Merge remote-tracking branch 'torvalds/master' into perf/core
[linux-2.6-microblaze.git] / drivers / hid / hid-logitech-hidpp.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  HIDPP protocol for Logitech receivers
4  *
5  *  Copyright (c) 2011 Logitech (c)
6  *  Copyright (c) 2012-2013 Google (c)
7  *  Copyright (c) 2013-2014 Red Hat Inc.
8  */
9
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/device.h>
14 #include <linux/input.h>
15 #include <linux/usb.h>
16 #include <linux/hid.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/sched.h>
20 #include <linux/sched/clock.h>
21 #include <linux/kfifo.h>
22 #include <linux/input/mt.h>
23 #include <linux/workqueue.h>
24 #include <linux/atomic.h>
25 #include <linux/fixp-arith.h>
26 #include <asm/unaligned.h>
27 #include "usbhid/usbhid.h"
28 #include "hid-ids.h"
29
30 MODULE_LICENSE("GPL");
31 MODULE_AUTHOR("Benjamin Tissoires <benjamin.tissoires@gmail.com>");
32 MODULE_AUTHOR("Nestor Lopez Casado <nlopezcasad@logitech.com>");
33
34 static bool disable_raw_mode;
35 module_param(disable_raw_mode, bool, 0644);
36 MODULE_PARM_DESC(disable_raw_mode,
37         "Disable Raw mode reporting for touchpads and keep firmware gestures.");
38
39 static bool disable_tap_to_click;
40 module_param(disable_tap_to_click, bool, 0644);
41 MODULE_PARM_DESC(disable_tap_to_click,
42         "Disable Tap-To-Click mode reporting for touchpads (only on the K400 currently).");
43
44 #define REPORT_ID_HIDPP_SHORT                   0x10
45 #define REPORT_ID_HIDPP_LONG                    0x11
46 #define REPORT_ID_HIDPP_VERY_LONG               0x12
47
48 #define HIDPP_REPORT_SHORT_LENGTH               7
49 #define HIDPP_REPORT_LONG_LENGTH                20
50 #define HIDPP_REPORT_VERY_LONG_MAX_LENGTH       64
51
52 #define HIDPP_REPORT_SHORT_SUPPORTED            BIT(0)
53 #define HIDPP_REPORT_LONG_SUPPORTED             BIT(1)
54 #define HIDPP_REPORT_VERY_LONG_SUPPORTED        BIT(2)
55
56 #define HIDPP_SUB_ID_CONSUMER_VENDOR_KEYS       0x03
57 #define HIDPP_SUB_ID_ROLLER                     0x05
58 #define HIDPP_SUB_ID_MOUSE_EXTRA_BTNS           0x06
59
60 #define HIDPP_QUIRK_CLASS_WTP                   BIT(0)
61 #define HIDPP_QUIRK_CLASS_M560                  BIT(1)
62 #define HIDPP_QUIRK_CLASS_K400                  BIT(2)
63 #define HIDPP_QUIRK_CLASS_G920                  BIT(3)
64 #define HIDPP_QUIRK_CLASS_K750                  BIT(4)
65
66 /* bits 2..20 are reserved for classes */
67 /* #define HIDPP_QUIRK_CONNECT_EVENTS           BIT(21) disabled */
68 #define HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS        BIT(22)
69 #define HIDPP_QUIRK_NO_HIDINPUT                 BIT(23)
70 #define HIDPP_QUIRK_FORCE_OUTPUT_REPORTS        BIT(24)
71 #define HIDPP_QUIRK_UNIFYING                    BIT(25)
72 #define HIDPP_QUIRK_HI_RES_SCROLL_1P0           BIT(26)
73 #define HIDPP_QUIRK_HI_RES_SCROLL_X2120         BIT(27)
74 #define HIDPP_QUIRK_HI_RES_SCROLL_X2121         BIT(28)
75 #define HIDPP_QUIRK_HIDPP_WHEELS                BIT(29)
76 #define HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS      BIT(30)
77 #define HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS  BIT(31)
78
79 /* These are just aliases for now */
80 #define HIDPP_QUIRK_KBD_SCROLL_WHEEL HIDPP_QUIRK_HIDPP_WHEELS
81 #define HIDPP_QUIRK_KBD_ZOOM_WHEEL   HIDPP_QUIRK_HIDPP_WHEELS
82
83 /* Convenience constant to check for any high-res support. */
84 #define HIDPP_QUIRK_HI_RES_SCROLL       (HIDPP_QUIRK_HI_RES_SCROLL_1P0 | \
85                                          HIDPP_QUIRK_HI_RES_SCROLL_X2120 | \
86                                          HIDPP_QUIRK_HI_RES_SCROLL_X2121)
87
88 #define HIDPP_QUIRK_DELAYED_INIT                HIDPP_QUIRK_NO_HIDINPUT
89
90 #define HIDPP_CAPABILITY_HIDPP10_BATTERY        BIT(0)
91 #define HIDPP_CAPABILITY_HIDPP20_BATTERY        BIT(1)
92 #define HIDPP_CAPABILITY_BATTERY_MILEAGE        BIT(2)
93 #define HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS   BIT(3)
94 #define HIDPP_CAPABILITY_BATTERY_VOLTAGE        BIT(4)
95 #define HIDPP_CAPABILITY_BATTERY_PERCENTAGE     BIT(5)
96 #define HIDPP_CAPABILITY_UNIFIED_BATTERY        BIT(6)
97
98 #define lg_map_key_clear(c)  hid_map_usage_clear(hi, usage, bit, max, EV_KEY, (c))
99
100 /*
101  * There are two hidpp protocols in use, the first version hidpp10 is known
102  * as register access protocol or RAP, the second version hidpp20 is known as
103  * feature access protocol or FAP
104  *
105  * Most older devices (including the Unifying usb receiver) use the RAP protocol
106  * where as most newer devices use the FAP protocol. Both protocols are
107  * compatible with the underlying transport, which could be usb, Unifiying, or
108  * bluetooth. The message lengths are defined by the hid vendor specific report
109  * descriptor for the HIDPP_SHORT report type (total message lenth 7 bytes) and
110  * the HIDPP_LONG report type (total message length 20 bytes)
111  *
112  * The RAP protocol uses both report types, whereas the FAP only uses HIDPP_LONG
113  * messages. The Unifying receiver itself responds to RAP messages (device index
114  * is 0xFF for the receiver), and all messages (short or long) with a device
115  * index between 1 and 6 are passed untouched to the corresponding paired
116  * Unifying device.
117  *
118  * The paired device can be RAP or FAP, it will receive the message untouched
119  * from the Unifiying receiver.
120  */
121
122 struct fap {
123         u8 feature_index;
124         u8 funcindex_clientid;
125         u8 params[HIDPP_REPORT_VERY_LONG_MAX_LENGTH - 4U];
126 };
127
128 struct rap {
129         u8 sub_id;
130         u8 reg_address;
131         u8 params[HIDPP_REPORT_VERY_LONG_MAX_LENGTH - 4U];
132 };
133
134 struct hidpp_report {
135         u8 report_id;
136         u8 device_index;
137         union {
138                 struct fap fap;
139                 struct rap rap;
140                 u8 rawbytes[sizeof(struct fap)];
141         };
142 } __packed;
143
144 struct hidpp_battery {
145         u8 feature_index;
146         u8 solar_feature_index;
147         u8 voltage_feature_index;
148         struct power_supply_desc desc;
149         struct power_supply *ps;
150         char name[64];
151         int status;
152         int capacity;
153         int level;
154         int voltage;
155         int charge_type;
156         bool online;
157         u8 supported_levels_1004;
158 };
159
160 /**
161  * struct hidpp_scroll_counter - Utility class for processing high-resolution
162  *                             scroll events.
163  * @dev: the input device for which events should be reported.
164  * @wheel_multiplier: the scalar multiplier to be applied to each wheel event
165  * @remainder: counts the number of high-resolution units moved since the last
166  *             low-resolution event (REL_WHEEL or REL_HWHEEL) was sent. Should
167  *             only be used by class methods.
168  * @direction: direction of last movement (1 or -1)
169  * @last_time: last event time, used to reset remainder after inactivity
170  */
171 struct hidpp_scroll_counter {
172         int wheel_multiplier;
173         int remainder;
174         int direction;
175         unsigned long long last_time;
176 };
177
178 struct hidpp_device {
179         struct hid_device *hid_dev;
180         struct input_dev *input;
181         struct mutex send_mutex;
182         void *send_receive_buf;
183         char *name;             /* will never be NULL and should not be freed */
184         wait_queue_head_t wait;
185         int very_long_report_length;
186         bool answer_available;
187         u8 protocol_major;
188         u8 protocol_minor;
189
190         void *private_data;
191
192         struct work_struct work;
193         struct kfifo delayed_work_fifo;
194         atomic_t connected;
195         struct input_dev *delayed_input;
196
197         unsigned long quirks;
198         unsigned long capabilities;
199         u8 supported_reports;
200
201         struct hidpp_battery battery;
202         struct hidpp_scroll_counter vertical_wheel_counter;
203
204         u8 wireless_feature_index;
205 };
206
207 /* HID++ 1.0 error codes */
208 #define HIDPP_ERROR                             0x8f
209 #define HIDPP_ERROR_SUCCESS                     0x00
210 #define HIDPP_ERROR_INVALID_SUBID               0x01
211 #define HIDPP_ERROR_INVALID_ADRESS              0x02
212 #define HIDPP_ERROR_INVALID_VALUE               0x03
213 #define HIDPP_ERROR_CONNECT_FAIL                0x04
214 #define HIDPP_ERROR_TOO_MANY_DEVICES            0x05
215 #define HIDPP_ERROR_ALREADY_EXISTS              0x06
216 #define HIDPP_ERROR_BUSY                        0x07
217 #define HIDPP_ERROR_UNKNOWN_DEVICE              0x08
218 #define HIDPP_ERROR_RESOURCE_ERROR              0x09
219 #define HIDPP_ERROR_REQUEST_UNAVAILABLE         0x0a
220 #define HIDPP_ERROR_INVALID_PARAM_VALUE         0x0b
221 #define HIDPP_ERROR_WRONG_PIN_CODE              0x0c
222 /* HID++ 2.0 error codes */
223 #define HIDPP20_ERROR                           0xff
224
225 static void hidpp_connect_event(struct hidpp_device *hidpp_dev);
226
227 static int __hidpp_send_report(struct hid_device *hdev,
228                                 struct hidpp_report *hidpp_report)
229 {
230         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
231         int fields_count, ret;
232
233         switch (hidpp_report->report_id) {
234         case REPORT_ID_HIDPP_SHORT:
235                 fields_count = HIDPP_REPORT_SHORT_LENGTH;
236                 break;
237         case REPORT_ID_HIDPP_LONG:
238                 fields_count = HIDPP_REPORT_LONG_LENGTH;
239                 break;
240         case REPORT_ID_HIDPP_VERY_LONG:
241                 fields_count = hidpp->very_long_report_length;
242                 break;
243         default:
244                 return -ENODEV;
245         }
246
247         /*
248          * set the device_index as the receiver, it will be overwritten by
249          * hid_hw_request if needed
250          */
251         hidpp_report->device_index = 0xff;
252
253         if (hidpp->quirks & HIDPP_QUIRK_FORCE_OUTPUT_REPORTS) {
254                 ret = hid_hw_output_report(hdev, (u8 *)hidpp_report, fields_count);
255         } else {
256                 ret = hid_hw_raw_request(hdev, hidpp_report->report_id,
257                         (u8 *)hidpp_report, fields_count, HID_OUTPUT_REPORT,
258                         HID_REQ_SET_REPORT);
259         }
260
261         return ret == fields_count ? 0 : -1;
262 }
263
264 /*
265  * hidpp_send_message_sync() returns 0 in case of success, and something else
266  * in case of a failure.
267  * - If ' something else' is positive, that means that an error has been raised
268  *   by the protocol itself.
269  * - If ' something else' is negative, that means that we had a classic error
270  *   (-ENOMEM, -EPIPE, etc...)
271  */
272 static int hidpp_send_message_sync(struct hidpp_device *hidpp,
273         struct hidpp_report *message,
274         struct hidpp_report *response)
275 {
276         int ret;
277
278         mutex_lock(&hidpp->send_mutex);
279
280         hidpp->send_receive_buf = response;
281         hidpp->answer_available = false;
282
283         /*
284          * So that we can later validate the answer when it arrives
285          * in hidpp_raw_event
286          */
287         *response = *message;
288
289         ret = __hidpp_send_report(hidpp->hid_dev, message);
290
291         if (ret) {
292                 dbg_hid("__hidpp_send_report returned err: %d\n", ret);
293                 memset(response, 0, sizeof(struct hidpp_report));
294                 goto exit;
295         }
296
297         if (!wait_event_timeout(hidpp->wait, hidpp->answer_available,
298                                 5*HZ)) {
299                 dbg_hid("%s:timeout waiting for response\n", __func__);
300                 memset(response, 0, sizeof(struct hidpp_report));
301                 ret = -ETIMEDOUT;
302         }
303
304         if (response->report_id == REPORT_ID_HIDPP_SHORT &&
305             response->rap.sub_id == HIDPP_ERROR) {
306                 ret = response->rap.params[1];
307                 dbg_hid("%s:got hidpp error %02X\n", __func__, ret);
308                 goto exit;
309         }
310
311         if ((response->report_id == REPORT_ID_HIDPP_LONG ||
312                         response->report_id == REPORT_ID_HIDPP_VERY_LONG) &&
313                         response->fap.feature_index == HIDPP20_ERROR) {
314                 ret = response->fap.params[1];
315                 dbg_hid("%s:got hidpp 2.0 error %02X\n", __func__, ret);
316                 goto exit;
317         }
318
319 exit:
320         mutex_unlock(&hidpp->send_mutex);
321         return ret;
322
323 }
324
325 static int hidpp_send_fap_command_sync(struct hidpp_device *hidpp,
326         u8 feat_index, u8 funcindex_clientid, u8 *params, int param_count,
327         struct hidpp_report *response)
328 {
329         struct hidpp_report *message;
330         int ret;
331
332         if (param_count > sizeof(message->fap.params))
333                 return -EINVAL;
334
335         message = kzalloc(sizeof(struct hidpp_report), GFP_KERNEL);
336         if (!message)
337                 return -ENOMEM;
338
339         if (param_count > (HIDPP_REPORT_LONG_LENGTH - 4))
340                 message->report_id = REPORT_ID_HIDPP_VERY_LONG;
341         else
342                 message->report_id = REPORT_ID_HIDPP_LONG;
343         message->fap.feature_index = feat_index;
344         message->fap.funcindex_clientid = funcindex_clientid;
345         memcpy(&message->fap.params, params, param_count);
346
347         ret = hidpp_send_message_sync(hidpp, message, response);
348         kfree(message);
349         return ret;
350 }
351
352 static int hidpp_send_rap_command_sync(struct hidpp_device *hidpp_dev,
353         u8 report_id, u8 sub_id, u8 reg_address, u8 *params, int param_count,
354         struct hidpp_report *response)
355 {
356         struct hidpp_report *message;
357         int ret, max_count;
358
359         /* Send as long report if short reports are not supported. */
360         if (report_id == REPORT_ID_HIDPP_SHORT &&
361             !(hidpp_dev->supported_reports & HIDPP_REPORT_SHORT_SUPPORTED))
362                 report_id = REPORT_ID_HIDPP_LONG;
363
364         switch (report_id) {
365         case REPORT_ID_HIDPP_SHORT:
366                 max_count = HIDPP_REPORT_SHORT_LENGTH - 4;
367                 break;
368         case REPORT_ID_HIDPP_LONG:
369                 max_count = HIDPP_REPORT_LONG_LENGTH - 4;
370                 break;
371         case REPORT_ID_HIDPP_VERY_LONG:
372                 max_count = hidpp_dev->very_long_report_length - 4;
373                 break;
374         default:
375                 return -EINVAL;
376         }
377
378         if (param_count > max_count)
379                 return -EINVAL;
380
381         message = kzalloc(sizeof(struct hidpp_report), GFP_KERNEL);
382         if (!message)
383                 return -ENOMEM;
384         message->report_id = report_id;
385         message->rap.sub_id = sub_id;
386         message->rap.reg_address = reg_address;
387         memcpy(&message->rap.params, params, param_count);
388
389         ret = hidpp_send_message_sync(hidpp_dev, message, response);
390         kfree(message);
391         return ret;
392 }
393
394 static void delayed_work_cb(struct work_struct *work)
395 {
396         struct hidpp_device *hidpp = container_of(work, struct hidpp_device,
397                                                         work);
398         hidpp_connect_event(hidpp);
399 }
400
401 static inline bool hidpp_match_answer(struct hidpp_report *question,
402                 struct hidpp_report *answer)
403 {
404         return (answer->fap.feature_index == question->fap.feature_index) &&
405            (answer->fap.funcindex_clientid == question->fap.funcindex_clientid);
406 }
407
408 static inline bool hidpp_match_error(struct hidpp_report *question,
409                 struct hidpp_report *answer)
410 {
411         return ((answer->rap.sub_id == HIDPP_ERROR) ||
412             (answer->fap.feature_index == HIDPP20_ERROR)) &&
413             (answer->fap.funcindex_clientid == question->fap.feature_index) &&
414             (answer->fap.params[0] == question->fap.funcindex_clientid);
415 }
416
417 static inline bool hidpp_report_is_connect_event(struct hidpp_device *hidpp,
418                 struct hidpp_report *report)
419 {
420         return (hidpp->wireless_feature_index &&
421                 (report->fap.feature_index == hidpp->wireless_feature_index)) ||
422                 ((report->report_id == REPORT_ID_HIDPP_SHORT) &&
423                 (report->rap.sub_id == 0x41));
424 }
425
426 /*
427  * hidpp_prefix_name() prefixes the current given name with "Logitech ".
428  */
429 static void hidpp_prefix_name(char **name, int name_length)
430 {
431 #define PREFIX_LENGTH 9 /* "Logitech " */
432
433         int new_length;
434         char *new_name;
435
436         if (name_length > PREFIX_LENGTH &&
437             strncmp(*name, "Logitech ", PREFIX_LENGTH) == 0)
438                 /* The prefix has is already in the name */
439                 return;
440
441         new_length = PREFIX_LENGTH + name_length;
442         new_name = kzalloc(new_length, GFP_KERNEL);
443         if (!new_name)
444                 return;
445
446         snprintf(new_name, new_length, "Logitech %s", *name);
447
448         kfree(*name);
449
450         *name = new_name;
451 }
452
453 /**
454  * hidpp_scroll_counter_handle_scroll() - Send high- and low-resolution scroll
455  *                                        events given a high-resolution wheel
456  *                                        movement.
457  * @input_dev: Pointer to the input device
458  * @counter: a hid_scroll_counter struct describing the wheel.
459  * @hi_res_value: the movement of the wheel, in the mouse's high-resolution
460  *                units.
461  *
462  * Given a high-resolution movement, this function converts the movement into
463  * fractions of 120 and emits high-resolution scroll events for the input
464  * device. It also uses the multiplier from &struct hid_scroll_counter to
465  * emit low-resolution scroll events when appropriate for
466  * backwards-compatibility with userspace input libraries.
467  */
468 static void hidpp_scroll_counter_handle_scroll(struct input_dev *input_dev,
469                                                struct hidpp_scroll_counter *counter,
470                                                int hi_res_value)
471 {
472         int low_res_value, remainder, direction;
473         unsigned long long now, previous;
474
475         hi_res_value = hi_res_value * 120/counter->wheel_multiplier;
476         input_report_rel(input_dev, REL_WHEEL_HI_RES, hi_res_value);
477
478         remainder = counter->remainder;
479         direction = hi_res_value > 0 ? 1 : -1;
480
481         now = sched_clock();
482         previous = counter->last_time;
483         counter->last_time = now;
484         /*
485          * Reset the remainder after a period of inactivity or when the
486          * direction changes. This prevents the REL_WHEEL emulation point
487          * from sliding for devices that don't always provide the same
488          * number of movements per detent.
489          */
490         if (now - previous > 1000000000 || direction != counter->direction)
491                 remainder = 0;
492
493         counter->direction = direction;
494         remainder += hi_res_value;
495
496         /* Some wheels will rest 7/8ths of a detent from the previous detent
497          * after slow movement, so we want the threshold for low-res events to
498          * be in the middle between two detents (e.g. after 4/8ths) as
499          * opposed to on the detents themselves (8/8ths).
500          */
501         if (abs(remainder) >= 60) {
502                 /* Add (or subtract) 1 because we want to trigger when the wheel
503                  * is half-way to the next detent (i.e. scroll 1 detent after a
504                  * 1/2 detent movement, 2 detents after a 1 1/2 detent movement,
505                  * etc.).
506                  */
507                 low_res_value = remainder / 120;
508                 if (low_res_value == 0)
509                         low_res_value = (hi_res_value > 0 ? 1 : -1);
510                 input_report_rel(input_dev, REL_WHEEL, low_res_value);
511                 remainder -= low_res_value * 120;
512         }
513         counter->remainder = remainder;
514 }
515
516 /* -------------------------------------------------------------------------- */
517 /* HIDP++ 1.0 commands                                                        */
518 /* -------------------------------------------------------------------------- */
519
520 #define HIDPP_SET_REGISTER                              0x80
521 #define HIDPP_GET_REGISTER                              0x81
522 #define HIDPP_SET_LONG_REGISTER                         0x82
523 #define HIDPP_GET_LONG_REGISTER                         0x83
524
525 /**
526  * hidpp10_set_register - Modify a HID++ 1.0 register.
527  * @hidpp_dev: the device to set the register on.
528  * @register_address: the address of the register to modify.
529  * @byte: the byte of the register to modify. Should be less than 3.
530  * @mask: mask of the bits to modify
531  * @value: new values for the bits in mask
532  * Return: 0 if successful, otherwise a negative error code.
533  */
534 static int hidpp10_set_register(struct hidpp_device *hidpp_dev,
535         u8 register_address, u8 byte, u8 mask, u8 value)
536 {
537         struct hidpp_report response;
538         int ret;
539         u8 params[3] = { 0 };
540
541         ret = hidpp_send_rap_command_sync(hidpp_dev,
542                                           REPORT_ID_HIDPP_SHORT,
543                                           HIDPP_GET_REGISTER,
544                                           register_address,
545                                           NULL, 0, &response);
546         if (ret)
547                 return ret;
548
549         memcpy(params, response.rap.params, 3);
550
551         params[byte] &= ~mask;
552         params[byte] |= value & mask;
553
554         return hidpp_send_rap_command_sync(hidpp_dev,
555                                            REPORT_ID_HIDPP_SHORT,
556                                            HIDPP_SET_REGISTER,
557                                            register_address,
558                                            params, 3, &response);
559 }
560
561 #define HIDPP_REG_ENABLE_REPORTS                        0x00
562 #define HIDPP_ENABLE_CONSUMER_REPORT                    BIT(0)
563 #define HIDPP_ENABLE_WHEEL_REPORT                       BIT(2)
564 #define HIDPP_ENABLE_MOUSE_EXTRA_BTN_REPORT             BIT(3)
565 #define HIDPP_ENABLE_BAT_REPORT                         BIT(4)
566 #define HIDPP_ENABLE_HWHEEL_REPORT                      BIT(5)
567
568 static int hidpp10_enable_battery_reporting(struct hidpp_device *hidpp_dev)
569 {
570         return hidpp10_set_register(hidpp_dev, HIDPP_REG_ENABLE_REPORTS, 0,
571                           HIDPP_ENABLE_BAT_REPORT, HIDPP_ENABLE_BAT_REPORT);
572 }
573
574 #define HIDPP_REG_FEATURES                              0x01
575 #define HIDPP_ENABLE_SPECIAL_BUTTON_FUNC                BIT(1)
576 #define HIDPP_ENABLE_FAST_SCROLL                        BIT(6)
577
578 /* On HID++ 1.0 devices, high-res scroll was called "scrolling acceleration". */
579 static int hidpp10_enable_scrolling_acceleration(struct hidpp_device *hidpp_dev)
580 {
581         return hidpp10_set_register(hidpp_dev, HIDPP_REG_FEATURES, 0,
582                           HIDPP_ENABLE_FAST_SCROLL, HIDPP_ENABLE_FAST_SCROLL);
583 }
584
585 #define HIDPP_REG_BATTERY_STATUS                        0x07
586
587 static int hidpp10_battery_status_map_level(u8 param)
588 {
589         int level;
590
591         switch (param) {
592         case 1 ... 2:
593                 level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
594                 break;
595         case 3 ... 4:
596                 level = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
597                 break;
598         case 5 ... 6:
599                 level = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
600                 break;
601         case 7:
602                 level = POWER_SUPPLY_CAPACITY_LEVEL_HIGH;
603                 break;
604         default:
605                 level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
606         }
607
608         return level;
609 }
610
611 static int hidpp10_battery_status_map_status(u8 param)
612 {
613         int status;
614
615         switch (param) {
616         case 0x00:
617                 /* discharging (in use) */
618                 status = POWER_SUPPLY_STATUS_DISCHARGING;
619                 break;
620         case 0x21: /* (standard) charging */
621         case 0x24: /* fast charging */
622         case 0x25: /* slow charging */
623                 status = POWER_SUPPLY_STATUS_CHARGING;
624                 break;
625         case 0x26: /* topping charge */
626         case 0x22: /* charge complete */
627                 status = POWER_SUPPLY_STATUS_FULL;
628                 break;
629         case 0x20: /* unknown */
630                 status = POWER_SUPPLY_STATUS_UNKNOWN;
631                 break;
632         /*
633          * 0x01...0x1F = reserved (not charging)
634          * 0x23 = charging error
635          * 0x27..0xff = reserved
636          */
637         default:
638                 status = POWER_SUPPLY_STATUS_NOT_CHARGING;
639                 break;
640         }
641
642         return status;
643 }
644
645 static int hidpp10_query_battery_status(struct hidpp_device *hidpp)
646 {
647         struct hidpp_report response;
648         int ret, status;
649
650         ret = hidpp_send_rap_command_sync(hidpp,
651                                         REPORT_ID_HIDPP_SHORT,
652                                         HIDPP_GET_REGISTER,
653                                         HIDPP_REG_BATTERY_STATUS,
654                                         NULL, 0, &response);
655         if (ret)
656                 return ret;
657
658         hidpp->battery.level =
659                 hidpp10_battery_status_map_level(response.rap.params[0]);
660         status = hidpp10_battery_status_map_status(response.rap.params[1]);
661         hidpp->battery.status = status;
662         /* the capacity is only available when discharging or full */
663         hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
664                                 status == POWER_SUPPLY_STATUS_FULL;
665
666         return 0;
667 }
668
669 #define HIDPP_REG_BATTERY_MILEAGE                       0x0D
670
671 static int hidpp10_battery_mileage_map_status(u8 param)
672 {
673         int status;
674
675         switch (param >> 6) {
676         case 0x00:
677                 /* discharging (in use) */
678                 status = POWER_SUPPLY_STATUS_DISCHARGING;
679                 break;
680         case 0x01: /* charging */
681                 status = POWER_SUPPLY_STATUS_CHARGING;
682                 break;
683         case 0x02: /* charge complete */
684                 status = POWER_SUPPLY_STATUS_FULL;
685                 break;
686         /*
687          * 0x03 = charging error
688          */
689         default:
690                 status = POWER_SUPPLY_STATUS_NOT_CHARGING;
691                 break;
692         }
693
694         return status;
695 }
696
697 static int hidpp10_query_battery_mileage(struct hidpp_device *hidpp)
698 {
699         struct hidpp_report response;
700         int ret, status;
701
702         ret = hidpp_send_rap_command_sync(hidpp,
703                                         REPORT_ID_HIDPP_SHORT,
704                                         HIDPP_GET_REGISTER,
705                                         HIDPP_REG_BATTERY_MILEAGE,
706                                         NULL, 0, &response);
707         if (ret)
708                 return ret;
709
710         hidpp->battery.capacity = response.rap.params[0];
711         status = hidpp10_battery_mileage_map_status(response.rap.params[2]);
712         hidpp->battery.status = status;
713         /* the capacity is only available when discharging or full */
714         hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
715                                 status == POWER_SUPPLY_STATUS_FULL;
716
717         return 0;
718 }
719
720 static int hidpp10_battery_event(struct hidpp_device *hidpp, u8 *data, int size)
721 {
722         struct hidpp_report *report = (struct hidpp_report *)data;
723         int status, capacity, level;
724         bool changed;
725
726         if (report->report_id != REPORT_ID_HIDPP_SHORT)
727                 return 0;
728
729         switch (report->rap.sub_id) {
730         case HIDPP_REG_BATTERY_STATUS:
731                 capacity = hidpp->battery.capacity;
732                 level = hidpp10_battery_status_map_level(report->rawbytes[1]);
733                 status = hidpp10_battery_status_map_status(report->rawbytes[2]);
734                 break;
735         case HIDPP_REG_BATTERY_MILEAGE:
736                 capacity = report->rap.params[0];
737                 level = hidpp->battery.level;
738                 status = hidpp10_battery_mileage_map_status(report->rawbytes[3]);
739                 break;
740         default:
741                 return 0;
742         }
743
744         changed = capacity != hidpp->battery.capacity ||
745                   level != hidpp->battery.level ||
746                   status != hidpp->battery.status;
747
748         /* the capacity is only available when discharging or full */
749         hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
750                                 status == POWER_SUPPLY_STATUS_FULL;
751
752         if (changed) {
753                 hidpp->battery.level = level;
754                 hidpp->battery.status = status;
755                 if (hidpp->battery.ps)
756                         power_supply_changed(hidpp->battery.ps);
757         }
758
759         return 0;
760 }
761
762 #define HIDPP_REG_PAIRING_INFORMATION                   0xB5
763 #define HIDPP_EXTENDED_PAIRING                          0x30
764 #define HIDPP_DEVICE_NAME                               0x40
765
766 static char *hidpp_unifying_get_name(struct hidpp_device *hidpp_dev)
767 {
768         struct hidpp_report response;
769         int ret;
770         u8 params[1] = { HIDPP_DEVICE_NAME };
771         char *name;
772         int len;
773
774         ret = hidpp_send_rap_command_sync(hidpp_dev,
775                                         REPORT_ID_HIDPP_SHORT,
776                                         HIDPP_GET_LONG_REGISTER,
777                                         HIDPP_REG_PAIRING_INFORMATION,
778                                         params, 1, &response);
779         if (ret)
780                 return NULL;
781
782         len = response.rap.params[1];
783
784         if (2 + len > sizeof(response.rap.params))
785                 return NULL;
786
787         if (len < 4) /* logitech devices are usually at least Xddd */
788                 return NULL;
789
790         name = kzalloc(len + 1, GFP_KERNEL);
791         if (!name)
792                 return NULL;
793
794         memcpy(name, &response.rap.params[2], len);
795
796         /* include the terminating '\0' */
797         hidpp_prefix_name(&name, len + 1);
798
799         return name;
800 }
801
802 static int hidpp_unifying_get_serial(struct hidpp_device *hidpp, u32 *serial)
803 {
804         struct hidpp_report response;
805         int ret;
806         u8 params[1] = { HIDPP_EXTENDED_PAIRING };
807
808         ret = hidpp_send_rap_command_sync(hidpp,
809                                         REPORT_ID_HIDPP_SHORT,
810                                         HIDPP_GET_LONG_REGISTER,
811                                         HIDPP_REG_PAIRING_INFORMATION,
812                                         params, 1, &response);
813         if (ret)
814                 return ret;
815
816         /*
817          * We don't care about LE or BE, we will output it as a string
818          * with %4phD, so we need to keep the order.
819          */
820         *serial = *((u32 *)&response.rap.params[1]);
821         return 0;
822 }
823
824 static int hidpp_unifying_init(struct hidpp_device *hidpp)
825 {
826         struct hid_device *hdev = hidpp->hid_dev;
827         const char *name;
828         u32 serial;
829         int ret;
830
831         ret = hidpp_unifying_get_serial(hidpp, &serial);
832         if (ret)
833                 return ret;
834
835         snprintf(hdev->uniq, sizeof(hdev->uniq), "%04x-%4phD",
836                  hdev->product, &serial);
837         dbg_hid("HID++ Unifying: Got serial: %s\n", hdev->uniq);
838
839         name = hidpp_unifying_get_name(hidpp);
840         if (!name)
841                 return -EIO;
842
843         snprintf(hdev->name, sizeof(hdev->name), "%s", name);
844         dbg_hid("HID++ Unifying: Got name: %s\n", name);
845
846         kfree(name);
847         return 0;
848 }
849
850 /* -------------------------------------------------------------------------- */
851 /* 0x0000: Root                                                               */
852 /* -------------------------------------------------------------------------- */
853
854 #define HIDPP_PAGE_ROOT                                 0x0000
855 #define HIDPP_PAGE_ROOT_IDX                             0x00
856
857 #define CMD_ROOT_GET_FEATURE                            0x01
858 #define CMD_ROOT_GET_PROTOCOL_VERSION                   0x11
859
860 static int hidpp_root_get_feature(struct hidpp_device *hidpp, u16 feature,
861         u8 *feature_index, u8 *feature_type)
862 {
863         struct hidpp_report response;
864         int ret;
865         u8 params[2] = { feature >> 8, feature & 0x00FF };
866
867         ret = hidpp_send_fap_command_sync(hidpp,
868                         HIDPP_PAGE_ROOT_IDX,
869                         CMD_ROOT_GET_FEATURE,
870                         params, 2, &response);
871         if (ret)
872                 return ret;
873
874         if (response.fap.params[0] == 0)
875                 return -ENOENT;
876
877         *feature_index = response.fap.params[0];
878         *feature_type = response.fap.params[1];
879
880         return ret;
881 }
882
883 static int hidpp_root_get_protocol_version(struct hidpp_device *hidpp)
884 {
885         const u8 ping_byte = 0x5a;
886         u8 ping_data[3] = { 0, 0, ping_byte };
887         struct hidpp_report response;
888         int ret;
889
890         ret = hidpp_send_rap_command_sync(hidpp,
891                         REPORT_ID_HIDPP_SHORT,
892                         HIDPP_PAGE_ROOT_IDX,
893                         CMD_ROOT_GET_PROTOCOL_VERSION,
894                         ping_data, sizeof(ping_data), &response);
895
896         if (ret == HIDPP_ERROR_INVALID_SUBID) {
897                 hidpp->protocol_major = 1;
898                 hidpp->protocol_minor = 0;
899                 goto print_version;
900         }
901
902         /* the device might not be connected */
903         if (ret == HIDPP_ERROR_RESOURCE_ERROR)
904                 return -EIO;
905
906         if (ret > 0) {
907                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
908                         __func__, ret);
909                 return -EPROTO;
910         }
911         if (ret)
912                 return ret;
913
914         if (response.rap.params[2] != ping_byte) {
915                 hid_err(hidpp->hid_dev, "%s: ping mismatch 0x%02x != 0x%02x\n",
916                         __func__, response.rap.params[2], ping_byte);
917                 return -EPROTO;
918         }
919
920         hidpp->protocol_major = response.rap.params[0];
921         hidpp->protocol_minor = response.rap.params[1];
922
923 print_version:
924         hid_info(hidpp->hid_dev, "HID++ %u.%u device connected.\n",
925                  hidpp->protocol_major, hidpp->protocol_minor);
926         return 0;
927 }
928
929 /* -------------------------------------------------------------------------- */
930 /* 0x0005: GetDeviceNameType                                                  */
931 /* -------------------------------------------------------------------------- */
932
933 #define HIDPP_PAGE_GET_DEVICE_NAME_TYPE                 0x0005
934
935 #define CMD_GET_DEVICE_NAME_TYPE_GET_COUNT              0x01
936 #define CMD_GET_DEVICE_NAME_TYPE_GET_DEVICE_NAME        0x11
937 #define CMD_GET_DEVICE_NAME_TYPE_GET_TYPE               0x21
938
939 static int hidpp_devicenametype_get_count(struct hidpp_device *hidpp,
940         u8 feature_index, u8 *nameLength)
941 {
942         struct hidpp_report response;
943         int ret;
944
945         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
946                 CMD_GET_DEVICE_NAME_TYPE_GET_COUNT, NULL, 0, &response);
947
948         if (ret > 0) {
949                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
950                         __func__, ret);
951                 return -EPROTO;
952         }
953         if (ret)
954                 return ret;
955
956         *nameLength = response.fap.params[0];
957
958         return ret;
959 }
960
961 static int hidpp_devicenametype_get_device_name(struct hidpp_device *hidpp,
962         u8 feature_index, u8 char_index, char *device_name, int len_buf)
963 {
964         struct hidpp_report response;
965         int ret, i;
966         int count;
967
968         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
969                 CMD_GET_DEVICE_NAME_TYPE_GET_DEVICE_NAME, &char_index, 1,
970                 &response);
971
972         if (ret > 0) {
973                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
974                         __func__, ret);
975                 return -EPROTO;
976         }
977         if (ret)
978                 return ret;
979
980         switch (response.report_id) {
981         case REPORT_ID_HIDPP_VERY_LONG:
982                 count = hidpp->very_long_report_length - 4;
983                 break;
984         case REPORT_ID_HIDPP_LONG:
985                 count = HIDPP_REPORT_LONG_LENGTH - 4;
986                 break;
987         case REPORT_ID_HIDPP_SHORT:
988                 count = HIDPP_REPORT_SHORT_LENGTH - 4;
989                 break;
990         default:
991                 return -EPROTO;
992         }
993
994         if (len_buf < count)
995                 count = len_buf;
996
997         for (i = 0; i < count; i++)
998                 device_name[i] = response.fap.params[i];
999
1000         return count;
1001 }
1002
1003 static char *hidpp_get_device_name(struct hidpp_device *hidpp)
1004 {
1005         u8 feature_type;
1006         u8 feature_index;
1007         u8 __name_length;
1008         char *name;
1009         unsigned index = 0;
1010         int ret;
1011
1012         ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_GET_DEVICE_NAME_TYPE,
1013                 &feature_index, &feature_type);
1014         if (ret)
1015                 return NULL;
1016
1017         ret = hidpp_devicenametype_get_count(hidpp, feature_index,
1018                 &__name_length);
1019         if (ret)
1020                 return NULL;
1021
1022         name = kzalloc(__name_length + 1, GFP_KERNEL);
1023         if (!name)
1024                 return NULL;
1025
1026         while (index < __name_length) {
1027                 ret = hidpp_devicenametype_get_device_name(hidpp,
1028                         feature_index, index, name + index,
1029                         __name_length - index);
1030                 if (ret <= 0) {
1031                         kfree(name);
1032                         return NULL;
1033                 }
1034                 index += ret;
1035         }
1036
1037         /* include the terminating '\0' */
1038         hidpp_prefix_name(&name, __name_length + 1);
1039
1040         return name;
1041 }
1042
1043 /* -------------------------------------------------------------------------- */
1044 /* 0x1000: Battery level status                                               */
1045 /* -------------------------------------------------------------------------- */
1046
1047 #define HIDPP_PAGE_BATTERY_LEVEL_STATUS                         0x1000
1048
1049 #define CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_LEVEL_STATUS       0x00
1050 #define CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_CAPABILITY         0x10
1051
1052 #define EVENT_BATTERY_LEVEL_STATUS_BROADCAST                    0x00
1053
1054 #define FLAG_BATTERY_LEVEL_DISABLE_OSD                          BIT(0)
1055 #define FLAG_BATTERY_LEVEL_MILEAGE                              BIT(1)
1056 #define FLAG_BATTERY_LEVEL_RECHARGEABLE                         BIT(2)
1057
1058 static int hidpp_map_battery_level(int capacity)
1059 {
1060         if (capacity < 11)
1061                 return POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1062         /*
1063          * The spec says this should be < 31 but some devices report 30
1064          * with brand new batteries and Windows reports 30 as "Good".
1065          */
1066         else if (capacity < 30)
1067                 return POWER_SUPPLY_CAPACITY_LEVEL_LOW;
1068         else if (capacity < 81)
1069                 return POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
1070         return POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1071 }
1072
1073 static int hidpp20_batterylevel_map_status_capacity(u8 data[3], int *capacity,
1074                                                     int *next_capacity,
1075                                                     int *level)
1076 {
1077         int status;
1078
1079         *capacity = data[0];
1080         *next_capacity = data[1];
1081         *level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
1082
1083         /* When discharging, we can rely on the device reported capacity.
1084          * For all other states the device reports 0 (unknown).
1085          */
1086         switch (data[2]) {
1087                 case 0: /* discharging (in use) */
1088                         status = POWER_SUPPLY_STATUS_DISCHARGING;
1089                         *level = hidpp_map_battery_level(*capacity);
1090                         break;
1091                 case 1: /* recharging */
1092                         status = POWER_SUPPLY_STATUS_CHARGING;
1093                         break;
1094                 case 2: /* charge in final stage */
1095                         status = POWER_SUPPLY_STATUS_CHARGING;
1096                         break;
1097                 case 3: /* charge complete */
1098                         status = POWER_SUPPLY_STATUS_FULL;
1099                         *level = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1100                         *capacity = 100;
1101                         break;
1102                 case 4: /* recharging below optimal speed */
1103                         status = POWER_SUPPLY_STATUS_CHARGING;
1104                         break;
1105                 /* 5 = invalid battery type
1106                    6 = thermal error
1107                    7 = other charging error */
1108                 default:
1109                         status = POWER_SUPPLY_STATUS_NOT_CHARGING;
1110                         break;
1111         }
1112
1113         return status;
1114 }
1115
1116 static int hidpp20_batterylevel_get_battery_capacity(struct hidpp_device *hidpp,
1117                                                      u8 feature_index,
1118                                                      int *status,
1119                                                      int *capacity,
1120                                                      int *next_capacity,
1121                                                      int *level)
1122 {
1123         struct hidpp_report response;
1124         int ret;
1125         u8 *params = (u8 *)response.fap.params;
1126
1127         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1128                                           CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_LEVEL_STATUS,
1129                                           NULL, 0, &response);
1130         /* Ignore these intermittent errors */
1131         if (ret == HIDPP_ERROR_RESOURCE_ERROR)
1132                 return -EIO;
1133         if (ret > 0) {
1134                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1135                         __func__, ret);
1136                 return -EPROTO;
1137         }
1138         if (ret)
1139                 return ret;
1140
1141         *status = hidpp20_batterylevel_map_status_capacity(params, capacity,
1142                                                            next_capacity,
1143                                                            level);
1144
1145         return 0;
1146 }
1147
1148 static int hidpp20_batterylevel_get_battery_info(struct hidpp_device *hidpp,
1149                                                   u8 feature_index)
1150 {
1151         struct hidpp_report response;
1152         int ret;
1153         u8 *params = (u8 *)response.fap.params;
1154         unsigned int level_count, flags;
1155
1156         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1157                                           CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_CAPABILITY,
1158                                           NULL, 0, &response);
1159         if (ret > 0) {
1160                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1161                         __func__, ret);
1162                 return -EPROTO;
1163         }
1164         if (ret)
1165                 return ret;
1166
1167         level_count = params[0];
1168         flags = params[1];
1169
1170         if (level_count < 10 || !(flags & FLAG_BATTERY_LEVEL_MILEAGE))
1171                 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS;
1172         else
1173                 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE;
1174
1175         return 0;
1176 }
1177
1178 static int hidpp20_query_battery_info_1000(struct hidpp_device *hidpp)
1179 {
1180         u8 feature_type;
1181         int ret;
1182         int status, capacity, next_capacity, level;
1183
1184         if (hidpp->battery.feature_index == 0xff) {
1185                 ret = hidpp_root_get_feature(hidpp,
1186                                              HIDPP_PAGE_BATTERY_LEVEL_STATUS,
1187                                              &hidpp->battery.feature_index,
1188                                              &feature_type);
1189                 if (ret)
1190                         return ret;
1191         }
1192
1193         ret = hidpp20_batterylevel_get_battery_capacity(hidpp,
1194                                                 hidpp->battery.feature_index,
1195                                                 &status, &capacity,
1196                                                 &next_capacity, &level);
1197         if (ret)
1198                 return ret;
1199
1200         ret = hidpp20_batterylevel_get_battery_info(hidpp,
1201                                                 hidpp->battery.feature_index);
1202         if (ret)
1203                 return ret;
1204
1205         hidpp->battery.status = status;
1206         hidpp->battery.capacity = capacity;
1207         hidpp->battery.level = level;
1208         /* the capacity is only available when discharging or full */
1209         hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
1210                                 status == POWER_SUPPLY_STATUS_FULL;
1211
1212         return 0;
1213 }
1214
1215 static int hidpp20_battery_event_1000(struct hidpp_device *hidpp,
1216                                  u8 *data, int size)
1217 {
1218         struct hidpp_report *report = (struct hidpp_report *)data;
1219         int status, capacity, next_capacity, level;
1220         bool changed;
1221
1222         if (report->fap.feature_index != hidpp->battery.feature_index ||
1223             report->fap.funcindex_clientid != EVENT_BATTERY_LEVEL_STATUS_BROADCAST)
1224                 return 0;
1225
1226         status = hidpp20_batterylevel_map_status_capacity(report->fap.params,
1227                                                           &capacity,
1228                                                           &next_capacity,
1229                                                           &level);
1230
1231         /* the capacity is only available when discharging or full */
1232         hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
1233                                 status == POWER_SUPPLY_STATUS_FULL;
1234
1235         changed = capacity != hidpp->battery.capacity ||
1236                   level != hidpp->battery.level ||
1237                   status != hidpp->battery.status;
1238
1239         if (changed) {
1240                 hidpp->battery.level = level;
1241                 hidpp->battery.capacity = capacity;
1242                 hidpp->battery.status = status;
1243                 if (hidpp->battery.ps)
1244                         power_supply_changed(hidpp->battery.ps);
1245         }
1246
1247         return 0;
1248 }
1249
1250 /* -------------------------------------------------------------------------- */
1251 /* 0x1001: Battery voltage                                                    */
1252 /* -------------------------------------------------------------------------- */
1253
1254 #define HIDPP_PAGE_BATTERY_VOLTAGE 0x1001
1255
1256 #define CMD_BATTERY_VOLTAGE_GET_BATTERY_VOLTAGE 0x00
1257
1258 #define EVENT_BATTERY_VOLTAGE_STATUS_BROADCAST 0x00
1259
1260 static int hidpp20_battery_map_status_voltage(u8 data[3], int *voltage,
1261                                                 int *level, int *charge_type)
1262 {
1263         int status;
1264
1265         long flags = (long) data[2];
1266         *level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
1267
1268         if (flags & 0x80)
1269                 switch (flags & 0x07) {
1270                 case 0:
1271                         status = POWER_SUPPLY_STATUS_CHARGING;
1272                         break;
1273                 case 1:
1274                         status = POWER_SUPPLY_STATUS_FULL;
1275                         *level = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1276                         break;
1277                 case 2:
1278                         status = POWER_SUPPLY_STATUS_NOT_CHARGING;
1279                         break;
1280                 default:
1281                         status = POWER_SUPPLY_STATUS_UNKNOWN;
1282                         break;
1283                 }
1284         else
1285                 status = POWER_SUPPLY_STATUS_DISCHARGING;
1286
1287         *charge_type = POWER_SUPPLY_CHARGE_TYPE_STANDARD;
1288         if (test_bit(3, &flags)) {
1289                 *charge_type = POWER_SUPPLY_CHARGE_TYPE_FAST;
1290         }
1291         if (test_bit(4, &flags)) {
1292                 *charge_type = POWER_SUPPLY_CHARGE_TYPE_TRICKLE;
1293         }
1294         if (test_bit(5, &flags)) {
1295                 *level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1296         }
1297
1298         *voltage = get_unaligned_be16(data);
1299
1300         return status;
1301 }
1302
1303 static int hidpp20_battery_get_battery_voltage(struct hidpp_device *hidpp,
1304                                                  u8 feature_index,
1305                                                  int *status, int *voltage,
1306                                                  int *level, int *charge_type)
1307 {
1308         struct hidpp_report response;
1309         int ret;
1310         u8 *params = (u8 *)response.fap.params;
1311
1312         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1313                                           CMD_BATTERY_VOLTAGE_GET_BATTERY_VOLTAGE,
1314                                           NULL, 0, &response);
1315
1316         if (ret > 0) {
1317                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1318                         __func__, ret);
1319                 return -EPROTO;
1320         }
1321         if (ret)
1322                 return ret;
1323
1324         hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_VOLTAGE;
1325
1326         *status = hidpp20_battery_map_status_voltage(params, voltage,
1327                                                      level, charge_type);
1328
1329         return 0;
1330 }
1331
1332 static int hidpp20_query_battery_voltage_info(struct hidpp_device *hidpp)
1333 {
1334         u8 feature_type;
1335         int ret;
1336         int status, voltage, level, charge_type;
1337
1338         if (hidpp->battery.voltage_feature_index == 0xff) {
1339                 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_BATTERY_VOLTAGE,
1340                                              &hidpp->battery.voltage_feature_index,
1341                                              &feature_type);
1342                 if (ret)
1343                         return ret;
1344         }
1345
1346         ret = hidpp20_battery_get_battery_voltage(hidpp,
1347                                                   hidpp->battery.voltage_feature_index,
1348                                                   &status, &voltage, &level, &charge_type);
1349
1350         if (ret)
1351                 return ret;
1352
1353         hidpp->battery.status = status;
1354         hidpp->battery.voltage = voltage;
1355         hidpp->battery.level = level;
1356         hidpp->battery.charge_type = charge_type;
1357         hidpp->battery.online = status != POWER_SUPPLY_STATUS_NOT_CHARGING;
1358
1359         return 0;
1360 }
1361
1362 static int hidpp20_battery_voltage_event(struct hidpp_device *hidpp,
1363                                             u8 *data, int size)
1364 {
1365         struct hidpp_report *report = (struct hidpp_report *)data;
1366         int status, voltage, level, charge_type;
1367
1368         if (report->fap.feature_index != hidpp->battery.voltage_feature_index ||
1369                 report->fap.funcindex_clientid != EVENT_BATTERY_VOLTAGE_STATUS_BROADCAST)
1370                 return 0;
1371
1372         status = hidpp20_battery_map_status_voltage(report->fap.params, &voltage,
1373                                                     &level, &charge_type);
1374
1375         hidpp->battery.online = status != POWER_SUPPLY_STATUS_NOT_CHARGING;
1376
1377         if (voltage != hidpp->battery.voltage || status != hidpp->battery.status) {
1378                 hidpp->battery.voltage = voltage;
1379                 hidpp->battery.status = status;
1380                 hidpp->battery.level = level;
1381                 hidpp->battery.charge_type = charge_type;
1382                 if (hidpp->battery.ps)
1383                         power_supply_changed(hidpp->battery.ps);
1384         }
1385         return 0;
1386 }
1387
1388 /* -------------------------------------------------------------------------- */
1389 /* 0x1004: Unified battery                                                    */
1390 /* -------------------------------------------------------------------------- */
1391
1392 #define HIDPP_PAGE_UNIFIED_BATTERY                              0x1004
1393
1394 #define CMD_UNIFIED_BATTERY_GET_CAPABILITIES                    0x00
1395 #define CMD_UNIFIED_BATTERY_GET_STATUS                          0x10
1396
1397 #define EVENT_UNIFIED_BATTERY_STATUS_EVENT                      0x00
1398
1399 #define FLAG_UNIFIED_BATTERY_LEVEL_CRITICAL                     BIT(0)
1400 #define FLAG_UNIFIED_BATTERY_LEVEL_LOW                          BIT(1)
1401 #define FLAG_UNIFIED_BATTERY_LEVEL_GOOD                         BIT(2)
1402 #define FLAG_UNIFIED_BATTERY_LEVEL_FULL                         BIT(3)
1403
1404 #define FLAG_UNIFIED_BATTERY_FLAGS_RECHARGEABLE                 BIT(0)
1405 #define FLAG_UNIFIED_BATTERY_FLAGS_STATE_OF_CHARGE              BIT(1)
1406
1407 static int hidpp20_unifiedbattery_get_capabilities(struct hidpp_device *hidpp,
1408                                                    u8 feature_index)
1409 {
1410         struct hidpp_report response;
1411         int ret;
1412         u8 *params = (u8 *)response.fap.params;
1413
1414         if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS ||
1415             hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_PERCENTAGE) {
1416                 /* we have already set the device capabilities, so let's skip */
1417                 return 0;
1418         }
1419
1420         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1421                                           CMD_UNIFIED_BATTERY_GET_CAPABILITIES,
1422                                           NULL, 0, &response);
1423         /* Ignore these intermittent errors */
1424         if (ret == HIDPP_ERROR_RESOURCE_ERROR)
1425                 return -EIO;
1426         if (ret > 0) {
1427                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1428                         __func__, ret);
1429                 return -EPROTO;
1430         }
1431         if (ret)
1432                 return ret;
1433
1434         /*
1435          * If the device supports state of charge (battery percentage) we won't
1436          * export the battery level information. there are 4 possible battery
1437          * levels and they all are optional, this means that the device might
1438          * not support any of them, we are just better off with the battery
1439          * percentage.
1440          */
1441         if (params[1] & FLAG_UNIFIED_BATTERY_FLAGS_STATE_OF_CHARGE) {
1442                 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_PERCENTAGE;
1443                 hidpp->battery.supported_levels_1004 = 0;
1444         } else {
1445                 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS;
1446                 hidpp->battery.supported_levels_1004 = params[0];
1447         }
1448
1449         return 0;
1450 }
1451
1452 static int hidpp20_unifiedbattery_map_status(struct hidpp_device *hidpp,
1453                                              u8 charging_status,
1454                                              u8 external_power_status)
1455 {
1456         int status;
1457
1458         switch (charging_status) {
1459                 case 0: /* discharging */
1460                         status = POWER_SUPPLY_STATUS_DISCHARGING;
1461                         break;
1462                 case 1: /* charging */
1463                 case 2: /* charging slow */
1464                         status = POWER_SUPPLY_STATUS_CHARGING;
1465                         break;
1466                 case 3: /* complete */
1467                         status = POWER_SUPPLY_STATUS_FULL;
1468                         break;
1469                 case 4: /* error */
1470                         status = POWER_SUPPLY_STATUS_NOT_CHARGING;
1471                         hid_info(hidpp->hid_dev, "%s: charging error",
1472                                  hidpp->name);
1473                         break;
1474                 default:
1475                         status = POWER_SUPPLY_STATUS_NOT_CHARGING;
1476                         break;
1477         }
1478
1479         return status;
1480 }
1481
1482 static int hidpp20_unifiedbattery_map_level(struct hidpp_device *hidpp,
1483                                             u8 battery_level)
1484 {
1485         /* cler unsupported level bits */
1486         battery_level &= hidpp->battery.supported_levels_1004;
1487
1488         if (battery_level & FLAG_UNIFIED_BATTERY_LEVEL_FULL)
1489                 return POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1490         else if (battery_level & FLAG_UNIFIED_BATTERY_LEVEL_GOOD)
1491                 return POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
1492         else if (battery_level & FLAG_UNIFIED_BATTERY_LEVEL_LOW)
1493                 return POWER_SUPPLY_CAPACITY_LEVEL_LOW;
1494         else if (battery_level & FLAG_UNIFIED_BATTERY_LEVEL_CRITICAL)
1495                 return POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1496
1497         return POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
1498 }
1499
1500 static int hidpp20_unifiedbattery_get_status(struct hidpp_device *hidpp,
1501                                              u8 feature_index,
1502                                              u8 *state_of_charge,
1503                                              int *status,
1504                                              int *level)
1505 {
1506         struct hidpp_report response;
1507         int ret;
1508         u8 *params = (u8 *)response.fap.params;
1509
1510         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1511                                           CMD_UNIFIED_BATTERY_GET_STATUS,
1512                                           NULL, 0, &response);
1513         /* Ignore these intermittent errors */
1514         if (ret == HIDPP_ERROR_RESOURCE_ERROR)
1515                 return -EIO;
1516         if (ret > 0) {
1517                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1518                         __func__, ret);
1519                 return -EPROTO;
1520         }
1521         if (ret)
1522                 return ret;
1523
1524         *state_of_charge = params[0];
1525         *status = hidpp20_unifiedbattery_map_status(hidpp, params[2], params[3]);
1526         *level = hidpp20_unifiedbattery_map_level(hidpp, params[1]);
1527
1528         return 0;
1529 }
1530
1531 static int hidpp20_query_battery_info_1004(struct hidpp_device *hidpp)
1532 {
1533         u8 feature_type;
1534         int ret;
1535         u8 state_of_charge;
1536         int status, level;
1537
1538         if (hidpp->battery.feature_index == 0xff) {
1539                 ret = hidpp_root_get_feature(hidpp,
1540                                              HIDPP_PAGE_UNIFIED_BATTERY,
1541                                              &hidpp->battery.feature_index,
1542                                              &feature_type);
1543                 if (ret)
1544                         return ret;
1545         }
1546
1547         ret = hidpp20_unifiedbattery_get_capabilities(hidpp,
1548                                         hidpp->battery.feature_index);
1549         if (ret)
1550                 return ret;
1551
1552         ret = hidpp20_unifiedbattery_get_status(hidpp,
1553                                                 hidpp->battery.feature_index,
1554                                                 &state_of_charge,
1555                                                 &status,
1556                                                 &level);
1557         if (ret)
1558                 return ret;
1559
1560         hidpp->capabilities |= HIDPP_CAPABILITY_UNIFIED_BATTERY;
1561         hidpp->battery.capacity = state_of_charge;
1562         hidpp->battery.status = status;
1563         hidpp->battery.level = level;
1564         hidpp->battery.online = true;
1565
1566         return 0;
1567 }
1568
1569 static int hidpp20_battery_event_1004(struct hidpp_device *hidpp,
1570                                  u8 *data, int size)
1571 {
1572         struct hidpp_report *report = (struct hidpp_report *)data;
1573         u8 *params = (u8 *)report->fap.params;
1574         int state_of_charge, status, level;
1575         bool changed;
1576
1577         if (report->fap.feature_index != hidpp->battery.feature_index ||
1578             report->fap.funcindex_clientid != EVENT_UNIFIED_BATTERY_STATUS_EVENT)
1579                 return 0;
1580
1581         state_of_charge = params[0];
1582         status = hidpp20_unifiedbattery_map_status(hidpp, params[2], params[3]);
1583         level = hidpp20_unifiedbattery_map_level(hidpp, params[1]);
1584
1585         changed = status != hidpp->battery.status ||
1586                   (state_of_charge != hidpp->battery.capacity &&
1587                    hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_PERCENTAGE) ||
1588                   (level != hidpp->battery.level &&
1589                    hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS);
1590
1591         if (changed) {
1592                 hidpp->battery.capacity = state_of_charge;
1593                 hidpp->battery.status = status;
1594                 hidpp->battery.level = level;
1595                 if (hidpp->battery.ps)
1596                         power_supply_changed(hidpp->battery.ps);
1597         }
1598
1599         return 0;
1600 }
1601
1602 /* -------------------------------------------------------------------------- */
1603 /* Battery feature helpers                                                    */
1604 /* -------------------------------------------------------------------------- */
1605
1606 static enum power_supply_property hidpp_battery_props[] = {
1607         POWER_SUPPLY_PROP_ONLINE,
1608         POWER_SUPPLY_PROP_STATUS,
1609         POWER_SUPPLY_PROP_SCOPE,
1610         POWER_SUPPLY_PROP_MODEL_NAME,
1611         POWER_SUPPLY_PROP_MANUFACTURER,
1612         POWER_SUPPLY_PROP_SERIAL_NUMBER,
1613         0, /* placeholder for POWER_SUPPLY_PROP_CAPACITY, */
1614         0, /* placeholder for POWER_SUPPLY_PROP_CAPACITY_LEVEL, */
1615         0, /* placeholder for POWER_SUPPLY_PROP_VOLTAGE_NOW, */
1616 };
1617
1618 static int hidpp_battery_get_property(struct power_supply *psy,
1619                                       enum power_supply_property psp,
1620                                       union power_supply_propval *val)
1621 {
1622         struct hidpp_device *hidpp = power_supply_get_drvdata(psy);
1623         int ret = 0;
1624
1625         switch(psp) {
1626                 case POWER_SUPPLY_PROP_STATUS:
1627                         val->intval = hidpp->battery.status;
1628                         break;
1629                 case POWER_SUPPLY_PROP_CAPACITY:
1630                         val->intval = hidpp->battery.capacity;
1631                         break;
1632                 case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
1633                         val->intval = hidpp->battery.level;
1634                         break;
1635                 case POWER_SUPPLY_PROP_SCOPE:
1636                         val->intval = POWER_SUPPLY_SCOPE_DEVICE;
1637                         break;
1638                 case POWER_SUPPLY_PROP_ONLINE:
1639                         val->intval = hidpp->battery.online;
1640                         break;
1641                 case POWER_SUPPLY_PROP_MODEL_NAME:
1642                         if (!strncmp(hidpp->name, "Logitech ", 9))
1643                                 val->strval = hidpp->name + 9;
1644                         else
1645                                 val->strval = hidpp->name;
1646                         break;
1647                 case POWER_SUPPLY_PROP_MANUFACTURER:
1648                         val->strval = "Logitech";
1649                         break;
1650                 case POWER_SUPPLY_PROP_SERIAL_NUMBER:
1651                         val->strval = hidpp->hid_dev->uniq;
1652                         break;
1653                 case POWER_SUPPLY_PROP_VOLTAGE_NOW:
1654                         /* hardware reports voltage in in mV. sysfs expects uV */
1655                         val->intval = hidpp->battery.voltage * 1000;
1656                         break;
1657                 case POWER_SUPPLY_PROP_CHARGE_TYPE:
1658                         val->intval = hidpp->battery.charge_type;
1659                         break;
1660                 default:
1661                         ret = -EINVAL;
1662                         break;
1663         }
1664
1665         return ret;
1666 }
1667
1668 /* -------------------------------------------------------------------------- */
1669 /* 0x1d4b: Wireless device status                                             */
1670 /* -------------------------------------------------------------------------- */
1671 #define HIDPP_PAGE_WIRELESS_DEVICE_STATUS                       0x1d4b
1672
1673 static int hidpp_set_wireless_feature_index(struct hidpp_device *hidpp)
1674 {
1675         u8 feature_type;
1676         int ret;
1677
1678         ret = hidpp_root_get_feature(hidpp,
1679                                      HIDPP_PAGE_WIRELESS_DEVICE_STATUS,
1680                                      &hidpp->wireless_feature_index,
1681                                      &feature_type);
1682
1683         return ret;
1684 }
1685
1686 /* -------------------------------------------------------------------------- */
1687 /* 0x2120: Hi-resolution scrolling                                            */
1688 /* -------------------------------------------------------------------------- */
1689
1690 #define HIDPP_PAGE_HI_RESOLUTION_SCROLLING                      0x2120
1691
1692 #define CMD_HI_RESOLUTION_SCROLLING_SET_HIGHRES_SCROLLING_MODE  0x10
1693
1694 static int hidpp_hrs_set_highres_scrolling_mode(struct hidpp_device *hidpp,
1695         bool enabled, u8 *multiplier)
1696 {
1697         u8 feature_index;
1698         u8 feature_type;
1699         int ret;
1700         u8 params[1];
1701         struct hidpp_report response;
1702
1703         ret = hidpp_root_get_feature(hidpp,
1704                                      HIDPP_PAGE_HI_RESOLUTION_SCROLLING,
1705                                      &feature_index,
1706                                      &feature_type);
1707         if (ret)
1708                 return ret;
1709
1710         params[0] = enabled ? BIT(0) : 0;
1711         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1712                                           CMD_HI_RESOLUTION_SCROLLING_SET_HIGHRES_SCROLLING_MODE,
1713                                           params, sizeof(params), &response);
1714         if (ret)
1715                 return ret;
1716         *multiplier = response.fap.params[1];
1717         return 0;
1718 }
1719
1720 /* -------------------------------------------------------------------------- */
1721 /* 0x2121: HiRes Wheel                                                        */
1722 /* -------------------------------------------------------------------------- */
1723
1724 #define HIDPP_PAGE_HIRES_WHEEL          0x2121
1725
1726 #define CMD_HIRES_WHEEL_GET_WHEEL_CAPABILITY    0x00
1727 #define CMD_HIRES_WHEEL_SET_WHEEL_MODE          0x20
1728
1729 static int hidpp_hrw_get_wheel_capability(struct hidpp_device *hidpp,
1730         u8 *multiplier)
1731 {
1732         u8 feature_index;
1733         u8 feature_type;
1734         int ret;
1735         struct hidpp_report response;
1736
1737         ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_HIRES_WHEEL,
1738                                      &feature_index, &feature_type);
1739         if (ret)
1740                 goto return_default;
1741
1742         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1743                                           CMD_HIRES_WHEEL_GET_WHEEL_CAPABILITY,
1744                                           NULL, 0, &response);
1745         if (ret)
1746                 goto return_default;
1747
1748         *multiplier = response.fap.params[0];
1749         return 0;
1750 return_default:
1751         hid_warn(hidpp->hid_dev,
1752                  "Couldn't get wheel multiplier (error %d)\n", ret);
1753         return ret;
1754 }
1755
1756 static int hidpp_hrw_set_wheel_mode(struct hidpp_device *hidpp, bool invert,
1757         bool high_resolution, bool use_hidpp)
1758 {
1759         u8 feature_index;
1760         u8 feature_type;
1761         int ret;
1762         u8 params[1];
1763         struct hidpp_report response;
1764
1765         ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_HIRES_WHEEL,
1766                                      &feature_index, &feature_type);
1767         if (ret)
1768                 return ret;
1769
1770         params[0] = (invert          ? BIT(2) : 0) |
1771                     (high_resolution ? BIT(1) : 0) |
1772                     (use_hidpp       ? BIT(0) : 0);
1773
1774         return hidpp_send_fap_command_sync(hidpp, feature_index,
1775                                            CMD_HIRES_WHEEL_SET_WHEEL_MODE,
1776                                            params, sizeof(params), &response);
1777 }
1778
1779 /* -------------------------------------------------------------------------- */
1780 /* 0x4301: Solar Keyboard                                                     */
1781 /* -------------------------------------------------------------------------- */
1782
1783 #define HIDPP_PAGE_SOLAR_KEYBOARD                       0x4301
1784
1785 #define CMD_SOLAR_SET_LIGHT_MEASURE                     0x00
1786
1787 #define EVENT_SOLAR_BATTERY_BROADCAST                   0x00
1788 #define EVENT_SOLAR_BATTERY_LIGHT_MEASURE               0x10
1789 #define EVENT_SOLAR_CHECK_LIGHT_BUTTON                  0x20
1790
1791 static int hidpp_solar_request_battery_event(struct hidpp_device *hidpp)
1792 {
1793         struct hidpp_report response;
1794         u8 params[2] = { 1, 1 };
1795         u8 feature_type;
1796         int ret;
1797
1798         if (hidpp->battery.feature_index == 0xff) {
1799                 ret = hidpp_root_get_feature(hidpp,
1800                                              HIDPP_PAGE_SOLAR_KEYBOARD,
1801                                              &hidpp->battery.solar_feature_index,
1802                                              &feature_type);
1803                 if (ret)
1804                         return ret;
1805         }
1806
1807         ret = hidpp_send_fap_command_sync(hidpp,
1808                                           hidpp->battery.solar_feature_index,
1809                                           CMD_SOLAR_SET_LIGHT_MEASURE,
1810                                           params, 2, &response);
1811         if (ret > 0) {
1812                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1813                         __func__, ret);
1814                 return -EPROTO;
1815         }
1816         if (ret)
1817                 return ret;
1818
1819         hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE;
1820
1821         return 0;
1822 }
1823
1824 static int hidpp_solar_battery_event(struct hidpp_device *hidpp,
1825                                      u8 *data, int size)
1826 {
1827         struct hidpp_report *report = (struct hidpp_report *)data;
1828         int capacity, lux, status;
1829         u8 function;
1830
1831         function = report->fap.funcindex_clientid;
1832
1833
1834         if (report->fap.feature_index != hidpp->battery.solar_feature_index ||
1835             !(function == EVENT_SOLAR_BATTERY_BROADCAST ||
1836               function == EVENT_SOLAR_BATTERY_LIGHT_MEASURE ||
1837               function == EVENT_SOLAR_CHECK_LIGHT_BUTTON))
1838                 return 0;
1839
1840         capacity = report->fap.params[0];
1841
1842         switch (function) {
1843         case EVENT_SOLAR_BATTERY_LIGHT_MEASURE:
1844                 lux = (report->fap.params[1] << 8) | report->fap.params[2];
1845                 if (lux > 200)
1846                         status = POWER_SUPPLY_STATUS_CHARGING;
1847                 else
1848                         status = POWER_SUPPLY_STATUS_DISCHARGING;
1849                 break;
1850         case EVENT_SOLAR_CHECK_LIGHT_BUTTON:
1851         default:
1852                 if (capacity < hidpp->battery.capacity)
1853                         status = POWER_SUPPLY_STATUS_DISCHARGING;
1854                 else
1855                         status = POWER_SUPPLY_STATUS_CHARGING;
1856
1857         }
1858
1859         if (capacity == 100)
1860                 status = POWER_SUPPLY_STATUS_FULL;
1861
1862         hidpp->battery.online = true;
1863         if (capacity != hidpp->battery.capacity ||
1864             status != hidpp->battery.status) {
1865                 hidpp->battery.capacity = capacity;
1866                 hidpp->battery.status = status;
1867                 if (hidpp->battery.ps)
1868                         power_supply_changed(hidpp->battery.ps);
1869         }
1870
1871         return 0;
1872 }
1873
1874 /* -------------------------------------------------------------------------- */
1875 /* 0x6010: Touchpad FW items                                                  */
1876 /* -------------------------------------------------------------------------- */
1877
1878 #define HIDPP_PAGE_TOUCHPAD_FW_ITEMS                    0x6010
1879
1880 #define CMD_TOUCHPAD_FW_ITEMS_SET                       0x10
1881
1882 struct hidpp_touchpad_fw_items {
1883         uint8_t presence;
1884         uint8_t desired_state;
1885         uint8_t state;
1886         uint8_t persistent;
1887 };
1888
1889 /*
1890  * send a set state command to the device by reading the current items->state
1891  * field. items is then filled with the current state.
1892  */
1893 static int hidpp_touchpad_fw_items_set(struct hidpp_device *hidpp,
1894                                        u8 feature_index,
1895                                        struct hidpp_touchpad_fw_items *items)
1896 {
1897         struct hidpp_report response;
1898         int ret;
1899         u8 *params = (u8 *)response.fap.params;
1900
1901         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1902                 CMD_TOUCHPAD_FW_ITEMS_SET, &items->state, 1, &response);
1903
1904         if (ret > 0) {
1905                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1906                         __func__, ret);
1907                 return -EPROTO;
1908         }
1909         if (ret)
1910                 return ret;
1911
1912         items->presence = params[0];
1913         items->desired_state = params[1];
1914         items->state = params[2];
1915         items->persistent = params[3];
1916
1917         return 0;
1918 }
1919
1920 /* -------------------------------------------------------------------------- */
1921 /* 0x6100: TouchPadRawXY                                                      */
1922 /* -------------------------------------------------------------------------- */
1923
1924 #define HIDPP_PAGE_TOUCHPAD_RAW_XY                      0x6100
1925
1926 #define CMD_TOUCHPAD_GET_RAW_INFO                       0x01
1927 #define CMD_TOUCHPAD_SET_RAW_REPORT_STATE               0x21
1928
1929 #define EVENT_TOUCHPAD_RAW_XY                           0x00
1930
1931 #define TOUCHPAD_RAW_XY_ORIGIN_LOWER_LEFT               0x01
1932 #define TOUCHPAD_RAW_XY_ORIGIN_UPPER_LEFT               0x03
1933
1934 struct hidpp_touchpad_raw_info {
1935         u16 x_size;
1936         u16 y_size;
1937         u8 z_range;
1938         u8 area_range;
1939         u8 timestamp_unit;
1940         u8 maxcontacts;
1941         u8 origin;
1942         u16 res;
1943 };
1944
1945 struct hidpp_touchpad_raw_xy_finger {
1946         u8 contact_type;
1947         u8 contact_status;
1948         u16 x;
1949         u16 y;
1950         u8 z;
1951         u8 area;
1952         u8 finger_id;
1953 };
1954
1955 struct hidpp_touchpad_raw_xy {
1956         u16 timestamp;
1957         struct hidpp_touchpad_raw_xy_finger fingers[2];
1958         u8 spurious_flag;
1959         u8 end_of_frame;
1960         u8 finger_count;
1961         u8 button;
1962 };
1963
1964 static int hidpp_touchpad_get_raw_info(struct hidpp_device *hidpp,
1965         u8 feature_index, struct hidpp_touchpad_raw_info *raw_info)
1966 {
1967         struct hidpp_report response;
1968         int ret;
1969         u8 *params = (u8 *)response.fap.params;
1970
1971         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1972                 CMD_TOUCHPAD_GET_RAW_INFO, NULL, 0, &response);
1973
1974         if (ret > 0) {
1975                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1976                         __func__, ret);
1977                 return -EPROTO;
1978         }
1979         if (ret)
1980                 return ret;
1981
1982         raw_info->x_size = get_unaligned_be16(&params[0]);
1983         raw_info->y_size = get_unaligned_be16(&params[2]);
1984         raw_info->z_range = params[4];
1985         raw_info->area_range = params[5];
1986         raw_info->maxcontacts = params[7];
1987         raw_info->origin = params[8];
1988         /* res is given in unit per inch */
1989         raw_info->res = get_unaligned_be16(&params[13]) * 2 / 51;
1990
1991         return ret;
1992 }
1993
1994 static int hidpp_touchpad_set_raw_report_state(struct hidpp_device *hidpp_dev,
1995                 u8 feature_index, bool send_raw_reports,
1996                 bool sensor_enhanced_settings)
1997 {
1998         struct hidpp_report response;
1999
2000         /*
2001          * Params:
2002          *   bit 0 - enable raw
2003          *   bit 1 - 16bit Z, no area
2004          *   bit 2 - enhanced sensitivity
2005          *   bit 3 - width, height (4 bits each) instead of area
2006          *   bit 4 - send raw + gestures (degrades smoothness)
2007          *   remaining bits - reserved
2008          */
2009         u8 params = send_raw_reports | (sensor_enhanced_settings << 2);
2010
2011         return hidpp_send_fap_command_sync(hidpp_dev, feature_index,
2012                 CMD_TOUCHPAD_SET_RAW_REPORT_STATE, &params, 1, &response);
2013 }
2014
2015 static void hidpp_touchpad_touch_event(u8 *data,
2016         struct hidpp_touchpad_raw_xy_finger *finger)
2017 {
2018         u8 x_m = data[0] << 2;
2019         u8 y_m = data[2] << 2;
2020
2021         finger->x = x_m << 6 | data[1];
2022         finger->y = y_m << 6 | data[3];
2023
2024         finger->contact_type = data[0] >> 6;
2025         finger->contact_status = data[2] >> 6;
2026
2027         finger->z = data[4];
2028         finger->area = data[5];
2029         finger->finger_id = data[6] >> 4;
2030 }
2031
2032 static void hidpp_touchpad_raw_xy_event(struct hidpp_device *hidpp_dev,
2033                 u8 *data, struct hidpp_touchpad_raw_xy *raw_xy)
2034 {
2035         memset(raw_xy, 0, sizeof(struct hidpp_touchpad_raw_xy));
2036         raw_xy->end_of_frame = data[8] & 0x01;
2037         raw_xy->spurious_flag = (data[8] >> 1) & 0x01;
2038         raw_xy->finger_count = data[15] & 0x0f;
2039         raw_xy->button = (data[8] >> 2) & 0x01;
2040
2041         if (raw_xy->finger_count) {
2042                 hidpp_touchpad_touch_event(&data[2], &raw_xy->fingers[0]);
2043                 hidpp_touchpad_touch_event(&data[9], &raw_xy->fingers[1]);
2044         }
2045 }
2046
2047 /* -------------------------------------------------------------------------- */
2048 /* 0x8123: Force feedback support                                             */
2049 /* -------------------------------------------------------------------------- */
2050
2051 #define HIDPP_FF_GET_INFO               0x01
2052 #define HIDPP_FF_RESET_ALL              0x11
2053 #define HIDPP_FF_DOWNLOAD_EFFECT        0x21
2054 #define HIDPP_FF_SET_EFFECT_STATE       0x31
2055 #define HIDPP_FF_DESTROY_EFFECT         0x41
2056 #define HIDPP_FF_GET_APERTURE           0x51
2057 #define HIDPP_FF_SET_APERTURE           0x61
2058 #define HIDPP_FF_GET_GLOBAL_GAINS       0x71
2059 #define HIDPP_FF_SET_GLOBAL_GAINS       0x81
2060
2061 #define HIDPP_FF_EFFECT_STATE_GET       0x00
2062 #define HIDPP_FF_EFFECT_STATE_STOP      0x01
2063 #define HIDPP_FF_EFFECT_STATE_PLAY      0x02
2064 #define HIDPP_FF_EFFECT_STATE_PAUSE     0x03
2065
2066 #define HIDPP_FF_EFFECT_CONSTANT        0x00
2067 #define HIDPP_FF_EFFECT_PERIODIC_SINE           0x01
2068 #define HIDPP_FF_EFFECT_PERIODIC_SQUARE         0x02
2069 #define HIDPP_FF_EFFECT_PERIODIC_TRIANGLE       0x03
2070 #define HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHUP     0x04
2071 #define HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHDOWN   0x05
2072 #define HIDPP_FF_EFFECT_SPRING          0x06
2073 #define HIDPP_FF_EFFECT_DAMPER          0x07
2074 #define HIDPP_FF_EFFECT_FRICTION        0x08
2075 #define HIDPP_FF_EFFECT_INERTIA         0x09
2076 #define HIDPP_FF_EFFECT_RAMP            0x0A
2077
2078 #define HIDPP_FF_EFFECT_AUTOSTART       0x80
2079
2080 #define HIDPP_FF_EFFECTID_NONE          -1
2081 #define HIDPP_FF_EFFECTID_AUTOCENTER    -2
2082 #define HIDPP_AUTOCENTER_PARAMS_LENGTH  18
2083
2084 #define HIDPP_FF_MAX_PARAMS     20
2085 #define HIDPP_FF_RESERVED_SLOTS 1
2086
2087 struct hidpp_ff_private_data {
2088         struct hidpp_device *hidpp;
2089         u8 feature_index;
2090         u8 version;
2091         u16 gain;
2092         s16 range;
2093         u8 slot_autocenter;
2094         u8 num_effects;
2095         int *effect_ids;
2096         struct workqueue_struct *wq;
2097         atomic_t workqueue_size;
2098 };
2099
2100 struct hidpp_ff_work_data {
2101         struct work_struct work;
2102         struct hidpp_ff_private_data *data;
2103         int effect_id;
2104         u8 command;
2105         u8 params[HIDPP_FF_MAX_PARAMS];
2106         u8 size;
2107 };
2108
2109 static const signed short hidpp_ff_effects[] = {
2110         FF_CONSTANT,
2111         FF_PERIODIC,
2112         FF_SINE,
2113         FF_SQUARE,
2114         FF_SAW_UP,
2115         FF_SAW_DOWN,
2116         FF_TRIANGLE,
2117         FF_SPRING,
2118         FF_DAMPER,
2119         FF_AUTOCENTER,
2120         FF_GAIN,
2121         -1
2122 };
2123
2124 static const signed short hidpp_ff_effects_v2[] = {
2125         FF_RAMP,
2126         FF_FRICTION,
2127         FF_INERTIA,
2128         -1
2129 };
2130
2131 static const u8 HIDPP_FF_CONDITION_CMDS[] = {
2132         HIDPP_FF_EFFECT_SPRING,
2133         HIDPP_FF_EFFECT_FRICTION,
2134         HIDPP_FF_EFFECT_DAMPER,
2135         HIDPP_FF_EFFECT_INERTIA
2136 };
2137
2138 static const char *HIDPP_FF_CONDITION_NAMES[] = {
2139         "spring",
2140         "friction",
2141         "damper",
2142         "inertia"
2143 };
2144
2145
2146 static u8 hidpp_ff_find_effect(struct hidpp_ff_private_data *data, int effect_id)
2147 {
2148         int i;
2149
2150         for (i = 0; i < data->num_effects; i++)
2151                 if (data->effect_ids[i] == effect_id)
2152                         return i+1;
2153
2154         return 0;
2155 }
2156
2157 static void hidpp_ff_work_handler(struct work_struct *w)
2158 {
2159         struct hidpp_ff_work_data *wd = container_of(w, struct hidpp_ff_work_data, work);
2160         struct hidpp_ff_private_data *data = wd->data;
2161         struct hidpp_report response;
2162         u8 slot;
2163         int ret;
2164
2165         /* add slot number if needed */
2166         switch (wd->effect_id) {
2167         case HIDPP_FF_EFFECTID_AUTOCENTER:
2168                 wd->params[0] = data->slot_autocenter;
2169                 break;
2170         case HIDPP_FF_EFFECTID_NONE:
2171                 /* leave slot as zero */
2172                 break;
2173         default:
2174                 /* find current slot for effect */
2175                 wd->params[0] = hidpp_ff_find_effect(data, wd->effect_id);
2176                 break;
2177         }
2178
2179         /* send command and wait for reply */
2180         ret = hidpp_send_fap_command_sync(data->hidpp, data->feature_index,
2181                 wd->command, wd->params, wd->size, &response);
2182
2183         if (ret) {
2184                 hid_err(data->hidpp->hid_dev, "Failed to send command to device!\n");
2185                 goto out;
2186         }
2187
2188         /* parse return data */
2189         switch (wd->command) {
2190         case HIDPP_FF_DOWNLOAD_EFFECT:
2191                 slot = response.fap.params[0];
2192                 if (slot > 0 && slot <= data->num_effects) {
2193                         if (wd->effect_id >= 0)
2194                                 /* regular effect uploaded */
2195                                 data->effect_ids[slot-1] = wd->effect_id;
2196                         else if (wd->effect_id >= HIDPP_FF_EFFECTID_AUTOCENTER)
2197                                 /* autocenter spring uploaded */
2198                                 data->slot_autocenter = slot;
2199                 }
2200                 break;
2201         case HIDPP_FF_DESTROY_EFFECT:
2202                 if (wd->effect_id >= 0)
2203                         /* regular effect destroyed */
2204                         data->effect_ids[wd->params[0]-1] = -1;
2205                 else if (wd->effect_id >= HIDPP_FF_EFFECTID_AUTOCENTER)
2206                         /* autocenter spring destoyed */
2207                         data->slot_autocenter = 0;
2208                 break;
2209         case HIDPP_FF_SET_GLOBAL_GAINS:
2210                 data->gain = (wd->params[0] << 8) + wd->params[1];
2211                 break;
2212         case HIDPP_FF_SET_APERTURE:
2213                 data->range = (wd->params[0] << 8) + wd->params[1];
2214                 break;
2215         default:
2216                 /* no action needed */
2217                 break;
2218         }
2219
2220 out:
2221         atomic_dec(&data->workqueue_size);
2222         kfree(wd);
2223 }
2224
2225 static int hidpp_ff_queue_work(struct hidpp_ff_private_data *data, int effect_id, u8 command, u8 *params, u8 size)
2226 {
2227         struct hidpp_ff_work_data *wd = kzalloc(sizeof(*wd), GFP_KERNEL);
2228         int s;
2229
2230         if (!wd)
2231                 return -ENOMEM;
2232
2233         INIT_WORK(&wd->work, hidpp_ff_work_handler);
2234
2235         wd->data = data;
2236         wd->effect_id = effect_id;
2237         wd->command = command;
2238         wd->size = size;
2239         memcpy(wd->params, params, size);
2240
2241         atomic_inc(&data->workqueue_size);
2242         queue_work(data->wq, &wd->work);
2243
2244         /* warn about excessive queue size */
2245         s = atomic_read(&data->workqueue_size);
2246         if (s >= 20 && s % 20 == 0)
2247                 hid_warn(data->hidpp->hid_dev, "Force feedback command queue contains %d commands, causing substantial delays!", s);
2248
2249         return 0;
2250 }
2251
2252 static int hidpp_ff_upload_effect(struct input_dev *dev, struct ff_effect *effect, struct ff_effect *old)
2253 {
2254         struct hidpp_ff_private_data *data = dev->ff->private;
2255         u8 params[20];
2256         u8 size;
2257         int force;
2258
2259         /* set common parameters */
2260         params[2] = effect->replay.length >> 8;
2261         params[3] = effect->replay.length & 255;
2262         params[4] = effect->replay.delay >> 8;
2263         params[5] = effect->replay.delay & 255;
2264
2265         switch (effect->type) {
2266         case FF_CONSTANT:
2267                 force = (effect->u.constant.level * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
2268                 params[1] = HIDPP_FF_EFFECT_CONSTANT;
2269                 params[6] = force >> 8;
2270                 params[7] = force & 255;
2271                 params[8] = effect->u.constant.envelope.attack_level >> 7;
2272                 params[9] = effect->u.constant.envelope.attack_length >> 8;
2273                 params[10] = effect->u.constant.envelope.attack_length & 255;
2274                 params[11] = effect->u.constant.envelope.fade_level >> 7;
2275                 params[12] = effect->u.constant.envelope.fade_length >> 8;
2276                 params[13] = effect->u.constant.envelope.fade_length & 255;
2277                 size = 14;
2278                 dbg_hid("Uploading constant force level=%d in dir %d = %d\n",
2279                                 effect->u.constant.level,
2280                                 effect->direction, force);
2281                 dbg_hid("          envelope attack=(%d, %d ms) fade=(%d, %d ms)\n",
2282                                 effect->u.constant.envelope.attack_level,
2283                                 effect->u.constant.envelope.attack_length,
2284                                 effect->u.constant.envelope.fade_level,
2285                                 effect->u.constant.envelope.fade_length);
2286                 break;
2287         case FF_PERIODIC:
2288         {
2289                 switch (effect->u.periodic.waveform) {
2290                 case FF_SINE:
2291                         params[1] = HIDPP_FF_EFFECT_PERIODIC_SINE;
2292                         break;
2293                 case FF_SQUARE:
2294                         params[1] = HIDPP_FF_EFFECT_PERIODIC_SQUARE;
2295                         break;
2296                 case FF_SAW_UP:
2297                         params[1] = HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHUP;
2298                         break;
2299                 case FF_SAW_DOWN:
2300                         params[1] = HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHDOWN;
2301                         break;
2302                 case FF_TRIANGLE:
2303                         params[1] = HIDPP_FF_EFFECT_PERIODIC_TRIANGLE;
2304                         break;
2305                 default:
2306                         hid_err(data->hidpp->hid_dev, "Unexpected periodic waveform type %i!\n", effect->u.periodic.waveform);
2307                         return -EINVAL;
2308                 }
2309                 force = (effect->u.periodic.magnitude * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
2310                 params[6] = effect->u.periodic.magnitude >> 8;
2311                 params[7] = effect->u.periodic.magnitude & 255;
2312                 params[8] = effect->u.periodic.offset >> 8;
2313                 params[9] = effect->u.periodic.offset & 255;
2314                 params[10] = effect->u.periodic.period >> 8;
2315                 params[11] = effect->u.periodic.period & 255;
2316                 params[12] = effect->u.periodic.phase >> 8;
2317                 params[13] = effect->u.periodic.phase & 255;
2318                 params[14] = effect->u.periodic.envelope.attack_level >> 7;
2319                 params[15] = effect->u.periodic.envelope.attack_length >> 8;
2320                 params[16] = effect->u.periodic.envelope.attack_length & 255;
2321                 params[17] = effect->u.periodic.envelope.fade_level >> 7;
2322                 params[18] = effect->u.periodic.envelope.fade_length >> 8;
2323                 params[19] = effect->u.periodic.envelope.fade_length & 255;
2324                 size = 20;
2325                 dbg_hid("Uploading periodic force mag=%d/dir=%d, offset=%d, period=%d ms, phase=%d\n",
2326                                 effect->u.periodic.magnitude, effect->direction,
2327                                 effect->u.periodic.offset,
2328                                 effect->u.periodic.period,
2329                                 effect->u.periodic.phase);
2330                 dbg_hid("          envelope attack=(%d, %d ms) fade=(%d, %d ms)\n",
2331                                 effect->u.periodic.envelope.attack_level,
2332                                 effect->u.periodic.envelope.attack_length,
2333                                 effect->u.periodic.envelope.fade_level,
2334                                 effect->u.periodic.envelope.fade_length);
2335                 break;
2336         }
2337         case FF_RAMP:
2338                 params[1] = HIDPP_FF_EFFECT_RAMP;
2339                 force = (effect->u.ramp.start_level * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
2340                 params[6] = force >> 8;
2341                 params[7] = force & 255;
2342                 force = (effect->u.ramp.end_level * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
2343                 params[8] = force >> 8;
2344                 params[9] = force & 255;
2345                 params[10] = effect->u.ramp.envelope.attack_level >> 7;
2346                 params[11] = effect->u.ramp.envelope.attack_length >> 8;
2347                 params[12] = effect->u.ramp.envelope.attack_length & 255;
2348                 params[13] = effect->u.ramp.envelope.fade_level >> 7;
2349                 params[14] = effect->u.ramp.envelope.fade_length >> 8;
2350                 params[15] = effect->u.ramp.envelope.fade_length & 255;
2351                 size = 16;
2352                 dbg_hid("Uploading ramp force level=%d -> %d in dir %d = %d\n",
2353                                 effect->u.ramp.start_level,
2354                                 effect->u.ramp.end_level,
2355                                 effect->direction, force);
2356                 dbg_hid("          envelope attack=(%d, %d ms) fade=(%d, %d ms)\n",
2357                                 effect->u.ramp.envelope.attack_level,
2358                                 effect->u.ramp.envelope.attack_length,
2359                                 effect->u.ramp.envelope.fade_level,
2360                                 effect->u.ramp.envelope.fade_length);
2361                 break;
2362         case FF_FRICTION:
2363         case FF_INERTIA:
2364         case FF_SPRING:
2365         case FF_DAMPER:
2366                 params[1] = HIDPP_FF_CONDITION_CMDS[effect->type - FF_SPRING];
2367                 params[6] = effect->u.condition[0].left_saturation >> 9;
2368                 params[7] = (effect->u.condition[0].left_saturation >> 1) & 255;
2369                 params[8] = effect->u.condition[0].left_coeff >> 8;
2370                 params[9] = effect->u.condition[0].left_coeff & 255;
2371                 params[10] = effect->u.condition[0].deadband >> 9;
2372                 params[11] = (effect->u.condition[0].deadband >> 1) & 255;
2373                 params[12] = effect->u.condition[0].center >> 8;
2374                 params[13] = effect->u.condition[0].center & 255;
2375                 params[14] = effect->u.condition[0].right_coeff >> 8;
2376                 params[15] = effect->u.condition[0].right_coeff & 255;
2377                 params[16] = effect->u.condition[0].right_saturation >> 9;
2378                 params[17] = (effect->u.condition[0].right_saturation >> 1) & 255;
2379                 size = 18;
2380                 dbg_hid("Uploading %s force left coeff=%d, left sat=%d, right coeff=%d, right sat=%d\n",
2381                                 HIDPP_FF_CONDITION_NAMES[effect->type - FF_SPRING],
2382                                 effect->u.condition[0].left_coeff,
2383                                 effect->u.condition[0].left_saturation,
2384                                 effect->u.condition[0].right_coeff,
2385                                 effect->u.condition[0].right_saturation);
2386                 dbg_hid("          deadband=%d, center=%d\n",
2387                                 effect->u.condition[0].deadband,
2388                                 effect->u.condition[0].center);
2389                 break;
2390         default:
2391                 hid_err(data->hidpp->hid_dev, "Unexpected force type %i!\n", effect->type);
2392                 return -EINVAL;
2393         }
2394
2395         return hidpp_ff_queue_work(data, effect->id, HIDPP_FF_DOWNLOAD_EFFECT, params, size);
2396 }
2397
2398 static int hidpp_ff_playback(struct input_dev *dev, int effect_id, int value)
2399 {
2400         struct hidpp_ff_private_data *data = dev->ff->private;
2401         u8 params[2];
2402
2403         params[1] = value ? HIDPP_FF_EFFECT_STATE_PLAY : HIDPP_FF_EFFECT_STATE_STOP;
2404
2405         dbg_hid("St%sing playback of effect %d.\n", value?"art":"opp", effect_id);
2406
2407         return hidpp_ff_queue_work(data, effect_id, HIDPP_FF_SET_EFFECT_STATE, params, ARRAY_SIZE(params));
2408 }
2409
2410 static int hidpp_ff_erase_effect(struct input_dev *dev, int effect_id)
2411 {
2412         struct hidpp_ff_private_data *data = dev->ff->private;
2413         u8 slot = 0;
2414
2415         dbg_hid("Erasing effect %d.\n", effect_id);
2416
2417         return hidpp_ff_queue_work(data, effect_id, HIDPP_FF_DESTROY_EFFECT, &slot, 1);
2418 }
2419
2420 static void hidpp_ff_set_autocenter(struct input_dev *dev, u16 magnitude)
2421 {
2422         struct hidpp_ff_private_data *data = dev->ff->private;
2423         u8 params[HIDPP_AUTOCENTER_PARAMS_LENGTH];
2424
2425         dbg_hid("Setting autocenter to %d.\n", magnitude);
2426
2427         /* start a standard spring effect */
2428         params[1] = HIDPP_FF_EFFECT_SPRING | HIDPP_FF_EFFECT_AUTOSTART;
2429         /* zero delay and duration */
2430         params[2] = params[3] = params[4] = params[5] = 0;
2431         /* set coeff to 25% of saturation */
2432         params[8] = params[14] = magnitude >> 11;
2433         params[9] = params[15] = (magnitude >> 3) & 255;
2434         params[6] = params[16] = magnitude >> 9;
2435         params[7] = params[17] = (magnitude >> 1) & 255;
2436         /* zero deadband and center */
2437         params[10] = params[11] = params[12] = params[13] = 0;
2438
2439         hidpp_ff_queue_work(data, HIDPP_FF_EFFECTID_AUTOCENTER, HIDPP_FF_DOWNLOAD_EFFECT, params, ARRAY_SIZE(params));
2440 }
2441
2442 static void hidpp_ff_set_gain(struct input_dev *dev, u16 gain)
2443 {
2444         struct hidpp_ff_private_data *data = dev->ff->private;
2445         u8 params[4];
2446
2447         dbg_hid("Setting gain to %d.\n", gain);
2448
2449         params[0] = gain >> 8;
2450         params[1] = gain & 255;
2451         params[2] = 0; /* no boost */
2452         params[3] = 0;
2453
2454         hidpp_ff_queue_work(data, HIDPP_FF_EFFECTID_NONE, HIDPP_FF_SET_GLOBAL_GAINS, params, ARRAY_SIZE(params));
2455 }
2456
2457 static ssize_t hidpp_ff_range_show(struct device *dev, struct device_attribute *attr, char *buf)
2458 {
2459         struct hid_device *hid = to_hid_device(dev);
2460         struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list);
2461         struct input_dev *idev = hidinput->input;
2462         struct hidpp_ff_private_data *data = idev->ff->private;
2463
2464         return scnprintf(buf, PAGE_SIZE, "%u\n", data->range);
2465 }
2466
2467 static ssize_t hidpp_ff_range_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)
2468 {
2469         struct hid_device *hid = to_hid_device(dev);
2470         struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list);
2471         struct input_dev *idev = hidinput->input;
2472         struct hidpp_ff_private_data *data = idev->ff->private;
2473         u8 params[2];
2474         int range = simple_strtoul(buf, NULL, 10);
2475
2476         range = clamp(range, 180, 900);
2477
2478         params[0] = range >> 8;
2479         params[1] = range & 0x00FF;
2480
2481         hidpp_ff_queue_work(data, -1, HIDPP_FF_SET_APERTURE, params, ARRAY_SIZE(params));
2482
2483         return count;
2484 }
2485
2486 static DEVICE_ATTR(range, S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH, hidpp_ff_range_show, hidpp_ff_range_store);
2487
2488 static void hidpp_ff_destroy(struct ff_device *ff)
2489 {
2490         struct hidpp_ff_private_data *data = ff->private;
2491         struct hid_device *hid = data->hidpp->hid_dev;
2492
2493         hid_info(hid, "Unloading HID++ force feedback.\n");
2494
2495         device_remove_file(&hid->dev, &dev_attr_range);
2496         destroy_workqueue(data->wq);
2497         kfree(data->effect_ids);
2498 }
2499
2500 static int hidpp_ff_init(struct hidpp_device *hidpp,
2501                          struct hidpp_ff_private_data *data)
2502 {
2503         struct hid_device *hid = hidpp->hid_dev;
2504         struct hid_input *hidinput;
2505         struct input_dev *dev;
2506         const struct usb_device_descriptor *udesc = &(hid_to_usb_dev(hid)->descriptor);
2507         const u16 bcdDevice = le16_to_cpu(udesc->bcdDevice);
2508         struct ff_device *ff;
2509         int error, j, num_slots = data->num_effects;
2510         u8 version;
2511
2512         if (list_empty(&hid->inputs)) {
2513                 hid_err(hid, "no inputs found\n");
2514                 return -ENODEV;
2515         }
2516         hidinput = list_entry(hid->inputs.next, struct hid_input, list);
2517         dev = hidinput->input;
2518
2519         if (!dev) {
2520                 hid_err(hid, "Struct input_dev not set!\n");
2521                 return -EINVAL;
2522         }
2523
2524         /* Get firmware release */
2525         version = bcdDevice & 255;
2526
2527         /* Set supported force feedback capabilities */
2528         for (j = 0; hidpp_ff_effects[j] >= 0; j++)
2529                 set_bit(hidpp_ff_effects[j], dev->ffbit);
2530         if (version > 1)
2531                 for (j = 0; hidpp_ff_effects_v2[j] >= 0; j++)
2532                         set_bit(hidpp_ff_effects_v2[j], dev->ffbit);
2533
2534         error = input_ff_create(dev, num_slots);
2535
2536         if (error) {
2537                 hid_err(dev, "Failed to create FF device!\n");
2538                 return error;
2539         }
2540         /*
2541          * Create a copy of passed data, so we can transfer memory
2542          * ownership to FF core
2543          */
2544         data = kmemdup(data, sizeof(*data), GFP_KERNEL);
2545         if (!data)
2546                 return -ENOMEM;
2547         data->effect_ids = kcalloc(num_slots, sizeof(int), GFP_KERNEL);
2548         if (!data->effect_ids) {
2549                 kfree(data);
2550                 return -ENOMEM;
2551         }
2552         data->wq = create_singlethread_workqueue("hidpp-ff-sendqueue");
2553         if (!data->wq) {
2554                 kfree(data->effect_ids);
2555                 kfree(data);
2556                 return -ENOMEM;
2557         }
2558
2559         data->hidpp = hidpp;
2560         data->version = version;
2561         for (j = 0; j < num_slots; j++)
2562                 data->effect_ids[j] = -1;
2563
2564         ff = dev->ff;
2565         ff->private = data;
2566
2567         ff->upload = hidpp_ff_upload_effect;
2568         ff->erase = hidpp_ff_erase_effect;
2569         ff->playback = hidpp_ff_playback;
2570         ff->set_gain = hidpp_ff_set_gain;
2571         ff->set_autocenter = hidpp_ff_set_autocenter;
2572         ff->destroy = hidpp_ff_destroy;
2573
2574         /* Create sysfs interface */
2575         error = device_create_file(&(hidpp->hid_dev->dev), &dev_attr_range);
2576         if (error)
2577                 hid_warn(hidpp->hid_dev, "Unable to create sysfs interface for \"range\", errno %d!\n", error);
2578
2579         /* init the hardware command queue */
2580         atomic_set(&data->workqueue_size, 0);
2581
2582         hid_info(hid, "Force feedback support loaded (firmware release %d).\n",
2583                  version);
2584
2585         return 0;
2586 }
2587
2588 /* ************************************************************************** */
2589 /*                                                                            */
2590 /* Device Support                                                             */
2591 /*                                                                            */
2592 /* ************************************************************************** */
2593
2594 /* -------------------------------------------------------------------------- */
2595 /* Touchpad HID++ devices                                                     */
2596 /* -------------------------------------------------------------------------- */
2597
2598 #define WTP_MANUAL_RESOLUTION                           39
2599
2600 struct wtp_data {
2601         u16 x_size, y_size;
2602         u8 finger_count;
2603         u8 mt_feature_index;
2604         u8 button_feature_index;
2605         u8 maxcontacts;
2606         bool flip_y;
2607         unsigned int resolution;
2608 };
2609
2610 static int wtp_input_mapping(struct hid_device *hdev, struct hid_input *hi,
2611                 struct hid_field *field, struct hid_usage *usage,
2612                 unsigned long **bit, int *max)
2613 {
2614         return -1;
2615 }
2616
2617 static void wtp_populate_input(struct hidpp_device *hidpp,
2618                                struct input_dev *input_dev)
2619 {
2620         struct wtp_data *wd = hidpp->private_data;
2621
2622         __set_bit(EV_ABS, input_dev->evbit);
2623         __set_bit(EV_KEY, input_dev->evbit);
2624         __clear_bit(EV_REL, input_dev->evbit);
2625         __clear_bit(EV_LED, input_dev->evbit);
2626
2627         input_set_abs_params(input_dev, ABS_MT_POSITION_X, 0, wd->x_size, 0, 0);
2628         input_abs_set_res(input_dev, ABS_MT_POSITION_X, wd->resolution);
2629         input_set_abs_params(input_dev, ABS_MT_POSITION_Y, 0, wd->y_size, 0, 0);
2630         input_abs_set_res(input_dev, ABS_MT_POSITION_Y, wd->resolution);
2631
2632         /* Max pressure is not given by the devices, pick one */
2633         input_set_abs_params(input_dev, ABS_MT_PRESSURE, 0, 50, 0, 0);
2634
2635         input_set_capability(input_dev, EV_KEY, BTN_LEFT);
2636
2637         if (hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS)
2638                 input_set_capability(input_dev, EV_KEY, BTN_RIGHT);
2639         else
2640                 __set_bit(INPUT_PROP_BUTTONPAD, input_dev->propbit);
2641
2642         input_mt_init_slots(input_dev, wd->maxcontacts, INPUT_MT_POINTER |
2643                 INPUT_MT_DROP_UNUSED);
2644 }
2645
2646 static void wtp_touch_event(struct hidpp_device *hidpp,
2647         struct hidpp_touchpad_raw_xy_finger *touch_report)
2648 {
2649         struct wtp_data *wd = hidpp->private_data;
2650         int slot;
2651
2652         if (!touch_report->finger_id || touch_report->contact_type)
2653                 /* no actual data */
2654                 return;
2655
2656         slot = input_mt_get_slot_by_key(hidpp->input, touch_report->finger_id);
2657
2658         input_mt_slot(hidpp->input, slot);
2659         input_mt_report_slot_state(hidpp->input, MT_TOOL_FINGER,
2660                                         touch_report->contact_status);
2661         if (touch_report->contact_status) {
2662                 input_event(hidpp->input, EV_ABS, ABS_MT_POSITION_X,
2663                                 touch_report->x);
2664                 input_event(hidpp->input, EV_ABS, ABS_MT_POSITION_Y,
2665                                 wd->flip_y ? wd->y_size - touch_report->y :
2666                                              touch_report->y);
2667                 input_event(hidpp->input, EV_ABS, ABS_MT_PRESSURE,
2668                                 touch_report->area);
2669         }
2670 }
2671
2672 static void wtp_send_raw_xy_event(struct hidpp_device *hidpp,
2673                 struct hidpp_touchpad_raw_xy *raw)
2674 {
2675         int i;
2676
2677         for (i = 0; i < 2; i++)
2678                 wtp_touch_event(hidpp, &(raw->fingers[i]));
2679
2680         if (raw->end_of_frame &&
2681             !(hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS))
2682                 input_event(hidpp->input, EV_KEY, BTN_LEFT, raw->button);
2683
2684         if (raw->end_of_frame || raw->finger_count <= 2) {
2685                 input_mt_sync_frame(hidpp->input);
2686                 input_sync(hidpp->input);
2687         }
2688 }
2689
2690 static int wtp_mouse_raw_xy_event(struct hidpp_device *hidpp, u8 *data)
2691 {
2692         struct wtp_data *wd = hidpp->private_data;
2693         u8 c1_area = ((data[7] & 0xf) * (data[7] & 0xf) +
2694                       (data[7] >> 4) * (data[7] >> 4)) / 2;
2695         u8 c2_area = ((data[13] & 0xf) * (data[13] & 0xf) +
2696                       (data[13] >> 4) * (data[13] >> 4)) / 2;
2697         struct hidpp_touchpad_raw_xy raw = {
2698                 .timestamp = data[1],
2699                 .fingers = {
2700                         {
2701                                 .contact_type = 0,
2702                                 .contact_status = !!data[7],
2703                                 .x = get_unaligned_le16(&data[3]),
2704                                 .y = get_unaligned_le16(&data[5]),
2705                                 .z = c1_area,
2706                                 .area = c1_area,
2707                                 .finger_id = data[2],
2708                         }, {
2709                                 .contact_type = 0,
2710                                 .contact_status = !!data[13],
2711                                 .x = get_unaligned_le16(&data[9]),
2712                                 .y = get_unaligned_le16(&data[11]),
2713                                 .z = c2_area,
2714                                 .area = c2_area,
2715                                 .finger_id = data[8],
2716                         }
2717                 },
2718                 .finger_count = wd->maxcontacts,
2719                 .spurious_flag = 0,
2720                 .end_of_frame = (data[0] >> 7) == 0,
2721                 .button = data[0] & 0x01,
2722         };
2723
2724         wtp_send_raw_xy_event(hidpp, &raw);
2725
2726         return 1;
2727 }
2728
2729 static int wtp_raw_event(struct hid_device *hdev, u8 *data, int size)
2730 {
2731         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2732         struct wtp_data *wd = hidpp->private_data;
2733         struct hidpp_report *report = (struct hidpp_report *)data;
2734         struct hidpp_touchpad_raw_xy raw;
2735
2736         if (!wd || !hidpp->input)
2737                 return 1;
2738
2739         switch (data[0]) {
2740         case 0x02:
2741                 if (size < 2) {
2742                         hid_err(hdev, "Received HID report of bad size (%d)",
2743                                 size);
2744                         return 1;
2745                 }
2746                 if (hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS) {
2747                         input_event(hidpp->input, EV_KEY, BTN_LEFT,
2748                                         !!(data[1] & 0x01));
2749                         input_event(hidpp->input, EV_KEY, BTN_RIGHT,
2750                                         !!(data[1] & 0x02));
2751                         input_sync(hidpp->input);
2752                         return 0;
2753                 } else {
2754                         if (size < 21)
2755                                 return 1;
2756                         return wtp_mouse_raw_xy_event(hidpp, &data[7]);
2757                 }
2758         case REPORT_ID_HIDPP_LONG:
2759                 /* size is already checked in hidpp_raw_event. */
2760                 if ((report->fap.feature_index != wd->mt_feature_index) ||
2761                     (report->fap.funcindex_clientid != EVENT_TOUCHPAD_RAW_XY))
2762                         return 1;
2763                 hidpp_touchpad_raw_xy_event(hidpp, data + 4, &raw);
2764
2765                 wtp_send_raw_xy_event(hidpp, &raw);
2766                 return 0;
2767         }
2768
2769         return 0;
2770 }
2771
2772 static int wtp_get_config(struct hidpp_device *hidpp)
2773 {
2774         struct wtp_data *wd = hidpp->private_data;
2775         struct hidpp_touchpad_raw_info raw_info = {0};
2776         u8 feature_type;
2777         int ret;
2778
2779         ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_TOUCHPAD_RAW_XY,
2780                 &wd->mt_feature_index, &feature_type);
2781         if (ret)
2782                 /* means that the device is not powered up */
2783                 return ret;
2784
2785         ret = hidpp_touchpad_get_raw_info(hidpp, wd->mt_feature_index,
2786                 &raw_info);
2787         if (ret)
2788                 return ret;
2789
2790         wd->x_size = raw_info.x_size;
2791         wd->y_size = raw_info.y_size;
2792         wd->maxcontacts = raw_info.maxcontacts;
2793         wd->flip_y = raw_info.origin == TOUCHPAD_RAW_XY_ORIGIN_LOWER_LEFT;
2794         wd->resolution = raw_info.res;
2795         if (!wd->resolution)
2796                 wd->resolution = WTP_MANUAL_RESOLUTION;
2797
2798         return 0;
2799 }
2800
2801 static int wtp_allocate(struct hid_device *hdev, const struct hid_device_id *id)
2802 {
2803         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2804         struct wtp_data *wd;
2805
2806         wd = devm_kzalloc(&hdev->dev, sizeof(struct wtp_data),
2807                         GFP_KERNEL);
2808         if (!wd)
2809                 return -ENOMEM;
2810
2811         hidpp->private_data = wd;
2812
2813         return 0;
2814 };
2815
2816 static int wtp_connect(struct hid_device *hdev, bool connected)
2817 {
2818         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2819         struct wtp_data *wd = hidpp->private_data;
2820         int ret;
2821
2822         if (!wd->x_size) {
2823                 ret = wtp_get_config(hidpp);
2824                 if (ret) {
2825                         hid_err(hdev, "Can not get wtp config: %d\n", ret);
2826                         return ret;
2827                 }
2828         }
2829
2830         return hidpp_touchpad_set_raw_report_state(hidpp, wd->mt_feature_index,
2831                         true, true);
2832 }
2833
2834 /* ------------------------------------------------------------------------- */
2835 /* Logitech M560 devices                                                     */
2836 /* ------------------------------------------------------------------------- */
2837
2838 /*
2839  * Logitech M560 protocol overview
2840  *
2841  * The Logitech M560 mouse, is designed for windows 8. When the middle and/or
2842  * the sides buttons are pressed, it sends some keyboard keys events
2843  * instead of buttons ones.
2844  * To complicate things further, the middle button keys sequence
2845  * is different from the odd press and the even press.
2846  *
2847  * forward button -> Super_R
2848  * backward button -> Super_L+'d' (press only)
2849  * middle button -> 1st time: Alt_L+SuperL+XF86TouchpadOff (press only)
2850  *                  2nd time: left-click (press only)
2851  * NB: press-only means that when the button is pressed, the
2852  * KeyPress/ButtonPress and KeyRelease/ButtonRelease events are generated
2853  * together sequentially; instead when the button is released, no event is
2854  * generated !
2855  *
2856  * With the command
2857  *      10<xx>0a 3500af03 (where <xx> is the mouse id),
2858  * the mouse reacts differently:
2859  * - it never sends a keyboard key event
2860  * - for the three mouse button it sends:
2861  *      middle button               press   11<xx>0a 3500af00...
2862  *      side 1 button (forward)     press   11<xx>0a 3500b000...
2863  *      side 2 button (backward)    press   11<xx>0a 3500ae00...
2864  *      middle/side1/side2 button   release 11<xx>0a 35000000...
2865  */
2866
2867 static const u8 m560_config_parameter[] = {0x00, 0xaf, 0x03};
2868
2869 /* how buttons are mapped in the report */
2870 #define M560_MOUSE_BTN_LEFT             0x01
2871 #define M560_MOUSE_BTN_RIGHT            0x02
2872 #define M560_MOUSE_BTN_WHEEL_LEFT       0x08
2873 #define M560_MOUSE_BTN_WHEEL_RIGHT      0x10
2874
2875 #define M560_SUB_ID                     0x0a
2876 #define M560_BUTTON_MODE_REGISTER       0x35
2877
2878 static int m560_send_config_command(struct hid_device *hdev, bool connected)
2879 {
2880         struct hidpp_report response;
2881         struct hidpp_device *hidpp_dev;
2882
2883         hidpp_dev = hid_get_drvdata(hdev);
2884
2885         return hidpp_send_rap_command_sync(
2886                 hidpp_dev,
2887                 REPORT_ID_HIDPP_SHORT,
2888                 M560_SUB_ID,
2889                 M560_BUTTON_MODE_REGISTER,
2890                 (u8 *)m560_config_parameter,
2891                 sizeof(m560_config_parameter),
2892                 &response
2893         );
2894 }
2895
2896 static int m560_raw_event(struct hid_device *hdev, u8 *data, int size)
2897 {
2898         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2899
2900         /* sanity check */
2901         if (!hidpp->input) {
2902                 hid_err(hdev, "error in parameter\n");
2903                 return -EINVAL;
2904         }
2905
2906         if (size < 7) {
2907                 hid_err(hdev, "error in report\n");
2908                 return 0;
2909         }
2910
2911         if (data[0] == REPORT_ID_HIDPP_LONG &&
2912             data[2] == M560_SUB_ID && data[6] == 0x00) {
2913                 /*
2914                  * m560 mouse report for middle, forward and backward button
2915                  *
2916                  * data[0] = 0x11
2917                  * data[1] = device-id
2918                  * data[2] = 0x0a
2919                  * data[5] = 0xaf -> middle
2920                  *           0xb0 -> forward
2921                  *           0xae -> backward
2922                  *           0x00 -> release all
2923                  * data[6] = 0x00
2924                  */
2925
2926                 switch (data[5]) {
2927                 case 0xaf:
2928                         input_report_key(hidpp->input, BTN_MIDDLE, 1);
2929                         break;
2930                 case 0xb0:
2931                         input_report_key(hidpp->input, BTN_FORWARD, 1);
2932                         break;
2933                 case 0xae:
2934                         input_report_key(hidpp->input, BTN_BACK, 1);
2935                         break;
2936                 case 0x00:
2937                         input_report_key(hidpp->input, BTN_BACK, 0);
2938                         input_report_key(hidpp->input, BTN_FORWARD, 0);
2939                         input_report_key(hidpp->input, BTN_MIDDLE, 0);
2940                         break;
2941                 default:
2942                         hid_err(hdev, "error in report\n");
2943                         return 0;
2944                 }
2945                 input_sync(hidpp->input);
2946
2947         } else if (data[0] == 0x02) {
2948                 /*
2949                  * Logitech M560 mouse report
2950                  *
2951                  * data[0] = type (0x02)
2952                  * data[1..2] = buttons
2953                  * data[3..5] = xy
2954                  * data[6] = wheel
2955                  */
2956
2957                 int v;
2958
2959                 input_report_key(hidpp->input, BTN_LEFT,
2960                         !!(data[1] & M560_MOUSE_BTN_LEFT));
2961                 input_report_key(hidpp->input, BTN_RIGHT,
2962                         !!(data[1] & M560_MOUSE_BTN_RIGHT));
2963
2964                 if (data[1] & M560_MOUSE_BTN_WHEEL_LEFT) {
2965                         input_report_rel(hidpp->input, REL_HWHEEL, -1);
2966                         input_report_rel(hidpp->input, REL_HWHEEL_HI_RES,
2967                                          -120);
2968                 } else if (data[1] & M560_MOUSE_BTN_WHEEL_RIGHT) {
2969                         input_report_rel(hidpp->input, REL_HWHEEL, 1);
2970                         input_report_rel(hidpp->input, REL_HWHEEL_HI_RES,
2971                                          120);
2972                 }
2973
2974                 v = hid_snto32(hid_field_extract(hdev, data+3, 0, 12), 12);
2975                 input_report_rel(hidpp->input, REL_X, v);
2976
2977                 v = hid_snto32(hid_field_extract(hdev, data+3, 12, 12), 12);
2978                 input_report_rel(hidpp->input, REL_Y, v);
2979
2980                 v = hid_snto32(data[6], 8);
2981                 if (v != 0)
2982                         hidpp_scroll_counter_handle_scroll(hidpp->input,
2983                                         &hidpp->vertical_wheel_counter, v);
2984
2985                 input_sync(hidpp->input);
2986         }
2987
2988         return 1;
2989 }
2990
2991 static void m560_populate_input(struct hidpp_device *hidpp,
2992                                 struct input_dev *input_dev)
2993 {
2994         __set_bit(EV_KEY, input_dev->evbit);
2995         __set_bit(BTN_MIDDLE, input_dev->keybit);
2996         __set_bit(BTN_RIGHT, input_dev->keybit);
2997         __set_bit(BTN_LEFT, input_dev->keybit);
2998         __set_bit(BTN_BACK, input_dev->keybit);
2999         __set_bit(BTN_FORWARD, input_dev->keybit);
3000
3001         __set_bit(EV_REL, input_dev->evbit);
3002         __set_bit(REL_X, input_dev->relbit);
3003         __set_bit(REL_Y, input_dev->relbit);
3004         __set_bit(REL_WHEEL, input_dev->relbit);
3005         __set_bit(REL_HWHEEL, input_dev->relbit);
3006         __set_bit(REL_WHEEL_HI_RES, input_dev->relbit);
3007         __set_bit(REL_HWHEEL_HI_RES, input_dev->relbit);
3008 }
3009
3010 static int m560_input_mapping(struct hid_device *hdev, struct hid_input *hi,
3011                 struct hid_field *field, struct hid_usage *usage,
3012                 unsigned long **bit, int *max)
3013 {
3014         return -1;
3015 }
3016
3017 /* ------------------------------------------------------------------------- */
3018 /* Logitech K400 devices                                                     */
3019 /* ------------------------------------------------------------------------- */
3020
3021 /*
3022  * The Logitech K400 keyboard has an embedded touchpad which is seen
3023  * as a mouse from the OS point of view. There is a hardware shortcut to disable
3024  * tap-to-click but the setting is not remembered accross reset, annoying some
3025  * users.
3026  *
3027  * We can toggle this feature from the host by using the feature 0x6010:
3028  * Touchpad FW items
3029  */
3030
3031 struct k400_private_data {
3032         u8 feature_index;
3033 };
3034
3035 static int k400_disable_tap_to_click(struct hidpp_device *hidpp)
3036 {
3037         struct k400_private_data *k400 = hidpp->private_data;
3038         struct hidpp_touchpad_fw_items items = {};
3039         int ret;
3040         u8 feature_type;
3041
3042         if (!k400->feature_index) {
3043                 ret = hidpp_root_get_feature(hidpp,
3044                         HIDPP_PAGE_TOUCHPAD_FW_ITEMS,
3045                         &k400->feature_index, &feature_type);
3046                 if (ret)
3047                         /* means that the device is not powered up */
3048                         return ret;
3049         }
3050
3051         ret = hidpp_touchpad_fw_items_set(hidpp, k400->feature_index, &items);
3052         if (ret)
3053                 return ret;
3054
3055         return 0;
3056 }
3057
3058 static int k400_allocate(struct hid_device *hdev)
3059 {
3060         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3061         struct k400_private_data *k400;
3062
3063         k400 = devm_kzalloc(&hdev->dev, sizeof(struct k400_private_data),
3064                             GFP_KERNEL);
3065         if (!k400)
3066                 return -ENOMEM;
3067
3068         hidpp->private_data = k400;
3069
3070         return 0;
3071 };
3072
3073 static int k400_connect(struct hid_device *hdev, bool connected)
3074 {
3075         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3076
3077         if (!disable_tap_to_click)
3078                 return 0;
3079
3080         return k400_disable_tap_to_click(hidpp);
3081 }
3082
3083 /* ------------------------------------------------------------------------- */
3084 /* Logitech G920 Driving Force Racing Wheel for Xbox One                     */
3085 /* ------------------------------------------------------------------------- */
3086
3087 #define HIDPP_PAGE_G920_FORCE_FEEDBACK                  0x8123
3088
3089 static int g920_ff_set_autocenter(struct hidpp_device *hidpp,
3090                                   struct hidpp_ff_private_data *data)
3091 {
3092         struct hidpp_report response;
3093         u8 params[HIDPP_AUTOCENTER_PARAMS_LENGTH] = {
3094                 [1] = HIDPP_FF_EFFECT_SPRING | HIDPP_FF_EFFECT_AUTOSTART,
3095         };
3096         int ret;
3097
3098         /* initialize with zero autocenter to get wheel in usable state */
3099
3100         dbg_hid("Setting autocenter to 0.\n");
3101         ret = hidpp_send_fap_command_sync(hidpp, data->feature_index,
3102                                           HIDPP_FF_DOWNLOAD_EFFECT,
3103                                           params, ARRAY_SIZE(params),
3104                                           &response);
3105         if (ret)
3106                 hid_warn(hidpp->hid_dev, "Failed to autocenter device!\n");
3107         else
3108                 data->slot_autocenter = response.fap.params[0];
3109
3110         return ret;
3111 }
3112
3113 static int g920_get_config(struct hidpp_device *hidpp,
3114                            struct hidpp_ff_private_data *data)
3115 {
3116         struct hidpp_report response;
3117         u8 feature_type;
3118         int ret;
3119
3120         memset(data, 0, sizeof(*data));
3121
3122         /* Find feature and store for later use */
3123         ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_G920_FORCE_FEEDBACK,
3124                                      &data->feature_index, &feature_type);
3125         if (ret)
3126                 return ret;
3127
3128         /* Read number of slots available in device */
3129         ret = hidpp_send_fap_command_sync(hidpp, data->feature_index,
3130                                           HIDPP_FF_GET_INFO,
3131                                           NULL, 0,
3132                                           &response);
3133         if (ret) {
3134                 if (ret < 0)
3135                         return ret;
3136                 hid_err(hidpp->hid_dev,
3137                         "%s: received protocol error 0x%02x\n", __func__, ret);
3138                 return -EPROTO;
3139         }
3140
3141         data->num_effects = response.fap.params[0] - HIDPP_FF_RESERVED_SLOTS;
3142
3143         /* reset all forces */
3144         ret = hidpp_send_fap_command_sync(hidpp, data->feature_index,
3145                                           HIDPP_FF_RESET_ALL,
3146                                           NULL, 0,
3147                                           &response);
3148         if (ret)
3149                 hid_warn(hidpp->hid_dev, "Failed to reset all forces!\n");
3150
3151         ret = hidpp_send_fap_command_sync(hidpp, data->feature_index,
3152                                           HIDPP_FF_GET_APERTURE,
3153                                           NULL, 0,
3154                                           &response);
3155         if (ret) {
3156                 hid_warn(hidpp->hid_dev,
3157                          "Failed to read range from device!\n");
3158         }
3159         data->range = ret ?
3160                 900 : get_unaligned_be16(&response.fap.params[0]);
3161
3162         /* Read the current gain values */
3163         ret = hidpp_send_fap_command_sync(hidpp, data->feature_index,
3164                                           HIDPP_FF_GET_GLOBAL_GAINS,
3165                                           NULL, 0,
3166                                           &response);
3167         if (ret)
3168                 hid_warn(hidpp->hid_dev,
3169                          "Failed to read gain values from device!\n");
3170         data->gain = ret ?
3171                 0xffff : get_unaligned_be16(&response.fap.params[0]);
3172
3173         /* ignore boost value at response.fap.params[2] */
3174
3175         return g920_ff_set_autocenter(hidpp, data);
3176 }
3177
3178 /* -------------------------------------------------------------------------- */
3179 /* Logitech Dinovo Mini keyboard with builtin touchpad                        */
3180 /* -------------------------------------------------------------------------- */
3181 #define DINOVO_MINI_PRODUCT_ID          0xb30c
3182
3183 static int lg_dinovo_input_mapping(struct hid_device *hdev, struct hid_input *hi,
3184                 struct hid_field *field, struct hid_usage *usage,
3185                 unsigned long **bit, int *max)
3186 {
3187         if ((usage->hid & HID_USAGE_PAGE) != HID_UP_LOGIVENDOR)
3188                 return 0;
3189
3190         switch (usage->hid & HID_USAGE) {
3191         case 0x00d: lg_map_key_clear(KEY_MEDIA);        break;
3192         default:
3193                 return 0;
3194         }
3195         return 1;
3196 }
3197
3198 /* -------------------------------------------------------------------------- */
3199 /* HID++1.0 devices which use HID++ reports for their wheels                  */
3200 /* -------------------------------------------------------------------------- */
3201 static int hidpp10_wheel_connect(struct hidpp_device *hidpp)
3202 {
3203         return hidpp10_set_register(hidpp, HIDPP_REG_ENABLE_REPORTS, 0,
3204                         HIDPP_ENABLE_WHEEL_REPORT | HIDPP_ENABLE_HWHEEL_REPORT,
3205                         HIDPP_ENABLE_WHEEL_REPORT | HIDPP_ENABLE_HWHEEL_REPORT);
3206 }
3207
3208 static int hidpp10_wheel_raw_event(struct hidpp_device *hidpp,
3209                                    u8 *data, int size)
3210 {
3211         s8 value, hvalue;
3212
3213         if (!hidpp->input)
3214                 return -EINVAL;
3215
3216         if (size < 7)
3217                 return 0;
3218
3219         if (data[0] != REPORT_ID_HIDPP_SHORT || data[2] != HIDPP_SUB_ID_ROLLER)
3220                 return 0;
3221
3222         value = data[3];
3223         hvalue = data[4];
3224
3225         input_report_rel(hidpp->input, REL_WHEEL, value);
3226         input_report_rel(hidpp->input, REL_WHEEL_HI_RES, value * 120);
3227         input_report_rel(hidpp->input, REL_HWHEEL, hvalue);
3228         input_report_rel(hidpp->input, REL_HWHEEL_HI_RES, hvalue * 120);
3229         input_sync(hidpp->input);
3230
3231         return 1;
3232 }
3233
3234 static void hidpp10_wheel_populate_input(struct hidpp_device *hidpp,
3235                                          struct input_dev *input_dev)
3236 {
3237         __set_bit(EV_REL, input_dev->evbit);
3238         __set_bit(REL_WHEEL, input_dev->relbit);
3239         __set_bit(REL_WHEEL_HI_RES, input_dev->relbit);
3240         __set_bit(REL_HWHEEL, input_dev->relbit);
3241         __set_bit(REL_HWHEEL_HI_RES, input_dev->relbit);
3242 }
3243
3244 /* -------------------------------------------------------------------------- */
3245 /* HID++1.0 mice which use HID++ reports for extra mouse buttons              */
3246 /* -------------------------------------------------------------------------- */
3247 static int hidpp10_extra_mouse_buttons_connect(struct hidpp_device *hidpp)
3248 {
3249         return hidpp10_set_register(hidpp, HIDPP_REG_ENABLE_REPORTS, 0,
3250                                     HIDPP_ENABLE_MOUSE_EXTRA_BTN_REPORT,
3251                                     HIDPP_ENABLE_MOUSE_EXTRA_BTN_REPORT);
3252 }
3253
3254 static int hidpp10_extra_mouse_buttons_raw_event(struct hidpp_device *hidpp,
3255                                     u8 *data, int size)
3256 {
3257         int i;
3258
3259         if (!hidpp->input)
3260                 return -EINVAL;
3261
3262         if (size < 7)
3263                 return 0;
3264
3265         if (data[0] != REPORT_ID_HIDPP_SHORT ||
3266             data[2] != HIDPP_SUB_ID_MOUSE_EXTRA_BTNS)
3267                 return 0;
3268
3269         /*
3270          * Buttons are either delivered through the regular mouse report *or*
3271          * through the extra buttons report. At least for button 6 how it is
3272          * delivered differs per receiver firmware version. Even receivers with
3273          * the same usb-id show different behavior, so we handle both cases.
3274          */
3275         for (i = 0; i < 8; i++)
3276                 input_report_key(hidpp->input, BTN_MOUSE + i,
3277                                  (data[3] & (1 << i)));
3278
3279         /* Some mice report events on button 9+, use BTN_MISC */
3280         for (i = 0; i < 8; i++)
3281                 input_report_key(hidpp->input, BTN_MISC + i,
3282                                  (data[4] & (1 << i)));
3283
3284         input_sync(hidpp->input);
3285         return 1;
3286 }
3287
3288 static void hidpp10_extra_mouse_buttons_populate_input(
3289                         struct hidpp_device *hidpp, struct input_dev *input_dev)
3290 {
3291         /* BTN_MOUSE - BTN_MOUSE+7 are set already by the descriptor */
3292         __set_bit(BTN_0, input_dev->keybit);
3293         __set_bit(BTN_1, input_dev->keybit);
3294         __set_bit(BTN_2, input_dev->keybit);
3295         __set_bit(BTN_3, input_dev->keybit);
3296         __set_bit(BTN_4, input_dev->keybit);
3297         __set_bit(BTN_5, input_dev->keybit);
3298         __set_bit(BTN_6, input_dev->keybit);
3299         __set_bit(BTN_7, input_dev->keybit);
3300 }
3301
3302 /* -------------------------------------------------------------------------- */
3303 /* HID++1.0 kbds which only report 0x10xx consumer usages through sub-id 0x03 */
3304 /* -------------------------------------------------------------------------- */
3305
3306 /* Find the consumer-page input report desc and change Maximums to 0x107f */
3307 static u8 *hidpp10_consumer_keys_report_fixup(struct hidpp_device *hidpp,
3308                                               u8 *_rdesc, unsigned int *rsize)
3309 {
3310         /* Note 0 terminated so we can use strnstr to search for this. */
3311         static const char consumer_rdesc_start[] = {
3312                 0x05, 0x0C,     /* USAGE_PAGE (Consumer Devices)       */
3313                 0x09, 0x01,     /* USAGE (Consumer Control)            */
3314                 0xA1, 0x01,     /* COLLECTION (Application)            */
3315                 0x85, 0x03,     /* REPORT_ID = 3                       */
3316                 0x75, 0x10,     /* REPORT_SIZE (16)                    */
3317                 0x95, 0x02,     /* REPORT_COUNT (2)                    */
3318                 0x15, 0x01,     /* LOGICAL_MIN (1)                     */
3319                 0x26, 0x00      /* LOGICAL_MAX (...                    */
3320         };
3321         char *consumer_rdesc, *rdesc = (char *)_rdesc;
3322         unsigned int size;
3323
3324         consumer_rdesc = strnstr(rdesc, consumer_rdesc_start, *rsize);
3325         size = *rsize - (consumer_rdesc - rdesc);
3326         if (consumer_rdesc && size >= 25) {
3327                 consumer_rdesc[15] = 0x7f;
3328                 consumer_rdesc[16] = 0x10;
3329                 consumer_rdesc[20] = 0x7f;
3330                 consumer_rdesc[21] = 0x10;
3331         }
3332         return _rdesc;
3333 }
3334
3335 static int hidpp10_consumer_keys_connect(struct hidpp_device *hidpp)
3336 {
3337         return hidpp10_set_register(hidpp, HIDPP_REG_ENABLE_REPORTS, 0,
3338                                     HIDPP_ENABLE_CONSUMER_REPORT,
3339                                     HIDPP_ENABLE_CONSUMER_REPORT);
3340 }
3341
3342 static int hidpp10_consumer_keys_raw_event(struct hidpp_device *hidpp,
3343                                            u8 *data, int size)
3344 {
3345         u8 consumer_report[5];
3346
3347         if (size < 7)
3348                 return 0;
3349
3350         if (data[0] != REPORT_ID_HIDPP_SHORT ||
3351             data[2] != HIDPP_SUB_ID_CONSUMER_VENDOR_KEYS)
3352                 return 0;
3353
3354         /*
3355          * Build a normal consumer report (3) out of the data, this detour
3356          * is necessary to get some keyboards to report their 0x10xx usages.
3357          */
3358         consumer_report[0] = 0x03;
3359         memcpy(&consumer_report[1], &data[3], 4);
3360         /* We are called from atomic context */
3361         hid_report_raw_event(hidpp->hid_dev, HID_INPUT_REPORT,
3362                              consumer_report, 5, 1);
3363
3364         return 1;
3365 }
3366
3367 /* -------------------------------------------------------------------------- */
3368 /* High-resolution scroll wheels                                              */
3369 /* -------------------------------------------------------------------------- */
3370
3371 static int hi_res_scroll_enable(struct hidpp_device *hidpp)
3372 {
3373         int ret;
3374         u8 multiplier = 1;
3375
3376         if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_X2121) {
3377                 ret = hidpp_hrw_set_wheel_mode(hidpp, false, true, false);
3378                 if (ret == 0)
3379                         ret = hidpp_hrw_get_wheel_capability(hidpp, &multiplier);
3380         } else if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_X2120) {
3381                 ret = hidpp_hrs_set_highres_scrolling_mode(hidpp, true,
3382                                                            &multiplier);
3383         } else /* if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_1P0) */ {
3384                 ret = hidpp10_enable_scrolling_acceleration(hidpp);
3385                 multiplier = 8;
3386         }
3387         if (ret)
3388                 return ret;
3389
3390         if (multiplier == 0)
3391                 multiplier = 1;
3392
3393         hidpp->vertical_wheel_counter.wheel_multiplier = multiplier;
3394         hid_dbg(hidpp->hid_dev, "wheel multiplier = %d\n", multiplier);
3395         return 0;
3396 }
3397
3398 /* -------------------------------------------------------------------------- */
3399 /* Generic HID++ devices                                                      */
3400 /* -------------------------------------------------------------------------- */
3401
3402 static u8 *hidpp_report_fixup(struct hid_device *hdev, u8 *rdesc,
3403                               unsigned int *rsize)
3404 {
3405         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3406
3407         if (!hidpp)
3408                 return rdesc;
3409
3410         /* For 27 MHz keyboards the quirk gets set after hid_parse. */
3411         if (hdev->group == HID_GROUP_LOGITECH_27MHZ_DEVICE ||
3412             (hidpp->quirks & HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS))
3413                 rdesc = hidpp10_consumer_keys_report_fixup(hidpp, rdesc, rsize);
3414
3415         return rdesc;
3416 }
3417
3418 static int hidpp_input_mapping(struct hid_device *hdev, struct hid_input *hi,
3419                 struct hid_field *field, struct hid_usage *usage,
3420                 unsigned long **bit, int *max)
3421 {
3422         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3423
3424         if (!hidpp)
3425                 return 0;
3426
3427         if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)
3428                 return wtp_input_mapping(hdev, hi, field, usage, bit, max);
3429         else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560 &&
3430                         field->application != HID_GD_MOUSE)
3431                 return m560_input_mapping(hdev, hi, field, usage, bit, max);
3432
3433         if (hdev->product == DINOVO_MINI_PRODUCT_ID)
3434                 return lg_dinovo_input_mapping(hdev, hi, field, usage, bit, max);
3435
3436         return 0;
3437 }
3438
3439 static int hidpp_input_mapped(struct hid_device *hdev, struct hid_input *hi,
3440                 struct hid_field *field, struct hid_usage *usage,
3441                 unsigned long **bit, int *max)
3442 {
3443         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3444
3445         if (!hidpp)
3446                 return 0;
3447
3448         /* Ensure that Logitech G920 is not given a default fuzz/flat value */
3449         if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) {
3450                 if (usage->type == EV_ABS && (usage->code == ABS_X ||
3451                                 usage->code == ABS_Y || usage->code == ABS_Z ||
3452                                 usage->code == ABS_RZ)) {
3453                         field->application = HID_GD_MULTIAXIS;
3454                 }
3455         }
3456
3457         return 0;
3458 }
3459
3460
3461 static void hidpp_populate_input(struct hidpp_device *hidpp,
3462                                  struct input_dev *input)
3463 {
3464         hidpp->input = input;
3465
3466         if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)
3467                 wtp_populate_input(hidpp, input);
3468         else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560)
3469                 m560_populate_input(hidpp, input);
3470
3471         if (hidpp->quirks & HIDPP_QUIRK_HIDPP_WHEELS)
3472                 hidpp10_wheel_populate_input(hidpp, input);
3473
3474         if (hidpp->quirks & HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS)
3475                 hidpp10_extra_mouse_buttons_populate_input(hidpp, input);
3476 }
3477
3478 static int hidpp_input_configured(struct hid_device *hdev,
3479                                 struct hid_input *hidinput)
3480 {
3481         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3482         struct input_dev *input = hidinput->input;
3483
3484         if (!hidpp)
3485                 return 0;
3486
3487         hidpp_populate_input(hidpp, input);
3488
3489         return 0;
3490 }
3491
3492 static int hidpp_raw_hidpp_event(struct hidpp_device *hidpp, u8 *data,
3493                 int size)
3494 {
3495         struct hidpp_report *question = hidpp->send_receive_buf;
3496         struct hidpp_report *answer = hidpp->send_receive_buf;
3497         struct hidpp_report *report = (struct hidpp_report *)data;
3498         int ret;
3499
3500         /*
3501          * If the mutex is locked then we have a pending answer from a
3502          * previously sent command.
3503          */
3504         if (unlikely(mutex_is_locked(&hidpp->send_mutex))) {
3505                 /*
3506                  * Check for a correct hidpp20 answer or the corresponding
3507                  * error
3508                  */
3509                 if (hidpp_match_answer(question, report) ||
3510                                 hidpp_match_error(question, report)) {
3511                         *answer = *report;
3512                         hidpp->answer_available = true;
3513                         wake_up(&hidpp->wait);
3514                         /*
3515                          * This was an answer to a command that this driver sent
3516                          * We return 1 to hid-core to avoid forwarding the
3517                          * command upstream as it has been treated by the driver
3518                          */
3519
3520                         return 1;
3521                 }
3522         }
3523
3524         if (unlikely(hidpp_report_is_connect_event(hidpp, report))) {
3525                 atomic_set(&hidpp->connected,
3526                                 !(report->rap.params[0] & (1 << 6)));
3527                 if (schedule_work(&hidpp->work) == 0)
3528                         dbg_hid("%s: connect event already queued\n", __func__);
3529                 return 1;
3530         }
3531
3532         if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP20_BATTERY) {
3533                 ret = hidpp20_battery_event_1000(hidpp, data, size);
3534                 if (ret != 0)
3535                         return ret;
3536                 ret = hidpp20_battery_event_1004(hidpp, data, size);
3537                 if (ret != 0)
3538                         return ret;
3539                 ret = hidpp_solar_battery_event(hidpp, data, size);
3540                 if (ret != 0)
3541                         return ret;
3542                 ret = hidpp20_battery_voltage_event(hidpp, data, size);
3543                 if (ret != 0)
3544                         return ret;
3545         }
3546
3547         if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP10_BATTERY) {
3548                 ret = hidpp10_battery_event(hidpp, data, size);
3549                 if (ret != 0)
3550                         return ret;
3551         }
3552
3553         if (hidpp->quirks & HIDPP_QUIRK_HIDPP_WHEELS) {
3554                 ret = hidpp10_wheel_raw_event(hidpp, data, size);
3555                 if (ret != 0)
3556                         return ret;
3557         }
3558
3559         if (hidpp->quirks & HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS) {
3560                 ret = hidpp10_extra_mouse_buttons_raw_event(hidpp, data, size);
3561                 if (ret != 0)
3562                         return ret;
3563         }
3564
3565         if (hidpp->quirks & HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS) {
3566                 ret = hidpp10_consumer_keys_raw_event(hidpp, data, size);
3567                 if (ret != 0)
3568                         return ret;
3569         }
3570
3571         return 0;
3572 }
3573
3574 static int hidpp_raw_event(struct hid_device *hdev, struct hid_report *report,
3575                 u8 *data, int size)
3576 {
3577         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3578         int ret = 0;
3579
3580         if (!hidpp)
3581                 return 0;
3582
3583         /* Generic HID++ processing. */
3584         switch (data[0]) {
3585         case REPORT_ID_HIDPP_VERY_LONG:
3586                 if (size != hidpp->very_long_report_length) {
3587                         hid_err(hdev, "received hid++ report of bad size (%d)",
3588                                 size);
3589                         return 1;
3590                 }
3591                 ret = hidpp_raw_hidpp_event(hidpp, data, size);
3592                 break;
3593         case REPORT_ID_HIDPP_LONG:
3594                 if (size != HIDPP_REPORT_LONG_LENGTH) {
3595                         hid_err(hdev, "received hid++ report of bad size (%d)",
3596                                 size);
3597                         return 1;
3598                 }
3599                 ret = hidpp_raw_hidpp_event(hidpp, data, size);
3600                 break;
3601         case REPORT_ID_HIDPP_SHORT:
3602                 if (size != HIDPP_REPORT_SHORT_LENGTH) {
3603                         hid_err(hdev, "received hid++ report of bad size (%d)",
3604                                 size);
3605                         return 1;
3606                 }
3607                 ret = hidpp_raw_hidpp_event(hidpp, data, size);
3608                 break;
3609         }
3610
3611         /* If no report is available for further processing, skip calling
3612          * raw_event of subclasses. */
3613         if (ret != 0)
3614                 return ret;
3615
3616         if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)
3617                 return wtp_raw_event(hdev, data, size);
3618         else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560)
3619                 return m560_raw_event(hdev, data, size);
3620
3621         return 0;
3622 }
3623
3624 static int hidpp_event(struct hid_device *hdev, struct hid_field *field,
3625         struct hid_usage *usage, __s32 value)
3626 {
3627         /* This function will only be called for scroll events, due to the
3628          * restriction imposed in hidpp_usages.
3629          */
3630         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3631         struct hidpp_scroll_counter *counter;
3632
3633         if (!hidpp)
3634                 return 0;
3635
3636         counter = &hidpp->vertical_wheel_counter;
3637         /* A scroll event may occur before the multiplier has been retrieved or
3638          * the input device set, or high-res scroll enabling may fail. In such
3639          * cases we must return early (falling back to default behaviour) to
3640          * avoid a crash in hidpp_scroll_counter_handle_scroll.
3641          */
3642         if (!(hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL) || value == 0
3643             || hidpp->input == NULL || counter->wheel_multiplier == 0)
3644                 return 0;
3645
3646         hidpp_scroll_counter_handle_scroll(hidpp->input, counter, value);
3647         return 1;
3648 }
3649
3650 static int hidpp_initialize_battery(struct hidpp_device *hidpp)
3651 {
3652         static atomic_t battery_no = ATOMIC_INIT(0);
3653         struct power_supply_config cfg = { .drv_data = hidpp };
3654         struct power_supply_desc *desc = &hidpp->battery.desc;
3655         enum power_supply_property *battery_props;
3656         struct hidpp_battery *battery;
3657         unsigned int num_battery_props;
3658         unsigned long n;
3659         int ret;
3660
3661         if (hidpp->battery.ps)
3662                 return 0;
3663
3664         hidpp->battery.feature_index = 0xff;
3665         hidpp->battery.solar_feature_index = 0xff;
3666         hidpp->battery.voltage_feature_index = 0xff;
3667
3668         if (hidpp->protocol_major >= 2) {
3669                 if (hidpp->quirks & HIDPP_QUIRK_CLASS_K750)
3670                         ret = hidpp_solar_request_battery_event(hidpp);
3671                 else {
3672                         /* we only support one battery feature right now, so let's
3673                            first check the ones that support battery level first
3674                            and leave voltage for last */
3675                         ret = hidpp20_query_battery_info_1000(hidpp);
3676                         if (ret)
3677                                 ret = hidpp20_query_battery_info_1004(hidpp);
3678                         if (ret)
3679                                 ret = hidpp20_query_battery_voltage_info(hidpp);
3680                 }
3681
3682                 if (ret)
3683                         return ret;
3684                 hidpp->capabilities |= HIDPP_CAPABILITY_HIDPP20_BATTERY;
3685         } else {
3686                 ret = hidpp10_query_battery_status(hidpp);
3687                 if (ret) {
3688                         ret = hidpp10_query_battery_mileage(hidpp);
3689                         if (ret)
3690                                 return -ENOENT;
3691                         hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE;
3692                 } else {
3693                         hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS;
3694                 }
3695                 hidpp->capabilities |= HIDPP_CAPABILITY_HIDPP10_BATTERY;
3696         }
3697
3698         battery_props = devm_kmemdup(&hidpp->hid_dev->dev,
3699                                      hidpp_battery_props,
3700                                      sizeof(hidpp_battery_props),
3701                                      GFP_KERNEL);
3702         if (!battery_props)
3703                 return -ENOMEM;
3704
3705         num_battery_props = ARRAY_SIZE(hidpp_battery_props) - 3;
3706
3707         if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_MILEAGE ||
3708             hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_PERCENTAGE)
3709                 battery_props[num_battery_props++] =
3710                                 POWER_SUPPLY_PROP_CAPACITY;
3711
3712         if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS)
3713                 battery_props[num_battery_props++] =
3714                                 POWER_SUPPLY_PROP_CAPACITY_LEVEL;
3715
3716         if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_VOLTAGE)
3717                 battery_props[num_battery_props++] =
3718                         POWER_SUPPLY_PROP_VOLTAGE_NOW;
3719
3720         battery = &hidpp->battery;
3721
3722         n = atomic_inc_return(&battery_no) - 1;
3723         desc->properties = battery_props;
3724         desc->num_properties = num_battery_props;
3725         desc->get_property = hidpp_battery_get_property;
3726         sprintf(battery->name, "hidpp_battery_%ld", n);
3727         desc->name = battery->name;
3728         desc->type = POWER_SUPPLY_TYPE_BATTERY;
3729         desc->use_for_apm = 0;
3730
3731         battery->ps = devm_power_supply_register(&hidpp->hid_dev->dev,
3732                                                  &battery->desc,
3733                                                  &cfg);
3734         if (IS_ERR(battery->ps))
3735                 return PTR_ERR(battery->ps);
3736
3737         power_supply_powers(battery->ps, &hidpp->hid_dev->dev);
3738
3739         return ret;
3740 }
3741
3742 static void hidpp_overwrite_name(struct hid_device *hdev)
3743 {
3744         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3745         char *name;
3746
3747         if (hidpp->protocol_major < 2)
3748                 return;
3749
3750         name = hidpp_get_device_name(hidpp);
3751
3752         if (!name) {
3753                 hid_err(hdev, "unable to retrieve the name of the device");
3754         } else {
3755                 dbg_hid("HID++: Got name: %s\n", name);
3756                 snprintf(hdev->name, sizeof(hdev->name), "%s", name);
3757         }
3758
3759         kfree(name);
3760 }
3761
3762 static int hidpp_input_open(struct input_dev *dev)
3763 {
3764         struct hid_device *hid = input_get_drvdata(dev);
3765
3766         return hid_hw_open(hid);
3767 }
3768
3769 static void hidpp_input_close(struct input_dev *dev)
3770 {
3771         struct hid_device *hid = input_get_drvdata(dev);
3772
3773         hid_hw_close(hid);
3774 }
3775
3776 static struct input_dev *hidpp_allocate_input(struct hid_device *hdev)
3777 {
3778         struct input_dev *input_dev = devm_input_allocate_device(&hdev->dev);
3779         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3780
3781         if (!input_dev)
3782                 return NULL;
3783
3784         input_set_drvdata(input_dev, hdev);
3785         input_dev->open = hidpp_input_open;
3786         input_dev->close = hidpp_input_close;
3787
3788         input_dev->name = hidpp->name;
3789         input_dev->phys = hdev->phys;
3790         input_dev->uniq = hdev->uniq;
3791         input_dev->id.bustype = hdev->bus;
3792         input_dev->id.vendor  = hdev->vendor;
3793         input_dev->id.product = hdev->product;
3794         input_dev->id.version = hdev->version;
3795         input_dev->dev.parent = &hdev->dev;
3796
3797         return input_dev;
3798 }
3799
3800 static void hidpp_connect_event(struct hidpp_device *hidpp)
3801 {
3802         struct hid_device *hdev = hidpp->hid_dev;
3803         int ret = 0;
3804         bool connected = atomic_read(&hidpp->connected);
3805         struct input_dev *input;
3806         char *name, *devm_name;
3807
3808         if (!connected) {
3809                 if (hidpp->battery.ps) {
3810                         hidpp->battery.online = false;
3811                         hidpp->battery.status = POWER_SUPPLY_STATUS_UNKNOWN;
3812                         hidpp->battery.level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
3813                         power_supply_changed(hidpp->battery.ps);
3814                 }
3815                 return;
3816         }
3817
3818         if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) {
3819                 ret = wtp_connect(hdev, connected);
3820                 if (ret)
3821                         return;
3822         } else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560) {
3823                 ret = m560_send_config_command(hdev, connected);
3824                 if (ret)
3825                         return;
3826         } else if (hidpp->quirks & HIDPP_QUIRK_CLASS_K400) {
3827                 ret = k400_connect(hdev, connected);
3828                 if (ret)
3829                         return;
3830         }
3831
3832         if (hidpp->quirks & HIDPP_QUIRK_HIDPP_WHEELS) {
3833                 ret = hidpp10_wheel_connect(hidpp);
3834                 if (ret)
3835                         return;
3836         }
3837
3838         if (hidpp->quirks & HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS) {
3839                 ret = hidpp10_extra_mouse_buttons_connect(hidpp);
3840                 if (ret)
3841                         return;
3842         }
3843
3844         if (hidpp->quirks & HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS) {
3845                 ret = hidpp10_consumer_keys_connect(hidpp);
3846                 if (ret)
3847                         return;
3848         }
3849
3850         /* the device is already connected, we can ask for its name and
3851          * protocol */
3852         if (!hidpp->protocol_major) {
3853                 ret = hidpp_root_get_protocol_version(hidpp);
3854                 if (ret) {
3855                         hid_err(hdev, "Can not get the protocol version.\n");
3856                         return;
3857                 }
3858         }
3859
3860         if (hidpp->name == hdev->name && hidpp->protocol_major >= 2) {
3861                 name = hidpp_get_device_name(hidpp);
3862                 if (name) {
3863                         devm_name = devm_kasprintf(&hdev->dev, GFP_KERNEL,
3864                                                    "%s", name);
3865                         kfree(name);
3866                         if (!devm_name)
3867                                 return;
3868
3869                         hidpp->name = devm_name;
3870                 }
3871         }
3872
3873         hidpp_initialize_battery(hidpp);
3874
3875         /* forward current battery state */
3876         if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP10_BATTERY) {
3877                 hidpp10_enable_battery_reporting(hidpp);
3878                 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_MILEAGE)
3879                         hidpp10_query_battery_mileage(hidpp);
3880                 else
3881                         hidpp10_query_battery_status(hidpp);
3882         } else if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP20_BATTERY) {
3883                 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_VOLTAGE)
3884                         hidpp20_query_battery_voltage_info(hidpp);
3885                 else if (hidpp->capabilities & HIDPP_CAPABILITY_UNIFIED_BATTERY)
3886                         hidpp20_query_battery_info_1004(hidpp);
3887                 else
3888                         hidpp20_query_battery_info_1000(hidpp);
3889         }
3890         if (hidpp->battery.ps)
3891                 power_supply_changed(hidpp->battery.ps);
3892
3893         if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL)
3894                 hi_res_scroll_enable(hidpp);
3895
3896         if (!(hidpp->quirks & HIDPP_QUIRK_NO_HIDINPUT) || hidpp->delayed_input)
3897                 /* if the input nodes are already created, we can stop now */
3898                 return;
3899
3900         input = hidpp_allocate_input(hdev);
3901         if (!input) {
3902                 hid_err(hdev, "cannot allocate new input device: %d\n", ret);
3903                 return;
3904         }
3905
3906         hidpp_populate_input(hidpp, input);
3907
3908         ret = input_register_device(input);
3909         if (ret)
3910                 input_free_device(input);
3911
3912         hidpp->delayed_input = input;
3913 }
3914
3915 static DEVICE_ATTR(builtin_power_supply, 0000, NULL, NULL);
3916
3917 static struct attribute *sysfs_attrs[] = {
3918         &dev_attr_builtin_power_supply.attr,
3919         NULL
3920 };
3921
3922 static const struct attribute_group ps_attribute_group = {
3923         .attrs = sysfs_attrs
3924 };
3925
3926 static int hidpp_get_report_length(struct hid_device *hdev, int id)
3927 {
3928         struct hid_report_enum *re;
3929         struct hid_report *report;
3930
3931         re = &(hdev->report_enum[HID_OUTPUT_REPORT]);
3932         report = re->report_id_hash[id];
3933         if (!report)
3934                 return 0;
3935
3936         return report->field[0]->report_count + 1;
3937 }
3938
3939 static u8 hidpp_validate_device(struct hid_device *hdev)
3940 {
3941         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3942         int id, report_length;
3943         u8 supported_reports = 0;
3944
3945         id = REPORT_ID_HIDPP_SHORT;
3946         report_length = hidpp_get_report_length(hdev, id);
3947         if (report_length) {
3948                 if (report_length < HIDPP_REPORT_SHORT_LENGTH)
3949                         goto bad_device;
3950
3951                 supported_reports |= HIDPP_REPORT_SHORT_SUPPORTED;
3952         }
3953
3954         id = REPORT_ID_HIDPP_LONG;
3955         report_length = hidpp_get_report_length(hdev, id);
3956         if (report_length) {
3957                 if (report_length < HIDPP_REPORT_LONG_LENGTH)
3958                         goto bad_device;
3959
3960                 supported_reports |= HIDPP_REPORT_LONG_SUPPORTED;
3961         }
3962
3963         id = REPORT_ID_HIDPP_VERY_LONG;
3964         report_length = hidpp_get_report_length(hdev, id);
3965         if (report_length) {
3966                 if (report_length < HIDPP_REPORT_LONG_LENGTH ||
3967                     report_length > HIDPP_REPORT_VERY_LONG_MAX_LENGTH)
3968                         goto bad_device;
3969
3970                 supported_reports |= HIDPP_REPORT_VERY_LONG_SUPPORTED;
3971                 hidpp->very_long_report_length = report_length;
3972         }
3973
3974         return supported_reports;
3975
3976 bad_device:
3977         hid_warn(hdev, "not enough values in hidpp report %d\n", id);
3978         return false;
3979 }
3980
3981 static bool hidpp_application_equals(struct hid_device *hdev,
3982                                      unsigned int application)
3983 {
3984         struct list_head *report_list;
3985         struct hid_report *report;
3986
3987         report_list = &hdev->report_enum[HID_INPUT_REPORT].report_list;
3988         report = list_first_entry_or_null(report_list, struct hid_report, list);
3989         return report && report->application == application;
3990 }
3991
3992 static int hidpp_probe(struct hid_device *hdev, const struct hid_device_id *id)
3993 {
3994         struct hidpp_device *hidpp;
3995         int ret;
3996         bool connected;
3997         unsigned int connect_mask = HID_CONNECT_DEFAULT;
3998         struct hidpp_ff_private_data data;
3999
4000         /* report_fixup needs drvdata to be set before we call hid_parse */
4001         hidpp = devm_kzalloc(&hdev->dev, sizeof(*hidpp), GFP_KERNEL);
4002         if (!hidpp)
4003                 return -ENOMEM;
4004
4005         hidpp->hid_dev = hdev;
4006         hidpp->name = hdev->name;
4007         hidpp->quirks = id->driver_data;
4008         hid_set_drvdata(hdev, hidpp);
4009
4010         ret = hid_parse(hdev);
4011         if (ret) {
4012                 hid_err(hdev, "%s:parse failed\n", __func__);
4013                 return ret;
4014         }
4015
4016         /*
4017          * Make sure the device is HID++ capable, otherwise treat as generic HID
4018          */
4019         hidpp->supported_reports = hidpp_validate_device(hdev);
4020
4021         if (!hidpp->supported_reports) {
4022                 hid_set_drvdata(hdev, NULL);
4023                 devm_kfree(&hdev->dev, hidpp);
4024                 return hid_hw_start(hdev, HID_CONNECT_DEFAULT);
4025         }
4026
4027         if (id->group == HID_GROUP_LOGITECH_DJ_DEVICE)
4028                 hidpp->quirks |= HIDPP_QUIRK_UNIFYING;
4029
4030         if (id->group == HID_GROUP_LOGITECH_27MHZ_DEVICE &&
4031             hidpp_application_equals(hdev, HID_GD_MOUSE))
4032                 hidpp->quirks |= HIDPP_QUIRK_HIDPP_WHEELS |
4033                                  HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS;
4034
4035         if (id->group == HID_GROUP_LOGITECH_27MHZ_DEVICE &&
4036             hidpp_application_equals(hdev, HID_GD_KEYBOARD))
4037                 hidpp->quirks |= HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS;
4038
4039         if (disable_raw_mode) {
4040                 hidpp->quirks &= ~HIDPP_QUIRK_CLASS_WTP;
4041                 hidpp->quirks &= ~HIDPP_QUIRK_NO_HIDINPUT;
4042         }
4043
4044         if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) {
4045                 ret = wtp_allocate(hdev, id);
4046                 if (ret)
4047                         return ret;
4048         } else if (hidpp->quirks & HIDPP_QUIRK_CLASS_K400) {
4049                 ret = k400_allocate(hdev);
4050                 if (ret)
4051                         return ret;
4052         }
4053
4054         INIT_WORK(&hidpp->work, delayed_work_cb);
4055         mutex_init(&hidpp->send_mutex);
4056         init_waitqueue_head(&hidpp->wait);
4057
4058         /* indicates we are handling the battery properties in the kernel */
4059         ret = sysfs_create_group(&hdev->dev.kobj, &ps_attribute_group);
4060         if (ret)
4061                 hid_warn(hdev, "Cannot allocate sysfs group for %s\n",
4062                          hdev->name);
4063
4064         /*
4065          * Plain USB connections need to actually call start and open
4066          * on the transport driver to allow incoming data.
4067          */
4068         ret = hid_hw_start(hdev, 0);
4069         if (ret) {
4070                 hid_err(hdev, "hw start failed\n");
4071                 goto hid_hw_start_fail;
4072         }
4073
4074         ret = hid_hw_open(hdev);
4075         if (ret < 0) {
4076                 dev_err(&hdev->dev, "%s:hid_hw_open returned error:%d\n",
4077                         __func__, ret);
4078                 goto hid_hw_open_fail;
4079         }
4080
4081         /* Allow incoming packets */
4082         hid_device_io_start(hdev);
4083
4084         if (hidpp->quirks & HIDPP_QUIRK_UNIFYING)
4085                 hidpp_unifying_init(hidpp);
4086
4087         connected = hidpp_root_get_protocol_version(hidpp) == 0;
4088         atomic_set(&hidpp->connected, connected);
4089         if (!(hidpp->quirks & HIDPP_QUIRK_UNIFYING)) {
4090                 if (!connected) {
4091                         ret = -ENODEV;
4092                         hid_err(hdev, "Device not connected");
4093                         goto hid_hw_init_fail;
4094                 }
4095
4096                 hidpp_overwrite_name(hdev);
4097         }
4098
4099         if (connected && hidpp->protocol_major >= 2) {
4100                 ret = hidpp_set_wireless_feature_index(hidpp);
4101                 if (ret == -ENOENT)
4102                         hidpp->wireless_feature_index = 0;
4103                 else if (ret)
4104                         goto hid_hw_init_fail;
4105         }
4106
4107         if (connected && (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)) {
4108                 ret = wtp_get_config(hidpp);
4109                 if (ret)
4110                         goto hid_hw_init_fail;
4111         } else if (connected && (hidpp->quirks & HIDPP_QUIRK_CLASS_G920)) {
4112                 ret = g920_get_config(hidpp, &data);
4113                 if (ret)
4114                         goto hid_hw_init_fail;
4115         }
4116
4117         hidpp_connect_event(hidpp);
4118
4119         /* Reset the HID node state */
4120         hid_device_io_stop(hdev);
4121         hid_hw_close(hdev);
4122         hid_hw_stop(hdev);
4123
4124         if (hidpp->quirks & HIDPP_QUIRK_NO_HIDINPUT)
4125                 connect_mask &= ~HID_CONNECT_HIDINPUT;
4126
4127         /* Now export the actual inputs and hidraw nodes to the world */
4128         ret = hid_hw_start(hdev, connect_mask);
4129         if (ret) {
4130                 hid_err(hdev, "%s:hid_hw_start returned error\n", __func__);
4131                 goto hid_hw_start_fail;
4132         }
4133
4134         if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) {
4135                 ret = hidpp_ff_init(hidpp, &data);
4136                 if (ret)
4137                         hid_warn(hidpp->hid_dev,
4138                      "Unable to initialize force feedback support, errno %d\n",
4139                                  ret);
4140         }
4141
4142         return ret;
4143
4144 hid_hw_init_fail:
4145         hid_hw_close(hdev);
4146 hid_hw_open_fail:
4147         hid_hw_stop(hdev);
4148 hid_hw_start_fail:
4149         sysfs_remove_group(&hdev->dev.kobj, &ps_attribute_group);
4150         cancel_work_sync(&hidpp->work);
4151         mutex_destroy(&hidpp->send_mutex);
4152         return ret;
4153 }
4154
4155 static void hidpp_remove(struct hid_device *hdev)
4156 {
4157         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
4158
4159         if (!hidpp)
4160                 return hid_hw_stop(hdev);
4161
4162         sysfs_remove_group(&hdev->dev.kobj, &ps_attribute_group);
4163
4164         hid_hw_stop(hdev);
4165         cancel_work_sync(&hidpp->work);
4166         mutex_destroy(&hidpp->send_mutex);
4167 }
4168
4169 #define LDJ_DEVICE(product) \
4170         HID_DEVICE(BUS_USB, HID_GROUP_LOGITECH_DJ_DEVICE, \
4171                    USB_VENDOR_ID_LOGITECH, (product))
4172
4173 #define L27MHZ_DEVICE(product) \
4174         HID_DEVICE(BUS_USB, HID_GROUP_LOGITECH_27MHZ_DEVICE, \
4175                    USB_VENDOR_ID_LOGITECH, (product))
4176
4177 static const struct hid_device_id hidpp_devices[] = {
4178         { /* wireless touchpad */
4179           LDJ_DEVICE(0x4011),
4180           .driver_data = HIDPP_QUIRK_CLASS_WTP | HIDPP_QUIRK_DELAYED_INIT |
4181                          HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS },
4182         { /* wireless touchpad T650 */
4183           LDJ_DEVICE(0x4101),
4184           .driver_data = HIDPP_QUIRK_CLASS_WTP | HIDPP_QUIRK_DELAYED_INIT },
4185         { /* wireless touchpad T651 */
4186           HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH,
4187                 USB_DEVICE_ID_LOGITECH_T651),
4188           .driver_data = HIDPP_QUIRK_CLASS_WTP },
4189         { /* Mouse Logitech Anywhere MX */
4190           LDJ_DEVICE(0x1017), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 },
4191         { /* Mouse Logitech Cube */
4192           LDJ_DEVICE(0x4010), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2120 },
4193         { /* Mouse Logitech M335 */
4194           LDJ_DEVICE(0x4050), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4195         { /* Mouse Logitech M515 */
4196           LDJ_DEVICE(0x4007), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2120 },
4197         { /* Mouse logitech M560 */
4198           LDJ_DEVICE(0x402d),
4199           .driver_data = HIDPP_QUIRK_DELAYED_INIT | HIDPP_QUIRK_CLASS_M560
4200                 | HIDPP_QUIRK_HI_RES_SCROLL_X2120 },
4201         { /* Mouse Logitech M705 (firmware RQM17) */
4202           LDJ_DEVICE(0x101b), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 },
4203         { /* Mouse Logitech M705 (firmware RQM67) */
4204           LDJ_DEVICE(0x406d), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4205         { /* Mouse Logitech M720 */
4206           LDJ_DEVICE(0x405e), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4207         { /* Mouse Logitech MX Anywhere 2 */
4208           LDJ_DEVICE(0x404a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4209         { LDJ_DEVICE(0x4072), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4210         { LDJ_DEVICE(0xb013), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4211         { LDJ_DEVICE(0xb018), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4212         { LDJ_DEVICE(0xb01f), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4213         { /* Mouse Logitech MX Anywhere 2S */
4214           LDJ_DEVICE(0x406a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4215         { /* Mouse Logitech MX Master */
4216           LDJ_DEVICE(0x4041), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4217         { LDJ_DEVICE(0x4060), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4218         { LDJ_DEVICE(0x4071), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4219         { /* Mouse Logitech MX Master 2S */
4220           LDJ_DEVICE(0x4069), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4221         { /* Mouse Logitech MX Master 3 */
4222           LDJ_DEVICE(0x4082), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4223         { /* Mouse Logitech Performance MX */
4224           LDJ_DEVICE(0x101a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 },
4225         { /* Keyboard logitech K400 */
4226           LDJ_DEVICE(0x4024),
4227           .driver_data = HIDPP_QUIRK_CLASS_K400 },
4228         { /* Solar Keyboard Logitech K750 */
4229           LDJ_DEVICE(0x4002),
4230           .driver_data = HIDPP_QUIRK_CLASS_K750 },
4231         { /* Keyboard MX5000 (Bluetooth-receiver in HID proxy mode) */
4232           LDJ_DEVICE(0xb305),
4233           .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS },
4234         { /* Dinovo Edge (Bluetooth-receiver in HID proxy mode) */
4235           LDJ_DEVICE(0xb309),
4236           .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS },
4237         { /* Keyboard MX5500 (Bluetooth-receiver in HID proxy mode) */
4238           LDJ_DEVICE(0xb30b),
4239           .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS },
4240
4241         { LDJ_DEVICE(HID_ANY_ID) },
4242
4243         { /* Keyboard LX501 (Y-RR53) */
4244           L27MHZ_DEVICE(0x0049),
4245           .driver_data = HIDPP_QUIRK_KBD_ZOOM_WHEEL },
4246         { /* Keyboard MX3000 (Y-RAM74) */
4247           L27MHZ_DEVICE(0x0057),
4248           .driver_data = HIDPP_QUIRK_KBD_SCROLL_WHEEL },
4249         { /* Keyboard MX3200 (Y-RAV80) */
4250           L27MHZ_DEVICE(0x005c),
4251           .driver_data = HIDPP_QUIRK_KBD_ZOOM_WHEEL },
4252         { /* S510 Media Remote */
4253           L27MHZ_DEVICE(0x00fe),
4254           .driver_data = HIDPP_QUIRK_KBD_SCROLL_WHEEL },
4255
4256         { L27MHZ_DEVICE(HID_ANY_ID) },
4257
4258         { /* Logitech G403 Wireless Gaming Mouse over USB */
4259           HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC082) },
4260         { /* Logitech G703 Gaming Mouse over USB */
4261           HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC087) },
4262         { /* Logitech G703 Hero Gaming Mouse over USB */
4263           HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC090) },
4264         { /* Logitech G900 Gaming Mouse over USB */
4265           HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC081) },
4266         { /* Logitech G903 Gaming Mouse over USB */
4267           HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC086) },
4268         { /* Logitech G903 Hero Gaming Mouse over USB */
4269           HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC091) },
4270         { /* Logitech G920 Wheel over USB */
4271           HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_G920_WHEEL),
4272                 .driver_data = HIDPP_QUIRK_CLASS_G920 | HIDPP_QUIRK_FORCE_OUTPUT_REPORTS},
4273         { /* Logitech G Pro Gaming Mouse over USB */
4274           HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC088) },
4275
4276         { /* MX5000 keyboard over Bluetooth */
4277           HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb305),
4278           .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS },
4279         { /* Dinovo Edge keyboard over Bluetooth */
4280           HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb309),
4281           .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS },
4282         { /* MX5500 keyboard over Bluetooth */
4283           HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb30b),
4284           .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS },
4285         { /* M-RCQ142 V470 Cordless Laser Mouse over Bluetooth */
4286           HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb008) },
4287         { /* MX Master mouse over Bluetooth */
4288           HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb012),
4289           .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4290         { /* MX Ergo trackball over Bluetooth */
4291           HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb01d) },
4292         { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb01e),
4293           .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4294         { /* MX Master 3 mouse over Bluetooth */
4295           HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb023),
4296           .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4297         {}
4298 };
4299
4300 MODULE_DEVICE_TABLE(hid, hidpp_devices);
4301
4302 static const struct hid_usage_id hidpp_usages[] = {
4303         { HID_GD_WHEEL, EV_REL, REL_WHEEL_HI_RES },
4304         { HID_ANY_ID - 1, HID_ANY_ID - 1, HID_ANY_ID - 1}
4305 };
4306
4307 static struct hid_driver hidpp_driver = {
4308         .name = "logitech-hidpp-device",
4309         .id_table = hidpp_devices,
4310         .report_fixup = hidpp_report_fixup,
4311         .probe = hidpp_probe,
4312         .remove = hidpp_remove,
4313         .raw_event = hidpp_raw_event,
4314         .usage_table = hidpp_usages,
4315         .event = hidpp_event,
4316         .input_configured = hidpp_input_configured,
4317         .input_mapping = hidpp_input_mapping,
4318         .input_mapped = hidpp_input_mapped,
4319 };
4320
4321 module_hid_driver(hidpp_driver);