Merge tag 'pm-5.15-rc1-3' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[linux-2.6-microblaze.git] / drivers / misc / habanalabs / common / hw_queue.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 /*
4  * Copyright 2016-2019 HabanaLabs, Ltd.
5  * All Rights Reserved.
6  */
7
8 #include "habanalabs.h"
9
10 #include <linux/slab.h>
11
12 /*
13  * hl_queue_add_ptr - add to pi or ci and checks if it wraps around
14  *
15  * @ptr: the current pi/ci value
16  * @val: the amount to add
17  *
18  * Add val to ptr. It can go until twice the queue length.
19  */
20 inline u32 hl_hw_queue_add_ptr(u32 ptr, u16 val)
21 {
22         ptr += val;
23         ptr &= ((HL_QUEUE_LENGTH << 1) - 1);
24         return ptr;
25 }
26 static inline int queue_ci_get(atomic_t *ci, u32 queue_len)
27 {
28         return atomic_read(ci) & ((queue_len << 1) - 1);
29 }
30
31 static inline int queue_free_slots(struct hl_hw_queue *q, u32 queue_len)
32 {
33         int delta = (q->pi - queue_ci_get(&q->ci, queue_len));
34
35         if (delta >= 0)
36                 return (queue_len - delta);
37         else
38                 return (abs(delta) - queue_len);
39 }
40
41 void hl_hw_queue_update_ci(struct hl_cs *cs)
42 {
43         struct hl_device *hdev = cs->ctx->hdev;
44         struct hl_hw_queue *q;
45         int i;
46
47         if (hdev->disabled)
48                 return;
49
50         q = &hdev->kernel_queues[0];
51
52         /* There are no internal queues if H/W queues are being used */
53         if (!hdev->asic_prop.max_queues || q->queue_type == QUEUE_TYPE_HW)
54                 return;
55
56         /* We must increment CI for every queue that will never get a
57          * completion, there are 2 scenarios this can happen:
58          * 1. All queues of a non completion CS will never get a completion.
59          * 2. Internal queues never gets completion.
60          */
61         for (i = 0 ; i < hdev->asic_prop.max_queues ; i++, q++) {
62                 if (!cs_needs_completion(cs) || q->queue_type == QUEUE_TYPE_INT)
63                         atomic_add(cs->jobs_in_queue_cnt[i], &q->ci);
64         }
65 }
66
67 /*
68  * hl_hw_queue_submit_bd() - Submit a buffer descriptor to an external or a
69  *                                H/W queue.
70  * @hdev: pointer to habanalabs device structure
71  * @q: pointer to habanalabs queue structure
72  * @ctl: BD's control word
73  * @len: BD's length
74  * @ptr: BD's pointer
75  *
76  * This function assumes there is enough space on the queue to submit a new
77  * BD to it. It initializes the next BD and calls the device specific
78  * function to set the pi (and doorbell)
79  *
80  * This function must be called when the scheduler mutex is taken
81  *
82  */
83 void hl_hw_queue_submit_bd(struct hl_device *hdev, struct hl_hw_queue *q,
84                 u32 ctl, u32 len, u64 ptr)
85 {
86         struct hl_bd *bd;
87
88         bd = q->kernel_address;
89         bd += hl_pi_2_offset(q->pi);
90         bd->ctl = cpu_to_le32(ctl);
91         bd->len = cpu_to_le32(len);
92         bd->ptr = cpu_to_le64(ptr);
93
94         q->pi = hl_queue_inc_ptr(q->pi);
95         hdev->asic_funcs->ring_doorbell(hdev, q->hw_queue_id, q->pi);
96 }
97
98 /*
99  * ext_queue_sanity_checks - perform some sanity checks on external queue
100  *
101  * @hdev              : pointer to hl_device structure
102  * @q                 : pointer to hl_hw_queue structure
103  * @num_of_entries    : how many entries to check for space
104  * @reserve_cq_entry  : whether to reserve an entry in the cq
105  *
106  * H/W queues spinlock should be taken before calling this function
107  *
108  * Perform the following:
109  * - Make sure we have enough space in the h/w queue
110  * - Make sure we have enough space in the completion queue
111  * - Reserve space in the completion queue (needs to be reversed if there
112  *   is a failure down the road before the actual submission of work). Only
113  *   do this action if reserve_cq_entry is true
114  *
115  */
116 static int ext_queue_sanity_checks(struct hl_device *hdev,
117                                 struct hl_hw_queue *q, int num_of_entries,
118                                 bool reserve_cq_entry)
119 {
120         atomic_t *free_slots =
121                         &hdev->completion_queue[q->cq_id].free_slots_cnt;
122         int free_slots_cnt;
123
124         /* Check we have enough space in the queue */
125         free_slots_cnt = queue_free_slots(q, HL_QUEUE_LENGTH);
126
127         if (free_slots_cnt < num_of_entries) {
128                 dev_dbg(hdev->dev, "Queue %d doesn't have room for %d CBs\n",
129                         q->hw_queue_id, num_of_entries);
130                 return -EAGAIN;
131         }
132
133         if (reserve_cq_entry) {
134                 /*
135                  * Check we have enough space in the completion queue
136                  * Add -1 to counter (decrement) unless counter was already 0
137                  * In that case, CQ is full so we can't submit a new CB because
138                  * we won't get ack on its completion
139                  * atomic_add_unless will return 0 if counter was already 0
140                  */
141                 if (atomic_add_negative(num_of_entries * -1, free_slots)) {
142                         dev_dbg(hdev->dev, "No space for %d on CQ %d\n",
143                                 num_of_entries, q->hw_queue_id);
144                         atomic_add(num_of_entries, free_slots);
145                         return -EAGAIN;
146                 }
147         }
148
149         return 0;
150 }
151
152 /*
153  * int_queue_sanity_checks - perform some sanity checks on internal queue
154  *
155  * @hdev              : pointer to hl_device structure
156  * @q                 : pointer to hl_hw_queue structure
157  * @num_of_entries    : how many entries to check for space
158  *
159  * H/W queues spinlock should be taken before calling this function
160  *
161  * Perform the following:
162  * - Make sure we have enough space in the h/w queue
163  *
164  */
165 static int int_queue_sanity_checks(struct hl_device *hdev,
166                                         struct hl_hw_queue *q,
167                                         int num_of_entries)
168 {
169         int free_slots_cnt;
170
171         if (num_of_entries > q->int_queue_len) {
172                 dev_err(hdev->dev,
173                         "Cannot populate queue %u with %u jobs\n",
174                         q->hw_queue_id, num_of_entries);
175                 return -ENOMEM;
176         }
177
178         /* Check we have enough space in the queue */
179         free_slots_cnt = queue_free_slots(q, q->int_queue_len);
180
181         if (free_slots_cnt < num_of_entries) {
182                 dev_dbg(hdev->dev, "Queue %d doesn't have room for %d CBs\n",
183                         q->hw_queue_id, num_of_entries);
184                 return -EAGAIN;
185         }
186
187         return 0;
188 }
189
190 /*
191  * hw_queue_sanity_checks() - Make sure we have enough space in the h/w queue
192  * @hdev: Pointer to hl_device structure.
193  * @q: Pointer to hl_hw_queue structure.
194  * @num_of_entries: How many entries to check for space.
195  *
196  * Notice: We do not reserve queue entries so this function mustn't be called
197  *         more than once per CS for the same queue
198  *
199  */
200 static int hw_queue_sanity_checks(struct hl_device *hdev, struct hl_hw_queue *q,
201                                         int num_of_entries)
202 {
203         int free_slots_cnt;
204
205         /* Check we have enough space in the queue */
206         free_slots_cnt = queue_free_slots(q, HL_QUEUE_LENGTH);
207
208         if (free_slots_cnt < num_of_entries) {
209                 dev_dbg(hdev->dev, "Queue %d doesn't have room for %d CBs\n",
210                         q->hw_queue_id, num_of_entries);
211                 return -EAGAIN;
212         }
213
214         return 0;
215 }
216
217 /*
218  * hl_hw_queue_send_cb_no_cmpl - send a single CB (not a JOB) without completion
219  *
220  * @hdev: pointer to hl_device structure
221  * @hw_queue_id: Queue's type
222  * @cb_size: size of CB
223  * @cb_ptr: pointer to CB location
224  *
225  * This function sends a single CB, that must NOT generate a completion entry.
226  * Sending CPU messages can be done instead via 'hl_hw_queue_submit_bd()'
227  */
228 int hl_hw_queue_send_cb_no_cmpl(struct hl_device *hdev, u32 hw_queue_id,
229                                 u32 cb_size, u64 cb_ptr)
230 {
231         struct hl_hw_queue *q = &hdev->kernel_queues[hw_queue_id];
232         int rc = 0;
233
234         hdev->asic_funcs->hw_queues_lock(hdev);
235
236         if (hdev->disabled) {
237                 rc = -EPERM;
238                 goto out;
239         }
240
241         /*
242          * hl_hw_queue_send_cb_no_cmpl() is called for queues of a H/W queue
243          * type only on init phase, when the queues are empty and being tested,
244          * so there is no need for sanity checks.
245          */
246         if (q->queue_type != QUEUE_TYPE_HW) {
247                 rc = ext_queue_sanity_checks(hdev, q, 1, false);
248                 if (rc)
249                         goto out;
250         }
251
252         hl_hw_queue_submit_bd(hdev, q, 0, cb_size, cb_ptr);
253
254 out:
255         hdev->asic_funcs->hw_queues_unlock(hdev);
256
257         return rc;
258 }
259
260 /*
261  * ext_queue_schedule_job - submit a JOB to an external queue
262  *
263  * @job: pointer to the job that needs to be submitted to the queue
264  *
265  * This function must be called when the scheduler mutex is taken
266  *
267  */
268 static void ext_queue_schedule_job(struct hl_cs_job *job)
269 {
270         struct hl_device *hdev = job->cs->ctx->hdev;
271         struct hl_hw_queue *q = &hdev->kernel_queues[job->hw_queue_id];
272         struct hl_cq_entry cq_pkt;
273         struct hl_cq *cq;
274         u64 cq_addr;
275         struct hl_cb *cb;
276         u32 ctl;
277         u32 len;
278         u64 ptr;
279
280         /*
281          * Update the JOB ID inside the BD CTL so the device would know what
282          * to write in the completion queue
283          */
284         ctl = ((q->pi << BD_CTL_SHADOW_INDEX_SHIFT) & BD_CTL_SHADOW_INDEX_MASK);
285
286         cb = job->patched_cb;
287         len = job->job_cb_size;
288         ptr = cb->bus_address;
289
290         /* Skip completion flow in case this is a non completion CS */
291         if (!cs_needs_completion(job->cs))
292                 goto submit_bd;
293
294         cq_pkt.data = cpu_to_le32(
295                         ((q->pi << CQ_ENTRY_SHADOW_INDEX_SHIFT)
296                                 & CQ_ENTRY_SHADOW_INDEX_MASK) |
297                         FIELD_PREP(CQ_ENTRY_SHADOW_INDEX_VALID_MASK, 1) |
298                         FIELD_PREP(CQ_ENTRY_READY_MASK, 1));
299
300         /*
301          * No need to protect pi_offset because scheduling to the
302          * H/W queues is done under the scheduler mutex
303          *
304          * No need to check if CQ is full because it was already
305          * checked in ext_queue_sanity_checks
306          */
307         cq = &hdev->completion_queue[q->cq_id];
308         cq_addr = cq->bus_address + cq->pi * sizeof(struct hl_cq_entry);
309
310         hdev->asic_funcs->add_end_of_cb_packets(hdev, cb->kernel_address, len,
311                                                 cq_addr,
312                                                 le32_to_cpu(cq_pkt.data),
313                                                 q->msi_vec,
314                                                 job->contains_dma_pkt);
315
316         q->shadow_queue[hl_pi_2_offset(q->pi)] = job;
317
318         cq->pi = hl_cq_inc_ptr(cq->pi);
319
320 submit_bd:
321         hl_hw_queue_submit_bd(hdev, q, ctl, len, ptr);
322 }
323
324 /*
325  * int_queue_schedule_job - submit a JOB to an internal queue
326  *
327  * @job: pointer to the job that needs to be submitted to the queue
328  *
329  * This function must be called when the scheduler mutex is taken
330  *
331  */
332 static void int_queue_schedule_job(struct hl_cs_job *job)
333 {
334         struct hl_device *hdev = job->cs->ctx->hdev;
335         struct hl_hw_queue *q = &hdev->kernel_queues[job->hw_queue_id];
336         struct hl_bd bd;
337         __le64 *pi;
338
339         bd.ctl = 0;
340         bd.len = cpu_to_le32(job->job_cb_size);
341
342         if (job->is_kernel_allocated_cb)
343                 /* bus_address is actually a mmu mapped address
344                  * allocated from an internal pool
345                  */
346                 bd.ptr = cpu_to_le64(job->user_cb->bus_address);
347         else
348                 bd.ptr = cpu_to_le64((u64) (uintptr_t) job->user_cb);
349
350         pi = q->kernel_address + (q->pi & (q->int_queue_len - 1)) * sizeof(bd);
351
352         q->pi++;
353         q->pi &= ((q->int_queue_len << 1) - 1);
354
355         hdev->asic_funcs->pqe_write(hdev, pi, &bd);
356
357         hdev->asic_funcs->ring_doorbell(hdev, q->hw_queue_id, q->pi);
358 }
359
360 /*
361  * hw_queue_schedule_job - submit a JOB to a H/W queue
362  *
363  * @job: pointer to the job that needs to be submitted to the queue
364  *
365  * This function must be called when the scheduler mutex is taken
366  *
367  */
368 static void hw_queue_schedule_job(struct hl_cs_job *job)
369 {
370         struct hl_device *hdev = job->cs->ctx->hdev;
371         struct hl_hw_queue *q = &hdev->kernel_queues[job->hw_queue_id];
372         u64 ptr;
373         u32 offset, ctl, len;
374
375         /*
376          * Upon PQE completion, COMP_DATA is used as the write data to the
377          * completion queue (QMAN HBW message), and COMP_OFFSET is used as the
378          * write address offset in the SM block (QMAN LBW message).
379          * The write address offset is calculated as "COMP_OFFSET << 2".
380          */
381         offset = job->cs->sequence & (hdev->asic_prop.max_pending_cs - 1);
382         ctl = ((offset << BD_CTL_COMP_OFFSET_SHIFT) & BD_CTL_COMP_OFFSET_MASK) |
383                 ((q->pi << BD_CTL_COMP_DATA_SHIFT) & BD_CTL_COMP_DATA_MASK);
384
385         len = job->job_cb_size;
386
387         /*
388          * A patched CB is created only if a user CB was allocated by driver and
389          * MMU is disabled. If MMU is enabled, the user CB should be used
390          * instead. If the user CB wasn't allocated by driver, assume that it
391          * holds an address.
392          */
393         if (job->patched_cb)
394                 ptr = job->patched_cb->bus_address;
395         else if (job->is_kernel_allocated_cb)
396                 ptr = job->user_cb->bus_address;
397         else
398                 ptr = (u64) (uintptr_t) job->user_cb;
399
400         hl_hw_queue_submit_bd(hdev, q, ctl, len, ptr);
401 }
402
403 static int init_signal_cs(struct hl_device *hdev,
404                 struct hl_cs_job *job, struct hl_cs_compl *cs_cmpl)
405 {
406         struct hl_sync_stream_properties *prop;
407         struct hl_hw_sob *hw_sob;
408         u32 q_idx;
409         int rc = 0;
410
411         q_idx = job->hw_queue_id;
412         prop = &hdev->kernel_queues[q_idx].sync_stream_prop;
413         hw_sob = &prop->hw_sob[prop->curr_sob_offset];
414
415         cs_cmpl->hw_sob = hw_sob;
416         cs_cmpl->sob_val = prop->next_sob_val;
417
418         dev_dbg(hdev->dev,
419                 "generate signal CB, sob_id: %d, sob val: %u, q_idx: %d, seq: %llu\n",
420                 cs_cmpl->hw_sob->sob_id, cs_cmpl->sob_val, q_idx,
421                 cs_cmpl->cs_seq);
422
423         /* we set an EB since we must make sure all oeprations are done
424          * when sending the signal
425          */
426         hdev->asic_funcs->gen_signal_cb(hdev, job->patched_cb,
427                                 cs_cmpl->hw_sob->sob_id, 0, true);
428
429         rc = hl_cs_signal_sob_wraparound_handler(hdev, q_idx, &hw_sob, 1,
430                                                                 false);
431
432         return rc;
433 }
434
435 void hl_hw_queue_encaps_sig_set_sob_info(struct hl_device *hdev,
436                         struct hl_cs *cs, struct hl_cs_job *job,
437                         struct hl_cs_compl *cs_cmpl)
438 {
439         struct hl_cs_encaps_sig_handle *handle = cs->encaps_sig_hdl;
440
441         cs_cmpl->hw_sob = handle->hw_sob;
442
443         /* Note that encaps_sig_wait_offset was validated earlier in the flow
444          * for offset value which exceeds the max reserved signal count.
445          * always decrement 1 of the offset since when the user
446          * set offset 1 for example he mean to wait only for the first
447          * signal only, which will be pre_sob_val, and if he set offset 2
448          * then the value required is (pre_sob_val + 1) and so on...
449          */
450         cs_cmpl->sob_val = handle->pre_sob_val +
451                         (job->encaps_sig_wait_offset - 1);
452 }
453
454 static int init_wait_cs(struct hl_device *hdev, struct hl_cs *cs,
455                 struct hl_cs_job *job, struct hl_cs_compl *cs_cmpl)
456 {
457         struct hl_gen_wait_properties wait_prop;
458         struct hl_sync_stream_properties *prop;
459         struct hl_cs_compl *signal_cs_cmpl;
460         u32 q_idx;
461
462         q_idx = job->hw_queue_id;
463         prop = &hdev->kernel_queues[q_idx].sync_stream_prop;
464
465         signal_cs_cmpl = container_of(cs->signal_fence,
466                                         struct hl_cs_compl,
467                                         base_fence);
468
469         if (cs->encaps_signals) {
470                 /* use the encaps signal handle stored earlier in the flow
471                  * and set the SOB information from the encaps
472                  * signals handle
473                  */
474                 hl_hw_queue_encaps_sig_set_sob_info(hdev, cs, job, cs_cmpl);
475
476                 dev_dbg(hdev->dev, "Wait for encaps signals handle, qidx(%u), CS sequence(%llu), sob val: 0x%x, offset: %u\n",
477                                 cs->encaps_sig_hdl->q_idx,
478                                 cs->encaps_sig_hdl->cs_seq,
479                                 cs_cmpl->sob_val,
480                                 job->encaps_sig_wait_offset);
481         } else {
482                 /* Copy the SOB id and value of the signal CS */
483                 cs_cmpl->hw_sob = signal_cs_cmpl->hw_sob;
484                 cs_cmpl->sob_val = signal_cs_cmpl->sob_val;
485         }
486
487         /* check again if the signal cs already completed.
488          * if yes then don't send any wait cs since the hw_sob
489          * could be in reset already. if signal is not completed
490          * then get refcount to hw_sob to prevent resetting the sob
491          * while wait cs is not submitted.
492          * note that this check is protected by two locks,
493          * hw queue lock and completion object lock,
494          * and the same completion object lock also protects
495          * the hw_sob reset handler function.
496          * The hw_queue lock prevent out of sync of hw_sob
497          * refcount value, changed by signal/wait flows.
498          */
499         spin_lock(&signal_cs_cmpl->lock);
500
501         if (completion_done(&cs->signal_fence->completion)) {
502                 spin_unlock(&signal_cs_cmpl->lock);
503                 return -EINVAL;
504         }
505
506         kref_get(&cs_cmpl->hw_sob->kref);
507
508         spin_unlock(&signal_cs_cmpl->lock);
509
510         dev_dbg(hdev->dev,
511                 "generate wait CB, sob_id: %d, sob_val: 0x%x, mon_id: %d, q_idx: %d, seq: %llu\n",
512                 cs_cmpl->hw_sob->sob_id, cs_cmpl->sob_val,
513                 prop->base_mon_id, q_idx, cs->sequence);
514
515         wait_prop.data = (void *) job->patched_cb;
516         wait_prop.sob_base = cs_cmpl->hw_sob->sob_id;
517         wait_prop.sob_mask = 0x1;
518         wait_prop.sob_val = cs_cmpl->sob_val;
519         wait_prop.mon_id = prop->base_mon_id;
520         wait_prop.q_idx = q_idx;
521         wait_prop.size = 0;
522
523         hdev->asic_funcs->gen_wait_cb(hdev, &wait_prop);
524
525         mb();
526         hl_fence_put(cs->signal_fence);
527         cs->signal_fence = NULL;
528
529         return 0;
530 }
531
532 /*
533  * init_signal_wait_cs - initialize a signal/wait CS
534  * @cs: pointer to the signal/wait CS
535  *
536  * H/W queues spinlock should be taken before calling this function
537  */
538 static int init_signal_wait_cs(struct hl_cs *cs)
539 {
540         struct hl_ctx *ctx = cs->ctx;
541         struct hl_device *hdev = ctx->hdev;
542         struct hl_cs_job *job;
543         struct hl_cs_compl *cs_cmpl =
544                         container_of(cs->fence, struct hl_cs_compl, base_fence);
545         int rc = 0;
546
547         /* There is only one job in a signal/wait CS */
548         job = list_first_entry(&cs->job_list, struct hl_cs_job,
549                                 cs_node);
550
551         if (cs->type & CS_TYPE_SIGNAL)
552                 rc = init_signal_cs(hdev, job, cs_cmpl);
553         else if (cs->type & CS_TYPE_WAIT)
554                 rc = init_wait_cs(hdev, cs, job, cs_cmpl);
555
556         return rc;
557 }
558
559 static int encaps_sig_first_staged_cs_handler
560                         (struct hl_device *hdev, struct hl_cs *cs)
561 {
562         struct hl_cs_compl *cs_cmpl =
563                         container_of(cs->fence,
564                                         struct hl_cs_compl, base_fence);
565         struct hl_cs_encaps_sig_handle *encaps_sig_hdl;
566         struct hl_encaps_signals_mgr *mgr;
567         int rc = 0;
568
569         mgr = &hdev->compute_ctx->sig_mgr;
570
571         spin_lock(&mgr->lock);
572         encaps_sig_hdl = idr_find(&mgr->handles, cs->encaps_sig_hdl_id);
573         if (encaps_sig_hdl) {
574                 /*
575                  * Set handler CS sequence,
576                  * the CS which contains the encapsulated signals.
577                  */
578                 encaps_sig_hdl->cs_seq = cs->sequence;
579                 /* store the handle and set encaps signal indication,
580                  * to be used later in cs_do_release to put the last
581                  * reference to encaps signals handlers.
582                  */
583                 cs_cmpl->encaps_signals = true;
584                 cs_cmpl->encaps_sig_hdl = encaps_sig_hdl;
585
586                 /* set hw_sob pointer in completion object
587                  * since it's used in cs_do_release flow to put
588                  * refcount to sob
589                  */
590                 cs_cmpl->hw_sob = encaps_sig_hdl->hw_sob;
591                 cs_cmpl->sob_val = encaps_sig_hdl->pre_sob_val +
592                                                 encaps_sig_hdl->count;
593
594                 dev_dbg(hdev->dev, "CS seq (%llu) added to encaps signal handler id (%u), count(%u), qidx(%u), sob(%u), val(%u)\n",
595                                 cs->sequence, encaps_sig_hdl->id,
596                                 encaps_sig_hdl->count,
597                                 encaps_sig_hdl->q_idx,
598                                 cs_cmpl->hw_sob->sob_id,
599                                 cs_cmpl->sob_val);
600
601         } else {
602                 dev_err(hdev->dev, "encaps handle id(%u) wasn't found!\n",
603                                 cs->encaps_sig_hdl_id);
604                 rc = -EINVAL;
605         }
606
607         spin_unlock(&mgr->lock);
608
609         return rc;
610 }
611
612 /*
613  * hl_hw_queue_schedule_cs - schedule a command submission
614  * @cs: pointer to the CS
615  */
616 int hl_hw_queue_schedule_cs(struct hl_cs *cs)
617 {
618         enum hl_device_status status;
619         struct hl_cs_counters_atomic *cntr;
620         struct hl_ctx *ctx = cs->ctx;
621         struct hl_device *hdev = ctx->hdev;
622         struct hl_cs_job *job, *tmp;
623         struct hl_hw_queue *q;
624         int rc = 0, i, cq_cnt;
625         bool first_entry;
626         u32 max_queues;
627
628         cntr = &hdev->aggregated_cs_counters;
629
630         hdev->asic_funcs->hw_queues_lock(hdev);
631
632         if (!hl_device_operational(hdev, &status)) {
633                 atomic64_inc(&cntr->device_in_reset_drop_cnt);
634                 atomic64_inc(&ctx->cs_counters.device_in_reset_drop_cnt);
635                 dev_err(hdev->dev,
636                         "device is %s, CS rejected!\n", hdev->status[status]);
637                 rc = -EPERM;
638                 goto out;
639         }
640
641         max_queues = hdev->asic_prop.max_queues;
642
643         q = &hdev->kernel_queues[0];
644         for (i = 0, cq_cnt = 0 ; i < max_queues ; i++, q++) {
645                 if (cs->jobs_in_queue_cnt[i]) {
646                         switch (q->queue_type) {
647                         case QUEUE_TYPE_EXT:
648                                 rc = ext_queue_sanity_checks(hdev, q,
649                                                 cs->jobs_in_queue_cnt[i],
650                                                 cs_needs_completion(cs) ?
651                                                                 true : false);
652                                 break;
653                         case QUEUE_TYPE_INT:
654                                 rc = int_queue_sanity_checks(hdev, q,
655                                                 cs->jobs_in_queue_cnt[i]);
656                                 break;
657                         case QUEUE_TYPE_HW:
658                                 rc = hw_queue_sanity_checks(hdev, q,
659                                                 cs->jobs_in_queue_cnt[i]);
660                                 break;
661                         default:
662                                 dev_err(hdev->dev, "Queue type %d is invalid\n",
663                                         q->queue_type);
664                                 rc = -EINVAL;
665                                 break;
666                         }
667
668                         if (rc) {
669                                 atomic64_inc(
670                                         &ctx->cs_counters.queue_full_drop_cnt);
671                                 atomic64_inc(&cntr->queue_full_drop_cnt);
672                                 goto unroll_cq_resv;
673                         }
674
675                         if (q->queue_type == QUEUE_TYPE_EXT)
676                                 cq_cnt++;
677                 }
678         }
679
680         if ((cs->type == CS_TYPE_SIGNAL) || (cs->type == CS_TYPE_WAIT)) {
681                 rc = init_signal_wait_cs(cs);
682                 if (rc)
683                         goto unroll_cq_resv;
684         } else if (cs->type == CS_TYPE_COLLECTIVE_WAIT) {
685                 rc = hdev->asic_funcs->collective_wait_init_cs(cs);
686                 if (rc)
687                         goto unroll_cq_resv;
688         }
689
690
691         if (cs->encaps_signals && cs->staged_first) {
692                 rc = encaps_sig_first_staged_cs_handler(hdev, cs);
693                 if (rc)
694                         goto unroll_cq_resv;
695         }
696
697         spin_lock(&hdev->cs_mirror_lock);
698
699         /* Verify staged CS exists and add to the staged list */
700         if (cs->staged_cs && !cs->staged_first) {
701                 struct hl_cs *staged_cs;
702
703                 staged_cs = hl_staged_cs_find_first(hdev, cs->staged_sequence);
704                 if (!staged_cs) {
705                         dev_err(hdev->dev,
706                                 "Cannot find staged submission sequence %llu",
707                                 cs->staged_sequence);
708                         rc = -EINVAL;
709                         goto unlock_cs_mirror;
710                 }
711
712                 if (is_staged_cs_last_exists(hdev, staged_cs)) {
713                         dev_err(hdev->dev,
714                                 "Staged submission sequence %llu already submitted",
715                                 cs->staged_sequence);
716                         rc = -EINVAL;
717                         goto unlock_cs_mirror;
718                 }
719
720                 list_add_tail(&cs->staged_cs_node, &staged_cs->staged_cs_node);
721
722                 /* update stream map of the first CS */
723                 if (hdev->supports_wait_for_multi_cs)
724                         staged_cs->fence->stream_master_qid_map |=
725                                         cs->fence->stream_master_qid_map;
726         }
727
728         list_add_tail(&cs->mirror_node, &hdev->cs_mirror_list);
729
730         /* Queue TDR if the CS is the first entry and if timeout is wanted */
731         first_entry = list_first_entry(&hdev->cs_mirror_list,
732                                         struct hl_cs, mirror_node) == cs;
733         if ((hdev->timeout_jiffies != MAX_SCHEDULE_TIMEOUT) &&
734                                 first_entry && cs_needs_timeout(cs)) {
735                 cs->tdr_active = true;
736                 schedule_delayed_work(&cs->work_tdr, cs->timeout_jiffies);
737
738         }
739
740         spin_unlock(&hdev->cs_mirror_lock);
741
742         list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node)
743                 switch (job->queue_type) {
744                 case QUEUE_TYPE_EXT:
745                         ext_queue_schedule_job(job);
746                         break;
747                 case QUEUE_TYPE_INT:
748                         int_queue_schedule_job(job);
749                         break;
750                 case QUEUE_TYPE_HW:
751                         hw_queue_schedule_job(job);
752                         break;
753                 default:
754                         break;
755                 }
756
757         cs->submitted = true;
758
759         goto out;
760
761 unlock_cs_mirror:
762         spin_unlock(&hdev->cs_mirror_lock);
763 unroll_cq_resv:
764         q = &hdev->kernel_queues[0];
765         for (i = 0 ; (i < max_queues) && (cq_cnt > 0) ; i++, q++) {
766                 if ((q->queue_type == QUEUE_TYPE_EXT) &&
767                                                 (cs->jobs_in_queue_cnt[i])) {
768                         atomic_t *free_slots =
769                                 &hdev->completion_queue[i].free_slots_cnt;
770                         atomic_add(cs->jobs_in_queue_cnt[i], free_slots);
771                         cq_cnt--;
772                 }
773         }
774
775 out:
776         hdev->asic_funcs->hw_queues_unlock(hdev);
777
778         return rc;
779 }
780
781 /*
782  * hl_hw_queue_inc_ci_kernel - increment ci for kernel's queue
783  *
784  * @hdev: pointer to hl_device structure
785  * @hw_queue_id: which queue to increment its ci
786  */
787 void hl_hw_queue_inc_ci_kernel(struct hl_device *hdev, u32 hw_queue_id)
788 {
789         struct hl_hw_queue *q = &hdev->kernel_queues[hw_queue_id];
790
791         atomic_inc(&q->ci);
792 }
793
794 static int ext_and_cpu_queue_init(struct hl_device *hdev, struct hl_hw_queue *q,
795                                         bool is_cpu_queue)
796 {
797         void *p;
798         int rc;
799
800         if (is_cpu_queue)
801                 p = hdev->asic_funcs->cpu_accessible_dma_pool_alloc(hdev,
802                                                         HL_QUEUE_SIZE_IN_BYTES,
803                                                         &q->bus_address);
804         else
805                 p = hdev->asic_funcs->asic_dma_alloc_coherent(hdev,
806                                                 HL_QUEUE_SIZE_IN_BYTES,
807                                                 &q->bus_address,
808                                                 GFP_KERNEL | __GFP_ZERO);
809         if (!p)
810                 return -ENOMEM;
811
812         q->kernel_address = p;
813
814         q->shadow_queue = kmalloc_array(HL_QUEUE_LENGTH,
815                                         sizeof(*q->shadow_queue),
816                                         GFP_KERNEL);
817         if (!q->shadow_queue) {
818                 dev_err(hdev->dev,
819                         "Failed to allocate shadow queue for H/W queue %d\n",
820                         q->hw_queue_id);
821                 rc = -ENOMEM;
822                 goto free_queue;
823         }
824
825         /* Make sure read/write pointers are initialized to start of queue */
826         atomic_set(&q->ci, 0);
827         q->pi = 0;
828
829         return 0;
830
831 free_queue:
832         if (is_cpu_queue)
833                 hdev->asic_funcs->cpu_accessible_dma_pool_free(hdev,
834                                         HL_QUEUE_SIZE_IN_BYTES,
835                                         q->kernel_address);
836         else
837                 hdev->asic_funcs->asic_dma_free_coherent(hdev,
838                                         HL_QUEUE_SIZE_IN_BYTES,
839                                         q->kernel_address,
840                                         q->bus_address);
841
842         return rc;
843 }
844
845 static int int_queue_init(struct hl_device *hdev, struct hl_hw_queue *q)
846 {
847         void *p;
848
849         p = hdev->asic_funcs->get_int_queue_base(hdev, q->hw_queue_id,
850                                         &q->bus_address, &q->int_queue_len);
851         if (!p) {
852                 dev_err(hdev->dev,
853                         "Failed to get base address for internal queue %d\n",
854                         q->hw_queue_id);
855                 return -EFAULT;
856         }
857
858         q->kernel_address = p;
859         q->pi = 0;
860         atomic_set(&q->ci, 0);
861
862         return 0;
863 }
864
865 static int cpu_queue_init(struct hl_device *hdev, struct hl_hw_queue *q)
866 {
867         return ext_and_cpu_queue_init(hdev, q, true);
868 }
869
870 static int ext_queue_init(struct hl_device *hdev, struct hl_hw_queue *q)
871 {
872         return ext_and_cpu_queue_init(hdev, q, false);
873 }
874
875 static int hw_queue_init(struct hl_device *hdev, struct hl_hw_queue *q)
876 {
877         void *p;
878
879         p = hdev->asic_funcs->asic_dma_alloc_coherent(hdev,
880                                                 HL_QUEUE_SIZE_IN_BYTES,
881                                                 &q->bus_address,
882                                                 GFP_KERNEL | __GFP_ZERO);
883         if (!p)
884                 return -ENOMEM;
885
886         q->kernel_address = p;
887
888         /* Make sure read/write pointers are initialized to start of queue */
889         atomic_set(&q->ci, 0);
890         q->pi = 0;
891
892         return 0;
893 }
894
895 static void sync_stream_queue_init(struct hl_device *hdev, u32 q_idx)
896 {
897         struct hl_sync_stream_properties *sync_stream_prop;
898         struct asic_fixed_properties *prop = &hdev->asic_prop;
899         struct hl_hw_sob *hw_sob;
900         int sob, reserved_mon_idx, queue_idx;
901
902         sync_stream_prop = &hdev->kernel_queues[q_idx].sync_stream_prop;
903
904         /* We use 'collective_mon_idx' as a running index in order to reserve
905          * monitors for collective master/slave queues.
906          * collective master queue gets 2 reserved monitors
907          * collective slave queue gets 1 reserved monitor
908          */
909         if (hdev->kernel_queues[q_idx].collective_mode ==
910                         HL_COLLECTIVE_MASTER) {
911                 reserved_mon_idx = hdev->collective_mon_idx;
912
913                 /* reserve the first monitor for collective master queue */
914                 sync_stream_prop->collective_mstr_mon_id[0] =
915                         prop->collective_first_mon + reserved_mon_idx;
916
917                 /* reserve the second monitor for collective master queue */
918                 sync_stream_prop->collective_mstr_mon_id[1] =
919                         prop->collective_first_mon + reserved_mon_idx + 1;
920
921                 hdev->collective_mon_idx += HL_COLLECTIVE_RSVD_MSTR_MONS;
922         } else if (hdev->kernel_queues[q_idx].collective_mode ==
923                         HL_COLLECTIVE_SLAVE) {
924                 reserved_mon_idx = hdev->collective_mon_idx++;
925
926                 /* reserve a monitor for collective slave queue */
927                 sync_stream_prop->collective_slave_mon_id =
928                         prop->collective_first_mon + reserved_mon_idx;
929         }
930
931         if (!hdev->kernel_queues[q_idx].supports_sync_stream)
932                 return;
933
934         queue_idx = hdev->sync_stream_queue_idx++;
935
936         sync_stream_prop->base_sob_id = prop->sync_stream_first_sob +
937                         (queue_idx * HL_RSVD_SOBS);
938         sync_stream_prop->base_mon_id = prop->sync_stream_first_mon +
939                         (queue_idx * HL_RSVD_MONS);
940         sync_stream_prop->next_sob_val = 1;
941         sync_stream_prop->curr_sob_offset = 0;
942
943         for (sob = 0 ; sob < HL_RSVD_SOBS ; sob++) {
944                 hw_sob = &sync_stream_prop->hw_sob[sob];
945                 hw_sob->hdev = hdev;
946                 hw_sob->sob_id = sync_stream_prop->base_sob_id + sob;
947                 hw_sob->sob_addr =
948                         hdev->asic_funcs->get_sob_addr(hdev, hw_sob->sob_id);
949                 hw_sob->q_idx = q_idx;
950                 kref_init(&hw_sob->kref);
951         }
952 }
953
954 static void sync_stream_queue_reset(struct hl_device *hdev, u32 q_idx)
955 {
956         struct hl_sync_stream_properties *prop =
957                         &hdev->kernel_queues[q_idx].sync_stream_prop;
958
959         /*
960          * In case we got here due to a stuck CS, the refcnt might be bigger
961          * than 1 and therefore we reset it.
962          */
963         kref_init(&prop->hw_sob[prop->curr_sob_offset].kref);
964         prop->curr_sob_offset = 0;
965         prop->next_sob_val = 1;
966 }
967
968 /*
969  * queue_init - main initialization function for H/W queue object
970  *
971  * @hdev: pointer to hl_device device structure
972  * @q: pointer to hl_hw_queue queue structure
973  * @hw_queue_id: The id of the H/W queue
974  *
975  * Allocate dma-able memory for the queue and initialize fields
976  * Returns 0 on success
977  */
978 static int queue_init(struct hl_device *hdev, struct hl_hw_queue *q,
979                         u32 hw_queue_id)
980 {
981         int rc;
982
983         q->hw_queue_id = hw_queue_id;
984
985         switch (q->queue_type) {
986         case QUEUE_TYPE_EXT:
987                 rc = ext_queue_init(hdev, q);
988                 break;
989         case QUEUE_TYPE_INT:
990                 rc = int_queue_init(hdev, q);
991                 break;
992         case QUEUE_TYPE_CPU:
993                 rc = cpu_queue_init(hdev, q);
994                 break;
995         case QUEUE_TYPE_HW:
996                 rc = hw_queue_init(hdev, q);
997                 break;
998         case QUEUE_TYPE_NA:
999                 q->valid = 0;
1000                 return 0;
1001         default:
1002                 dev_crit(hdev->dev, "wrong queue type %d during init\n",
1003                         q->queue_type);
1004                 rc = -EINVAL;
1005                 break;
1006         }
1007
1008         sync_stream_queue_init(hdev, q->hw_queue_id);
1009
1010         if (rc)
1011                 return rc;
1012
1013         q->valid = 1;
1014
1015         return 0;
1016 }
1017
1018 /*
1019  * hw_queue_fini - destroy queue
1020  *
1021  * @hdev: pointer to hl_device device structure
1022  * @q: pointer to hl_hw_queue queue structure
1023  *
1024  * Free the queue memory
1025  */
1026 static void queue_fini(struct hl_device *hdev, struct hl_hw_queue *q)
1027 {
1028         if (!q->valid)
1029                 return;
1030
1031         /*
1032          * If we arrived here, there are no jobs waiting on this queue
1033          * so we can safely remove it.
1034          * This is because this function can only called when:
1035          * 1. Either a context is deleted, which only can occur if all its
1036          *    jobs were finished
1037          * 2. A context wasn't able to be created due to failure or timeout,
1038          *    which means there are no jobs on the queue yet
1039          *
1040          * The only exception are the queues of the kernel context, but
1041          * if they are being destroyed, it means that the entire module is
1042          * being removed. If the module is removed, it means there is no open
1043          * user context. It also means that if a job was submitted by
1044          * the kernel driver (e.g. context creation), the job itself was
1045          * released by the kernel driver when a timeout occurred on its
1046          * Completion. Thus, we don't need to release it again.
1047          */
1048
1049         if (q->queue_type == QUEUE_TYPE_INT)
1050                 return;
1051
1052         kfree(q->shadow_queue);
1053
1054         if (q->queue_type == QUEUE_TYPE_CPU)
1055                 hdev->asic_funcs->cpu_accessible_dma_pool_free(hdev,
1056                                         HL_QUEUE_SIZE_IN_BYTES,
1057                                         q->kernel_address);
1058         else
1059                 hdev->asic_funcs->asic_dma_free_coherent(hdev,
1060                                         HL_QUEUE_SIZE_IN_BYTES,
1061                                         q->kernel_address,
1062                                         q->bus_address);
1063 }
1064
1065 int hl_hw_queues_create(struct hl_device *hdev)
1066 {
1067         struct asic_fixed_properties *asic = &hdev->asic_prop;
1068         struct hl_hw_queue *q;
1069         int i, rc, q_ready_cnt;
1070
1071         hdev->kernel_queues = kcalloc(asic->max_queues,
1072                                 sizeof(*hdev->kernel_queues), GFP_KERNEL);
1073
1074         if (!hdev->kernel_queues) {
1075                 dev_err(hdev->dev, "Not enough memory for H/W queues\n");
1076                 return -ENOMEM;
1077         }
1078
1079         /* Initialize the H/W queues */
1080         for (i = 0, q_ready_cnt = 0, q = hdev->kernel_queues;
1081                         i < asic->max_queues ; i++, q_ready_cnt++, q++) {
1082
1083                 q->queue_type = asic->hw_queues_props[i].type;
1084                 q->supports_sync_stream =
1085                                 asic->hw_queues_props[i].supports_sync_stream;
1086                 q->collective_mode = asic->hw_queues_props[i].collective_mode;
1087                 rc = queue_init(hdev, q, i);
1088                 if (rc) {
1089                         dev_err(hdev->dev,
1090                                 "failed to initialize queue %d\n", i);
1091                         goto release_queues;
1092                 }
1093         }
1094
1095         return 0;
1096
1097 release_queues:
1098         for (i = 0, q = hdev->kernel_queues ; i < q_ready_cnt ; i++, q++)
1099                 queue_fini(hdev, q);
1100
1101         kfree(hdev->kernel_queues);
1102
1103         return rc;
1104 }
1105
1106 void hl_hw_queues_destroy(struct hl_device *hdev)
1107 {
1108         struct hl_hw_queue *q;
1109         u32 max_queues = hdev->asic_prop.max_queues;
1110         int i;
1111
1112         for (i = 0, q = hdev->kernel_queues ; i < max_queues ; i++, q++)
1113                 queue_fini(hdev, q);
1114
1115         kfree(hdev->kernel_queues);
1116 }
1117
1118 void hl_hw_queue_reset(struct hl_device *hdev, bool hard_reset)
1119 {
1120         struct hl_hw_queue *q;
1121         u32 max_queues = hdev->asic_prop.max_queues;
1122         int i;
1123
1124         for (i = 0, q = hdev->kernel_queues ; i < max_queues ; i++, q++) {
1125                 if ((!q->valid) ||
1126                         ((!hard_reset) && (q->queue_type == QUEUE_TYPE_CPU)))
1127                         continue;
1128                 q->pi = 0;
1129                 atomic_set(&q->ci, 0);
1130
1131                 if (q->supports_sync_stream)
1132                         sync_stream_queue_reset(hdev, q->hw_queue_id);
1133         }
1134 }