Merge tag 'io_uring-5.15-2021-09-11' of git://git.kernel.dk/linux-block
[linux-2.6-microblaze.git] / drivers / misc / habanalabs / common / memory.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 /*
4  * Copyright 2016-2019 HabanaLabs, Ltd.
5  * All Rights Reserved.
6  */
7
8 #include <uapi/misc/habanalabs.h>
9 #include "habanalabs.h"
10 #include "../include/hw_ip/mmu/mmu_general.h"
11
12 #include <linux/uaccess.h>
13 #include <linux/slab.h>
14
15 #define HL_MMU_DEBUG    0
16
17 /* use small pages for supporting non-pow2 (32M/40M/48M) DRAM phys page sizes */
18 #define DRAM_POOL_PAGE_SIZE SZ_8M
19
20 /*
21  * The va ranges in context object contain a list with the available chunks of
22  * device virtual memory.
23  * There is one range for host allocations and one for DRAM allocations.
24  *
25  * On initialization each range contains one chunk of all of its available
26  * virtual range which is a half of the total device virtual range.
27  *
28  * On each mapping of physical pages, a suitable virtual range chunk (with a
29  * minimum size) is selected from the list. If the chunk size equals the
30  * requested size, the chunk is returned. Otherwise, the chunk is split into
31  * two chunks - one to return as result and a remainder to stay in the list.
32  *
33  * On each Unmapping of a virtual address, the relevant virtual chunk is
34  * returned to the list. The chunk is added to the list and if its edges match
35  * the edges of the adjacent chunks (means a contiguous chunk can be created),
36  * the chunks are merged.
37  *
38  * On finish, the list is checked to have only one chunk of all the relevant
39  * virtual range (which is a half of the device total virtual range).
40  * If not (means not all mappings were unmapped), a warning is printed.
41  */
42
43 /*
44  * alloc_device_memory() - allocate device memory.
45  * @ctx: pointer to the context structure.
46  * @args: host parameters containing the requested size.
47  * @ret_handle: result handle.
48  *
49  * This function does the following:
50  * - Allocate the requested size rounded up to 'dram_page_size' pages.
51  * - Return unique handle for later map/unmap/free.
52  */
53 static int alloc_device_memory(struct hl_ctx *ctx, struct hl_mem_in *args,
54                                 u32 *ret_handle)
55 {
56         struct hl_device *hdev = ctx->hdev;
57         struct hl_vm *vm = &hdev->vm;
58         struct hl_vm_phys_pg_pack *phys_pg_pack;
59         u64 paddr = 0, total_size, num_pgs, i;
60         u32 num_curr_pgs, page_size;
61         int handle, rc;
62         bool contiguous;
63
64         num_curr_pgs = 0;
65         page_size = hdev->asic_prop.dram_page_size;
66         num_pgs = DIV_ROUND_UP_ULL(args->alloc.mem_size, page_size);
67         total_size = num_pgs * page_size;
68
69         if (!total_size) {
70                 dev_err(hdev->dev, "Cannot allocate 0 bytes\n");
71                 return -EINVAL;
72         }
73
74         contiguous = args->flags & HL_MEM_CONTIGUOUS;
75
76         if (contiguous) {
77                 paddr = (u64) gen_pool_alloc(vm->dram_pg_pool, total_size);
78                 if (!paddr) {
79                         dev_err(hdev->dev,
80                                 "failed to allocate %llu contiguous pages with total size of %llu\n",
81                                 num_pgs, total_size);
82                         return -ENOMEM;
83                 }
84         }
85
86         phys_pg_pack = kzalloc(sizeof(*phys_pg_pack), GFP_KERNEL);
87         if (!phys_pg_pack) {
88                 rc = -ENOMEM;
89                 goto pages_pack_err;
90         }
91
92         phys_pg_pack->vm_type = VM_TYPE_PHYS_PACK;
93         phys_pg_pack->asid = ctx->asid;
94         phys_pg_pack->npages = num_pgs;
95         phys_pg_pack->page_size = page_size;
96         phys_pg_pack->total_size = total_size;
97         phys_pg_pack->flags = args->flags;
98         phys_pg_pack->contiguous = contiguous;
99
100         phys_pg_pack->pages = kvmalloc_array(num_pgs, sizeof(u64), GFP_KERNEL);
101         if (ZERO_OR_NULL_PTR(phys_pg_pack->pages)) {
102                 rc = -ENOMEM;
103                 goto pages_arr_err;
104         }
105
106         if (phys_pg_pack->contiguous) {
107                 for (i = 0 ; i < num_pgs ; i++)
108                         phys_pg_pack->pages[i] = paddr + i * page_size;
109         } else {
110                 for (i = 0 ; i < num_pgs ; i++) {
111                         phys_pg_pack->pages[i] = (u64) gen_pool_alloc(
112                                                         vm->dram_pg_pool,
113                                                         page_size);
114                         if (!phys_pg_pack->pages[i]) {
115                                 dev_err(hdev->dev,
116                                         "Failed to allocate device memory (out of memory)\n");
117                                 rc = -ENOMEM;
118                                 goto page_err;
119                         }
120
121                         num_curr_pgs++;
122                 }
123         }
124
125         spin_lock(&vm->idr_lock);
126         handle = idr_alloc(&vm->phys_pg_pack_handles, phys_pg_pack, 1, 0,
127                                 GFP_ATOMIC);
128         spin_unlock(&vm->idr_lock);
129
130         if (handle < 0) {
131                 dev_err(hdev->dev, "Failed to get handle for page\n");
132                 rc = -EFAULT;
133                 goto idr_err;
134         }
135
136         for (i = 0 ; i < num_pgs ; i++)
137                 kref_get(&vm->dram_pg_pool_refcount);
138
139         phys_pg_pack->handle = handle;
140
141         atomic64_add(phys_pg_pack->total_size, &ctx->dram_phys_mem);
142         atomic64_add(phys_pg_pack->total_size, &hdev->dram_used_mem);
143
144         *ret_handle = handle;
145
146         return 0;
147
148 idr_err:
149 page_err:
150         if (!phys_pg_pack->contiguous)
151                 for (i = 0 ; i < num_curr_pgs ; i++)
152                         gen_pool_free(vm->dram_pg_pool, phys_pg_pack->pages[i],
153                                         page_size);
154
155         kvfree(phys_pg_pack->pages);
156 pages_arr_err:
157         kfree(phys_pg_pack);
158 pages_pack_err:
159         if (contiguous)
160                 gen_pool_free(vm->dram_pg_pool, paddr, total_size);
161
162         return rc;
163 }
164
165 /**
166  * dma_map_host_va() - DMA mapping of the given host virtual address.
167  * @hdev: habanalabs device structure.
168  * @addr: the host virtual address of the memory area.
169  * @size: the size of the memory area.
170  * @p_userptr: pointer to result userptr structure.
171  *
172  * This function does the following:
173  * - Allocate userptr structure.
174  * - Pin the given host memory using the userptr structure.
175  * - Perform DMA mapping to have the DMA addresses of the pages.
176  */
177 static int dma_map_host_va(struct hl_device *hdev, u64 addr, u64 size,
178                                 struct hl_userptr **p_userptr)
179 {
180         struct hl_userptr *userptr;
181         int rc;
182
183         userptr = kzalloc(sizeof(*userptr), GFP_KERNEL);
184         if (!userptr) {
185                 rc = -ENOMEM;
186                 goto userptr_err;
187         }
188
189         rc = hl_pin_host_memory(hdev, addr, size, userptr);
190         if (rc) {
191                 dev_err(hdev->dev, "Failed to pin host memory\n");
192                 goto pin_err;
193         }
194
195         rc = hdev->asic_funcs->asic_dma_map_sg(hdev, userptr->sgt->sgl,
196                                         userptr->sgt->nents, DMA_BIDIRECTIONAL);
197         if (rc) {
198                 dev_err(hdev->dev, "failed to map sgt with DMA region\n");
199                 goto dma_map_err;
200         }
201
202         userptr->dma_mapped = true;
203         userptr->dir = DMA_BIDIRECTIONAL;
204         userptr->vm_type = VM_TYPE_USERPTR;
205
206         *p_userptr = userptr;
207
208         return 0;
209
210 dma_map_err:
211         hl_unpin_host_memory(hdev, userptr);
212 pin_err:
213         kfree(userptr);
214 userptr_err:
215
216         return rc;
217 }
218
219 /**
220  * dma_unmap_host_va() - DMA unmapping of the given host virtual address.
221  * @hdev: habanalabs device structure.
222  * @userptr: userptr to free.
223  *
224  * This function does the following:
225  * - Unpins the physical pages.
226  * - Frees the userptr structure.
227  */
228 static void dma_unmap_host_va(struct hl_device *hdev,
229                                 struct hl_userptr *userptr)
230 {
231         hl_unpin_host_memory(hdev, userptr);
232         kfree(userptr);
233 }
234
235 /**
236  * dram_pg_pool_do_release() - free DRAM pages pool
237  * @ref: pointer to reference object.
238  *
239  * This function does the following:
240  * - Frees the idr structure of physical pages handles.
241  * - Frees the generic pool of DRAM physical pages.
242  */
243 static void dram_pg_pool_do_release(struct kref *ref)
244 {
245         struct hl_vm *vm = container_of(ref, struct hl_vm,
246                         dram_pg_pool_refcount);
247
248         /*
249          * free the idr here as only here we know for sure that there are no
250          * allocated physical pages and hence there are no handles in use
251          */
252         idr_destroy(&vm->phys_pg_pack_handles);
253         gen_pool_destroy(vm->dram_pg_pool);
254 }
255
256 /**
257  * free_phys_pg_pack() - free physical page pack.
258  * @hdev: habanalabs device structure.
259  * @phys_pg_pack: physical page pack to free.
260  *
261  * This function does the following:
262  * - For DRAM memory only
263  *   - iterate over the pack, scrub and free each physical block structure by
264  *     returning it to the general pool.
265  *     In case of error during scrubbing, initiate hard reset.
266  *     Once hard reset is triggered, scrubbing is bypassed while freeing the
267  *     memory continues.
268  * - Free the hl_vm_phys_pg_pack structure.
269  */
270 static int free_phys_pg_pack(struct hl_device *hdev,
271                                 struct hl_vm_phys_pg_pack *phys_pg_pack)
272 {
273         struct hl_vm *vm = &hdev->vm;
274         u64 i;
275         int rc = 0;
276
277         if (phys_pg_pack->created_from_userptr)
278                 goto end;
279
280         if (phys_pg_pack->contiguous) {
281                 if (hdev->memory_scrub && !hdev->disabled) {
282                         rc = hdev->asic_funcs->scrub_device_mem(hdev,
283                                         phys_pg_pack->pages[0],
284                                         phys_pg_pack->total_size);
285                         if (rc)
286                                 dev_err(hdev->dev,
287                                         "Failed to scrub contiguous device memory\n");
288                 }
289
290                 gen_pool_free(vm->dram_pg_pool, phys_pg_pack->pages[0],
291                         phys_pg_pack->total_size);
292
293                 for (i = 0; i < phys_pg_pack->npages ; i++)
294                         kref_put(&vm->dram_pg_pool_refcount,
295                                 dram_pg_pool_do_release);
296         } else {
297                 for (i = 0 ; i < phys_pg_pack->npages ; i++) {
298                         if (hdev->memory_scrub && !hdev->disabled && rc == 0) {
299                                 rc = hdev->asic_funcs->scrub_device_mem(
300                                                 hdev,
301                                                 phys_pg_pack->pages[i],
302                                                 phys_pg_pack->page_size);
303                                 if (rc)
304                                         dev_err(hdev->dev,
305                                                 "Failed to scrub device memory\n");
306                         }
307                         gen_pool_free(vm->dram_pg_pool,
308                                 phys_pg_pack->pages[i],
309                                 phys_pg_pack->page_size);
310                         kref_put(&vm->dram_pg_pool_refcount,
311                                 dram_pg_pool_do_release);
312                 }
313         }
314
315         if (rc && !hdev->disabled)
316                 hl_device_reset(hdev, HL_RESET_HARD);
317
318 end:
319         kvfree(phys_pg_pack->pages);
320         kfree(phys_pg_pack);
321
322         return rc;
323 }
324
325 /**
326  * free_device_memory() - free device memory.
327  * @ctx: pointer to the context structure.
328  * @args: host parameters containing the requested size.
329  *
330  * This function does the following:
331  * - Free the device memory related to the given handle.
332  */
333 static int free_device_memory(struct hl_ctx *ctx, struct hl_mem_in *args)
334 {
335         struct hl_device *hdev = ctx->hdev;
336         struct hl_vm *vm = &hdev->vm;
337         struct hl_vm_phys_pg_pack *phys_pg_pack;
338         u32 handle = args->free.handle;
339
340         spin_lock(&vm->idr_lock);
341         phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle);
342         if (phys_pg_pack) {
343                 if (atomic_read(&phys_pg_pack->mapping_cnt) > 0) {
344                         dev_err(hdev->dev, "handle %u is mapped, cannot free\n",
345                                 handle);
346                         spin_unlock(&vm->idr_lock);
347                         return -EINVAL;
348                 }
349
350                 /*
351                  * must remove from idr before the freeing of the physical
352                  * pages as the refcount of the pool is also the trigger of the
353                  * idr destroy
354                  */
355                 idr_remove(&vm->phys_pg_pack_handles, handle);
356                 spin_unlock(&vm->idr_lock);
357
358                 atomic64_sub(phys_pg_pack->total_size, &ctx->dram_phys_mem);
359                 atomic64_sub(phys_pg_pack->total_size, &hdev->dram_used_mem);
360
361                 return free_phys_pg_pack(hdev, phys_pg_pack);
362         } else {
363                 spin_unlock(&vm->idr_lock);
364                 dev_err(hdev->dev,
365                         "free device memory failed, no match for handle %u\n",
366                         handle);
367                 return -EINVAL;
368         }
369
370         return 0;
371 }
372
373 /**
374  * clear_va_list_locked() - free virtual addresses list.
375  * @hdev: habanalabs device structure.
376  * @va_list: list of virtual addresses to free.
377  *
378  * This function does the following:
379  * - Iterate over the list and free each virtual addresses block.
380  *
381  * This function should be called only when va_list lock is taken.
382  */
383 static void clear_va_list_locked(struct hl_device *hdev,
384                 struct list_head *va_list)
385 {
386         struct hl_vm_va_block *va_block, *tmp;
387
388         list_for_each_entry_safe(va_block, tmp, va_list, node) {
389                 list_del(&va_block->node);
390                 kfree(va_block);
391         }
392 }
393
394 /**
395  * print_va_list_locked() - print virtual addresses list.
396  * @hdev: habanalabs device structure.
397  * @va_list: list of virtual addresses to print.
398  *
399  * This function does the following:
400  * - Iterate over the list and print each virtual addresses block.
401  *
402  * This function should be called only when va_list lock is taken.
403  */
404 static void print_va_list_locked(struct hl_device *hdev,
405                 struct list_head *va_list)
406 {
407 #if HL_MMU_DEBUG
408         struct hl_vm_va_block *va_block;
409
410         dev_dbg(hdev->dev, "print va list:\n");
411
412         list_for_each_entry(va_block, va_list, node)
413                 dev_dbg(hdev->dev,
414                         "va block, start: 0x%llx, end: 0x%llx, size: %llu\n",
415                         va_block->start, va_block->end, va_block->size);
416 #endif
417 }
418
419 /**
420  * merge_va_blocks_locked() - merge a virtual block if possible.
421  * @hdev: pointer to the habanalabs device structure.
422  * @va_list: pointer to the virtual addresses block list.
423  * @va_block: virtual block to merge with adjacent blocks.
424  *
425  * This function does the following:
426  * - Merge the given blocks with the adjacent blocks if their virtual ranges
427  *   create a contiguous virtual range.
428  *
429  * This Function should be called only when va_list lock is taken.
430  */
431 static void merge_va_blocks_locked(struct hl_device *hdev,
432                 struct list_head *va_list, struct hl_vm_va_block *va_block)
433 {
434         struct hl_vm_va_block *prev, *next;
435
436         prev = list_prev_entry(va_block, node);
437         if (&prev->node != va_list && prev->end + 1 == va_block->start) {
438                 prev->end = va_block->end;
439                 prev->size = prev->end - prev->start;
440                 list_del(&va_block->node);
441                 kfree(va_block);
442                 va_block = prev;
443         }
444
445         next = list_next_entry(va_block, node);
446         if (&next->node != va_list && va_block->end + 1 == next->start) {
447                 next->start = va_block->start;
448                 next->size = next->end - next->start;
449                 list_del(&va_block->node);
450                 kfree(va_block);
451         }
452 }
453
454 /**
455  * add_va_block_locked() - add a virtual block to the virtual addresses list.
456  * @hdev: pointer to the habanalabs device structure.
457  * @va_list: pointer to the virtual addresses block list.
458  * @start: start virtual address.
459  * @end: end virtual address.
460  *
461  * This function does the following:
462  * - Add the given block to the virtual blocks list and merge with other blocks
463  *   if a contiguous virtual block can be created.
464  *
465  * This Function should be called only when va_list lock is taken.
466  */
467 static int add_va_block_locked(struct hl_device *hdev,
468                 struct list_head *va_list, u64 start, u64 end)
469 {
470         struct hl_vm_va_block *va_block, *res = NULL;
471         u64 size = end - start;
472
473         print_va_list_locked(hdev, va_list);
474
475         list_for_each_entry(va_block, va_list, node) {
476                 /* TODO: remove upon matureness */
477                 if (hl_mem_area_crosses_range(start, size, va_block->start,
478                                 va_block->end)) {
479                         dev_err(hdev->dev,
480                                 "block crossing ranges at start 0x%llx, end 0x%llx\n",
481                                 va_block->start, va_block->end);
482                         return -EINVAL;
483                 }
484
485                 if (va_block->end < start)
486                         res = va_block;
487         }
488
489         va_block = kmalloc(sizeof(*va_block), GFP_KERNEL);
490         if (!va_block)
491                 return -ENOMEM;
492
493         va_block->start = start;
494         va_block->end = end;
495         va_block->size = size;
496
497         if (!res)
498                 list_add(&va_block->node, va_list);
499         else
500                 list_add(&va_block->node, &res->node);
501
502         merge_va_blocks_locked(hdev, va_list, va_block);
503
504         print_va_list_locked(hdev, va_list);
505
506         return 0;
507 }
508
509 /**
510  * add_va_block() - wrapper for add_va_block_locked.
511  * @hdev: pointer to the habanalabs device structure.
512  * @va_list: pointer to the virtual addresses block list.
513  * @start: start virtual address.
514  * @end: end virtual address.
515  *
516  * This function does the following:
517  * - Takes the list lock and calls add_va_block_locked.
518  */
519 static inline int add_va_block(struct hl_device *hdev,
520                 struct hl_va_range *va_range, u64 start, u64 end)
521 {
522         int rc;
523
524         mutex_lock(&va_range->lock);
525         rc = add_va_block_locked(hdev, &va_range->list, start, end);
526         mutex_unlock(&va_range->lock);
527
528         return rc;
529 }
530
531 /**
532  * is_hint_crossing_range() - check if hint address crossing specified reserved
533  * range.
534  */
535 static inline bool is_hint_crossing_range(enum hl_va_range_type range_type,
536                 u64 start_addr, u32 size, struct asic_fixed_properties *prop) {
537         bool range_cross;
538
539         if (range_type == HL_VA_RANGE_TYPE_DRAM)
540                 range_cross =
541                         hl_mem_area_crosses_range(start_addr, size,
542                         prop->hints_dram_reserved_va_range.start_addr,
543                         prop->hints_dram_reserved_va_range.end_addr);
544         else if (range_type == HL_VA_RANGE_TYPE_HOST)
545                 range_cross =
546                         hl_mem_area_crosses_range(start_addr,   size,
547                         prop->hints_host_reserved_va_range.start_addr,
548                         prop->hints_host_reserved_va_range.end_addr);
549         else
550                 range_cross =
551                         hl_mem_area_crosses_range(start_addr, size,
552                         prop->hints_host_hpage_reserved_va_range.start_addr,
553                         prop->hints_host_hpage_reserved_va_range.end_addr);
554
555         return range_cross;
556 }
557
558 /**
559  * get_va_block() - get a virtual block for the given size and alignment.
560  *
561  * @hdev: pointer to the habanalabs device structure.
562  * @va_range: pointer to the virtual addresses range.
563  * @size: requested block size.
564  * @hint_addr: hint for requested address by the user.
565  * @va_block_align: required alignment of the virtual block start address.
566  * @range_type: va range type (host, dram)
567  * @flags: additional memory flags, currently only uses HL_MEM_FORCE_HINT
568  *
569  * This function does the following:
570  * - Iterate on the virtual block list to find a suitable virtual block for the
571  *   given size, hint address and alignment.
572  * - Reserve the requested block and update the list.
573  * - Return the start address of the virtual block.
574  */
575 static u64 get_va_block(struct hl_device *hdev,
576                                 struct hl_va_range *va_range,
577                                 u64 size, u64 hint_addr, u32 va_block_align,
578                                 enum hl_va_range_type range_type,
579                                 u32 flags)
580 {
581         struct hl_vm_va_block *va_block, *new_va_block = NULL;
582         struct asic_fixed_properties *prop = &hdev->asic_prop;
583         u64 tmp_hint_addr, valid_start, valid_size, prev_start, prev_end,
584                 align_mask, reserved_valid_start = 0, reserved_valid_size = 0,
585                 dram_hint_mask = prop->dram_hints_align_mask;
586         bool add_prev = false;
587         bool is_align_pow_2  = is_power_of_2(va_range->page_size);
588         bool is_hint_dram_addr = hl_is_dram_va(hdev, hint_addr);
589         bool force_hint = flags & HL_MEM_FORCE_HINT;
590
591         if (is_align_pow_2)
592                 align_mask = ~((u64)va_block_align - 1);
593         else
594                 /*
595                  * with non-power-of-2 range we work only with page granularity
596                  * and the start address is page aligned,
597                  * so no need for alignment checking.
598                  */
599                 size = DIV_ROUND_UP_ULL(size, va_range->page_size) *
600                                                         va_range->page_size;
601
602         tmp_hint_addr = hint_addr & ~dram_hint_mask;
603
604         /* Check if we need to ignore hint address */
605         if ((is_align_pow_2 && (hint_addr & (va_block_align - 1))) ||
606                 (!is_align_pow_2 && is_hint_dram_addr &&
607                         do_div(tmp_hint_addr, va_range->page_size))) {
608
609                 if (force_hint) {
610                         /* Hint must be respected, so here we just fail */
611                         dev_err(hdev->dev,
612                                 "Hint address 0x%llx is not page aligned - cannot be respected\n",
613                                 hint_addr);
614                         return 0;
615                 }
616
617                 dev_dbg(hdev->dev,
618                         "Hint address 0x%llx will be ignored because it is not aligned\n",
619                         hint_addr);
620                 hint_addr = 0;
621         }
622
623         mutex_lock(&va_range->lock);
624
625         print_va_list_locked(hdev, &va_range->list);
626
627         list_for_each_entry(va_block, &va_range->list, node) {
628                 /* Calc the first possible aligned addr */
629                 valid_start = va_block->start;
630
631                 if (is_align_pow_2 && (valid_start & (va_block_align - 1))) {
632                         valid_start &= align_mask;
633                         valid_start += va_block_align;
634                         if (valid_start > va_block->end)
635                                 continue;
636                 }
637
638                 valid_size = va_block->end - valid_start;
639                 if (valid_size < size)
640                         continue;
641
642                 /*
643                  * In case hint address is 0, and arc_hints_range_reservation
644                  * property enabled, then avoid allocating va blocks from the
645                  * range reserved for hint addresses
646                  */
647                 if (prop->hints_range_reservation && !hint_addr)
648                         if (is_hint_crossing_range(range_type, valid_start,
649                                         size, prop))
650                                 continue;
651
652                 /* Pick the minimal length block which has the required size */
653                 if (!new_va_block || (valid_size < reserved_valid_size)) {
654                         new_va_block = va_block;
655                         reserved_valid_start = valid_start;
656                         reserved_valid_size = valid_size;
657                 }
658
659                 if (hint_addr && hint_addr >= valid_start &&
660                                         (hint_addr + size) <= va_block->end) {
661                         new_va_block = va_block;
662                         reserved_valid_start = hint_addr;
663                         reserved_valid_size = valid_size;
664                         break;
665                 }
666         }
667
668         if (!new_va_block) {
669                 dev_err(hdev->dev, "no available va block for size %llu\n",
670                                                                 size);
671                 goto out;
672         }
673
674         if (force_hint && reserved_valid_start != hint_addr) {
675                 /* Hint address must be respected. If we are here - this means
676                  * we could not respect it.
677                  */
678                 dev_err(hdev->dev,
679                         "Hint address 0x%llx could not be respected\n",
680                         hint_addr);
681                 reserved_valid_start = 0;
682                 goto out;
683         }
684
685         /*
686          * Check if there is some leftover range due to reserving the new
687          * va block, then return it to the main virtual addresses list.
688          */
689         if (reserved_valid_start > new_va_block->start) {
690                 prev_start = new_va_block->start;
691                 prev_end = reserved_valid_start - 1;
692
693                 new_va_block->start = reserved_valid_start;
694                 new_va_block->size = reserved_valid_size;
695
696                 add_prev = true;
697         }
698
699         if (new_va_block->size > size) {
700                 new_va_block->start += size;
701                 new_va_block->size = new_va_block->end - new_va_block->start;
702         } else {
703                 list_del(&new_va_block->node);
704                 kfree(new_va_block);
705         }
706
707         if (add_prev)
708                 add_va_block_locked(hdev, &va_range->list, prev_start,
709                                 prev_end);
710
711         print_va_list_locked(hdev, &va_range->list);
712 out:
713         mutex_unlock(&va_range->lock);
714
715         return reserved_valid_start;
716 }
717
718 /*
719  * hl_reserve_va_block() - reserve a virtual block of a given size.
720  * @hdev: pointer to the habanalabs device structure.
721  * @ctx: current context
722  * @type: virtual addresses range type.
723  * @size: requested block size.
724  * @alignment: required alignment in bytes of the virtual block start address,
725  *             0 means no alignment.
726  *
727  * This function does the following:
728  * - Iterate on the virtual block list to find a suitable virtual block for the
729  *   given size and alignment.
730  * - Reserve the requested block and update the list.
731  * - Return the start address of the virtual block.
732  */
733 u64 hl_reserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx,
734                 enum hl_va_range_type type, u32 size, u32 alignment)
735 {
736         return get_va_block(hdev, ctx->va_range[type], size, 0,
737                         max(alignment, ctx->va_range[type]->page_size),
738                         type, 0);
739 }
740
741 /**
742  * hl_get_va_range_type() - get va_range type for the given address and size.
743  * @address: the start address of the area we want to validate.
744  * @size: the size in bytes of the area we want to validate.
745  * @type: returned va_range type.
746  *
747  * Return: true if the area is inside a valid range, false otherwise.
748  */
749 static int hl_get_va_range_type(struct hl_ctx *ctx, u64 address, u64 size,
750                         enum hl_va_range_type *type)
751 {
752         int i;
753
754         for (i = 0 ; i < HL_VA_RANGE_TYPE_MAX; i++) {
755                 if (hl_mem_area_inside_range(address, size,
756                                 ctx->va_range[i]->start_addr,
757                                 ctx->va_range[i]->end_addr)) {
758                         *type = i;
759                         return 0;
760                 }
761         }
762
763         return -EINVAL;
764 }
765
766 /**
767  * hl_unreserve_va_block() - wrapper for add_va_block to unreserve a va block.
768  * @hdev: pointer to the habanalabs device structure
769  * @ctx: pointer to the context structure.
770  * @start: start virtual address.
771  * @end: end virtual address.
772  *
773  * This function does the following:
774  * - Takes the list lock and calls add_va_block_locked.
775  */
776 int hl_unreserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx,
777                 u64 start_addr, u64 size)
778 {
779         enum hl_va_range_type type;
780         int rc;
781
782         rc = hl_get_va_range_type(ctx, start_addr, size, &type);
783         if (rc) {
784                 dev_err(hdev->dev,
785                         "cannot find va_range for va %#llx size %llu",
786                         start_addr, size);
787                 return rc;
788         }
789
790         rc = add_va_block(hdev, ctx->va_range[type], start_addr,
791                                                 start_addr + size - 1);
792         if (rc)
793                 dev_warn(hdev->dev,
794                         "add va block failed for vaddr: 0x%llx\n", start_addr);
795
796         return rc;
797 }
798
799 /**
800  * init_phys_pg_pack_from_userptr() - initialize physical page pack from host
801  *                                    memory
802  * @ctx: pointer to the context structure.
803  * @userptr: userptr to initialize from.
804  * @pphys_pg_pack: result pointer.
805  * @force_regular_page: tell the function to ignore huge page optimization,
806  *                      even if possible. Needed for cases where the device VA
807  *                      is allocated before we know the composition of the
808  *                      physical pages
809  *
810  * This function does the following:
811  * - Pin the physical pages related to the given virtual block.
812  * - Create a physical page pack from the physical pages related to the given
813  *   virtual block.
814  */
815 static int init_phys_pg_pack_from_userptr(struct hl_ctx *ctx,
816                                 struct hl_userptr *userptr,
817                                 struct hl_vm_phys_pg_pack **pphys_pg_pack,
818                                 bool force_regular_page)
819 {
820         u32 npages, page_size = PAGE_SIZE,
821                 huge_page_size = ctx->hdev->asic_prop.pmmu_huge.page_size;
822         u32 pgs_in_huge_page = huge_page_size >> __ffs(page_size);
823         struct hl_vm_phys_pg_pack *phys_pg_pack;
824         bool first = true, is_huge_page_opt;
825         u64 page_mask, total_npages;
826         struct scatterlist *sg;
827         dma_addr_t dma_addr;
828         int rc, i, j;
829
830         phys_pg_pack = kzalloc(sizeof(*phys_pg_pack), GFP_KERNEL);
831         if (!phys_pg_pack)
832                 return -ENOMEM;
833
834         phys_pg_pack->vm_type = userptr->vm_type;
835         phys_pg_pack->created_from_userptr = true;
836         phys_pg_pack->asid = ctx->asid;
837         atomic_set(&phys_pg_pack->mapping_cnt, 1);
838
839         is_huge_page_opt = (force_regular_page ? false : true);
840
841         /* Only if all dma_addrs are aligned to 2MB and their
842          * sizes is at least 2MB, we can use huge page mapping.
843          * We limit the 2MB optimization to this condition,
844          * since later on we acquire the related VA range as one
845          * consecutive block.
846          */
847         total_npages = 0;
848         for_each_sg(userptr->sgt->sgl, sg, userptr->sgt->nents, i) {
849                 npages = hl_get_sg_info(sg, &dma_addr);
850
851                 total_npages += npages;
852
853                 if ((npages % pgs_in_huge_page) ||
854                                         (dma_addr & (huge_page_size - 1)))
855                         is_huge_page_opt = false;
856         }
857
858         if (is_huge_page_opt) {
859                 page_size = huge_page_size;
860                 do_div(total_npages, pgs_in_huge_page);
861         }
862
863         page_mask = ~(((u64) page_size) - 1);
864
865         phys_pg_pack->pages = kvmalloc_array(total_npages, sizeof(u64),
866                                                 GFP_KERNEL);
867         if (ZERO_OR_NULL_PTR(phys_pg_pack->pages)) {
868                 rc = -ENOMEM;
869                 goto page_pack_arr_mem_err;
870         }
871
872         phys_pg_pack->npages = total_npages;
873         phys_pg_pack->page_size = page_size;
874         phys_pg_pack->total_size = total_npages * page_size;
875
876         j = 0;
877         for_each_sg(userptr->sgt->sgl, sg, userptr->sgt->nents, i) {
878                 npages = hl_get_sg_info(sg, &dma_addr);
879
880                 /* align down to physical page size and save the offset */
881                 if (first) {
882                         first = false;
883                         phys_pg_pack->offset = dma_addr & (page_size - 1);
884                         dma_addr &= page_mask;
885                 }
886
887                 while (npages) {
888                         phys_pg_pack->pages[j++] = dma_addr;
889                         dma_addr += page_size;
890
891                         if (is_huge_page_opt)
892                                 npages -= pgs_in_huge_page;
893                         else
894                                 npages--;
895                 }
896         }
897
898         *pphys_pg_pack = phys_pg_pack;
899
900         return 0;
901
902 page_pack_arr_mem_err:
903         kfree(phys_pg_pack);
904
905         return rc;
906 }
907
908 /**
909  * map_phys_pg_pack() - maps the physical page pack..
910  * @ctx: pointer to the context structure.
911  * @vaddr: start address of the virtual area to map from.
912  * @phys_pg_pack: the pack of physical pages to map to.
913  *
914  * This function does the following:
915  * - Maps each chunk of virtual memory to matching physical chunk.
916  * - Stores number of successful mappings in the given argument.
917  * - Returns 0 on success, error code otherwise.
918  */
919 static int map_phys_pg_pack(struct hl_ctx *ctx, u64 vaddr,
920                                 struct hl_vm_phys_pg_pack *phys_pg_pack)
921 {
922         struct hl_device *hdev = ctx->hdev;
923         u64 next_vaddr = vaddr, paddr, mapped_pg_cnt = 0, i;
924         u32 page_size = phys_pg_pack->page_size;
925         int rc = 0;
926         bool is_host_addr;
927
928         for (i = 0 ; i < phys_pg_pack->npages ; i++) {
929                 paddr = phys_pg_pack->pages[i];
930
931                 rc = hl_mmu_map_page(ctx, next_vaddr, paddr, page_size,
932                                 (i + 1) == phys_pg_pack->npages);
933                 if (rc) {
934                         dev_err(hdev->dev,
935                                 "map failed for handle %u, npages: %llu, mapped: %llu",
936                                 phys_pg_pack->handle, phys_pg_pack->npages,
937                                 mapped_pg_cnt);
938                         goto err;
939                 }
940
941                 mapped_pg_cnt++;
942                 next_vaddr += page_size;
943         }
944
945         return 0;
946
947 err:
948         is_host_addr = !hl_is_dram_va(hdev, vaddr);
949
950         next_vaddr = vaddr;
951         for (i = 0 ; i < mapped_pg_cnt ; i++) {
952                 if (hl_mmu_unmap_page(ctx, next_vaddr, page_size,
953                                         (i + 1) == mapped_pg_cnt))
954                         dev_warn_ratelimited(hdev->dev,
955                                 "failed to unmap handle %u, va: 0x%llx, pa: 0x%llx, page size: %u\n",
956                                         phys_pg_pack->handle, next_vaddr,
957                                         phys_pg_pack->pages[i], page_size);
958
959                 next_vaddr += page_size;
960
961                 /*
962                  * unmapping on Palladium can be really long, so avoid a CPU
963                  * soft lockup bug by sleeping a little between unmapping pages
964                  *
965                  * In addition, on host num of pages could be huge,
966                  * because page size could be 4KB, so when unmapping host
967                  * pages sleep every 32K pages to avoid soft lockup
968                  */
969                 if (hdev->pldm || (is_host_addr && (i & 0x7FFF) == 0))
970                         usleep_range(50, 200);
971         }
972
973         return rc;
974 }
975
976 /**
977  * unmap_phys_pg_pack() - unmaps the physical page pack.
978  * @ctx: pointer to the context structure.
979  * @vaddr: start address of the virtual area to unmap.
980  * @phys_pg_pack: the pack of physical pages to unmap.
981  */
982 static void unmap_phys_pg_pack(struct hl_ctx *ctx, u64 vaddr,
983                                 struct hl_vm_phys_pg_pack *phys_pg_pack)
984 {
985         struct hl_device *hdev = ctx->hdev;
986         u64 next_vaddr, i;
987         bool is_host_addr;
988         u32 page_size;
989
990         is_host_addr = !hl_is_dram_va(hdev, vaddr);
991         page_size = phys_pg_pack->page_size;
992         next_vaddr = vaddr;
993
994         for (i = 0 ; i < phys_pg_pack->npages ; i++, next_vaddr += page_size) {
995                 if (hl_mmu_unmap_page(ctx, next_vaddr, page_size,
996                                        (i + 1) == phys_pg_pack->npages))
997                         dev_warn_ratelimited(hdev->dev,
998                         "unmap failed for vaddr: 0x%llx\n", next_vaddr);
999
1000                 /*
1001                  * unmapping on Palladium can be really long, so avoid a CPU
1002                  * soft lockup bug by sleeping a little between unmapping pages
1003                  *
1004                  * In addition, on host num of pages could be huge,
1005                  * because page size could be 4KB, so when unmapping host
1006                  * pages sleep every 32K pages to avoid soft lockup
1007                  */
1008                 if (hdev->pldm || (is_host_addr && (i & 0x7FFF) == 0))
1009                         usleep_range(50, 200);
1010         }
1011 }
1012
1013 static int get_paddr_from_handle(struct hl_ctx *ctx, struct hl_mem_in *args,
1014                                         u64 *paddr)
1015 {
1016         struct hl_device *hdev = ctx->hdev;
1017         struct hl_vm *vm = &hdev->vm;
1018         struct hl_vm_phys_pg_pack *phys_pg_pack;
1019         u32 handle;
1020
1021         handle = lower_32_bits(args->map_device.handle);
1022         spin_lock(&vm->idr_lock);
1023         phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle);
1024         if (!phys_pg_pack) {
1025                 spin_unlock(&vm->idr_lock);
1026                 dev_err(hdev->dev, "no match for handle %u\n", handle);
1027                 return -EINVAL;
1028         }
1029
1030         *paddr = phys_pg_pack->pages[0];
1031
1032         spin_unlock(&vm->idr_lock);
1033
1034         return 0;
1035 }
1036
1037 /**
1038  * map_device_va() - map the given memory.
1039  * @ctx: pointer to the context structure.
1040  * @args: host parameters with handle/host virtual address.
1041  * @device_addr: pointer to result device virtual address.
1042  *
1043  * This function does the following:
1044  * - If given a physical device memory handle, map to a device virtual block
1045  *   and return the start address of this block.
1046  * - If given a host virtual address and size, find the related physical pages,
1047  *   map a device virtual block to this pages and return the start address of
1048  *   this block.
1049  */
1050 static int map_device_va(struct hl_ctx *ctx, struct hl_mem_in *args,
1051                 u64 *device_addr)
1052 {
1053         struct hl_device *hdev = ctx->hdev;
1054         struct hl_vm *vm = &hdev->vm;
1055         struct hl_vm_phys_pg_pack *phys_pg_pack;
1056         struct hl_userptr *userptr = NULL;
1057         struct hl_vm_hash_node *hnode;
1058         struct hl_va_range *va_range;
1059         enum vm_type *vm_type;
1060         u64 ret_vaddr, hint_addr;
1061         u32 handle = 0, va_block_align;
1062         int rc;
1063         bool is_userptr = args->flags & HL_MEM_USERPTR;
1064         enum hl_va_range_type va_range_type = 0;
1065
1066         /* Assume failure */
1067         *device_addr = 0;
1068
1069         if (is_userptr) {
1070                 u64 addr = args->map_host.host_virt_addr,
1071                         size = args->map_host.mem_size;
1072                 u32 page_size = hdev->asic_prop.pmmu.page_size,
1073                         huge_page_size = hdev->asic_prop.pmmu_huge.page_size;
1074
1075                 rc = dma_map_host_va(hdev, addr, size, &userptr);
1076                 if (rc) {
1077                         dev_err(hdev->dev, "failed to get userptr from va\n");
1078                         return rc;
1079                 }
1080
1081                 rc = init_phys_pg_pack_from_userptr(ctx, userptr,
1082                                 &phys_pg_pack, false);
1083                 if (rc) {
1084                         dev_err(hdev->dev,
1085                                 "unable to init page pack for vaddr 0x%llx\n",
1086                                 addr);
1087                         goto init_page_pack_err;
1088                 }
1089
1090                 vm_type = (enum vm_type *) userptr;
1091                 hint_addr = args->map_host.hint_addr;
1092                 handle = phys_pg_pack->handle;
1093
1094                 /* get required alignment */
1095                 if (phys_pg_pack->page_size == page_size) {
1096                         va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST];
1097                         va_range_type = HL_VA_RANGE_TYPE_HOST;
1098                         /*
1099                          * huge page alignment may be needed in case of regular
1100                          * page mapping, depending on the host VA alignment
1101                          */
1102                         if (addr & (huge_page_size - 1))
1103                                 va_block_align = page_size;
1104                         else
1105                                 va_block_align = huge_page_size;
1106                 } else {
1107                         /*
1108                          * huge page alignment is needed in case of huge page
1109                          * mapping
1110                          */
1111                         va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE];
1112                         va_range_type = HL_VA_RANGE_TYPE_HOST_HUGE;
1113                         va_block_align = huge_page_size;
1114                 }
1115         } else {
1116                 handle = lower_32_bits(args->map_device.handle);
1117
1118                 spin_lock(&vm->idr_lock);
1119                 phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle);
1120                 if (!phys_pg_pack) {
1121                         spin_unlock(&vm->idr_lock);
1122                         dev_err(hdev->dev,
1123                                 "no match for handle %u\n", handle);
1124                         return -EINVAL;
1125                 }
1126
1127                 /* increment now to avoid freeing device memory while mapping */
1128                 atomic_inc(&phys_pg_pack->mapping_cnt);
1129
1130                 spin_unlock(&vm->idr_lock);
1131
1132                 vm_type = (enum vm_type *) phys_pg_pack;
1133
1134                 hint_addr = args->map_device.hint_addr;
1135
1136                 /* DRAM VA alignment is the same as the MMU page size */
1137                 va_range = ctx->va_range[HL_VA_RANGE_TYPE_DRAM];
1138                 va_range_type = HL_VA_RANGE_TYPE_DRAM;
1139                 va_block_align = hdev->asic_prop.dmmu.page_size;
1140         }
1141
1142         /*
1143          * relevant for mapping device physical memory only, as host memory is
1144          * implicitly shared
1145          */
1146         if (!is_userptr && !(phys_pg_pack->flags & HL_MEM_SHARED) &&
1147                         phys_pg_pack->asid != ctx->asid) {
1148                 dev_err(hdev->dev,
1149                         "Failed to map memory, handle %u is not shared\n",
1150                         handle);
1151                 rc = -EPERM;
1152                 goto shared_err;
1153         }
1154
1155         hnode = kzalloc(sizeof(*hnode), GFP_KERNEL);
1156         if (!hnode) {
1157                 rc = -ENOMEM;
1158                 goto hnode_err;
1159         }
1160
1161         if (hint_addr && phys_pg_pack->offset) {
1162                 if (args->flags & HL_MEM_FORCE_HINT) {
1163                         /* Fail if hint must be respected but it can't be */
1164                         dev_err(hdev->dev,
1165                                 "Hint address 0x%llx cannot be respected because source memory is not aligned 0x%x\n",
1166                                 hint_addr, phys_pg_pack->offset);
1167                         rc = -EINVAL;
1168                         goto va_block_err;
1169                 }
1170                 dev_dbg(hdev->dev,
1171                         "Hint address 0x%llx will be ignored because source memory is not aligned 0x%x\n",
1172                         hint_addr, phys_pg_pack->offset);
1173         }
1174
1175         ret_vaddr = get_va_block(hdev, va_range, phys_pg_pack->total_size,
1176                                         hint_addr, va_block_align,
1177                                         va_range_type, args->flags);
1178         if (!ret_vaddr) {
1179                 dev_err(hdev->dev, "no available va block for handle %u\n",
1180                                 handle);
1181                 rc = -ENOMEM;
1182                 goto va_block_err;
1183         }
1184
1185         mutex_lock(&ctx->mmu_lock);
1186
1187         rc = map_phys_pg_pack(ctx, ret_vaddr, phys_pg_pack);
1188         if (rc) {
1189                 mutex_unlock(&ctx->mmu_lock);
1190                 dev_err(hdev->dev, "mapping page pack failed for handle %u\n",
1191                                 handle);
1192                 goto map_err;
1193         }
1194
1195         rc = hdev->asic_funcs->mmu_invalidate_cache_range(hdev, false,
1196                 *vm_type, ctx->asid, ret_vaddr, phys_pg_pack->total_size);
1197
1198         mutex_unlock(&ctx->mmu_lock);
1199
1200         if (rc) {
1201                 dev_err(hdev->dev,
1202                         "mapping handle %u failed due to MMU cache invalidation\n",
1203                         handle);
1204                 goto map_err;
1205         }
1206
1207         ret_vaddr += phys_pg_pack->offset;
1208
1209         hnode->ptr = vm_type;
1210         hnode->vaddr = ret_vaddr;
1211
1212         mutex_lock(&ctx->mem_hash_lock);
1213         hash_add(ctx->mem_hash, &hnode->node, ret_vaddr);
1214         mutex_unlock(&ctx->mem_hash_lock);
1215
1216         *device_addr = ret_vaddr;
1217
1218         if (is_userptr)
1219                 rc = free_phys_pg_pack(hdev, phys_pg_pack);
1220
1221         return rc;
1222
1223 map_err:
1224         if (add_va_block(hdev, va_range, ret_vaddr,
1225                                 ret_vaddr + phys_pg_pack->total_size - 1))
1226                 dev_warn(hdev->dev,
1227                         "release va block failed for handle 0x%x, vaddr: 0x%llx\n",
1228                                 handle, ret_vaddr);
1229
1230 va_block_err:
1231         kfree(hnode);
1232 hnode_err:
1233 shared_err:
1234         atomic_dec(&phys_pg_pack->mapping_cnt);
1235         if (is_userptr)
1236                 free_phys_pg_pack(hdev, phys_pg_pack);
1237 init_page_pack_err:
1238         if (is_userptr)
1239                 dma_unmap_host_va(hdev, userptr);
1240
1241         return rc;
1242 }
1243
1244 /**
1245  * unmap_device_va() - unmap the given device virtual address.
1246  * @ctx: pointer to the context structure.
1247  * @args: host parameters with device virtual address to unmap.
1248  * @ctx_free: true if in context free flow, false otherwise.
1249  *
1250  * This function does the following:
1251  * - unmap the physical pages related to the given virtual address.
1252  * - return the device virtual block to the virtual block list.
1253  */
1254 static int unmap_device_va(struct hl_ctx *ctx, struct hl_mem_in *args,
1255                                 bool ctx_free)
1256 {
1257         struct hl_vm_phys_pg_pack *phys_pg_pack = NULL;
1258         u64 vaddr = args->unmap.device_virt_addr;
1259         struct hl_vm_hash_node *hnode = NULL;
1260         struct asic_fixed_properties *prop;
1261         struct hl_device *hdev = ctx->hdev;
1262         struct hl_userptr *userptr = NULL;
1263         struct hl_va_range *va_range;
1264         enum vm_type *vm_type;
1265         bool is_userptr;
1266         int rc = 0;
1267
1268         prop = &hdev->asic_prop;
1269
1270         /* protect from double entrance */
1271         mutex_lock(&ctx->mem_hash_lock);
1272         hash_for_each_possible(ctx->mem_hash, hnode, node, (unsigned long)vaddr)
1273                 if (vaddr == hnode->vaddr)
1274                         break;
1275
1276         if (!hnode) {
1277                 mutex_unlock(&ctx->mem_hash_lock);
1278                 dev_err(hdev->dev,
1279                         "unmap failed, no mem hnode for vaddr 0x%llx\n",
1280                         vaddr);
1281                 return -EINVAL;
1282         }
1283
1284         hash_del(&hnode->node);
1285         mutex_unlock(&ctx->mem_hash_lock);
1286
1287         vm_type = hnode->ptr;
1288
1289         if (*vm_type == VM_TYPE_USERPTR) {
1290                 is_userptr = true;
1291                 userptr = hnode->ptr;
1292
1293                 rc = init_phys_pg_pack_from_userptr(ctx, userptr, &phys_pg_pack,
1294                                                         false);
1295                 if (rc) {
1296                         dev_err(hdev->dev,
1297                                 "unable to init page pack for vaddr 0x%llx\n",
1298                                 vaddr);
1299                         goto vm_type_err;
1300                 }
1301
1302                 if (phys_pg_pack->page_size ==
1303                                         hdev->asic_prop.pmmu.page_size)
1304                         va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST];
1305                 else
1306                         va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE];
1307         } else if (*vm_type == VM_TYPE_PHYS_PACK) {
1308                 is_userptr = false;
1309                 va_range = ctx->va_range[HL_VA_RANGE_TYPE_DRAM];
1310                 phys_pg_pack = hnode->ptr;
1311         } else {
1312                 dev_warn(hdev->dev,
1313                         "unmap failed, unknown vm desc for vaddr 0x%llx\n",
1314                                 vaddr);
1315                 rc = -EFAULT;
1316                 goto vm_type_err;
1317         }
1318
1319         if (atomic_read(&phys_pg_pack->mapping_cnt) == 0) {
1320                 dev_err(hdev->dev, "vaddr 0x%llx is not mapped\n", vaddr);
1321                 rc = -EINVAL;
1322                 goto mapping_cnt_err;
1323         }
1324
1325         if (!is_userptr && !is_power_of_2(phys_pg_pack->page_size))
1326                 vaddr = prop->dram_base_address +
1327                         DIV_ROUND_DOWN_ULL(vaddr - prop->dram_base_address,
1328                                                 phys_pg_pack->page_size) *
1329                                                         phys_pg_pack->page_size;
1330         else
1331                 vaddr &= ~(((u64) phys_pg_pack->page_size) - 1);
1332
1333         mutex_lock(&ctx->mmu_lock);
1334
1335         unmap_phys_pg_pack(ctx, vaddr, phys_pg_pack);
1336
1337         /*
1338          * During context free this function is called in a loop to clean all
1339          * the context mappings. Hence the cache invalidation can be called once
1340          * at the loop end rather than for each iteration
1341          */
1342         if (!ctx_free)
1343                 rc = hdev->asic_funcs->mmu_invalidate_cache_range(hdev, true,
1344                                 *vm_type, ctx->asid, vaddr,
1345                                 phys_pg_pack->total_size);
1346
1347         mutex_unlock(&ctx->mmu_lock);
1348
1349         /*
1350          * If the context is closing we don't need to check for the MMU cache
1351          * invalidation return code and update the VA free list as in this flow
1352          * we invalidate the MMU cache outside of this unmap function and the VA
1353          * free list will be freed anyway.
1354          */
1355         if (!ctx_free) {
1356                 int tmp_rc;
1357
1358                 if (rc)
1359                         dev_err(hdev->dev,
1360                                 "unmapping vaddr 0x%llx failed due to MMU cache invalidation\n",
1361                                 vaddr);
1362
1363                 tmp_rc = add_va_block(hdev, va_range, vaddr,
1364                                         vaddr + phys_pg_pack->total_size - 1);
1365                 if (tmp_rc) {
1366                         dev_warn(hdev->dev,
1367                                         "add va block failed for vaddr: 0x%llx\n",
1368                                         vaddr);
1369                         if (!rc)
1370                                 rc = tmp_rc;
1371                 }
1372         }
1373
1374         atomic_dec(&phys_pg_pack->mapping_cnt);
1375         kfree(hnode);
1376
1377         if (is_userptr) {
1378                 free_phys_pg_pack(hdev, phys_pg_pack);
1379                 dma_unmap_host_va(hdev, userptr);
1380         }
1381
1382         return rc;
1383
1384 mapping_cnt_err:
1385         if (is_userptr)
1386                 free_phys_pg_pack(hdev, phys_pg_pack);
1387 vm_type_err:
1388         mutex_lock(&ctx->mem_hash_lock);
1389         hash_add(ctx->mem_hash, &hnode->node, vaddr);
1390         mutex_unlock(&ctx->mem_hash_lock);
1391
1392         return rc;
1393 }
1394
1395 static int map_block(struct hl_device *hdev, u64 address, u64 *handle,
1396                         u32 *size)
1397 {
1398         u32 block_id = 0;
1399         int rc;
1400
1401         rc = hdev->asic_funcs->get_hw_block_id(hdev, address, size, &block_id);
1402
1403         *handle = block_id | HL_MMAP_TYPE_BLOCK;
1404         *handle <<= PAGE_SHIFT;
1405
1406         return rc;
1407 }
1408
1409 static void hw_block_vm_close(struct vm_area_struct *vma)
1410 {
1411         struct hl_vm_hw_block_list_node *lnode =
1412                 (struct hl_vm_hw_block_list_node *) vma->vm_private_data;
1413         struct hl_ctx *ctx = lnode->ctx;
1414
1415         mutex_lock(&ctx->hw_block_list_lock);
1416         list_del(&lnode->node);
1417         mutex_unlock(&ctx->hw_block_list_lock);
1418         hl_ctx_put(ctx);
1419         kfree(lnode);
1420         vma->vm_private_data = NULL;
1421 }
1422
1423 static const struct vm_operations_struct hw_block_vm_ops = {
1424         .close = hw_block_vm_close
1425 };
1426
1427 /**
1428  * hl_hw_block_mmap() - mmap a hw block to user.
1429  * @hpriv: pointer to the private data of the fd
1430  * @vma: pointer to vm_area_struct of the process
1431  *
1432  * Driver increments context reference for every HW block mapped in order
1433  * to prevent user from closing FD without unmapping first
1434  */
1435 int hl_hw_block_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma)
1436 {
1437         struct hl_vm_hw_block_list_node *lnode;
1438         struct hl_device *hdev = hpriv->hdev;
1439         struct hl_ctx *ctx = hpriv->ctx;
1440         u32 block_id, block_size;
1441         int rc;
1442
1443         /* We use the page offset to hold the block id and thus we need to clear
1444          * it before doing the mmap itself
1445          */
1446         block_id = vma->vm_pgoff;
1447         vma->vm_pgoff = 0;
1448
1449         /* Driver only allows mapping of a complete HW block */
1450         block_size = vma->vm_end - vma->vm_start;
1451
1452         if (!access_ok((void __user *) (uintptr_t) vma->vm_start, block_size)) {
1453                 dev_err(hdev->dev,
1454                         "user pointer is invalid - 0x%lx\n",
1455                         vma->vm_start);
1456
1457                 return -EINVAL;
1458         }
1459
1460         lnode = kzalloc(sizeof(*lnode), GFP_KERNEL);
1461         if (!lnode)
1462                 return -ENOMEM;
1463
1464         vma->vm_ops = &hw_block_vm_ops;
1465         vma->vm_private_data = lnode;
1466
1467         hl_ctx_get(hdev, ctx);
1468
1469         rc = hdev->asic_funcs->hw_block_mmap(hdev, vma, block_id, block_size);
1470         if (rc) {
1471                 hl_ctx_put(ctx);
1472                 kfree(lnode);
1473                 return rc;
1474         }
1475
1476         lnode->ctx = ctx;
1477         lnode->vaddr = vma->vm_start;
1478         lnode->size = block_size;
1479         lnode->id = block_id;
1480
1481         mutex_lock(&ctx->hw_block_list_lock);
1482         list_add_tail(&lnode->node, &ctx->hw_block_mem_list);
1483         mutex_unlock(&ctx->hw_block_list_lock);
1484
1485         vma->vm_pgoff = block_id;
1486
1487         return 0;
1488 }
1489
1490 static int mem_ioctl_no_mmu(struct hl_fpriv *hpriv, union hl_mem_args *args)
1491 {
1492         struct hl_device *hdev = hpriv->hdev;
1493         struct hl_ctx *ctx = hpriv->ctx;
1494         u64 block_handle, device_addr = 0;
1495         u32 handle = 0, block_size;
1496         int rc;
1497
1498         switch (args->in.op) {
1499         case HL_MEM_OP_ALLOC:
1500                 if (args->in.alloc.mem_size == 0) {
1501                         dev_err(hdev->dev,
1502                                 "alloc size must be larger than 0\n");
1503                         rc = -EINVAL;
1504                         goto out;
1505                 }
1506
1507                 /* Force contiguous as there are no real MMU
1508                  * translations to overcome physical memory gaps
1509                  */
1510                 args->in.flags |= HL_MEM_CONTIGUOUS;
1511                 rc = alloc_device_memory(ctx, &args->in, &handle);
1512
1513                 memset(args, 0, sizeof(*args));
1514                 args->out.handle = (__u64) handle;
1515                 break;
1516
1517         case HL_MEM_OP_FREE:
1518                 rc = free_device_memory(ctx, &args->in);
1519                 break;
1520
1521         case HL_MEM_OP_MAP:
1522                 if (args->in.flags & HL_MEM_USERPTR) {
1523                         device_addr = args->in.map_host.host_virt_addr;
1524                         rc = 0;
1525                 } else {
1526                         rc = get_paddr_from_handle(ctx, &args->in,
1527                                                         &device_addr);
1528                 }
1529
1530                 memset(args, 0, sizeof(*args));
1531                 args->out.device_virt_addr = device_addr;
1532                 break;
1533
1534         case HL_MEM_OP_UNMAP:
1535                 rc = 0;
1536                 break;
1537
1538         case HL_MEM_OP_MAP_BLOCK:
1539                 rc = map_block(hdev, args->in.map_block.block_addr,
1540                                 &block_handle, &block_size);
1541                 args->out.block_handle = block_handle;
1542                 args->out.block_size = block_size;
1543                 break;
1544
1545         default:
1546                 dev_err(hdev->dev, "Unknown opcode for memory IOCTL\n");
1547                 rc = -ENOTTY;
1548                 break;
1549         }
1550
1551 out:
1552         return rc;
1553 }
1554
1555 int hl_mem_ioctl(struct hl_fpriv *hpriv, void *data)
1556 {
1557         enum hl_device_status status;
1558         union hl_mem_args *args = data;
1559         struct hl_device *hdev = hpriv->hdev;
1560         struct hl_ctx *ctx = hpriv->ctx;
1561         u64 block_handle, device_addr = 0;
1562         u32 handle = 0, block_size;
1563         int rc;
1564
1565         if (!hl_device_operational(hdev, &status)) {
1566                 dev_warn_ratelimited(hdev->dev,
1567                         "Device is %s. Can't execute MEMORY IOCTL\n",
1568                         hdev->status[status]);
1569                 return -EBUSY;
1570         }
1571
1572         if (!hdev->mmu_enable)
1573                 return mem_ioctl_no_mmu(hpriv, args);
1574
1575         switch (args->in.op) {
1576         case HL_MEM_OP_ALLOC:
1577                 if (args->in.alloc.mem_size == 0) {
1578                         dev_err(hdev->dev,
1579                                 "alloc size must be larger than 0\n");
1580                         rc = -EINVAL;
1581                         goto out;
1582                 }
1583
1584                 /* If DRAM does not support virtual memory the driver won't
1585                  * handle the allocation/freeing of that memory. However, for
1586                  * system administration/monitoring purposes, the driver will
1587                  * keep track of the amount of DRAM memory that is allocated
1588                  * and freed by the user. Because this code totally relies on
1589                  * the user's input, the driver can't ensure the validity
1590                  * of this accounting.
1591                  */
1592                 if (!hdev->asic_prop.dram_supports_virtual_memory) {
1593                         atomic64_add(args->in.alloc.mem_size,
1594                                         &ctx->dram_phys_mem);
1595                         atomic64_add(args->in.alloc.mem_size,
1596                                         &hdev->dram_used_mem);
1597
1598                         dev_dbg(hdev->dev, "DRAM alloc is not supported\n");
1599                         rc = 0;
1600
1601                         memset(args, 0, sizeof(*args));
1602                         args->out.handle = 0;
1603                         goto out;
1604                 }
1605
1606                 rc = alloc_device_memory(ctx, &args->in, &handle);
1607
1608                 memset(args, 0, sizeof(*args));
1609                 args->out.handle = (__u64) handle;
1610                 break;
1611
1612         case HL_MEM_OP_FREE:
1613                 /* If DRAM does not support virtual memory the driver won't
1614                  * handle the allocation/freeing of that memory. However, for
1615                  * system administration/monitoring purposes, the driver will
1616                  * keep track of the amount of DRAM memory that is allocated
1617                  * and freed by the user. Because this code totally relies on
1618                  * the user's input, the driver can't ensure the validity
1619                  * of this accounting.
1620                  */
1621                 if (!hdev->asic_prop.dram_supports_virtual_memory) {
1622                         atomic64_sub(args->in.alloc.mem_size,
1623                                         &ctx->dram_phys_mem);
1624                         atomic64_sub(args->in.alloc.mem_size,
1625                                         &hdev->dram_used_mem);
1626
1627                         dev_dbg(hdev->dev, "DRAM alloc is not supported\n");
1628                         rc = 0;
1629
1630                         goto out;
1631                 }
1632
1633                 rc = free_device_memory(ctx, &args->in);
1634                 break;
1635
1636         case HL_MEM_OP_MAP:
1637                 rc = map_device_va(ctx, &args->in, &device_addr);
1638
1639                 memset(args, 0, sizeof(*args));
1640                 args->out.device_virt_addr = device_addr;
1641                 break;
1642
1643         case HL_MEM_OP_UNMAP:
1644                 rc = unmap_device_va(ctx, &args->in, false);
1645                 break;
1646
1647         case HL_MEM_OP_MAP_BLOCK:
1648                 rc = map_block(hdev, args->in.map_block.block_addr,
1649                                 &block_handle, &block_size);
1650                 args->out.block_handle = block_handle;
1651                 args->out.block_size = block_size;
1652                 break;
1653
1654         default:
1655                 dev_err(hdev->dev, "Unknown opcode for memory IOCTL\n");
1656                 rc = -ENOTTY;
1657                 break;
1658         }
1659
1660 out:
1661         return rc;
1662 }
1663
1664 static int get_user_memory(struct hl_device *hdev, u64 addr, u64 size,
1665                                 u32 npages, u64 start, u32 offset,
1666                                 struct hl_userptr *userptr)
1667 {
1668         int rc;
1669
1670         if (!access_ok((void __user *) (uintptr_t) addr, size)) {
1671                 dev_err(hdev->dev, "user pointer is invalid - 0x%llx\n", addr);
1672                 return -EFAULT;
1673         }
1674
1675         userptr->pages = kvmalloc_array(npages, sizeof(*userptr->pages),
1676                                         GFP_KERNEL);
1677         if (!userptr->pages)
1678                 return -ENOMEM;
1679
1680         rc = pin_user_pages_fast(start, npages,
1681                                  FOLL_FORCE | FOLL_WRITE | FOLL_LONGTERM,
1682                                  userptr->pages);
1683
1684         if (rc != npages) {
1685                 dev_err(hdev->dev,
1686                         "Failed (%d) to pin host memory with user ptr 0x%llx, size 0x%llx, npages %d\n",
1687                         rc, addr, size, npages);
1688                 if (rc < 0)
1689                         goto destroy_pages;
1690                 npages = rc;
1691                 rc = -EFAULT;
1692                 goto put_pages;
1693         }
1694         userptr->npages = npages;
1695
1696         rc = sg_alloc_table_from_pages(userptr->sgt,
1697                                        userptr->pages,
1698                                        npages, offset, size, GFP_KERNEL);
1699         if (rc < 0) {
1700                 dev_err(hdev->dev, "failed to create SG table from pages\n");
1701                 goto put_pages;
1702         }
1703
1704         return 0;
1705
1706 put_pages:
1707         unpin_user_pages(userptr->pages, npages);
1708 destroy_pages:
1709         kvfree(userptr->pages);
1710         return rc;
1711 }
1712
1713 /**
1714  * hl_pin_host_memory() - pins a chunk of host memory.
1715  * @hdev: pointer to the habanalabs device structure.
1716  * @addr: the host virtual address of the memory area.
1717  * @size: the size of the memory area.
1718  * @userptr: pointer to hl_userptr structure.
1719  *
1720  * This function does the following:
1721  * - Pins the physical pages.
1722  * - Create an SG list from those pages.
1723  */
1724 int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u64 size,
1725                                         struct hl_userptr *userptr)
1726 {
1727         u64 start, end;
1728         u32 npages, offset;
1729         int rc;
1730
1731         if (!size) {
1732                 dev_err(hdev->dev, "size to pin is invalid - %llu\n", size);
1733                 return -EINVAL;
1734         }
1735
1736         /*
1737          * If the combination of the address and size requested for this memory
1738          * region causes an integer overflow, return error.
1739          */
1740         if (((addr + size) < addr) ||
1741                         PAGE_ALIGN(addr + size) < (addr + size)) {
1742                 dev_err(hdev->dev,
1743                         "user pointer 0x%llx + %llu causes integer overflow\n",
1744                         addr, size);
1745                 return -EINVAL;
1746         }
1747
1748         userptr->pid = current->pid;
1749         userptr->sgt = kzalloc(sizeof(*userptr->sgt), GFP_KERNEL);
1750         if (!userptr->sgt)
1751                 return -ENOMEM;
1752
1753         start = addr & PAGE_MASK;
1754         offset = addr & ~PAGE_MASK;
1755         end = PAGE_ALIGN(addr + size);
1756         npages = (end - start) >> PAGE_SHIFT;
1757
1758         userptr->size = size;
1759         userptr->addr = addr;
1760         userptr->dma_mapped = false;
1761         INIT_LIST_HEAD(&userptr->job_node);
1762
1763         rc = get_user_memory(hdev, addr, size, npages, start, offset,
1764                                 userptr);
1765         if (rc) {
1766                 dev_err(hdev->dev,
1767                         "failed to get user memory for address 0x%llx\n",
1768                         addr);
1769                 goto free_sgt;
1770         }
1771
1772         hl_debugfs_add_userptr(hdev, userptr);
1773
1774         return 0;
1775
1776 free_sgt:
1777         kfree(userptr->sgt);
1778         return rc;
1779 }
1780
1781 /*
1782  * hl_unpin_host_memory - unpins a chunk of host memory.
1783  * @hdev: pointer to the habanalabs device structure
1784  * @userptr: pointer to hl_userptr structure
1785  *
1786  * This function does the following:
1787  * - Unpins the physical pages related to the host memory
1788  * - Free the SG list
1789  */
1790 void hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr)
1791 {
1792         hl_debugfs_remove_userptr(hdev, userptr);
1793
1794         if (userptr->dma_mapped)
1795                 hdev->asic_funcs->hl_dma_unmap_sg(hdev, userptr->sgt->sgl,
1796                                                         userptr->sgt->nents,
1797                                                         userptr->dir);
1798
1799         unpin_user_pages_dirty_lock(userptr->pages, userptr->npages, true);
1800         kvfree(userptr->pages);
1801
1802         list_del(&userptr->job_node);
1803
1804         sg_free_table(userptr->sgt);
1805         kfree(userptr->sgt);
1806 }
1807
1808 /**
1809  * hl_userptr_delete_list() - clear userptr list.
1810  * @hdev: pointer to the habanalabs device structure.
1811  * @userptr_list: pointer to the list to clear.
1812  *
1813  * This function does the following:
1814  * - Iterates over the list and unpins the host memory and frees the userptr
1815  *   structure.
1816  */
1817 void hl_userptr_delete_list(struct hl_device *hdev,
1818                                 struct list_head *userptr_list)
1819 {
1820         struct hl_userptr *userptr, *tmp;
1821
1822         list_for_each_entry_safe(userptr, tmp, userptr_list, job_node) {
1823                 hl_unpin_host_memory(hdev, userptr);
1824                 kfree(userptr);
1825         }
1826
1827         INIT_LIST_HEAD(userptr_list);
1828 }
1829
1830 /**
1831  * hl_userptr_is_pinned() - returns whether the given userptr is pinned.
1832  * @hdev: pointer to the habanalabs device structure.
1833  * @userptr_list: pointer to the list to clear.
1834  * @userptr: pointer to userptr to check.
1835  *
1836  * This function does the following:
1837  * - Iterates over the list and checks if the given userptr is in it, means is
1838  *   pinned. If so, returns true, otherwise returns false.
1839  */
1840 bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr,
1841                                 u32 size, struct list_head *userptr_list,
1842                                 struct hl_userptr **userptr)
1843 {
1844         list_for_each_entry((*userptr), userptr_list, job_node) {
1845                 if ((addr == (*userptr)->addr) && (size == (*userptr)->size))
1846                         return true;
1847         }
1848
1849         return false;
1850 }
1851
1852 /**
1853  * va_range_init() - initialize virtual addresses range.
1854  * @hdev: pointer to the habanalabs device structure.
1855  * @va_range: pointer to the range to initialize.
1856  * @start: range start address.
1857  * @end: range end address.
1858  *
1859  * This function does the following:
1860  * - Initializes the virtual addresses list of the given range with the given
1861  *   addresses.
1862  */
1863 static int va_range_init(struct hl_device *hdev, struct hl_va_range *va_range,
1864                                 u64 start, u64 end, u32 page_size)
1865 {
1866         int rc;
1867
1868         INIT_LIST_HEAD(&va_range->list);
1869
1870         /*
1871          * PAGE_SIZE alignment
1872          * it is the callers responsibility to align the addresses if the
1873          * page size is not a power of 2
1874          */
1875
1876         if (is_power_of_2(page_size)) {
1877                 if (start & (PAGE_SIZE - 1)) {
1878                         start &= PAGE_MASK;
1879                         start += PAGE_SIZE;
1880                 }
1881
1882                 if (end & (PAGE_SIZE - 1))
1883                         end &= PAGE_MASK;
1884         }
1885
1886         if (start >= end) {
1887                 dev_err(hdev->dev, "too small vm range for va list\n");
1888                 return -EFAULT;
1889         }
1890
1891         rc = add_va_block(hdev, va_range, start, end);
1892
1893         if (rc) {
1894                 dev_err(hdev->dev, "Failed to init host va list\n");
1895                 return rc;
1896         }
1897
1898         va_range->start_addr = start;
1899         va_range->end_addr = end;
1900         va_range->page_size = page_size;
1901
1902         return 0;
1903 }
1904
1905 /**
1906  * va_range_fini() - clear a virtual addresses range.
1907  * @hdev: pointer to the habanalabs structure.
1908  * va_range: pointer to virtual addresses rang.e
1909  *
1910  * This function does the following:
1911  * - Frees the virtual addresses block list and its lock.
1912  */
1913 static void va_range_fini(struct hl_device *hdev, struct hl_va_range *va_range)
1914 {
1915         mutex_lock(&va_range->lock);
1916         clear_va_list_locked(hdev, &va_range->list);
1917         mutex_unlock(&va_range->lock);
1918
1919         mutex_destroy(&va_range->lock);
1920         kfree(va_range);
1921 }
1922
1923 /**
1924  * vm_ctx_init_with_ranges() - initialize virtual memory for context.
1925  * @ctx: pointer to the habanalabs context structure.
1926  * @host_range_start: host virtual addresses range start.
1927  * @host_range_end: host virtual addresses range end.
1928  * @host_huge_range_start: host virtual addresses range start for memory
1929  *                         allocated with huge pages.
1930  * @host_huge_range_end: host virtual addresses range end for memory allocated
1931  *                        with huge pages.
1932  * @dram_range_start: dram virtual addresses range start.
1933  * @dram_range_end: dram virtual addresses range end.
1934  *
1935  * This function initializes the following:
1936  * - MMU for context.
1937  * - Virtual address to area descriptor hashtable.
1938  * - Virtual block list of available virtual memory.
1939  */
1940 static int vm_ctx_init_with_ranges(struct hl_ctx *ctx,
1941                                         u64 host_range_start,
1942                                         u64 host_range_end,
1943                                         u32 host_page_size,
1944                                         u64 host_huge_range_start,
1945                                         u64 host_huge_range_end,
1946                                         u32 host_huge_page_size,
1947                                         u64 dram_range_start,
1948                                         u64 dram_range_end,
1949                                         u32 dram_page_size)
1950 {
1951         struct hl_device *hdev = ctx->hdev;
1952         int i, rc;
1953
1954         for (i = 0 ; i < HL_VA_RANGE_TYPE_MAX ; i++) {
1955                 ctx->va_range[i] =
1956                         kzalloc(sizeof(struct hl_va_range), GFP_KERNEL);
1957                 if (!ctx->va_range[i]) {
1958                         rc = -ENOMEM;
1959                         goto free_va_range;
1960                 }
1961         }
1962
1963         rc = hl_mmu_ctx_init(ctx);
1964         if (rc) {
1965                 dev_err(hdev->dev, "failed to init context %d\n", ctx->asid);
1966                 goto free_va_range;
1967         }
1968
1969         mutex_init(&ctx->mem_hash_lock);
1970         hash_init(ctx->mem_hash);
1971
1972         mutex_init(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock);
1973
1974         rc = va_range_init(hdev, ctx->va_range[HL_VA_RANGE_TYPE_HOST],
1975                         host_range_start, host_range_end, host_page_size);
1976         if (rc) {
1977                 dev_err(hdev->dev, "failed to init host vm range\n");
1978                 goto mmu_ctx_fini;
1979         }
1980
1981         if (hdev->pmmu_huge_range) {
1982                 mutex_init(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock);
1983
1984                 rc = va_range_init(hdev,
1985                         ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE],
1986                         host_huge_range_start, host_huge_range_end,
1987                         host_huge_page_size);
1988                 if (rc) {
1989                         dev_err(hdev->dev,
1990                                 "failed to init host huge vm range\n");
1991                         goto clear_host_va_range;
1992                 }
1993         } else {
1994                 kfree(ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]);
1995                 ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE] =
1996                                 ctx->va_range[HL_VA_RANGE_TYPE_HOST];
1997         }
1998
1999         mutex_init(&ctx->va_range[HL_VA_RANGE_TYPE_DRAM]->lock);
2000
2001         rc = va_range_init(hdev, ctx->va_range[HL_VA_RANGE_TYPE_DRAM],
2002                         dram_range_start, dram_range_end, dram_page_size);
2003         if (rc) {
2004                 dev_err(hdev->dev, "failed to init dram vm range\n");
2005                 goto clear_host_huge_va_range;
2006         }
2007
2008         hl_debugfs_add_ctx_mem_hash(hdev, ctx);
2009
2010         return 0;
2011
2012 clear_host_huge_va_range:
2013         mutex_destroy(&ctx->va_range[HL_VA_RANGE_TYPE_DRAM]->lock);
2014
2015         if (hdev->pmmu_huge_range) {
2016                 mutex_lock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock);
2017                 clear_va_list_locked(hdev,
2018                         &ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->list);
2019                 mutex_unlock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock);
2020         }
2021 clear_host_va_range:
2022         if (hdev->pmmu_huge_range)
2023                 mutex_destroy(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock);
2024         mutex_lock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock);
2025         clear_va_list_locked(hdev, &ctx->va_range[HL_VA_RANGE_TYPE_HOST]->list);
2026         mutex_unlock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock);
2027 mmu_ctx_fini:
2028         mutex_destroy(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock);
2029         mutex_destroy(&ctx->mem_hash_lock);
2030         hl_mmu_ctx_fini(ctx);
2031 free_va_range:
2032         for (i = 0 ; i < HL_VA_RANGE_TYPE_MAX ; i++)
2033                 kfree(ctx->va_range[i]);
2034
2035         return rc;
2036 }
2037
2038 int hl_vm_ctx_init(struct hl_ctx *ctx)
2039 {
2040         struct asic_fixed_properties *prop = &ctx->hdev->asic_prop;
2041         u64 host_range_start, host_range_end, host_huge_range_start,
2042                 host_huge_range_end, dram_range_start, dram_range_end;
2043         u32 host_page_size, host_huge_page_size, dram_page_size;
2044
2045         atomic64_set(&ctx->dram_phys_mem, 0);
2046
2047         /*
2048          * - If MMU is enabled, init the ranges as usual.
2049          * - If MMU is disabled, in case of host mapping, the returned address
2050          *   is the given one.
2051          *   In case of DRAM mapping, the returned address is the physical
2052          *   address of the memory related to the given handle.
2053          */
2054         if (!ctx->hdev->mmu_enable)
2055                 return 0;
2056
2057         dram_range_start = prop->dmmu.start_addr;
2058         dram_range_end = prop->dmmu.end_addr;
2059         dram_page_size = prop->dram_page_size ?
2060                                 prop->dram_page_size : prop->dmmu.page_size;
2061         host_range_start = prop->pmmu.start_addr;
2062         host_range_end = prop->pmmu.end_addr;
2063         host_page_size = prop->pmmu.page_size;
2064         host_huge_range_start = prop->pmmu_huge.start_addr;
2065         host_huge_range_end = prop->pmmu_huge.end_addr;
2066         host_huge_page_size = prop->pmmu_huge.page_size;
2067
2068         return vm_ctx_init_with_ranges(ctx, host_range_start, host_range_end,
2069                         host_page_size, host_huge_range_start,
2070                         host_huge_range_end, host_huge_page_size,
2071                         dram_range_start, dram_range_end, dram_page_size);
2072 }
2073
2074 /**
2075  * hl_vm_ctx_fini() - virtual memory teardown of context.
2076  * @ctx: pointer to the habanalabs context structure.
2077  *
2078  * This function perform teardown the following:
2079  * - Virtual block list of available virtual memory.
2080  * - Virtual address to area descriptor hashtable.
2081  * - MMU for context.
2082  *
2083  * In addition this function does the following:
2084  * - Unmaps the existing hashtable nodes if the hashtable is not empty. The
2085  *   hashtable should be empty as no valid mappings should exist at this
2086  *   point.
2087  * - Frees any existing physical page list from the idr which relates to the
2088  *   current context asid.
2089  * - This function checks the virtual block list for correctness. At this point
2090  *   the list should contain one element which describes the whole virtual
2091  *   memory range of the context. Otherwise, a warning is printed.
2092  */
2093 void hl_vm_ctx_fini(struct hl_ctx *ctx)
2094 {
2095         struct hl_device *hdev = ctx->hdev;
2096         struct hl_vm *vm = &hdev->vm;
2097         struct hl_vm_phys_pg_pack *phys_pg_list;
2098         struct hl_vm_hash_node *hnode;
2099         struct hlist_node *tmp_node;
2100         struct hl_mem_in args;
2101         int i;
2102
2103         if (!hdev->mmu_enable)
2104                 return;
2105
2106         hl_debugfs_remove_ctx_mem_hash(hdev, ctx);
2107
2108         /*
2109          * Clearly something went wrong on hard reset so no point in printing
2110          * another side effect error
2111          */
2112         if (!hdev->hard_reset_pending && !hash_empty(ctx->mem_hash))
2113                 dev_dbg(hdev->dev,
2114                         "user released device without removing its memory mappings\n");
2115
2116         hash_for_each_safe(ctx->mem_hash, i, tmp_node, hnode, node) {
2117                 dev_dbg(hdev->dev,
2118                         "hl_mem_hash_node of vaddr 0x%llx of asid %d is still alive\n",
2119                         hnode->vaddr, ctx->asid);
2120                 args.unmap.device_virt_addr = hnode->vaddr;
2121                 unmap_device_va(ctx, &args, true);
2122         }
2123
2124         mutex_lock(&ctx->mmu_lock);
2125
2126         /* invalidate the cache once after the unmapping loop */
2127         hdev->asic_funcs->mmu_invalidate_cache(hdev, true, VM_TYPE_USERPTR);
2128         hdev->asic_funcs->mmu_invalidate_cache(hdev, true, VM_TYPE_PHYS_PACK);
2129
2130         mutex_unlock(&ctx->mmu_lock);
2131
2132         spin_lock(&vm->idr_lock);
2133         idr_for_each_entry(&vm->phys_pg_pack_handles, phys_pg_list, i)
2134                 if (phys_pg_list->asid == ctx->asid) {
2135                         dev_dbg(hdev->dev,
2136                                 "page list 0x%px of asid %d is still alive\n",
2137                                 phys_pg_list, ctx->asid);
2138                         atomic64_sub(phys_pg_list->total_size,
2139                                         &hdev->dram_used_mem);
2140                         free_phys_pg_pack(hdev, phys_pg_list);
2141                         idr_remove(&vm->phys_pg_pack_handles, i);
2142                 }
2143         spin_unlock(&vm->idr_lock);
2144
2145         va_range_fini(hdev, ctx->va_range[HL_VA_RANGE_TYPE_DRAM]);
2146         va_range_fini(hdev, ctx->va_range[HL_VA_RANGE_TYPE_HOST]);
2147
2148         if (hdev->pmmu_huge_range)
2149                 va_range_fini(hdev, ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]);
2150
2151         mutex_destroy(&ctx->mem_hash_lock);
2152         hl_mmu_ctx_fini(ctx);
2153
2154         /* In this case we need to clear the global accounting of DRAM usage
2155          * because the user notifies us on allocations. If the user is no more,
2156          * all DRAM is available
2157          */
2158         if (ctx->asid != HL_KERNEL_ASID_ID &&
2159                         !hdev->asic_prop.dram_supports_virtual_memory)
2160                 atomic64_set(&hdev->dram_used_mem, 0);
2161 }
2162
2163 /**
2164  * hl_vm_init() - initialize virtual memory module.
2165  * @hdev: pointer to the habanalabs device structure.
2166  *
2167  * This function initializes the following:
2168  * - MMU module.
2169  * - DRAM physical pages pool of 2MB.
2170  * - Idr for device memory allocation handles.
2171  */
2172 int hl_vm_init(struct hl_device *hdev)
2173 {
2174         struct asic_fixed_properties *prop = &hdev->asic_prop;
2175         struct hl_vm *vm = &hdev->vm;
2176         int rc;
2177
2178         if (is_power_of_2(prop->dram_page_size))
2179                 vm->dram_pg_pool =
2180                         gen_pool_create(__ffs(prop->dram_page_size), -1);
2181         else
2182                 vm->dram_pg_pool =
2183                         gen_pool_create(__ffs(DRAM_POOL_PAGE_SIZE), -1);
2184
2185         if (!vm->dram_pg_pool) {
2186                 dev_err(hdev->dev, "Failed to create dram page pool\n");
2187                 return -ENOMEM;
2188         }
2189
2190         kref_init(&vm->dram_pg_pool_refcount);
2191
2192         rc = gen_pool_add(vm->dram_pg_pool, prop->dram_user_base_address,
2193                         prop->dram_end_address - prop->dram_user_base_address,
2194                         -1);
2195
2196         if (rc) {
2197                 dev_err(hdev->dev,
2198                         "Failed to add memory to dram page pool %d\n", rc);
2199                 goto pool_add_err;
2200         }
2201
2202         spin_lock_init(&vm->idr_lock);
2203         idr_init(&vm->phys_pg_pack_handles);
2204
2205         atomic64_set(&hdev->dram_used_mem, 0);
2206
2207         vm->init_done = true;
2208
2209         return 0;
2210
2211 pool_add_err:
2212         gen_pool_destroy(vm->dram_pg_pool);
2213
2214         return rc;
2215 }
2216
2217 /**
2218  * hl_vm_fini() - virtual memory module teardown.
2219  * @hdev: pointer to the habanalabs device structure.
2220  *
2221  * This function perform teardown to the following:
2222  * - Idr for device memory allocation handles.
2223  * - DRAM physical pages pool of 2MB.
2224  * - MMU module.
2225  */
2226 void hl_vm_fini(struct hl_device *hdev)
2227 {
2228         struct hl_vm *vm = &hdev->vm;
2229
2230         if (!vm->init_done)
2231                 return;
2232
2233         /*
2234          * At this point all the contexts should be freed and hence no DRAM
2235          * memory should be in use. Hence the DRAM pool should be freed here.
2236          */
2237         if (kref_put(&vm->dram_pg_pool_refcount, dram_pg_pool_do_release) != 1)
2238                 dev_warn(hdev->dev, "dram_pg_pool was not destroyed on %s\n",
2239                                 __func__);
2240
2241         vm->init_done = false;
2242 }
2243
2244 /**
2245  * hl_hw_block_mem_init() - HW block memory initialization.
2246  * @ctx: pointer to the habanalabs context structure.
2247  *
2248  * This function initializes the HW block virtual mapped addresses list and
2249  * it's lock.
2250  */
2251 void hl_hw_block_mem_init(struct hl_ctx *ctx)
2252 {
2253         mutex_init(&ctx->hw_block_list_lock);
2254         INIT_LIST_HEAD(&ctx->hw_block_mem_list);
2255 }
2256
2257 /**
2258  * hl_hw_block_mem_fini() - HW block memory teardown.
2259  * @ctx: pointer to the habanalabs context structure.
2260  *
2261  * This function clears the HW block virtual mapped addresses list and destroys
2262  * it's lock.
2263  */
2264 void hl_hw_block_mem_fini(struct hl_ctx *ctx)
2265 {
2266         struct hl_vm_hw_block_list_node *lnode, *tmp;
2267
2268         if (!list_empty(&ctx->hw_block_mem_list))
2269                 dev_crit(ctx->hdev->dev, "HW block mem list isn't empty\n");
2270
2271         list_for_each_entry_safe(lnode, tmp, &ctx->hw_block_mem_list, node) {
2272                 list_del(&lnode->node);
2273                 kfree(lnode);
2274         }
2275
2276         mutex_destroy(&ctx->hw_block_list_lock);
2277 }