Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma
[linux-2.6-microblaze.git] / drivers / infiniband / hw / bnxt_re / qplib_res.c
1 /*
2  * Broadcom NetXtreme-E RoCE driver.
3  *
4  * Copyright (c) 2016 - 2017, Broadcom. All rights reserved.  The term
5  * Broadcom refers to Broadcom Limited and/or its subsidiaries.
6  *
7  * This software is available to you under a choice of one of two
8  * licenses.  You may choose to be licensed under the terms of the GNU
9  * General Public License (GPL) Version 2, available from the file
10  * COPYING in the main directory of this source tree, or the
11  * BSD license below:
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  *
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in
21  *    the documentation and/or other materials provided with the
22  *    distribution.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS''
25  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
26  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS
28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
31  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
32  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
33  * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
34  * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35  *
36  * Description: QPLib resource manager
37  */
38
39 #define dev_fmt(fmt) "QPLIB: " fmt
40
41 #include <linux/spinlock.h>
42 #include <linux/pci.h>
43 #include <linux/interrupt.h>
44 #include <linux/inetdevice.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/if_vlan.h>
47 #include <linux/vmalloc.h>
48 #include <rdma/ib_verbs.h>
49 #include <rdma/ib_umem.h>
50
51 #include "roce_hsi.h"
52 #include "qplib_res.h"
53 #include "qplib_sp.h"
54 #include "qplib_rcfw.h"
55
56 static void bnxt_qplib_free_stats_ctx(struct pci_dev *pdev,
57                                       struct bnxt_qplib_stats *stats);
58 static int bnxt_qplib_alloc_stats_ctx(struct pci_dev *pdev,
59                                       struct bnxt_qplib_chip_ctx *cctx,
60                                       struct bnxt_qplib_stats *stats);
61
62 /* PBL */
63 static void __free_pbl(struct bnxt_qplib_res *res, struct bnxt_qplib_pbl *pbl,
64                        bool is_umem)
65 {
66         struct pci_dev *pdev = res->pdev;
67         int i;
68
69         if (!is_umem) {
70                 for (i = 0; i < pbl->pg_count; i++) {
71                         if (pbl->pg_arr[i])
72                                 dma_free_coherent(&pdev->dev, pbl->pg_size,
73                                                   (void *)((unsigned long)
74                                                    pbl->pg_arr[i] &
75                                                   PAGE_MASK),
76                                                   pbl->pg_map_arr[i]);
77                         else
78                                 dev_warn(&pdev->dev,
79                                          "PBL free pg_arr[%d] empty?!\n", i);
80                         pbl->pg_arr[i] = NULL;
81                 }
82         }
83         vfree(pbl->pg_arr);
84         pbl->pg_arr = NULL;
85         vfree(pbl->pg_map_arr);
86         pbl->pg_map_arr = NULL;
87         pbl->pg_count = 0;
88         pbl->pg_size = 0;
89 }
90
91 static void bnxt_qplib_fill_user_dma_pages(struct bnxt_qplib_pbl *pbl,
92                                            struct bnxt_qplib_sg_info *sginfo)
93 {
94         struct ib_block_iter biter;
95         int i = 0;
96
97         rdma_umem_for_each_dma_block(sginfo->umem, &biter, sginfo->pgsize) {
98                 pbl->pg_map_arr[i] = rdma_block_iter_dma_address(&biter);
99                 pbl->pg_arr[i] = NULL;
100                 pbl->pg_count++;
101                 i++;
102         }
103 }
104
105 static int __alloc_pbl(struct bnxt_qplib_res *res,
106                        struct bnxt_qplib_pbl *pbl,
107                        struct bnxt_qplib_sg_info *sginfo)
108 {
109         struct pci_dev *pdev = res->pdev;
110         bool is_umem = false;
111         u32 pages;
112         int i;
113
114         if (sginfo->nopte)
115                 return 0;
116         if (sginfo->umem)
117                 pages = ib_umem_num_dma_blocks(sginfo->umem, sginfo->pgsize);
118         else
119                 pages = sginfo->npages;
120         /* page ptr arrays */
121         pbl->pg_arr = vmalloc(pages * sizeof(void *));
122         if (!pbl->pg_arr)
123                 return -ENOMEM;
124
125         pbl->pg_map_arr = vmalloc(pages * sizeof(dma_addr_t));
126         if (!pbl->pg_map_arr) {
127                 vfree(pbl->pg_arr);
128                 pbl->pg_arr = NULL;
129                 return -ENOMEM;
130         }
131         pbl->pg_count = 0;
132         pbl->pg_size = sginfo->pgsize;
133
134         if (!sginfo->umem) {
135                 for (i = 0; i < pages; i++) {
136                         pbl->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
137                                                             pbl->pg_size,
138                                                             &pbl->pg_map_arr[i],
139                                                             GFP_KERNEL);
140                         if (!pbl->pg_arr[i])
141                                 goto fail;
142                         pbl->pg_count++;
143                 }
144         } else {
145                 is_umem = true;
146                 bnxt_qplib_fill_user_dma_pages(pbl, sginfo);
147         }
148
149         return 0;
150 fail:
151         __free_pbl(res, pbl, is_umem);
152         return -ENOMEM;
153 }
154
155 /* HWQ */
156 void bnxt_qplib_free_hwq(struct bnxt_qplib_res *res,
157                          struct bnxt_qplib_hwq *hwq)
158 {
159         int i;
160
161         if (!hwq->max_elements)
162                 return;
163         if (hwq->level >= PBL_LVL_MAX)
164                 return;
165
166         for (i = 0; i < hwq->level + 1; i++) {
167                 if (i == hwq->level)
168                         __free_pbl(res, &hwq->pbl[i], hwq->is_user);
169                 else
170                         __free_pbl(res, &hwq->pbl[i], false);
171         }
172
173         hwq->level = PBL_LVL_MAX;
174         hwq->max_elements = 0;
175         hwq->element_size = 0;
176         hwq->prod = 0;
177         hwq->cons = 0;
178         hwq->cp_bit = 0;
179 }
180
181 /* All HWQs are power of 2 in size */
182
183 int bnxt_qplib_alloc_init_hwq(struct bnxt_qplib_hwq *hwq,
184                               struct bnxt_qplib_hwq_attr *hwq_attr)
185 {
186         u32 npages, aux_slots, pg_size, aux_pages = 0, aux_size = 0;
187         struct bnxt_qplib_sg_info sginfo = {};
188         u32 depth, stride, npbl, npde;
189         dma_addr_t *src_phys_ptr, **dst_virt_ptr;
190         struct bnxt_qplib_res *res;
191         struct pci_dev *pdev;
192         int i, rc, lvl;
193
194         res = hwq_attr->res;
195         pdev = res->pdev;
196         pg_size = hwq_attr->sginfo->pgsize;
197         hwq->level = PBL_LVL_MAX;
198
199         depth = roundup_pow_of_two(hwq_attr->depth);
200         stride = roundup_pow_of_two(hwq_attr->stride);
201         if (hwq_attr->aux_depth) {
202                 aux_slots = hwq_attr->aux_depth;
203                 aux_size = roundup_pow_of_two(hwq_attr->aux_stride);
204                 aux_pages = (aux_slots * aux_size) / pg_size;
205                 if ((aux_slots * aux_size) % pg_size)
206                         aux_pages++;
207         }
208
209         if (!hwq_attr->sginfo->umem) {
210                 hwq->is_user = false;
211                 npages = (depth * stride) / pg_size + aux_pages;
212                 if ((depth * stride) % pg_size)
213                         npages++;
214                 if (!npages)
215                         return -EINVAL;
216                 hwq_attr->sginfo->npages = npages;
217         } else {
218                 unsigned long sginfo_num_pages = ib_umem_num_dma_blocks(
219                         hwq_attr->sginfo->umem, hwq_attr->sginfo->pgsize);
220
221                 hwq->is_user = true;
222                 npages = sginfo_num_pages;
223                 npages = (npages * PAGE_SIZE) /
224                           BIT_ULL(hwq_attr->sginfo->pgshft);
225                 if ((sginfo_num_pages * PAGE_SIZE) %
226                      BIT_ULL(hwq_attr->sginfo->pgshft))
227                         if (!npages)
228                                 npages++;
229         }
230
231         if (npages == MAX_PBL_LVL_0_PGS) {
232                 /* This request is Level 0, map PTE */
233                 rc = __alloc_pbl(res, &hwq->pbl[PBL_LVL_0], hwq_attr->sginfo);
234                 if (rc)
235                         goto fail;
236                 hwq->level = PBL_LVL_0;
237         }
238
239         if (npages > MAX_PBL_LVL_0_PGS) {
240                 if (npages > MAX_PBL_LVL_1_PGS) {
241                         u32 flag = (hwq_attr->type == HWQ_TYPE_L2_CMPL) ?
242                                     0 : PTU_PTE_VALID;
243                         /* 2 levels of indirection */
244                         npbl = npages >> MAX_PBL_LVL_1_PGS_SHIFT;
245                         if (npages % BIT(MAX_PBL_LVL_1_PGS_SHIFT))
246                                 npbl++;
247                         npde = npbl >> MAX_PDL_LVL_SHIFT;
248                         if (npbl % BIT(MAX_PDL_LVL_SHIFT))
249                                 npde++;
250                         /* Alloc PDE pages */
251                         sginfo.pgsize = npde * pg_size;
252                         sginfo.npages = 1;
253                         rc = __alloc_pbl(res, &hwq->pbl[PBL_LVL_0], &sginfo);
254
255                         /* Alloc PBL pages */
256                         sginfo.npages = npbl;
257                         sginfo.pgsize = PAGE_SIZE;
258                         rc = __alloc_pbl(res, &hwq->pbl[PBL_LVL_1], &sginfo);
259                         if (rc)
260                                 goto fail;
261                         /* Fill PDL with PBL page pointers */
262                         dst_virt_ptr =
263                                 (dma_addr_t **)hwq->pbl[PBL_LVL_0].pg_arr;
264                         src_phys_ptr = hwq->pbl[PBL_LVL_1].pg_map_arr;
265                         if (hwq_attr->type == HWQ_TYPE_MR) {
266                         /* For MR it is expected that we supply only 1 contigous
267                          * page i.e only 1 entry in the PDL that will contain
268                          * all the PBLs for the user supplied memory region
269                          */
270                                 for (i = 0; i < hwq->pbl[PBL_LVL_1].pg_count;
271                                      i++)
272                                         dst_virt_ptr[0][i] = src_phys_ptr[i] |
273                                                 flag;
274                         } else {
275                                 for (i = 0; i < hwq->pbl[PBL_LVL_1].pg_count;
276                                      i++)
277                                         dst_virt_ptr[PTR_PG(i)][PTR_IDX(i)] =
278                                                 src_phys_ptr[i] |
279                                                 PTU_PDE_VALID;
280                         }
281                         /* Alloc or init PTEs */
282                         rc = __alloc_pbl(res, &hwq->pbl[PBL_LVL_2],
283                                          hwq_attr->sginfo);
284                         if (rc)
285                                 goto fail;
286                         hwq->level = PBL_LVL_2;
287                         if (hwq_attr->sginfo->nopte)
288                                 goto done;
289                         /* Fill PBLs with PTE pointers */
290                         dst_virt_ptr =
291                                 (dma_addr_t **)hwq->pbl[PBL_LVL_1].pg_arr;
292                         src_phys_ptr = hwq->pbl[PBL_LVL_2].pg_map_arr;
293                         for (i = 0; i < hwq->pbl[PBL_LVL_2].pg_count; i++) {
294                                 dst_virt_ptr[PTR_PG(i)][PTR_IDX(i)] =
295                                         src_phys_ptr[i] | PTU_PTE_VALID;
296                         }
297                         if (hwq_attr->type == HWQ_TYPE_QUEUE) {
298                                 /* Find the last pg of the size */
299                                 i = hwq->pbl[PBL_LVL_2].pg_count;
300                                 dst_virt_ptr[PTR_PG(i - 1)][PTR_IDX(i - 1)] |=
301                                                                   PTU_PTE_LAST;
302                                 if (i > 1)
303                                         dst_virt_ptr[PTR_PG(i - 2)]
304                                                     [PTR_IDX(i - 2)] |=
305                                                     PTU_PTE_NEXT_TO_LAST;
306                         }
307                 } else { /* pages < 512 npbl = 1, npde = 0 */
308                         u32 flag = (hwq_attr->type == HWQ_TYPE_L2_CMPL) ?
309                                     0 : PTU_PTE_VALID;
310
311                         /* 1 level of indirection */
312                         npbl = npages >> MAX_PBL_LVL_1_PGS_SHIFT;
313                         if (npages % BIT(MAX_PBL_LVL_1_PGS_SHIFT))
314                                 npbl++;
315                         sginfo.npages = npbl;
316                         sginfo.pgsize = PAGE_SIZE;
317                         /* Alloc PBL page */
318                         rc = __alloc_pbl(res, &hwq->pbl[PBL_LVL_0], &sginfo);
319                         if (rc)
320                                 goto fail;
321                         /* Alloc or init  PTEs */
322                         rc = __alloc_pbl(res, &hwq->pbl[PBL_LVL_1],
323                                          hwq_attr->sginfo);
324                         if (rc)
325                                 goto fail;
326                         hwq->level = PBL_LVL_1;
327                         if (hwq_attr->sginfo->nopte)
328                                 goto done;
329                         /* Fill PBL with PTE pointers */
330                         dst_virt_ptr =
331                                 (dma_addr_t **)hwq->pbl[PBL_LVL_0].pg_arr;
332                         src_phys_ptr = hwq->pbl[PBL_LVL_1].pg_map_arr;
333                         for (i = 0; i < hwq->pbl[PBL_LVL_1].pg_count; i++)
334                                 dst_virt_ptr[PTR_PG(i)][PTR_IDX(i)] =
335                                         src_phys_ptr[i] | flag;
336                         if (hwq_attr->type == HWQ_TYPE_QUEUE) {
337                                 /* Find the last pg of the size */
338                                 i = hwq->pbl[PBL_LVL_1].pg_count;
339                                 dst_virt_ptr[PTR_PG(i - 1)][PTR_IDX(i - 1)] |=
340                                                                   PTU_PTE_LAST;
341                                 if (i > 1)
342                                         dst_virt_ptr[PTR_PG(i - 2)]
343                                                     [PTR_IDX(i - 2)] |=
344                                                     PTU_PTE_NEXT_TO_LAST;
345                         }
346                 }
347         }
348 done:
349         hwq->prod = 0;
350         hwq->cons = 0;
351         hwq->pdev = pdev;
352         hwq->depth = hwq_attr->depth;
353         hwq->max_elements = depth;
354         hwq->element_size = stride;
355         hwq->qe_ppg = pg_size / stride;
356         /* For direct access to the elements */
357         lvl = hwq->level;
358         if (hwq_attr->sginfo->nopte && hwq->level)
359                 lvl = hwq->level - 1;
360         hwq->pbl_ptr = hwq->pbl[lvl].pg_arr;
361         hwq->pbl_dma_ptr = hwq->pbl[lvl].pg_map_arr;
362         spin_lock_init(&hwq->lock);
363
364         return 0;
365 fail:
366         bnxt_qplib_free_hwq(res, hwq);
367         return -ENOMEM;
368 }
369
370 /* Context Tables */
371 void bnxt_qplib_free_ctx(struct bnxt_qplib_res *res,
372                          struct bnxt_qplib_ctx *ctx)
373 {
374         int i;
375
376         bnxt_qplib_free_hwq(res, &ctx->qpc_tbl);
377         bnxt_qplib_free_hwq(res, &ctx->mrw_tbl);
378         bnxt_qplib_free_hwq(res, &ctx->srqc_tbl);
379         bnxt_qplib_free_hwq(res, &ctx->cq_tbl);
380         bnxt_qplib_free_hwq(res, &ctx->tim_tbl);
381         for (i = 0; i < MAX_TQM_ALLOC_REQ; i++)
382                 bnxt_qplib_free_hwq(res, &ctx->tqm_ctx.qtbl[i]);
383         /* restore original pde level before destroy */
384         ctx->tqm_ctx.pde.level = ctx->tqm_ctx.pde_level;
385         bnxt_qplib_free_hwq(res, &ctx->tqm_ctx.pde);
386         bnxt_qplib_free_stats_ctx(res->pdev, &ctx->stats);
387 }
388
389 static int bnxt_qplib_alloc_tqm_rings(struct bnxt_qplib_res *res,
390                                       struct bnxt_qplib_ctx *ctx)
391 {
392         struct bnxt_qplib_hwq_attr hwq_attr = {};
393         struct bnxt_qplib_sg_info sginfo = {};
394         struct bnxt_qplib_tqm_ctx *tqmctx;
395         int rc = 0;
396         int i;
397
398         tqmctx = &ctx->tqm_ctx;
399
400         sginfo.pgsize = PAGE_SIZE;
401         sginfo.pgshft = PAGE_SHIFT;
402         hwq_attr.sginfo = &sginfo;
403         hwq_attr.res = res;
404         hwq_attr.type = HWQ_TYPE_CTX;
405         hwq_attr.depth = 512;
406         hwq_attr.stride = sizeof(u64);
407         /* Alloc pdl buffer */
408         rc = bnxt_qplib_alloc_init_hwq(&tqmctx->pde, &hwq_attr);
409         if (rc)
410                 goto out;
411         /* Save original pdl level */
412         tqmctx->pde_level = tqmctx->pde.level;
413
414         hwq_attr.stride = 1;
415         for (i = 0; i < MAX_TQM_ALLOC_REQ; i++) {
416                 if (!tqmctx->qcount[i])
417                         continue;
418                 hwq_attr.depth = ctx->qpc_count * tqmctx->qcount[i];
419                 rc = bnxt_qplib_alloc_init_hwq(&tqmctx->qtbl[i], &hwq_attr);
420                 if (rc)
421                         goto out;
422         }
423 out:
424         return rc;
425 }
426
427 static void bnxt_qplib_map_tqm_pgtbl(struct bnxt_qplib_tqm_ctx *ctx)
428 {
429         struct bnxt_qplib_hwq *tbl;
430         dma_addr_t *dma_ptr;
431         __le64 **pbl_ptr, *ptr;
432         int i, j, k;
433         int fnz_idx = -1;
434         int pg_count;
435
436         pbl_ptr = (__le64 **)ctx->pde.pbl_ptr;
437
438         for (i = 0, j = 0; i < MAX_TQM_ALLOC_REQ;
439              i++, j += MAX_TQM_ALLOC_BLK_SIZE) {
440                 tbl = &ctx->qtbl[i];
441                 if (!tbl->max_elements)
442                         continue;
443                 if (fnz_idx == -1)
444                         fnz_idx = i; /* first non-zero index */
445                 switch (tbl->level) {
446                 case PBL_LVL_2:
447                         pg_count = tbl->pbl[PBL_LVL_1].pg_count;
448                         for (k = 0; k < pg_count; k++) {
449                                 ptr = &pbl_ptr[PTR_PG(j + k)][PTR_IDX(j + k)];
450                                 dma_ptr = &tbl->pbl[PBL_LVL_1].pg_map_arr[k];
451                                 *ptr = cpu_to_le64(*dma_ptr | PTU_PTE_VALID);
452                         }
453                         break;
454                 case PBL_LVL_1:
455                 case PBL_LVL_0:
456                 default:
457                         ptr = &pbl_ptr[PTR_PG(j)][PTR_IDX(j)];
458                         *ptr = cpu_to_le64(tbl->pbl[PBL_LVL_0].pg_map_arr[0] |
459                                            PTU_PTE_VALID);
460                         break;
461                 }
462         }
463         if (fnz_idx == -1)
464                 fnz_idx = 0;
465         /* update pde level as per page table programming */
466         ctx->pde.level = (ctx->qtbl[fnz_idx].level == PBL_LVL_2) ? PBL_LVL_2 :
467                           ctx->qtbl[fnz_idx].level + 1;
468 }
469
470 static int bnxt_qplib_setup_tqm_rings(struct bnxt_qplib_res *res,
471                                       struct bnxt_qplib_ctx *ctx)
472 {
473         int rc = 0;
474
475         rc = bnxt_qplib_alloc_tqm_rings(res, ctx);
476         if (rc)
477                 goto fail;
478
479         bnxt_qplib_map_tqm_pgtbl(&ctx->tqm_ctx);
480 fail:
481         return rc;
482 }
483
484 /*
485  * Routine: bnxt_qplib_alloc_ctx
486  * Description:
487  *     Context tables are memories which are used by the chip fw.
488  *     The 6 tables defined are:
489  *             QPC ctx - holds QP states
490  *             MRW ctx - holds memory region and window
491  *             SRQ ctx - holds shared RQ states
492  *             CQ ctx - holds completion queue states
493  *             TQM ctx - holds Tx Queue Manager context
494  *             TIM ctx - holds timer context
495  *     Depending on the size of the tbl requested, either a 1 Page Buffer List
496  *     or a 1-to-2-stage indirection Page Directory List + 1 PBL is used
497  *     instead.
498  *     Table might be employed as follows:
499  *             For 0      < ctx size <= 1 PAGE, 0 level of ind is used
500  *             For 1 PAGE < ctx size <= 512 entries size, 1 level of ind is used
501  *             For 512    < ctx size <= MAX, 2 levels of ind is used
502  * Returns:
503  *     0 if success, else -ERRORS
504  */
505 int bnxt_qplib_alloc_ctx(struct bnxt_qplib_res *res,
506                          struct bnxt_qplib_ctx *ctx,
507                          bool virt_fn, bool is_p5)
508 {
509         struct bnxt_qplib_hwq_attr hwq_attr = {};
510         struct bnxt_qplib_sg_info sginfo = {};
511         int rc = 0;
512
513         if (virt_fn || is_p5)
514                 goto stats_alloc;
515
516         /* QPC Tables */
517         sginfo.pgsize = PAGE_SIZE;
518         sginfo.pgshft = PAGE_SHIFT;
519         hwq_attr.sginfo = &sginfo;
520
521         hwq_attr.res = res;
522         hwq_attr.depth = ctx->qpc_count;
523         hwq_attr.stride = BNXT_QPLIB_MAX_QP_CTX_ENTRY_SIZE;
524         hwq_attr.type = HWQ_TYPE_CTX;
525         rc = bnxt_qplib_alloc_init_hwq(&ctx->qpc_tbl, &hwq_attr);
526         if (rc)
527                 goto fail;
528
529         /* MRW Tables */
530         hwq_attr.depth = ctx->mrw_count;
531         hwq_attr.stride = BNXT_QPLIB_MAX_MRW_CTX_ENTRY_SIZE;
532         rc = bnxt_qplib_alloc_init_hwq(&ctx->mrw_tbl, &hwq_attr);
533         if (rc)
534                 goto fail;
535
536         /* SRQ Tables */
537         hwq_attr.depth = ctx->srqc_count;
538         hwq_attr.stride = BNXT_QPLIB_MAX_SRQ_CTX_ENTRY_SIZE;
539         rc = bnxt_qplib_alloc_init_hwq(&ctx->srqc_tbl, &hwq_attr);
540         if (rc)
541                 goto fail;
542
543         /* CQ Tables */
544         hwq_attr.depth = ctx->cq_count;
545         hwq_attr.stride = BNXT_QPLIB_MAX_CQ_CTX_ENTRY_SIZE;
546         rc = bnxt_qplib_alloc_init_hwq(&ctx->cq_tbl, &hwq_attr);
547         if (rc)
548                 goto fail;
549
550         /* TQM Buffer */
551         rc = bnxt_qplib_setup_tqm_rings(res, ctx);
552         if (rc)
553                 goto fail;
554         /* TIM Buffer */
555         ctx->tim_tbl.max_elements = ctx->qpc_count * 16;
556         hwq_attr.depth = ctx->qpc_count * 16;
557         hwq_attr.stride = 1;
558         rc = bnxt_qplib_alloc_init_hwq(&ctx->tim_tbl, &hwq_attr);
559         if (rc)
560                 goto fail;
561 stats_alloc:
562         /* Stats */
563         rc = bnxt_qplib_alloc_stats_ctx(res->pdev, res->cctx, &ctx->stats);
564         if (rc)
565                 goto fail;
566
567         return 0;
568
569 fail:
570         bnxt_qplib_free_ctx(res, ctx);
571         return rc;
572 }
573
574 /* GUID */
575 void bnxt_qplib_get_guid(u8 *dev_addr, u8 *guid)
576 {
577         u8 mac[ETH_ALEN];
578
579         /* MAC-48 to EUI-64 mapping */
580         memcpy(mac, dev_addr, ETH_ALEN);
581         guid[0] = mac[0] ^ 2;
582         guid[1] = mac[1];
583         guid[2] = mac[2];
584         guid[3] = 0xff;
585         guid[4] = 0xfe;
586         guid[5] = mac[3];
587         guid[6] = mac[4];
588         guid[7] = mac[5];
589 }
590
591 static void bnxt_qplib_free_sgid_tbl(struct bnxt_qplib_res *res,
592                                      struct bnxt_qplib_sgid_tbl *sgid_tbl)
593 {
594         kfree(sgid_tbl->tbl);
595         kfree(sgid_tbl->hw_id);
596         kfree(sgid_tbl->ctx);
597         kfree(sgid_tbl->vlan);
598         sgid_tbl->tbl = NULL;
599         sgid_tbl->hw_id = NULL;
600         sgid_tbl->ctx = NULL;
601         sgid_tbl->vlan = NULL;
602         sgid_tbl->max = 0;
603         sgid_tbl->active = 0;
604 }
605
606 static int bnxt_qplib_alloc_sgid_tbl(struct bnxt_qplib_res *res,
607                                      struct bnxt_qplib_sgid_tbl *sgid_tbl,
608                                      u16 max)
609 {
610         sgid_tbl->tbl = kcalloc(max, sizeof(*sgid_tbl->tbl), GFP_KERNEL);
611         if (!sgid_tbl->tbl)
612                 return -ENOMEM;
613
614         sgid_tbl->hw_id = kcalloc(max, sizeof(u16), GFP_KERNEL);
615         if (!sgid_tbl->hw_id)
616                 goto out_free1;
617
618         sgid_tbl->ctx = kcalloc(max, sizeof(void *), GFP_KERNEL);
619         if (!sgid_tbl->ctx)
620                 goto out_free2;
621
622         sgid_tbl->vlan = kcalloc(max, sizeof(u8), GFP_KERNEL);
623         if (!sgid_tbl->vlan)
624                 goto out_free3;
625
626         sgid_tbl->max = max;
627         return 0;
628 out_free3:
629         kfree(sgid_tbl->ctx);
630         sgid_tbl->ctx = NULL;
631 out_free2:
632         kfree(sgid_tbl->hw_id);
633         sgid_tbl->hw_id = NULL;
634 out_free1:
635         kfree(sgid_tbl->tbl);
636         sgid_tbl->tbl = NULL;
637         return -ENOMEM;
638 };
639
640 static void bnxt_qplib_cleanup_sgid_tbl(struct bnxt_qplib_res *res,
641                                         struct bnxt_qplib_sgid_tbl *sgid_tbl)
642 {
643         int i;
644
645         for (i = 0; i < sgid_tbl->max; i++) {
646                 if (memcmp(&sgid_tbl->tbl[i], &bnxt_qplib_gid_zero,
647                            sizeof(bnxt_qplib_gid_zero)))
648                         bnxt_qplib_del_sgid(sgid_tbl, &sgid_tbl->tbl[i].gid,
649                                             sgid_tbl->tbl[i].vlan_id, true);
650         }
651         memset(sgid_tbl->tbl, 0, sizeof(*sgid_tbl->tbl) * sgid_tbl->max);
652         memset(sgid_tbl->hw_id, -1, sizeof(u16) * sgid_tbl->max);
653         memset(sgid_tbl->vlan, 0, sizeof(u8) * sgid_tbl->max);
654         sgid_tbl->active = 0;
655 }
656
657 static void bnxt_qplib_init_sgid_tbl(struct bnxt_qplib_sgid_tbl *sgid_tbl,
658                                      struct net_device *netdev)
659 {
660         u32 i;
661
662         for (i = 0; i < sgid_tbl->max; i++)
663                 sgid_tbl->tbl[i].vlan_id = 0xffff;
664
665         memset(sgid_tbl->hw_id, -1, sizeof(u16) * sgid_tbl->max);
666 }
667
668 static void bnxt_qplib_free_pkey_tbl(struct bnxt_qplib_res *res,
669                                      struct bnxt_qplib_pkey_tbl *pkey_tbl)
670 {
671         if (!pkey_tbl->tbl)
672                 dev_dbg(&res->pdev->dev, "PKEY tbl not present\n");
673         else
674                 kfree(pkey_tbl->tbl);
675
676         pkey_tbl->tbl = NULL;
677         pkey_tbl->max = 0;
678         pkey_tbl->active = 0;
679 }
680
681 static int bnxt_qplib_alloc_pkey_tbl(struct bnxt_qplib_res *res,
682                                      struct bnxt_qplib_pkey_tbl *pkey_tbl,
683                                      u16 max)
684 {
685         pkey_tbl->tbl = kcalloc(max, sizeof(u16), GFP_KERNEL);
686         if (!pkey_tbl->tbl)
687                 return -ENOMEM;
688
689         pkey_tbl->max = max;
690         return 0;
691 };
692
693 /* PDs */
694 int bnxt_qplib_alloc_pd(struct bnxt_qplib_pd_tbl *pdt, struct bnxt_qplib_pd *pd)
695 {
696         u32 bit_num;
697
698         bit_num = find_first_bit(pdt->tbl, pdt->max);
699         if (bit_num == pdt->max)
700                 return -ENOMEM;
701
702         /* Found unused PD */
703         clear_bit(bit_num, pdt->tbl);
704         pd->id = bit_num;
705         return 0;
706 }
707
708 int bnxt_qplib_dealloc_pd(struct bnxt_qplib_res *res,
709                           struct bnxt_qplib_pd_tbl *pdt,
710                           struct bnxt_qplib_pd *pd)
711 {
712         if (test_and_set_bit(pd->id, pdt->tbl)) {
713                 dev_warn(&res->pdev->dev, "Freeing an unused PD? pdn = %d\n",
714                          pd->id);
715                 return -EINVAL;
716         }
717         pd->id = 0;
718         return 0;
719 }
720
721 static void bnxt_qplib_free_pd_tbl(struct bnxt_qplib_pd_tbl *pdt)
722 {
723         kfree(pdt->tbl);
724         pdt->tbl = NULL;
725         pdt->max = 0;
726 }
727
728 static int bnxt_qplib_alloc_pd_tbl(struct bnxt_qplib_res *res,
729                                    struct bnxt_qplib_pd_tbl *pdt,
730                                    u32 max)
731 {
732         u32 bytes;
733
734         bytes = max >> 3;
735         if (!bytes)
736                 bytes = 1;
737         pdt->tbl = kmalloc(bytes, GFP_KERNEL);
738         if (!pdt->tbl)
739                 return -ENOMEM;
740
741         pdt->max = max;
742         memset((u8 *)pdt->tbl, 0xFF, bytes);
743
744         return 0;
745 }
746
747 /* DPIs */
748 int bnxt_qplib_alloc_dpi(struct bnxt_qplib_dpi_tbl *dpit,
749                          struct bnxt_qplib_dpi     *dpi,
750                          void                      *app)
751 {
752         u32 bit_num;
753
754         bit_num = find_first_bit(dpit->tbl, dpit->max);
755         if (bit_num == dpit->max)
756                 return -ENOMEM;
757
758         /* Found unused DPI */
759         clear_bit(bit_num, dpit->tbl);
760         dpit->app_tbl[bit_num] = app;
761
762         dpi->dpi = bit_num;
763         dpi->dbr = dpit->dbr_bar_reg_iomem + (bit_num * PAGE_SIZE);
764         dpi->umdbr = dpit->unmapped_dbr + (bit_num * PAGE_SIZE);
765
766         return 0;
767 }
768
769 int bnxt_qplib_dealloc_dpi(struct bnxt_qplib_res *res,
770                            struct bnxt_qplib_dpi_tbl *dpit,
771                            struct bnxt_qplib_dpi     *dpi)
772 {
773         if (dpi->dpi >= dpit->max) {
774                 dev_warn(&res->pdev->dev, "Invalid DPI? dpi = %d\n", dpi->dpi);
775                 return -EINVAL;
776         }
777         if (test_and_set_bit(dpi->dpi, dpit->tbl)) {
778                 dev_warn(&res->pdev->dev, "Freeing an unused DPI? dpi = %d\n",
779                          dpi->dpi);
780                 return -EINVAL;
781         }
782         if (dpit->app_tbl)
783                 dpit->app_tbl[dpi->dpi] = NULL;
784         memset(dpi, 0, sizeof(*dpi));
785
786         return 0;
787 }
788
789 static void bnxt_qplib_free_dpi_tbl(struct bnxt_qplib_res     *res,
790                                     struct bnxt_qplib_dpi_tbl *dpit)
791 {
792         kfree(dpit->tbl);
793         kfree(dpit->app_tbl);
794         if (dpit->dbr_bar_reg_iomem)
795                 pci_iounmap(res->pdev, dpit->dbr_bar_reg_iomem);
796         memset(dpit, 0, sizeof(*dpit));
797 }
798
799 static int bnxt_qplib_alloc_dpi_tbl(struct bnxt_qplib_res     *res,
800                                     struct bnxt_qplib_dpi_tbl *dpit,
801                                     u32                       dbr_offset)
802 {
803         u32 dbr_bar_reg = RCFW_DBR_PCI_BAR_REGION;
804         resource_size_t bar_reg_base;
805         u32 dbr_len, bytes;
806
807         if (dpit->dbr_bar_reg_iomem) {
808                 dev_err(&res->pdev->dev, "DBR BAR region %d already mapped\n",
809                         dbr_bar_reg);
810                 return -EALREADY;
811         }
812
813         bar_reg_base = pci_resource_start(res->pdev, dbr_bar_reg);
814         if (!bar_reg_base) {
815                 dev_err(&res->pdev->dev, "BAR region %d resc start failed\n",
816                         dbr_bar_reg);
817                 return -ENOMEM;
818         }
819
820         dbr_len = pci_resource_len(res->pdev, dbr_bar_reg) - dbr_offset;
821         if (!dbr_len || ((dbr_len & (PAGE_SIZE - 1)) != 0)) {
822                 dev_err(&res->pdev->dev, "Invalid DBR length %d\n", dbr_len);
823                 return -ENOMEM;
824         }
825
826         dpit->dbr_bar_reg_iomem = ioremap(bar_reg_base + dbr_offset,
827                                                   dbr_len);
828         if (!dpit->dbr_bar_reg_iomem) {
829                 dev_err(&res->pdev->dev,
830                         "FP: DBR BAR region %d mapping failed\n", dbr_bar_reg);
831                 return -ENOMEM;
832         }
833
834         dpit->unmapped_dbr = bar_reg_base + dbr_offset;
835         dpit->max = dbr_len / PAGE_SIZE;
836
837         dpit->app_tbl = kcalloc(dpit->max, sizeof(void *), GFP_KERNEL);
838         if (!dpit->app_tbl)
839                 goto unmap_io;
840
841         bytes = dpit->max >> 3;
842         if (!bytes)
843                 bytes = 1;
844
845         dpit->tbl = kmalloc(bytes, GFP_KERNEL);
846         if (!dpit->tbl) {
847                 kfree(dpit->app_tbl);
848                 dpit->app_tbl = NULL;
849                 goto unmap_io;
850         }
851
852         memset((u8 *)dpit->tbl, 0xFF, bytes);
853
854         return 0;
855
856 unmap_io:
857         pci_iounmap(res->pdev, dpit->dbr_bar_reg_iomem);
858         dpit->dbr_bar_reg_iomem = NULL;
859         return -ENOMEM;
860 }
861
862 /* PKEYs */
863 static void bnxt_qplib_cleanup_pkey_tbl(struct bnxt_qplib_pkey_tbl *pkey_tbl)
864 {
865         memset(pkey_tbl->tbl, 0, sizeof(u16) * pkey_tbl->max);
866         pkey_tbl->active = 0;
867 }
868
869 static void bnxt_qplib_init_pkey_tbl(struct bnxt_qplib_res *res,
870                                      struct bnxt_qplib_pkey_tbl *pkey_tbl)
871 {
872         u16 pkey = 0xFFFF;
873
874         memset(pkey_tbl->tbl, 0, sizeof(u16) * pkey_tbl->max);
875
876         /* pkey default = 0xFFFF */
877         bnxt_qplib_add_pkey(res, pkey_tbl, &pkey, false);
878 }
879
880 /* Stats */
881 static void bnxt_qplib_free_stats_ctx(struct pci_dev *pdev,
882                                       struct bnxt_qplib_stats *stats)
883 {
884         if (stats->dma) {
885                 dma_free_coherent(&pdev->dev, stats->size,
886                                   stats->dma, stats->dma_map);
887         }
888         memset(stats, 0, sizeof(*stats));
889         stats->fw_id = -1;
890 }
891
892 static int bnxt_qplib_alloc_stats_ctx(struct pci_dev *pdev,
893                                       struct bnxt_qplib_chip_ctx *cctx,
894                                       struct bnxt_qplib_stats *stats)
895 {
896         memset(stats, 0, sizeof(*stats));
897         stats->fw_id = -1;
898         stats->size = cctx->hw_stats_size;
899         stats->dma = dma_alloc_coherent(&pdev->dev, stats->size,
900                                         &stats->dma_map, GFP_KERNEL);
901         if (!stats->dma) {
902                 dev_err(&pdev->dev, "Stats DMA allocation failed\n");
903                 return -ENOMEM;
904         }
905         return 0;
906 }
907
908 void bnxt_qplib_cleanup_res(struct bnxt_qplib_res *res)
909 {
910         bnxt_qplib_cleanup_pkey_tbl(&res->pkey_tbl);
911         bnxt_qplib_cleanup_sgid_tbl(res, &res->sgid_tbl);
912 }
913
914 int bnxt_qplib_init_res(struct bnxt_qplib_res *res)
915 {
916         bnxt_qplib_init_sgid_tbl(&res->sgid_tbl, res->netdev);
917         bnxt_qplib_init_pkey_tbl(res, &res->pkey_tbl);
918
919         return 0;
920 }
921
922 void bnxt_qplib_free_res(struct bnxt_qplib_res *res)
923 {
924         bnxt_qplib_free_pkey_tbl(res, &res->pkey_tbl);
925         bnxt_qplib_free_sgid_tbl(res, &res->sgid_tbl);
926         bnxt_qplib_free_pd_tbl(&res->pd_tbl);
927         bnxt_qplib_free_dpi_tbl(res, &res->dpi_tbl);
928 }
929
930 int bnxt_qplib_alloc_res(struct bnxt_qplib_res *res, struct pci_dev *pdev,
931                          struct net_device *netdev,
932                          struct bnxt_qplib_dev_attr *dev_attr)
933 {
934         int rc = 0;
935
936         res->pdev = pdev;
937         res->netdev = netdev;
938
939         rc = bnxt_qplib_alloc_sgid_tbl(res, &res->sgid_tbl, dev_attr->max_sgid);
940         if (rc)
941                 goto fail;
942
943         rc = bnxt_qplib_alloc_pkey_tbl(res, &res->pkey_tbl, dev_attr->max_pkey);
944         if (rc)
945                 goto fail;
946
947         rc = bnxt_qplib_alloc_pd_tbl(res, &res->pd_tbl, dev_attr->max_pd);
948         if (rc)
949                 goto fail;
950
951         rc = bnxt_qplib_alloc_dpi_tbl(res, &res->dpi_tbl, dev_attr->l2_db_size);
952         if (rc)
953                 goto fail;
954
955         return 0;
956 fail:
957         bnxt_qplib_free_res(res);
958         return rc;
959 }
960
961 int bnxt_qplib_determine_atomics(struct pci_dev *dev)
962 {
963         int comp;
964         u16 ctl2;
965
966         comp = pci_enable_atomic_ops_to_root(dev,
967                                              PCI_EXP_DEVCAP2_ATOMIC_COMP32);
968         if (comp)
969                 return -EOPNOTSUPP;
970         comp = pci_enable_atomic_ops_to_root(dev,
971                                              PCI_EXP_DEVCAP2_ATOMIC_COMP64);
972         if (comp)
973                 return -EOPNOTSUPP;
974         pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &ctl2);
975         return !(ctl2 & PCI_EXP_DEVCTL2_ATOMIC_REQ);
976 }