00,
1630                 0x34d08, 0x34d14,
1631                 0x34d1c, 0x34d20,
1632                 0x34d3c, 0x34d3c,
1633                 0x34d48, 0x34d50,
1634                 0x35200, 0x3520c,
1635                 0x35220, 0x35220,
1636                 0x35240, 0x35240,
1637                 0x35600, 0x3560c,
1638                 0x35a00, 0x35a1c,
1639                 0x35e00, 0x35e20,
1640                 0x35e38, 0x35e3c,
1641                 0x35e80, 0x35e80,
1642                 0x35e88, 0x35ea8,
1643                 0x35eb0, 0x35eb4,
1644                 0x35ec8, 0x35ed4,
1645                 0x35fb8, 0x36004,
1646                 0x36200, 0x36200,
1647                 0x36208, 0x36240,
1648                 0x36248, 0x36280,
1649                 0x36288, 0x362c0,
1650                 0x362c8, 0x362fc,
1651                 0x36600, 0x36630,
1652                 0x36a00, 0x36abc,
1653                 0x36b00, 0x36b10,
1654                 0x36b20, 0x36b30,
1655                 0x36b40, 0x36b50,
1656                 0x36b60, 0x36b70,
1657                 0x37000, 0x37028,
1658                 0x37030, 0x37048,
1659                 0x37060, 0x37068,
1660                 0x37070, 0x3709c,
1661                 0x370f0, 0x37128,
1662                 0x37130, 0x37148,
1663                 0x37160, 0x37168,
1664                 0x37170, 0x3719c,
1665                 0x371f0, 0x37238,
1666                 0x37240, 0x37240,
1667                 0x37248, 0x37250,
1668                 0x3725c, 0x37264,
1669                 0x37270, 0x372b8,
1670                 0x372c0, 0x372e4,
1671                 0x372f8, 0x37338,
1672                 0x37340, 0x37340,
1673                 0x37348, 0x37350,
1674                 0x3735c, 0x37364,
1675                 0x37370, 0x373b8,
1676                 0x373c0, 0x373e4,
1677                 0x373f8, 0x37428,
1678                 0x37430, 0x37448,
1679                 0x37460, 0x37468,
1680                 0x37470, 0x3749c,
1681                 0x374f0, 0x37528,
1682                 0x37530, 0x37548,
1683                 0x37560, 0x37568,
1684                 0x37570, 0x3759c,
1685                 0x375f0, 0x37638,
1686                 0x37640, 0x37640,
1687                 0x37648, 0x37650,
1688                 0x3765c, 0x37664,
1689                 0x37670, 0x376b8,
1690                 0x376c0, 0x376e4,
1691                 0x376f8, 0x37738,
1692                 0x37740, 0x37740,
1693                 0x37748, 0x37750,
1694                 0x3775c, 0x37764,
1695                 0x37770, 0x377b8,
1696                 0x377c0, 0x377e4,
1697                 0x377f8, 0x377fc,
1698                 0x37814, 0x37814,
1699                 0x3782c, 0x3782c,
1700                 0x37880, 0x3788c,
1701                 0x378e8, 0x378ec,
1702                 0x37900, 0x37928,
1703                 0x37930, 0x37948,
1704                 0x37960, 0x37968,
1705                 0x37970, 0x3799c,
1706                 0x379f0, 0x37a38,
1707                 0x37a40, 0x37a40,
1708                 0x37a48, 0x37a50,
1709                 0x37a5c, 0x37a64,
1710                 0x37a70, 0x37ab8,
1711                 0x37ac0, 0x37ae4,
1712                 0x37af8, 0x37b10,
1713                 0x37b28, 0x37b28,
1714                 0x37b3c, 0x37b50,
1715                 0x37bf0, 0x37c10,
1716                 0x37c28, 0x37c28,
1717                 0x37c3c, 0x37c50,
1718                 0x37cf0, 0x37cfc,
1719                 0x38000, 0x38030,
1720                 0x38100, 0x38144,
1721                 0x38190, 0x381a0,
1722                 0x381a8, 0x381b8,
1723                 0x381c4, 0x381c8,
1724                 0x381d0, 0x381d0,
1725                 0x38200, 0x38318,
1726                 0x38400, 0x384b4,
1727                 0x384c0, 0x3852c,
1728                 0x38540, 0x3861c,
1729                 0x38800, 0x38828,
1730                 0x38834, 0x38834,
1731                 0x388c0, 0x38908,
1732                 0x38910, 0x389ac,
1733                 0x38a00, 0x38a14,
1734                 0x38a1c, 0x38a2c,
1735                 0x38a44, 0x38a50,
1736                 0x38a74, 0x38a74,
1737                 0x38a7c, 0x38afc,
1738                 0x38b08, 0x38c24,
1739                 0x38d00, 0x38d00,
1740                 0x38d08, 0x38d14,
1741                 0x38d1c, 0x38d20,
1742                 0x38d3c, 0x38d3c,
1743                 0x38d48, 0x38d50,
1744                 0x39200, 0x3920c,
1745                 0x39220, 0x39220,
1746                 0x39240, 0x39240,
1747                 0x39600, 0x3960c,
1748                 0x39a00, 0x39a1c,
1749                 0x39e00, 0x39e20,
1750                 0x39e38, 0x39e3c,
1751                 0x39e80, 0x39e80,
1752                 0x39e88, 0x39ea8,
1753                 0x39eb0, 0x39eb4,
1754                 0x39ec8, 0x39ed4,
1755                 0x39fb8, 0x3a004,
1756                 0x3a200, 0x3a200,
1757                 0x3a208, 0x3a240,
1758                 0x3a248, 0x3a280,
1759                 0x3a288, 0x3a2c0,
1760                 0x3a2c8, 0x3a2fc,
1761                 0x3a600, 0x3a630,
1762                 0x3aa00, 0x3aabc,
1763                 0x3ab00, 0x3ab10,
1764                 0x3ab20, 0x3ab30,
1765                 0x3ab40, 0x3ab50,
1766                 0x3ab60, 0x3ab70,
1767                 0x3b000, 0x3b028,
1768                 0x3b030, 0x3b048,
1769                 0x3b060, 0x3b068,
1770                 0x3b070, 0x3b09c,
1771                 0x3b0f0, 0x3b128,
1772                 0x3b130, 0x3b148,
1773                 0x3b160, 0x3b168,
1774                 0x3b170, 0x3b19c,
1775                 0x3b1f0, 0x3b238,
1776                 0x3b240, 0x3b240,
1777                 0x3b248, 0x3b250,
1778                 0x3b25c, 0x3b264,
1779                 0x3b270, 0x3b2b8,
1780                 0x3b2c0, 0x3b2e4,
1781                 0x3b2f8, 0x3b338,
1782                 0x3b340, 0x3b340,
1783                 0x3b348, 0x3b350,
1784                 0x3b35c, 0x3b364,
1785                 0x3b370, 0x3b3b8,
1786                 0x3b3c0, 0x3b3e4,
1787                 0x3b3f8, 0x3b428,
1788                 0x3b430, 0x3b448,
1789                 0x3b460, 0x3b468,
1790                 0x3b470, 0x3b49c,
1791                 0x3b4f0, 0x3b528,
1792                 0x3b530, 0x3b548,
1793                 0x3b560, 0x3b568,
1794                 0x3b570, 0x3b59c,
1795                 0x3b5f0, 0x3b638,
1796                 0x3b640, 0x3b640,
1797                 0x3b648, 0x3b650,
1798                 0x3b65c, 0x3b664,
1799                 0x3b670, 0x3b6b8,
1800                 0x3b6c0, 0x3b6e4,
1801                 0x3b6f8, 0x3b738,
1802                 0x3b740, 0x3b740,
1803                 0x3b748, 0x3b750,
1804                 0x3b75c, 0x3b764,
1805                 0x3b770, 0x3b7b8,
1806                 0x3b7c0, 0x3b7e4,
1807                 0x3b7f8, 0x3b7fc,
1808                 0x3b814, 0x3b814,
1809                 0x3b82c, 0x3b82c,
1810                 0x3b880, 0x3b88c,
1811                 0x3b8e8, 0x3b8ec,
1812                 0x3b900, 0x3b928,
1813                 0x3b930, 0x3b948,
1814                 0x3b960, 0x3b968,
1815                 0x3b970, 0x3b99c,
1816                 0x3b9f0, 0x3ba38,
1817                 0x3ba40, 0x3ba40,
1818                 0x3ba48, 0x3ba50,
1819                 0x3ba5c, 0x3ba64,
1820                 0x3ba70, 0x3bab8,
1821                 0x3bac0, 0x3bae4,
1822                 0x3baf8, 0x3bb10,
1823                 0x3bb28, 0x3bb28,
1824                 0x3bb3c, 0x3bb50,
1825                 0x3bbf0, 0x3bc10,
1826                 0x3bc28, 0x3bc28,
1827                 0x3bc3c, 0x3bc50,
1828                 0x3bcf0, 0x3bcfc,
1829                 0x3c000, 0x3c030,
1830                 0x3c100, 0x3c144,
1831                 0x3c190, 0x3c1a0,
1832                 0x3c1a8, 0x3c1b8,
1833                 0x3c1c4, 0x3c1c8,
1834                 0x3c1d0, 0x3c1d0,
1835                 0x3c200, 0x3c318,
1836                 0x3c400, 0x3c4b4,
1837                 0x3c4c0, 0x3c52c,
1838                 0x3c540, 0x3c61c,
1839                 0x3c800, 0x3c828,
1840                 0x3c834, 0x3c834,
1841                 0x3c8c0, 0x3c908,
1842                 0x3c910, 0x3c9ac,
1843                 0x3ca00, 0x3ca14,
1844                 0x3ca1c, 0x3ca2c,
1845                 0x3ca44, 0x3ca50,
1846                 0x3ca74, 0x3ca74,
1847                 0x3ca7c, 0x3cafc,
1848                 0x3cb08, 0x3cc24,
1849                 0x3cd00, 0x3cd00,
1850                 0x3cd08, 0x3cd14,
1851                 0x3cd1c, 0x3cd20,
1852                 0x3cd3c, 0x3cd3c,
1853                 0x3cd48, 0x3cd50,
1854                 0x3d200, 0x3d20c,
1855                 0x3d220, 0x3d220,
1856                 0x3d240, 0x3d240,
1857                 0x3d600, 0x3d60c,
1858                 0x3da00, 0x3da1c,
1859                 0x3de00, 0x3de20,
1860                 0x3de38, 0x3de3c,
1861                 0x3de80, 0x3de80,
1862                 0x3de88, 0x3dea8,
1863                 0x3deb0, 0x3deb4,
1864                 0x3dec8, 0x3ded4,
1865                 0x3dfb8, 0x3e004,
1866                 0x3e200, 0x3e200,
1867                 0x3e208, 0x3e240,
1868                 0x3e248, 0x3e280,
1869                 0x3e288, 0x3e2c0,
1870                 0x3e2c8, 0x3e2fc,
1871                 0x3e600, 0x3e630,
1872                 0x3ea00, 0x3eabc,
1873                 0x3eb00, 0x3eb10,
1874                 0x3eb20, 0x3eb30,
1875                 0x3eb40, 0x3eb50,
1876                 0x3eb60, 0x3eb70,
1877                 0x3f000, 0x3f028,
1878                 0x3f030, 0x3f048,
1879                 0x3f060, 0x3f068,
1880                 0x3f070, 0x3f09c,
1881                 0x3f0f0, 0x3f128,
1882                 0x3f130, 0x3f148,
1883                 0x3f160, 0x3f168,
1884                 0x3f170, 0x3f19c,
1885                 0x3f1f0, 0x3f238,
1886                 0x3f240, 0x3f240,
1887                 0x3f248, 0x3f250,
1888                 0x3f25c, 0x3f264,
1889                 0x3f270, 0x3f2b8,
1890                 0x3f2c0, 0x3f2e4,
1891                 0x3f2f8, 0x3f338,
1892                 0x3f340, 0x3f340,
1893                 0x3f348, 0x3f350,
1894                 0x3f35c, 0x3f364,
1895                 0x3f370, 0x3f3b8,
1896                 0x3f3c0, 0x3f3e4,
1897                 0x3f3f8, 0x3f428,
1898                 0x3f430, 0x3f448,
1899                 0x3f460, 0x3f468,
1900                 0x3f470, 0x3f49c,
1901                 0x3f4f0, 0x3f528,
1902                 0x3f530, 0x3f548,
1903                 0x3f560, 0x3f568,
1904                 0x3f570, 0x3f59c,
1905                 0x3f5f0, 0x3f638,
1906                 0x3f640, 0x3f640,
1907                 0x3f648, 0x3f650,
1908                 0x3f65c, 0x3f664,
1909                 0x3f670, 0x3f6b8,
1910                 0x3f6c0, 0x3f6e4,
1911                 0x3f6f8, 0x3f738,
1912                 0x3f740, 0x3f740,
1913                 0x3f748, 0x3f750,
1914                 0x3f75c, 0x3f764,
1915                 0x3f770, 0x3f7b8,
1916                 0x3f7c0, 0x3f7e4,
1917                 0x3f7f8, 0x3f7fc,
1918                 0x3f814, 0x3f814,
1919                 0x3f82c, 0x3f82c,
1920                 0x3f880, 0x3f88c,
1921                 0x3f8e8, 0x3f8ec,
1922                 0x3f900, 0x3f928,
1923                 0x3f930, 0x3f948,
1924                 0x3f960, 0x3f968,
1925                 0x3f970, 0x3f99c,
1926                 0x3f9f0, 0x3fa38,
1927                 0x3fa40, 0x3fa40,
1928                 0x3fa48, 0x3fa50,
1929                 0x3fa5c, 0x3fa64,
1930                 0x3fa70, 0x3fab8,
1931                 0x3fac0, 0x3fae4,
1932                 0x3faf8, 0x3fb10,
1933                 0x3fb28, 0x3fb28,
1934                 0x3fb3c, 0x3fb50,
1935                 0x3fbf0, 0x3fc10,
1936                 0x3fc28, 0x3fc28,
1937                 0x3fc3c, 0x3fc50,
1938                 0x3fcf0, 0x3fcfc,
1939                 0x40000, 0x4000c,
1940                 0x40040, 0x40050,
1941                 0x40060, 0x40068,
1942                 0x4007c, 0x4008c,
1943                 0x40094, 0x400b0,
1944                 0x400c0, 0x40144,
1945                 0x40180, 0x4018c,
1946                 0x40200, 0x40254,
1947                 0x40260, 0x40264,
1948                 0x40270, 0x40288,
1949                 0x40290, 0x40298,
1950                 0x402ac, 0x402c8,
1951                 0x402d0, 0x402e0,
1952                 0x402f0, 0x402f0,
1953                 0x40300, 0x4033c,
1954                 0x403f8, 0x403fc,
1955                 0x41304, 0x413c4,
1956                 0x41400, 0x4140c,
1957                 0x41414, 0x4141c,
1958                 0x41480, 0x414d0,
1959                 0x44000, 0x44054,
1960                 0x4405c, 0x44078,
1961                 0x440c0, 0x44174,
1962                 0x44180, 0x441ac,
1963                 0x441b4, 0x441b8,
1964                 0x441c0, 0x44254,
1965                 0x4425c, 0x44278,
1966                 0x442c0, 0x44374,
1967                 0x44380, 0x443ac,
1968                 0x443b4, 0x443b8,
1969                 0x443c0, 0x44454,
1970                 0x4445c, 0x44478,
1971                 0x444c0, 0x44574,
1972                 0x44580, 0x445ac,
1973                 0x445b4, 0x445b8,
1974                 0x445c0, 0x44654,
1975                 0x4465c, 0x44678,
1976                 0x446c0, 0x44774,
1977                 0x44780, 0x447ac,
1978                 0x447b4, 0x447b8,
1979                 0x447c0, 0x44854,
1980                 0x4485c, 0x44878,
1981                 0x448c0, 0x44974,
1982                 0x44980, 0x449ac,
1983                 0x449b4, 0x449b8,
1984                 0x449c0, 0x449fc,
1985                 0x45000, 0x45004,
1986                 0x45010, 0x45030,
1987                 0x45040, 0x45060,
1988                 0x45068, 0x45068,
1989                 0x45080, 0x45084,
1990                 0x450a0, 0x450b0,
1991                 0x45200, 0x45204,
1992                 0x45210, 0x45230,
1993                 0x45240, 0x45260,
1994                 0x45268, 0x45268,
1995                 0x45280, 0x45284,
1996                 0x452a0, 0x452b0,
1997                 0x460c0, 0x460e4,
1998                 0x47000, 0x4703c,
1999                 0x47044, 0x4708c,
2000                 0x47200, 0x47250,
2001                 0x47400, 0x47408,
2002                 0x47414, 0x47420,
2003                 0x47600, 0x47618,
2004                 0x47800, 0x47814,
2005                 0x48000, 0x4800c,
2006                 0x48040, 0x48050,
2007                 0x48060, 0x48068,
2008                 0x4807c, 0x4808c,
2009                 0x48094, 0x480b0,
2010                 0x480c0, 0x48144,
2011                 0x48180, 0x4818c,
2012                 0x48200, 0x48254,
2013                 0x48260, 0x48264,
2014                 0x48270, 0x48288,
2015                 0x48290, 0x48298,
2016                 0x482ac, 0x482c8,
2017                 0x482d0, 0x482e0,
2018                 0x482f0, 0x482f0,
2019                 0x48300, 0x4833c,
2020                 0x483f8, 0x483fc,
2021                 0x49304, 0x493c4,
2022                 0x49400, 0x4940c,
2023                 0x49414, 0x4941c,
2024                 0x49480, 0x494d0,
2025                 0x4c000, 0x4c054,
2026                 0x4c05c, 0x4c078,
2027                 0x4c0c0, 0x4c174,
2028                 0x4c180, 0x4c1ac,
2029                 0x4c1b4, 0x4c1b8,
2030                 0x4c1c0, 0x4c254,
2031                 0x4c25c, 0x4c278,
2032                 0x4c2c0, 0x4c374,
2033                 0x4c380, 0x4c3ac,
2034                 0x4c3b4, 0x4c3b8,
2035                 0x4c3c0, 0x4c454,
2036                 0x4c45c, 0x4c478,
2037                 0x4c4c0, 0x4c574,
2038                 0x4c580, 0x4c5ac,
2039                 0x4c5b4, 0x4c5b8,
2040                 0x4c5c0, 0x4c654,
2041                 0x4c65c, 0x4c678,
2042                 0x4c6c0, 0x4c774,
2043                 0x4c780, 0x4c7ac,
2044                 0x4c7b4, 0x4c7b8,
2045                 0x4c7c0, 0x4c854,
2046                 0x4c85c, 0x4c878,
2047                 0x4c8c0, 0x4c974,
2048                 0x4c980, 0x4c9ac,
2049                 0x4c9b4, 0x4c9b8,
2050                 0x4c9c0, 0x4c9fc,
2051                 0x4d000, 0x4d004,
2052                 0x4d010, 0x4d030,
2053                 0x4d040, 0x4d060,
2054                 0x4d068, 0x4d068,
2055                 0x4d080, 0x4d084,
2056                 0x4d0a0, 0x4d0b0,
2057                 0x4d200, 0x4d204,
2058                 0x4d210, 0x4d230,
2059                 0x4d240, 0x4d260,
2060                 0x4d268, 0x4d268,
2061                 0x4d280, 0x4d284,
2062                 0x4d2a0, 0x4d2b0,
2063                 0x4e0c0, 0x4e0e4,
2064                 0x4f000, 0x4f03c,
2065                 0x4f044, 0x4f08c,
2066                 0x4f200, 0x4f250,
2067                 0x4f400, 0x4f408,
2068                 0x4f414, 0x4f420,
2069                 0x4f600, 0x4f618,
2070                 0x4f800, 0x4f814,
2071                 0x50000, 0x50084,
2072                 0x50090, 0x500cc,
2073                 0x50400, 0x50400,
2074                 0x50800, 0x50884,
2075                 0x50890, 0x508cc,
2076                 0x50c00, 0x50c00,
2077                 0x51000, 0x5101c,
2078                 0x51300, 0x51308,
2079         };
2080
2081         static const unsigned int t6_reg_ranges[] = {
2082                 0x1008, 0x101c,
2083                 0x1024, 0x10a8,
2084                 0x10b4, 0x10f8,
2085                 0x1100, 0x1114,
2086                 0x111c, 0x112c,
2087                 0x1138, 0x113c,
2088                 0x1144, 0x114c,
2089                 0x1180, 0x1184,
2090                 0x1190, 0x1194,
2091                 0x11a0, 0x11a4,
2092                 0x11b0, 0x11b4,
2093                 0x11fc, 0x123c,
2094                 0x1254, 0x1274,
2095                 0x1280, 0x133c,
2096                 0x1800, 0x18fc,
2097                 0x3000, 0x302c,
2098                 0x3060, 0x30b0,
2099                 0x30b8, 0x30d8,
2100                 0x30e0, 0x30fc,
2101                 0x3140, 0x357c,
2102                 0x35a8, 0x35cc,
2103                 0x35ec, 0x35ec,
2104                 0x3600, 0x5624,
2105                 0x56cc, 0x56ec,
2106                 0x56f4, 0x5720,
2107                 0x5728, 0x575c,
2108                 0x580c, 0x5814,
2109                 0x5890, 0x589c,
2110                 0x58a4, 0x58ac,
2111                 0x58b8, 0x58bc,
2112                 0x5940, 0x595c,
2113                 0x5980, 0x598c,
2114                 0x59b0, 0x59c8,
2115                 0x59d0, 0x59dc,
2116                 0x59fc, 0x5a18,
2117                 0x5a60, 0x5a6c,
2118                 0x5a80, 0x5a8c,
2119                 0x5a94, 0x5a9c,
2120                 0x5b94, 0x5bfc,
2121                 0x5c10, 0x5e48,
2122                 0x5e50, 0x5e94,
2123                 0x5ea0, 0x5eb0,
2124                 0x5ec0, 0x5ec0,
2125                 0x5ec8, 0x5ed0,
2126                 0x5ee0, 0x5ee0,
2127                 0x5ef0, 0x5ef0,
2128                 0x5f00, 0x5f00,
2129                 0x6000, 0x6020,
2130                 0x6028, 0x6040,
2131                 0x6058, 0x609c,
2132                 0x60a8, 0x619c,
2133                 0x7700, 0x7798,
2134                 0x77c0, 0x7880,
2135                 0x78cc, 0x78fc,
2136                 0x7b00, 0x7b58,
2137                 0x7b60, 0x7b84,
2138                 0x7b8c, 0x7c54,
2139                 0x7d00, 0x7d38,
2140                 0x7d40, 0x7d84,
2141                 0x7d8c, 0x7ddc,
2142                 0x7de4, 0x7e04,
2143                 0x7e10, 0x7e1c,
2144                 0x7e24, 0x7e38,
2145                 0x7e40, 0x7e44,
2146                 0x7e4c, 0x7e78,
2147                 0x7e80, 0x7edc,
2148                 0x7ee8, 0x7efc,
2149                 0x8dc0, 0x8de4,
2150                 0x8df8, 0x8e04,
2151                 0x8e10, 0x8e84,
2152                 0x8ea0, 0x8f88,
2153                 0x8fb8, 0x9058,
2154                 0x9060, 0x9060,
2155                 0x9068, 0x90f8,
2156                 0x9100, 0x9124,
2157                 0x9400, 0x9470,
2158                 0x9600, 0x9600,
2159                 0x9608, 0x9638,
2160                 0x9640, 0x9704,
2161                 0x9710, 0x971c,
2162                 0x9800, 0x9808,
2163                 0x9810, 0x9864,
2164                 0x9c00, 0x9c6c,
2165                 0x9c80, 0x9cec,
2166                 0x9d00, 0x9d6c,
2167                 0x9d80, 0x9dec,
2168                 0x9e00, 0x9e6c,
2169                 0x9e80, 0x9eec,
2170                 0x9f00, 0x9f6c,
2171                 0x9f80, 0xa020,
2172                 0xd000, 0xd03c,
2173                 0xd100, 0xd118,
2174                 0xd200, 0xd214,
2175                 0xd220, 0xd234,
2176                 0xd240, 0xd254,
2177                 0xd260, 0xd274,
2178                 0xd280, 0xd294,
2179                 0xd2a0, 0xd2b4,
2180                 0xd2c0, 0xd2d4,
2181                 0xd2e0, 0xd2f4,
2182                 0xd300, 0xd31c,
2183                 0xdfc0, 0xdfe0,
2184                 0xe000, 0xf008,
2185                 0xf010, 0xf018,
2186                 0xf020, 0xf028,
2187                 0x11000, 0x11014,
2188                 0x11048, 0x1106c,
2189                 0x11074, 0x11088,
2190                 0x11098, 0x11120,
2191                 0x1112c, 0x1117c,
2192                 0x11190, 0x112e0,
2193                 0x11300, 0x1130c,
2194                 0x12000, 0x1206c,
2195                 0x19040, 0x1906c,
2196                 0x19078, 0x19080,
2197                 0x1908c, 0x190e8,
2198                 0x190f0, 0x190f8,
2199                 0x19100, 0x19110,
2200                 0x19120, 0x19124,
2201                 0x19150, 0x19194,
2202                 0x1919c, 0x191b0,
2203                 0x191d0, 0x191e8,
2204                 0x19238, 0x19290,
2205                 0x192a4, 0x192b0,
2206                 0x192bc, 0x192bc,
2207                 0x19348, 0x1934c,
2208                 0x193f8, 0x19418,
2209                 0x19420, 0x19428,
2210                 0x19430, 0x19444,
2211                 0x1944c, 0x1946c,
2212                 0x19474, 0x19474,
2213                 0x19490, 0x194cc,
2214                 0x194f0, 0x194f8,
2215                 0x19c00, 0x19c48,
2216                 0x19c50, 0x19c80,
2217                 0x19c94, 0x19c98,
2218                 0x19ca0, 0x19cbc,
2219                 0x19ce4, 0x19ce4,
2220                 0x19cf0, 0x19cf8,
2221                 0x19d00, 0x19d28,
2222                 0x19d50, 0x19d78,
2223                 0x19d94, 0x19d98,
2224                 0x19da0, 0x19dc8,
2225                 0x19df0, 0x19e10,
2226                 0x19e50, 0x19e6c,
2227                 0x19ea0, 0x19ebc,
2228                 0x19ec4, 0x19ef4,
2229                 0x19f04, 0x19f2c,
2230                 0x19f34, 0x19f34,
2231                 0x19f40, 0x19f50,
2232                 0x19f90, 0x19fac,
2233                 0x19fc4, 0x19fc8,
2234                 0x19fd0, 0x19fe4,
2235                 0x1a000, 0x1a004,
2236                 0x1a010, 0x1a06c,
2237                 0x1a0b0, 0x1a0e4,
2238                 0x1a0ec, 0x1a0f8,
2239                 0x1a100, 0x1a108,
2240                 0x1a114, 0x1a130,
2241                 0x1a138, 0x1a1c4,
2242                 0x1a1fc, 0x1a1fc,
2243                 0x1e008, 0x1e00c,
2244                 0x1e040, 0x1e044,
2245                 0x1e04c, 0x1e04c,
2246                 0x1e284, 0x1e290,
2247                 0x1e2c0, 0x1e2c0,
2248                 0x1e2e0, 0x1e2e0,
2249                 0x1e300, 0x1e384,
2250                 0x1e3c0, 0x1e3c8,
2251                 0x1e408, 0x1e40c,
2252                 0x1e440, 0x1e444,
2253                 0x1e44c, 0x1e44c,
2254                 0x1e684, 0x1e690,
2255                 0x1e6c0, 0x1e6c0,
2256                 0x1e6e0, 0x1e6e0,
2257                 0x1e700, 0x1e784,
2258                 0x1e7c0, 0x1e7c8,
2259                 0x1e808, 0x1e80c,
2260                 0x1e840, 0x1e844,
2261                 0x1e84c, 0x1e84c,
2262                 0x1ea84, 0x1ea90,
2263                 0x1eac0, 0x1eac0,
2264                 0x1eae0, 0x1eae0,
2265                 0x1eb00, 0x1eb84,
2266                 0x1ebc0, 0x1ebc8,
2267                 0x1ec08, 0x1ec0c,
2268                 0x1ec40, 0x1ec44,
2269                 0x1ec4c, 0x1ec4c,
2270                 0x1ee84, 0x1ee90,
2271                 0x1eec0, 0x1eec0,
2272                 0x1eee0, 0x1eee0,
2273                 0x1ef00, 0x1ef84,
2274                 0x1efc0, 0x1efc8,
2275                 0x1f008, 0x1f00c,
2276                 0x1f040, 0x1f044,
2277                 0x1f04c, 0x1f04c,
2278                 0x1f284, 0x1f290,
2279                 0x1f2c0, 0x1f2c0,
2280                 0x1f2e0, 0x1f2e0,
2281                 0x1f300, 0x1f384,
2282                 0x1f3c0, 0x1f3c8,
2283                 0x1f408, 0x1f40c,
2284                 0x1f440, 0x1f444,
2285                 0x1f44c, 0x1f44c,
2286                 0x1f684, 0x1f690,
2287                 0x1f6c0, 0x1f6c0,
2288                 0x1f6e0, 0x1f6e0,
2289                 0x1f700, 0x1f784,
2290                 0x1f7c0, 0x1f7c8,
2291                 0x1f808, 0x1f80c,
2292                 0x1f840, 0x1f844,
2293                 0x1f84c, 0x1f84c,
2294                 0x1fa84, 0x1fa90,
2295                 0x1fac0, 0x1fac0,
2296                 0x1fae0, 0x1fae0,
2297                 0x1fb00, 0x1fb84,
2298                 0x1fbc0, 0x1fbc8,
2299                 0x1fc08, 0x1fc0c,
2300                 0x1fc40, 0x1fc44,
2301                 0x1fc4c, 0x1fc4c,
2302                 0x1fe84, 0x1fe90,
2303                 0x1fec0, 0x1fec0,
2304                 0x1fee0, 0x1fee0,
2305                 0x1ff00, 0x1ff84,
2306                 0x1ffc0, 0x1ffc8,
2307                 0x30000, 0x30030,
2308                 0x30100, 0x30168,
2309                 0x30190, 0x301a0,
2310                 0x301a8, 0x301b8,
2311                 0x301c4, 0x301c8,
2312                 0x301d0, 0x301d0,
2313                 0x30200, 0x30320,
2314                 0x30400, 0x304b4,
2315                 0x304c0, 0x3052c,
2316                 0x30540, 0x3061c,
2317                 0x30800, 0x308a0,
2318                 0x308c0, 0x30908,
2319                 0x30910, 0x309b8,
2320                 0x30a00, 0x30a04,
2321                 0x30a0c, 0x30a14,
2322                 0x30a1c, 0x30a2c,
2323                 0x30a44, 0x30a50,
2324                 0x30a74, 0x30a74,
2325                 0x30a7c, 0x30afc,
2326                 0x30b08, 0x30c24,
2327                 0x30d00, 0x30d14,
2328                 0x30d1c, 0x30d3c,
2329                 0x30d44, 0x30d4c,
2330                 0x30d54, 0x30d74,
2331                 0x30d7c, 0x30d7c,
2332                 0x30de0, 0x30de0,
2333                 0x30e00, 0x30ed4,
2334                 0x30f00, 0x30fa4,
2335                 0x30fc0, 0x30fc4,
2336                 0x31000, 0x31004,
2337                 0x31080, 0x310fc,
2338                 0x31208, 0x31220,
2339                 0x3123c, 0x31254,
2340                 0x31300, 0x31300,
2341                 0x31308, 0x3131c,
2342                 0x31338, 0x3133c,
2343                 0x31380, 0x31380,
2344                 0x31388, 0x313a8,
2345                 0x313b4, 0x313b4,
2346                 0x31400, 0x31420,
2347                 0x31438, 0x3143c,
2348                 0x31480, 0x31480,
2349                 0x314a8, 0x314a8,
2350                 0x314b0, 0x314b4,
2351                 0x314c8, 0x314d4,
2352                 0x31a40, 0x31a4c,
2353                 0x31af0, 0x31b20,
2354                 0x31b38, 0x31b3c,
2355                 0x31b80, 0x31b80,
2356                 0x31ba8, 0x31ba8,
2357                 0x31bb0, 0x31bb4,
2358                 0x31bc8, 0x31bd4,
2359                 0x32140, 0x3218c,
2360                 0x321f0, 0x321f4,
2361                 0x32200, 0x32200,
2362                 0x32218, 0x32218,
2363                 0x32400, 0x32400,
2364                 0x32408, 0x3241c,
2365                 0x32618, 0x32620,
2366                 0x32664, 0x32664,
2367                 0x326a8, 0x326a8,
2368                 0x326ec, 0x326ec,
2369                 0x32a00, 0x32abc,
2370                 0x32b00, 0x32b18,
2371                 0x32b20, 0x32b38,
2372                 0x32b40, 0x32b58,
2373                 0x32b60, 0x32b78,
2374                 0x32c00, 0x32c00,
2375                 0x32c08, 0x32c3c,
2376                 0x33000, 0x3302c,
2377                 0x33034, 0x33050,
2378                 0x33058, 0x33058,
2379                 0x33060, 0x3308c,
2380                 0x3309c, 0x330ac,
2381                 0x330c0, 0x330c0,
2382                 0x330c8, 0x330d0,
2383                 0x330d8, 0x330e0,
2384                 0x330ec, 0x3312c,
2385                 0x33134, 0x33150,
2386                 0x33158, 0x33158,
2387                 0x33160, 0x3318c,
2388                 0x3319c, 0x331ac,
2389                 0x331c0, 0x331c0,
2390                 0x331c8, 0x331d0,
2391                 0x331d8, 0x331e0,
2392                 0x331ec, 0x33290,
2393                 0x33298, 0x332c4,
2394                 0x332e4, 0x33390,
2395                 0x33398, 0x333c4,
2396                 0x333e4, 0x3342c,
2397                 0x33434, 0x33450,
2398                 0x33458, 0x33458,
2399                 0x33460, 0x3348c,
2400                 0x3349c, 0x334ac,
2401                 0x334c0, 0x334c0,
2402                 0x334c8, 0x334d0,
2403                 0x334d8, 0x334e0,
2404                 0x334ec, 0x3352c,
2405                 0x33534, 0x33550,
2406                 0x33558, 0x33558,
2407                 0x33560, 0x3358c,
2408                 0x3359c, 0x335ac,
2409                 0x335c0, 0x335c0,
2410                 0x335c8, 0x335d0,
2411                 0x335d8, 0x335e0,
2412                 0x335ec, 0x33690,
2413                 0x33698, 0x336c4,
2414                 0x336e4, 0x33790,
2415                 0x33798, 0x337c4,
2416                 0x337e4, 0x337fc,
2417                 0x33814, 0x33814,
2418                 0x33854, 0x33868,
2419                 0x33880, 0x3388c,
2420                 0x338c0, 0x338d0,
2421                 0x338e8, 0x338ec,
2422                 0x33900, 0x3392c,
2423                 0x33934, 0x33950,
2424                 0x33958, 0x33958,
2425                 0x33960, 0x3398c,
2426                 0x3399c, 0x339ac,
2427                 0x339c0, 0x339c0,
2428                 0x339c8, 0x339d0,
2429                 0x339d8, 0x339e0,
2430                 0x339ec, 0x33a90,
2431                 0x33a98, 0x33ac4,
2432                 0x33ae4, 0x33b10,
2433                 0x33b24, 0x33b28,
2434                 0x33b38, 0x33b50,
2435                 0x33bf0, 0x33c10,
2436                 0x33c24, 0x33c28,
2437                 0x33c38, 0x33c50,
2438                 0x33cf0, 0x33cfc,
2439                 0x34000, 0x34030,
2440                 0x34100, 0x34168,
2441                 0x34190, 0x341a0,
2442                 0x341a8, 0x341b8,
2443                 0x341c4, 0x341c8,
2444                 0x341d0, 0x341d0,
2445                 0x34200, 0x34320,
2446                 0x34400, 0x344b4,
2447                 0x344c0, 0x3452c,
2448                 0x34540, 0x3461c,
2449                 0x34800, 0x348a0,
2450                 0x348c0, 0x34908,
2451                 0x34910, 0x349b8,
2452                 0x34a00, 0x34a04,
2453                 0x34a0c, 0x34a14,
2454                 0x34a1c, 0x34a2c,
2455                 0x34a44, 0x34a50,
2456                 0x34a74, 0x34a74,
2457                 0x34a7c, 0x34afc,
2458                 0x34b08, 0x34c24,
2459                 0x34d00, 0x34d14,
2460                 0x34d1c, 0x34d3c,
2461                 0x34d44, 0x34d4c,
2462                 0x34d54, 0x34d74,
2463                 0x34d7c, 0x34d7c,
2464                 0x34de0, 0x34de0,
2465                 0x34e00, 0x34ed4,
2466                 0x34f00, 0x34fa4,
2467                 0x34fc0, 0x34fc4,
2468                 0x35000, 0x35004,
2469                 0x35080, 0x350fc,
2470                 0x35208, 0x35220,
2471                 0x3523c, 0x35254,
2472                 0x35300, 0x35300,
2473                 0x35308, 0x3531c,
2474                 0x35338, 0x3533c,
2475                 0x35380, 0x35380,
2476                 0x35388, 0x353a8,
2477                 0x353b4, 0x353b4,
2478                 0x35400, 0x35420,
2479                 0x35438, 0x3543c,
2480                 0x35480, 0x35480,
2481                 0x354a8, 0x354a8,
2482                 0x354b0, 0x354b4,
2483                 0x354c8, 0x354d4,
2484                 0x35a40, 0x35a4c,
2485                 0x35af0, 0x35b20,
2486                 0x35b38, 0x35b3c,
2487                 0x35b80, 0x35b80,
2488                 0x35ba8, 0x35ba8,
2489                 0x35bb0, 0x35bb4,
2490                 0x35bc8, 0x35bd4,
2491                 0x36140, 0x3618c,
2492                 0x361f0, 0x361f4,
2493                 0x36200, 0x36200,
2494                 0x36218, 0x36218,
2495                 0x36400, 0x36400,
2496                 0x36408, 0x3641c,
2497                 0x36618, 0x36620,
2498                 0x36664, 0x36664,
2499                 0x366a8, 0x366a8,
2500                 0x366ec, 0x366ec,
2501                 0x36a00, 0x36abc,
2502                 0x36b00, 0x36b18,
2503                 0x36b20, 0x36b38,
2504                 0x36b40, 0x36b58,
2505                 0x36b60, 0x36b78,
2506                 0x36c00, 0x36c00,
2507                 0x36c08, 0x36c3c,
2508                 0x37000, 0x3702c,
2509                 0x37034, 0x37050,
2510                 0x37058, 0x37058,
2511                 0x37060, 0x3708c,
2512                 0x3709c, 0x370ac,
2513                 0x370c0, 0x370c0,
2514                 0x370c8, 0x370d0,
2515                 0x370d8, 0x370e0,
2516                 0x370ec, 0x3712c,
2517                 0x37134, 0x37150,
2518                 0x37158, 0x37158,
2519                 0x37160, 0x3718c,
2520                 0x3719c, 0x371ac,
2521                 0x371c0, 0x371c0,
2522                 0x371c8, 0x371d0,
2523                 0x371d8, 0x371e0,
2524                 0x371ec, 0x37290,
2525                 0x37298, 0x372c4,
2526                 0x372e4, 0x37390,
2527                 0x37398, 0x373c4,
2528                 0x373e4, 0x3742c,
2529                 0x37434, 0x37450,
2530                 0x37458, 0x37458,
2531                 0x37460, 0x3748c,
2532                 0x3749c, 0x374ac,
2533                 0x374c0, 0x374c0,
2534                 0x374c8, 0x374d0,
2535                 0x374d8, 0x374e0,
2536                 0x374ec, 0x3752c,
2537                 0x37534, 0x37550,
2538                 0x37558, 0x37558,
2539                 0x37560, 0x3758c,
2540                 0x3759c, 0x375ac,
2541                 0x375c0, 0x375c0,
2542                 0x375c8, 0x375d0,
2543                 0x375d8, 0x375e0,
2544                 0x375ec, 0x37690,
2545                 0x37698, 0x376c4,
2546                 0x376e4, 0x37790,
2547                 0x37798, 0x377c4,
2548                 0x377e4, 0x377fc,
2549                 0x37814, 0x37814,
2550                 0x37854, 0x37868,
2551                 0x37880, 0x3788c,
2552                 0x378c0, 0x378d0,
2553                 0x378e8, 0x378ec,
2554                 0x37900, 0x3792c,
2555                 0x37934, 0x37950,
2556                 0x37958, 0x37958,
2557                 0x37960, 0x3798c,
2558                 0x3799c, 0x379ac,
2559                 0x379c0, 0x379c0,
2560                 0x379c8, 0x379d0,
2561                 0x379d8, 0x379e0,
2562                 0x379ec, 0x37a90,
2563                 0x37a98, 0x37ac4,
2564                 0x37ae4, 0x37b10,
2565                 0x37b24, 0x37b28,
2566                 0x37b38, 0x37b50,
2567                 0x37bf0, 0x37c10,
2568                 0x37c24, 0x37c28,
2569                 0x37c38, 0x37c50,
2570                 0x37cf0, 0x37cfc,
2571                 0x40040, 0x40040,
2572                 0x40080, 0x40084,
2573                 0x40100, 0x40100,
2574                 0x40140, 0x401bc,
2575                 0x40200, 0x40214,
2576                 0x40228, 0x40228,
2577                 0x40240, 0x40258,
2578                 0x40280, 0x40280,
2579                 0x40304, 0x40304,
2580                 0x40330, 0x4033c,
2581                 0x41304, 0x413c8,
2582                 0x413d0, 0x413dc,
2583                 0x413f0, 0x413f0,
2584                 0x41400, 0x4140c,
2585                 0x41414, 0x4141c,
2586                 0x41480, 0x414d0,
2587                 0x44000, 0x4407c,
2588                 0x440c0, 0x441ac,
2589                 0x441b4, 0x4427c,
2590                 0x442c0, 0x443ac,
2591                 0x443b4, 0x4447c,
2592                 0x444c0, 0x445ac,
2593                 0x445b4, 0x4467c,
2594                 0x446c0, 0x447ac,
2595                 0x447b4, 0x4487c,
2596                 0x448c0, 0x449ac,
2597                 0x449b4, 0x44a7c,
2598                 0x44ac0, 0x44bac,
2599                 0x44bb4, 0x44c7c,
2600                 0x44cc0, 0x44dac,
2601                 0x44db4, 0x44e7c,
2602                 0x44ec0, 0x44fac,
2603                 0x44fb4, 0x4507c,
2604                 0x450c0, 0x451ac,
2605                 0x451b4, 0x451fc,
2606                 0x45800, 0x45804,
2607                 0x45810, 0x45830,
2608                 0x45840, 0x45860,
2609                 0x45868, 0x45868,
2610                 0x45880, 0x45884,
2611                 0x458a0, 0x458b0,
2612                 0x45a00, 0x45a04,
2613                 0x45a10, 0x45a30,
2614                 0x45a40, 0x45a60,
2615                 0x45a68, 0x45a68,
2616                 0x45a80, 0x45a84,
2617                 0x45aa0, 0x45ab0,
2618                 0x460c0, 0x460e4,
2619                 0x47000, 0x4703c,
2620                 0x47044, 0x4708c,
2621                 0x47200, 0x47250,
2622                 0x47400, 0x47408,
2623                 0x47414, 0x47420,
2624                 0x47600, 0x47618,
2625                 0x47800, 0x47814,
2626                 0x47820, 0x4782c,
2627                 0x50000, 0x50084,
2628                 0x50090, 0x500cc,
2629                 0x50300, 0x50384,
2630                 0x50400, 0x50400,
2631                 0x50800, 0x50884,
2632                 0x50890, 0x508cc,
2633                 0x50b00, 0x50b84,
2634                 0x50c00, 0x50c00,
2635                 0x51000, 0x51020,
2636                 0x51028, 0x510b0,
2637                 0x51300, 0x51324,
2638         };
2639
2640         u32 *buf_end = (u32 *)((char *)buf + buf_size);
2641         const unsigned int *reg_ranges;
2642         int reg_ranges_size, range;
2643         unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2644
2645         /* Select the right set of register ranges to dump depending on the
2646          * adapter chip type.
2647          */
2648         switch (chip_version) {
2649         case CHELSIO_T4:
2650                 reg_ranges = t4_reg_ranges;
2651                 reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2652                 break;
2653
2654         case CHELSIO_T5:
2655                 reg_ranges = t5_reg_ranges;
2656                 reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2657                 break;
2658
2659         case CHELSIO_T6:
2660                 reg_ranges = t6_reg_ranges;
2661                 reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2662                 break;
2663
2664         default:
2665                 dev_err(adap->pdev_dev,
2666                         "Unsupported chip version %d\n", chip_version);
2667                 return;
2668         }
2669
2670         /* Clear the register buffer and insert the appropriate register
2671          * values selected by the above register ranges.
2672          */
2673         memset(buf, 0, buf_size);
2674         for (range = 0; range < reg_ranges_size; range += 2) {
2675                 unsigned int reg = reg_ranges[range];
2676                 unsigned int last_reg = reg_ranges[range + 1];
2677                 u32 *bufp = (u32 *)((char *)buf + reg);
2678
2679                 /* Iterate across the register range filling in the register
2680                  * buffer but don't write past the end of the register buffer.
2681                  */
2682                 while (reg <= last_reg && bufp < buf_end) {
2683                         *bufp++ = t4_read_reg(adap, reg);
2684                         reg += sizeof(u32);
2685                 }
2686         }
2687 }
2688
2689 #define EEPROM_STAT_ADDR   0x7bfc
2690 #define VPD_BASE           0x400
2691 #define VPD_BASE_OLD       0
2692 #define VPD_LEN            1024
2693
2694 /**
2695  * t4_eeprom_ptov - translate a physical EEPROM address to virtual
2696  * @phys_addr: the physical EEPROM address
2697  * @fn: the PCI function number
2698  * @sz: size of function-specific area
2699  *
2700  * Translate a physical EEPROM address to virtual.  The first 1K is
2701  * accessed through virtual addresses starting at 31K, the rest is
2702  * accessed through virtual addresses starting at 0.
2703  *
2704  * The mapping is as follows:
2705  * [0..1K) -> [31K..32K)
2706  * [1K..1K+A) -> [31K-A..31K)
2707  * [1K+A..ES) -> [0..ES-A-1K)
2708  *
2709  * where A = @fn * @sz, and ES = EEPROM size.
2710  */
2711 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2712 {
2713         fn *= sz;
2714         if (phys_addr < 1024)
2715                 return phys_addr + (31 << 10);
2716         if (phys_addr < 1024 + fn)
2717                 return 31744 - fn + phys_addr - 1024;
2718         if (phys_addr < EEPROMSIZE)
2719                 return phys_addr - 1024 - fn;
2720         return -EINVAL;
2721 }
2722
2723 /**
2724  *      t4_seeprom_wp - enable/disable EEPROM write protection
2725  *      @adapter: the adapter
2726  *      @enable: whether to enable or disable write protection
2727  *
2728  *      Enables or disables write protection on the serial EEPROM.
2729  */
2730 int t4_seeprom_wp(struct adapter *adapter, bool enable)
2731 {
2732         unsigned int v = enable ? 0xc : 0;
2733         int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
2734         return ret < 0 ? ret : 0;
2735 }
2736
2737 /**
2738  *      t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM
2739  *      @adapter: adapter to read
2740  *      @p: where to store the parameters
2741  *
2742  *      Reads card parameters stored in VPD EEPROM.
2743  */
2744 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p)
2745 {
2746         unsigned int id_len, pn_len, sn_len, na_len;
2747         int id, sn, pn, na, addr, ret = 0;
2748         u8 *vpd, base_val = 0;
2749
2750         vpd = vmalloc(VPD_LEN);
2751         if (!vpd)
2752                 return -ENOMEM;
2753
2754         /* Card information normally starts at VPD_BASE but early cards had
2755          * it at 0.
2756          */
2757         ret = pci_read_vpd(adapter->pdev, VPD_BASE, 1, &base_val);
2758         if (ret < 0)
2759                 goto out;
2760
2761         addr = base_val == PCI_VPD_LRDT_ID_STRING ? VPD_BASE : VPD_BASE_OLD;
2762
2763         ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
2764         if (ret < 0)
2765                 goto out;
2766
2767         ret = pci_vpd_find_id_string(vpd, VPD_LEN, &id_len);
2768         if (ret < 0)
2769                 goto out;
2770         id = ret;
2771
2772         ret = pci_vpd_check_csum(vpd, VPD_LEN);
2773         if (ret) {
2774                 dev_err(adapter->pdev_dev, "VPD checksum incorrect or missing\n");
2775                 ret = -EINVAL;
2776                 goto out;
2777         }
2778
2779         ret = pci_vpd_find_ro_info_keyword(vpd, VPD_LEN,
2780                                            PCI_VPD_RO_KEYWORD_SERIALNO, &sn_len);
2781         if (ret < 0)
2782                 goto out;
2783         sn = ret;
2784
2785         ret = pci_vpd_find_ro_info_keyword(vpd, VPD_LEN,
2786                                            PCI_VPD_RO_KEYWORD_PARTNO, &pn_len);
2787         if (ret < 0)
2788                 goto out;
2789         pn = ret;
2790
2791         ret = pci_vpd_find_ro_info_keyword(vpd, VPD_LEN, "NA", &na_len);
2792         if (ret < 0)
2793                 goto out;
2794         na = ret;
2795
2796         memcpy(p->id, vpd + id, min_t(int, id_len, ID_LEN));
2797         strim(p->id);
2798         memcpy(p->sn, vpd + sn, min_t(int, sn_len, SERNUM_LEN));
2799         strim(p->sn);
2800         memcpy(p->pn, vpd + pn, min_t(int, pn_len, PN_LEN));
2801         strim(p->pn);
2802         memcpy(p->na, vpd + na, min_t(int, na_len, MACADDR_LEN));
2803         strim((char *)p->na);
2804
2805 out:
2806         vfree(vpd);
2807         if (ret < 0) {
2808                 dev_err(adapter->pdev_dev, "error reading VPD\n");
2809                 return ret;
2810         }
2811
2812         return 0;
2813 }
2814
2815 /**
2816  *      t4_get_vpd_params - read VPD parameters & retrieve Core Clock
2817  *      @adapter: adapter to read
2818  *      @p: where to store the parameters
2819  *
2820  *      Reads card parameters stored in VPD EEPROM and retrieves the Core
2821  *      Clock.  This can only be called after a connection to the firmware
2822  *      is established.
2823  */
2824 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p)
2825 {
2826         u32 cclk_param, cclk_val;
2827         int ret;
2828
2829         /* Grab the raw VPD parameters.
2830          */
2831         ret = t4_get_raw_vpd_params(adapter, p);
2832         if (ret)
2833                 return ret;
2834
2835         /* Ask firmware for the Core Clock since it knows how to translate the
2836          * Reference Clock ('V2') VPD field into a Core Clock value ...
2837          */
2838         cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2839                       FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
2840         ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
2841                               1, &cclk_param, &cclk_val);
2842
2843         if (ret)
2844                 return ret;
2845         p->cclk = cclk_val;
2846
2847         return 0;
2848 }
2849
2850 /**
2851  *      t4_get_pfres - retrieve VF resource limits
2852  *      @adapter: the adapter
2853  *
2854  *      Retrieves configured resource limits and capabilities for a physical
2855  *      function.  The results are stored in @adapter->pfres.
2856  */
2857 int t4_get_pfres(struct adapter *adapter)
2858 {
2859         struct pf_resources *pfres = &adapter->params.pfres;
2860         struct fw_pfvf_cmd cmd, rpl;
2861         int v;
2862         u32 word;
2863
2864         /* Execute PFVF Read command to get VF resource limits; bail out early
2865          * with error on command failure.
2866          */
2867         memset(&cmd, 0, sizeof(cmd));
2868         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
2869                                     FW_CMD_REQUEST_F |
2870                                     FW_CMD_READ_F |
2871                                     FW_PFVF_CMD_PFN_V(adapter->pf) |
2872                                     FW_PFVF_CMD_VFN_V(0));
2873         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
2874         v = t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &rpl);
2875         if (v != FW_SUCCESS)
2876                 return v;
2877
2878         /* Extract PF resource limits and return success.
2879          */
2880         word = be32_to_cpu(rpl.niqflint_niq);
2881         pfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word);
2882         pfres->niq = FW_PFVF_CMD_NIQ_G(word);
2883
2884         word = be32_to_cpu(rpl.type_to_neq);
2885         pfres->neq = FW_PFVF_CMD_NEQ_G(word);
2886         pfres->pmask = FW_PFVF_CMD_PMASK_G(word);
2887
2888         word = be32_to_cpu(rpl.tc_to_nexactf);
2889         pfres->tc = FW_PFVF_CMD_TC_G(word);
2890         pfres->nvi = FW_PFVF_CMD_NVI_G(word);
2891         pfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word);
2892
2893         word = be32_to_cpu(rpl.r_caps_to_nethctrl);
2894         pfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word);
2895         pfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word);
2896         pfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word);
2897
2898         return 0;
2899 }
2900
2901 /* serial flash and firmware constants */
2902 enum {
2903         SF_ATTEMPTS = 10,             /* max retries for SF operations */
2904
2905         /* flash command opcodes */
2906         SF_PROG_PAGE    = 2,          /* program page */
2907         SF_WR_DISABLE   = 4,          /* disable writes */
2908         SF_RD_STATUS    = 5,          /* read status register */
2909         SF_WR_ENABLE    = 6,          /* enable writes */
2910         SF_RD_DATA_FAST = 0xb,        /* read flash */
2911         SF_RD_ID        = 0x9f,       /* read ID */
2912         SF_ERASE_SECTOR = 0xd8,       /* erase sector */
2913 };
2914
2915 /**
2916  *      sf1_read - read data from the serial flash
2917  *      @adapter: the adapter
2918  *      @byte_cnt: number of bytes to read
2919  *      @cont: whether another operation will be chained
2920  *      @lock: whether to lock SF for PL access only
2921  *      @valp: where to store the read data
2922  *
2923  *      Reads up to 4 bytes of data from the serial flash.  The location of
2924  *      the read needs to be specified prior to calling this by issuing the
2925  *      appropriate commands to the serial flash.
2926  */
2927 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
2928                     int lock, u32 *valp)
2929 {
2930         int ret;
2931
2932         if (!byte_cnt || byte_cnt > 4)
2933                 return -EINVAL;
2934         if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2935                 return -EBUSY;
2936         t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2937                      SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
2938         ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2939         if (!ret)
2940                 *valp = t4_read_reg(adapter, SF_DATA_A);
2941         return ret;
2942 }
2943
2944 /**
2945  *      sf1_write - write data to the serial flash
2946  *      @adapter: the adapter
2947  *      @byte_cnt: number of bytes to write
2948  *      @cont: whether another operation will be chained
2949  *      @lock: whether to lock SF for PL access only
2950  *      @val: value to write
2951  *
2952  *      Writes up to 4 bytes of data to the serial flash.  The location of
2953  *      the write needs to be specified prior to calling this by issuing the
2954  *      appropriate commands to the serial flash.
2955  */
2956 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
2957                      int lock, u32 val)
2958 {
2959         if (!byte_cnt || byte_cnt > 4)
2960                 return -EINVAL;
2961         if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2962                 return -EBUSY;
2963         t4_write_reg(adapter, SF_DATA_A, val);
2964         t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2965                      SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
2966         return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2967 }
2968
2969 /**
2970  *      flash_wait_op - wait for a flash operation to complete
2971  *      @adapter: the adapter
2972  *      @attempts: max number of polls of the status register
2973  *      @delay: delay between polls in ms
2974  *
2975  *      Wait for a flash operation to complete by polling the status register.
2976  */
2977 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
2978 {
2979         int ret;
2980         u32 status;
2981
2982         while (1) {
2983                 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
2984                     (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
2985                         return ret;
2986                 if (!(status & 1))
2987                         return 0;
2988                 if (--attempts == 0)
2989                         return -EAGAIN;
2990                 if (delay)
2991                         msleep(delay);
2992         }
2993 }
2994
2995 /**
2996  *      t4_read_flash - read words from serial flash
2997  *      @adapter: the adapter
2998  *      @addr: the start address for the read
2999  *      @nwords: how many 32-bit words to read
3000  *      @data: where to store the read data
3001  *      @byte_oriented: whether to store data as bytes or as words
3002  *
3003  *      Read the specified number of 32-bit words from the serial flash.
3004  *      If @byte_oriented is set the read data is stored as a byte array
3005  *      (i.e., big-endian), otherwise as 32-bit words in the platform's
3006  *      natural endianness.
3007  */
3008 int t4_read_flash(struct adapter *adapter, unsigned int addr,
3009                   unsigned int nwords, u32 *data, int byte_oriented)
3010 {
3011         int ret;
3012
3013         if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3014                 return -EINVAL;
3015
3016         addr = swab32(addr) | SF_RD_DATA_FAST;
3017
3018         if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3019             (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3020                 return ret;
3021
3022         for ( ; nwords; nwords--, data++) {
3023                 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3024                 if (nwords == 1)
3025                         t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3026                 if (ret)
3027                         return ret;
3028                 if (byte_oriented)
3029                         *data = (__force __u32)(cpu_to_be32(*data));
3030         }
3031         return 0;
3032 }
3033
3034 /**
3035  *      t4_write_flash - write up to a page of data to the serial flash
3036  *      @adapter: the adapter
3037  *      @addr: the start address to write
3038  *      @n: length of data to write in bytes
3039  *      @data: the data to write
3040  *      @byte_oriented: whether to store data as bytes or as words
3041  *
3042  *      Writes up to a page of data (256 bytes) to the serial flash starting
3043  *      at the given address.  All the data must be written to the same page.
3044  *      If @byte_oriented is set the write data is stored as byte stream
3045  *      (i.e. matches what on disk), otherwise in big-endian.
3046  */
3047 static int t4_write_flash(struct adapter *adapter, unsigned int addr,
3048                           unsigned int n, const u8 *data, bool byte_oriented)
3049 {
3050         unsigned int i, c, left, val, offset = addr & 0xff;
3051         u32 buf[64];
3052         int ret;
3053
3054         if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3055                 return -EINVAL;
3056
3057         val = swab32(addr) | SF_PROG_PAGE;
3058
3059         if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3060             (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3061                 goto unlock;
3062
3063         for (left = n; left; left -= c, data += c) {
3064                 c = min(left, 4U);
3065                 for (val = 0, i = 0; i < c; ++i) {
3066                         if (byte_oriented)
3067                                 val = (val << 8) + data[i];
3068                         else
3069                                 val = (val << 8) + data[c - i - 1];
3070                 }
3071
3072                 ret = sf1_write(adapter, c, c != left, 1, val);
3073                 if (ret)
3074                         goto unlock;
3075         }
3076         ret = flash_wait_op(adapter, 8, 1);
3077         if (ret)
3078                 goto unlock;
3079
3080         t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3081
3082         /* Read the page to verify the write succeeded */
3083         ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf,
3084                             byte_oriented);
3085         if (ret)
3086                 return ret;
3087
3088         if (memcmp(data - n, (u8 *)buf + offset, n)) {
3089                 dev_err(adapter->pdev_dev,
3090                         "failed to correctly write the flash page at %#x\n",
3091                         addr);
3092                 return -EIO;
3093         }
3094         return 0;
3095
3096 unlock:
3097         t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3098         return ret;
3099 }
3100
3101 /**
3102  *      t4_get_fw_version - read the firmware version
3103  *      @adapter: the adapter
3104  *      @vers: where to place the version
3105  *
3106  *      Reads the FW version from flash.
3107  */
3108 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3109 {
3110         return t4_read_flash(adapter, FLASH_FW_START +
3111                              offsetof(struct fw_hdr, fw_ver), 1,
3112                              vers, 0);
3113 }
3114
3115 /**
3116  *      t4_get_bs_version - read the firmware bootstrap version
3117  *      @adapter: the adapter
3118  *      @vers: where to place the version
3119  *
3120  *      Reads the FW Bootstrap version from flash.
3121  */
3122 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3123 {
3124         return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3125                              offsetof(struct fw_hdr, fw_ver), 1,
3126                              vers, 0);
3127 }
3128
3129 /**
3130  *      t4_get_tp_version - read the TP microcode version
3131  *      @adapter: the adapter
3132  *      @vers: where to place the version
3133  *
3134  *      Reads the TP microcode version from flash.
3135  */
3136 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3137 {
3138         return t4_read_flash(adapter, FLASH_FW_START +
3139                              offsetof(struct fw_hdr, tp_microcode_ver),
3140                              1, vers, 0);
3141 }
3142
3143 /**
3144  *      t4_get_exprom_version - return the Expansion ROM version (if any)
3145  *      @adap: the adapter
3146  *      @vers: where to place the version
3147  *
3148  *      Reads the Expansion ROM header from FLASH and returns the version
3149  *      number (if present) through the @vers return value pointer.  We return
3150  *      this in the Firmware Version Format since it's convenient.  Return
3151  *      0 on success, -ENOENT if no Expansion ROM is present.
3152  */
3153 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3154 {
3155         struct exprom_header {
3156                 unsigned char hdr_arr[16];      /* must start with 0x55aa */
3157                 unsigned char hdr_ver[4];       /* Expansion ROM version */
3158         } *hdr;
3159         u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3160                                            sizeof(u32))];
3161         int ret;
3162
3163         ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3164                             ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3165                             0);
3166         if (ret)
3167                 return ret;
3168
3169         hdr = (struct exprom_header *)exprom_header_buf;
3170         if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3171                 return -ENOENT;
3172
3173         *vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
3174                  FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
3175                  FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
3176                  FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
3177         return 0;
3178 }
3179
3180 /**
3181  *      t4_get_vpd_version - return the VPD version
3182  *      @adapter: the adapter
3183  *      @vers: where to place the version
3184  *
3185  *      Reads the VPD via the Firmware interface (thus this can only be called
3186  *      once we're ready to issue Firmware commands).  The format of the
3187  *      VPD version is adapter specific.  Returns 0 on success, an error on
3188  *      failure.
3189  *
3190  *      Note that early versions of the Firmware didn't include the ability
3191  *      to retrieve the VPD version, so we zero-out the return-value parameter
3192  *      in that case to avoid leaving it with garbage in it.
3193  *
3194  *      Also note that the Firmware will return its cached copy of the VPD
3195  *      Revision ID, not the actual Revision ID as written in the Serial
3196  *      EEPROM.  This is only an issue if a new VPD has been written and the
3197  *      Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3198  *      to defer calling this routine till after a FW_RESET_CMD has been issued
3199  *      if the Host Driver will be performing a full adapter initialization.
3200  */
3201 int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3202 {
3203         u32 vpdrev_param;
3204         int ret;
3205
3206         vpdrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3207                         FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_VPDREV));
3208         ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3209                               1, &vpdrev_param, vers);
3210         if (ret)
3211                 *vers = 0;
3212         return ret;
3213 }
3214
3215 /**
3216  *      t4_get_scfg_version - return the Serial Configuration version
3217  *      @adapter: the adapter
3218  *      @vers: where to place the version
3219  *
3220  *      Reads the Serial Configuration Version via the Firmware interface
3221  *      (thus this can only be called once we're ready to issue Firmware
3222  *      commands).  The format of the Serial Configuration version is
3223  *      adapter specific.  Returns 0 on success, an error on failure.
3224  *
3225  *      Note that early versions of the Firmware didn't include the ability
3226  *      to retrieve the Serial Configuration version, so we zero-out the
3227  *      return-value parameter in that case to avoid leaving it with
3228  *      garbage in it.
3229  *
3230  *      Also note that the Firmware will return its cached copy of the Serial
3231  *      Initialization Revision ID, not the actual Revision ID as written in
3232  *      the Serial EEPROM.  This is only an issue if a new VPD has been written
3233  *      and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3234  *      it's best to defer calling this routine till after a FW_RESET_CMD has
3235  *      been issued if the Host Driver will be performing a full adapter
3236  *      initialization.
3237  */
3238 int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3239 {
3240         u32 scfgrev_param;
3241         int ret;
3242
3243         scfgrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3244                          FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_SCFGREV));
3245         ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3246                               1, &scfgrev_param, vers);
3247         if (ret)
3248                 *vers = 0;
3249         return ret;
3250 }
3251
3252 /**
3253  *      t4_get_version_info - extract various chip/firmware version information
3254  *      @adapter: the adapter
3255  *
3256  *      Reads various chip/firmware version numbers and stores them into the
3257  *      adapter Adapter Parameters structure.  If any of the efforts fails
3258  *      the first failure will be returned, but all of the version numbers
3259  *      will be read.
3260  */
3261 int t4_get_version_info(struct adapter *adapter)
3262 {
3263         int ret = 0;
3264
3265         #define FIRST_RET(__getvinfo) \
3266         do { \
3267                 int __ret = __getvinfo; \
3268                 if (__ret && !ret) \
3269                         ret = __ret; \
3270         } while (0)
3271
3272         FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3273         FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3274         FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3275         FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3276         FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3277         FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3278
3279         #undef FIRST_RET
3280         return ret;
3281 }
3282
3283 /**
3284  *      t4_dump_version_info - dump all of the adapter configuration IDs
3285  *      @adapter: the adapter
3286  *
3287  *      Dumps all of the various bits of adapter configuration version/revision
3288  *      IDs information.  This is typically called at some point after
3289  *      t4_get_version_info() has been called.
3290  */
3291 void t4_dump_version_info(struct adapter *adapter)
3292 {
3293         /* Device information */
3294         dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n",
3295                  adapter->params.vpd.id,
3296                  CHELSIO_CHIP_RELEASE(adapter->params.chip));
3297         dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n",
3298                  adapter->params.vpd.sn, adapter->params.vpd.pn);
3299
3300         /* Firmware Version */
3301         if (!adapter->params.fw_vers)
3302                 dev_warn(adapter->pdev_dev, "No firmware loaded\n");
3303         else
3304                 dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n",
3305                          FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers),
3306                          FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers),
3307                          FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers),
3308                          FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers));
3309
3310         /* Bootstrap Firmware Version. (Some adapters don't have Bootstrap
3311          * Firmware, so dev_info() is more appropriate here.)
3312          */
3313         if (!adapter->params.bs_vers)
3314                 dev_info(adapter->pdev_dev, "No bootstrap loaded\n");
3315         else
3316                 dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n",
3317                          FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers),
3318                          FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers),
3319                          FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers),
3320                          FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers));
3321
3322         /* TP Microcode Version */
3323         if (!adapter->params.tp_vers)
3324                 dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n");
3325         else
3326                 dev_info(adapter->pdev_dev,
3327                          "TP Microcode version: %u.%u.%u.%u\n",
3328                          FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers),
3329                          FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers),
3330                          FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers),
3331                          FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers));
3332
3333         /* Expansion ROM version */
3334         if (!adapter->params.er_vers)
3335                 dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n");
3336         else
3337                 dev_info(adapter->pdev_dev,
3338                          "Expansion ROM version: %u.%u.%u.%u\n",
3339                          FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers),
3340                          FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers),
3341                          FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers),
3342                          FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers));
3343
3344         /* Serial Configuration version */
3345         dev_info(adapter->pdev_dev, "Serial Configuration version: %#x\n",
3346                  adapter->params.scfg_vers);
3347
3348         /* VPD Version */
3349         dev_info(adapter->pdev_dev, "VPD version: %#x\n",
3350                  adapter->params.vpd_vers);
3351 }
3352
3353 /**
3354  *      t4_check_fw_version - check if the FW is supported with this driver
3355  *      @adap: the adapter
3356  *
3357  *      Checks if an adapter's FW is compatible with the driver.  Returns 0
3358  *      if there's exact match, a negative error if the version could not be
3359  *      read or there's a major version mismatch
3360  */
3361 int t4_check_fw_version(struct adapter *adap)
3362 {
3363         int i, ret, major, minor, micro;
3364         int exp_major, exp_minor, exp_micro;
3365         unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
3366
3367         ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3368         /* Try multiple times before returning error */
3369         for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++)
3370                 ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3371
3372         if (ret)
3373                 return ret;
3374
3375         major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers);
3376         minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers);
3377         micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers);
3378
3379         switch (chip_version) {
3380         case CHELSIO_T4:
3381                 exp_major = T4FW_MIN_VERSION_MAJOR;
3382                 exp_minor = T4FW_MIN_VERSION_MINOR;
3383                 exp_micro = T4FW_MIN_VERSION_MICRO;
3384                 break;
3385         case CHELSIO_T5:
3386                 exp_major = T5FW_MIN_VERSION_MAJOR;
3387                 exp_minor = T5FW_MIN_VERSION_MINOR;
3388                 exp_micro = T5FW_MIN_VERSION_MICRO;
3389                 break;
3390         case CHELSIO_T6:
3391                 exp_major = T6FW_MIN_VERSION_MAJOR;
3392                 exp_minor = T6FW_MIN_VERSION_MINOR;
3393                 exp_micro = T6FW_MIN_VERSION_MICRO;
3394                 break;
3395         default:
3396                 dev_err(adap->pdev_dev, "Unsupported chip type, %x\n",
3397                         adap->chip);
3398                 return -EINVAL;
3399         }
3400
3401         if (major < exp_major || (major == exp_major && minor < exp_minor) ||
3402             (major == exp_major && minor == exp_minor && micro < exp_micro)) {
3403                 dev_err(adap->pdev_dev,
3404                         "Card has firmware version %u.%u.%u, minimum "
3405                         "supported firmware is %u.%u.%u.\n", major, minor,
3406                         micro, exp_major, exp_minor, exp_micro);
3407                 return -EFAULT;
3408         }
3409         return 0;
3410 }
3411
3412 /* Is the given firmware API compatible with the one the driver was compiled
3413  * with?
3414  */
3415 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
3416 {
3417
3418         /* short circuit if it's the exact same firmware version */
3419         if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
3420                 return 1;
3421
3422 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
3423         if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
3424             SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
3425                 return 1;
3426 #undef SAME_INTF
3427
3428         return 0;
3429 }
3430
3431 /* The firmware in the filesystem is usable, but should it be installed?
3432  * This routine explains itself in detail if it indicates the filesystem
3433  * firmware should be installed.
3434  */
3435 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
3436                                 int k, int c)
3437 {
3438         const char *reason;
3439
3440         if (!card_fw_usable) {
3441                 reason = "incompatible or unusable";
3442                 goto install;
3443         }
3444
3445         if (k > c) {
3446                 reason = "older than the version supported with this driver";
3447                 goto install;
3448         }
3449
3450         return 0;
3451
3452 install:
3453         dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
3454                 "installing firmware %u.%u.%u.%u on card.\n",
3455                 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3456                 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
3457                 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3458                 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3459
3460         return 1;
3461 }
3462
3463 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
3464                const u8 *fw_data, unsigned int fw_size,
3465                struct fw_hdr *card_fw, enum dev_state state,
3466                int *reset)
3467 {
3468         int ret, card_fw_usable, fs_fw_usable;
3469         const struct fw_hdr *fs_fw;
3470         const struct fw_hdr *drv_fw;
3471
3472         drv_fw = &fw_info->fw_hdr;
3473
3474         /* Read the header of the firmware on the card */
3475         ret = t4_read_flash(adap, FLASH_FW_START,
3476                             sizeof(*card_fw) / sizeof(uint32_t),
3477                             (uint32_t *)card_fw, 1);
3478         if (ret == 0) {
3479                 card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
3480         } else {
3481                 dev_err(adap->pdev_dev,
3482                         "Unable to read card's firmware header: %d\n", ret);
3483                 card_fw_usable = 0;
3484         }
3485
3486         if (fw_data != NULL) {
3487                 fs_fw = (const void *)fw_data;
3488                 fs_fw_usable = fw_compatible(drv_fw, fs_fw);
3489         } else {
3490                 fs_fw = NULL;
3491                 fs_fw_usable = 0;
3492         }
3493
3494         if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
3495             (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
3496                 /* Common case: the firmware on the card is an exact match and
3497                  * the filesystem one is an exact match too, or the filesystem
3498                  * one is absent/incompatible.
3499                  */
3500         } else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
3501                    should_install_fs_fw(adap, card_fw_usable,
3502                                         be32_to_cpu(fs_fw->fw_ver),
3503                                         be32_to_cpu(card_fw->fw_ver))) {
3504                 ret = t4_fw_upgrade(adap, adap->mbox, fw_data,
3505                                     fw_size, 0);
3506                 if (ret != 0) {
3507                         dev_err(adap->pdev_dev,
3508                                 "failed to install firmware: %d\n", ret);
3509                         goto bye;
3510                 }
3511
3512                 /* Installed successfully, update the cached header too. */
3513                 *card_fw = *fs_fw;
3514                 card_fw_usable = 1;
3515                 *reset = 0;     /* already reset as part of load_fw */
3516         }
3517
3518         if (!card_fw_usable) {
3519                 uint32_t d, c, k;
3520
3521                 d = be32_to_cpu(drv_fw->fw_ver);
3522                 c = be32_to_cpu(card_fw->fw_ver);
3523                 k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
3524
3525                 dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
3526                         "chip state %d, "
3527                         "driver compiled with %d.%d.%d.%d, "
3528                         "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
3529                         state,
3530                         FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
3531                         FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
3532                         FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3533                         FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
3534                         FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3535                         FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3536                 ret = -EINVAL;
3537                 goto bye;
3538         }
3539
3540         /* We're using whatever's on the card and it's known to be good. */
3541         adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
3542         adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
3543
3544 bye:
3545         return ret;
3546 }
3547
3548 /**
3549  *      t4_flash_erase_sectors - erase a range of flash sectors
3550  *      @adapter: the adapter
3551  *      @start: the first sector to erase
3552  *      @end: the last sector to erase
3553  *
3554  *      Erases the sectors in the given inclusive range.
3555  */
3556 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3557 {
3558         int ret = 0;
3559
3560         if (end >= adapter->params.sf_nsec)
3561                 return -EINVAL;
3562
3563         while (start <= end) {
3564                 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3565                     (ret = sf1_write(adapter, 4, 0, 1,
3566                                      SF_ERASE_SECTOR | (start << 8))) != 0 ||
3567                     (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3568                         dev_err(adapter->pdev_dev,
3569                                 "erase of flash sector %d failed, error %d\n",
3570                                 start, ret);
3571                         break;
3572                 }
3573                 start++;
3574         }
3575         t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3576         return ret;
3577 }
3578
3579 /**
3580  *      t4_flash_cfg_addr - return the address of the flash configuration file
3581  *      @adapter: the adapter
3582  *
3583  *      Return the address within the flash where the Firmware Configuration
3584  *      File is stored.
3585  */
3586 unsigned int t4_flash_cfg_addr(struct adapter *adapter)
3587 {
3588         if (adapter->params.sf_size == 0x100000)
3589                 return FLASH_FPGA_CFG_START;
3590         else
3591                 return FLASH_CFG_START;
3592 }
3593
3594 /* Return TRUE if the specified firmware matches the adapter.  I.e. T4
3595  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3596  * and emit an error message for mismatched firmware to save our caller the
3597  * effort ...
3598  */
3599 static bool t4_fw_matches_chip(const struct adapter *adap,
3600                                const struct fw_hdr *hdr)
3601 {
3602         /* The expression below will return FALSE for any unsupported adapter
3603          * which will keep us "honest" in the future ...
3604          */
3605         if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
3606             (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) ||
3607             (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6))
3608                 return true;
3609
3610         dev_err(adap->pdev_dev,
3611                 "FW image (%d) is not suitable for this adapter (%d)\n",
3612                 hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
3613         return false;
3614 }
3615
3616 /**
3617  *      t4_load_fw - download firmware
3618  *      @adap: the adapter
3619  *      @fw_data: the firmware image to write
3620  *      @size: image size
3621  *
3622  *      Write the supplied firmware image to the card's serial flash.
3623  */
3624 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3625 {
3626         u32 csum;
3627         int ret, addr;
3628         unsigned int i;
3629         u8 first_page[SF_PAGE_SIZE];
3630         const __be32 *p = (const __be32 *)fw_data;
3631         const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3632         unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3633         unsigned int fw_start_sec = FLASH_FW_START_SEC;
3634         unsigned int fw_size = FLASH_FW_MAX_SIZE;
3635         unsigned int fw_start = FLASH_FW_START;
3636
3637         if (!size) {
3638                 dev_err(adap->pdev_dev, "FW image has no data\n");
3639                 return -EINVAL;
3640         }
3641         if (size & 511) {
3642                 dev_err(adap->pdev_dev,
3643                         "FW image size not multiple of 512 bytes\n");
3644                 return -EINVAL;
3645         }
3646         if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) {
3647                 dev_err(adap->pdev_dev,
3648                         "FW image size differs from size in FW header\n");
3649                 return -EINVAL;
3650         }
3651         if (size > fw_size) {
3652                 dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
3653                         fw_size);
3654                 return -EFBIG;
3655         }
3656         if (!t4_fw_matches_chip(adap, hdr))
3657                 return -EINVAL;
3658
3659         for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3660                 csum += be32_to_cpu(p[i]);
3661
3662         if (csum != 0xffffffff) {
3663                 dev_err(adap->pdev_dev,
3664                         "corrupted firmware image, checksum %#x\n", csum);
3665                 return -EINVAL;
3666         }
3667
3668         i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
3669         ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3670         if (ret)
3671                 goto out;
3672
3673         /*
3674          * We write the correct version at the end so the driver can see a bad
3675          * version if the FW write fails.  Start by writing a copy of the
3676          * first page with a bad version.
3677          */
3678         memcpy(first_page, fw_data, SF_PAGE_SIZE);
3679         ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3680         ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, true);
3681         if (ret)
3682                 goto out;
3683
3684         addr = fw_start;
3685         for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3686                 addr += SF_PAGE_SIZE;
3687                 fw_data += SF_PAGE_SIZE;
3688                 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, true);
3689                 if (ret)
3690                         goto out;
3691         }
3692
3693         ret = t4_write_flash(adap, fw_start + offsetof(struct fw_hdr, fw_ver),
3694                              sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver,
3695                              true);
3696 out:
3697         if (ret)
3698                 dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
3699                         ret);
3700         else
3701                 ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3702         return ret;
3703 }
3704
3705 /**
3706  *      t4_phy_fw_ver - return current PHY firmware version
3707  *      @adap: the adapter
3708  *      @phy_fw_ver: return value buffer for PHY firmware version
3709  *
3710  *      Returns the current version of external PHY firmware on the
3711  *      adapter.
3712  */
3713 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver)
3714 {
3715         u32 param, val;
3716         int ret;
3717
3718         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3719                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3720                  FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3721                  FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION));
3722         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3723                               &param, &val);
3724         if (ret)
3725                 return ret;
3726         *phy_fw_ver = val;
3727         return 0;
3728 }
3729
3730 /**
3731  *      t4_load_phy_fw - download port PHY firmware
3732  *      @adap: the adapter
3733  *      @win: the PCI-E Memory Window index to use for t4_memory_rw()
3734  *      @phy_fw_version: function to check PHY firmware versions
3735  *      @phy_fw_data: the PHY firmware image to write
3736  *      @phy_fw_size: image size
3737  *
3738  *      Transfer the specified PHY firmware to the adapter.  If a non-NULL
3739  *      @phy_fw_version is supplied, then it will be used to determine if
3740  *      it's necessary to perform the transfer by comparing the version
3741  *      of any existing adapter PHY firmware with that of the passed in
3742  *      PHY firmware image.
3743  *
3744  *      A negative error number will be returned if an error occurs.  If
3745  *      version number support is available and there's no need to upgrade
3746  *      the firmware, 0 will be returned.  If firmware is successfully
3747  *      transferred to the adapter, 1 will be returned.
3748  *
3749  *      NOTE: some adapters only have local RAM to store the PHY firmware.  As
3750  *      a result, a RESET of the adapter would cause that RAM to lose its
3751  *      contents.  Thus, loading PHY firmware on such adapters must happen
3752  *      after any FW_RESET_CMDs ...
3753  */
3754 int t4_load_phy_fw(struct adapter *adap, int win,
3755                    int (*phy_fw_version)(const u8 *, size_t),
3756                    const u8 *phy_fw_data, size_t phy_fw_size)
3757 {
3758         int cur_phy_fw_ver = 0, new_phy_fw_vers = 0;
3759         unsigned long mtype = 0, maddr = 0;
3760         u32 param, val;
3761         int ret;
3762
3763         /* If we have version number support, then check to see if the adapter
3764          * already has up-to-date PHY firmware loaded.
3765          */
3766         if (phy_fw_version) {
3767                 new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size);
3768                 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3769                 if (ret < 0)
3770                         return ret;
3771
3772                 if (cur_phy_fw_ver >= new_phy_fw_vers) {
3773                         CH_WARN(adap, "PHY Firmware already up-to-date, "
3774                                 "version %#x\n", cur_phy_fw_ver);
3775                         return 0;
3776                 }
3777         }
3778
3779         /* Ask the firmware where it wants us to copy the PHY firmware image.
3780          * The size of the file requires a special version of the READ command
3781          * which will pass the file size via the values field in PARAMS_CMD and
3782          * retrieve the return value from firmware and place it in the same
3783          * buffer values
3784          */
3785         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3786                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3787                  FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3788                  FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3789         val = phy_fw_size;
3790         ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1,
3791                                  &param, &val, 1, true);
3792         if (ret < 0)
3793                 return ret;
3794         mtype = val >> 8;
3795         maddr = (val & 0xff) << 16;
3796
3797         /* Copy the supplied PHY Firmware image to the adapter memory location
3798          * allocated by the adapter firmware.
3799          */
3800         spin_lock_bh(&adap->win0_lock);
3801         ret = t4_memory_rw(adap, win, mtype, maddr,
3802                            phy_fw_size, (__be32 *)phy_fw_data,
3803                            T4_MEMORY_WRITE);
3804         spin_unlock_bh(&adap->win0_lock);
3805         if (ret)
3806                 return ret;
3807
3808         /* Tell the firmware that the PHY firmware image has been written to
3809          * RAM and it can now start copying it over to the PHYs.  The chip
3810          * firmware will RESET the affected PHYs as part of this operation
3811          * leaving them running the new PHY firmware image.
3812          */
3813         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3814                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3815                  FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3816                  FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3817         ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
3818                                     &param, &val, 30000);
3819
3820         /* If we have version number support, then check to see that the new
3821          * firmware got loaded properly.
3822          */
3823         if (phy_fw_version) {
3824                 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3825                 if (ret < 0)
3826                         return ret;
3827
3828                 if (cur_phy_fw_ver != new_phy_fw_vers) {
3829                         CH_WARN(adap, "PHY Firmware did not update: "
3830                                 "version on adapter %#x, "
3831                                 "version flashed %#x\n",
3832                                 cur_phy_fw_ver, new_phy_fw_vers);
3833                         return -ENXIO;
3834                 }
3835         }
3836
3837         return 1;
3838 }
3839
3840 /**
3841  *      t4_fwcache - firmware cache operation
3842  *      @adap: the adapter
3843  *      @op  : the operation (flush or flush and invalidate)
3844  */
3845 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3846 {
3847         struct fw_params_cmd c;
3848
3849         memset(&c, 0, sizeof(c));
3850         c.op_to_vfn =
3851                 cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
3852                             FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
3853                             FW_PARAMS_CMD_PFN_V(adap->pf) |
3854                             FW_PARAMS_CMD_VFN_V(0));
3855         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3856         c.param[0].mnem =
3857                 cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3858                             FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
3859         c.param[0].val = cpu_to_be32(op);
3860
3861         return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3862 }
3863
3864 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3865                         unsigned int *pif_req_wrptr,
3866                         unsigned int *pif_rsp_wrptr)
3867 {
3868         int i, j;
3869         u32 cfg, val, req, rsp;
3870
3871         cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3872         if (cfg & LADBGEN_F)
3873                 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3874
3875         val = t4_read_reg(adap, CIM_DEBUGSTS_A);
3876         req = POLADBGWRPTR_G(val);
3877         rsp = PILADBGWRPTR_G(val);
3878         if (pif_req_wrptr)
3879                 *pif_req_wrptr = req;
3880         if (pif_rsp_wrptr)
3881                 *pif_rsp_wrptr = rsp;
3882
3883         for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3884                 for (j = 0; j < 6; j++) {
3885                         t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) |
3886                                      PILADBGRDPTR_V(rsp));
3887                         *pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A);
3888                         *pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A);
3889                         req++;
3890                         rsp++;
3891                 }
3892                 req = (req + 2) & POLADBGRDPTR_M;
3893                 rsp = (rsp + 2) & PILADBGRDPTR_M;
3894         }
3895         t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3896 }
3897
3898 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3899 {
3900         u32 cfg;
3901         int i, j, idx;
3902
3903         cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3904         if (cfg & LADBGEN_F)
3905                 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3906
3907         for (i = 0; i < CIM_MALA_SIZE; i++) {
3908                 for (j = 0; j < 5; j++) {
3909                         idx = 8 * i + j;
3910                         t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) |
3911                                      PILADBGRDPTR_V(idx));
3912                         *ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A);
3913                         *ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A);
3914                 }
3915         }
3916         t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3917 }
3918
3919 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3920 {
3921         unsigned int i, j;
3922
3923         for (i = 0; i < 8; i++) {
3924                 u32 *p = la_buf + i;
3925
3926                 t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
3927                 j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
3928                 t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
3929                 for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3930                         *p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
3931         }
3932 }
3933
3934 /* The ADVERT_MASK is used to mask out all of the Advertised Firmware Port
3935  * Capabilities which we control with separate controls -- see, for instance,
3936  * Pause Frames and Forward Error Correction.  In order to determine what the
3937  * full set of Advertised Port Capabilities are, the base Advertised Port
3938  * Capabilities (masked by ADVERT_MASK) must be combined with the Advertised
3939  * Port Capabilities associated with those other controls.  See
3940  * t4_link_acaps() for how this is done.
3941  */
3942 #define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \
3943                      FW_PORT_CAP32_ANEG)
3944
3945 /**
3946  *      fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
3947  *      @caps16: a 16-bit Port Capabilities value
3948  *
3949  *      Returns the equivalent 32-bit Port Capabilities value.
3950  */
3951 static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16)
3952 {
3953         fw_port_cap32_t caps32 = 0;
3954
3955         #define CAP16_TO_CAP32(__cap) \
3956                 do { \
3957                         if (caps16 & FW_PORT_CAP_##__cap) \
3958                                 caps32 |= FW_PORT_CAP32_##__cap; \
3959                 } while (0)
3960
3961         CAP16_TO_CAP32(SPEED_100M);
3962         CAP16_TO_CAP32(SPEED_1G);
3963         CAP16_TO_CAP32(SPEED_25G);
3964         CAP16_TO_CAP32(SPEED_10G);
3965         CAP16_TO_CAP32(SPEED_40G);
3966         CAP16_TO_CAP32(SPEED_100G);
3967         CAP16_TO_CAP32(FC_RX);
3968         CAP16_TO_CAP32(FC_TX);
3969         CAP16_TO_CAP32(ANEG);
3970         CAP16_TO_CAP32(FORCE_PAUSE);
3971         CAP16_TO_CAP32(MDIAUTO);
3972         CAP16_TO_CAP32(MDISTRAIGHT);
3973         CAP16_TO_CAP32(FEC_RS);
3974         CAP16_TO_CAP32(FEC_BASER_RS);
3975         CAP16_TO_CAP32(802_3_PAUSE);
3976         CAP16_TO_CAP32(802_3_ASM_DIR);
3977
3978         #undef CAP16_TO_CAP32
3979
3980         return caps32;
3981 }
3982
3983 /**
3984  *      fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
3985  *      @caps32: a 32-bit Port Capabilities value
3986  *
3987  *      Returns the equivalent 16-bit Port Capabilities value.  Note that
3988  *      not all 32-bit Port Capabilities can be represented in the 16-bit
3989  *      Port Capabilities and some fields/values may not make it.
3990  */
3991 static fw_port_cap16_t fwcaps32_to_caps16(fw_port_cap32_t caps32)
3992 {
3993         fw_port_cap16_t caps16 = 0;
3994
3995         #define CAP32_TO_CAP16(__cap) \
3996                 do { \
3997                         if (caps32 & FW_PORT_CAP32_##__cap) \
3998                                 caps16 |= FW_PORT_CAP_##__cap; \
3999                 } while (0)
4000
4001         CAP32_TO_CAP16(SPEED_100M);
4002         CAP32_TO_CAP16(SPEED_1G);
4003         CAP32_TO_CAP16(SPEED_10G);
4004         CAP32_TO_CAP16(SPEED_25G);
4005         CAP32_TO_CAP16(SPEED_40G);
4006         CAP32_TO_CAP16(SPEED_100G);
4007         CAP32_TO_CAP16(FC_RX);
4008         CAP32_TO_CAP16(FC_TX);
4009         CAP32_TO_CAP16(802_3_PAUSE);
4010         CAP32_TO_CAP16(802_3_ASM_DIR);
4011         CAP32_TO_CAP16(ANEG);
4012         CAP32_TO_CAP16(FORCE_PAUSE);
4013         CAP32_TO_CAP16(MDIAUTO);
4014         CAP32_TO_CAP16(MDISTRAIGHT);
4015         CAP32_TO_CAP16(FEC_RS);
4016         CAP32_TO_CAP16(FEC_BASER_RS);
4017
4018         #undef CAP32_TO_CAP16
4019
4020         return caps16;
4021 }
4022
4023 /* Translate Firmware Port Capabilities Pause specification to Common Code */
4024 static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause)
4025 {
4026         enum cc_pause cc_pause = 0;
4027
4028         if (fw_pause & FW_PORT_CAP32_FC_RX)
4029                 cc_pause |= PAUSE_RX;
4030         if (fw_pause & FW_PORT_CAP32_FC_TX)
4031                 cc_pause |= PAUSE_TX;
4032
4033         return cc_pause;
4034 }
4035
4036 /* Translate Common Code Pause specification into Firmware Port Capabilities */
4037 static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause)
4038 {
4039         /* Translate orthogonal RX/TX Pause Controls for L1 Configure
4040          * commands, etc.
4041          */
4042         fw_port_cap32_t fw_pause = 0;
4043
4044         if (cc_pause & PAUSE_RX)
4045                 fw_pause |= FW_PORT_CAP32_FC_RX;
4046         if (cc_pause & PAUSE_TX)
4047                 fw_pause |= FW_PORT_CAP32_FC_TX;
4048         if (!(cc_pause & PAUSE_AUTONEG))
4049                 fw_pause |= FW_PORT_CAP32_FORCE_PAUSE;
4050
4051         /* Translate orthogonal Pause controls into IEEE 802.3 Pause,
4052          * Asymmetrical Pause for use in reporting to upper layer OS code, etc.
4053          * Note that these bits are ignored in L1 Configure commands.
4054          */
4055         if (cc_pause & PAUSE_RX) {
4056                 if (cc_pause & PAUSE_TX)
4057                         fw_pause |= FW_PORT_CAP32_802_3_PAUSE;
4058                 else
4059                         fw_pause |= FW_PORT_CAP32_802_3_ASM_DIR |
4060                                     FW_PORT_CAP32_802_3_PAUSE;
4061         } else if (cc_pause & PAUSE_TX) {
4062                 fw_pause |= FW_PORT_CAP32_802_3_ASM_DIR;
4063         }
4064
4065         return fw_pause;
4066 }
4067
4068 /* Translate Firmware Forward Error Correction specification to Common Code */
4069 static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec)
4070 {
4071         enum cc_fec cc_fec = 0;
4072
4073         if (fw_fec & FW_PORT_CAP32_FEC_RS)
4074                 cc_fec |= FEC_RS;
4075         if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
4076                 cc_fec |= FEC_BASER_RS;
4077
4078         return cc_fec;
4079 }
4080
4081 /* Translate Common Code Forward Error Correction specification to Firmware */
4082 static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec)
4083 {
4084         fw_port_cap32_t fw_fec = 0;
4085
4086         if (cc_fec & FEC_RS)
4087                 fw_fec |= FW_PORT_CAP32_FEC_RS;
4088         if (cc_fec & FEC_BASER_RS)
4089                 fw_fec |= FW_PORT_CAP32_FEC_BASER_RS;
4090
4091         return fw_fec;
4092 }
4093
4094 /**
4095  *      t4_link_acaps - compute Link Advertised Port Capabilities
4096  *      @adapter: the adapter
4097  *      @port: the Port ID
4098  *      @lc: the Port's Link Configuration
4099  *
4100  *      Synthesize the Advertised Port Capabilities we'll be using based on
4101  *      the base Advertised Port Capabilities (which have been filtered by
4102  *      ADVERT_MASK) plus the individual controls for things like Pause
4103  *      Frames, Forward Error Correction, MDI, etc.
4104  */
4105 fw_port_cap32_t t4_link_acaps(struct adapter *adapter, unsigned int port,
4106                               struct link_config *lc)
4107 {
4108         fw_port_cap32_t fw_fc, fw_fec, acaps;
4109         unsigned int fw_mdi;
4110         char cc_fec;
4111
4112         fw_mdi = (FW_PORT_CAP32_MDI_V(FW_PORT_CAP32_MDI_AUTO) & lc->pcaps);
4113
4114         /* Convert driver coding of Pause Frame Flow Control settings into the
4115          * Firmware's API.
4116          */
4117         fw_fc = cc_to_fwcap_pause(lc->requested_fc);
4118
4119         /* Convert Common Code Forward Error Control settings into the
4120          * Firmware's API.  If the current Requested FEC has "Automatic"
4121          * (IEEE 802.3) specified, then we use whatever the Firmware
4122          * sent us as part of its IEEE 802.3-based interpretation of
4123          * the Transceiver Module EPROM FEC parameters.  Otherwise we
4124          * use whatever is in the current Requested FEC settings.
4125          */
4126         if (lc->requested_fec & FEC_AUTO)
4127                 cc_fec = fwcap_to_cc_fec(lc->def_acaps);
4128         else
4129                 cc_fec = lc->requested_fec;
4130         fw_fec = cc_to_fwcap_fec(cc_fec);
4131
4132         /* Figure out what our Requested Port Capabilities are going to be.
4133          * Note parallel structure in t4_handle_get_port_info() and
4134          * init_link_config().
4135          */
4136         if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
4137                 acaps = lc->acaps | fw_fc | fw_fec;
4138                 lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4139                 lc->fec = cc_fec;
4140         } else if (lc->autoneg == AUTONEG_DISABLE) {
4141                 acaps = lc->speed_caps | fw_fc | fw_fec | fw_mdi;
4142                 lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4143                 lc->fec = cc_fec;
4144         } else {
4145                 acaps = lc->acaps | fw_fc | fw_fec | fw_mdi;
4146         }
4147
4148         /* Some Requested Port Capabilities are trivially wrong if they exceed
4149          * the Physical Port Capabilities.  We can check that here and provide
4150          * moderately useful feedback in the system log.
4151          *
4152          * Note that older Firmware doesn't have FW_PORT_CAP32_FORCE_PAUSE, so
4153          * we need to exclude this from this check in order to maintain
4154          * compatibility ...
4155          */
4156         if ((acaps & ~lc->pcaps) & ~FW_PORT_CAP32_FORCE_PAUSE) {
4157                 dev_err(adapter->pdev_dev, "Requested Port Capabilities %#x exceed Physical Port Capabilities %#x\n",
4158                         acaps, lc->pcaps);
4159                 return -EINVAL;
4160         }
4161
4162         return acaps;
4163 }
4164
4165 /**
4166  *      t4_link_l1cfg_core - apply link configuration to MAC/PHY
4167  *      @adapter: the adapter
4168  *      @mbox: the Firmware Mailbox to use
4169  *      @port: the Port ID
4170  *      @lc: the Port's Link Configuration
4171  *      @sleep_ok: if true we may sleep while awaiting command completion
4172  *      @timeout: time to wait for command to finish before timing out
4173  *              (negative implies @sleep_ok=false)
4174  *
4175  *      Set up a port's MAC and PHY according to a desired link configuration.
4176  *      - If the PHY can auto-negotiate first decide what to advertise, then
4177  *        enable/disable auto-negotiation as desired, and reset.
4178  *      - If the PHY does not auto-negotiate just reset it.
4179  *      - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
4180  *        otherwise do it later based on the outcome of auto-negotiation.
4181  */
4182 int t4_link_l1cfg_core(struct adapter *adapter, unsigned int mbox,
4183                        unsigned int port, struct link_config *lc,
4184                        u8 sleep_ok, int timeout)
4185 {
4186         unsigned int fw_caps = adapter->params.fw_caps_support;
4187         struct fw_port_cmd cmd;
4188         fw_port_cap32_t rcap;
4189         int ret;
4190
4191         if (!(lc->pcaps & FW_PORT_CAP32_ANEG) &&
4192             lc->autoneg == AUTONEG_ENABLE) {
4193                 return -EINVAL;
4194         }
4195
4196         /* Compute our Requested Port Capabilities and send that on to the
4197          * Firmware.
4198          */
4199         rcap = t4_link_acaps(adapter, port, lc);
4200         memset(&cmd, 0, sizeof(cmd));
4201         cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4202                                        FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4203                                        FW_PORT_CMD_PORTID_V(port));
4204         cmd.action_to_len16 =
4205                 cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
4206                                                  ? FW_PORT_ACTION_L1_CFG
4207                                                  : FW_PORT_ACTION_L1_CFG32) |
4208                                                  FW_LEN16(cmd));
4209         if (fw_caps == FW_CAPS16)
4210                 cmd.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap));
4211         else
4212                 cmd.u.l1cfg32.rcap32 = cpu_to_be32(rcap);
4213
4214         ret = t4_wr_mbox_meat_timeout(adapter, mbox, &cmd, sizeof(cmd), NULL,
4215                                       sleep_ok, timeout);
4216
4217         /* Unfortunately, even if the Requested Port Capabilities "fit" within
4218          * the Physical Port Capabilities, some combinations of features may
4219          * still not be legal.  For example, 40Gb/s and Reed-Solomon Forward
4220          * Error Correction.  So if the Firmware rejects the L1 Configure
4221          * request, flag that here.
4222          */
4223         if (ret) {
4224                 dev_err(adapter->pdev_dev,
4225                         "Requested Port Capabilities %#x rejected, error %d\n",
4226                         rcap, -ret);
4227                 return ret;
4228         }
4229         return 0;
4230 }
4231
4232 /**
4233  *      t4_restart_aneg - restart autonegotiation
4234  *      @adap: the adapter
4235  *      @mbox: mbox to use for the FW command
4236  *      @port: the port id
4237  *
4238  *      Restarts autonegotiation for the selected port.
4239  */
4240 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
4241 {
4242         unsigned int fw_caps = adap->params.fw_caps_support;
4243         struct fw_port_cmd c;
4244
4245         memset(&c, 0, sizeof(c));
4246         c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4247                                      FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4248                                      FW_PORT_CMD_PORTID_V(port));
4249         c.action_to_len16 =
4250                 cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
4251                                                  ? FW_PORT_ACTION_L1_CFG
4252                                                  : FW_PORT_ACTION_L1_CFG32) |
4253                             FW_LEN16(c));
4254         if (fw_caps == FW_CAPS16)
4255                 c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
4256         else
4257                 c.u.l1cfg32.rcap32 = cpu_to_be32(FW_PORT_CAP32_ANEG);
4258         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4259 }
4260
4261 typedef void (*int_handler_t)(struct adapter *adap);
4262
4263 struct intr_info {
4264         unsigned int mask;       /* bits to check in interrupt status */
4265         const char *msg;         /* message to print or NULL */
4266         short stat_idx;          /* stat counter to increment or -1 */
4267         unsigned short fatal;    /* whether the condition reported is fatal */
4268         int_handler_t int_handler; /* platform-specific int handler */
4269 };
4270
4271 /**
4272  *      t4_handle_intr_status - table driven interrupt handler
4273  *      @adapter: the adapter that generated the interrupt
4274  *      @reg: the interrupt status register to process
4275  *      @acts: table of interrupt actions
4276  *
4277  *      A table driven interrupt handler that applies a set of masks to an
4278  *      interrupt status word and performs the corresponding actions if the
4279  *      interrupts described by the mask have occurred.  The actions include
4280  *      optionally emitting a warning or alert message.  The table is terminated
4281  *      by an entry specifying mask 0.  Returns the number of fatal interrupt
4282  *      conditions.
4283  */
4284 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
4285                                  const struct intr_info *acts)
4286 {
4287         int fatal = 0;
4288         unsigned int mask = 0;
4289         unsigned int status = t4_read_reg(adapter, reg);
4290
4291         for ( ; acts->mask; ++acts) {
4292                 if (!(status & acts->mask))
4293                         continue;
4294                 if (acts->fatal) {
4295                         fatal++;
4296                         dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4297                                   status & acts->mask);
4298                 } else if (acts->msg && printk_ratelimit())
4299                         dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4300                                  status & acts->mask);
4301                 if (acts->int_handler)
4302                         acts->int_handler(adapter);
4303                 mask |= acts->mask;
4304         }
4305         status &= mask;
4306         if (status)                           /* clear processed interrupts */
4307                 t4_write_reg(adapter, reg, status);
4308         return fatal;
4309 }
4310
4311 /*
4312  * Interrupt handler for the PCIE module.
4313  */
4314 static void pcie_intr_handler(struct adapter *adapter)
4315 {
4316         static const struct intr_info sysbus_intr_info[] = {
4317                 { RNPP_F, "RXNP array parity error", -1, 1 },
4318                 { RPCP_F, "RXPC array parity error", -1, 1 },
4319                 { RCIP_F, "RXCIF array parity error", -1, 1 },
4320                 { RCCP_F, "Rx completions control array parity error", -1, 1 },
4321                 { RFTP_F, "RXFT array parity error", -1, 1 },
4322                 { 0 }
4323         };
4324         static const struct intr_info pcie_port_intr_info[] = {
4325                 { TPCP_F, "TXPC array parity error", -1, 1 },
4326                 { TNPP_F, "TXNP array parity error", -1, 1 },
4327                 { TFTP_F, "TXFT array parity error", -1, 1 },
4328                 { TCAP_F, "TXCA array parity error", -1, 1 },
4329                 { TCIP_F, "TXCIF array parity error", -1, 1 },
4330                 { RCAP_F, "RXCA array parity error", -1, 1 },
4331                 { OTDD_F, "outbound request TLP discarded", -1, 1 },
4332                 { RDPE_F, "Rx data parity error", -1, 1 },
4333                 { TDUE_F, "Tx uncorrectable data error", -1, 1 },
4334                 { 0 }
4335         };
4336         static const struct intr_info pcie_intr_info[] = {
4337                 { MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
4338                 { MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
4339                 { MSIDATAPERR_F, "MSI data parity error", -1, 1 },
4340                 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4341                 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4342                 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4343                 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4344                 { PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
4345                 { PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
4346                 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4347                 { CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
4348                 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4349                 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4350                 { DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
4351                 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4352                 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4353                 { HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
4354                 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4355                 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4356                 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4357                 { FIDPERR_F, "PCI FID parity error", -1, 1 },
4358                 { INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
4359                 { MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
4360                 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4361                 { RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
4362                 { RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
4363                 { RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
4364                 { PCIESINT_F, "PCI core secondary fault", -1, 1 },
4365                 { PCIEPINT_F, "PCI core primary fault", -1, 1 },
4366                 { UNXSPLCPLERR_F, "PCI unexpected split completion error",
4367                   -1, 0 },
4368                 { 0 }
4369         };
4370
4371         static struct intr_info t5_pcie_intr_info[] = {
4372                 { MSTGRPPERR_F, "Master Response Read Queue parity error",
4373                   -1, 1 },
4374                 { MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
4375                 { MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
4376                 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4377                 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4378                 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4379                 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4380                 { PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
4381                   -1, 1 },
4382                 { PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
4383                   -1, 1 },
4384                 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4385                 { MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
4386                 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4387                 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4388                 { DREQWRPERR_F, "PCI DMA channel write request parity error",
4389                   -1, 1 },
4390                 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4391                 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4392                 { HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
4393                 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4394                 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4395                 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4396                 { FIDPERR_F, "PCI FID parity error", -1, 1 },
4397                 { VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
4398                 { MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
4399                 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4400                 { IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
4401                   -1, 1 },
4402                 { IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
4403                   -1, 1 },
4404                 { RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
4405                 { IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
4406                 { TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
4407                 { READRSPERR_F, "Outbound read error", -1, 0 },
4408                 { 0 }
4409         };
4410
4411         int fat;
4412
4413         if (is_t4(adapter->params.chip))
4414                 fat = t4_handle_intr_status(adapter,
4415                                 PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
4416                                 sysbus_intr_info) +
4417                         t4_handle_intr_status(adapter,
4418                                         PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
4419                                         pcie_port_intr_info) +
4420                         t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4421                                               pcie_intr_info);
4422         else
4423                 fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4424                                             t5_pcie_intr_info);
4425
4426         if (fat)
4427                 t4_fatal_err(adapter);
4428 }
4429
4430 /*
4431  * TP interrupt handler.
4432  */
4433 static void tp_intr_handler(struct adapter *adapter)
4434 {
4435         static const struct intr_info tp_intr_info[] = {
4436                 { 0x3fffffff, "TP parity error", -1, 1 },
4437                 { FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
4438                 { 0 }
4439         };
4440
4441         if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
4442                 t4_fatal_err(adapter);
4443 }
4444
4445 /*
4446  * SGE interrupt handler.
4447  */
4448 static void sge_intr_handler(struct adapter *adapter)
4449 {
4450         u32 v = 0, perr;
4451         u32 err;
4452
4453         static const struct intr_info sge_intr_info[] = {
4454                 { ERR_CPL_EXCEED_IQE_SIZE_F,
4455                   "SGE received CPL exceeding IQE size", -1, 1 },
4456                 { ERR_INVALID_CIDX_INC_F,
4457                   "SGE GTS CIDX increment too large", -1, 0 },
4458                 { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
4459                 { DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
4460                 { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
4461                   "SGE IQID > 1023 received CPL for FL", -1, 0 },
4462                 { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
4463                   0 },
4464                 { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
4465                   0 },
4466                 { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
4467                   0 },
4468                 { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
4469                   0 },
4470                 { ERR_ING_CTXT_PRIO_F,
4471                   "SGE too many priority ingress contexts", -1, 0 },
4472                 { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
4473                 { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
4474                 { 0 }
4475         };
4476
4477         static struct intr_info t4t5_sge_intr_info[] = {
4478                 { ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
4479                 { DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
4480                 { ERR_EGR_CTXT_PRIO_F,
4481                   "SGE too many priority egress contexts", -1, 0 },
4482                 { 0 }
4483         };
4484
4485         perr = t4_read_reg(adapter, SGE_INT_CAUSE1_A);
4486         if (perr) {
4487                 v |= perr;
4488                 dev_alert(adapter->pdev_dev, "SGE Cause1 Parity Error %#x\n",
4489                           perr);
4490         }
4491
4492         perr = t4_read_reg(adapter, SGE_INT_CAUSE2_A);
4493         if (perr) {
4494                 v |= perr;
4495                 dev_alert(adapter->pdev_dev, "SGE Cause2 Parity Error %#x\n",
4496                           perr);
4497         }
4498
4499         if (CHELSIO_CHIP_VERSION(adapter->params.chip) >= CHELSIO_T5) {
4500                 perr = t4_read_reg(adapter, SGE_INT_CAUSE5_A);
4501                 /* Parity error (CRC) for err_T_RxCRC is trivial, ignore it */
4502                 perr &= ~ERR_T_RXCRC_F;
4503                 if (perr) {
4504                         v |= perr;
4505                         dev_alert(adapter->pdev_dev,
4506                                   "SGE Cause5 Parity Error %#x\n", perr);
4507                 }
4508         }
4509
4510         v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info);
4511         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4512                 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A,
4513                                            t4t5_sge_intr_info);
4514
4515         err = t4_read_reg(adapter, SGE_ERROR_STATS_A);
4516         if (err & ERROR_QID_VALID_F) {
4517                 dev_err(adapter->pdev_dev, "SGE error for queue %u\n",
4518                         ERROR_QID_G(err));
4519                 if (err & UNCAPTURED_ERROR_F)
4520                         dev_err(adapter->pdev_dev,
4521                                 "SGE UNCAPTURED_ERROR set (clearing)\n");
4522                 t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F |
4523                              UNCAPTURED_ERROR_F);
4524         }
4525
4526         if (v != 0)
4527                 t4_fatal_err(adapter);
4528 }
4529
4530 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
4531                       OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
4532 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
4533                       IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
4534
4535 /*
4536  * CIM interrupt handler.
4537  */
4538 static void cim_intr_handler(struct adapter *adapter)
4539 {
4540         static const struct intr_info cim_intr_info[] = {
4541                 { PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
4542                 { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
4543                 { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
4544                 { MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
4545                 { MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
4546                 { TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
4547                 { TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
4548                 { TIMER0INT_F, "CIM TIMER0 interrupt", -1, 1 },
4549                 { 0 }
4550         };
4551         static const struct intr_info cim_upintr_info[] = {
4552                 { RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
4553                 { ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
4554                 { ILLWRINT_F, "CIM illegal write", -1, 1 },
4555                 { ILLRDINT_F, "CIM illegal read", -1, 1 },
4556                 { ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
4557                 { ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
4558                 { SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
4559                 { SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
4560                 { BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
4561                 { SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
4562                 { SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
4563                 { BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
4564                 { SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
4565                 { SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
4566                 { BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
4567                 { BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
4568                 { SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
4569                 { SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
4570                 { BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
4571                 { BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
4572                 { SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
4573                 { SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
4574                 { BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
4575                 { BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
4576                 { REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
4577                 { RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
4578                 { TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
4579                 { TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
4580                 { 0 }
4581         };
4582
4583         u32 val, fw_err;
4584         int fat;
4585
4586         fw_err = t4_read_reg(adapter, PCIE_FW_A);
4587         if (fw_err & PCIE_FW_ERR_F)
4588                 t4_report_fw_error(adapter);
4589
4590         /* When the Firmware detects an internal error which normally
4591          * wouldn't raise a Host Interrupt, it forces a CIM Timer0 interrupt
4592          * in order to make sure the Host sees the Firmware Crash.  So
4593          * if we have a Timer0 interrupt and don't see a Firmware Crash,
4594          * ignore the Timer0 interrupt.
4595          */
4596
4597         val = t4_read_reg(adapter, CIM_HOST_INT_CAUSE_A);
4598         if (val & TIMER0INT_F)
4599                 if (!(fw_err & PCIE_FW_ERR_F) ||
4600                     (PCIE_FW_EVAL_G(fw_err) != PCIE_FW_EVAL_CRASH))
4601                         t4_write_reg(adapter, CIM_HOST_INT_CAUSE_A,
4602                                      TIMER0INT_F);
4603
4604         fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
4605                                     cim_intr_info) +
4606               t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
4607                                     cim_upintr_info);
4608         if (fat)
4609                 t4_fatal_err(adapter);
4610 }
4611
4612 /*
4613  * ULP RX interrupt handler.
4614  */
4615 static void ulprx_intr_handler(struct adapter *adapter)
4616 {
4617         static const struct intr_info ulprx_intr_info[] = {
4618                 { 0x1800000, "ULPRX context error", -1, 1 },
4619                 { 0x7fffff, "ULPRX parity error", -1, 1 },
4620                 { 0 }
4621         };
4622
4623         if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
4624                 t4_fatal_err(adapter);
4625 }
4626
4627 /*
4628  * ULP TX interrupt handler.
4629  */
4630 static void ulptx_intr_handler(struct adapter *adapter)
4631 {
4632         static const struct intr_info ulptx_intr_info[] = {
4633                 { PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
4634                   0 },
4635                 { PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
4636                   0 },
4637                 { PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
4638                   0 },
4639                 { PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
4640                   0 },
4641                 { 0xfffffff, "ULPTX parity error", -1, 1 },
4642                 { 0 }
4643         };
4644
4645         if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
4646                 t4_fatal_err(adapter);
4647 }
4648
4649 /*
4650  * PM TX interrupt handler.
4651  */
4652 static void pmtx_intr_handler(struct adapter *adapter)
4653 {
4654         static const struct intr_info pmtx_intr_info[] = {
4655                 { PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
4656                 { PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
4657                 { PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
4658                 { ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
4659                 { PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
4660                 { OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
4661                 { DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
4662                   -1, 1 },
4663                 { ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
4664                 { PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
4665                 { 0 }
4666         };
4667
4668         if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
4669                 t4_fatal_err(adapter);
4670 }
4671
4672 /*
4673  * PM RX interrupt handler.
4674  */
4675 static void pmrx_intr_handler(struct adapter *adapter)
4676 {
4677         static const struct intr_info pmrx_intr_info[] = {
4678                 { ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
4679                 { PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
4680                 { OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
4681                 { DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
4682                   -1, 1 },
4683                 { IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
4684                 { PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
4685                 { 0 }
4686         };
4687
4688         if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
4689                 t4_fatal_err(adapter);
4690 }
4691
4692 /*
4693  * CPL switch interrupt handler.
4694  */
4695 static void cplsw_intr_handler(struct adapter *adapter)
4696 {
4697         static const struct intr_info cplsw_intr_info[] = {
4698                 { CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
4699                 { CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
4700                 { TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
4701                 { SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
4702                 { CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
4703                 { ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
4704                 { 0 }
4705         };
4706
4707         if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
4708                 t4_fatal_err(adapter);
4709 }
4710
4711 /*
4712  * LE interrupt handler.
4713  */
4714 static void le_intr_handler(struct adapter *adap)
4715 {
4716         enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
4717         static const struct intr_info le_intr_info[] = {
4718                 { LIPMISS_F, "LE LIP miss", -1, 0 },
4719                 { LIP0_F, "LE 0 LIP error", -1, 0 },
4720                 { PARITYERR_F, "LE parity error", -1, 1 },
4721                 { UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4722                 { REQQPARERR_F, "LE request queue parity error", -1, 1 },
4723                 { 0 }
4724         };
4725
4726         static struct intr_info t6_le_intr_info[] = {
4727                 { T6_LIPMISS_F, "LE LIP miss", -1, 0 },
4728                 { T6_LIP0_F, "LE 0 LIP error", -1, 0 },
4729                 { CMDTIDERR_F, "LE cmd tid error", -1, 1 },
4730                 { TCAMINTPERR_F, "LE parity error", -1, 1 },
4731                 { T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4732                 { SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
4733                 { HASHTBLMEMCRCERR_F, "LE hash table mem crc error", -1, 0 },
4734                 { 0 }
4735         };
4736
4737         if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A,
4738                                   (chip <= CHELSIO_T5) ?
4739                                   le_intr_info : t6_le_intr_info))
4740                 t4_fatal_err(adap);
4741 }
4742
4743 /*
4744  * MPS interrupt handler.
4745  */
4746 static void mps_intr_handler(struct adapter *adapter)
4747 {
4748         static const struct intr_info mps_rx_intr_info[] = {
4749                 { 0xffffff, "MPS Rx parity error", -1, 1 },
4750                 { 0 }
4751         };
4752         static const struct intr_info mps_tx_intr_info[] = {
4753                 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4754                 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4755                 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4756                   -1, 1 },
4757                 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4758                   -1, 1 },
4759                 { BUBBLE_F, "MPS Tx underflow", -1, 1 },
4760                 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4761                 { FRMERR_F, "MPS Tx framing error", -1, 1 },
4762                 { 0 }
4763         };
4764         static const struct intr_info t6_mps_tx_intr_info[] = {
4765                 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4766                 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4767                 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4768                   -1, 1 },
4769                 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4770                   -1, 1 },
4771                 /* MPS Tx Bubble is normal for T6 */
4772                 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4773                 { FRMERR_F, "MPS Tx framing error", -1, 1 },
4774                 { 0 }
4775         };
4776         static const struct intr_info mps_trc_intr_info[] = {
4777                 { FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
4778                 { PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
4779                   -1, 1 },
4780                 { MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
4781                 { 0 }
4782         };
4783         static const struct intr_info mps_stat_sram_intr_info[] = {
4784                 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4785                 { 0 }
4786         };
4787         static const struct intr_info mps_stat_tx_intr_info[] = {
4788                 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4789                 { 0 }
4790         };
4791         static const struct intr_info mps_stat_rx_intr_info[] = {
4792                 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4793                 { 0 }
4794         };
4795         static const struct intr_info mps_cls_intr_info[] = {
4796                 { MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
4797                 { MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
4798                 { HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
4799                 { 0 }
4800         };
4801
4802         int fat;
4803
4804         fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
4805                                     mps_rx_intr_info) +
4806               t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
4807                                     is_t6(adapter->params.chip)
4808                                     ? t6_mps_tx_intr_info
4809                                     : mps_tx_intr_info) +
4810               t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
4811                                     mps_trc_intr_info) +
4812               t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
4813                                     mps_stat_sram_intr_info) +
4814               t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
4815                                     mps_stat_tx_intr_info) +
4816               t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
4817                                     mps_stat_rx_intr_info) +
4818               t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
4819                                     mps_cls_intr_info);
4820
4821         t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
4822         t4_read_reg(adapter, MPS_INT_CAUSE_A);                    /* flush */
4823         if (fat)
4824                 t4_fatal_err(adapter);
4825 }
4826
4827 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
4828                       ECC_UE_INT_CAUSE_F)
4829
4830 /*
4831  * EDC/MC interrupt handler.
4832  */
4833 static void mem_intr_handler(struct adapter *adapter, int idx)
4834 {
4835         static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4836
4837         unsigned int addr, cnt_addr, v;
4838
4839         if (idx <= MEM_EDC1) {
4840                 addr = EDC_REG(EDC_INT_CAUSE_A, idx);
4841                 cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
4842         } else if (idx == MEM_MC) {
4843                 if (is_t4(adapter->params.chip)) {
4844                         addr = MC_INT_CAUSE_A;
4845                         cnt_addr = MC_ECC_STATUS_A;
4846                 } else {
4847                         addr = MC_P_INT_CAUSE_A;
4848                         cnt_addr = MC_P_ECC_STATUS_A;
4849                 }
4850         } else {
4851                 addr = MC_REG(MC_P_INT_CAUSE_A, 1);
4852                 cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
4853         }
4854
4855         v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4856         if (v & PERR_INT_CAUSE_F)
4857                 dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
4858                           name[idx]);
4859         if (v & ECC_CE_INT_CAUSE_F) {
4860                 u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
4861
4862                 t4_edc_err_read(adapter, idx);
4863
4864                 t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
4865                 if (printk_ratelimit())
4866                         dev_warn(adapter->pdev_dev,
4867                                  "%u %s correctable ECC data error%s\n",
4868                                  cnt, name[idx], cnt > 1 ? "s" : "");
4869         }
4870         if (v & ECC_UE_INT_CAUSE_F)
4871                 dev_alert(adapter->pdev_dev,
4872                           "%s uncorrectable ECC data error\n", name[idx]);
4873
4874         t4_write_reg(adapter, addr, v);
4875         if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
4876                 t4_fatal_err(adapter);
4877 }
4878
4879 /*
4880  * MA interrupt handler.
4881  */
4882 static void ma_intr_handler(struct adapter *adap)
4883 {
4884         u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
4885
4886         if (status & MEM_PERR_INT_CAUSE_F) {
4887                 dev_alert(adap->pdev_dev,
4888                           "MA parity error, parity status %#x\n",
4889                           t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
4890                 if (is_t5(adap->params.chip))
4891                         dev_alert(adap->pdev_dev,
4892                                   "MA parity error, parity status %#x\n",
4893                                   t4_read_reg(adap,
4894                                               MA_PARITY_ERROR_STATUS2_A));
4895         }
4896         if (status & MEM_WRAP_INT_CAUSE_F) {
4897                 v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
4898                 dev_alert(adap->pdev_dev, "MA address wrap-around error by "
4899                           "client %u to address %#x\n",
4900                           MEM_WRAP_CLIENT_NUM_G(v),
4901                           MEM_WRAP_ADDRESS_G(v) << 4);
4902         }
4903         t4_write_reg(adap, MA_INT_CAUSE_A, status);
4904         t4_fatal_err(adap);
4905 }
4906
4907 /*
4908  * SMB interrupt handler.
4909  */
4910 static void smb_intr_handler(struct adapter *adap)
4911 {
4912         static const struct intr_info smb_intr_info[] = {
4913                 { MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
4914                 { MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
4915                 { SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
4916                 { 0 }
4917         };
4918
4919         if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
4920                 t4_fatal_err(adap);
4921 }
4922
4923 /*
4924  * NC-SI interrupt handler.
4925  */
4926 static void ncsi_intr_handler(struct adapter *adap)
4927 {
4928         static const struct intr_info ncsi_intr_info[] = {
4929                 { CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
4930                 { MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
4931                 { TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
4932                 { RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
4933                 { 0 }
4934         };
4935
4936         if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
4937                 t4_fatal_err(adap);
4938 }
4939
4940 /*
4941  * XGMAC interrupt handler.
4942  */
4943 static void xgmac_intr_handler(struct adapter *adap, int port)
4944 {
4945         u32 v, int_cause_reg;
4946
4947         if (is_t4(adap->params.chip))
4948                 int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
4949         else
4950                 int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
4951
4952         v = t4_read_reg(adap, int_cause_reg);
4953
4954         v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
4955         if (!v)
4956                 return;
4957
4958         if (v & TXFIFO_PRTY_ERR_F)
4959                 dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
4960                           port);
4961         if (v & RXFIFO_PRTY_ERR_F)
4962                 dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
4963                           port);
4964         t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
4965         t4_fatal_err(adap);
4966 }
4967
4968 /*
4969  * PL interrupt handler.
4970  */
4971 static void pl_intr_handler(struct adapter *adap)
4972 {
4973         static const struct intr_info pl_intr_info[] = {
4974                 { FATALPERR_F, "T4 fatal parity error", -1, 1 },
4975                 { PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
4976                 { 0 }
4977         };
4978
4979         if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
4980                 t4_fatal_err(adap);
4981 }
4982
4983 #define PF_INTR_MASK (PFSW_F)
4984 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
4985                 EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
4986                 CPL_SWITCH_F | SGE_F | ULP_TX_F | SF_F)
4987
4988 /**
4989  *      t4_slow_intr_handler - control path interrupt handler
4990  *      @adapter: the adapter
4991  *
4992  *      T4 interrupt handler for non-data global interrupt events, e.g., errors.
4993  *      The designation 'slow' is because it involves register reads, while
4994  *      data interrupts typically don't involve any MMIOs.
4995  */
4996 int t4_slow_intr_handler(struct adapter *adapter)
4997 {
4998         /* There are rare cases where a PL_INT_CAUSE bit may end up getting
4999          * set when the corresponding PL_INT_ENABLE bit isn't set.  It's
5000          * easiest just to mask that case here.
5001          */
5002         u32 raw_cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
5003         u32 enable = t4_read_reg(adapter, PL_INT_ENABLE_A);
5004         u32 cause = raw_cause & enable;
5005
5006         if (!(cause & GLBL_INTR_MASK))
5007                 return 0;
5008         if (cause & CIM_F)
5009                 cim_intr_handler(adapter);
5010         if (cause & MPS_F)
5011                 mps_intr_handler(adapter);
5012         if (cause & NCSI_F)
5013                 ncsi_intr_handler(adapter);
5014         if (cause & PL_F)
5015                 pl_intr_handler(adapter);
5016         if (cause & SMB_F)
5017                 smb_intr_handler(adapter);
5018         if (cause & XGMAC0_F)
5019                 xgmac_intr_handler(adapter, 0);
5020         if (cause & XGMAC1_F)
5021                 xgmac_intr_handler(adapter, 1);
5022         if (cause & XGMAC_KR0_F)
5023                 xgmac_intr_handler(adapter, 2);
5024         if (cause & XGMAC_KR1_F)
5025                 xgmac_intr_handler(adapter, 3);
5026         if (cause & PCIE_F)
5027                 pcie_intr_handler(adapter);
5028         if (cause & MC_F)
5029                 mem_intr_handler(adapter, MEM_MC);
5030         if (is_t5(adapter->params.chip) && (cause & MC1_F))
5031                 mem_intr_handler(adapter, MEM_MC1);
5032         if (cause & EDC0_F)
5033                 mem_intr_handler(adapter, MEM_EDC0);
5034         if (cause & EDC1_F)
5035                 mem_intr_handler(adapter, MEM_EDC1);
5036         if (cause & LE_F)
5037                 le_intr_handler(adapter);
5038         if (cause & TP_F)
5039                 tp_intr_handler(adapter);
5040         if (cause & MA_F)
5041                 ma_intr_handler(adapter);
5042         if (cause & PM_TX_F)
5043                 pmtx_intr_handler(adapter);
5044         if (cause & PM_RX_F)
5045                 pmrx_intr_handler(adapter);
5046         if (cause & ULP_RX_F)
5047                 ulprx_intr_handler(adapter);
5048         if (cause & CPL_SWITCH_F)
5049                 cplsw_intr_handler(adapter);
5050         if (cause & SGE_F)
5051                 sge_intr_handler(adapter);
5052         if (cause & ULP_TX_F)
5053                 ulptx_intr_handler(adapter);
5054
5055         /* Clear the interrupts just processed for which we are the master. */
5056         t4_write_reg(adapter, PL_INT_CAUSE_A, raw_cause & GLBL_INTR_MASK);
5057         (void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
5058         return 1;
5059 }
5060
5061 /**
5062  *      t4_intr_enable - enable interrupts
5063  *      @adapter: the adapter whose interrupts should be enabled
5064  *
5065  *      Enable PF-specific interrupts for the calling function and the top-level
5066  *      interrupt concentrator for global interrupts.  Interrupts are already
5067  *      enabled at each module, here we just enable the roots of the interrupt
5068  *      hierarchies.
5069  *
5070  *      Note: this function should be called only when the driver manages
5071  *      non PF-specific interrupts from the various HW modules.  Only one PCI
5072  *      function at a time should be doing this.
5073  */
5074 void t4_intr_enable(struct adapter *adapter)
5075 {
5076         u32 val = 0;
5077         u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
5078         u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
5079                         SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
5080
5081         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
5082                 val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F;
5083         t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
5084                      ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
5085                      ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F |
5086                      ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
5087                      ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
5088                      ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
5089                      DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val);
5090         t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
5091         t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
5092 }
5093
5094 /**
5095  *      t4_intr_disable - disable interrupts
5096  *      @adapter: the adapter whose interrupts should be disabled
5097  *
5098  *      Disable interrupts.  We only disable the top-level interrupt
5099  *      concentrators.  The caller must be a PCI function managing global
5100  *      interrupts.
5101  */
5102 void t4_intr_disable(struct adapter *adapter)
5103 {
5104         u32 whoami, pf;
5105
5106         if (pci_channel_offline(adapter->pdev))
5107                 return;
5108
5109         whoami = t4_read_reg(adapter, PL_WHOAMI_A);
5110         pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
5111                         SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
5112
5113         t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
5114         t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
5115 }
5116
5117 unsigned int t4_chip_rss_size(struct adapter *adap)
5118 {
5119         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
5120                 return RSS_NENTRIES;
5121         else
5122                 return T6_RSS_NENTRIES;
5123 }
5124
5125 /**
5126  *      t4_config_rss_range - configure a portion of the RSS mapping table
5127  *      @adapter: the adapter
5128  *      @mbox: mbox to use for the FW command
5129  *      @viid: virtual interface whose RSS subtable is to be written
5130  *      @start: start entry in the table to write
5131  *      @n: how many table entries to write
5132  *      @rspq: values for the response queue lookup table
5133  *      @nrspq: number of values in @rspq
5134  *
5135  *      Programs the selected part of the VI's RSS mapping table with the
5136  *      provided values.  If @nrspq < @n the supplied values are used repeatedly
5137  *      until the full table range is populated.
5138  *
5139  *      The caller must ensure the values in @rspq are in the range allowed for
5140  *      @viid.
5141  */
5142 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
5143                         int start, int n, const u16 *rspq, unsigned int nrspq)
5144 {
5145         int ret;
5146         const u16 *rsp = rspq;
5147         const u16 *rsp_end = rspq + nrspq;
5148         struct fw_rss_ind_tbl_cmd cmd;
5149
5150         memset(&cmd, 0, sizeof(cmd));
5151         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
5152                                FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5153                                FW_RSS_IND_TBL_CMD_VIID_V(viid));
5154         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
5155
5156         /* each fw_rss_ind_tbl_cmd takes up to 32 entries */
5157         while (n > 0) {
5158                 int nq = min(n, 32);
5159                 __be32 *qp = &cmd.iq0_to_iq2;
5160
5161                 cmd.niqid = cpu_to_be16(nq);
5162                 cmd.startidx = cpu_to_be16(start);
5163
5164                 start += nq;
5165                 n -= nq;
5166
5167                 while (nq > 0) {
5168                         unsigned int v;
5169
5170                         v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
5171                         if (++rsp >= rsp_end)
5172                                 rsp = rspq;
5173                         v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
5174                         if (++rsp >= rsp_end)
5175                                 rsp = rspq;
5176                         v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
5177                         if (++rsp >= rsp_end)
5178                                 rsp = rspq;
5179
5180                         *qp++ = cpu_to_be32(v);
5181                         nq -= 3;
5182                 }
5183
5184                 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
5185                 if (ret)
5186                         return ret;
5187         }
5188         return 0;
5189 }
5190
5191 /**
5192  *      t4_config_glbl_rss - configure the global RSS mode
5193  *      @adapter: the adapter
5194  *      @mbox: mbox to use for the FW command
5195  *      @mode: global RSS mode
5196  *      @flags: mode-specific flags
5197  *
5198  *      Sets the global RSS mode.
5199  */
5200 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
5201                        unsigned int flags)
5202 {
5203         struct fw_rss_glb_config_cmd c;
5204
5205         memset(&c, 0, sizeof(c));
5206         c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
5207                                     FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
5208         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5209         if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
5210                 c.u.manual.mode_pkd =
5211                         cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
5212         } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
5213                 c.u.basicvirtual.mode_pkd =
5214                         cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
5215                 c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
5216         } else
5217                 return -EINVAL;
5218         return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5219 }
5220
5221 /**
5222  *      t4_config_vi_rss - configure per VI RSS settings
5223  *      @adapter: the adapter
5224  *      @mbox: mbox to use for the FW command
5225  *      @viid: the VI id
5226  *      @flags: RSS flags
5227  *      @defq: id of the default RSS queue for the VI.
5228  *
5229  *      Configures VI-specific RSS properties.
5230  */
5231 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
5232                      unsigned int flags, unsigned int defq)
5233 {
5234         struct fw_rss_vi_config_cmd c;
5235
5236         memset(&c, 0, sizeof(c));
5237         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
5238                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5239                                    FW_RSS_VI_CONFIG_CMD_VIID_V(viid));
5240         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5241         c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
5242                                         FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq));
5243         return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5244 }
5245
5246 /* Read an RSS table row */
5247 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
5248 {
5249         t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
5250         return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
5251                                    5, 0, val);
5252 }
5253
5254 /**
5255  *      t4_read_rss - read the contents of the RSS mapping table
5256  *      @adapter: the adapter
5257  *      @map: holds the contents of the RSS mapping table
5258  *
5259  *      Reads the contents of the RSS hash->queue mapping table.
5260  */
5261 int t4_read_rss(struct adapter *adapter, u16 *map)
5262 {
5263         int i, ret, nentries;
5264         u32 val;
5265
5266         nentries = t4_chip_rss_size(adapter);
5267         for (i = 0; i < nentries / 2; ++i) {
5268                 ret = rd_rss_row(adapter, i, &val);
5269                 if (ret)
5270                         return ret;
5271                 *map++ = LKPTBLQUEUE0_G(val);
5272                 *map++ = LKPTBLQUEUE1_G(val);
5273         }
5274         return 0;
5275 }
5276
5277 static unsigned int t4_use_ldst(struct adapter *adap)
5278 {
5279         return (adap->flags & CXGB4_FW_OK) && !adap->use_bd;
5280 }
5281
5282 /**
5283  * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
5284  * @adap: the adapter
5285  * @cmd: TP fw ldst address space type
5286  * @vals: where the indirect register values are stored/written
5287  * @nregs: how many indirect registers to read/write
5288  * @start_index: index of first indirect register to read/write
5289  * @rw: Read (1) or Write (0)
5290  * @sleep_ok: if true we may sleep while awaiting command completion
5291  *
5292  * Access TP indirect registers through LDST
5293  */
5294 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
5295                             unsigned int nregs, unsigned int start_index,
5296                             unsigned int rw, bool sleep_ok)
5297 {
5298         int ret = 0;
5299         unsigned int i;
5300         struct fw_ldst_cmd c;
5301
5302         for (i = 0; i < nregs; i++) {
5303                 memset(&c, 0, sizeof(c));
5304                 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5305                                                 FW_CMD_REQUEST_F |
5306                                                 (rw ? FW_CMD_READ_F :
5307                                                       FW_CMD_WRITE_F) |
5308                                                 FW_LDST_CMD_ADDRSPACE_V(cmd));
5309                 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5310
5311                 c.u.addrval.addr = cpu_to_be32(start_index + i);
5312                 c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
5313                 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
5314                                       sleep_ok);
5315                 if (ret)
5316                         return ret;
5317
5318                 if (rw)
5319                         vals[i] = be32_to_cpu(c.u.addrval.val);
5320         }
5321         return 0;
5322 }
5323
5324 /**
5325  * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
5326  * @adap: the adapter
5327  * @reg_addr: Address Register
5328  * @reg_data: Data register
5329  * @buff: where the indirect register values are stored/written
5330  * @nregs: how many indirect registers to read/write
5331  * @start_index: index of first indirect register to read/write
5332  * @rw: READ(1) or WRITE(0)
5333  * @sleep_ok: if true we may sleep while awaiting command completion
5334  *
5335  * Read/Write TP indirect registers through LDST if possible.
5336  * Else, use backdoor access
5337  **/
5338 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
5339                               u32 *buff, u32 nregs, u32 start_index, int rw,
5340                               bool sleep_ok)
5341 {
5342         int rc = -EINVAL;
5343         int cmd;
5344
5345         switch (reg_addr) {
5346         case TP_PIO_ADDR_A:
5347                 cmd = FW_LDST_ADDRSPC_TP_PIO;
5348                 break;
5349         case TP_TM_PIO_ADDR_A:
5350                 cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
5351                 break;
5352         case TP_MIB_INDEX_A:
5353                 cmd = FW_LDST_ADDRSPC_TP_MIB;
5354                 break;
5355         default:
5356                 goto indirect_access;
5357         }
5358
5359         if (t4_use_ldst(adap))
5360                 rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
5361                                       sleep_ok);
5362
5363 indirect_access:
5364
5365         if (rc) {
5366                 if (rw)
5367                         t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
5368                                          start_index);
5369                 else
5370                         t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
5371                                           start_index);
5372         }
5373 }
5374
5375 /**
5376  * t4_tp_pio_read - Read TP PIO registers
5377  * @adap: the adapter
5378  * @buff: where the indirect register values are written
5379  * @nregs: how many indirect registers to read
5380  * @start_index: index of first indirect register to read
5381  * @sleep_ok: if true we may sleep while awaiting command completion
5382  *
5383  * Read TP PIO Registers
5384  **/
5385 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5386                     u32 start_index, bool sleep_ok)
5387 {
5388         t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5389                           start_index, 1, sleep_ok);
5390 }
5391
5392 /**
5393  * t4_tp_pio_write - Write TP PIO registers
5394  * @adap: the adapter
5395  * @buff: where the indirect register values are stored
5396  * @nregs: how many indirect registers to write
5397  * @start_index: index of first indirect register to write
5398  * @sleep_ok: if true we may sleep while awaiting command completion
5399  *
5400  * Write TP PIO Registers
5401  **/
5402 static void t4_tp_pio_write(struct adapter *adap, u32 *buff, u32 nregs,
5403                             u32 start_index, bool sleep_ok)
5404 {
5405         t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5406                           start_index, 0, sleep_ok);
5407 }
5408
5409 /**
5410  * t4_tp_tm_pio_read - Read TP TM PIO registers
5411  * @adap: the adapter
5412  * @buff: where the indirect register values are written
5413  * @nregs: how many indirect registers to read
5414  * @start_index: index of first indirect register to read
5415  * @sleep_ok: if true we may sleep while awaiting command completion
5416  *
5417  * Read TP TM PIO Registers
5418  **/
5419 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5420                        u32 start_index, bool sleep_ok)
5421 {
5422         t4_tp_indirect_rw(adap, TP_TM_PIO_ADDR_A, TP_TM_PIO_DATA_A, buff,
5423                           nregs, start_index, 1, sleep_ok);
5424 }
5425
5426 /**
5427  * t4_tp_mib_read - Read TP MIB registers
5428  * @adap: the adapter
5429  * @buff: where the indirect register values are written
5430  * @nregs: how many indirect registers to read
5431  * @start_index: index of first indirect register to read
5432  * @sleep_ok: if true we may sleep while awaiting command completion
5433  *
5434  * Read TP MIB Registers
5435  **/
5436 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
5437                     bool sleep_ok)
5438 {
5439         t4_tp_indirect_rw(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, buff, nregs,
5440                           start_index, 1, sleep_ok);
5441 }
5442
5443 /**
5444  *      t4_read_rss_key - read the global RSS key
5445  *      @adap: the adapter
5446  *      @key: 10-entry array holding the 320-bit RSS key
5447  *      @sleep_ok: if true we may sleep while awaiting command completion
5448  *
5449  *      Reads the global 320-bit RSS key.
5450  */
5451 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
5452 {
5453         t4_tp_pio_read(adap, key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5454 }
5455
5456 /**
5457  *      t4_write_rss_key - program one of the RSS keys
5458  *      @adap: the adapter
5459  *      @key: 10-entry array holding the 320-bit RSS key
5460  *      @idx: which RSS key to write
5461  *      @sleep_ok: if true we may sleep while awaiting command completion
5462  *
5463  *      Writes one of the RSS keys with the given 320-bit value.  If @idx is
5464  *      0..15 the corresponding entry in the RSS key table is written,
5465  *      otherwise the global RSS key is written.
5466  */
5467 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
5468                       bool sleep_ok)
5469 {
5470         u8 rss_key_addr_cnt = 16;
5471         u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A);
5472
5473         /* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5474          * allows access to key addresses 16-63 by using KeyWrAddrX
5475          * as index[5:4](upper 2) into key table
5476          */
5477         if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
5478             (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3))
5479                 rss_key_addr_cnt = 32;
5480
5481         t4_tp_pio_write(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5482
5483         if (idx >= 0 && idx < rss_key_addr_cnt) {
5484                 if (rss_key_addr_cnt > 16)
5485                         t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5486                                      KEYWRADDRX_V(idx >> 4) |
5487                                      T6_VFWRADDR_V(idx) | KEYWREN_F);
5488                 else
5489                         t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5490                                      KEYWRADDR_V(idx) | KEYWREN_F);
5491         }
5492 }
5493
5494 /**
5495  *      t4_read_rss_pf_config - read PF RSS Configuration Table
5496  *      @adapter: the adapter
5497  *      @index: the entry in the PF RSS table to read
5498  *      @valp: where to store the returned value
5499  *      @sleep_ok: if true we may sleep while awaiting command completion
5500  *
5501  *      Reads the PF RSS Configuration Table at the specified index and returns
5502  *      the value found there.
5503  */
5504 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5505                            u32 *valp, bool sleep_ok)
5506 {
5507         t4_tp_pio_read(adapter, valp, 1, TP_RSS_PF0_CONFIG_A + index, sleep_ok);
5508 }
5509
5510 /**
5511  *      t4_read_rss_vf_config - read VF RSS Configuration Table
5512  *      @adapter: the adapter
5513  *      @index: the entry in the VF RSS table to read
5514  *      @vfl: where to store the returned VFL
5515  *      @vfh: where to store the returned VFH
5516  *      @sleep_ok: if true we may sleep while awaiting command completion
5517  *
5518  *      Reads the VF RSS Configuration Table at the specified index and returns
5519  *      the (VFL, VFH) values found there.
5520  */
5521 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
5522                            u32 *vfl, u32 *vfh, bool sleep_ok)
5523 {
5524         u32 vrt, mask, data;
5525
5526         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
5527                 mask = VFWRADDR_V(VFWRADDR_M);
5528                 data = VFWRADDR_V(index);
5529         } else {
5530                  mask =  T6_VFWRADDR_V(T6_VFWRADDR_M);
5531                  data = T6_VFWRADDR_V(index);
5532         }
5533
5534         /* Request that the index'th VF Table values be read into VFL/VFH.
5535          */
5536         vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
5537         vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
5538         vrt |= data | VFRDEN_F;
5539         t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);
5540
5541         /* Grab the VFL/VFH values ...
5542          */
5543         t4_tp_pio_read(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, sleep_ok);
5544         t4_tp_pio_read(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, sleep_ok);
5545 }
5546
5547 /**
5548  *      t4_read_rss_pf_map - read PF RSS Map
5549  *      @adapter: the adapter
5550  *      @sleep_ok: if true we may sleep while awaiting command completion
5551  *
5552  *      Reads the PF RSS Map register and returns its value.
5553  */
5554 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
5555 {
5556         u32 pfmap;
5557
5558         t4_tp_pio_read(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, sleep_ok);
5559         return pfmap;
5560 }
5561
5562 /**
5563  *      t4_read_rss_pf_mask - read PF RSS Mask
5564  *      @adapter: the adapter
5565  *      @sleep_ok: if true we may sleep while awaiting command completion
5566  *
5567  *      Reads the PF RSS Mask register and returns its value.
5568  */
5569 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
5570 {
5571         u32 pfmask;
5572
5573         t4_tp_pio_read(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, sleep_ok);
5574         return pfmask;
5575 }
5576
5577 /**
5578  *      t4_tp_get_tcp_stats - read TP's TCP MIB counters
5579  *      @adap: the adapter
5580  *      @v4: holds the TCP/IP counter values
5581  *      @v6: holds the TCP/IPv6 counter values
5582  *      @sleep_ok: if true we may sleep while awaiting command completion
5583  *
5584  *      Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
5585  *      Either @v4 or @v6 may be %NULL to skip the corresponding stats.
5586  */
5587 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
5588                          struct tp_tcp_stats *v6, bool sleep_ok)
5589 {
5590         u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
5591
5592 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
5593 #define STAT(x)     val[STAT_IDX(x)]
5594 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
5595
5596         if (v4) {
5597                 t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5598                                TP_MIB_TCP_OUT_RST_A, sleep_ok);
5599                 v4->tcp_out_rsts = STAT(OUT_RST);
5600                 v4->tcp_in_segs  = STAT64(IN_SEG);
5601                 v4->tcp_out_segs = STAT64(OUT_SEG);
5602                 v4->tcp_retrans_segs = STAT64(RXT_SEG);
5603         }
5604         if (v6) {
5605                 t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5606                                TP_MIB_TCP_V6OUT_RST_A, sleep_ok);
5607                 v6->tcp_out_rsts = STAT(OUT_RST);
5608                 v6->tcp_in_segs  = STAT64(IN_SEG);
5609                 v6->tcp_out_segs = STAT64(OUT_SEG);
5610                 v6->tcp_retrans_segs = STAT64(RXT_SEG);
5611         }
5612 #undef STAT64
5613 #undef STAT
5614 #undef STAT_IDX
5615 }
5616
5617 /**
5618  *      t4_tp_get_err_stats - read TP's error MIB counters
5619  *      @adap: the adapter
5620  *      @st: holds the counter values
5621  *      @sleep_ok: if true we may sleep while awaiting command completion
5622  *
5623  *      Returns the values of TP's error counters.
5624  */
5625 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
5626                          bool sleep_ok)
5627 {
5628         int nchan = adap->params.arch.nchan;
5629
5630         t4_tp_mib_read(adap, st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A,
5631                        sleep_ok);
5632         t4_tp_mib_read(adap, st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A,
5633                        sleep_ok);
5634         t4_tp_mib_read(adap, st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A,
5635                        sleep_ok);
5636         t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
5637                        TP_MIB_TNL_CNG_DROP_0_A, sleep_ok);
5638         t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
5639                        TP_MIB_OFD_CHN_DROP_0_A, sleep_ok);
5640         t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A,
5641                        sleep_ok);
5642         t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
5643                        TP_MIB_OFD_VLN_DROP_0_A, sleep_ok);
5644         t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
5645                        TP_MIB_TCP_V6IN_ERR_0_A, sleep_ok);
5646         t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A,
5647                        sleep_ok);
5648 }
5649
5650 /**
5651  *      t4_tp_get_cpl_stats - read TP's CPL MIB counters
5652  *      @adap: the adapter
5653  *      @st: holds the counter values
5654  *      @sleep_ok: if true we may sleep while awaiting command completion
5655  *
5656  *      Returns the values of TP's CPL counters.
5657  */
5658 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
5659                          bool sleep_ok)
5660 {
5661         int nchan = adap->params.arch.nchan;
5662
5663         t4_tp_mib_read(adap, st->req, nchan, TP_MIB_CPL_IN_REQ_0_A, sleep_ok);
5664
5665         t4_tp_mib_read(adap, st->rsp, nchan, TP_MIB_CPL_OUT_RSP_0_A, sleep_ok);
5666 }
5667
5668 /**
5669  *      t4_tp_get_rdma_stats - read TP's RDMA MIB counters
5670  *      @adap: the adapter
5671  *      @st: holds the counter values
5672  *      @sleep_ok: if true we may sleep while awaiting command completion
5673  *
5674  *      Returns the values of TP's RDMA counters.
5675  */
5676 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
5677                           bool sleep_ok)
5678 {
5679         t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, TP_MIB_RQE_DFR_PKT_A,
5680                        sleep_ok);
5681 }
5682
5683 /**
5684  *      t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
5685  *      @adap: the adapter
5686  *      @idx: the port index
5687  *      @st: holds the counter values
5688  *      @sleep_ok: if true we may sleep while awaiting command completion
5689  *
5690  *      Returns the values of TP's FCoE counters for the selected port.
5691  */
5692 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
5693                        struct tp_fcoe_stats *st, bool sleep_ok)
5694 {
5695         u32 val[2];
5696
5697         t4_tp_mib_read(adap, &st->frames_ddp, 1, TP_MIB_FCOE_DDP_0_A + idx,
5698                        sleep_ok);
5699
5700         t4_tp_mib_read(adap, &st->frames_drop, 1,
5701                        TP_MIB_FCOE_DROP_0_A + idx, sleep_ok);
5702
5703         t4_tp_mib_read(adap, val, 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx,
5704                        sleep_ok);
5705
5706         st->octets_ddp = ((u64)val[0] << 32) | val[1];
5707 }
5708
5709 /**
5710  *      t4_get_usm_stats - read TP's non-TCP DDP MIB counters
5711  *      @adap: the adapter
5712  *      @st: holds the counter values
5713  *      @sleep_ok: if true we may sleep while awaiting command completion
5714  *
5715  *      Returns the values of TP's counters for non-TCP directly-placed packets.
5716  */
5717 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
5718                       bool sleep_ok)
5719 {
5720         u32 val[4];
5721
5722         t4_tp_mib_read(adap, val, 4, TP_MIB_USM_PKTS_A, sleep_ok);
5723         st->frames = val[0];
5724         st->drops = val[1];
5725         st->octets = ((u64)val[2] << 32) | val[3];
5726 }
5727
5728 /**
5729  *      t4_read_mtu_tbl - returns the values in the HW path MTU table
5730  *      @adap: the adapter
5731  *      @mtus: where to store the MTU values
5732  *      @mtu_log: where to store the MTU base-2 log (may be %NULL)
5733  *
5734  *      Reads the HW path MTU table.
5735  */
5736 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
5737 {
5738         u32 v;
5739         int i;
5740
5741         for (i = 0; i < NMTUS; ++i) {
5742                 t4_write_reg(adap, TP_MTU_TABLE_A,
5743                              MTUINDEX_V(0xff) | MTUVALUE_V(i));
5744                 v = t4_read_reg(adap, TP_MTU_TABLE_A);
5745                 mtus[i] = MTUVALUE_G(v);
5746                 if (mtu_log)
5747                         mtu_log[i] = MTUWIDTH_G(v);
5748         }
5749 }
5750
5751 /**
5752  *      t4_read_cong_tbl - reads the congestion control table
5753  *      @adap: the adapter
5754  *      @incr: where to store the alpha values
5755  *
5756  *      Reads the additive increments programmed into the HW congestion
5757  *      control table.
5758  */
5759 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
5760 {
5761         unsigned int mtu, w;
5762
5763         for (mtu = 0; mtu < NMTUS; ++mtu)
5764                 for (w = 0; w < NCCTRL_WIN; ++w) {
5765                         t4_write_reg(adap, TP_CCTRL_TABLE_A,
5766                                      ROWINDEX_V(0xffff) | (mtu << 5) | w);
5767                         incr[mtu][w] = (u16)t4_read_reg(adap,
5768                                                 TP_CCTRL_TABLE_A) & 0x1fff;
5769                 }
5770 }
5771
5772 /**
5773  *      t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5774  *      @adap: the adapter
5775  *      @addr: the indirect TP register address
5776  *      @mask: specifies the field within the register to modify
5777  *      @val: new value for the field
5778  *
5779  *      Sets a field of an indirect TP register to the given value.
5780  */
5781 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5782                             unsigned int mask, unsigned int val)
5783 {
5784         t4_write_reg(adap, TP_PIO_ADDR_A, addr);
5785         val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
5786         t4_write_reg(adap, TP_PIO_DATA_A, val);
5787 }
5788
5789 /**
5790  *      init_cong_ctrl - initialize congestion control parameters
5791  *      @a: the alpha values for congestion control
5792  *      @b: the beta values for congestion control
5793  *
5794  *      Initialize the congestion control parameters.
5795  */
5796 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5797 {
5798         a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5799         a[9] = 2;
5800         a[10] = 3;
5801         a[11] = 4;
5802         a[12] = 5;
5803         a[13] = 6;
5804         a[14] = 7;
5805         a[15] = 8;
5806         a[16] = 9;
5807         a[17] = 10;
5808         a[18] = 14;
5809         a[19] = 17;
5810         a[20] = 21;
5811         a[21] = 25;
5812         a[22] = 30;
5813         a[23] = 35;
5814         a[24] = 45;
5815         a[25] = 60;
5816         a[26] = 80;
5817         a[27] = 100;
5818         a[28] = 200;
5819         a[29] = 300;
5820         a[30] = 400;
5821         a[31] = 500;
5822
5823         b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5824         b[9] = b[10] = 1;
5825         b[11] = b[12] = 2;
5826         b[13] = b[14] = b[15] = b[16] = 3;
5827         b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5828         b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5829         b[28] = b[29] = 6;
5830         b[30] = b[31] = 7;
5831 }
5832
5833 /* The minimum additive increment value for the congestion control table */
5834 #define CC_MIN_INCR 2U
5835
5836 /**
5837  *      t4_load_mtus - write the MTU and congestion control HW tables
5838  *      @adap: the adapter
5839  *      @mtus: the values for the MTU table
5840  *      @alpha: the values for the congestion control alpha parameter
5841  *      @beta: the values for the congestion control beta parameter
5842  *
5843  *      Write the HW MTU table with the supplied MTUs and the high-speed
5844  *      congestion control table with the supplied alpha, beta, and MTUs.
5845  *      We write the two tables together because the additive increments
5846  *      depend on the MTUs.
5847  */
5848 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5849                   const unsigned short *alpha, const unsigned short *beta)
5850 {
5851         static const unsigned int avg_pkts[NCCTRL_WIN] = {
5852                 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5853                 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5854                 28672, 40960, 57344, 81920, 114688, 163840, 229376
5855         };
5856
5857         unsigned int i, w;
5858
5859         for (i = 0; i < NMTUS; ++i) {
5860                 unsigned int mtu = mtus[i];
5861                 unsigned int log2 = fls(mtu);
5862
5863                 if (!(mtu & ((1 << log2) >> 2)))     /* round */
5864                         log2--;
5865                 t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
5866                              MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
5867
5868                 for (w = 0; w < NCCTRL_WIN; ++w) {
5869                         unsigned int inc;
5870
5871                         inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5872                                   CC_MIN_INCR);
5873
5874                         t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
5875                                      (w << 16) | (beta[w] << 13) | inc);
5876                 }
5877         }
5878 }
5879
5880 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5881  * clocks.  The formula is
5882  *
5883  * bytes/s = bytes256 * 256 * ClkFreq / 4096
5884  *
5885  * which is equivalent to
5886  *
5887  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5888  */
5889 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5890 {
5891         u64 v = bytes256 * adap->params.vpd.cclk;
5892
5893         return v * 62 + v / 2;
5894 }
5895
5896 /**
5897  *      t4_get_chan_txrate - get the current per channel Tx rates
5898  *      @adap: the adapter
5899  *      @nic_rate: rates for NIC traffic
5900  *      @ofld_rate: rates for offloaded traffic
5901  *
5902  *      Return the current Tx rates in bytes/s for NIC and offloaded traffic
5903  *      for each channel.
5904  */
5905 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5906 {
5907         u32 v;
5908
5909         v = t4_read_reg(adap, TP_TX_TRATE_A);
5910         nic_rate[0] = chan_rate(adap, TNLRATE0_G(v));
5911         nic_rate[1] = chan_rate(adap, TNLRATE1_G(v));
5912         if (adap->params.arch.nchan == NCHAN) {
5913                 nic_rate[2] = chan_rate(adap, TNLRATE2_G(v));
5914                 nic_rate[3] = chan_rate(adap, TNLRATE3_G(v));
5915         }
5916
5917         v = t4_read_reg(adap, TP_TX_ORATE_A);
5918         ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v));
5919         ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v));
5920         if (adap->params.arch.nchan == NCHAN) {
5921                 ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v));
5922                 ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v));
5923         }
5924 }
5925
5926 /**
5927  *      t4_set_trace_filter - configure one of the tracing filters
5928  *      @adap: the adapter
5929  *      @tp: the desired trace filter parameters
5930  *      @idx: which filter to configure
5931  *      @enable: whether to enable or disable the filter
5932  *
5933  *      Configures one of the tracing filters available in HW.  If @enable is
5934  *      %0 @tp is not examined and may be %NULL. The user is responsible to
5935  *      set the single/multiple trace mode by writing to MPS_TRC_CFG_A register
5936  */
5937 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5938                         int idx, int enable)
5939 {
5940         int i, ofst = idx * 4;
5941         u32 data_reg, mask_reg, cfg;
5942
5943         if (!enable) {
5944                 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5945                 return 0;
5946         }
5947
5948         cfg = t4_read_reg(adap, MPS_TRC_CFG_A);
5949         if (cfg & TRCMULTIFILTER_F) {
5950                 /* If multiple tracers are enabled, then maximum
5951                  * capture size is 2.5KB (FIFO size of a single channel)
5952                  * minus 2 flits for CPL_TRACE_PKT header.
5953                  */
5954                 if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5955                         return -EINVAL;
5956         } else {
5957                 /* If multiple tracers are disabled, to avoid deadlocks
5958                  * maximum packet capture size of 9600 bytes is recommended.
5959                  * Also in this mode, only trace0 can be enabled and running.
5960                  */
5961                 if (tp->snap_len > 9600 || idx)
5962                         return -EINVAL;
5963         }
5964
5965         if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 ||
5966             tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M ||
5967             tp->min_len > TFMINPKTSIZE_M)
5968                 return -EINVAL;
5969
5970         /* stop the tracer we'll be changing */
5971         t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5972
5973         idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A);
5974         data_reg = MPS_TRC_FILTER0_MATCH_A + idx;
5975         mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx;
5976
5977         for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5978                 t4_write_reg(adap, data_reg, tp->data[i]);
5979                 t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5980         }
5981         t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst,
5982                      TFCAPTUREMAX_V(tp->snap_len) |
5983                      TFMINPKTSIZE_V(tp->min_len));
5984         t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst,
5985                      TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) |
5986                      (is_t4(adap->params.chip) ?
5987                      TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) :
5988                      T5_TFPORT_V(tp->port) | T5_TFEN_F |
5989                      T5_TFINVERTMATCH_V(tp->invert)));
5990
5991         return 0;
5992 }
5993
5994 /**
5995  *      t4_get_trace_filter - query one of the tracing filters
5996  *      @adap: the adapter
5997  *      @tp: the current trace filter parameters
5998  *      @idx: which trace filter to query
5999  *      @enabled: non-zero if the filter is enabled
6000  *
6001  *      Returns the current settings of one of the HW tracing filters.
6002  */
6003 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
6004                          int *enabled)
6005 {
6006         u32 ctla, ctlb;
6007         int i, ofst = idx * 4;
6008         u32 data_reg, mask_reg;
6009
6010         ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst);
6011         ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst);
6012
6013         if (is_t4(adap->params.chip)) {
6014                 *enabled = !!(ctla & TFEN_F);
6015                 tp->port =  TFPORT_G(ctla);
6016                 tp->invert = !!(ctla & TFINVERTMATCH_F);
6017         } else {
6018                 *enabled = !!(ctla & T5_TFEN_F);
6019                 tp->port = T5_TFPORT_G(ctla);
6020                 tp->invert = !!(ctla & T5_TFINVERTMATCH_F);
6021         }
6022         tp->snap_len = TFCAPTUREMAX_G(ctlb);
6023         tp->min_len = TFMINPKTSIZE_G(ctlb);
6024         tp->skip_ofst = TFOFFSET_G(ctla);
6025         tp->skip_len = TFLENGTH_G(ctla);
6026
6027         ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx;
6028         data_reg = MPS_TRC_FILTER0_MATCH_A + ofst;
6029         mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst;
6030
6031         for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6032                 tp->mask[i] = ~t4_read_reg(adap, mask_reg);
6033                 tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
6034         }
6035 }
6036
6037 /**
6038  *      t4_pmtx_get_stats - returns the HW stats from PMTX
6039  *      @adap: the adapter
6040  *      @cnt: where to store the count statistics
6041  *      @cycles: where to store the cycle statistics
6042  *
6043  *      Returns performance statistics from PMTX.
6044  */
6045 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6046 {
6047         int i;
6048         u32 data[2];
6049
6050         for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
6051                 t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
6052                 cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
6053                 if (is_t4(adap->params.chip)) {
6054                         cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
6055                 } else {
6056                         t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
6057                                          PM_TX_DBG_DATA_A, data, 2,
6058                                          PM_TX_DBG_STAT_MSB_A);
6059                         cycles[i] = (((u64)data[0] << 32) | data[1]);
6060                 }
6061         }
6062 }
6063
6064 /**
6065  *      t4_pmrx_get_stats - returns the HW stats from PMRX
6066  *      @adap: the adapter
6067  *      @cnt: where to store the count statistics
6068  *      @cycles: where to store the cycle statistics
6069  *
6070  *      Returns performance statistics from PMRX.
6071  */
6072 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6073 {
6074         int i;
6075         u32 data[2];
6076
6077         for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
6078                 t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
6079                 cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
6080                 if (is_t4(adap->params.chip)) {
6081                         cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
6082                 } else {
6083                         t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
6084                                          PM_RX_DBG_DATA_A, data, 2,
6085                                          PM_RX_DBG_STAT_MSB_A);
6086                         cycles[i] = (((u64)data[0] << 32) | data[1]);
6087                 }
6088         }
6089 }
6090
6091 /**
6092  *      compute_mps_bg_map - compute the MPS Buffer Group Map for a Port
6093  *      @adapter: the adapter
6094  *      @pidx: the port index
6095  *
6096  *      Computes and returns a bitmap indicating which MPS buffer groups are
6097  *      associated with the given Port.  Bit i is set if buffer group i is
6098  *      used by the Port.
6099  */
6100 static inline unsigned int compute_mps_bg_map(struct adapter *adapter,
6101                                               int pidx)
6102 {
6103         unsigned int chip_version, nports;
6104
6105         chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
6106         nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6107
6108         switch (chip_version) {
6109         case CHELSIO_T4:
6110         case CHELSIO_T5:
6111                 switch (nports) {
6112                 case 1: return 0xf;
6113                 case 2: return 3 << (2 * pidx);
6114                 case 4: return 1 << pidx;
6115                 }
6116                 break;
6117
6118         case CHELSIO_T6:
6119                 switch (nports) {
6120                 case 2: return 1 << (2 * pidx);
6121                 }
6122                 break;
6123         }
6124
6125         dev_err(adapter->pdev_dev, "Need MPS Buffer Group Map for Chip %0x, Nports %d\n",
6126                 chip_version, nports);
6127
6128         return 0;
6129 }
6130
6131 /**
6132  *      t4_get_mps_bg_map - return the buffer groups associated with a port
6133  *      @adapter: the adapter
6134  *      @pidx: the port index
6135  *
6136  *      Returns a bitmap indicating which MPS buffer groups are associated
6137  *      with the given Port.  Bit i is set if buffer group i is used by the
6138  *      Port.
6139  */
6140 unsigned int t4_get_mps_bg_map(struct adapter *adapter, int pidx)
6141 {
6142         u8 *mps_bg_map;
6143         unsigned int nports;
6144
6145         nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6146         if (pidx >= nports) {
6147                 CH_WARN(adapter, "MPS Port Index %d >= Nports %d\n",
6148                         pidx, nports);
6149                 return 0;
6150         }
6151
6152         /* If we've already retrieved/computed this, just return the result.
6153          */
6154         mps_bg_map = adapter->params.mps_bg_map;
6155         if (mps_bg_map[pidx])
6156                 return mps_bg_map[pidx];
6157
6158         /* Newer Firmware can tell us what the MPS Buffer Group Map is.
6159          * If we're talking to such Firmware, let it tell us.  If the new
6160          * API isn't supported, revert back to old hardcoded way.  The value
6161          * obtained from Firmware is encoded in below format:
6162          *
6163          * val = (( MPSBGMAP[Port 3] << 24 ) |
6164          *        ( MPSBGMAP[Port 2] << 16 ) |
6165          *        ( MPSBGMAP[Port 1] <<  8 ) |
6166          *        ( MPSBGMAP[Port 0] <<  0 ))
6167          */
6168         if (adapter->flags & CXGB4_FW_OK) {
6169                 u32 param, val;
6170                 int ret;
6171
6172                 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6173                          FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_MPSBGMAP));
6174                 ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf,
6175                                          0, 1, &param, &val);
6176                 if (!ret) {
6177                         int p;
6178
6179                         /* Store the BG Map for all of the Ports in order to
6180                          * avoid more calls to the Firmware in the future.
6181                          */
6182                         for (p = 0; p < MAX_NPORTS; p++, val >>= 8)
6183                                 mps_bg_map[p] = val & 0xff;
6184
6185                         return mps_bg_map[pidx];
6186                 }
6187         }
6188
6189         /* Either we're not talking to the Firmware or we're dealing with
6190          * older Firmware which doesn't support the new API to get the MPS
6191          * Buffer Group Map.  Fall back to computing it ourselves.
6192          */
6193         mps_bg_map[pidx] = compute_mps_bg_map(adapter, pidx);
6194         return mps_bg_map[pidx];
6195 }
6196
6197 /**
6198  *      t4_get_tp_e2c_map - return the E2C channel map associated with a port
6199  *      @adapter: the adapter
6200  *      @pidx: the port index
6201  */
6202 static unsigned int t4_get_tp_e2c_map(struct adapter *adapter, int pidx)
6203 {
6204         unsigned int nports;
6205         u32 param, val = 0;
6206         int ret;
6207
6208         nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6209         if (pidx >= nports) {
6210                 CH_WARN(adapter, "TP E2C Channel Port Index %d >= Nports %d\n",
6211                         pidx, nports);
6212                 return 0;
6213         }
6214
6215         /* FW version >= 1.16.44.0 can determine E2C channel map using
6216          * FW_PARAMS_PARAM_DEV_TPCHMAP API.
6217          */
6218         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6219                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPCHMAP));
6220         ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf,
6221                                  0, 1, &param, &val);
6222         if (!ret)
6223                 return (val >> (8 * pidx)) & 0xff;
6224
6225         return 0;
6226 }
6227
6228 /**
6229  *      t4_get_tp_ch_map - return TP ingress channels associated with a port
6230  *      @adap: the adapter
6231  *      @pidx: the port index
6232  *
6233  *      Returns a bitmap indicating which TP Ingress Channels are associated
6234  *      with a given Port.  Bit i is set if TP Ingress Channel i is used by
6235  *      the Port.
6236  */
6237 unsigned int t4_get_tp_ch_map(struct adapter *adap, int pidx)
6238 {
6239         unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
6240         unsigned int nports = 1 << NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
6241
6242         if (pidx >= nports) {
6243                 dev_warn(adap->pdev_dev, "TP Port Index %d >= Nports %d\n",
6244                          pidx, nports);
6245                 return 0;
6246         }
6247
6248         switch (chip_version) {
6249         case CHELSIO_T4:
6250         case CHELSIO_T5:
6251                 /* Note that this happens to be the same values as the MPS
6252                  * Buffer Group Map for these Chips.  But we replicate the code
6253                  * here because they're really separate concepts.
6254                  */
6255                 switch (nports) {
6256                 case 1: return 0xf;
6257                 case 2: return 3 << (2 * pidx);
6258                 case 4: return 1 << pidx;
6259                 }
6260                 break;
6261
6262         case CHELSIO_T6:
6263                 switch (nports) {
6264                 case 1:
6265                 case 2: return 1 << pidx;
6266                 }
6267                 break;
6268         }
6269
6270         dev_err(adap->pdev_dev, "Need TP Channel Map for Chip %0x, Nports %d\n",
6271                 chip_version, nports);
6272         return 0;
6273 }
6274
6275 /**
6276  *      t4_get_port_type_description - return Port Type string description
6277  *      @port_type: firmware Port Type enumeration
6278  */
6279 const char *t4_get_port_type_description(enum fw_port_type port_type)
6280 {
6281         static const char *const port_type_description[] = {
6282                 "Fiber_XFI",
6283                 "Fiber_XAUI",
6284                 "BT_SGMII",
6285                 "BT_XFI",
6286                 "BT_XAUI",
6287                 "KX4",
6288                 "CX4",
6289                 "KX",
6290                 "KR",
6291                 "SFP",
6292                 "BP_AP",
6293                 "BP4_AP",
6294                 "QSFP_10G",
6295                 "QSA",
6296                 "QSFP",
6297                 "BP40_BA",
6298                 "KR4_100G",
6299                 "CR4_QSFP",
6300                 "CR_QSFP",
6301                 "CR2_QSFP",
6302                 "SFP28",
6303                 "KR_SFP28",
6304                 "KR_XLAUI"
6305         };
6306
6307         if (port_type < ARRAY_SIZE(port_type_description))
6308                 return port_type_description[port_type];
6309         return "UNKNOWN";
6310 }
6311
6312 /**
6313  *      t4_get_port_stats_offset - collect port stats relative to a previous
6314  *                                 snapshot
6315  *      @adap: The adapter
6316  *      @idx: The port
6317  *      @stats: Current stats to fill
6318  *      @offset: Previous stats snapshot
6319  */
6320 void t4_get_port_stats_offset(struct adapter *adap, int idx,
6321                               struct port_stats *stats,
6322                               struct port_stats *offset)
6323 {
6324         u64 *s, *o;
6325         int i;
6326
6327         t4_get_port_stats(adap, idx, stats);
6328         for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
6329                         i < (sizeof(struct port_stats) / sizeof(u64));
6330                         i++, s++, o++)
6331                 *s -= *o;
6332 }
6333
6334 /**
6335  *      t4_get_port_stats - collect port statistics
6336  *      @adap: the adapter
6337  *      @idx: the port index
6338  *      @p: the stats structure to fill
6339  *
6340  *      Collect statistics related to the given port from HW.
6341  */
6342 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
6343 {
6344         u32 bgmap = t4_get_mps_bg_map(adap, idx);
6345         u32 stat_ctl = t4_read_reg(adap, MPS_STAT_CTL_A);
6346
6347 #define GET_STAT(name) \
6348         t4_read_reg64(adap, \
6349         (is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
6350         T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
6351 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6352
6353         p->tx_octets           = GET_STAT(TX_PORT_BYTES);
6354         p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
6355         p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
6356         p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
6357         p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
6358         p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
6359         p->tx_frames_64        = GET_STAT(TX_PORT_64B);
6360         p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
6361         p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
6362         p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
6363         p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
6364         p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
6365         p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
6366         p->tx_drop             = GET_STAT(TX_PORT_DROP);
6367         p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
6368         p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
6369         p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
6370         p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
6371         p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
6372         p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
6373         p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
6374         p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
6375         p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);
6376
6377         if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6378                 if (stat_ctl & COUNTPAUSESTATTX_F)
6379                         p->tx_frames_64 -= p->tx_pause;
6380                 if (stat_ctl & COUNTPAUSEMCTX_F)
6381                         p->tx_mcast_frames -= p->tx_pause;
6382         }
6383         p->rx_octets           = GET_STAT(RX_PORT_BYTES);
6384         p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
6385         p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
6386         p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
6387         p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
6388         p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
6389         p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
6390         p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
6391         p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
6392         p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
6393         p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
6394         p->rx_frames_64        = GET_STAT(RX_PORT_64B);
6395         p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
6396         p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
6397         p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
6398         p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
6399         p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
6400         p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
6401         p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
6402         p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
6403         p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
6404         p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
6405         p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
6406         p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
6407         p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
6408         p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
6409         p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);
6410
6411         if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6412                 if (stat_ctl & COUNTPAUSESTATRX_F)
6413                         p->rx_frames_64 -= p->rx_pause;
6414                 if (stat_ctl & COUNTPAUSEMCRX_F)
6415                         p->rx_mcast_frames -= p->rx_pause;
6416         }
6417
6418         p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
6419         p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
6420         p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
6421         p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
6422         p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
6423         p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
6424         p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
6425         p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
6426
6427 #undef GET_STAT
6428 #undef GET_STAT_COM
6429 }
6430
6431 /**
6432  *      t4_get_lb_stats - collect loopback port statistics
6433  *      @adap: the adapter
6434  *      @idx: the loopback port index
6435  *      @p: the stats structure to fill
6436  *
6437  *      Return HW statistics for the given loopback port.
6438  */
6439 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
6440 {
6441         u32 bgmap = t4_get_mps_bg_map(adap, idx);
6442
6443 #define GET_STAT(name) \
6444         t4_read_reg64(adap, \
6445         (is_t4(adap->params.chip) ? \
6446         PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \
6447         T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L)))
6448 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6449
6450         p->octets           = GET_STAT(BYTES);
6451         p->frames           = GET_STAT(FRAMES);
6452         p->bcast_frames     = GET_STAT(BCAST);
6453         p->mcast_frames     = GET_STAT(MCAST);
6454         p->ucast_frames     = GET_STAT(UCAST);
6455         p->error_frames     = GET_STAT(ERROR);
6456
6457         p->frames_64        = GET_STAT(64B);
6458         p->frames_65_127    = GET_STAT(65B_127B);
6459         p->frames_128_255   = GET_STAT(128B_255B);
6460         p->frames_256_511   = GET_STAT(256B_511B);
6461         p->frames_512_1023  = GET_STAT(512B_1023B);
6462         p->frames_1024_1518 = GET_STAT(1024B_1518B);
6463         p->frames_1519_max  = GET_STAT(1519B_MAX);
6464         p->drop             = GET_STAT(DROP_FRAMES);
6465
6466         p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
6467         p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
6468         p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
6469         p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
6470         p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
6471         p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
6472         p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
6473         p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
6474
6475 #undef GET_STAT
6476 #undef GET_STAT_COM
6477 }
6478
6479 /*     t4_mk_filtdelwr - create a delete filter WR
6480  *     @ftid: the filter ID
6481  *     @wr: the filter work request to populate
6482  *     @qid: ingress queue to receive the delete notification
6483  *
6484  *     Creates a filter work request to delete the supplied filter.  If @qid is
6485  *     negative the delete notification is suppressed.
6486  */
6487 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
6488 {
6489         memset(wr, 0, sizeof(*wr));
6490         wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR));
6491         wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16));
6492         wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) |
6493                                     FW_FILTER_WR_NOREPLY_V(qid < 0));
6494         wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F);
6495         if (qid >= 0)
6496                 wr->rx_chan_rx_rpl_iq =
6497                         cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid));
6498 }
6499
6500 #define INIT_CMD(var, cmd, rd_wr) do { \
6501         (var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \
6502                                         FW_CMD_REQUEST_F | \
6503                                         FW_CMD_##rd_wr##_F); \
6504         (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
6505 } while (0)
6506
6507 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
6508                           u32 addr, u32 val)
6509 {
6510         u32 ldst_addrspace;
6511         struct fw_ldst_cmd c;
6512
6513         memset(&c, 0, sizeof(c));
6514         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE);
6515         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6516                                         FW_CMD_REQUEST_F |
6517                                         FW_CMD_WRITE_F |
6518                                         ldst_addrspace);
6519         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6520         c.u.addrval.addr = cpu_to_be32(addr);
6521         c.u.addrval.val = cpu_to_be32(val);
6522
6523         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6524 }
6525
6526 /**
6527  *      t4_mdio_rd - read a PHY register through MDIO
6528  *      @adap: the adapter
6529  *      @mbox: mailbox to use for the FW command
6530  *      @phy_addr: the PHY address
6531  *      @mmd: the PHY MMD to access (0 for clause 22 PHYs)
6532  *      @reg: the register to read
6533  *      @valp: where to store the value
6534  *
6535  *      Issues a FW command through the given mailbox to read a PHY register.
6536  */
6537 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6538                unsigned int mmd, unsigned int reg, u16 *valp)
6539 {
6540         int ret;
6541         u32 ldst_addrspace;
6542         struct fw_ldst_cmd c;
6543
6544         memset(&c, 0, sizeof(c));
6545         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6546         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6547                                         FW_CMD_REQUEST_F | FW_CMD_READ_F |
6548                                         ldst_addrspace);
6549         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6550         c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6551                                          FW_LDST_CMD_MMD_V(mmd));
6552         c.u.mdio.raddr = cpu_to_be16(reg);
6553
6554         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6555         if (ret == 0)
6556                 *valp = be16_to_cpu(c.u.mdio.rval);
6557         return ret;
6558 }
6559
6560 /**
6561  *      t4_mdio_wr - write a PHY register through MDIO
6562  *      @adap: the adapter
6563  *      @mbox: mailbox to use for the FW command
6564  *      @phy_addr: the PHY address
6565  *      @mmd: the PHY MMD to access (0 for clause 22 PHYs)
6566  *      @reg: the register to write
6567  *      @val: value to write
6568  *
6569  *      Issues a FW command through the given mailbox to write a PHY register.
6570  */
6571 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6572                unsigned int mmd, unsigned int reg, u16 val)
6573 {
6574         u32 ldst_addrspace;
6575         struct fw_ldst_cmd c;
6576
6577         memset(&c, 0, sizeof(c));
6578         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6579         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6580                                         FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6581                                         ldst_addrspace);
6582         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6583         c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6584                                          FW_LDST_CMD_MMD_V(mmd));
6585         c.u.mdio.raddr = cpu_to_be16(reg);
6586         c.u.mdio.rval = cpu_to_be16(val);
6587
6588         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6589 }
6590
6591 /**
6592  *      t4_sge_decode_idma_state - decode the idma state
6593  *      @adapter: the adapter
6594  *      @state: the state idma is stuck in
6595  */
6596 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
6597 {
6598         static const char * const t4_decode[] = {
6599                 "IDMA_IDLE",
6600                 "IDMA_PUSH_MORE_CPL_FIFO",
6601                 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6602                 "Not used",
6603                 "IDMA_PHYSADDR_SEND_PCIEHDR",
6604                 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6605                 "IDMA_PHYSADDR_SEND_PAYLOAD",
6606                 "IDMA_SEND_FIFO_TO_IMSG",
6607                 "IDMA_FL_REQ_DATA_FL_PREP",
6608                 "IDMA_FL_REQ_DATA_FL",
6609                 "IDMA_FL_DROP",
6610                 "IDMA_FL_H_REQ_HEADER_FL",
6611                 "IDMA_FL_H_SEND_PCIEHDR",
6612                 "IDMA_FL_H_PUSH_CPL_FIFO",
6613                 "IDMA_FL_H_SEND_CPL",
6614                 "IDMA_FL_H_SEND_IP_HDR_FIRST",
6615                 "IDMA_FL_H_SEND_IP_HDR",
6616                 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
6617                 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
6618                 "IDMA_FL_H_SEND_IP_HDR_PADDING",
6619                 "IDMA_FL_D_SEND_PCIEHDR",
6620                 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6621                 "IDMA_FL_D_REQ_NEXT_DATA_FL",
6622                 "IDMA_FL_SEND_PCIEHDR",
6623                 "IDMA_FL_PUSH_CPL_FIFO",
6624                 "IDMA_FL_SEND_CPL",
6625                 "IDMA_FL_SEND_PAYLOAD_FIRST",
6626                 "IDMA_FL_SEND_PAYLOAD",
6627                 "IDMA_FL_REQ_NEXT_DATA_FL",
6628                 "IDMA_FL_SEND_NEXT_PCIEHDR",
6629                 "IDMA_FL_SEND_PADDING",
6630                 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
6631                 "IDMA_FL_SEND_FIFO_TO_IMSG",
6632                 "IDMA_FL_REQ_DATAFL_DONE",
6633                 "IDMA_FL_REQ_HEADERFL_DONE",
6634         };
6635         static const char * const t5_decode[] = {
6636                 "IDMA_IDLE",
6637                 "IDMA_ALMOST_IDLE",
6638                 "IDMA_PUSH_MORE_CPL_FIFO",
6639                 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6640                 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6641                 "IDMA_PHYSADDR_SEND_PCIEHDR",
6642                 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6643                 "IDMA_PHYSADDR_SEND_PAYLOAD",
6644                 "IDMA_SEND_FIFO_TO_IMSG",
6645                 "IDMA_FL_REQ_DATA_FL",
6646                 "IDMA_FL_DROP",
6647                 "IDMA_FL_DROP_SEND_INC",
6648                 "IDMA_FL_H_REQ_HEADER_FL",
6649                 "IDMA_FL_H_SEND_PCIEHDR",
6650                 "IDMA_FL_H_PUSH_CPL_FIFO",
6651                 "IDMA_FL_H_SEND_CPL",
6652                 "IDMA_FL_H_SEND_IP_HDR_FIRST",
6653                 "IDMA_FL_H_SEND_IP_HDR",
6654                 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
6655                 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
6656                 "IDMA_FL_H_SEND_IP_HDR_PADDING",
6657                 "IDMA_FL_D_SEND_PCIEHDR",
6658                 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6659                 "IDMA_FL_D_REQ_NEXT_DATA_FL",
6660                 "IDMA_FL_SEND_PCIEHDR",
6661                 "IDMA_FL_PUSH_CPL_FIFO",
6662                 "IDMA_FL_SEND_CPL",
6663                 "IDMA_FL_SEND_PAYLOAD_FIRST",
6664                 "IDMA_FL_SEND_PAYLOAD",
6665                 "IDMA_FL_REQ_NEXT_DATA_FL",
6666                 "IDMA_FL_SEND_NEXT_PCIEHDR",
6667                 "IDMA_FL_SEND_PADDING",
6668                 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
6669         };
6670         static const char * const t6_decode[] = {
6671                 "IDMA_IDLE",
6672                 "IDMA_PUSH_MORE_CPL_FIFO",
6673                 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6674                 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6675                 "IDMA_PHYSADDR_SEND_PCIEHDR",
6676                 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6677                 "IDMA_PHYSADDR_SEND_PAYLOAD",
6678                 "IDMA_FL_REQ_DATA_FL",
6679                 "IDMA_FL_DROP",
6680                 "IDMA_FL_DROP_SEND_INC",
6681                 "IDMA_FL_H_REQ_HEADER_FL",
6682                 "IDMA_FL_H_SEND_PCIEHDR",
6683                 "IDMA_FL_H_PUSH_CPL_FIFO",
6684                 "IDMA_FL_H_SEND_CPL",
6685                 "IDMA_FL_H_SEND_IP_HDR_FIRST",
6686                 "IDMA_FL_H_SEND_IP_HDR",
6687                 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
6688                 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
6689                 "IDMA_FL_H_SEND_IP_HDR_PADDING",
6690                 "IDMA_FL_D_SEND_PCIEHDR",
6691                 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6692                 "IDMA_FL_D_REQ_NEXT_DATA_FL",
6693                 "IDMA_FL_SEND_PCIEHDR",
6694                 "IDMA_FL_PUSH_CPL_FIFO",
6695                 "IDMA_FL_SEND_CPL",
6696                 "IDMA_FL_SEND_PAYLOAD_FIRST",
6697                 "IDMA_FL_SEND_PAYLOAD",
6698                 "IDMA_FL_REQ_NEXT_DATA_FL",
6699                 "IDMA_FL_SEND_NEXT_PCIEHDR",
6700                 "IDMA_FL_SEND_PADDING",
6701                 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
6702         };
6703         static const u32 sge_regs[] = {
6704                 SGE_DEBUG_DATA_LOW_INDEX_2_A,
6705                 SGE_DEBUG_DATA_LOW_INDEX_3_A,
6706                 SGE_DEBUG_DATA_HIGH_INDEX_10_A,
6707         };
6708         const char **sge_idma_decode;
6709         int sge_idma_decode_nstates;
6710         int i;
6711         unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
6712
6713         /* Select the right set of decode strings to dump depending on the
6714          * adapter chip type.
6715          */
6716         switch (chip_version) {
6717         case CHELSIO_T4:
6718                 sge_idma_decode = (const char **)t4_decode;
6719                 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6720                 break;
6721
6722         case CHELSIO_T5:
6723                 sge_idma_decode = (const char **)t5_decode;
6724                 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6725                 break;
6726
6727         case CHELSIO_T6:
6728                 sge_idma_decode = (const char **)t6_decode;
6729                 sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
6730                 break;
6731
6732         default:
6733                 dev_err(adapter->pdev_dev,
6734                         "Unsupported chip version %d\n", chip_version);
6735                 return;
6736         }
6737
6738         if (is_t4(adapter->params.chip)) {
6739                 sge_idma_decode = (const char **)t4_decode;
6740                 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6741         } else {
6742                 sge_idma_decode = (const char **)t5_decode;
6743                 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6744         }
6745
6746         if (state < sge_idma_decode_nstates)
6747                 CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
6748         else
6749                 CH_WARN(adapter, "idma state %d unknown\n", state);
6750
6751         for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
6752                 CH_WARN(adapter, "SGE register %#x value %#x\n",
6753                         sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
6754 }
6755
6756 /**
6757  *      t4_sge_ctxt_flush - flush the SGE context cache
6758  *      @adap: the adapter
6759  *      @mbox: mailbox to use for the FW command
6760  *      @ctxt_type: Egress or Ingress
6761  *
6762  *      Issues a FW command through the given mailbox to flush the
6763  *      SGE context cache.
6764  */
6765 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox, int ctxt_type)
6766 {
6767         int ret;
6768         u32 ldst_addrspace;
6769         struct fw_ldst_cmd c;
6770
6771         memset(&c, 0, sizeof(c));
6772         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(ctxt_type == CTXT_EGRESS ?
6773                                                  FW_LDST_ADDRSPC_SGE_EGRC :
6774                                                  FW_LDST_ADDRSPC_SGE_INGC);
6775         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6776                                         FW_CMD_REQUEST_F | FW_CMD_READ_F |
6777                                         ldst_addrspace);
6778         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6779         c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F);
6780
6781         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6782         return ret;
6783 }
6784
6785 /**
6786  *      t4_read_sge_dbqtimers - read SGE Doorbell Queue Timer values
6787  *      @adap: the adapter
6788  *      @ndbqtimers: size of the provided SGE Doorbell Queue Timer table
6789  *      @dbqtimers: SGE Doorbell Queue Timer table
6790  *
6791  *      Reads the SGE Doorbell Queue Timer values into the provided table.
6792  *      Returns 0 on success (Firmware and Hardware support this feature),
6793  *      an error on failure.
6794  */
6795 int t4_read_sge_dbqtimers(struct adapter *adap, unsigned int ndbqtimers,
6796                           u16 *dbqtimers)
6797 {
6798         int ret, dbqtimerix;
6799
6800         ret = 0;
6801         dbqtimerix = 0;
6802         while (dbqtimerix < ndbqtimers) {
6803                 int nparams, param;
6804                 u32 params[7], vals[7];
6805
6806                 nparams = ndbqtimers - dbqtimerix;
6807                 if (nparams > ARRAY_SIZE(params))
6808                         nparams = ARRAY_SIZE(params);
6809
6810                 for (param = 0; param < nparams; param++)
6811                         params[param] =
6812                           (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6813                            FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMER) |
6814                            FW_PARAMS_PARAM_Y_V(dbqtimerix + param));
6815                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
6816                                       nparams, params, vals);
6817                 if (ret)
6818                         break;
6819
6820                 for (param = 0; param < nparams; param++)
6821                         dbqtimers[dbqtimerix++] = vals[param];
6822         }
6823         return ret;
6824 }
6825
6826 /**
6827  *      t4_fw_hello - establish communication with FW
6828  *      @adap: the adapter
6829  *      @mbox: mailbox to use for the FW command
6830  *      @evt_mbox: mailbox to receive async FW events
6831  *      @master: specifies the caller's willingness to be the device master
6832  *      @state: returns the current device state (if non-NULL)
6833  *
6834  *      Issues a command to establish communication with FW.  Returns either
6835  *      an error (negative integer) or the mailbox of the Master PF.
6836  */
6837 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
6838                 enum dev_master master, enum dev_state *state)
6839 {
6840         int ret;
6841         struct fw_hello_cmd c;
6842         u32 v;
6843         unsigned int master_mbox;
6844         int retries = FW_CMD_HELLO_RETRIES;
6845
6846 retry:
6847         memset(&c, 0, sizeof(c));
6848         INIT_CMD(c, HELLO, WRITE);
6849         c.err_to_clearinit = cpu_to_be32(
6850                 FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
6851                 FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
6852                 FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ?
6853                                         mbox : FW_HELLO_CMD_MBMASTER_M) |
6854                 FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
6855                 FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
6856                 FW_HELLO_CMD_CLEARINIT_F);
6857
6858         /*
6859          * Issue the HELLO command to the firmware.  If it's not successful
6860          * but indicates that we got a "busy" or "timeout" condition, retry
6861          * the HELLO until we exhaust our retry limit.  If we do exceed our
6862          * retry limit, check to see if the firmware left us any error
6863          * information and report that if so.
6864          */
6865         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6866         if (ret < 0) {
6867                 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
6868                         goto retry;
6869                 if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
6870                         t4_report_fw_error(adap);
6871                 return ret;
6872         }
6873
6874         v = be32_to_cpu(c.err_to_clearinit);
6875         master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
6876         if (state) {
6877                 if (v & FW_HELLO_CMD_ERR_F)
6878                         *state = DEV_STATE_ERR;
6879                 else if (v & FW_HELLO_CMD_INIT_F)
6880                         *state = DEV_STATE_INIT;
6881                 else
6882                         *state = DEV_STATE_UNINIT;
6883         }
6884
6885         /*
6886          * If we're not the Master PF then we need to wait around for the
6887          * Master PF Driver to finish setting up the adapter.
6888          *
6889          * Note that we also do this wait if we're a non-Master-capable PF and
6890          * there is no current Master PF; a Master PF may show up momentarily
6891          * and we wouldn't want to fail pointlessly.  (This can happen when an
6892          * OS loads lots of different drivers rapidly at the same time).  In
6893          * this case, the Master PF returned by the firmware will be
6894          * PCIE_FW_MASTER_M so the test below will work ...
6895          */
6896         if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
6897             master_mbox != mbox) {
6898                 int waiting = FW_CMD_HELLO_TIMEOUT;
6899
6900                 /*
6901                  * Wait for the firmware to either indicate an error or
6902                  * initialized state.  If we see either of these we bail out
6903                  * and report the issue to the caller.  If we exhaust the
6904                  * "hello timeout" and we haven't exhausted our retries, try
6905                  * again.  Otherwise bail with a timeout error.
6906                  */
6907                 for (;;) {
6908                         u32 pcie_fw;
6909
6910                         msleep(50);
6911                         waiting -= 50;
6912
6913                         /*
6914                          * If neither Error nor Initialized are indicated
6915                          * by the firmware keep waiting till we exhaust our
6916                          * timeout ... and then retry if we haven't exhausted
6917                          * our retries ...
6918                          */
6919                         pcie_fw = t4_read_reg(adap, PCIE_FW_A);
6920                         if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
6921                                 if (waiting <= 0) {
6922                                         if (retries-- > 0)
6923                                                 goto retry;
6924
6925                                         return -ETIMEDOUT;
6926                                 }
6927                                 continue;
6928                         }
6929
6930                         /*
6931                          * We either have an Error or Initialized condition
6932                          * report errors preferentially.
6933                          */
6934                         if (state) {
6935                                 if (pcie_fw & PCIE_FW_ERR_F)
6936                                         *state = DEV_STATE_ERR;
6937                                 else if (pcie_fw & PCIE_FW_INIT_F)
6938                                         *state = DEV_STATE_INIT;
6939                         }
6940
6941                         /*
6942                          * If we arrived before a Master PF was selected and
6943                          * there's not a valid Master PF, grab its identity
6944                          * for our caller.
6945                          */
6946                         if (master_mbox == PCIE_FW_MASTER_M &&
6947                             (pcie_fw & PCIE_FW_MASTER_VLD_F))
6948                                 master_mbox = PCIE_FW_MASTER_G(pcie_fw);
6949                         break;
6950                 }
6951         }
6952
6953         return master_mbox;
6954 }
6955
6956 /**
6957  *      t4_fw_bye - end communication with FW
6958  *      @adap: the adapter
6959  *      @mbox: mailbox to use for the FW command
6960  *
6961  *      Issues a command to terminate communication with FW.
6962  */
6963 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
6964 {
6965         struct fw_bye_cmd c;
6966
6967         memset(&c, 0, sizeof(c));
6968         INIT_CMD(c, BYE, WRITE);
6969         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6970 }
6971
6972 /**
6973  *      t4_early_init - ask FW to initialize the device
6974  *      @adap: the adapter
6975  *      @mbox: mailbox to use for the FW command
6976  *
6977  *      Issues a command to FW to partially initialize the device.  This
6978  *      performs initialization that generally doesn't depend on user input.
6979  */
6980 int t4_early_init(struct adapter *adap, unsigned int mbox)
6981 {
6982         struct fw_initialize_cmd c;
6983
6984         memset(&c, 0, sizeof(c));
6985         INIT_CMD(c, INITIALIZE, WRITE);
6986         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6987 }
6988
6989 /**
6990  *      t4_fw_reset - issue a reset to FW
6991  *      @adap: the adapter
6992  *      @mbox: mailbox to use for the FW command
6993  *      @reset: specifies the type of reset to perform
6994  *
6995  *      Issues a reset command of the specified type to FW.
6996  */
6997 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
6998 {
6999         struct fw_reset_cmd c;
7000
7001         memset(&c, 0, sizeof(c));
7002         INIT_CMD(c, RESET, WRITE);
7003         c.val = cpu_to_be32(reset);
7004         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7005 }
7006
7007 /**
7008  *      t4_fw_halt - issue a reset/halt to FW and put uP into RESET
7009  *      @adap: the adapter
7010  *      @mbox: mailbox to use for the FW RESET command (if desired)
7011  *      @force: force uP into RESET even if FW RESET command fails
7012  *
7013  *      Issues a RESET command to firmware (if desired) with a HALT indication
7014  *      and then puts the microprocessor into RESET state.  The RESET command
7015  *      will only be issued if a legitimate mailbox is provided (mbox <=
7016  *      PCIE_FW_MASTER_M).
7017  *
7018  *      This is generally used in order for the host to safely manipulate the
7019  *      adapter without fear of conflicting with whatever the firmware might
7020  *      be doing.  The only way out of this state is to RESTART the firmware
7021  *      ...
7022  */
7023 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
7024 {
7025         int ret = 0;
7026
7027         /*
7028          * If a legitimate mailbox is provided, issue a RESET command
7029          * with a HALT indication.
7030          */
7031         if (mbox <= PCIE_FW_MASTER_M) {
7032                 struct fw_reset_cmd c;
7033
7034                 memset(&c, 0, sizeof(c));
7035                 INIT_CMD(c, RESET, WRITE);
7036                 c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F);
7037                 c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F);
7038                 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7039         }
7040
7041         /*
7042          * Normally we won't complete the operation if the firmware RESET
7043          * command fails but if our caller insists we'll go ahead and put the
7044          * uP into RESET.  This can be useful if the firmware is hung or even
7045          * missing ...  We'll have to take the risk of putting the uP into
7046          * RESET without the cooperation of firmware in that case.
7047          *
7048          * We also force the firmware's HALT flag to be on in case we bypassed
7049          * the firmware RESET command above or we're dealing with old firmware
7050          * which doesn't have the HALT capability.  This will serve as a flag
7051          * for the incoming firmware to know that it's coming out of a HALT
7052          * rather than a RESET ... if it's new enough to understand that ...
7053          */
7054         if (ret == 0 || force) {
7055                 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
7056                 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
7057                                  PCIE_FW_HALT_F);
7058         }
7059
7060         /*
7061          * And we always return the result of the firmware RESET command
7062          * even when we force the uP into RESET ...
7063          */
7064         return ret;
7065 }
7066
7067 /**
7068  *      t4_fw_restart - restart the firmware by taking the uP out of RESET
7069  *      @adap: the adapter
7070  *      @mbox: mailbox to use for the FW command
7071  *      @reset: if we want to do a RESET to restart things
7072  *
7073  *      Restart firmware previously halted by t4_fw_halt().  On successful
7074  *      return the previous PF Master remains as the new PF Master and there
7075  *      is no need to issue a new HELLO command, etc.
7076  *
7077  *      We do this in two ways:
7078  *
7079  *       1. If we're dealing with newer firmware we'll simply want to take
7080  *          the chip's microprocessor out of RESET.  This will cause the
7081  *          firmware to start up from its start vector.  And then we'll loop
7082  *          until the firmware indicates it's started again (PCIE_FW.HALT
7083  *          reset to 0) or we timeout.
7084  *
7085  *       2. If we're dealing with older firmware then we'll need to RESET
7086  *          the chip since older firmware won't recognize the PCIE_FW.HALT
7087  *          flag and automatically RESET itself on startup.
7088  */
7089 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
7090 {
7091         if (reset) {
7092                 /*
7093                  * Since we're directing the RESET instead of the firmware
7094                  * doing it automatically, we need to clear the PCIE_FW.HALT
7095                  * bit.
7096                  */
7097                 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
7098
7099                 /*
7100                  * If we've been given a valid mailbox, first try to get the
7101                  * firmware to do the RESET.  If that works, great and we can
7102                  * return success.  Otherwise, if we haven't been given a
7103                  * valid mailbox or the RESET command failed, fall back to
7104                  * hitting the chip with a hammer.
7105                  */
7106                 if (mbox <= PCIE_FW_MASTER_M) {
7107                         t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
7108                         msleep(100);
7109                         if (t4_fw_reset(adap, mbox,
7110                                         PIORST_F | PIORSTMODE_F) == 0)
7111                                 return 0;
7112                 }
7113
7114                 t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
7115                 msleep(2000);
7116         } else {
7117                 int ms;
7118
7119                 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
7120                 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
7121                         if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
7122                                 return 0;
7123                         msleep(100);
7124                         ms += 100;
7125                 }
7126                 return -ETIMEDOUT;
7127         }
7128         return 0;
7129 }
7130
7131 /**
7132  *      t4_fw_upgrade - perform all of the steps necessary to upgrade FW
7133  *      @adap: the adapter
7134  *      @mbox: mailbox to use for the FW RESET command (if desired)
7135  *      @fw_data: the firmware image to write
7136  *      @size: image size
7137  *      @force: force upgrade even if firmware doesn't cooperate
7138  *
7139  *      Perform all of the steps necessary for upgrading an adapter's
7140  *      firmware image.  Normally this requires the cooperation of the
7141  *      existing firmware in order to halt all existing activities
7142  *      but if an invalid mailbox token is passed in we skip that step
7143  *      (though we'll still put the adapter microprocessor into RESET in
7144  *      that case).
7145  *
7146  *      On successful return the new firmware will have been loaded and
7147  *      the adapter will have been fully RESET losing all previous setup
7148  *      state.  On unsuccessful return the adapter may be completely hosed ...
7149  *      positive errno indicates that the adapter is ~probably~ intact, a
7150  *      negative errno indicates that things are looking bad ...
7151  */
7152 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
7153                   const u8 *fw_data, unsigned int size, int force)
7154 {
7155         const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
7156         int reset, ret;
7157
7158         if (!t4_fw_matches_chip(adap, fw_hdr))
7159                 return -EINVAL;
7160
7161         /* Disable CXGB4_FW_OK flag so that mbox commands with CXGB4_FW_OK flag
7162          * set wont be sent when we are flashing FW.
7163          */
7164         adap->flags &= ~CXGB4_FW_OK;
7165
7166         ret = t4_fw_halt(adap, mbox, force);
7167         if (ret < 0 && !force)
7168                 goto out;
7169
7170         ret = t4_load_fw(adap, fw_data, size);
7171         if (ret < 0)
7172                 goto out;
7173
7174         /*
7175          * If there was a Firmware Configuration File stored in FLASH,
7176          * there's a good chance that it won't be compatible with the new
7177          * Firmware.  In order to prevent difficult to diagnose adapter
7178          * initialization issues, we clear out the Firmware Configuration File
7179          * portion of the FLASH .  The user will need to re-FLASH a new
7180          * Firmware Configuration File which is compatible with the new
7181          * Firmware if that's desired.
7182          */
7183         (void)t4_load_cfg(adap, NULL, 0);
7184
7185         /*
7186          * Older versions of the firmware don't understand the new
7187          * PCIE_FW.HALT flag and so won't know to perform a RESET when they
7188          * restart.  So for newly loaded older firmware we'll have to do the
7189          * RESET for it so it starts up on a clean slate.  We can tell if
7190          * the newly loaded firmware will handle this right by checking
7191          * its header flags to see if it advertises the capability.
7192          */
7193         reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
7194         ret = t4_fw_restart(adap, mbox, reset);
7195
7196         /* Grab potentially new Firmware Device Log parameters so we can see
7197          * how healthy the new Firmware is.  It's okay to contact the new
7198          * Firmware for these parameters even though, as far as it's
7199          * concerned, we've never said "HELLO" to it ...
7200          */
7201         (void)t4_init_devlog_params(adap);
7202 out:
7203         adap->flags |= CXGB4_FW_OK;
7204         return ret;
7205 }
7206
7207 /**
7208  *      t4_fl_pkt_align - return the fl packet alignment
7209  *      @adap: the adapter
7210  *
7211  *      T4 has a single field to specify the packing and padding boundary.
7212  *      T5 onwards has separate fields for this and hence the alignment for
7213  *      next packet offset is maximum of these two.
7214  *
7215  */
7216 int t4_fl_pkt_align(struct adapter *adap)
7217 {
7218         u32 sge_control, sge_control2;
7219         unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
7220
7221         sge_control = t4_read_reg(adap, SGE_CONTROL_A);
7222
7223         /* T4 uses a single control field to specify both the PCIe Padding and
7224          * Packing Boundary.  T5 introduced the ability to specify these
7225          * separately.  The actual Ingress Packet Data alignment boundary
7226          * within Packed Buffer Mode is the maximum of these two
7227          * specifications.  (Note that it makes no real practical sense to
7228          * have the Padding Boundary be larger than the Packing Boundary but you
7229          * could set the chip up that way and, in fact, legacy T4 code would
7230          * end doing this because it would initialize the Padding Boundary and
7231          * leave the Packing Boundary initialized to 0 (16 bytes).)
7232          * Padding Boundary values in T6 starts from 8B,
7233          * where as it is 32B for T4 and T5.
7234          */
7235         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
7236                 ingpad_shift = INGPADBOUNDARY_SHIFT_X;
7237         else
7238                 ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
7239
7240         ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
7241
7242         fl_align = ingpadboundary;
7243         if (!is_t4(adap->params.chip)) {
7244                 /* T5 has a weird interpretation of one of the PCIe Packing
7245                  * Boundary values.  No idea why ...
7246                  */
7247                 sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A);
7248                 ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
7249                 if (ingpackboundary == INGPACKBOUNDARY_16B_X)
7250                         ingpackboundary = 16;
7251                 else
7252                         ingpackboundary = 1 << (ingpackboundary +
7253                                                 INGPACKBOUNDARY_SHIFT_X);
7254
7255                 fl_align = max(ingpadboundary, ingpackboundary);
7256         }
7257         return fl_align;
7258 }
7259
7260 /**
7261  *      t4_fixup_host_params - fix up host-dependent parameters
7262  *      @adap: the adapter
7263  *      @page_size: the host's Base Page Size
7264  *      @cache_line_size: the host's Cache Line Size
7265  *
7266  *      Various registers in T4 contain values which are dependent on the
7267  *      host's Base Page and Cache Line Sizes.  This function will fix all of
7268  *      those registers with the appropriate values as passed in ...
7269  */
7270 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
7271                          unsigned int cache_line_size)
7272 {
7273         unsigned int page_shift = fls(page_size) - 1;
7274         unsigned int sge_hps = page_shift - 10;
7275         unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
7276         unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
7277         unsigned int fl_align_log = fls(fl_align) - 1;
7278
7279         t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A,
7280                      HOSTPAGESIZEPF0_V(sge_hps) |
7281                      HOSTPAGESIZEPF1_V(sge_hps) |
7282                      HOSTPAGESIZEPF2_V(sge_hps) |
7283                      HOSTPAGESIZEPF3_V(sge_hps) |
7284                      HOSTPAGESIZEPF4_V(sge_hps) |
7285                      HOSTPAGESIZEPF5_V(sge_hps) |
7286                      HOSTPAGESIZEPF6_V(sge_hps) |
7287                      HOSTPAGESIZEPF7_V(sge_hps));
7288
7289         if (is_t4(adap->params.chip)) {
7290                 t4_set_reg_field(adap, SGE_CONTROL_A,
7291                                  INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
7292                                  EGRSTATUSPAGESIZE_F,
7293                                  INGPADBOUNDARY_V(fl_align_log -
7294                                                   INGPADBOUNDARY_SHIFT_X) |
7295                                  EGRSTATUSPAGESIZE_V(stat_len != 64));
7296         } else {
7297                 unsigned int pack_align;
7298                 unsigned int ingpad, ingpack;
7299
7300                 /* T5 introduced the separation of the Free List Padding and
7301                  * Packing Boundaries.  Thus, we can select a smaller Padding
7302                  * Boundary to avoid uselessly chewing up PCIe Link and Memory
7303                  * Bandwidth, and use a Packing Boundary which is large enough
7304                  * to avoid false sharing between CPUs, etc.
7305                  *
7306                  * For the PCI Link, the smaller the Padding Boundary the
7307                  * better.  For the Memory Controller, a smaller Padding
7308                  * Boundary is better until we cross under the Memory Line
7309                  * Size (the minimum unit of transfer to/from Memory).  If we
7310                  * have a Padding Boundary which is smaller than the Memory
7311                  * Line Size, that'll involve a Read-Modify-Write cycle on the
7312                  * Memory Controller which is never good.
7313                  */
7314
7315                 /* We want the Packing Boundary to be based on the Cache Line
7316                  * Size in order to help avoid False Sharing performance
7317                  * issues between CPUs, etc.  We also want the Packing
7318                  * Boundary to incorporate the PCI-E Maximum Payload Size.  We
7319                  * get best performance when the Packing Boundary is a
7320                  * multiple of the Maximum Payload Size.
7321                  */
7322                 pack_align = fl_align;
7323                 if (pci_is_pcie(adap->pdev)) {
7324                         unsigned int mps, mps_log;
7325                         u16 devctl;
7326
7327                         /* The PCIe Device Control Maximum Payload Size field
7328                          * [bits 7:5] encodes sizes as powers of 2 starting at
7329                          * 128 bytes.
7330                          */
7331                         pcie_capability_read_word(adap->pdev, PCI_EXP_DEVCTL,
7332                                                   &devctl);
7333                         mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7;
7334                         mps = 1 << mps_log;
7335                         if (mps > pack_align)
7336                                 pack_align = mps;
7337                 }
7338
7339                 /* N.B. T5/T6 have a crazy special interpretation of the "0"
7340                  * value for the Packing Boundary.  This corresponds to 16
7341                  * bytes instead of the expected 32 bytes.  So if we want 32
7342                  * bytes, the best we can really do is 64 bytes ...
7343                  */
7344                 if (pack_align <= 16) {
7345                         ingpack = INGPACKBOUNDARY_16B_X;
7346                         fl_align = 16;
7347                 } else if (pack_align == 32) {
7348                         ingpack = INGPACKBOUNDARY_64B_X;
7349                         fl_align = 64;
7350                 } else {
7351                         unsigned int pack_align_log = fls(pack_align) - 1;
7352
7353                         ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X;
7354                         fl_align = pack_align;
7355                 }
7356
7357                 /* Use the smallest Ingress Padding which isn't smaller than
7358                  * the Memory Controller Read/Write Size.  We'll take that as
7359                  * being 8 bytes since we don't know of any system with a
7360                  * wider Memory Controller Bus Width.
7361                  */
7362                 if (is_t5(adap->params.chip))
7363                         ingpad = INGPADBOUNDARY_32B_X;
7364                 else
7365                         ingpad = T6_INGPADBOUNDARY_8B_X;
7366
7367                 t4_set_reg_field(adap, SGE_CONTROL_A,
7368                                  INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
7369                                  EGRSTATUSPAGESIZE_F,
7370                                  INGPADBOUNDARY_V(ingpad) |
7371                                  EGRSTATUSPAGESIZE_V(stat_len != 64));
7372                 t4_set_reg_field(adap, SGE_CONTROL2_A,
7373                                  INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
7374                                  INGPACKBOUNDARY_V(ingpack));
7375         }
7376         /*
7377          * Adjust various SGE Free List Host Buffer Sizes.
7378          *
7379          * This is something of a crock since we're using fixed indices into
7380          * the array which are also known by the sge.c code and the T4
7381          * Firmware Configuration File.  We need to come up with a much better
7382          * approach to managing this array.  For now, the first four entries
7383          * are:
7384          *
7385          *   0: Host Page Size
7386          *   1: 64KB
7387          *   2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
7388          *   3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
7389          *
7390          * For the single-MTU buffers in unpacked mode we need to include
7391          * space for the SGE Control Packet Shift, 14 byte Ethernet header,
7392          * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
7393          * Padding boundary.  All of these are accommodated in the Factory
7394          * Default Firmware Configuration File but we need to adjust it for
7395          * this host's cache line size.
7396          */
7397         t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
7398         t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
7399                      (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
7400                      & ~(fl_align-1));
7401         t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
7402                      (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
7403                      & ~(fl_align-1));
7404
7405         t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
7406
7407         return 0;
7408 }
7409
7410 /**
7411  *      t4_fw_initialize - ask FW to initialize the device
7412  *      @adap: the adapter
7413  *      @mbox: mailbox to use for the FW command
7414  *
7415  *      Issues a command to FW to partially initialize the device.  This
7416  *      performs initialization that generally doesn't depend on user input.
7417  */
7418 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
7419 {
7420         struct fw_initialize_cmd c;
7421
7422         memset(&c, 0, sizeof(c));
7423         INIT_CMD(c, INITIALIZE, WRITE);
7424         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7425 }
7426
7427 /**
7428  *      t4_query_params_rw - query FW or device parameters
7429  *      @adap: the adapter
7430  *      @mbox: mailbox to use for the FW command
7431  *      @pf: the PF
7432  *      @vf: the VF
7433  *      @nparams: the number of parameters
7434  *      @params: the parameter names
7435  *      @val: the parameter values
7436  *      @rw: Write and read flag
7437  *      @sleep_ok: if true, we may sleep awaiting mbox cmd completion
7438  *
7439  *      Reads the value of FW or device parameters.  Up to 7 parameters can be
7440  *      queried at once.
7441  */
7442 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
7443                        unsigned int vf, unsigned int nparams, const u32 *params,
7444                        u32 *val, int rw, bool sleep_ok)
7445 {
7446         int i, ret;
7447         struct fw_params_cmd c;
7448         __be32 *p = &c.param[0].mnem;
7449
7450         if (nparams > 7)
7451                 return -EINVAL;
7452
7453         memset(&c, 0, sizeof(c));
7454         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7455                                   FW_CMD_REQUEST_F | FW_CMD_READ_F |
7456                                   FW_PARAMS_CMD_PFN_V(pf) |
7457                                   FW_PARAMS_CMD_VFN_V(vf));
7458         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7459
7460         for (i = 0; i < nparams; i++) {
7461                 *p++ = cpu_to_be32(*params++);
7462                 if (rw)
7463                         *p = cpu_to_be32(*(val + i));
7464                 p++;
7465         }
7466
7467         ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7468         if (ret == 0)
7469                 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
7470                         *val++ = be32_to_cpu(*p);
7471         return ret;
7472 }
7473
7474 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7475                     unsigned int vf, unsigned int nparams, const u32 *params,
7476                     u32 *val)
7477 {
7478         return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7479                                   true);
7480 }
7481
7482 int t4_query_params_ns(struct adapter *adap, unsigned int mbox, unsigned int pf,
7483                        unsigned int vf, unsigned int nparams, const u32 *params,
7484                        u32 *val)
7485 {
7486         return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7487                                   false);
7488 }
7489
7490 /**
7491  *      t4_set_params_timeout - sets FW or device parameters
7492  *      @adap: the adapter
7493  *      @mbox: mailbox to use for the FW command
7494  *      @pf: the PF
7495  *      @vf: the VF
7496  *      @nparams: the number of parameters
7497  *      @params: the parameter names
7498  *      @val: the parameter values
7499  *      @timeout: the timeout time
7500  *
7501  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7502  *      specified at once.
7503  */
7504 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
7505                           unsigned int pf, unsigned int vf,
7506                           unsigned int nparams, const u32 *params,
7507                           const u32 *val, int timeout)
7508 {
7509         struct fw_params_cmd c;
7510         __be32 *p = &c.param[0].mnem;
7511
7512         if (nparams > 7)
7513                 return -EINVAL;
7514
7515         memset(&c, 0, sizeof(c));
7516         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7517                                   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7518                                   FW_PARAMS_CMD_PFN_V(pf) |
7519                                   FW_PARAMS_CMD_VFN_V(vf));
7520         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7521
7522         while (nparams--) {
7523                 *p++ = cpu_to_be32(*params++);
7524                 *p++ = cpu_to_be32(*val++);
7525         }
7526
7527         return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
7528 }
7529
7530 /**
7531  *      t4_set_params - sets FW or device parameters
7532  *      @adap: the adapter
7533  *      @mbox: mailbox to use for the FW command
7534  *      @pf: the PF
7535  *      @vf: the VF
7536  *      @nparams: the number of parameters
7537  *      @params: the parameter names
7538  *      @val: the parameter values
7539  *
7540  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7541  *      specified at once.
7542  */
7543 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7544                   unsigned int vf, unsigned int nparams, const u32 *params,
7545                   const u32 *val)
7546 {
7547         return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
7548                                      FW_CMD_MAX_TIMEOUT);
7549 }
7550
7551 /**
7552  *      t4_cfg_pfvf - configure PF/VF resource limits
7553  *      @adap: the adapter
7554  *      @mbox: mailbox to use for the FW command
7555  *      @pf: the PF being configured
7556  *      @vf: the VF being configured
7557  *      @txq: the max number of egress queues
7558  *      @txq_eth_ctrl: the max number of egress Ethernet or control queues
7559  *      @rxqi: the max number of interrupt-capable ingress queues
7560  *      @rxq: the max number of interruptless ingress queues
7561  *      @tc: the PCI traffic class
7562  *      @vi: the max number of virtual interfaces
7563  *      @cmask: the channel access rights mask for the PF/VF
7564  *      @pmask: the port access rights mask for the PF/VF
7565  *      @nexact: the maximum number of exact MPS filters
7566  *      @rcaps: read capabilities
7567  *      @wxcaps: write/execute capabilities
7568  *
7569  *      Configures resource limits and capabilities for a physical or virtual
7570  *      function.
7571  */
7572 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7573                 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7574                 unsigned int rxqi, unsigned int rxq, unsigned int tc,
7575                 unsigned int vi, unsigned int cmask, unsigned int pmask,
7576                 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7577 {
7578         struct fw_pfvf_cmd c;
7579
7580         memset(&c, 0, sizeof(c));
7581         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
7582                                   FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
7583                                   FW_PFVF_CMD_VFN_V(vf));
7584         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7585         c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
7586                                      FW_PFVF_CMD_NIQ_V(rxq));
7587         c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) |
7588                                     FW_PFVF_CMD_PMASK_V(pmask) |
7589                                     FW_PFVF_CMD_NEQ_V(txq));
7590         c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) |
7591                                       FW_PFVF_CMD_NVI_V(vi) |
7592                                       FW_PFVF_CMD_NEXACTF_V(nexact));
7593         c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) |
7594                                         FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
7595                                         FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
7596         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7597 }
7598
7599 /**
7600  *      t4_alloc_vi - allocate a virtual interface
7601  *      @adap: the adapter
7602  *      @mbox: mailbox to use for the FW command
7603  *      @port: physical port associated with the VI
7604  *      @pf: the PF owning the VI
7605  *      @vf: the VF owning the VI
7606  *      @nmac: number of MAC addresses needed (1 to 5)
7607  *      @mac: the MAC addresses of the VI
7608  *      @rss_size: size of RSS table slice associated with this VI
7609  *      @vivld: the destination to store the VI Valid value.
7610  *      @vin: the destination to store the VIN value.
7611  *
7612  *      Allocates a virtual interface for the given physical port.  If @mac is
7613  *      not %NULL it contains the MAC addresses of the VI as assigned by FW.
7614  *      @mac should be large enough to hold @nmac Ethernet addresses, they are
7615  *      stored consecutively so the space needed is @nmac * 6 bytes.
7616  *      Returns a negative error number or the non-negative VI id.
7617  */
7618 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
7619                 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
7620                 unsigned int *rss_size, u8 *vivld, u8 *vin)
7621 {
7622         int ret;
7623         struct fw_vi_cmd c;
7624
7625         memset(&c, 0, sizeof(c));
7626         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
7627                                   FW_CMD_WRITE_F | FW_CMD_EXEC_F |
7628                                   FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
7629         c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
7630         c.portid_pkd = FW_VI_CMD_PORTID_V(port);
7631         c.nmac = nmac - 1;
7632
7633         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7634         if (ret)
7635                 return ret;
7636
7637         if (mac) {
7638                 memcpy(mac, c.mac, sizeof(c.mac));
7639                 switch (nmac) {
7640                 case 5:
7641                         memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
7642                         fallthrough;
7643                 case 4:
7644                         memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
7645                         fallthrough;
7646                 case 3:
7647                         memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
7648                         fallthrough;
7649                 case 2:
7650                         memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
7651                 }
7652         }
7653         if (rss_size)
7654                 *rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd));
7655
7656         if (vivld)
7657                 *vivld = FW_VI_CMD_VFVLD_G(be32_to_cpu(c.alloc_to_len16));
7658
7659         if (vin)
7660                 *vin = FW_VI_CMD_VIN_G(be32_to_cpu(c.alloc_to_len16));
7661
7662         return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid));
7663 }
7664
7665 /**
7666  *      t4_free_vi - free a virtual interface
7667  *      @adap: the adapter
7668  *      @mbox: mailbox to use for the FW command
7669  *      @pf: the PF owning the VI
7670  *      @vf: the VF owning the VI
7671  *      @viid: virtual interface identifiler
7672  *
7673  *      Free a previously allocated virtual interface.
7674  */
7675 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
7676                unsigned int vf, unsigned int viid)
7677 {
7678         struct fw_vi_cmd c;
7679
7680         memset(&c, 0, sizeof(c));
7681         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
7682                                   FW_CMD_REQUEST_F |
7683                                   FW_CMD_EXEC_F |
7684                                   FW_VI_CMD_PFN_V(pf) |
7685                                   FW_VI_CMD_VFN_V(vf));
7686         c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c));
7687         c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
7688
7689         return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7690 }
7691
7692 /**
7693  *      t4_set_rxmode - set Rx properties of a virtual interface
7694  *      @adap: the adapter
7695  *      @mbox: mailbox to use for the FW command
7696  *      @viid: the VI id
7697  *      @viid_mirror: the mirror VI id
7698  *      @mtu: the new MTU or -1
7699  *      @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
7700  *      @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
7701  *      @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
7702  *      @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
7703  *      @sleep_ok: if true we may sleep while awaiting command completion
7704  *
7705  *      Sets Rx properties of a virtual interface.
7706  */
7707 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
7708                   unsigned int viid_mirror, int mtu, int promisc, int all_multi,
7709                   int bcast, int vlanex, bool sleep_ok)
7710 {
7711         struct fw_vi_rxmode_cmd c, c_mirror;
7712         int ret;
7713
7714         /* convert to FW values */
7715         if (mtu < 0)
7716                 mtu = FW_RXMODE_MTU_NO_CHG;
7717         if (promisc < 0)
7718                 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
7719         if (all_multi < 0)
7720                 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
7721         if (bcast < 0)
7722                 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
7723         if (vlanex < 0)
7724                 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
7725
7726         memset(&c, 0, sizeof(c));
7727         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
7728                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7729                                    FW_VI_RXMODE_CMD_VIID_V(viid));
7730         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7731         c.mtu_to_vlanexen =
7732                 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
7733                             FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
7734                             FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
7735                             FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
7736                             FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
7737
7738         if (viid_mirror) {
7739                 memcpy(&c_mirror, &c, sizeof(c_mirror));
7740                 c_mirror.op_to_viid =
7741                         cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
7742                                     FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7743                                     FW_VI_RXMODE_CMD_VIID_V(viid_mirror));
7744         }
7745
7746         ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7747         if (ret)
7748                 return ret;
7749
7750         if (viid_mirror)
7751                 ret = t4_wr_mbox_meat(adap, mbox, &c_mirror, sizeof(c_mirror),
7752                                       NULL, sleep_ok);
7753
7754         return ret;
7755 }
7756
7757 /**
7758  *      t4_free_encap_mac_filt - frees MPS entry at given index
7759  *      @adap: the adapter
7760  *      @viid: the VI id
7761  *      @idx: index of MPS entry to be freed
7762  *      @sleep_ok: call is allowed to sleep
7763  *
7764  *      Frees the MPS entry at supplied index
7765  *
7766  *      Returns a negative error number or zero on success
7767  */
7768 int t4_free_encap_mac_filt(struct adapter *adap, unsigned int viid,
7769                            int idx, bool sleep_ok)
7770 {
7771         struct fw_vi_mac_exact *p;
7772         struct fw_vi_mac_cmd c;
7773         int ret = 0;
7774         u32 exact;
7775
7776         memset(&c, 0, sizeof(c));
7777         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7778                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7779                                    FW_CMD_EXEC_V(0) |
7780                                    FW_VI_MAC_CMD_VIID_V(viid));
7781         exact = FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC);
7782         c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7783                                           exact |
7784                                           FW_CMD_LEN16_V(1));
7785         p = c.u.exact;
7786         p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7787                                       FW_VI_MAC_CMD_IDX_V(idx));
7788         eth_zero_addr(p->macaddr);
7789         ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7790         return ret;
7791 }
7792
7793 /**
7794  *      t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam
7795  *      @adap: the adapter
7796  *      @viid: the VI id
7797  *      @addr: the MAC address
7798  *      @mask: the mask
7799  *      @idx: index of the entry in mps tcam
7800  *      @lookup_type: MAC address for inner (1) or outer (0) header
7801  *      @port_id: the port index
7802  *      @sleep_ok: call is allowed to sleep
7803  *
7804  *      Removes the mac entry at the specified index using raw mac interface.
7805  *
7806  *      Returns a negative error number on failure.
7807  */
7808 int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid,
7809                          const u8 *addr, const u8 *mask, unsigned int idx,
7810                          u8 lookup_type, u8 port_id, bool sleep_ok)
7811 {
7812         struct fw_vi_mac_cmd c;
7813         struct fw_vi_mac_raw *p = &c.u.raw;
7814         u32 val;
7815
7816         memset(&c, 0, sizeof(c));
7817         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7818                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7819                                    FW_CMD_EXEC_V(0) |
7820                                    FW_VI_MAC_CMD_VIID_V(viid));
7821         val = FW_CMD_LEN16_V(1) |
7822               FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW);
7823         c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7824                                           FW_CMD_LEN16_V(val));
7825
7826         p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx) |
7827                                      FW_VI_MAC_ID_BASED_FREE);
7828
7829         /* Lookup Type. Outer header: 0, Inner header: 1 */
7830         p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) |
7831                                    DATAPORTNUM_V(port_id));
7832         /* Lookup mask and port mask */
7833         p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) |
7834                                     DATAPORTNUM_V(DATAPORTNUM_M));
7835
7836         /* Copy the address and the mask */
7837         memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN);
7838         memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN);
7839
7840         return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7841 }
7842
7843 /**
7844  *      t4_alloc_encap_mac_filt - Adds a mac entry in mps tcam with VNI support
7845  *      @adap: the adapter
7846  *      @viid: the VI id
7847  *      @addr: the MAC address
7848  *      @mask: the mask
7849  *      @vni: the VNI id for the tunnel protocol
7850  *      @vni_mask: mask for the VNI id
7851  *      @dip_hit: to enable DIP match for the MPS entry
7852  *      @lookup_type: MAC address for inner (1) or outer (0) header
7853  *      @sleep_ok: call is allowed to sleep
7854  *
7855  *      Allocates an MPS entry with specified MAC address and VNI value.
7856  *
7857  *      Returns a negative error number or the allocated index for this mac.
7858  */
7859 int t4_alloc_encap_mac_filt(struct adapter *adap, unsigned int viid,
7860                             const u8 *addr, const u8 *mask, unsigned int vni,
7861                             unsigned int vni_mask, u8 dip_hit, u8 lookup_type,
7862                             bool sleep_ok)
7863 {
7864         struct fw_vi_mac_cmd c;
7865         struct fw_vi_mac_vni *p = c.u.exact_vni;
7866         int ret = 0;
7867         u32 val;
7868
7869         memset(&c, 0, sizeof(c));
7870         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7871                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7872                                    FW_VI_MAC_CMD_VIID_V(viid));
7873         val = FW_CMD_LEN16_V(1) |
7874               FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC_VNI);
7875         c.freemacs_to_len16 = cpu_to_be32(val);
7876         p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7877                                       FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC));
7878         memcpy(p->macaddr, addr, sizeof(p->macaddr));
7879         memcpy(p->macaddr_mask, mask, sizeof(p->macaddr_mask));
7880
7881         p->lookup_type_to_vni =
7882                 cpu_to_be32(FW_VI_MAC_CMD_VNI_V(vni) |
7883                             FW_VI_MAC_CMD_DIP_HIT_V(dip_hit) |
7884                             FW_VI_MAC_CMD_LOOKUP_TYPE_V(lookup_type));
7885         p->vni_mask_pkd = cpu_to_be32(FW_VI_MAC_CMD_VNI_MASK_V(vni_mask));
7886         ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7887         if (ret == 0)
7888                 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
7889         return ret;
7890 }
7891
7892 /**
7893  *      t4_alloc_raw_mac_filt - Adds a mac entry in mps tcam
7894  *      @adap: the adapter
7895  *      @viid: the VI id
7896  *      @addr: the MAC address
7897  *      @mask: the mask
7898  *      @idx: index at which to add this entry
7899  *      @lookup_type: MAC address for inner (1) or outer (0) header
7900  *      @port_id: the port index
7901  *      @sleep_ok: call is allowed to sleep
7902  *
7903  *      Adds the mac entry at the specified index using raw mac interface.
7904  *
7905  *      Returns a negative error number or the allocated index for this mac.
7906  */
7907 int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid,
7908                           const u8 *addr, const u8 *mask, unsigned int idx,
7909                           u8 lookup_type, u8 port_id, bool sleep_ok)
7910 {
7911         int ret = 0;
7912         struct fw_vi_mac_cmd c;
7913         struct fw_vi_mac_raw *p = &c.u.raw;
7914         u32 val;
7915
7916         memset(&c, 0, sizeof(c));
7917         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7918                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7919                                    FW_VI_MAC_CMD_VIID_V(viid));
7920         val = FW_CMD_LEN16_V(1) |
7921               FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW);
7922         c.freemacs_to_len16 = cpu_to_be32(val);
7923
7924         /* Specify that this is an inner mac address */
7925         p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx));
7926
7927         /* Lookup Type. Outer header: 0, Inner header: 1 */
7928         p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) |
7929                                    DATAPORTNUM_V(port_id));
7930         /* Lookup mask and port mask */
7931         p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) |
7932                                     DATAPORTNUM_V(DATAPORTNUM_M));
7933
7934         /* Copy the address and the mask */
7935         memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN);
7936         memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN);
7937
7938         ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7939         if (ret == 0) {
7940                 ret = FW_VI_MAC_CMD_RAW_IDX_G(be32_to_cpu(p->raw_idx_pkd));
7941                 if (ret != idx)
7942                         ret = -ENOMEM;
7943         }
7944
7945         return ret;
7946 }
7947
7948 /**
7949  *      t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
7950  *      @adap: the adapter
7951  *      @mbox: mailbox to use for the FW command
7952  *      @viid: the VI id
7953  *      @free: if true any existing filters for this VI id are first removed
7954  *      @naddr: the number of MAC addresses to allocate filters for (up to 7)
7955  *      @addr: the MAC address(es)
7956  *      @idx: where to store the index of each allocated filter
7957  *      @hash: pointer to hash address filter bitmap
7958  *      @sleep_ok: call is allowed to sleep
7959  *
7960  *      Allocates an exact-match filter for each of the supplied addresses and
7961  *      sets it to the corresponding address.  If @idx is not %NULL it should
7962  *      have at least @naddr entries, each of which will be set to the index of
7963  *      the filter allocated for the corresponding MAC address.  If a filter
7964  *      could not be allocated for an address its index is set to 0xffff.
7965  *      If @hash is not %NULL addresses that fail to allocate an exact filter
7966  *      are hashed and update the hash filter bitmap pointed at by @hash.
7967  *
7968  *      Returns a negative error number or the number of filters allocated.
7969  */
7970 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
7971                       unsigned int viid, bool free, unsigned int naddr,
7972                       const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
7973 {
7974         int offset, ret = 0;
7975         struct fw_vi_mac_cmd c;
7976         unsigned int nfilters = 0;
7977         unsigned int max_naddr = adap->params.arch.mps_tcam_size;
7978         unsigned int rem = naddr;
7979
7980         if (naddr > max_naddr)
7981                 return -EINVAL;
7982
7983         for (offset = 0; offset < naddr ; /**/) {
7984                 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ?
7985                                          rem : ARRAY_SIZE(c.u.exact));
7986                 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
7987                                                      u.exact[fw_naddr]), 16);
7988                 struct fw_vi_mac_exact *p;
7989                 int i;
7990
7991                 memset(&c, 0, sizeof(c));
7992                 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7993                                            FW_CMD_REQUEST_F |
7994                                            FW_CMD_WRITE_F |
7995                                            FW_CMD_EXEC_V(free) |
7996                                            FW_VI_MAC_CMD_VIID_V(viid));
7997                 c.freemacs_to_len16 =
7998                         cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
7999                                     FW_CMD_LEN16_V(len16));
8000
8001                 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8002                         p->valid_to_idx =
8003                                 cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
8004                                             FW_VI_MAC_CMD_IDX_V(
8005                                                     FW_VI_MAC_ADD_MAC));
8006                         memcpy(p->macaddr, addr[offset + i],
8007                                sizeof(p->macaddr));
8008                 }
8009
8010                 /* It's okay if we run out of space in our MAC address arena.
8011                  * Some of the addresses we submit may get stored so we need
8012                  * to run through the reply to see what the results were ...
8013                  */
8014                 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8015                 if (ret && ret != -FW_ENOMEM)
8016                         break;
8017
8018                 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8019                         u16 index = FW_VI_MAC_CMD_IDX_G(
8020                                         be16_to_cpu(p->valid_to_idx));
8021
8022                         if (idx)
8023                                 idx[offset + i] = (index >= max_naddr ?
8024                                                    0xffff : index);
8025                         if (index < max_naddr)
8026                                 nfilters++;
8027                         else if (hash)
8028                                 *hash |= (1ULL <<
8029                                           hash_mac_addr(addr[offset + i]));
8030                 }
8031
8032                 free = false;
8033                 offset += fw_naddr;
8034                 rem -= fw_naddr;
8035         }
8036
8037         if (ret == 0 || ret == -FW_ENOMEM)
8038                 ret = nfilters;
8039         return ret;
8040 }
8041
8042 /**
8043  *      t4_free_mac_filt - frees exact-match filters of given MAC addresses
8044  *      @adap: the adapter
8045  *      @mbox: mailbox to use for the FW command
8046  *      @viid: the VI id
8047  *      @naddr: the number of MAC addresses to allocate filters for (up to 7)
8048  *      @addr: the MAC address(es)
8049  *      @sleep_ok: call is allowed to sleep
8050  *
8051  *      Frees the exact-match filter for each of the supplied addresses
8052  *
8053  *      Returns a negative error number or the number of filters freed.
8054  */
8055 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox,
8056                      unsigned int viid, unsigned int naddr,
8057                      const u8 **addr, bool sleep_ok)
8058 {
8059         int offset, ret = 0;
8060         struct fw_vi_mac_cmd c;
8061         unsigned int nfilters = 0;
8062         unsigned int max_naddr = is_t4(adap->params.chip) ?
8063                                        NUM_MPS_CLS_SRAM_L_INSTANCES :
8064                                        NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
8065         unsigned int rem = naddr;
8066
8067         if (naddr > max_naddr)
8068                 return -EINVAL;
8069
8070         for (offset = 0; offset < (int)naddr ; /**/) {
8071                 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
8072                                          ? rem
8073                                          : ARRAY_SIZE(c.u.exact));
8074                 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
8075                                                      u.exact[fw_naddr]), 16);
8076                 struct fw_vi_mac_exact *p;
8077                 int i;
8078
8079                 memset(&c, 0, sizeof(c));
8080                 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8081                                      FW_CMD_REQUEST_F |
8082                                      FW_CMD_WRITE_F |
8083                                      FW_CMD_EXEC_V(0) |
8084                                      FW_VI_MAC_CMD_VIID_V(viid));
8085                 c.freemacs_to_len16 =
8086                                 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
8087                                             FW_CMD_LEN16_V(len16));
8088
8089                 for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) {
8090                         p->valid_to_idx = cpu_to_be16(
8091                                 FW_VI_MAC_CMD_VALID_F |
8092                                 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
8093                         memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
8094                 }
8095
8096                 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8097                 if (ret)
8098                         break;
8099
8100                 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8101                         u16 index = FW_VI_MAC_CMD_IDX_G(
8102                                                 be16_to_cpu(p->valid_to_idx));
8103
8104                         if (index < max_naddr)
8105                                 nfilters++;
8106                 }
8107
8108                 offset += fw_naddr;
8109                 rem -= fw_naddr;
8110         }
8111
8112         if (ret == 0)
8113                 ret = nfilters;
8114         return ret;
8115 }
8116
8117 /**
8118  *      t4_change_mac - modifies the exact-match filter for a MAC address
8119  *      @adap: the adapter
8120  *      @mbox: mailbox to use for the FW command
8121  *      @viid: the VI id
8122  *      @idx: index of existing filter for old value of MAC address, or -1
8123  *      @addr: the new MAC address value
8124  *      @persist: whether a new MAC allocation should be persistent
8125  *      @smt_idx: the destination to store the new SMT index.
8126  *
8127  *      Modifies an exact-match filter and sets it to the new MAC address.
8128  *      Note that in general it is not possible to modify the value of a given
8129  *      filter so the generic way to modify an address filter is to free the one
8130  *      being used by the old address value and allocate a new filter for the
8131  *      new address value.  @idx can be -1 if the address is a new addition.
8132  *
8133  *      Returns a negative error number or the index of the filter with the new
8134  *      MAC value.
8135  */
8136 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
8137                   int idx, const u8 *addr, bool persist, u8 *smt_idx)
8138 {
8139         int ret, mode;
8140         struct fw_vi_mac_cmd c;
8141         struct fw_vi_mac_exact *p = c.u.exact;
8142         unsigned int max_mac_addr = adap->params.arch.mps_tcam_size;
8143
8144         if (idx < 0)                             /* new allocation */
8145                 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
8146         mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
8147
8148         memset(&c, 0, sizeof(c));
8149         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8150                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
8151                                    FW_VI_MAC_CMD_VIID_V(viid));
8152         c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1));
8153         p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
8154                                       FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
8155                                       FW_VI_MAC_CMD_IDX_V(idx));
8156         memcpy(p->macaddr, addr, sizeof(p->macaddr));
8157
8158         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
8159         if (ret == 0) {
8160                 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
8161                 if (ret >= max_mac_addr)
8162                         ret = -ENOMEM;
8163                 if (smt_idx) {
8164                         if (adap->params.viid_smt_extn_support) {
8165                                 *smt_idx = FW_VI_MAC_CMD_SMTID_G
8166                                                     (be32_to_cpu(c.op_to_viid));
8167                         } else {
8168                                 /* In T4/T5, SMT contains 256 SMAC entries
8169                                  * organized in 128 rows of 2 entries each.
8170                                  * In T6, SMT contains 256 SMAC entries in
8171                                  * 256 rows.
8172                                  */
8173                                 if (CHELSIO_CHIP_VERSION(adap->params.chip) <=
8174                                                                      CHELSIO_T5)
8175                                         *smt_idx = (viid & FW_VIID_VIN_M) << 1;
8176                                 else
8177                                         *smt_idx = (viid & FW_VIID_VIN_M);
8178                         }
8179                 }
8180         }
8181         return ret;
8182 }
8183
8184 /**
8185  *      t4_set_addr_hash - program the MAC inexact-match hash filter
8186  *      @adap: the adapter
8187  *      @mbox: mailbox to use for the FW command
8188  *      @viid: the VI id
8189  *      @ucast: whether the hash filter should also match unicast addresses
8190  *      @vec: the value to be written to the hash filter
8191  *      @sleep_ok: call is allowed to sleep
8192  *
8193  *      Sets the 64-bit inexact-match hash filter for a virtual interface.
8194  */
8195 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
8196                      bool ucast, u64 vec, bool sleep_ok)
8197 {
8198         struct fw_vi_mac_cmd c;
8199
8200         memset(&c, 0, sizeof(c));
8201         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8202                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
8203                                    FW_VI_ENABLE_CMD_VIID_V(viid));
8204         c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
8205                                           FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
8206                                           FW_CMD_LEN16_V(1));
8207         c.u.hash.hashvec = cpu_to_be64(vec);
8208         return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
8209 }
8210
8211 /**
8212  *      t4_enable_vi_params - enable/disable a virtual interface
8213  *      @adap: the adapter
8214  *      @mbox: mailbox to use for the FW command
8215  *      @viid: the VI id
8216  *      @rx_en: 1=enable Rx, 0=disable Rx
8217  *      @tx_en: 1=enable Tx, 0=disable Tx
8218  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8219  *
8220  *      Enables/disables a virtual interface.  Note that setting DCB Enable
8221  *      only makes sense when enabling a Virtual Interface ...
8222  */
8223 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
8224                         unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
8225 {
8226         struct fw_vi_enable_cmd c;
8227
8228         memset(&c, 0, sizeof(c));
8229         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
8230                                    FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8231                                    FW_VI_ENABLE_CMD_VIID_V(viid));
8232         c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
8233                                      FW_VI_ENABLE_CMD_EEN_V(tx_en) |
8234                                      FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) |
8235                                      FW_LEN16(c));
8236         return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
8237 }
8238
8239 /**
8240  *      t4_enable_vi - enable/disable a virtual interface
8241  *      @adap: the adapter
8242  *      @mbox: mailbox to use for the FW command
8243  *      @viid: the VI id
8244  *      @rx_en: 1=enable Rx, 0=disable Rx
8245  *      @tx_en: 1=enable Tx, 0=disable Tx
8246  *
8247  *      Enables/disables a virtual interface.
8248  */
8249 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
8250                  bool rx_en, bool tx_en)
8251 {
8252         return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
8253 }
8254
8255 /**
8256  *      t4_enable_pi_params - enable/disable a Port's Virtual Interface
8257  *      @adap: the adapter
8258  *      @mbox: mailbox to use for the FW command
8259  *      @pi: the Port Information structure
8260  *      @rx_en: 1=enable Rx, 0=disable Rx
8261  *      @tx_en: 1=enable Tx, 0=disable Tx
8262  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8263  *
8264  *      Enables/disables a Port's Virtual Interface.  Note that setting DCB
8265  *      Enable only makes sense when enabling a Virtual Interface ...
8266  *      If the Virtual Interface enable/disable operation is successful,
8267  *      we notify the OS-specific code of a potential Link Status change
8268  *      via the OS Contract API t4_os_link_changed().
8269  */
8270 int t4_enable_pi_params(struct adapter *adap, unsigned int mbox,
8271                         struct port_info *pi,
8272                         bool rx_en, bool tx_en, bool dcb_en)
8273 {
8274         int ret = t4_enable_vi_params(adap, mbox, pi->viid,
8275                                       rx_en, tx_en, dcb_en);
8276         if (ret)
8277                 return ret;
8278         t4_os_link_changed(adap, pi->port_id,
8279                            rx_en && tx_en && pi->link_cfg.link_ok);
8280         return 0;
8281 }
8282
8283 /**
8284  *      t4_identify_port - identify a VI's port by blinking its LED
8285  *      @adap: the adapter
8286  *      @mbox: mailbox to use for the FW command
8287  *      @viid: the VI id
8288  *      @nblinks: how many times to blink LED at 2.5 Hz
8289  *
8290  *      Identifies a VI's port by blinking its LED.
8291  */
8292 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
8293                      unsigned int nblinks)
8294 {
8295         struct fw_vi_enable_cmd c;
8296
8297         memset(&c, 0, sizeof(c));
8298         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
8299                                    FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8300                                    FW_VI_ENABLE_CMD_VIID_V(viid));
8301         c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
8302         c.blinkdur = cpu_to_be16(nblinks);
8303         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8304 }
8305
8306 /**
8307  *      t4_iq_stop - stop an ingress queue and its FLs
8308  *      @adap: the adapter
8309  *      @mbox: mailbox to use for the FW command
8310  *      @pf: the PF owning the queues
8311  *      @vf: the VF owning the queues
8312  *      @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
8313  *      @iqid: ingress queue id
8314  *      @fl0id: FL0 queue id or 0xffff if no attached FL0
8315  *      @fl1id: FL1 queue id or 0xffff if no attached FL1
8316  *
8317  *      Stops an ingress queue and its associated FLs, if any.  This causes
8318  *      any current or future data/messages destined for these queues to be
8319  *      tossed.
8320  */
8321 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
8322                unsigned int vf, unsigned int iqtype, unsigned int iqid,
8323                unsigned int fl0id, unsigned int fl1id)
8324 {
8325         struct fw_iq_cmd c;
8326
8327         memset(&c, 0, sizeof(c));
8328         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
8329                                   FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
8330                                   FW_IQ_CMD_VFN_V(vf));
8331         c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c));
8332         c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
8333         c.iqid = cpu_to_be16(iqid);
8334         c.fl0id = cpu_to_be16(fl0id);
8335         c.fl1id = cpu_to_be16(fl1id);
8336         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8337 }
8338
8339 /**
8340  *      t4_iq_free - free an ingress queue and its FLs
8341  *      @adap: the adapter
8342  *      @mbox: mailbox to use for the FW command
8343  *      @pf: the PF owning the queues
8344  *      @vf: the VF owning the queues
8345  *      @iqtype: the ingress queue type
8346  *      @iqid: ingress queue id
8347  *      @fl0id: FL0 queue id or 0xffff if no attached FL0
8348  *      @fl1id: FL1 queue id or 0xffff if no attached FL1
8349  *
8350  *      Frees an ingress queue and its associated FLs, if any.
8351  */
8352 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8353                unsigned int vf, unsigned int iqtype, unsigned int iqid,
8354                unsigned int fl0id, unsigned int fl1id)
8355 {
8356         struct fw_iq_cmd c;
8357
8358         memset(&c, 0, sizeof(c));
8359         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
8360                                   FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
8361                                   FW_IQ_CMD_VFN_V(vf));
8362         c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c));
8363         c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
8364         c.iqid = cpu_to_be16(iqid);
8365         c.fl0id = cpu_to_be16(fl0id);
8366         c.fl1id = cpu_to_be16(fl1id);
8367         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8368 }
8369
8370 /**
8371  *      t4_eth_eq_free - free an Ethernet egress queue
8372  *      @adap: the adapter
8373  *      @mbox: mailbox to use for the FW command
8374  *      @pf: the PF owning the queue
8375  *      @vf: the VF owning the queue
8376  *      @eqid: egress queue id
8377  *
8378  *      Frees an Ethernet egress queue.
8379  */
8380 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8381                    unsigned int vf, unsigned int eqid)
8382 {
8383         struct fw_eq_eth_cmd c;
8384
8385         memset(&c, 0, sizeof(c));
8386         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
8387                                   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8388                                   FW_EQ_ETH_CMD_PFN_V(pf) |
8389                                   FW_EQ_ETH_CMD_VFN_V(vf));
8390         c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
8391         c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
8392         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8393 }
8394
8395 /**
8396  *      t4_ctrl_eq_free - free a control egress queue
8397  *      @adap: the adapter
8398  *      @mbox: mailbox to use for the FW command
8399  *      @pf: the PF owning the queue
8400  *      @vf: the VF owning the queue
8401  *      @eqid: egress queue id
8402  *
8403  *      Frees a control egress queue.
8404  */
8405 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8406                     unsigned int vf, unsigned int eqid)
8407 {
8408         struct fw_eq_ctrl_cmd c;
8409
8410         memset(&c, 0, sizeof(c));
8411         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) |
8412                                   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8413                                   FW_EQ_CTRL_CMD_PFN_V(pf) |
8414                                   FW_EQ_CTRL_CMD_VFN_V(vf));
8415         c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
8416         c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid));
8417         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8418 }
8419
8420 /**
8421  *      t4_ofld_eq_free - free an offload egress queue
8422  *      @adap: the adapter
8423  *      @mbox: mailbox to use for the FW command
8424  *      @pf: the PF owning the queue
8425  *      @vf: the VF owning the queue
8426  *      @eqid: egress queue id
8427  *
8428  *      Frees a control egress queue.
8429  */
8430 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8431                     unsigned int vf, unsigned int eqid)
8432 {
8433         struct fw_eq_ofld_cmd c;
8434
8435         memset(&c, 0, sizeof(c));
8436         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) |
8437                                   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8438                                   FW_EQ_OFLD_CMD_PFN_V(pf) |
8439                                   FW_EQ_OFLD_CMD_VFN_V(vf));
8440         c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
8441         c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid));
8442         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8443 }
8444
8445 /**
8446  *      t4_link_down_rc_str - return a string for a Link Down Reason Code
8447  *      @link_down_rc: Link Down Reason Code
8448  *
8449  *      Returns a string representation of the Link Down Reason Code.
8450  */
8451 static const char *t4_link_down_rc_str(unsigned char link_down_rc)
8452 {
8453         static const char * const reason[] = {
8454                 "Link Down",
8455                 "Remote Fault",
8456                 "Auto-negotiation Failure",
8457                 "Reserved",
8458                 "Insufficient Airflow",
8459                 "Unable To Determine Reason",
8460                 "No RX Signal Detected",
8461                 "Reserved",
8462         };
8463
8464         if (link_down_rc >= ARRAY_SIZE(reason))
8465                 return "Bad Reason Code";
8466
8467         return reason[link_down_rc];
8468 }
8469
8470 /* Return the highest speed set in the port capabilities, in Mb/s. */
8471 static unsigned int fwcap_to_speed(fw_port_cap32_t caps)
8472 {
8473         #define TEST_SPEED_RETURN(__caps_speed, __speed) \
8474                 do { \
8475                         if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8476                                 return __speed; \
8477                 } while (0)
8478
8479         TEST_SPEED_RETURN(400G, 400000);
8480         TEST_SPEED_RETURN(200G, 200000);
8481         TEST_SPEED_RETURN(100G, 100000);
8482         TEST_SPEED_RETURN(50G,   50000);
8483         TEST_SPEED_RETURN(40G,   40000);
8484         TEST_SPEED_RETURN(25G,   25000);
8485         TEST_SPEED_RETURN(10G,   10000);
8486         TEST_SPEED_RETURN(1G,     1000);
8487         TEST_SPEED_RETURN(100M,    100);
8488
8489         #undef TEST_SPEED_RETURN
8490
8491         return 0;
8492 }
8493
8494 /**
8495  *      fwcap_to_fwspeed - return highest speed in Port Capabilities
8496  *      @acaps: advertised Port Capabilities
8497  *
8498  *      Get the highest speed for the port from the advertised Port
8499  *      Capabilities.  It will be either the highest speed from the list of
8500  *      speeds or whatever user has set using ethtool.
8501  */
8502 static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps)
8503 {
8504         #define TEST_SPEED_RETURN(__caps_speed) \
8505                 do { \
8506                         if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8507                                 return FW_PORT_CAP32_SPEED_##__caps_speed; \
8508                 } while (0)
8509
8510         TEST_SPEED_RETURN(400G);
8511         TEST_SPEED_RETURN(200G);
8512         TEST_SPEED_RETURN(100G);
8513         TEST_SPEED_RETURN(50G);
8514         TEST_SPEED_RETURN(40G);
8515         TEST_SPEED_RETURN(25G);
8516         TEST_SPEED_RETURN(10G);
8517         TEST_SPEED_RETURN(1G);
8518         TEST_SPEED_RETURN(100M);
8519
8520         #undef TEST_SPEED_RETURN
8521
8522         return 0;
8523 }
8524
8525 /**
8526  *      lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
8527  *      @lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
8528  *
8529  *      Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
8530  *      32-bit Port Capabilities value.
8531  */
8532 static fw_port_cap32_t lstatus_to_fwcap(u32 lstatus)
8533 {
8534         fw_port_cap32_t linkattr = 0;
8535
8536         /* Unfortunately the format of the Link Status in the old
8537          * 16-bit Port Information message isn't the same as the
8538          * 16-bit Port Capabilities bitfield used everywhere else ...
8539          */
8540         if (lstatus & FW_PORT_CMD_RXPAUSE_F)
8541                 linkattr |= FW_PORT_CAP32_FC_RX;
8542         if (lstatus & FW_PORT_CMD_TXPAUSE_F)
8543                 linkattr |= FW_PORT_CAP32_FC_TX;
8544         if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
8545                 linkattr |= FW_PORT_CAP32_SPEED_100M;
8546         if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
8547                 linkattr |= FW_PORT_CAP32_SPEED_1G;
8548         if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
8549                 linkattr |= FW_PORT_CAP32_SPEED_10G;
8550         if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
8551                 linkattr |= FW_PORT_CAP32_SPEED_25G;
8552         if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
8553                 linkattr |= FW_PORT_CAP32_SPEED_40G;
8554         if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
8555                 linkattr |= FW_PORT_CAP32_SPEED_100G;
8556
8557         return linkattr;
8558 }
8559
8560 /**
8561  *      t4_handle_get_port_info - process a FW reply message
8562  *      @pi: the port info
8563  *      @rpl: start of the FW message
8564  *
8565  *      Processes a GET_PORT_INFO FW reply message.
8566  */
8567 void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl)
8568 {
8569         const struct fw_port_cmd *cmd = (const void *)rpl;
8570         fw_port_cap32_t pcaps, acaps, lpacaps, linkattr;
8571         struct link_config *lc = &pi->link_cfg;
8572         struct adapter *adapter = pi->adapter;
8573         unsigned int speed, fc, fec, adv_fc;
8574         enum fw_port_module_type mod_type;
8575         int action, link_ok, linkdnrc;
8576         enum fw_port_type port_type;
8577
8578         /* Extract the various fields from the Port Information message.
8579          */
8580         action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16));
8581         switch (action) {
8582         case FW_PORT_ACTION_GET_PORT_INFO: {
8583                 u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype);
8584
8585                 link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0;
8586                 linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus);
8587                 port_type = FW_PORT_CMD_PTYPE_G(lstatus);
8588                 mod_type = FW_PORT_CMD_MODTYPE_G(lstatus);
8589                 pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap));
8590                 acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap));
8591                 lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap));
8592                 linkattr = lstatus_to_fwcap(lstatus);
8593                 break;
8594         }
8595
8596         case FW_PORT_ACTION_GET_PORT_INFO32: {
8597                 u32 lstatus32;
8598
8599                 lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32);
8600                 link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0;
8601                 linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32);
8602                 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
8603                 mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32);
8604                 pcaps = be32_to_cpu(cmd->u.info32.pcaps32);
8605                 acaps = be32_to_cpu(cmd->u.info32.acaps32);
8606                 lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32);
8607                 linkattr = be32_to_cpu(cmd->u.info32.linkattr32);
8608                 break;
8609         }
8610
8611         default:
8612                 dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n",
8613                         be32_to_cpu(cmd->action_to_len16));
8614                 return;
8615         }
8616
8617         fec = fwcap_to_cc_fec(acaps);
8618         adv_fc = fwcap_to_cc_pause(acaps);
8619         fc = fwcap_to_cc_pause(linkattr);
8620         speed = fwcap_to_speed(linkattr);
8621
8622         /* Reset state for communicating new Transceiver Module status and
8623          * whether the OS-dependent layer wants us to redo the current
8624          * "sticky" L1 Configure Link Parameters.
8625          */
8626         lc->new_module = false;
8627         lc->redo_l1cfg = false;
8628
8629         if (mod_type != pi->mod_type) {
8630                 /* With the newer SFP28 and QSFP28 Transceiver Module Types,
8631                  * various fundamental Port Capabilities which used to be
8632                  * immutable can now change radically.  We can now have
8633                  * Speeds, Auto-Negotiation, Forward Error Correction, etc.
8634                  * all change based on what Transceiver Module is inserted.
8635                  * So we need to record the Physical "Port" Capabilities on
8636                  * every Transceiver Module change.
8637                  */
8638                 lc->pcaps = pcaps;
8639
8640                 /* When a new Transceiver Module is inserted, the Firmware
8641                  * will examine its i2c EPROM to determine its type and
8642                  * general operating parameters including things like Forward
8643                  * Error Control, etc.  Various IEEE 802.3 standards dictate
8644                  * how to interpret these i2c values to determine default
8645                  * "sutomatic" settings.  We record these for future use when
8646                  * the user explicitly requests these standards-based values.
8647                  */
8648                 lc->def_acaps = acaps;
8649
8650                 /* Some versions of the early T6 Firmware "cheated" when
8651                  * handling different Transceiver Modules by changing the
8652                  * underlaying Port Type reported to the Host Drivers.  As
8653                  * such we need to capture whatever Port Type the Firmware
8654                  * sends us and record it in case it's different from what we
8655                  * were told earlier.  Unfortunately, since Firmware is
8656                  * forever, we'll need to keep this code here forever, but in
8657                  * later T6 Firmware it should just be an assignment of the
8658                  * same value already recorded.
8659                  */
8660                 pi->port_type = port_type;
8661
8662                 /* Record new Module Type information.
8663                  */
8664                 pi->mod_type = mod_type;
8665
8666                 /* Let the OS-dependent layer know if we have a new
8667                  * Transceiver Module inserted.
8668                  */
8669                 lc->new_module = t4_is_inserted_mod_type(mod_type);
8670
8671                 t4_os_portmod_changed(adapter, pi->port_id);
8672         }
8673
8674         if (link_ok != lc->link_ok || speed != lc->speed ||
8675             fc != lc->fc || adv_fc != lc->advertised_fc ||
8676             fec != lc->fec) {
8677                 /* something changed */
8678                 if (!link_ok && lc->link_ok) {
8679                         lc->link_down_rc = linkdnrc;
8680                         dev_warn_ratelimited(adapter->pdev_dev,
8681                                              "Port %d link down, reason: %s\n",
8682                                              pi->tx_chan,
8683                                              t4_link_down_rc_str(linkdnrc));
8684                 }
8685                 lc->link_ok = link_ok;
8686                 lc->speed = speed;
8687                 lc->advertised_fc = adv_fc;
8688                 lc->fc = fc;
8689                 lc->fec = fec;
8690
8691                 lc->lpacaps = lpacaps;
8692                 lc->acaps = acaps & ADVERT_MASK;
8693
8694                 /* If we're not physically capable of Auto-Negotiation, note
8695                  * this as Auto-Negotiation disabled.  Otherwise, we track
8696                  * what Auto-Negotiation settings we have.  Note parallel
8697                  * structure in t4_link_l1cfg_core() and init_link_config().
8698                  */
8699                 if (!(lc->acaps & FW_PORT_CAP32_ANEG)) {
8700                         lc->autoneg = AUTONEG_DISABLE;
8701                 } else if (lc->acaps & FW_PORT_CAP32_ANEG) {
8702                         lc->autoneg = AUTONEG_ENABLE;
8703                 } else {
8704                         /* When Autoneg is disabled, user needs to set
8705                          * single speed.
8706                          * Similar to cxgb4_ethtool.c: set_link_ksettings
8707                          */
8708                         lc->acaps = 0;
8709                         lc->speed_caps = fwcap_to_fwspeed(acaps);
8710                         lc->autoneg = AUTONEG_DISABLE;
8711                 }
8712
8713                 t4_os_link_changed(adapter, pi->port_id, link_ok);
8714         }
8715
8716         /* If we have a new Transceiver Module and the OS-dependent code has
8717          * told us that it wants us to redo whatever "sticky" L1 Configuration
8718          * Link Parameters are set, do that now.
8719          */
8720         if (lc->new_module && lc->redo_l1cfg) {
8721                 struct link_config old_lc;
8722                 int ret;
8723
8724                 /* Save the current L1 Configuration and restore it if an
8725                  * error occurs.  We probably should fix the l1_cfg*()
8726                  * routines not to change the link_config when an error
8727                  * occurs ...
8728                  */
8729                 old_lc = *lc;
8730                 ret = t4_link_l1cfg_ns(adapter, adapter->mbox, pi->lport, lc);
8731                 if (ret) {
8732                         *lc = old_lc;
8733                         dev_warn(adapter->pdev_dev,
8734                                  "Attempt to update new Transceiver Module settings failed\n");
8735                 }
8736         }
8737         lc->new_module = false;
8738         lc->redo_l1cfg = false;
8739 }
8740
8741 /**
8742  *      t4_update_port_info - retrieve and update port information if changed
8743  *      @pi: the port_info
8744  *
8745  *      We issue a Get Port Information Command to the Firmware and, if
8746  *      successful, we check to see if anything is different from what we
8747  *      last recorded and update things accordingly.
8748  */
8749 int t4_update_port_info(struct port_info *pi)
8750 {
8751         unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8752         struct fw_port_cmd port_cmd;
8753         int ret;
8754
8755         memset(&port_cmd, 0, sizeof(port_cmd));
8756         port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8757                                             FW_CMD_REQUEST_F | FW_CMD_READ_F |
8758                                             FW_PORT_CMD_PORTID_V(pi->tx_chan));
8759         port_cmd.action_to_len16 = cpu_to_be32(
8760                 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
8761                                      ? FW_PORT_ACTION_GET_PORT_INFO
8762                                      : FW_PORT_ACTION_GET_PORT_INFO32) |
8763                 FW_LEN16(port_cmd));
8764         ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8765                          &port_cmd, sizeof(port_cmd), &port_cmd);
8766         if (ret)
8767                 return ret;
8768
8769         t4_handle_get_port_info(pi, (__be64 *)&port_cmd);
8770         return 0;
8771 }
8772
8773 /**
8774  *      t4_get_link_params - retrieve basic link parameters for given port
8775  *      @pi: the port
8776  *      @link_okp: value return pointer for link up/down
8777  *      @speedp: value return pointer for speed (Mb/s)
8778  *      @mtup: value return pointer for mtu
8779  *
8780  *      Retrieves basic link parameters for a port: link up/down, speed (Mb/s),
8781  *      and MTU for a specified port.  A negative error is returned on
8782  *      failure; 0 on success.
8783  */
8784 int t4_get_link_params(struct port_info *pi, unsigned int *link_okp,
8785                        unsigned int *speedp, unsigned int *mtup)
8786 {
8787         unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8788         unsigned int action, link_ok, mtu;
8789         struct fw_port_cmd port_cmd;
8790         fw_port_cap32_t linkattr;
8791         int ret;
8792
8793         memset(&port_cmd, 0, sizeof(port_cmd));
8794         port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8795                                             FW_CMD_REQUEST_F | FW_CMD_READ_F |
8796                                             FW_PORT_CMD_PORTID_V(pi->tx_chan));
8797         action = (fw_caps == FW_CAPS16
8798                   ? FW_PORT_ACTION_GET_PORT_INFO
8799                   : FW_PORT_ACTION_GET_PORT_INFO32);
8800         port_cmd.action_to_len16 = cpu_to_be32(
8801                 FW_PORT_CMD_ACTION_V(action) |
8802                 FW_LEN16(port_cmd));
8803         ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8804                          &port_cmd, sizeof(port_cmd), &port_cmd);
8805         if (ret)
8806                 return ret;
8807
8808         if (action == FW_PORT_ACTION_GET_PORT_INFO) {
8809                 u32 lstatus = be32_to_cpu(port_cmd.u.info.lstatus_to_modtype);
8810
8811                 link_ok = !!(lstatus & FW_PORT_CMD_LSTATUS_F);
8812                 linkattr = lstatus_to_fwcap(lstatus);
8813                 mtu = be16_to_cpu(port_cmd.u.info.mtu);
8814         } else {
8815                 u32 lstatus32 =
8816                            be32_to_cpu(port_cmd.u.info32.lstatus32_to_cbllen32);
8817
8818                 link_ok = !!(lstatus32 & FW_PORT_CMD_LSTATUS32_F);
8819                 linkattr = be32_to_cpu(port_cmd.u.info32.linkattr32);
8820                 mtu = FW_PORT_CMD_MTU32_G(
8821                         be32_to_cpu(port_cmd.u.info32.auxlinfo32_mtu32));
8822         }
8823
8824         if (link_okp)
8825                 *link_okp = link_ok;
8826         if (speedp)
8827                 *speedp = fwcap_to_speed(linkattr);
8828         if (mtup)
8829                 *mtup = mtu;
8830
8831         return 0;
8832 }
8833
8834 /**
8835  *      t4_handle_fw_rpl - process a FW reply message
8836  *      @adap: the adapter
8837  *      @rpl: start of the FW message
8838  *
8839  *      Processes a FW message, such as link state change messages.
8840  */
8841 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
8842 {
8843         u8 opcode = *(const u8 *)rpl;
8844
8845         /* This might be a port command ... this simplifies the following
8846          * conditionals ...  We can get away with pre-dereferencing
8847          * action_to_len16 because it's in the first 16 bytes and all messages
8848          * will be at least that long.
8849          */
8850         const struct fw_port_cmd *p = (const void *)rpl;
8851         unsigned int action =
8852                 FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16));
8853
8854         if (opcode == FW_PORT_CMD &&
8855             (action == FW_PORT_ACTION_GET_PORT_INFO ||
8856              action == FW_PORT_ACTION_GET_PORT_INFO32)) {
8857                 int i;
8858                 int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid));
8859                 struct port_info *pi = NULL;
8860
8861                 for_each_port(adap, i) {
8862                         pi = adap2pinfo(adap, i);
8863                         if (pi->tx_chan == chan)
8864                                 break;
8865                 }
8866
8867                 t4_handle_get_port_info(pi, rpl);
8868         } else {
8869                 dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n",
8870                          opcode);
8871                 return -EINVAL;
8872         }
8873         return 0;
8874 }
8875
8876 static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
8877 {
8878         u16 val;
8879
8880         if (pci_is_pcie(adapter->pdev)) {
8881                 pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
8882                 p->speed = val & PCI_EXP_LNKSTA_CLS;
8883                 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
8884         }
8885 }
8886
8887 /**
8888  *      init_link_config - initialize a link's SW state
8889  *      @lc: pointer to structure holding the link state
8890  *      @pcaps: link Port Capabilities
8891  *      @acaps: link current Advertised Port Capabilities
8892  *
8893  *      Initializes the SW state maintained for each link, including the link's
8894  *      capabilities and default speed/flow-control/autonegotiation settings.
8895  */
8896 static void init_link_config(struct link_config *lc, fw_port_cap32_t pcaps,
8897                              fw_port_cap32_t acaps)
8898 {
8899         lc->pcaps = pcaps;
8900         lc->def_acaps = acaps;
8901         lc->lpacaps = 0;
8902         lc->speed_caps = 0;
8903         lc->speed = 0;
8904         lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
8905
8906         /* For Forward Error Control, we default to whatever the Firmware
8907          * tells us the Link is currently advertising.
8908          */
8909         lc->requested_fec = FEC_AUTO;
8910         lc->fec = fwcap_to_cc_fec(lc->def_acaps);
8911
8912         /* If the Port is capable of Auto-Negtotiation, initialize it as
8913          * "enabled" and copy over all of the Physical Port Capabilities
8914          * to the Advertised Port Capabilities.  Otherwise mark it as
8915          * Auto-Negotiate disabled and select the highest supported speed
8916          * for the link.  Note parallel structure in t4_link_l1cfg_core()
8917          * and t4_handle_get_port_info().
8918          */
8919         if (lc->pcaps & FW_PORT_CAP32_ANEG) {
8920                 lc->acaps = lc->pcaps & ADVERT_MASK;
8921                 lc->autoneg = AUTONEG_ENABLE;
8922                 lc->requested_fc |= PAUSE_AUTONEG;
8923         } else {
8924                 lc->acaps = 0;
8925                 lc->autoneg = AUTONEG_DISABLE;
8926                 lc->speed_caps = fwcap_to_fwspeed(acaps);
8927         }
8928 }
8929
8930 #define CIM_PF_NOACCESS 0xeeeeeeee
8931
8932 int t4_wait_dev_ready(void __iomem *regs)
8933 {
8934         u32 whoami;
8935
8936         whoami = readl(regs + PL_WHOAMI_A);
8937         if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
8938                 return 0;
8939
8940         msleep(500);
8941         whoami = readl(regs + PL_WHOAMI_A);
8942         return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
8943 }
8944
8945 struct flash_desc {
8946         u32 vendor_and_model_id;
8947         u32 size_mb;
8948 };
8949
8950 static int t4_get_flash_params(struct adapter *adap)
8951 {
8952         /* Table for non-Numonix supported flash parts.  Numonix parts are left
8953          * to the preexisting code.  All flash parts have 64KB sectors.
8954          */
8955         static struct flash_desc supported_flash[] = {
8956                 { 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
8957         };
8958
8959         unsigned int part, manufacturer;
8960         unsigned int density, size = 0;
8961         u32 flashid = 0;
8962         int ret;
8963
8964         /* Issue a Read ID Command to the Flash part.  We decode supported
8965          * Flash parts and their sizes from this.  There's a newer Query
8966          * Command which can retrieve detailed geometry information but many
8967          * Flash parts don't support it.
8968          */
8969
8970         ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
8971         if (!ret)
8972                 ret = sf1_read(adap, 3, 0, 1, &flashid);
8973         t4_write_reg(adap, SF_OP_A, 0);                    /* unlock SF */
8974         if (ret)
8975                 return ret;
8976
8977         /* Check to see if it's one of our non-standard supported Flash parts.
8978          */
8979         for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
8980                 if (supported_flash[part].vendor_and_model_id == flashid) {
8981                         adap->params.sf_size = supported_flash[part].size_mb;
8982                         adap->params.sf_nsec =
8983                                 adap->params.sf_size / SF_SEC_SIZE;
8984                         goto found;
8985                 }
8986
8987         /* Decode Flash part size.  The code below looks repetitive with
8988          * common encodings, but that's not guaranteed in the JEDEC
8989          * specification for the Read JEDEC ID command.  The only thing that
8990          * we're guaranteed by the JEDEC specification is where the
8991          * Manufacturer ID is in the returned result.  After that each
8992          * Manufacturer ~could~ encode things completely differently.
8993          * Note, all Flash parts must have 64KB sectors.
8994          */
8995         manufacturer = flashid & 0xff;
8996         switch (manufacturer) {
8997         case 0x20: { /* Micron/Numonix */
8998                 /* This Density -> Size decoding table is taken from Micron
8999                  * Data Sheets.
9000                  */
9001                 density = (flashid >> 16) & 0xff;
9002                 switch (density) {
9003                 case 0x14: /* 1MB */
9004                         size = 1 << 20;
9005                         break;
9006                 case 0x15: /* 2MB */
9007                         size = 1 << 21;
9008                         break;
9009                 case 0x16: /* 4MB */
9010                         size = 1 << 22;
9011                         break;
9012                 case 0x17: /* 8MB */
9013                         size = 1 << 23;
9014                         break;
9015                 case 0x18: /* 16MB */
9016                         size = 1 << 24;
9017                         break;
9018                 case 0x19: /* 32MB */
9019                         size = 1 << 25;
9020                         break;
9021                 case 0x20: /* 64MB */
9022                         size = 1 << 26;
9023                         break;
9024                 case 0x21: /* 128MB */
9025                         size = 1 << 27;
9026                         break;
9027                 case 0x22: /* 256MB */
9028                         size = 1 << 28;
9029                         break;
9030                 }
9031                 break;
9032         }
9033         case 0x9d: { /* ISSI -- Integrated Silicon Solution, Inc. */
9034                 /* This Density -> Size decoding table is taken from ISSI
9035                  * Data Sheets.
9036                  */
9037                 density = (flashid >> 16) & 0xff;
9038                 switch (density) {
9039                 case 0x16: /* 32 MB */
9040                         size = 1 << 25;
9041                         break;
9042                 case 0x17: /* 64MB */
9043                         size = 1 << 26;
9044                         break;
9045                 }
9046                 break;
9047         }
9048         case 0xc2: { /* Macronix */
9049                 /* This Density -> Size decoding table is taken from Macronix
9050                  * Data Sheets.
9051                  */
9052                 density = (flashid >> 16) & 0xff;
9053                 switch (density) {
9054                 case 0x17: /* 8MB */
9055                         size = 1 << 23;
9056                         break;
9057                 case 0x18: /* 16MB */
9058                         size = 1 << 24;
9059                         break;
9060                 }
9061                 break;
9062         }
9063         case 0xef: { /* Winbond */
9064                 /* This Density -> Size decoding table is taken from Winbond
9065                  * Data Sheets.
9066                  */
9067                 density = (flashid >> 16) & 0xff;
9068                 switch (density) {
9069                 case 0x17: /* 8MB */
9070                         size = 1 << 23;
9071                         break;
9072                 case 0x18: /* 16MB */
9073                         size = 1 << 24;
9074                         break;
9075                 }
9076                 break;
9077         }
9078         }
9079
9080         /* If we didn't recognize the FLASH part, that's no real issue: the
9081          * Hardware/Software contract says that Hardware will _*ALWAYS*_
9082          * use a FLASH part which is at least 4MB in size and has 64KB
9083          * sectors.  The unrecognized FLASH part is likely to be much larger
9084          * than 4MB, but that's all we really need.
9085          */
9086         if (size == 0) {
9087                 dev_warn(adap->pdev_dev, "Unknown Flash Part, ID = %#x, assuming 4MB\n",
9088                          flashid);
9089                 size = 1 << 22;
9090         }
9091
9092         /* Store decoded Flash size and fall through into vetting code. */
9093         adap->params.sf_size = size;
9094         adap->params.sf_nsec = size / SF_SEC_SIZE;
9095
9096 found:
9097         if (adap->params.sf_size < FLASH_MIN_SIZE)
9098                 dev_warn(adap->pdev_dev, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
9099                          flashid, adap->params.sf_size, FLASH_MIN_SIZE);
9100         return 0;
9101 }
9102
9103 /**
9104  *      t4_prep_adapter - prepare SW and HW for operation
9105  *      @adapter: the adapter
9106  *
9107  *      Initialize adapter SW state for the various HW modules, set initial
9108  *      values for some adapter tunables, take PHYs out of reset, and
9109  *      initialize the MDIO interface.
9110  */
9111 int t4_prep_adapter(struct adapter *adapter)
9112 {
9113         int ret, ver;
9114         uint16_t device_id;
9115         u32 pl_rev;
9116
9117         get_pci_mode(adapter, &adapter->params.pci);
9118         pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
9119
9120         ret = t4_get_flash_params(adapter);
9121         if (ret < 0) {
9122                 dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
9123                 return ret;
9124         }
9125
9126         /* Retrieve adapter's device ID
9127          */
9128         pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
9129         ver = device_id >> 12;
9130         adapter->params.chip = 0;
9131         switch (ver) {
9132         case CHELSIO_T4:
9133                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
9134                 adapter->params.arch.sge_fl_db = DBPRIO_F;
9135                 adapter->params.arch.mps_tcam_size =
9136                                  NUM_MPS_CLS_SRAM_L_INSTANCES;
9137                 adapter->params.arch.mps_rplc_size = 128;
9138                 adapter->params.arch.nchan = NCHAN;
9139                 adapter->params.arch.pm_stats_cnt = PM_NSTATS;
9140                 adapter->params.arch.vfcount = 128;
9141                 /* Congestion map is for 4 channels so that
9142                  * MPS can have 4 priority per port.
9143                  */
9144                 adapter->params.arch.cng_ch_bits_log = 2;
9145                 break;
9146         case CHELSIO_T5:
9147                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
9148                 adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
9149                 adapter->params.arch.mps_tcam_size =
9150                                  NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
9151                 adapter->params.arch.mps_rplc_size = 128;
9152                 adapter->params.arch.nchan = NCHAN;
9153                 adapter->params.arch.pm_stats_cnt = PM_NSTATS;
9154                 adapter->params.arch.vfcount = 128;
9155                 adapter->params.arch.cng_ch_bits_log = 2;
9156                 break;
9157         case CHELSIO_T6:
9158                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
9159                 adapter->params.arch.sge_fl_db = 0;
9160                 adapter->params.arch.mps_tcam_size =
9161                                  NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
9162                 adapter->params.arch.mps_rplc_size = 256;
9163                 adapter->params.arch.nchan = 2;
9164                 adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS;
9165                 adapter->params.arch.vfcount = 256;
9166                 /* Congestion map will be for 2 channels so that
9167                  * MPS can have 8 priority per port.
9168                  */
9169                 adapter->params.arch.cng_ch_bits_log = 3;
9170                 break;
9171         default:
9172                 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
9173                         device_id);
9174                 return -EINVAL;
9175         }
9176
9177         adapter->params.cim_la_size = CIMLA_SIZE;
9178         init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
9179
9180         /*
9181          * Default port for debugging in case we can't reach FW.
9182          */
9183         adapter->params.nports = 1;
9184         adapter->params.portvec = 1;
9185         adapter->params.vpd.cclk = 50000;
9186
9187         /* Set PCIe completion timeout to 4 seconds. */
9188         pcie_capability_clear_and_set_word(adapter->pdev, PCI_EXP_DEVCTL2,
9189                                            PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd);
9190         return 0;
9191 }
9192
9193 /**
9194  *      t4_shutdown_adapter - shut down adapter, host & wire
9195  *      @adapter: the adapter
9196  *
9197  *      Perform an emergency shutdown of the adapter and stop it from
9198  *      continuing any further communication on the ports or DMA to the
9199  *      host.  This is typically used when the adapter and/or firmware
9200  *      have crashed and we want to prevent any further accidental
9201  *      communication with the rest of the world.  This will also force
9202  *      the port Link Status to go down -- if register writes work --
9203  *      which should help our peers figure out that we're down.
9204  */
9205 int t4_shutdown_adapter(struct adapter *adapter)
9206 {
9207         int port;
9208
9209         t4_intr_disable(adapter);
9210         t4_write_reg(adapter, DBG_GPIO_EN_A, 0);
9211         for_each_port(adapter, port) {
9212                 u32 a_port_cfg = is_t4(adapter->params.chip) ?
9213                                        PORT_REG(port, XGMAC_PORT_CFG_A) :
9214                                        T5_PORT_REG(port, MAC_PORT_CFG_A);
9215
9216                 t4_write_reg(adapter, a_port_cfg,
9217                              t4_read_reg(adapter, a_port_cfg)
9218                              & ~SIGNAL_DET_V(1));
9219         }
9220         t4_set_reg_field(adapter, SGE_CONTROL_A, GLOBALENABLE_F, 0);
9221
9222         return 0;
9223 }
9224
9225 /**
9226  *      t4_bar2_sge_qregs - return BAR2 SGE Queue register information
9227  *      @adapter: the adapter
9228  *      @qid: the Queue ID
9229  *      @qtype: the Ingress or Egress type for @qid
9230  *      @user: true if this request is for a user mode queue
9231  *      @pbar2_qoffset: BAR2 Queue Offset
9232  *      @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
9233  *
9234  *      Returns the BAR2 SGE Queue Registers information associated with the
9235  *      indicated Absolute Queue ID.  These are passed back in return value
9236  *      pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
9237  *      and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
9238  *
9239  *      This may return an error which indicates that BAR2 SGE Queue
9240  *      registers aren't available.  If an error is not returned, then the
9241  *      following values are returned:
9242  *
9243  *        *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
9244  *        *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
9245  *
9246  *      If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
9247  *      require the "Inferred Queue ID" ability may be used.  E.g. the
9248  *      Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
9249  *      then these "Inferred Queue ID" register may not be used.
9250  */
9251 int t4_bar2_sge_qregs(struct adapter *adapter,
9252                       unsigned int qid,
9253                       enum t4_bar2_qtype qtype,
9254                       int user,
9255                       u64 *pbar2_qoffset,
9256                       unsigned int *pbar2_qid)
9257 {
9258         unsigned int page_shift, page_size, qpp_shift, qpp_mask;
9259         u64 bar2_page_offset, bar2_qoffset;
9260         unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
9261
9262         /* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */
9263         if (!user && is_t4(adapter->params.chip))
9264                 return -EINVAL;
9265
9266         /* Get our SGE Page Size parameters.
9267          */
9268         page_shift = adapter->params.sge.hps + 10;
9269         page_size = 1 << page_shift;
9270
9271         /* Get the right Queues per Page parameters for our Queue.
9272          */
9273         qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
9274                      ? adapter->params.sge.eq_qpp
9275                      : adapter->params.sge.iq_qpp);
9276         qpp_mask = (1 << qpp_shift) - 1;
9277
9278         /*  Calculate the basics of the BAR2 SGE Queue register area:
9279          *  o The BAR2 page the Queue registers will be in.
9280          *  o The BAR2 Queue ID.
9281          *  o The BAR2 Queue ID Offset into the BAR2 page.
9282          */
9283         bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
9284         bar2_qid = qid & qpp_mask;
9285         bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
9286
9287         /* If the BAR2 Queue ID Offset is less than the Page Size, then the
9288          * hardware will infer the Absolute Queue ID simply from the writes to
9289          * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
9290          * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
9291          * write to the first BAR2 SGE Queue Area within the BAR2 Page with
9292          * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
9293          * from the BAR2 Page and BAR2 Queue ID.
9294          *
9295          * One important censequence of this is that some BAR2 SGE registers
9296          * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
9297          * there.  But other registers synthesize the SGE Queue ID purely
9298          * from the writes to the registers -- the Write Combined Doorbell
9299          * Buffer is a good example.  These BAR2 SGE Registers are only
9300          * available for those BAR2 SGE Register areas where the SGE Absolute
9301          * Queue ID can be inferred from simple writes.
9302          */
9303         bar2_qoffset = bar2_page_offset;
9304         bar2_qinferred = (bar2_qid_offset < page_size);
9305         if (bar2_qinferred) {
9306                 bar2_qoffset += bar2_qid_offset;
9307                 bar2_qid = 0;
9308         }
9309
9310         *pbar2_qoffset = bar2_qoffset;
9311         *pbar2_qid = bar2_qid;
9312         return 0;
9313 }
9314
9315 /**
9316  *      t4_init_devlog_params - initialize adapter->params.devlog
9317  *      @adap: the adapter
9318  *
9319  *      Initialize various fields of the adapter's Firmware Device Log
9320  *      Parameters structure.
9321  */
9322 int t4_init_devlog_params(struct adapter *adap)
9323 {
9324         struct devlog_params *dparams = &adap->params.devlog;
9325         u32 pf_dparams;
9326         unsigned int devlog_meminfo;
9327         struct fw_devlog_cmd devlog_cmd;
9328         int ret;
9329
9330         /* If we're dealing with newer firmware, the Device Log Parameters
9331          * are stored in a designated register which allows us to access the
9332          * Device Log even if we can't talk to the firmware.
9333          */
9334         pf_dparams =
9335                 t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
9336         if (pf_dparams) {
9337                 unsigned int nentries, nentries128;
9338
9339                 dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
9340                 dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;
9341
9342                 nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
9343                 nentries = (nentries128 + 1) * 128;
9344                 dparams->size = nentries * sizeof(struct fw_devlog_e);
9345
9346                 return 0;
9347         }
9348
9349         /* Otherwise, ask the firmware for it's Device Log Parameters.
9350          */
9351         memset(&devlog_cmd, 0, sizeof(devlog_cmd));
9352         devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) |
9353                                              FW_CMD_REQUEST_F | FW_CMD_READ_F);
9354         devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9355         ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
9356                          &devlog_cmd);
9357         if (ret)
9358                 return ret;
9359
9360         devlog_meminfo =
9361                 be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
9362         dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
9363         dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
9364         dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
9365
9366         return 0;
9367 }
9368
9369 /**
9370  *      t4_init_sge_params - initialize adap->params.sge
9371  *      @adapter: the adapter
9372  *
9373  *      Initialize various fields of the adapter's SGE Parameters structure.
9374  */
9375 int t4_init_sge_params(struct adapter *adapter)
9376 {
9377         struct sge_params *sge_params = &adapter->params.sge;
9378         u32 hps, qpp;
9379         unsigned int s_hps, s_qpp;
9380
9381         /* Extract the SGE Page Size for our PF.
9382          */
9383         hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
9384         s_hps = (HOSTPAGESIZEPF0_S +
9385                  (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf);
9386         sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
9387
9388         /* Extract the SGE Egress and Ingess Queues Per Page for our PF.
9389          */
9390         s_qpp = (QUEUESPERPAGEPF0_S +
9391                 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf);
9392         qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
9393         sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
9394         qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
9395         sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
9396
9397         return 0;
9398 }
9399
9400 /**
9401  *      t4_init_tp_params - initialize adap->params.tp
9402  *      @adap: the adapter
9403  *      @sleep_ok: if true we may sleep while awaiting command completion
9404  *
9405  *      Initialize various fields of the adapter's TP Parameters structure.
9406  */
9407 int t4_init_tp_params(struct adapter *adap, bool sleep_ok)
9408 {
9409         u32 param, val, v;
9410         int chan, ret;
9411
9412
9413         v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
9414         adap->params.tp.tre = TIMERRESOLUTION_G(v);
9415         adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
9416
9417         /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
9418         for (chan = 0; chan < NCHAN; chan++)
9419                 adap->params.tp.tx_modq[chan] = chan;
9420
9421         /* Cache the adapter's Compressed Filter Mode/Mask and global Ingress
9422          * Configuration.
9423          */
9424         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
9425                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FILTER) |
9426                  FW_PARAMS_PARAM_Y_V(FW_PARAM_DEV_FILTER_MODE_MASK));
9427
9428         /* Read current value */
9429         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
9430                               &param, &val);
9431         if (ret == 0) {
9432                 dev_info(adap->pdev_dev,
9433                          "Current filter mode/mask 0x%x:0x%x\n",
9434                          FW_PARAMS_PARAM_FILTER_MODE_G(val),
9435                          FW_PARAMS_PARAM_FILTER_MASK_G(val));
9436                 adap->params.tp.vlan_pri_map =
9437                         FW_PARAMS_PARAM_FILTER_MODE_G(val);
9438                 adap->params.tp.filter_mask =
9439                         FW_PARAMS_PARAM_FILTER_MASK_G(val);
9440         } else {
9441                 dev_info(adap->pdev_dev,
9442                          "Failed to read filter mode/mask via fw api, using indirect-reg-read\n");
9443
9444                 /* Incase of older-fw (which doesn't expose the api
9445                  * FW_PARAM_DEV_FILTER_MODE_MASK) and newer-driver (which uses
9446                  * the fw api) combination, fall-back to older method of reading
9447                  * the filter mode from indirect-register
9448                  */
9449                 t4_tp_pio_read(adap, &adap->params.tp.vlan_pri_map, 1,
9450                                TP_VLAN_PRI_MAP_A, sleep_ok);
9451
9452                 /* With the older-fw and newer-driver combination we might run
9453                  * into an issue when user wants to use hash filter region but
9454                  * the filter_mask is zero, in this case filter_mask validation
9455                  * is tough. To avoid that we set the filter_mask same as filter
9456                  * mode, which will behave exactly as the older way of ignoring
9457                  * the filter mask validation.
9458                  */
9459                 adap->params.tp.filter_mask = adap->params.tp.vlan_pri_map;
9460         }
9461
9462         t4_tp_pio_read(adap, &adap->params.tp.ingress_config, 1,
9463                        TP_INGRESS_CONFIG_A, sleep_ok);
9464
9465         /* For T6, cache the adapter's compressed error vector
9466          * and passing outer header info for encapsulated packets.
9467          */
9468         if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
9469                 v = t4_read_reg(adap, TP_OUT_CONFIG_A);
9470                 adap->params.tp.rx_pkt_encap = (v & CRXPKTENC_F) ? 1 : 0;
9471         }
9472
9473         /* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
9474          * shift positions of several elements of the Compressed Filter Tuple
9475          * for this adapter which we need frequently ...
9476          */
9477         adap->params.tp.fcoe_shift = t4_filter_field_shift(adap, FCOE_F);
9478         adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
9479         adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
9480         adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
9481         adap->params.tp.tos_shift = t4_filter_field_shift(adap, TOS_F);
9482         adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
9483                                                                PROTOCOL_F);
9484         adap->params.tp.ethertype_shift = t4_filter_field_shift(adap,
9485                                                                 ETHERTYPE_F);
9486         adap->params.tp.macmatch_shift = t4_filter_field_shift(adap,
9487                                                                MACMATCH_F);
9488         adap->params.tp.matchtype_shift = t4_filter_field_shift(adap,
9489                                                                 MPSHITTYPE_F);
9490         adap->params.tp.frag_shift = t4_filter_field_shift(adap,
9491                                                            FRAGMENTATION_F);
9492
9493         /* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
9494          * represents the presence of an Outer VLAN instead of a VNIC ID.
9495          */
9496         if ((adap->params.tp.ingress_config & VNIC_F) == 0)
9497                 adap->params.tp.vnic_shift = -1;
9498
9499         v = t4_read_reg(adap, LE_3_DB_HASH_MASK_GEN_IPV4_T6_A);
9500         adap->params.tp.hash_filter_mask = v;
9501         v = t4_read_reg(adap, LE_4_DB_HASH_MASK_GEN_IPV4_T6_A);
9502         adap->params.tp.hash_filter_mask |= ((u64)v << 32);
9503         return 0;
9504 }
9505
9506 /**
9507  *      t4_filter_field_shift - calculate filter field shift
9508  *      @adap: the adapter
9509  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
9510  *
9511  *      Return the shift position of a filter field within the Compressed
9512  *      Filter Tuple.  The filter field is specified via its selection bit
9513  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
9514  */
9515 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
9516 {
9517         unsigned int filter_mode = adap->params.tp.vlan_pri_map;
9518         unsigned int sel;
9519         int field_shift;
9520
9521         if ((filter_mode & filter_sel) == 0)
9522                 return -1;
9523
9524         for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
9525                 switch (filter_mode & sel) {
9526                 case FCOE_F:
9527                         field_shift += FT_FCOE_W;
9528                         break;
9529                 case PORT_F:
9530                         field_shift += FT_PORT_W;
9531                         break;
9532                 case VNIC_ID_F:
9533                         field_shift += FT_VNIC_ID_W;
9534                         break;
9535                 case VLAN_F:
9536                         field_shift += FT_VLAN_W;
9537                         break;
9538                 case TOS_F:
9539                         field_shift += FT_TOS_W;
9540                         break;
9541                 case PROTOCOL_F:
9542                         field_shift += FT_PROTOCOL_W;
9543                         break;
9544                 case ETHERTYPE_F:
9545                         field_shift += FT_ETHERTYPE_W;
9546                         break;
9547                 case MACMATCH_F:
9548                         field_shift += FT_MACMATCH_W;
9549                         break;
9550                 case MPSHITTYPE_F:
9551                         field_shift += FT_MPSHITTYPE_W;
9552                         break;
9553                 case FRAGMENTATION_F:
9554                         field_shift += FT_FRAGMENTATION_W;
9555                         break;
9556                 }
9557         }
9558         return field_shift;
9559 }
9560
9561 int t4_init_rss_mode(struct adapter *adap, int mbox)
9562 {
9563         int i, ret;
9564         struct fw_rss_vi_config_cmd rvc;
9565
9566         memset(&rvc, 0, sizeof(rvc));
9567
9568         for_each_port(adap, i) {
9569                 struct port_info *p = adap2pinfo(adap, i);
9570
9571                 rvc.op_to_viid =
9572                         cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
9573                                     FW_CMD_REQUEST_F | FW_CMD_READ_F |
9574                                     FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid));
9575                 rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
9576                 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
9577                 if (ret)
9578                         return ret;
9579                 p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
9580         }
9581         return 0;
9582 }
9583
9584 /**
9585  *      t4_init_portinfo - allocate a virtual interface and initialize port_info
9586  *      @pi: the port_info
9587  *      @mbox: mailbox to use for the FW command
9588  *      @port: physical port associated with the VI
9589  *      @pf: the PF owning the VI
9590  *      @vf: the VF owning the VI
9591  *      @mac: the MAC address of the VI
9592  *
9593  *      Allocates a virtual interface for the given physical port.  If @mac is
9594  *      not %NULL it contains the MAC address of the VI as assigned by FW.
9595  *      @mac should be large enough to hold an Ethernet address.
9596  *      Returns < 0 on error.
9597  */
9598 int t4_init_portinfo(struct port_info *pi, int mbox,
9599                      int port, int pf, int vf, u8 mac[])
9600 {
9601         struct adapter *adapter = pi->adapter;
9602         unsigned int fw_caps = adapter->params.fw_caps_support;
9603         struct fw_port_cmd cmd;
9604         unsigned int rss_size;
9605         enum fw_port_type port_type;
9606         int mdio_addr;
9607         fw_port_cap32_t pcaps, acaps;
9608         u8 vivld = 0, vin = 0;
9609         int ret;
9610
9611         /* If we haven't yet determined whether we're talking to Firmware
9612          * which knows the new 32-bit Port Capabilities, it's time to find
9613          * out now.  This will also tell new Firmware to send us Port Status
9614          * Updates using the new 32-bit Port Capabilities version of the
9615          * Port Information message.
9616          */
9617         if (fw_caps == FW_CAPS_UNKNOWN) {
9618                 u32 param, val;
9619
9620                 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
9621                          FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32));
9622                 val = 1;
9623                 ret = t4_set_params(adapter, mbox, pf, vf, 1, &param, &val);
9624                 fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16);
9625                 adapter->params.fw_caps_support = fw_caps;
9626         }
9627
9628         memset(&cmd, 0, sizeof(cmd));
9629         cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
9630                                        FW_CMD_REQUEST_F | FW_CMD_READ_F |
9631                                        FW_PORT_CMD_PORTID_V(port));
9632         cmd.action_to_len16 = cpu_to_be32(
9633                 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
9634                                      ? FW_PORT_ACTION_GET_PORT_INFO
9635                                      : FW_PORT_ACTION_GET_PORT_INFO32) |
9636                 FW_LEN16(cmd));
9637         ret = t4_wr_mbox(pi->adapter, mbox, &cmd, sizeof(cmd), &cmd);
9638         if (ret)
9639                 return ret;
9640
9641         /* Extract the various fields from the Port Information message.
9642          */
9643         if (fw_caps == FW_CAPS16) {
9644                 u32 lstatus = be32_to_cpu(cmd.u.info.lstatus_to_modtype);
9645
9646                 port_type = FW_PORT_CMD_PTYPE_G(lstatus);
9647                 mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F)
9648                              ? FW_PORT_CMD_MDIOADDR_G(lstatus)
9649                              : -1);
9650                 pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.pcap));
9651                 acaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.acap));
9652         } else {
9653                 u32 lstatus32 = be32_to_cpu(cmd.u.info32.lstatus32_to_cbllen32);
9654
9655                 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
9656                 mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F)
9657                              ? FW_PORT_CMD_MDIOADDR32_G(lstatus32)
9658                              : -1);
9659                 pcaps = be32_to_cpu(cmd.u.info32.pcaps32);
9660                 acaps = be32_to_cpu(cmd.u.info32.acaps32);
9661         }
9662
9663         ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size,
9664                           &vivld, &vin);
9665         if (ret < 0)
9666                 return ret;
9667
9668         pi->viid = ret;
9669         pi->tx_chan = port;
9670         pi->lport = port;
9671         pi->rss_size = rss_size;
9672         pi->rx_cchan = t4_get_tp_e2c_map(pi->adapter, port);
9673
9674         /* If fw supports returning the VIN as part of FW_VI_CMD,
9675          * save the returned values.
9676          */
9677         if (adapter->params.viid_smt_extn_support) {
9678                 pi->vivld = vivld;
9679                 pi->vin = vin;
9680         } else {
9681                 /* Retrieve the values from VIID */
9682                 pi->vivld = FW_VIID_VIVLD_G(pi->viid);
9683                 pi->vin =  FW_VIID_VIN_G(pi->viid);
9684         }
9685
9686         pi->port_type = port_type;
9687         pi->mdio_addr = mdio_addr;
9688         pi->mod_type = FW_PORT_MOD_TYPE_NA;
9689
9690         init_link_config(&pi->link_cfg, pcaps, acaps);
9691         return 0;
9692 }
9693
9694 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
9695 {
9696         u8 addr[6];
9697         int ret, i, j = 0;
9698
9699         for_each_port(adap, i) {
9700                 struct port_info *pi = adap2pinfo(adap, i);
9701
9702                 while ((adap->params.portvec & (1 << j)) == 0)
9703                         j++;
9704
9705                 ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr);
9706                 if (ret)
9707                         return ret;
9708
9709                 memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
9710                 j++;
9711         }
9712         return 0;
9713 }
9714
9715 int t4_init_port_mirror(struct port_info *pi, u8 mbox, u8 port, u8 pf, u8 vf,
9716                         u16 *mirror_viid)
9717 {
9718         int ret;
9719
9720         ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, NULL, NULL,
9721                           NULL, NULL);
9722         if (ret < 0)
9723                 return ret;
9724
9725         if (mirror_viid)
9726                 *mirror_viid = ret;
9727
9728         return 0;
9729 }
9730
9731 /**
9732  *      t4_read_cimq_cfg - read CIM queue configuration
9733  *      @adap: the adapter
9734  *      @base: holds the queue base addresses in bytes
9735  *      @size: holds the queue sizes in bytes
9736  *      @thres: holds the queue full thresholds in bytes
9737  *
9738  *      Returns the current configuration of the CIM queues, starting with
9739  *      the IBQs, then the OBQs.
9740  */
9741 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
9742 {
9743         unsigned int i, v;
9744         int cim_num_obq = is_t4(adap->params.chip) ?
9745                                 CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9746
9747         for (i = 0; i < CIM_NUM_IBQ; i++) {
9748                 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
9749                              QUENUMSELECT_V(i));
9750                 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9751                 /* value is in 256-byte units */
9752                 *base++ = CIMQBASE_G(v) * 256;
9753                 *size++ = CIMQSIZE_G(v) * 256;
9754                 *thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
9755         }
9756         for (i = 0; i < cim_num_obq; i++) {
9757                 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9758                              QUENUMSELECT_V(i));
9759                 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9760                 /* value is in 256-byte units */
9761                 *base++ = CIMQBASE_G(v) * 256;
9762                 *size++ = CIMQSIZE_G(v) * 256;
9763         }
9764 }
9765
9766 /**
9767  *      t4_read_cim_ibq - read the contents of a CIM inbound queue
9768  *      @adap: the adapter
9769  *      @qid: the queue index
9770  *      @data: where to store the queue contents
9771  *      @n: capacity of @data in 32-bit words
9772  *
9773  *      Reads the contents of the selected CIM queue starting at address 0 up
9774  *      to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9775  *      error and the number of 32-bit words actually read on success.
9776  */
9777 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9778 {
9779         int i, err, attempts;
9780         unsigned int addr;
9781         const unsigned int nwords = CIM_IBQ_SIZE * 4;
9782
9783         if (qid > 5 || (n & 3))
9784                 return -EINVAL;
9785
9786         addr = qid * nwords;
9787         if (n > nwords)
9788                 n = nwords;
9789
9790         /* It might take 3-10ms before the IBQ debug read access is allowed.
9791          * Wait for 1 Sec with a delay of 1 usec.
9792          */
9793         attempts = 1000000;
9794
9795         for (i = 0; i < n; i++, addr++) {
9796                 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
9797                              IBQDBGEN_F);
9798                 err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
9799                                       attempts, 1);
9800                 if (err)
9801                         return err;
9802                 *data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
9803         }
9804         t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
9805         return i;
9806 }
9807
9808 /**
9809  *      t4_read_cim_obq - read the contents of a CIM outbound queue
9810  *      @adap: the adapter
9811  *      @qid: the queue index
9812  *      @data: where to store the queue contents
9813  *      @n: capacity of @data in 32-bit words
9814  *
9815  *      Reads the contents of the selected CIM queue starting at address 0 up
9816  *      to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9817  *      error and the number of 32-bit words actually read on success.
9818  */
9819 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9820 {
9821         int i, err;
9822         unsigned int addr, v, nwords;
9823         int cim_num_obq = is_t4(adap->params.chip) ?
9824                                 CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9825
9826         if ((qid > (cim_num_obq - 1)) || (n & 3))
9827                 return -EINVAL;
9828
9829         t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9830                      QUENUMSELECT_V(qid));
9831         v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9832
9833         addr = CIMQBASE_G(v) * 64;    /* muliple of 256 -> muliple of 4 */
9834         nwords = CIMQSIZE_G(v) * 64;  /* same */
9835         if (n > nwords)
9836                 n = nwords;
9837
9838         for (i = 0; i < n; i++, addr++) {
9839                 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
9840                              OBQDBGEN_F);
9841                 err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
9842                                       2, 1);
9843                 if (err)
9844                         return err;
9845                 *data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
9846         }
9847         t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
9848         return i;
9849 }
9850
9851 /**
9852  *      t4_cim_read - read a block from CIM internal address space
9853  *      @adap: the adapter
9854  *      @addr: the start address within the CIM address space
9855  *      @n: number of words to read
9856  *      @valp: where to store the result
9857  *
9858  *      Reads a block of 4-byte words from the CIM intenal address space.
9859  */
9860 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
9861                 unsigned int *valp)
9862 {
9863         int ret = 0;
9864
9865         if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9866                 return -EBUSY;
9867
9868         for ( ; !ret && n--; addr += 4) {
9869                 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
9870                 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9871                                       0, 5, 2);
9872                 if (!ret)
9873                         *valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
9874         }
9875         return ret;
9876 }
9877
9878 /**
9879  *      t4_cim_write - write a block into CIM internal address space
9880  *      @adap: the adapter
9881  *      @addr: the start address within the CIM address space
9882  *      @n: number of words to write
9883  *      @valp: set of values to write
9884  *
9885  *      Writes a block of 4-byte words into the CIM intenal address space.
9886  */
9887 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
9888                  const unsigned int *valp)
9889 {
9890         int ret = 0;
9891
9892         if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9893                 return -EBUSY;
9894
9895         for ( ; !ret && n--; addr += 4) {
9896                 t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
9897                 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
9898                 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9899                                       0, 5, 2);
9900         }
9901         return ret;
9902 }
9903
9904 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
9905                          unsigned int val)
9906 {
9907         return t4_cim_write(adap, addr, 1, &val);
9908 }
9909
9910 /**
9911  *      t4_cim_read_la - read CIM LA capture buffer
9912  *      @adap: the adapter
9913  *      @la_buf: where to store the LA data
9914  *      @wrptr: the HW write pointer within the capture buffer
9915  *
9916  *      Reads the contents of the CIM LA buffer with the most recent entry at
9917  *      the end of the returned data and with the entry at @wrptr first.
9918  *      We try to leave the LA in the running state we find it in.
9919  */
9920 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
9921 {
9922         int i, ret;
9923         unsigned int cfg, val, idx;
9924
9925         ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
9926         if (ret)
9927                 return ret;
9928
9929         if (cfg & UPDBGLAEN_F) {        /* LA is running, freeze it */
9930                 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
9931                 if (ret)
9932                         return ret;
9933         }
9934
9935         ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9936         if (ret)
9937                 goto restart;
9938
9939         idx = UPDBGLAWRPTR_G(val);
9940         if (wrptr)
9941                 *wrptr = idx;
9942
9943         for (i = 0; i < adap->params.cim_la_size; i++) {
9944                 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9945                                     UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
9946                 if (ret)
9947                         break;
9948                 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9949                 if (ret)
9950                         break;
9951                 if (val & UPDBGLARDEN_F) {
9952                         ret = -ETIMEDOUT;
9953                         break;
9954                 }
9955                 ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
9956                 if (ret)
9957                         break;
9958
9959                 /* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
9960                  * identify the 32-bit portion of the full 312-bit data
9961                  */
9962                 if (is_t6(adap->params.chip) && (idx & 0xf) >= 9)
9963                         idx = (idx & 0xff0) + 0x10;
9964                 else
9965                         idx++;
9966                 /* address can't exceed 0xfff */
9967                 idx &= UPDBGLARDPTR_M;
9968         }
9969 restart:
9970         if (cfg & UPDBGLAEN_F) {
9971                 int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9972                                       cfg & ~UPDBGLARDEN_F);
9973                 if (!ret)
9974                         ret = r;
9975         }
9976         return ret;
9977 }
9978
9979 /**
9980  *      t4_tp_read_la - read TP LA capture buffer
9981  *      @adap: the adapter
9982  *      @la_buf: where to store the LA data
9983  *      @wrptr: the HW write pointer within the capture buffer
9984  *
9985  *      Reads the contents of the TP LA buffer with the most recent entry at
9986  *      the end of the returned data and with the entry at @wrptr first.
9987  *      We leave the LA in the running state we find it in.
9988  */
9989 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
9990 {
9991         bool last_incomplete;
9992         unsigned int i, cfg, val, idx;
9993
9994         cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
9995         if (cfg & DBGLAENABLE_F)                        /* freeze LA */
9996                 t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
9997                              adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));
9998
9999         val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
10000         idx = DBGLAWPTR_G(val);
10001         last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
10002         if (last_incomplete)
10003                 idx = (idx + 1) & DBGLARPTR_M;
10004         if (wrptr)
10005                 *wrptr = idx;
10006
10007         val &= 0xffff;
10008         val &= ~DBGLARPTR_V(DBGLARPTR_M);
10009         val |= adap->params.tp.la_mask;
10010
10011         for (i = 0; i < TPLA_SIZE; i++) {
10012                 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
10013                 la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
10014                 idx = (idx + 1) & DBGLARPTR_M;
10015         }
10016
10017         /* Wipe out last entry if it isn't valid */
10018         if (last_incomplete)
10019                 la_buf[TPLA_SIZE - 1] = ~0ULL;
10020
10021         if (cfg & DBGLAENABLE_F)                    /* restore running state */
10022                 t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
10023                              cfg | adap->params.tp.la_mask);
10024 }
10025
10026 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
10027  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
10028  * state for more than the Warning Threshold then we'll issue a warning about
10029  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
10030  * appears to be hung every Warning Repeat second till the situation clears.
10031  * If the situation clears, we'll note that as well.
10032  */
10033 #define SGE_IDMA_WARN_THRESH 1
10034 #define SGE_IDMA_WARN_REPEAT 300
10035
10036 /**
10037  *      t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
10038  *      @adapter: the adapter
10039  *      @idma: the adapter IDMA Monitor state
10040  *
10041  *      Initialize the state of an SGE Ingress DMA Monitor.
10042  */
10043 void t4_idma_monitor_init(struct adapter *adapter,
10044                           struct sge_idma_monitor_state *idma)
10045 {
10046         /* Initialize the state variables for detecting an SGE Ingress DMA
10047          * hang.  The SGE has internal counters which count up on each clock
10048          * tick whenever the SGE finds its Ingress DMA State Engines in the
10049          * same state they were on the previous clock tick.  The clock used is
10050          * the Core Clock so we have a limit on the maximum "time" they can
10051          * record; typically a very small number of seconds.  For instance,
10052          * with a 600MHz Core Clock, we can only count up to a bit more than
10053          * 7s.  So we'll synthesize a larger counter in order to not run the
10054          * risk of having the "timers" overflow and give us the flexibility to
10055          * maintain a Hung SGE State Machine of our own which operates across
10056          * a longer time frame.
10057          */
10058         idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
10059         idma->idma_stalled[0] = 0;
10060         idma->idma_stalled[1] = 0;
10061 }
10062
10063 /**
10064  *      t4_idma_monitor - monitor SGE Ingress DMA state
10065  *      @adapter: the adapter
10066  *      @idma: the adapter IDMA Monitor state
10067  *      @hz: number of ticks/second
10068  *      @ticks: number of ticks since the last IDMA Monitor call
10069  */
10070 void t4_idma_monitor(struct adapter *adapter,
10071                      struct sge_idma_monitor_state *idma,
10072                      int hz, int ticks)
10073 {
10074         int i, idma_same_state_cnt[2];
10075
10076          /* Read the SGE Debug Ingress DMA Same State Count registers.  These
10077           * are counters inside the SGE which count up on each clock when the
10078           * SGE finds its Ingress DMA State Engines in the same states they
10079           * were in the previous clock.  The counters will peg out at
10080           * 0xffffffff without wrapping around so once they pass the 1s
10081           * threshold they'll stay above that till the IDMA state changes.
10082           */
10083         t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13);
10084         idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A);
10085         idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
10086
10087         for (i = 0; i < 2; i++) {
10088                 u32 debug0, debug11;
10089
10090                 /* If the Ingress DMA Same State Counter ("timer") is less
10091                  * than 1s, then we can reset our synthesized Stall Timer and
10092                  * continue.  If we have previously emitted warnings about a
10093                  * potential stalled Ingress Queue, issue a note indicating
10094                  * that the Ingress Queue has resumed forward progress.
10095                  */
10096                 if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
10097                         if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz)
10098                                 dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, "
10099                                          "resumed after %d seconds\n",
10100                                          i, idma->idma_qid[i],
10101                                          idma->idma_stalled[i] / hz);
10102                         idma->idma_stalled[i] = 0;
10103                         continue;
10104                 }
10105
10106                 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz
10107                  * domain.  The first time we get here it'll be because we
10108                  * passed the 1s Threshold; each additional time it'll be
10109                  * because the RX Timer Callback is being fired on its regular
10110                  * schedule.
10111                  *
10112                  * If the stall is below our Potential Hung Ingress Queue
10113                  * Warning Threshold, continue.
10114                  */
10115                 if (idma->idma_stalled[i] == 0) {
10116                         idma->idma_stalled[i] = hz;
10117                         idma->idma_warn[i] = 0;
10118                 } else {
10119                         idma->idma_stalled[i] += ticks;
10120                         idma->idma_warn[i] -= ticks;
10121                 }
10122
10123                 if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz)
10124                         continue;
10125
10126                 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
10127                  */
10128                 if (idma->idma_warn[i] > 0)
10129                         continue;
10130                 idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz;
10131
10132                 /* Read and save the SGE IDMA State and Queue ID information.
10133                  * We do this every time in case it changes across time ...
10134                  * can't be too careful ...
10135                  */
10136                 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0);
10137                 debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
10138                 idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
10139
10140                 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11);
10141                 debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
10142                 idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
10143
10144                 dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in "
10145                          "state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
10146                          i, idma->idma_qid[i], idma->idma_state[i],
10147                          idma->idma_stalled[i] / hz,
10148                          debug0, debug11);
10149                 t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
10150         }
10151 }
10152
10153 /**
10154  *      t4_load_cfg - download config file
10155  *      @adap: the adapter
10156  *      @cfg_data: the cfg text file to write
10157  *      @size: text file size
10158  *
10159  *      Write the supplied config text file to the card's serial flash.
10160  */
10161 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
10162 {
10163         int ret, i, n, cfg_addr;
10164         unsigned int addr;
10165         unsigned int flash_cfg_start_sec;
10166         unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10167
10168         cfg_addr = t4_flash_cfg_addr(adap);
10169         if (cfg_addr < 0)
10170                 return cfg_addr;
10171
10172         addr = cfg_addr;
10173         flash_cfg_start_sec = addr / SF_SEC_SIZE;
10174
10175         if (size > FLASH_CFG_MAX_SIZE) {
10176                 dev_err(adap->pdev_dev, "cfg file too large, max is %u bytes\n",
10177                         FLASH_CFG_MAX_SIZE);
10178                 return -EFBIG;
10179         }
10180
10181         i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,    /* # of sectors spanned */
10182                          sf_sec_size);
10183         ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10184                                      flash_cfg_start_sec + i - 1);
10185         /* If size == 0 then we're simply erasing the FLASH sectors associated
10186          * with the on-adapter Firmware Configuration File.
10187          */
10188         if (ret || size == 0)
10189                 goto out;
10190
10191         /* this will write to the flash up to SF_PAGE_SIZE at a time */
10192         for (i = 0; i < size; i += SF_PAGE_SIZE) {
10193                 if ((size - i) <  SF_PAGE_SIZE)
10194                         n = size - i;
10195                 else
10196                         n = SF_PAGE_SIZE;
10197                 ret = t4_write_flash(adap, addr, n, cfg_data, true);
10198                 if (ret)
10199                         goto out;
10200
10201                 addr += SF_PAGE_SIZE;
10202                 cfg_data += SF_PAGE_SIZE;
10203         }
10204
10205 out:
10206         if (ret)
10207                 dev_err(adap->pdev_dev, "config file %s failed %d\n",
10208                         (size == 0 ? "clear" : "download"), ret);
10209         return ret;
10210 }
10211
10212 /**
10213  *      t4_set_vf_mac_acl - Set MAC address for the specified VF
10214  *      @adapter: The adapter
10215  *      @vf: one of the VFs instantiated by the specified PF
10216  *      @naddr: the number of MAC addresses
10217  *      @addr: the MAC address(es) to be set to the specified VF
10218  */
10219 int t4_set_vf_mac_acl(struct adapter *adapter, unsigned int vf,
10220                       unsigned int naddr, u8 *addr)
10221 {
10222         struct fw_acl_mac_cmd cmd;
10223
10224         memset(&cmd, 0, sizeof(cmd));
10225         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) |
10226                                     FW_CMD_REQUEST_F |
10227                                     FW_CMD_WRITE_F |
10228                                     FW_ACL_MAC_CMD_PFN_V(adapter->pf) |
10229                                     FW_ACL_MAC_CMD_VFN_V(vf));
10230
10231         /* Note: Do not enable the ACL */
10232         cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
10233         cmd.nmac = naddr;
10234
10235         switch (adapter->pf) {
10236         case 3:
10237                 memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3));
10238                 break;
10239         case 2:
10240                 memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2));
10241                 break;
10242         case 1:
10243                 memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1));
10244                 break;
10245         case 0:
10246                 memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0));
10247                 break;
10248         }
10249
10250         return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd);
10251 }
10252
10253 /**
10254  * t4_read_pace_tbl - read the pace table
10255  * @adap: the adapter
10256  * @pace_vals: holds the returned values
10257  *
10258  * Returns the values of TP's pace table in microseconds.
10259  */
10260 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
10261 {
10262         unsigned int i, v;
10263
10264         for (i = 0; i < NTX_SCHED; i++) {
10265                 t4_write_reg(adap, TP_PACE_TABLE_A, 0xffff0000 + i);
10266                 v = t4_read_reg(adap, TP_PACE_TABLE_A);
10267                 pace_vals[i] = dack_ticks_to_usec(adap, v);
10268         }
10269 }
10270
10271 /**
10272  * t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
10273  * @adap: the adapter
10274  * @sched: the scheduler index
10275  * @kbps: the byte rate in Kbps
10276  * @ipg: the interpacket delay in tenths of nanoseconds
10277  * @sleep_ok: if true we may sleep while awaiting command completion
10278  *
10279  * Return the current configuration of a HW Tx scheduler.
10280  */
10281 void t4_get_tx_sched(struct adapter *adap, unsigned int sched,
10282                      unsigned int *kbps, unsigned int *ipg, bool sleep_ok)
10283 {
10284         unsigned int v, addr, bpt, cpt;
10285
10286         if (kbps) {
10287                 addr = TP_TX_MOD_Q1_Q0_RATE_LIMIT_A - sched / 2;
10288                 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10289                 if (sched & 1)
10290                         v >>= 16;
10291                 bpt = (v >> 8) & 0xff;
10292                 cpt = v & 0xff;
10293                 if (!cpt) {
10294                         *kbps = 0;      /* scheduler disabled */
10295                 } else {
10296                         v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
10297                         *kbps = (v * bpt) / 125;
10298                 }
10299         }
10300         if (ipg) {
10301                 addr = TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR_A - sched / 2;
10302                 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10303                 if (sched & 1)
10304                         v >>= 16;
10305                 v &= 0xffff;
10306                 *ipg = (10000 * v) / core_ticks_per_usec(adap);
10307         }
10308 }
10309
10310 /* t4_sge_ctxt_rd - read an SGE context through FW
10311  * @adap: the adapter
10312  * @mbox: mailbox to use for the FW command
10313  * @cid: the context id
10314  * @ctype: the context type
10315  * @data: where to store the context data
10316  *
10317  * Issues a FW command through the given mailbox to read an SGE context.
10318  */
10319 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
10320                    enum ctxt_type ctype, u32 *data)
10321 {
10322         struct fw_ldst_cmd c;
10323         int ret;
10324
10325         if (ctype == CTXT_FLM)
10326                 ret = FW_LDST_ADDRSPC_SGE_FLMC;
10327         else
10328                 ret = FW_LDST_ADDRSPC_SGE_CONMC;
10329
10330         memset(&c, 0, sizeof(c));
10331         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
10332                                         FW_CMD_REQUEST_F | FW_CMD_READ_F |
10333                                         FW_LDST_CMD_ADDRSPACE_V(ret));
10334         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
10335         c.u.idctxt.physid = cpu_to_be32(cid);
10336
10337         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
10338         if (ret == 0) {
10339                 data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
10340                 data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
10341                 data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
10342                 data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
10343                 data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
10344                 data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
10345         }
10346         return ret;
10347 }
10348
10349 /**
10350  * t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
10351  * @adap: the adapter
10352  * @cid: the context id
10353  * @ctype: the context type
10354  * @data: where to store the context data
10355  *
10356  * Reads an SGE context directly, bypassing FW.  This is only for
10357  * debugging when FW is unavailable.
10358  */
10359 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid,
10360                       enum ctxt_type ctype, u32 *data)
10361 {
10362         int i, ret;
10363
10364         t4_write_reg(adap, SGE_CTXT_CMD_A, CTXTQID_V(cid) | CTXTTYPE_V(ctype));
10365         ret = t4_wait_op_done(adap, SGE_CTXT_CMD_A, BUSY_F, 0, 3, 1);
10366         if (!ret)
10367                 for (i = SGE_CTXT_DATA0_A; i <= SGE_CTXT_DATA5_A; i += 4)
10368                         *data++ = t4_read_reg(adap, i);
10369         return ret;
10370 }
10371
10372 int t4_sched_params(struct adapter *adapter, u8 type, u8 level, u8 mode,
10373                     u8 rateunit, u8 ratemode, u8 channel, u8 class,
10374                     u32 minrate, u32 maxrate, u16 weight, u16 pktsize,
10375                     u16 burstsize)
10376 {
10377         struct fw_sched_cmd cmd;
10378
10379         memset(&cmd, 0, sizeof(cmd));
10380         cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_SCHED_CMD) |
10381                                       FW_CMD_REQUEST_F |
10382                                       FW_CMD_WRITE_F);
10383         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10384
10385         cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10386         cmd.u.params.type = type;
10387         cmd.u.params.level = level;
10388         cmd.u.params.mode = mode;
10389         cmd.u.params.ch = channel;
10390         cmd.u.params.cl = class;
10391         cmd.u.params.unit = rateunit;
10392         cmd.u.params.rate = ratemode;
10393         cmd.u.params.min = cpu_to_be32(minrate);
10394         cmd.u.params.max = cpu_to_be32(maxrate);
10395         cmd.u.params.weight = cpu_to_be16(weight);
10396         cmd.u.params.pktsize = cpu_to_be16(pktsize);
10397         cmd.u.params.burstsize = cpu_to_be16(burstsize);
10398
10399         return t4_wr_mbox_meat(adapter, adapter->mbox, &cmd, sizeof(cmd),
10400                                NULL, 1);
10401 }
10402
10403 /**
10404  *      t4_i2c_rd - read I2C data from adapter
10405  *      @adap: the adapter
10406  *      @mbox: mailbox to use for the FW command
10407  *      @port: Port number if per-port device; <0 if not
10408  *      @devid: per-port device ID or absolute device ID
10409  *      @offset: byte offset into device I2C space
10410  *      @len: byte length of I2C space data
10411  *      @buf: buffer in which to return I2C data
10412  *
10413  *      Reads the I2C data from the indicated device and location.
10414  */
10415 int t4_i2c_rd(struct adapter *adap, unsigned int mbox, int port,
10416               unsigned int devid, unsigned int offset,
10417               unsigned int len, u8 *buf)
10418 {
10419         struct fw_ldst_cmd ldst_cmd, ldst_rpl;
10420         unsigned int i2c_max = sizeof(ldst_cmd.u.i2c.data);
10421         int ret = 0;
10422
10423         if (len > I2C_PAGE_SIZE)
10424                 return -EINVAL;
10425
10426         /* Dont allow reads that spans multiple pages */
10427         if (offset < I2C_PAGE_SIZE && offset + len > I2C_PAGE_SIZE)
10428                 return -EINVAL;
10429
10430         memset(&ldst_cmd, 0, sizeof(ldst_cmd));
10431         ldst_cmd.op_to_addrspace =
10432                 cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
10433                             FW_CMD_REQUEST_F |
10434                             FW_CMD_READ_F |
10435                             FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_I2C));
10436         ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
10437         ldst_cmd.u.i2c.pid = (port < 0 ? 0xff : port);
10438         ldst_cmd.u.i2c.did = devid;
10439
10440         while (len > 0) {
10441                 unsigned int i2c_len = (len < i2c_max) ? len : i2c_max;
10442
10443                 ldst_cmd.u.i2c.boffset = offset;
10444                 ldst_cmd.u.i2c.blen = i2c_len;
10445
10446                 ret = t4_wr_mbox(adap, mbox, &ldst_cmd, sizeof(ldst_cmd),
10447                                  &ldst_rpl);
10448                 if (ret)
10449                         break;
10450
10451                 memcpy(buf, ldst_rpl.u.i2c.data, i2c_len);
10452                 offset += i2c_len;
10453                 buf += i2c_len;
10454                 len -= i2c_len;
10455         }
10456
10457         return ret;
10458 }
10459
10460 /**
10461  *      t4_set_vlan_acl - Set a VLAN id for the specified VF
10462  *      @adap: the adapter
10463  *      @mbox: mailbox to use for the FW command
10464  *      @vf: one of the VFs instantiated by the specified PF
10465  *      @vlan: The vlanid to be set
10466  */
10467 int t4_set_vlan_acl(struct adapter *adap, unsigned int mbox, unsigned int vf,
10468                     u16 vlan)
10469 {
10470         struct fw_acl_vlan_cmd vlan_cmd;
10471         unsigned int enable;
10472
10473         enable = (vlan ? FW_ACL_VLAN_CMD_EN_F : 0);
10474         memset(&vlan_cmd, 0, sizeof(vlan_cmd));
10475         vlan_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_VLAN_CMD) |
10476                                          FW_CMD_REQUEST_F |
10477                                          FW_CMD_WRITE_F |
10478                                          FW_CMD_EXEC_F |
10479                                          FW_ACL_VLAN_CMD_PFN_V(adap->pf) |
10480                                          FW_ACL_VLAN_CMD_VFN_V(vf));
10481         vlan_cmd.en_to_len16 = cpu_to_be32(enable | FW_LEN16(vlan_cmd));
10482         /* Drop all packets that donot match vlan id */
10483         vlan_cmd.dropnovlan_fm = (enable
10484                                   ? (FW_ACL_VLAN_CMD_DROPNOVLAN_F |
10485                                      FW_ACL_VLAN_CMD_FM_F) : 0);
10486         if (enable != 0) {
10487                 vlan_cmd.nvlan = 1;
10488                 vlan_cmd.vlanid[0] = cpu_to_be16(vlan);
10489         }
10490
10491         return t4_wr_mbox(adap, adap->mbox, &vlan_cmd, sizeof(vlan_cmd), NULL);
10492 }
10493
10494 /**
10495  *      modify_device_id - Modifies the device ID of the Boot BIOS image
10496  *      @device_id: the device ID to write.
10497  *      @boot_data: the boot image to modify.
10498  *
10499  *      Write the supplied device ID to the boot BIOS image.
10500  */
10501 static void modify_device_id(int device_id, u8 *boot_data)
10502 {
10503         struct cxgb4_pcir_data *pcir_header;
10504         struct legacy_pci_rom_hdr *header;
10505         u8 *cur_header = boot_data;
10506         u16 pcir_offset;
10507
10508          /* Loop through all chained images and change the device ID's */
10509         do {
10510                 header = (struct legacy_pci_rom_hdr *)cur_header;
10511                 pcir_offset = le16_to_cpu(header->pcir_offset);
10512                 pcir_header = (struct cxgb4_pcir_data *)(cur_header +
10513                               pcir_offset);
10514
10515                 /**
10516                  * Only modify the Device ID if code type is Legacy or HP.
10517                  * 0x00: Okay to modify
10518                  * 0x01: FCODE. Do not modify
10519                  * 0x03: Okay to modify
10520                  * 0x04-0xFF: Do not modify
10521                  */
10522                 if (pcir_header->code_type == CXGB4_HDR_CODE1) {
10523                         u8 csum = 0;
10524                         int i;
10525
10526                         /**
10527                          * Modify Device ID to match current adatper
10528                          */
10529                         pcir_header->device_id = cpu_to_le16(device_id);
10530
10531                         /**
10532                          * Set checksum temporarily to 0.
10533                          * We will recalculate it later.
10534                          */
10535                         header->cksum = 0x0;
10536
10537                         /**
10538                          * Calculate and update checksum
10539                          */
10540                         for (i = 0; i < (header->size512 * 512); i++)
10541                                 csum += cur_header[i];
10542
10543                         /**
10544                          * Invert summed value to create the checksum
10545                          * Writing new checksum value directly to the boot data
10546                          */
10547                         cur_header[7] = -csum;
10548
10549                 } else if (pcir_header->code_type == CXGB4_HDR_CODE2) {
10550                         /**
10551                          * Modify Device ID to match current adatper
10552                          */
10553                         pcir_header->device_id = cpu_to_le16(device_id);
10554                 }
10555
10556                 /**
10557                  * Move header pointer up to the next image in the ROM.
10558                  */
10559                 cur_header += header->size512 * 512;
10560         } while (!(pcir_header->indicator & CXGB4_HDR_INDI));
10561 }
10562
10563 /**
10564  *      t4_load_boot - download boot flash
10565  *      @adap: the adapter
10566  *      @boot_data: the boot image to write
10567  *      @boot_addr: offset in flash to write boot_data
10568  *      @size: image size
10569  *
10570  *      Write the supplied boot image to the card's serial flash.
10571  *      The boot image has the following sections: a 28-byte header and the
10572  *      boot image.
10573  */
10574 int t4_load_boot(struct adapter *adap, u8 *boot_data,
10575                  unsigned int boot_addr, unsigned int size)
10576 {
10577         unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10578         unsigned int boot_sector = (boot_addr * 1024);
10579         struct cxgb4_pci_exp_rom_header *header;
10580         struct cxgb4_pcir_data *pcir_header;
10581         int pcir_offset;
10582         unsigned int i;
10583         u16 device_id;
10584         int ret, addr;
10585
10586         /**
10587          * Make sure the boot image does not encroach on the firmware region
10588          */
10589         if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) {
10590                 dev_err(adap->pdev_dev, "boot image encroaching on firmware region\n");
10591                 return -EFBIG;
10592         }
10593
10594         /* Get boot header */
10595         header = (struct cxgb4_pci_exp_rom_header *)boot_data;
10596         pcir_offset = le16_to_cpu(header->pcir_offset);
10597         /* PCIR Data Structure */
10598         pcir_header = (struct cxgb4_pcir_data *)&boot_data[pcir_offset];
10599
10600         /**
10601          * Perform some primitive sanity testing to avoid accidentally
10602          * writing garbage over the boot sectors.  We ought to check for
10603          * more but it's not worth it for now ...
10604          */
10605         if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) {
10606                 dev_err(adap->pdev_dev, "boot image too small/large\n");
10607                 return -EFBIG;
10608         }
10609
10610         if (le16_to_cpu(header->signature) != BOOT_SIGNATURE) {
10611                 dev_err(adap->pdev_dev, "Boot image missing signature\n");
10612                 return -EINVAL;
10613         }
10614
10615         /* Check PCI header signature */
10616         if (le32_to_cpu(pcir_header->signature) != PCIR_SIGNATURE) {
10617                 dev_err(adap->pdev_dev, "PCI header missing signature\n");
10618                 return -EINVAL;
10619         }
10620
10621         /* Check Vendor ID matches Chelsio ID*/
10622         if (le16_to_cpu(pcir_header->vendor_id) != PCI_VENDOR_ID_CHELSIO) {
10623                 dev_err(adap->pdev_dev, "Vendor ID missing signature\n");
10624                 return -EINVAL;
10625         }
10626
10627         /**
10628          * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot,
10629          * and Boot configuration data sections. These 3 boot sections span
10630          * sectors 0 to 7 in flash and live right before the FW image location.
10631          */
10632         i = DIV_ROUND_UP(size ? size : FLASH_FW_START,  sf_sec_size);
10633         ret = t4_flash_erase_sectors(adap, boot_sector >> 16,
10634                                      (boot_sector >> 16) + i - 1);
10635
10636         /**
10637          * If size == 0 then we're simply erasing the FLASH sectors associated
10638          * with the on-adapter option ROM file
10639          */
10640         if (ret || size == 0)
10641                 goto out;
10642         /* Retrieve adapter's device ID */
10643         pci_read_config_word(adap->pdev, PCI_DEVICE_ID, &device_id);
10644        /* Want to deal with PF 0 so I strip off PF 4 indicator */
10645         device_id = device_id & 0xf0ff;
10646
10647          /* Check PCIE Device ID */
10648         if (le16_to_cpu(pcir_header->device_id) != device_id) {
10649                 /**
10650                  * Change the device ID in the Boot BIOS image to match
10651                  * the Device ID of the current adapter.
10652                  */
10653                 modify_device_id(device_id, boot_data);
10654         }
10655
10656         /**
10657          * Skip over the first SF_PAGE_SIZE worth of data and write it after
10658          * we finish copying the rest of the boot image. This will ensure
10659          * that the BIOS boot header will only be written if the boot image
10660          * was written in full.
10661          */
10662         addr = boot_sector;
10663         for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
10664                 addr += SF_PAGE_SIZE;
10665                 boot_data += SF_PAGE_SIZE;
10666                 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data,
10667                                      false);
10668                 if (ret)
10669                         goto out;
10670         }
10671
10672         ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE,
10673                              (const u8 *)header, false);
10674
10675 out:
10676         if (ret)
10677                 dev_err(adap->pdev_dev, "boot image load failed, error %d\n",
10678                         ret);
10679         return ret;
10680 }
10681
10682 /**
10683  *      t4_flash_bootcfg_addr - return the address of the flash
10684  *      optionrom configuration
10685  *      @adapter: the adapter
10686  *
10687  *      Return the address within the flash where the OptionROM Configuration
10688  *      is stored, or an error if the device FLASH is too small to contain
10689  *      a OptionROM Configuration.
10690  */
10691 static int t4_flash_bootcfg_addr(struct adapter *adapter)
10692 {
10693         /**
10694          * If the device FLASH isn't large enough to hold a Firmware
10695          * Configuration File, return an error.
10696          */
10697         if (adapter->params.sf_size <
10698             FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE)
10699                 return -ENOSPC;
10700
10701         return FLASH_BOOTCFG_START;
10702 }
10703
10704 int t4_load_bootcfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
10705 {
10706         unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10707         struct cxgb4_bootcfg_data *header;
10708         unsigned int flash_cfg_start_sec;
10709         unsigned int addr, npad;
10710         int ret, i, n, cfg_addr;
10711
10712         cfg_addr = t4_flash_bootcfg_addr(adap);
10713         if (cfg_addr < 0)
10714                 return cfg_addr;
10715
10716         addr = cfg_addr;
10717         flash_cfg_start_sec = addr / SF_SEC_SIZE;
10718
10719         if (size > FLASH_BOOTCFG_MAX_SIZE) {
10720                 dev_err(adap->pdev_dev, "bootcfg file too large, max is %u bytes\n",
10721                         FLASH_BOOTCFG_MAX_SIZE);
10722                 return -EFBIG;
10723         }
10724
10725         header = (struct cxgb4_bootcfg_data *)cfg_data;
10726         if (le16_to_cpu(header->signature) != BOOT_CFG_SIG) {
10727                 dev_err(adap->pdev_dev, "Wrong bootcfg signature\n");
10728                 ret = -EINVAL;
10729                 goto out;
10730         }
10731
10732         i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE,
10733                          sf_sec_size);
10734         ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10735                                      flash_cfg_start_sec + i - 1);
10736
10737         /**
10738          * If size == 0 then we're simply erasing the FLASH sectors associated
10739          * with the on-adapter OptionROM Configuration File.
10740          */
10741         if (ret || size == 0)
10742                 goto out;
10743
10744         /* this will write to the flash up to SF_PAGE_SIZE at a time */
10745         for (i = 0; i < size; i += SF_PAGE_SIZE) {
10746                 n = min_t(u32, size - i, SF_PAGE_SIZE);
10747
10748                 ret = t4_write_flash(adap, addr, n, cfg_data, false);
10749                 if (ret)
10750                         goto out;
10751
10752                 addr += SF_PAGE_SIZE;
10753                 cfg_data += SF_PAGE_SIZE;
10754         }
10755
10756         npad = ((size + 4 - 1) & ~3) - size;
10757         for (i = 0; i < npad; i++) {
10758                 u8 data = 0;
10759
10760                 ret = t4_write_flash(adap, cfg_addr + size + i, 1, &data,
10761                                      false);
10762                 if (ret)
10763                         goto out;
10764         }
10765
10766 out:
10767         if (ret)
10768                 dev_err(adap->pdev_dev, "boot config data %s failed %d\n",
10769                         (size == 0 ? "clear" : "download"), ret);
10770         return ret;
10771 }