Merge tag 'efi_updates_for_v5.11' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/circ_buf.h>
32 #include <linux/slab.h>
33 #include <linux/sysrq.h>
34
35 #include <drm/drm_drv.h>
36 #include <drm/drm_irq.h>
37
38 #include "display/intel_display_types.h"
39 #include "display/intel_fifo_underrun.h"
40 #include "display/intel_hotplug.h"
41 #include "display/intel_lpe_audio.h"
42 #include "display/intel_psr.h"
43
44 #include "gt/intel_breadcrumbs.h"
45 #include "gt/intel_gt.h"
46 #include "gt/intel_gt_irq.h"
47 #include "gt/intel_gt_pm_irq.h"
48 #include "gt/intel_rps.h"
49
50 #include "i915_drv.h"
51 #include "i915_irq.h"
52 #include "i915_trace.h"
53 #include "intel_pm.h"
54
55 /**
56  * DOC: interrupt handling
57  *
58  * These functions provide the basic support for enabling and disabling the
59  * interrupt handling support. There's a lot more functionality in i915_irq.c
60  * and related files, but that will be described in separate chapters.
61  */
62
63 typedef bool (*long_pulse_detect_func)(enum hpd_pin pin, u32 val);
64 typedef u32 (*hotplug_enables_func)(struct drm_i915_private *i915,
65                                     enum hpd_pin pin);
66
67 static const u32 hpd_ilk[HPD_NUM_PINS] = {
68         [HPD_PORT_A] = DE_DP_A_HOTPLUG,
69 };
70
71 static const u32 hpd_ivb[HPD_NUM_PINS] = {
72         [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
73 };
74
75 static const u32 hpd_bdw[HPD_NUM_PINS] = {
76         [HPD_PORT_A] = GEN8_DE_PORT_HOTPLUG(HPD_PORT_A),
77 };
78
79 static const u32 hpd_ibx[HPD_NUM_PINS] = {
80         [HPD_CRT] = SDE_CRT_HOTPLUG,
81         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
82         [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
83         [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
84         [HPD_PORT_D] = SDE_PORTD_HOTPLUG,
85 };
86
87 static const u32 hpd_cpt[HPD_NUM_PINS] = {
88         [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
89         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
90         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
91         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
92         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
93 };
94
95 static const u32 hpd_spt[HPD_NUM_PINS] = {
96         [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
97         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
98         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
99         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
100         [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT,
101 };
102
103 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
104         [HPD_CRT] = CRT_HOTPLUG_INT_EN,
105         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
106         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
107         [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
108         [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
109         [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN,
110 };
111
112 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
113         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
114         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
115         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
116         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
117         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
118         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS,
119 };
120
121 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
122         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
123         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
124         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
125         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
126         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
127         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS,
128 };
129
130 static const u32 hpd_bxt[HPD_NUM_PINS] = {
131         [HPD_PORT_A] = GEN8_DE_PORT_HOTPLUG(HPD_PORT_A),
132         [HPD_PORT_B] = GEN8_DE_PORT_HOTPLUG(HPD_PORT_B),
133         [HPD_PORT_C] = GEN8_DE_PORT_HOTPLUG(HPD_PORT_C),
134 };
135
136 static const u32 hpd_gen11[HPD_NUM_PINS] = {
137         [HPD_PORT_TC1] = GEN11_TC_HOTPLUG(HPD_PORT_TC1) | GEN11_TBT_HOTPLUG(HPD_PORT_TC1),
138         [HPD_PORT_TC2] = GEN11_TC_HOTPLUG(HPD_PORT_TC2) | GEN11_TBT_HOTPLUG(HPD_PORT_TC2),
139         [HPD_PORT_TC3] = GEN11_TC_HOTPLUG(HPD_PORT_TC3) | GEN11_TBT_HOTPLUG(HPD_PORT_TC3),
140         [HPD_PORT_TC4] = GEN11_TC_HOTPLUG(HPD_PORT_TC4) | GEN11_TBT_HOTPLUG(HPD_PORT_TC4),
141         [HPD_PORT_TC5] = GEN11_TC_HOTPLUG(HPD_PORT_TC5) | GEN11_TBT_HOTPLUG(HPD_PORT_TC5),
142         [HPD_PORT_TC6] = GEN11_TC_HOTPLUG(HPD_PORT_TC6) | GEN11_TBT_HOTPLUG(HPD_PORT_TC6),
143 };
144
145 static const u32 hpd_icp[HPD_NUM_PINS] = {
146         [HPD_PORT_A] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_A),
147         [HPD_PORT_B] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_B),
148         [HPD_PORT_C] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_C),
149         [HPD_PORT_TC1] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC1),
150         [HPD_PORT_TC2] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC2),
151         [HPD_PORT_TC3] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC3),
152         [HPD_PORT_TC4] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC4),
153         [HPD_PORT_TC5] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC5),
154         [HPD_PORT_TC6] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC6),
155 };
156
157 static const u32 hpd_sde_dg1[HPD_NUM_PINS] = {
158         [HPD_PORT_A] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_A),
159         [HPD_PORT_B] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_B),
160         [HPD_PORT_C] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_C),
161         [HPD_PORT_D] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_D),
162 };
163
164 static void intel_hpd_init_pins(struct drm_i915_private *dev_priv)
165 {
166         struct i915_hotplug *hpd = &dev_priv->hotplug;
167
168         if (HAS_GMCH(dev_priv)) {
169                 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
170                     IS_CHERRYVIEW(dev_priv))
171                         hpd->hpd = hpd_status_g4x;
172                 else
173                         hpd->hpd = hpd_status_i915;
174                 return;
175         }
176
177         if (INTEL_GEN(dev_priv) >= 11)
178                 hpd->hpd = hpd_gen11;
179         else if (IS_GEN9_LP(dev_priv))
180                 hpd->hpd = hpd_bxt;
181         else if (INTEL_GEN(dev_priv) >= 8)
182                 hpd->hpd = hpd_bdw;
183         else if (INTEL_GEN(dev_priv) >= 7)
184                 hpd->hpd = hpd_ivb;
185         else
186                 hpd->hpd = hpd_ilk;
187
188         if ((INTEL_PCH_TYPE(dev_priv) < PCH_DG1) &&
189             (!HAS_PCH_SPLIT(dev_priv) || HAS_PCH_NOP(dev_priv)))
190                 return;
191
192         if (HAS_PCH_DG1(dev_priv))
193                 hpd->pch_hpd = hpd_sde_dg1;
194         else if (HAS_PCH_TGP(dev_priv) || HAS_PCH_JSP(dev_priv) ||
195                  HAS_PCH_ICP(dev_priv) || HAS_PCH_MCC(dev_priv))
196                 hpd->pch_hpd = hpd_icp;
197         else if (HAS_PCH_CNP(dev_priv) || HAS_PCH_SPT(dev_priv))
198                 hpd->pch_hpd = hpd_spt;
199         else if (HAS_PCH_LPT(dev_priv) || HAS_PCH_CPT(dev_priv))
200                 hpd->pch_hpd = hpd_cpt;
201         else if (HAS_PCH_IBX(dev_priv))
202                 hpd->pch_hpd = hpd_ibx;
203         else
204                 MISSING_CASE(INTEL_PCH_TYPE(dev_priv));
205 }
206
207 static void
208 intel_handle_vblank(struct drm_i915_private *dev_priv, enum pipe pipe)
209 {
210         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
211
212         drm_crtc_handle_vblank(&crtc->base);
213 }
214
215 void gen3_irq_reset(struct intel_uncore *uncore, i915_reg_t imr,
216                     i915_reg_t iir, i915_reg_t ier)
217 {
218         intel_uncore_write(uncore, imr, 0xffffffff);
219         intel_uncore_posting_read(uncore, imr);
220
221         intel_uncore_write(uncore, ier, 0);
222
223         /* IIR can theoretically queue up two events. Be paranoid. */
224         intel_uncore_write(uncore, iir, 0xffffffff);
225         intel_uncore_posting_read(uncore, iir);
226         intel_uncore_write(uncore, iir, 0xffffffff);
227         intel_uncore_posting_read(uncore, iir);
228 }
229
230 void gen2_irq_reset(struct intel_uncore *uncore)
231 {
232         intel_uncore_write16(uncore, GEN2_IMR, 0xffff);
233         intel_uncore_posting_read16(uncore, GEN2_IMR);
234
235         intel_uncore_write16(uncore, GEN2_IER, 0);
236
237         /* IIR can theoretically queue up two events. Be paranoid. */
238         intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
239         intel_uncore_posting_read16(uncore, GEN2_IIR);
240         intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
241         intel_uncore_posting_read16(uncore, GEN2_IIR);
242 }
243
244 /*
245  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
246  */
247 static void gen3_assert_iir_is_zero(struct intel_uncore *uncore, i915_reg_t reg)
248 {
249         u32 val = intel_uncore_read(uncore, reg);
250
251         if (val == 0)
252                 return;
253
254         drm_WARN(&uncore->i915->drm, 1,
255                  "Interrupt register 0x%x is not zero: 0x%08x\n",
256                  i915_mmio_reg_offset(reg), val);
257         intel_uncore_write(uncore, reg, 0xffffffff);
258         intel_uncore_posting_read(uncore, reg);
259         intel_uncore_write(uncore, reg, 0xffffffff);
260         intel_uncore_posting_read(uncore, reg);
261 }
262
263 static void gen2_assert_iir_is_zero(struct intel_uncore *uncore)
264 {
265         u16 val = intel_uncore_read16(uncore, GEN2_IIR);
266
267         if (val == 0)
268                 return;
269
270         drm_WARN(&uncore->i915->drm, 1,
271                  "Interrupt register 0x%x is not zero: 0x%08x\n",
272                  i915_mmio_reg_offset(GEN2_IIR), val);
273         intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
274         intel_uncore_posting_read16(uncore, GEN2_IIR);
275         intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
276         intel_uncore_posting_read16(uncore, GEN2_IIR);
277 }
278
279 void gen3_irq_init(struct intel_uncore *uncore,
280                    i915_reg_t imr, u32 imr_val,
281                    i915_reg_t ier, u32 ier_val,
282                    i915_reg_t iir)
283 {
284         gen3_assert_iir_is_zero(uncore, iir);
285
286         intel_uncore_write(uncore, ier, ier_val);
287         intel_uncore_write(uncore, imr, imr_val);
288         intel_uncore_posting_read(uncore, imr);
289 }
290
291 void gen2_irq_init(struct intel_uncore *uncore,
292                    u32 imr_val, u32 ier_val)
293 {
294         gen2_assert_iir_is_zero(uncore);
295
296         intel_uncore_write16(uncore, GEN2_IER, ier_val);
297         intel_uncore_write16(uncore, GEN2_IMR, imr_val);
298         intel_uncore_posting_read16(uncore, GEN2_IMR);
299 }
300
301 /* For display hotplug interrupt */
302 static inline void
303 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
304                                      u32 mask,
305                                      u32 bits)
306 {
307         u32 val;
308
309         lockdep_assert_held(&dev_priv->irq_lock);
310         drm_WARN_ON(&dev_priv->drm, bits & ~mask);
311
312         val = I915_READ(PORT_HOTPLUG_EN);
313         val &= ~mask;
314         val |= bits;
315         I915_WRITE(PORT_HOTPLUG_EN, val);
316 }
317
318 /**
319  * i915_hotplug_interrupt_update - update hotplug interrupt enable
320  * @dev_priv: driver private
321  * @mask: bits to update
322  * @bits: bits to enable
323  * NOTE: the HPD enable bits are modified both inside and outside
324  * of an interrupt context. To avoid that read-modify-write cycles
325  * interfer, these bits are protected by a spinlock. Since this
326  * function is usually not called from a context where the lock is
327  * held already, this function acquires the lock itself. A non-locking
328  * version is also available.
329  */
330 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
331                                    u32 mask,
332                                    u32 bits)
333 {
334         spin_lock_irq(&dev_priv->irq_lock);
335         i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
336         spin_unlock_irq(&dev_priv->irq_lock);
337 }
338
339 /**
340  * ilk_update_display_irq - update DEIMR
341  * @dev_priv: driver private
342  * @interrupt_mask: mask of interrupt bits to update
343  * @enabled_irq_mask: mask of interrupt bits to enable
344  */
345 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
346                             u32 interrupt_mask,
347                             u32 enabled_irq_mask)
348 {
349         u32 new_val;
350
351         lockdep_assert_held(&dev_priv->irq_lock);
352         drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
353
354         new_val = dev_priv->irq_mask;
355         new_val &= ~interrupt_mask;
356         new_val |= (~enabled_irq_mask & interrupt_mask);
357
358         if (new_val != dev_priv->irq_mask &&
359             !drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv))) {
360                 dev_priv->irq_mask = new_val;
361                 I915_WRITE(DEIMR, dev_priv->irq_mask);
362                 POSTING_READ(DEIMR);
363         }
364 }
365
366 /**
367  * bdw_update_port_irq - update DE port interrupt
368  * @dev_priv: driver private
369  * @interrupt_mask: mask of interrupt bits to update
370  * @enabled_irq_mask: mask of interrupt bits to enable
371  */
372 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
373                                 u32 interrupt_mask,
374                                 u32 enabled_irq_mask)
375 {
376         u32 new_val;
377         u32 old_val;
378
379         lockdep_assert_held(&dev_priv->irq_lock);
380
381         drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
382
383         if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)))
384                 return;
385
386         old_val = I915_READ(GEN8_DE_PORT_IMR);
387
388         new_val = old_val;
389         new_val &= ~interrupt_mask;
390         new_val |= (~enabled_irq_mask & interrupt_mask);
391
392         if (new_val != old_val) {
393                 I915_WRITE(GEN8_DE_PORT_IMR, new_val);
394                 POSTING_READ(GEN8_DE_PORT_IMR);
395         }
396 }
397
398 /**
399  * bdw_update_pipe_irq - update DE pipe interrupt
400  * @dev_priv: driver private
401  * @pipe: pipe whose interrupt to update
402  * @interrupt_mask: mask of interrupt bits to update
403  * @enabled_irq_mask: mask of interrupt bits to enable
404  */
405 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
406                          enum pipe pipe,
407                          u32 interrupt_mask,
408                          u32 enabled_irq_mask)
409 {
410         u32 new_val;
411
412         lockdep_assert_held(&dev_priv->irq_lock);
413
414         drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
415
416         if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)))
417                 return;
418
419         new_val = dev_priv->de_irq_mask[pipe];
420         new_val &= ~interrupt_mask;
421         new_val |= (~enabled_irq_mask & interrupt_mask);
422
423         if (new_val != dev_priv->de_irq_mask[pipe]) {
424                 dev_priv->de_irq_mask[pipe] = new_val;
425                 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
426                 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
427         }
428 }
429
430 /**
431  * ibx_display_interrupt_update - update SDEIMR
432  * @dev_priv: driver private
433  * @interrupt_mask: mask of interrupt bits to update
434  * @enabled_irq_mask: mask of interrupt bits to enable
435  */
436 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
437                                   u32 interrupt_mask,
438                                   u32 enabled_irq_mask)
439 {
440         u32 sdeimr = I915_READ(SDEIMR);
441         sdeimr &= ~interrupt_mask;
442         sdeimr |= (~enabled_irq_mask & interrupt_mask);
443
444         drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
445
446         lockdep_assert_held(&dev_priv->irq_lock);
447
448         if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)))
449                 return;
450
451         I915_WRITE(SDEIMR, sdeimr);
452         POSTING_READ(SDEIMR);
453 }
454
455 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
456                               enum pipe pipe)
457 {
458         u32 status_mask = dev_priv->pipestat_irq_mask[pipe];
459         u32 enable_mask = status_mask << 16;
460
461         lockdep_assert_held(&dev_priv->irq_lock);
462
463         if (INTEL_GEN(dev_priv) < 5)
464                 goto out;
465
466         /*
467          * On pipe A we don't support the PSR interrupt yet,
468          * on pipe B and C the same bit MBZ.
469          */
470         if (drm_WARN_ON_ONCE(&dev_priv->drm,
471                              status_mask & PIPE_A_PSR_STATUS_VLV))
472                 return 0;
473         /*
474          * On pipe B and C we don't support the PSR interrupt yet, on pipe
475          * A the same bit is for perf counters which we don't use either.
476          */
477         if (drm_WARN_ON_ONCE(&dev_priv->drm,
478                              status_mask & PIPE_B_PSR_STATUS_VLV))
479                 return 0;
480
481         enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
482                          SPRITE0_FLIP_DONE_INT_EN_VLV |
483                          SPRITE1_FLIP_DONE_INT_EN_VLV);
484         if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
485                 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
486         if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
487                 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
488
489 out:
490         drm_WARN_ONCE(&dev_priv->drm,
491                       enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
492                       status_mask & ~PIPESTAT_INT_STATUS_MASK,
493                       "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
494                       pipe_name(pipe), enable_mask, status_mask);
495
496         return enable_mask;
497 }
498
499 void i915_enable_pipestat(struct drm_i915_private *dev_priv,
500                           enum pipe pipe, u32 status_mask)
501 {
502         i915_reg_t reg = PIPESTAT(pipe);
503         u32 enable_mask;
504
505         drm_WARN_ONCE(&dev_priv->drm, status_mask & ~PIPESTAT_INT_STATUS_MASK,
506                       "pipe %c: status_mask=0x%x\n",
507                       pipe_name(pipe), status_mask);
508
509         lockdep_assert_held(&dev_priv->irq_lock);
510         drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv));
511
512         if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == status_mask)
513                 return;
514
515         dev_priv->pipestat_irq_mask[pipe] |= status_mask;
516         enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
517
518         I915_WRITE(reg, enable_mask | status_mask);
519         POSTING_READ(reg);
520 }
521
522 void i915_disable_pipestat(struct drm_i915_private *dev_priv,
523                            enum pipe pipe, u32 status_mask)
524 {
525         i915_reg_t reg = PIPESTAT(pipe);
526         u32 enable_mask;
527
528         drm_WARN_ONCE(&dev_priv->drm, status_mask & ~PIPESTAT_INT_STATUS_MASK,
529                       "pipe %c: status_mask=0x%x\n",
530                       pipe_name(pipe), status_mask);
531
532         lockdep_assert_held(&dev_priv->irq_lock);
533         drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv));
534
535         if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == 0)
536                 return;
537
538         dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
539         enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
540
541         I915_WRITE(reg, enable_mask | status_mask);
542         POSTING_READ(reg);
543 }
544
545 static bool i915_has_asle(struct drm_i915_private *dev_priv)
546 {
547         if (!dev_priv->opregion.asle)
548                 return false;
549
550         return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
551 }
552
553 /**
554  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
555  * @dev_priv: i915 device private
556  */
557 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
558 {
559         if (!i915_has_asle(dev_priv))
560                 return;
561
562         spin_lock_irq(&dev_priv->irq_lock);
563
564         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
565         if (INTEL_GEN(dev_priv) >= 4)
566                 i915_enable_pipestat(dev_priv, PIPE_A,
567                                      PIPE_LEGACY_BLC_EVENT_STATUS);
568
569         spin_unlock_irq(&dev_priv->irq_lock);
570 }
571
572 /*
573  * This timing diagram depicts the video signal in and
574  * around the vertical blanking period.
575  *
576  * Assumptions about the fictitious mode used in this example:
577  *  vblank_start >= 3
578  *  vsync_start = vblank_start + 1
579  *  vsync_end = vblank_start + 2
580  *  vtotal = vblank_start + 3
581  *
582  *           start of vblank:
583  *           latch double buffered registers
584  *           increment frame counter (ctg+)
585  *           generate start of vblank interrupt (gen4+)
586  *           |
587  *           |          frame start:
588  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
589  *           |          may be shifted forward 1-3 extra lines via PIPECONF
590  *           |          |
591  *           |          |  start of vsync:
592  *           |          |  generate vsync interrupt
593  *           |          |  |
594  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
595  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
596  * ----va---> <-----------------vb--------------------> <--------va-------------
597  *       |          |       <----vs----->                     |
598  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
599  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
600  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
601  *       |          |                                         |
602  *       last visible pixel                                   first visible pixel
603  *                  |                                         increment frame counter (gen3/4)
604  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
605  *
606  * x  = horizontal active
607  * _  = horizontal blanking
608  * hs = horizontal sync
609  * va = vertical active
610  * vb = vertical blanking
611  * vs = vertical sync
612  * vbs = vblank_start (number)
613  *
614  * Summary:
615  * - most events happen at the start of horizontal sync
616  * - frame start happens at the start of horizontal blank, 1-4 lines
617  *   (depending on PIPECONF settings) after the start of vblank
618  * - gen3/4 pixel and frame counter are synchronized with the start
619  *   of horizontal active on the first line of vertical active
620  */
621
622 /* Called from drm generic code, passed a 'crtc', which
623  * we use as a pipe index
624  */
625 u32 i915_get_vblank_counter(struct drm_crtc *crtc)
626 {
627         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
628         struct drm_vblank_crtc *vblank = &dev_priv->drm.vblank[drm_crtc_index(crtc)];
629         const struct drm_display_mode *mode = &vblank->hwmode;
630         enum pipe pipe = to_intel_crtc(crtc)->pipe;
631         i915_reg_t high_frame, low_frame;
632         u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
633         unsigned long irqflags;
634
635         /*
636          * On i965gm TV output the frame counter only works up to
637          * the point when we enable the TV encoder. After that the
638          * frame counter ceases to work and reads zero. We need a
639          * vblank wait before enabling the TV encoder and so we
640          * have to enable vblank interrupts while the frame counter
641          * is still in a working state. However the core vblank code
642          * does not like us returning non-zero frame counter values
643          * when we've told it that we don't have a working frame
644          * counter. Thus we must stop non-zero values leaking out.
645          */
646         if (!vblank->max_vblank_count)
647                 return 0;
648
649         htotal = mode->crtc_htotal;
650         hsync_start = mode->crtc_hsync_start;
651         vbl_start = mode->crtc_vblank_start;
652         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
653                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
654
655         /* Convert to pixel count */
656         vbl_start *= htotal;
657
658         /* Start of vblank event occurs at start of hsync */
659         vbl_start -= htotal - hsync_start;
660
661         high_frame = PIPEFRAME(pipe);
662         low_frame = PIPEFRAMEPIXEL(pipe);
663
664         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
665
666         /*
667          * High & low register fields aren't synchronized, so make sure
668          * we get a low value that's stable across two reads of the high
669          * register.
670          */
671         do {
672                 high1 = intel_de_read_fw(dev_priv, high_frame) & PIPE_FRAME_HIGH_MASK;
673                 low   = intel_de_read_fw(dev_priv, low_frame);
674                 high2 = intel_de_read_fw(dev_priv, high_frame) & PIPE_FRAME_HIGH_MASK;
675         } while (high1 != high2);
676
677         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
678
679         high1 >>= PIPE_FRAME_HIGH_SHIFT;
680         pixel = low & PIPE_PIXEL_MASK;
681         low >>= PIPE_FRAME_LOW_SHIFT;
682
683         /*
684          * The frame counter increments at beginning of active.
685          * Cook up a vblank counter by also checking the pixel
686          * counter against vblank start.
687          */
688         return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
689 }
690
691 u32 g4x_get_vblank_counter(struct drm_crtc *crtc)
692 {
693         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
694         struct drm_vblank_crtc *vblank = &dev_priv->drm.vblank[drm_crtc_index(crtc)];
695         enum pipe pipe = to_intel_crtc(crtc)->pipe;
696
697         if (!vblank->max_vblank_count)
698                 return 0;
699
700         return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
701 }
702
703 /*
704  * On certain encoders on certain platforms, pipe
705  * scanline register will not work to get the scanline,
706  * since the timings are driven from the PORT or issues
707  * with scanline register updates.
708  * This function will use Framestamp and current
709  * timestamp registers to calculate the scanline.
710  */
711 static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc)
712 {
713         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
714         struct drm_vblank_crtc *vblank =
715                 &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
716         const struct drm_display_mode *mode = &vblank->hwmode;
717         u32 vblank_start = mode->crtc_vblank_start;
718         u32 vtotal = mode->crtc_vtotal;
719         u32 htotal = mode->crtc_htotal;
720         u32 clock = mode->crtc_clock;
721         u32 scanline, scan_prev_time, scan_curr_time, scan_post_time;
722
723         /*
724          * To avoid the race condition where we might cross into the
725          * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR
726          * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR
727          * during the same frame.
728          */
729         do {
730                 /*
731                  * This field provides read back of the display
732                  * pipe frame time stamp. The time stamp value
733                  * is sampled at every start of vertical blank.
734                  */
735                 scan_prev_time = intel_de_read_fw(dev_priv,
736                                                   PIPE_FRMTMSTMP(crtc->pipe));
737
738                 /*
739                  * The TIMESTAMP_CTR register has the current
740                  * time stamp value.
741                  */
742                 scan_curr_time = intel_de_read_fw(dev_priv, IVB_TIMESTAMP_CTR);
743
744                 scan_post_time = intel_de_read_fw(dev_priv,
745                                                   PIPE_FRMTMSTMP(crtc->pipe));
746         } while (scan_post_time != scan_prev_time);
747
748         scanline = div_u64(mul_u32_u32(scan_curr_time - scan_prev_time,
749                                         clock), 1000 * htotal);
750         scanline = min(scanline, vtotal - 1);
751         scanline = (scanline + vblank_start) % vtotal;
752
753         return scanline;
754 }
755
756 /*
757  * intel_de_read_fw(), only for fast reads of display block, no need for
758  * forcewake etc.
759  */
760 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
761 {
762         struct drm_device *dev = crtc->base.dev;
763         struct drm_i915_private *dev_priv = to_i915(dev);
764         const struct drm_display_mode *mode;
765         struct drm_vblank_crtc *vblank;
766         enum pipe pipe = crtc->pipe;
767         int position, vtotal;
768
769         if (!crtc->active)
770                 return -1;
771
772         vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
773         mode = &vblank->hwmode;
774
775         if (crtc->mode_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP)
776                 return __intel_get_crtc_scanline_from_timestamp(crtc);
777
778         vtotal = mode->crtc_vtotal;
779         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
780                 vtotal /= 2;
781
782         if (IS_GEN(dev_priv, 2))
783                 position = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
784         else
785                 position = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
786
787         /*
788          * On HSW, the DSL reg (0x70000) appears to return 0 if we
789          * read it just before the start of vblank.  So try it again
790          * so we don't accidentally end up spanning a vblank frame
791          * increment, causing the pipe_update_end() code to squak at us.
792          *
793          * The nature of this problem means we can't simply check the ISR
794          * bit and return the vblank start value; nor can we use the scanline
795          * debug register in the transcoder as it appears to have the same
796          * problem.  We may need to extend this to include other platforms,
797          * but so far testing only shows the problem on HSW.
798          */
799         if (HAS_DDI(dev_priv) && !position) {
800                 int i, temp;
801
802                 for (i = 0; i < 100; i++) {
803                         udelay(1);
804                         temp = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
805                         if (temp != position) {
806                                 position = temp;
807                                 break;
808                         }
809                 }
810         }
811
812         /*
813          * See update_scanline_offset() for the details on the
814          * scanline_offset adjustment.
815          */
816         return (position + crtc->scanline_offset) % vtotal;
817 }
818
819 static bool i915_get_crtc_scanoutpos(struct drm_crtc *_crtc,
820                                      bool in_vblank_irq,
821                                      int *vpos, int *hpos,
822                                      ktime_t *stime, ktime_t *etime,
823                                      const struct drm_display_mode *mode)
824 {
825         struct drm_device *dev = _crtc->dev;
826         struct drm_i915_private *dev_priv = to_i915(dev);
827         struct intel_crtc *crtc = to_intel_crtc(_crtc);
828         enum pipe pipe = crtc->pipe;
829         int position;
830         int vbl_start, vbl_end, hsync_start, htotal, vtotal;
831         unsigned long irqflags;
832         bool use_scanline_counter = INTEL_GEN(dev_priv) >= 5 ||
833                 IS_G4X(dev_priv) || IS_GEN(dev_priv, 2) ||
834                 crtc->mode_flags & I915_MODE_FLAG_USE_SCANLINE_COUNTER;
835
836         if (drm_WARN_ON(&dev_priv->drm, !mode->crtc_clock)) {
837                 drm_dbg(&dev_priv->drm,
838                         "trying to get scanoutpos for disabled "
839                         "pipe %c\n", pipe_name(pipe));
840                 return false;
841         }
842
843         htotal = mode->crtc_htotal;
844         hsync_start = mode->crtc_hsync_start;
845         vtotal = mode->crtc_vtotal;
846         vbl_start = mode->crtc_vblank_start;
847         vbl_end = mode->crtc_vblank_end;
848
849         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
850                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
851                 vbl_end /= 2;
852                 vtotal /= 2;
853         }
854
855         /*
856          * Lock uncore.lock, as we will do multiple timing critical raw
857          * register reads, potentially with preemption disabled, so the
858          * following code must not block on uncore.lock.
859          */
860         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
861
862         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
863
864         /* Get optional system timestamp before query. */
865         if (stime)
866                 *stime = ktime_get();
867
868         if (use_scanline_counter) {
869                 /* No obvious pixelcount register. Only query vertical
870                  * scanout position from Display scan line register.
871                  */
872                 position = __intel_get_crtc_scanline(crtc);
873         } else {
874                 /* Have access to pixelcount since start of frame.
875                  * We can split this into vertical and horizontal
876                  * scanout position.
877                  */
878                 position = (intel_de_read_fw(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
879
880                 /* convert to pixel counts */
881                 vbl_start *= htotal;
882                 vbl_end *= htotal;
883                 vtotal *= htotal;
884
885                 /*
886                  * In interlaced modes, the pixel counter counts all pixels,
887                  * so one field will have htotal more pixels. In order to avoid
888                  * the reported position from jumping backwards when the pixel
889                  * counter is beyond the length of the shorter field, just
890                  * clamp the position the length of the shorter field. This
891                  * matches how the scanline counter based position works since
892                  * the scanline counter doesn't count the two half lines.
893                  */
894                 if (position >= vtotal)
895                         position = vtotal - 1;
896
897                 /*
898                  * Start of vblank interrupt is triggered at start of hsync,
899                  * just prior to the first active line of vblank. However we
900                  * consider lines to start at the leading edge of horizontal
901                  * active. So, should we get here before we've crossed into
902                  * the horizontal active of the first line in vblank, we would
903                  * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
904                  * always add htotal-hsync_start to the current pixel position.
905                  */
906                 position = (position + htotal - hsync_start) % vtotal;
907         }
908
909         /* Get optional system timestamp after query. */
910         if (etime)
911                 *etime = ktime_get();
912
913         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
914
915         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
916
917         /*
918          * While in vblank, position will be negative
919          * counting up towards 0 at vbl_end. And outside
920          * vblank, position will be positive counting
921          * up since vbl_end.
922          */
923         if (position >= vbl_start)
924                 position -= vbl_end;
925         else
926                 position += vtotal - vbl_end;
927
928         if (use_scanline_counter) {
929                 *vpos = position;
930                 *hpos = 0;
931         } else {
932                 *vpos = position / htotal;
933                 *hpos = position - (*vpos * htotal);
934         }
935
936         return true;
937 }
938
939 bool intel_crtc_get_vblank_timestamp(struct drm_crtc *crtc, int *max_error,
940                                      ktime_t *vblank_time, bool in_vblank_irq)
941 {
942         return drm_crtc_vblank_helper_get_vblank_timestamp_internal(
943                 crtc, max_error, vblank_time, in_vblank_irq,
944                 i915_get_crtc_scanoutpos);
945 }
946
947 int intel_get_crtc_scanline(struct intel_crtc *crtc)
948 {
949         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
950         unsigned long irqflags;
951         int position;
952
953         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
954         position = __intel_get_crtc_scanline(crtc);
955         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
956
957         return position;
958 }
959
960 /**
961  * ivb_parity_work - Workqueue called when a parity error interrupt
962  * occurred.
963  * @work: workqueue struct
964  *
965  * Doesn't actually do anything except notify userspace. As a consequence of
966  * this event, userspace should try to remap the bad rows since statistically
967  * it is likely the same row is more likely to go bad again.
968  */
969 static void ivb_parity_work(struct work_struct *work)
970 {
971         struct drm_i915_private *dev_priv =
972                 container_of(work, typeof(*dev_priv), l3_parity.error_work);
973         struct intel_gt *gt = &dev_priv->gt;
974         u32 error_status, row, bank, subbank;
975         char *parity_event[6];
976         u32 misccpctl;
977         u8 slice = 0;
978
979         /* We must turn off DOP level clock gating to access the L3 registers.
980          * In order to prevent a get/put style interface, acquire struct mutex
981          * any time we access those registers.
982          */
983         mutex_lock(&dev_priv->drm.struct_mutex);
984
985         /* If we've screwed up tracking, just let the interrupt fire again */
986         if (drm_WARN_ON(&dev_priv->drm, !dev_priv->l3_parity.which_slice))
987                 goto out;
988
989         misccpctl = I915_READ(GEN7_MISCCPCTL);
990         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
991         POSTING_READ(GEN7_MISCCPCTL);
992
993         while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
994                 i915_reg_t reg;
995
996                 slice--;
997                 if (drm_WARN_ON_ONCE(&dev_priv->drm,
998                                      slice >= NUM_L3_SLICES(dev_priv)))
999                         break;
1000
1001                 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1002
1003                 reg = GEN7_L3CDERRST1(slice);
1004
1005                 error_status = I915_READ(reg);
1006                 row = GEN7_PARITY_ERROR_ROW(error_status);
1007                 bank = GEN7_PARITY_ERROR_BANK(error_status);
1008                 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1009
1010                 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1011                 POSTING_READ(reg);
1012
1013                 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1014                 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1015                 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1016                 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1017                 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1018                 parity_event[5] = NULL;
1019
1020                 kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1021                                    KOBJ_CHANGE, parity_event);
1022
1023                 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1024                           slice, row, bank, subbank);
1025
1026                 kfree(parity_event[4]);
1027                 kfree(parity_event[3]);
1028                 kfree(parity_event[2]);
1029                 kfree(parity_event[1]);
1030         }
1031
1032         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1033
1034 out:
1035         drm_WARN_ON(&dev_priv->drm, dev_priv->l3_parity.which_slice);
1036         spin_lock_irq(&gt->irq_lock);
1037         gen5_gt_enable_irq(gt, GT_PARITY_ERROR(dev_priv));
1038         spin_unlock_irq(&gt->irq_lock);
1039
1040         mutex_unlock(&dev_priv->drm.struct_mutex);
1041 }
1042
1043 static bool gen11_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1044 {
1045         switch (pin) {
1046         case HPD_PORT_TC1:
1047                 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(HPD_PORT_TC1);
1048         case HPD_PORT_TC2:
1049                 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(HPD_PORT_TC2);
1050         case HPD_PORT_TC3:
1051                 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(HPD_PORT_TC3);
1052         case HPD_PORT_TC4:
1053                 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(HPD_PORT_TC4);
1054         case HPD_PORT_TC5:
1055                 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(HPD_PORT_TC5);
1056         case HPD_PORT_TC6:
1057                 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(HPD_PORT_TC6);
1058         default:
1059                 return false;
1060         }
1061 }
1062
1063 static bool bxt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1064 {
1065         switch (pin) {
1066         case HPD_PORT_A:
1067                 return val & PORTA_HOTPLUG_LONG_DETECT;
1068         case HPD_PORT_B:
1069                 return val & PORTB_HOTPLUG_LONG_DETECT;
1070         case HPD_PORT_C:
1071                 return val & PORTC_HOTPLUG_LONG_DETECT;
1072         default:
1073                 return false;
1074         }
1075 }
1076
1077 static bool icp_ddi_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1078 {
1079         switch (pin) {
1080         case HPD_PORT_A:
1081                 return val & SHOTPLUG_CTL_DDI_HPD_LONG_DETECT(HPD_PORT_A);
1082         case HPD_PORT_B:
1083                 return val & SHOTPLUG_CTL_DDI_HPD_LONG_DETECT(HPD_PORT_B);
1084         case HPD_PORT_C:
1085                 return val & SHOTPLUG_CTL_DDI_HPD_LONG_DETECT(HPD_PORT_C);
1086         case HPD_PORT_D:
1087                 return val & SHOTPLUG_CTL_DDI_HPD_LONG_DETECT(HPD_PORT_D);
1088         default:
1089                 return false;
1090         }
1091 }
1092
1093 static bool icp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1094 {
1095         switch (pin) {
1096         case HPD_PORT_TC1:
1097                 return val & ICP_TC_HPD_LONG_DETECT(HPD_PORT_TC1);
1098         case HPD_PORT_TC2:
1099                 return val & ICP_TC_HPD_LONG_DETECT(HPD_PORT_TC2);
1100         case HPD_PORT_TC3:
1101                 return val & ICP_TC_HPD_LONG_DETECT(HPD_PORT_TC3);
1102         case HPD_PORT_TC4:
1103                 return val & ICP_TC_HPD_LONG_DETECT(HPD_PORT_TC4);
1104         case HPD_PORT_TC5:
1105                 return val & ICP_TC_HPD_LONG_DETECT(HPD_PORT_TC5);
1106         case HPD_PORT_TC6:
1107                 return val & ICP_TC_HPD_LONG_DETECT(HPD_PORT_TC6);
1108         default:
1109                 return false;
1110         }
1111 }
1112
1113 static bool spt_port_hotplug2_long_detect(enum hpd_pin pin, u32 val)
1114 {
1115         switch (pin) {
1116         case HPD_PORT_E:
1117                 return val & PORTE_HOTPLUG_LONG_DETECT;
1118         default:
1119                 return false;
1120         }
1121 }
1122
1123 static bool spt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1124 {
1125         switch (pin) {
1126         case HPD_PORT_A:
1127                 return val & PORTA_HOTPLUG_LONG_DETECT;
1128         case HPD_PORT_B:
1129                 return val & PORTB_HOTPLUG_LONG_DETECT;
1130         case HPD_PORT_C:
1131                 return val & PORTC_HOTPLUG_LONG_DETECT;
1132         case HPD_PORT_D:
1133                 return val & PORTD_HOTPLUG_LONG_DETECT;
1134         default:
1135                 return false;
1136         }
1137 }
1138
1139 static bool ilk_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1140 {
1141         switch (pin) {
1142         case HPD_PORT_A:
1143                 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1144         default:
1145                 return false;
1146         }
1147 }
1148
1149 static bool pch_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1150 {
1151         switch (pin) {
1152         case HPD_PORT_B:
1153                 return val & PORTB_HOTPLUG_LONG_DETECT;
1154         case HPD_PORT_C:
1155                 return val & PORTC_HOTPLUG_LONG_DETECT;
1156         case HPD_PORT_D:
1157                 return val & PORTD_HOTPLUG_LONG_DETECT;
1158         default:
1159                 return false;
1160         }
1161 }
1162
1163 static bool i9xx_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1164 {
1165         switch (pin) {
1166         case HPD_PORT_B:
1167                 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1168         case HPD_PORT_C:
1169                 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1170         case HPD_PORT_D:
1171                 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1172         default:
1173                 return false;
1174         }
1175 }
1176
1177 /*
1178  * Get a bit mask of pins that have triggered, and which ones may be long.
1179  * This can be called multiple times with the same masks to accumulate
1180  * hotplug detection results from several registers.
1181  *
1182  * Note that the caller is expected to zero out the masks initially.
1183  */
1184 static void intel_get_hpd_pins(struct drm_i915_private *dev_priv,
1185                                u32 *pin_mask, u32 *long_mask,
1186                                u32 hotplug_trigger, u32 dig_hotplug_reg,
1187                                const u32 hpd[HPD_NUM_PINS],
1188                                bool long_pulse_detect(enum hpd_pin pin, u32 val))
1189 {
1190         enum hpd_pin pin;
1191
1192         BUILD_BUG_ON(BITS_PER_TYPE(*pin_mask) < HPD_NUM_PINS);
1193
1194         for_each_hpd_pin(pin) {
1195                 if ((hpd[pin] & hotplug_trigger) == 0)
1196                         continue;
1197
1198                 *pin_mask |= BIT(pin);
1199
1200                 if (long_pulse_detect(pin, dig_hotplug_reg))
1201                         *long_mask |= BIT(pin);
1202         }
1203
1204         drm_dbg(&dev_priv->drm,
1205                 "hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x, long 0x%08x\n",
1206                 hotplug_trigger, dig_hotplug_reg, *pin_mask, *long_mask);
1207
1208 }
1209
1210 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
1211                                   const u32 hpd[HPD_NUM_PINS])
1212 {
1213         struct intel_encoder *encoder;
1214         u32 enabled_irqs = 0;
1215
1216         for_each_intel_encoder(&dev_priv->drm, encoder)
1217                 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
1218                         enabled_irqs |= hpd[encoder->hpd_pin];
1219
1220         return enabled_irqs;
1221 }
1222
1223 static u32 intel_hpd_hotplug_irqs(struct drm_i915_private *dev_priv,
1224                                   const u32 hpd[HPD_NUM_PINS])
1225 {
1226         struct intel_encoder *encoder;
1227         u32 hotplug_irqs = 0;
1228
1229         for_each_intel_encoder(&dev_priv->drm, encoder)
1230                 hotplug_irqs |= hpd[encoder->hpd_pin];
1231
1232         return hotplug_irqs;
1233 }
1234
1235 static u32 intel_hpd_hotplug_enables(struct drm_i915_private *i915,
1236                                      hotplug_enables_func hotplug_enables)
1237 {
1238         struct intel_encoder *encoder;
1239         u32 hotplug = 0;
1240
1241         for_each_intel_encoder(&i915->drm, encoder)
1242                 hotplug |= hotplug_enables(i915, encoder->hpd_pin);
1243
1244         return hotplug;
1245 }
1246
1247 static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1248 {
1249         wake_up_all(&dev_priv->gmbus_wait_queue);
1250 }
1251
1252 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1253 {
1254         wake_up_all(&dev_priv->gmbus_wait_queue);
1255 }
1256
1257 #if defined(CONFIG_DEBUG_FS)
1258 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1259                                          enum pipe pipe,
1260                                          u32 crc0, u32 crc1,
1261                                          u32 crc2, u32 crc3,
1262                                          u32 crc4)
1263 {
1264         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1265         struct intel_pipe_crc *pipe_crc = &crtc->pipe_crc;
1266         u32 crcs[5] = { crc0, crc1, crc2, crc3, crc4 };
1267
1268         trace_intel_pipe_crc(crtc, crcs);
1269
1270         spin_lock(&pipe_crc->lock);
1271         /*
1272          * For some not yet identified reason, the first CRC is
1273          * bonkers. So let's just wait for the next vblank and read
1274          * out the buggy result.
1275          *
1276          * On GEN8+ sometimes the second CRC is bonkers as well, so
1277          * don't trust that one either.
1278          */
1279         if (pipe_crc->skipped <= 0 ||
1280             (INTEL_GEN(dev_priv) >= 8 && pipe_crc->skipped == 1)) {
1281                 pipe_crc->skipped++;
1282                 spin_unlock(&pipe_crc->lock);
1283                 return;
1284         }
1285         spin_unlock(&pipe_crc->lock);
1286
1287         drm_crtc_add_crc_entry(&crtc->base, true,
1288                                 drm_crtc_accurate_vblank_count(&crtc->base),
1289                                 crcs);
1290 }
1291 #else
1292 static inline void
1293 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1294                              enum pipe pipe,
1295                              u32 crc0, u32 crc1,
1296                              u32 crc2, u32 crc3,
1297                              u32 crc4) {}
1298 #endif
1299
1300 static void flip_done_handler(struct drm_i915_private *i915,
1301                               enum pipe pipe)
1302 {
1303         struct intel_crtc *crtc = intel_get_crtc_for_pipe(i915, pipe);
1304         struct drm_crtc_state *crtc_state = crtc->base.state;
1305         struct drm_pending_vblank_event *e = crtc_state->event;
1306         struct drm_device *dev = &i915->drm;
1307         unsigned long irqflags;
1308
1309         spin_lock_irqsave(&dev->event_lock, irqflags);
1310
1311         crtc_state->event = NULL;
1312
1313         drm_crtc_send_vblank_event(&crtc->base, e);
1314
1315         spin_unlock_irqrestore(&dev->event_lock, irqflags);
1316 }
1317
1318 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1319                                      enum pipe pipe)
1320 {
1321         display_pipe_crc_irq_handler(dev_priv, pipe,
1322                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1323                                      0, 0, 0, 0);
1324 }
1325
1326 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1327                                      enum pipe pipe)
1328 {
1329         display_pipe_crc_irq_handler(dev_priv, pipe,
1330                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1331                                      I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1332                                      I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1333                                      I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1334                                      I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1335 }
1336
1337 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1338                                       enum pipe pipe)
1339 {
1340         u32 res1, res2;
1341
1342         if (INTEL_GEN(dev_priv) >= 3)
1343                 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1344         else
1345                 res1 = 0;
1346
1347         if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1348                 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1349         else
1350                 res2 = 0;
1351
1352         display_pipe_crc_irq_handler(dev_priv, pipe,
1353                                      I915_READ(PIPE_CRC_RES_RED(pipe)),
1354                                      I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1355                                      I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1356                                      res1, res2);
1357 }
1358
1359 static void i9xx_pipestat_irq_reset(struct drm_i915_private *dev_priv)
1360 {
1361         enum pipe pipe;
1362
1363         for_each_pipe(dev_priv, pipe) {
1364                 I915_WRITE(PIPESTAT(pipe),
1365                            PIPESTAT_INT_STATUS_MASK |
1366                            PIPE_FIFO_UNDERRUN_STATUS);
1367
1368                 dev_priv->pipestat_irq_mask[pipe] = 0;
1369         }
1370 }
1371
1372 static void i9xx_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1373                                   u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1374 {
1375         enum pipe pipe;
1376
1377         spin_lock(&dev_priv->irq_lock);
1378
1379         if (!dev_priv->display_irqs_enabled) {
1380                 spin_unlock(&dev_priv->irq_lock);
1381                 return;
1382         }
1383
1384         for_each_pipe(dev_priv, pipe) {
1385                 i915_reg_t reg;
1386                 u32 status_mask, enable_mask, iir_bit = 0;
1387
1388                 /*
1389                  * PIPESTAT bits get signalled even when the interrupt is
1390                  * disabled with the mask bits, and some of the status bits do
1391                  * not generate interrupts at all (like the underrun bit). Hence
1392                  * we need to be careful that we only handle what we want to
1393                  * handle.
1394                  */
1395
1396                 /* fifo underruns are filterered in the underrun handler. */
1397                 status_mask = PIPE_FIFO_UNDERRUN_STATUS;
1398
1399                 switch (pipe) {
1400                 default:
1401                 case PIPE_A:
1402                         iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1403                         break;
1404                 case PIPE_B:
1405                         iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1406                         break;
1407                 case PIPE_C:
1408                         iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1409                         break;
1410                 }
1411                 if (iir & iir_bit)
1412                         status_mask |= dev_priv->pipestat_irq_mask[pipe];
1413
1414                 if (!status_mask)
1415                         continue;
1416
1417                 reg = PIPESTAT(pipe);
1418                 pipe_stats[pipe] = I915_READ(reg) & status_mask;
1419                 enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
1420
1421                 /*
1422                  * Clear the PIPE*STAT regs before the IIR
1423                  *
1424                  * Toggle the enable bits to make sure we get an
1425                  * edge in the ISR pipe event bit if we don't clear
1426                  * all the enabled status bits. Otherwise the edge
1427                  * triggered IIR on i965/g4x wouldn't notice that
1428                  * an interrupt is still pending.
1429                  */
1430                 if (pipe_stats[pipe]) {
1431                         I915_WRITE(reg, pipe_stats[pipe]);
1432                         I915_WRITE(reg, enable_mask);
1433                 }
1434         }
1435         spin_unlock(&dev_priv->irq_lock);
1436 }
1437
1438 static void i8xx_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1439                                       u16 iir, u32 pipe_stats[I915_MAX_PIPES])
1440 {
1441         enum pipe pipe;
1442
1443         for_each_pipe(dev_priv, pipe) {
1444                 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1445                         intel_handle_vblank(dev_priv, pipe);
1446
1447                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1448                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1449
1450                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1451                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1452         }
1453 }
1454
1455 static void i915_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1456                                       u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1457 {
1458         bool blc_event = false;
1459         enum pipe pipe;
1460
1461         for_each_pipe(dev_priv, pipe) {
1462                 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1463                         intel_handle_vblank(dev_priv, pipe);
1464
1465                 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1466                         blc_event = true;
1467
1468                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1469                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1470
1471                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1472                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1473         }
1474
1475         if (blc_event || (iir & I915_ASLE_INTERRUPT))
1476                 intel_opregion_asle_intr(dev_priv);
1477 }
1478
1479 static void i965_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1480                                       u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1481 {
1482         bool blc_event = false;
1483         enum pipe pipe;
1484
1485         for_each_pipe(dev_priv, pipe) {
1486                 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1487                         intel_handle_vblank(dev_priv, pipe);
1488
1489                 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1490                         blc_event = true;
1491
1492                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1493                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1494
1495                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1496                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1497         }
1498
1499         if (blc_event || (iir & I915_ASLE_INTERRUPT))
1500                 intel_opregion_asle_intr(dev_priv);
1501
1502         if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1503                 gmbus_irq_handler(dev_priv);
1504 }
1505
1506 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1507                                             u32 pipe_stats[I915_MAX_PIPES])
1508 {
1509         enum pipe pipe;
1510
1511         for_each_pipe(dev_priv, pipe) {
1512                 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1513                         intel_handle_vblank(dev_priv, pipe);
1514
1515                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1516                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1517
1518                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1519                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1520         }
1521
1522         if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1523                 gmbus_irq_handler(dev_priv);
1524 }
1525
1526 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1527 {
1528         u32 hotplug_status = 0, hotplug_status_mask;
1529         int i;
1530
1531         if (IS_G4X(dev_priv) ||
1532             IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1533                 hotplug_status_mask = HOTPLUG_INT_STATUS_G4X |
1534                         DP_AUX_CHANNEL_MASK_INT_STATUS_G4X;
1535         else
1536                 hotplug_status_mask = HOTPLUG_INT_STATUS_I915;
1537
1538         /*
1539          * We absolutely have to clear all the pending interrupt
1540          * bits in PORT_HOTPLUG_STAT. Otherwise the ISR port
1541          * interrupt bit won't have an edge, and the i965/g4x
1542          * edge triggered IIR will not notice that an interrupt
1543          * is still pending. We can't use PORT_HOTPLUG_EN to
1544          * guarantee the edge as the act of toggling the enable
1545          * bits can itself generate a new hotplug interrupt :(
1546          */
1547         for (i = 0; i < 10; i++) {
1548                 u32 tmp = I915_READ(PORT_HOTPLUG_STAT) & hotplug_status_mask;
1549
1550                 if (tmp == 0)
1551                         return hotplug_status;
1552
1553                 hotplug_status |= tmp;
1554                 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1555         }
1556
1557         drm_WARN_ONCE(&dev_priv->drm, 1,
1558                       "PORT_HOTPLUG_STAT did not clear (0x%08x)\n",
1559                       I915_READ(PORT_HOTPLUG_STAT));
1560
1561         return hotplug_status;
1562 }
1563
1564 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1565                                  u32 hotplug_status)
1566 {
1567         u32 pin_mask = 0, long_mask = 0;
1568         u32 hotplug_trigger;
1569
1570         if (IS_G4X(dev_priv) ||
1571             IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1572                 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1573         else
1574                 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1575
1576         if (hotplug_trigger) {
1577                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1578                                    hotplug_trigger, hotplug_trigger,
1579                                    dev_priv->hotplug.hpd,
1580                                    i9xx_port_hotplug_long_detect);
1581
1582                 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1583         }
1584
1585         if ((IS_G4X(dev_priv) ||
1586              IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1587             hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1588                 dp_aux_irq_handler(dev_priv);
1589 }
1590
1591 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1592 {
1593         struct drm_i915_private *dev_priv = arg;
1594         irqreturn_t ret = IRQ_NONE;
1595
1596         if (!intel_irqs_enabled(dev_priv))
1597                 return IRQ_NONE;
1598
1599         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1600         disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1601
1602         do {
1603                 u32 iir, gt_iir, pm_iir;
1604                 u32 pipe_stats[I915_MAX_PIPES] = {};
1605                 u32 hotplug_status = 0;
1606                 u32 ier = 0;
1607
1608                 gt_iir = I915_READ(GTIIR);
1609                 pm_iir = I915_READ(GEN6_PMIIR);
1610                 iir = I915_READ(VLV_IIR);
1611
1612                 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1613                         break;
1614
1615                 ret = IRQ_HANDLED;
1616
1617                 /*
1618                  * Theory on interrupt generation, based on empirical evidence:
1619                  *
1620                  * x = ((VLV_IIR & VLV_IER) ||
1621                  *      (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
1622                  *       (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
1623                  *
1624                  * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1625                  * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
1626                  * guarantee the CPU interrupt will be raised again even if we
1627                  * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
1628                  * bits this time around.
1629                  */
1630                 I915_WRITE(VLV_MASTER_IER, 0);
1631                 ier = I915_READ(VLV_IER);
1632                 I915_WRITE(VLV_IER, 0);
1633
1634                 if (gt_iir)
1635                         I915_WRITE(GTIIR, gt_iir);
1636                 if (pm_iir)
1637                         I915_WRITE(GEN6_PMIIR, pm_iir);
1638
1639                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1640                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1641
1642                 /* Call regardless, as some status bits might not be
1643                  * signalled in iir */
1644                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1645
1646                 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1647                            I915_LPE_PIPE_B_INTERRUPT))
1648                         intel_lpe_audio_irq_handler(dev_priv);
1649
1650                 /*
1651                  * VLV_IIR is single buffered, and reflects the level
1652                  * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1653                  */
1654                 if (iir)
1655                         I915_WRITE(VLV_IIR, iir);
1656
1657                 I915_WRITE(VLV_IER, ier);
1658                 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
1659
1660                 if (gt_iir)
1661                         gen6_gt_irq_handler(&dev_priv->gt, gt_iir);
1662                 if (pm_iir)
1663                         gen6_rps_irq_handler(&dev_priv->gt.rps, pm_iir);
1664
1665                 if (hotplug_status)
1666                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1667
1668                 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1669         } while (0);
1670
1671         enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1672
1673         return ret;
1674 }
1675
1676 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1677 {
1678         struct drm_i915_private *dev_priv = arg;
1679         irqreturn_t ret = IRQ_NONE;
1680
1681         if (!intel_irqs_enabled(dev_priv))
1682                 return IRQ_NONE;
1683
1684         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1685         disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1686
1687         do {
1688                 u32 master_ctl, iir;
1689                 u32 pipe_stats[I915_MAX_PIPES] = {};
1690                 u32 hotplug_status = 0;
1691                 u32 ier = 0;
1692
1693                 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1694                 iir = I915_READ(VLV_IIR);
1695
1696                 if (master_ctl == 0 && iir == 0)
1697                         break;
1698
1699                 ret = IRQ_HANDLED;
1700
1701                 /*
1702                  * Theory on interrupt generation, based on empirical evidence:
1703                  *
1704                  * x = ((VLV_IIR & VLV_IER) ||
1705                  *      ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
1706                  *       (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
1707                  *
1708                  * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1709                  * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
1710                  * guarantee the CPU interrupt will be raised again even if we
1711                  * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
1712                  * bits this time around.
1713                  */
1714                 I915_WRITE(GEN8_MASTER_IRQ, 0);
1715                 ier = I915_READ(VLV_IER);
1716                 I915_WRITE(VLV_IER, 0);
1717
1718                 gen8_gt_irq_handler(&dev_priv->gt, master_ctl);
1719
1720                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1721                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1722
1723                 /* Call regardless, as some status bits might not be
1724                  * signalled in iir */
1725                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1726
1727                 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1728                            I915_LPE_PIPE_B_INTERRUPT |
1729                            I915_LPE_PIPE_C_INTERRUPT))
1730                         intel_lpe_audio_irq_handler(dev_priv);
1731
1732                 /*
1733                  * VLV_IIR is single buffered, and reflects the level
1734                  * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1735                  */
1736                 if (iir)
1737                         I915_WRITE(VLV_IIR, iir);
1738
1739                 I915_WRITE(VLV_IER, ier);
1740                 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
1741
1742                 if (hotplug_status)
1743                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1744
1745                 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1746         } while (0);
1747
1748         enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1749
1750         return ret;
1751 }
1752
1753 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1754                                 u32 hotplug_trigger)
1755 {
1756         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1757
1758         /*
1759          * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
1760          * unless we touch the hotplug register, even if hotplug_trigger is
1761          * zero. Not acking leads to "The master control interrupt lied (SDE)!"
1762          * errors.
1763          */
1764         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1765         if (!hotplug_trigger) {
1766                 u32 mask = PORTA_HOTPLUG_STATUS_MASK |
1767                         PORTD_HOTPLUG_STATUS_MASK |
1768                         PORTC_HOTPLUG_STATUS_MASK |
1769                         PORTB_HOTPLUG_STATUS_MASK;
1770                 dig_hotplug_reg &= ~mask;
1771         }
1772
1773         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1774         if (!hotplug_trigger)
1775                 return;
1776
1777         intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1778                            hotplug_trigger, dig_hotplug_reg,
1779                            dev_priv->hotplug.pch_hpd,
1780                            pch_port_hotplug_long_detect);
1781
1782         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1783 }
1784
1785 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1786 {
1787         enum pipe pipe;
1788         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1789
1790         ibx_hpd_irq_handler(dev_priv, hotplug_trigger);
1791
1792         if (pch_iir & SDE_AUDIO_POWER_MASK) {
1793                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1794                                SDE_AUDIO_POWER_SHIFT);
1795                 drm_dbg(&dev_priv->drm, "PCH audio power change on port %d\n",
1796                         port_name(port));
1797         }
1798
1799         if (pch_iir & SDE_AUX_MASK)
1800                 dp_aux_irq_handler(dev_priv);
1801
1802         if (pch_iir & SDE_GMBUS)
1803                 gmbus_irq_handler(dev_priv);
1804
1805         if (pch_iir & SDE_AUDIO_HDCP_MASK)
1806                 drm_dbg(&dev_priv->drm, "PCH HDCP audio interrupt\n");
1807
1808         if (pch_iir & SDE_AUDIO_TRANS_MASK)
1809                 drm_dbg(&dev_priv->drm, "PCH transcoder audio interrupt\n");
1810
1811         if (pch_iir & SDE_POISON)
1812                 drm_err(&dev_priv->drm, "PCH poison interrupt\n");
1813
1814         if (pch_iir & SDE_FDI_MASK) {
1815                 for_each_pipe(dev_priv, pipe)
1816                         drm_dbg(&dev_priv->drm, "  pipe %c FDI IIR: 0x%08x\n",
1817                                 pipe_name(pipe),
1818                                 I915_READ(FDI_RX_IIR(pipe)));
1819         }
1820
1821         if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1822                 drm_dbg(&dev_priv->drm, "PCH transcoder CRC done interrupt\n");
1823
1824         if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1825                 drm_dbg(&dev_priv->drm,
1826                         "PCH transcoder CRC error interrupt\n");
1827
1828         if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1829                 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A);
1830
1831         if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1832                 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B);
1833 }
1834
1835 static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
1836 {
1837         u32 err_int = I915_READ(GEN7_ERR_INT);
1838         enum pipe pipe;
1839
1840         if (err_int & ERR_INT_POISON)
1841                 drm_err(&dev_priv->drm, "Poison interrupt\n");
1842
1843         for_each_pipe(dev_priv, pipe) {
1844                 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
1845                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1846
1847                 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1848                         if (IS_IVYBRIDGE(dev_priv))
1849                                 ivb_pipe_crc_irq_handler(dev_priv, pipe);
1850                         else
1851                                 hsw_pipe_crc_irq_handler(dev_priv, pipe);
1852                 }
1853         }
1854
1855         I915_WRITE(GEN7_ERR_INT, err_int);
1856 }
1857
1858 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
1859 {
1860         u32 serr_int = I915_READ(SERR_INT);
1861         enum pipe pipe;
1862
1863         if (serr_int & SERR_INT_POISON)
1864                 drm_err(&dev_priv->drm, "PCH poison interrupt\n");
1865
1866         for_each_pipe(dev_priv, pipe)
1867                 if (serr_int & SERR_INT_TRANS_FIFO_UNDERRUN(pipe))
1868                         intel_pch_fifo_underrun_irq_handler(dev_priv, pipe);
1869
1870         I915_WRITE(SERR_INT, serr_int);
1871 }
1872
1873 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1874 {
1875         enum pipe pipe;
1876         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1877
1878         ibx_hpd_irq_handler(dev_priv, hotplug_trigger);
1879
1880         if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1881                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1882                                SDE_AUDIO_POWER_SHIFT_CPT);
1883                 drm_dbg(&dev_priv->drm, "PCH audio power change on port %c\n",
1884                         port_name(port));
1885         }
1886
1887         if (pch_iir & SDE_AUX_MASK_CPT)
1888                 dp_aux_irq_handler(dev_priv);
1889
1890         if (pch_iir & SDE_GMBUS_CPT)
1891                 gmbus_irq_handler(dev_priv);
1892
1893         if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1894                 drm_dbg(&dev_priv->drm, "Audio CP request interrupt\n");
1895
1896         if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1897                 drm_dbg(&dev_priv->drm, "Audio CP change interrupt\n");
1898
1899         if (pch_iir & SDE_FDI_MASK_CPT) {
1900                 for_each_pipe(dev_priv, pipe)
1901                         drm_dbg(&dev_priv->drm, "  pipe %c FDI IIR: 0x%08x\n",
1902                                 pipe_name(pipe),
1903                                 I915_READ(FDI_RX_IIR(pipe)));
1904         }
1905
1906         if (pch_iir & SDE_ERROR_CPT)
1907                 cpt_serr_int_handler(dev_priv);
1908 }
1909
1910 static void icp_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1911 {
1912         u32 ddi_hotplug_trigger = pch_iir & SDE_DDI_HOTPLUG_MASK_ICP;
1913         u32 tc_hotplug_trigger = pch_iir & SDE_TC_HOTPLUG_MASK_ICP;
1914         u32 pin_mask = 0, long_mask = 0;
1915
1916         if (ddi_hotplug_trigger) {
1917                 u32 dig_hotplug_reg;
1918
1919                 dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_DDI);
1920                 I915_WRITE(SHOTPLUG_CTL_DDI, dig_hotplug_reg);
1921
1922                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1923                                    ddi_hotplug_trigger, dig_hotplug_reg,
1924                                    dev_priv->hotplug.pch_hpd,
1925                                    icp_ddi_port_hotplug_long_detect);
1926         }
1927
1928         if (tc_hotplug_trigger) {
1929                 u32 dig_hotplug_reg;
1930
1931                 dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_TC);
1932                 I915_WRITE(SHOTPLUG_CTL_TC, dig_hotplug_reg);
1933
1934                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1935                                    tc_hotplug_trigger, dig_hotplug_reg,
1936                                    dev_priv->hotplug.pch_hpd,
1937                                    icp_tc_port_hotplug_long_detect);
1938         }
1939
1940         if (pin_mask)
1941                 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1942
1943         if (pch_iir & SDE_GMBUS_ICP)
1944                 gmbus_irq_handler(dev_priv);
1945 }
1946
1947 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1948 {
1949         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
1950                 ~SDE_PORTE_HOTPLUG_SPT;
1951         u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
1952         u32 pin_mask = 0, long_mask = 0;
1953
1954         if (hotplug_trigger) {
1955                 u32 dig_hotplug_reg;
1956
1957                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1958                 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1959
1960                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1961                                    hotplug_trigger, dig_hotplug_reg,
1962                                    dev_priv->hotplug.pch_hpd,
1963                                    spt_port_hotplug_long_detect);
1964         }
1965
1966         if (hotplug2_trigger) {
1967                 u32 dig_hotplug_reg;
1968
1969                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
1970                 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
1971
1972                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1973                                    hotplug2_trigger, dig_hotplug_reg,
1974                                    dev_priv->hotplug.pch_hpd,
1975                                    spt_port_hotplug2_long_detect);
1976         }
1977
1978         if (pin_mask)
1979                 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1980
1981         if (pch_iir & SDE_GMBUS_CPT)
1982                 gmbus_irq_handler(dev_priv);
1983 }
1984
1985 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
1986                                 u32 hotplug_trigger)
1987 {
1988         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1989
1990         dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
1991         I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
1992
1993         intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1994                            hotplug_trigger, dig_hotplug_reg,
1995                            dev_priv->hotplug.hpd,
1996                            ilk_port_hotplug_long_detect);
1997
1998         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1999 }
2000
2001 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2002                                     u32 de_iir)
2003 {
2004         enum pipe pipe;
2005         u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2006
2007         if (hotplug_trigger)
2008                 ilk_hpd_irq_handler(dev_priv, hotplug_trigger);
2009
2010         if (de_iir & DE_AUX_CHANNEL_A)
2011                 dp_aux_irq_handler(dev_priv);
2012
2013         if (de_iir & DE_GSE)
2014                 intel_opregion_asle_intr(dev_priv);
2015
2016         if (de_iir & DE_POISON)
2017                 drm_err(&dev_priv->drm, "Poison interrupt\n");
2018
2019         for_each_pipe(dev_priv, pipe) {
2020                 if (de_iir & DE_PIPE_VBLANK(pipe))
2021                         intel_handle_vblank(dev_priv, pipe);
2022
2023                 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2024                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2025
2026                 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2027                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2028         }
2029
2030         /* check event from PCH */
2031         if (de_iir & DE_PCH_EVENT) {
2032                 u32 pch_iir = I915_READ(SDEIIR);
2033
2034                 if (HAS_PCH_CPT(dev_priv))
2035                         cpt_irq_handler(dev_priv, pch_iir);
2036                 else
2037                         ibx_irq_handler(dev_priv, pch_iir);
2038
2039                 /* should clear PCH hotplug event before clear CPU irq */
2040                 I915_WRITE(SDEIIR, pch_iir);
2041         }
2042
2043         if (IS_GEN(dev_priv, 5) && de_iir & DE_PCU_EVENT)
2044                 gen5_rps_irq_handler(&dev_priv->gt.rps);
2045 }
2046
2047 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2048                                     u32 de_iir)
2049 {
2050         enum pipe pipe;
2051         u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2052
2053         if (hotplug_trigger)
2054                 ilk_hpd_irq_handler(dev_priv, hotplug_trigger);
2055
2056         if (de_iir & DE_ERR_INT_IVB)
2057                 ivb_err_int_handler(dev_priv);
2058
2059         if (de_iir & DE_EDP_PSR_INT_HSW) {
2060                 u32 psr_iir = I915_READ(EDP_PSR_IIR);
2061
2062                 intel_psr_irq_handler(dev_priv, psr_iir);
2063                 I915_WRITE(EDP_PSR_IIR, psr_iir);
2064         }
2065
2066         if (de_iir & DE_AUX_CHANNEL_A_IVB)
2067                 dp_aux_irq_handler(dev_priv);
2068
2069         if (de_iir & DE_GSE_IVB)
2070                 intel_opregion_asle_intr(dev_priv);
2071
2072         for_each_pipe(dev_priv, pipe) {
2073                 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
2074                         intel_handle_vblank(dev_priv, pipe);
2075         }
2076
2077         /* check event from PCH */
2078         if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2079                 u32 pch_iir = I915_READ(SDEIIR);
2080
2081                 cpt_irq_handler(dev_priv, pch_iir);
2082
2083                 /* clear PCH hotplug event before clear CPU irq */
2084                 I915_WRITE(SDEIIR, pch_iir);
2085         }
2086 }
2087
2088 /*
2089  * To handle irqs with the minimum potential races with fresh interrupts, we:
2090  * 1 - Disable Master Interrupt Control.
2091  * 2 - Find the source(s) of the interrupt.
2092  * 3 - Clear the Interrupt Identity bits (IIR).
2093  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2094  * 5 - Re-enable Master Interrupt Control.
2095  */
2096 static irqreturn_t ilk_irq_handler(int irq, void *arg)
2097 {
2098         struct drm_i915_private *i915 = arg;
2099         void __iomem * const regs = i915->uncore.regs;
2100         u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2101         irqreturn_t ret = IRQ_NONE;
2102
2103         if (unlikely(!intel_irqs_enabled(i915)))
2104                 return IRQ_NONE;
2105
2106         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2107         disable_rpm_wakeref_asserts(&i915->runtime_pm);
2108
2109         /* disable master interrupt before clearing iir  */
2110         de_ier = raw_reg_read(regs, DEIER);
2111         raw_reg_write(regs, DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2112
2113         /* Disable south interrupts. We'll only write to SDEIIR once, so further
2114          * interrupts will will be stored on its back queue, and then we'll be
2115          * able to process them after we restore SDEIER (as soon as we restore
2116          * it, we'll get an interrupt if SDEIIR still has something to process
2117          * due to its back queue). */
2118         if (!HAS_PCH_NOP(i915)) {
2119                 sde_ier = raw_reg_read(regs, SDEIER);
2120                 raw_reg_write(regs, SDEIER, 0);
2121         }
2122
2123         /* Find, clear, then process each source of interrupt */
2124
2125         gt_iir = raw_reg_read(regs, GTIIR);
2126         if (gt_iir) {
2127                 raw_reg_write(regs, GTIIR, gt_iir);
2128                 if (INTEL_GEN(i915) >= 6)
2129                         gen6_gt_irq_handler(&i915->gt, gt_iir);
2130                 else
2131                         gen5_gt_irq_handler(&i915->gt, gt_iir);
2132                 ret = IRQ_HANDLED;
2133         }
2134
2135         de_iir = raw_reg_read(regs, DEIIR);
2136         if (de_iir) {
2137                 raw_reg_write(regs, DEIIR, de_iir);
2138                 if (INTEL_GEN(i915) >= 7)
2139                         ivb_display_irq_handler(i915, de_iir);
2140                 else
2141                         ilk_display_irq_handler(i915, de_iir);
2142                 ret = IRQ_HANDLED;
2143         }
2144
2145         if (INTEL_GEN(i915) >= 6) {
2146                 u32 pm_iir = raw_reg_read(regs, GEN6_PMIIR);
2147                 if (pm_iir) {
2148                         raw_reg_write(regs, GEN6_PMIIR, pm_iir);
2149                         gen6_rps_irq_handler(&i915->gt.rps, pm_iir);
2150                         ret = IRQ_HANDLED;
2151                 }
2152         }
2153
2154         raw_reg_write(regs, DEIER, de_ier);
2155         if (sde_ier)
2156                 raw_reg_write(regs, SDEIER, sde_ier);
2157
2158         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2159         enable_rpm_wakeref_asserts(&i915->runtime_pm);
2160
2161         return ret;
2162 }
2163
2164 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2165                                 u32 hotplug_trigger)
2166 {
2167         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2168
2169         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2170         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2171
2172         intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2173                            hotplug_trigger, dig_hotplug_reg,
2174                            dev_priv->hotplug.hpd,
2175                            bxt_port_hotplug_long_detect);
2176
2177         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2178 }
2179
2180 static void gen11_hpd_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2181 {
2182         u32 pin_mask = 0, long_mask = 0;
2183         u32 trigger_tc = iir & GEN11_DE_TC_HOTPLUG_MASK;
2184         u32 trigger_tbt = iir & GEN11_DE_TBT_HOTPLUG_MASK;
2185
2186         if (trigger_tc) {
2187                 u32 dig_hotplug_reg;
2188
2189                 dig_hotplug_reg = I915_READ(GEN11_TC_HOTPLUG_CTL);
2190                 I915_WRITE(GEN11_TC_HOTPLUG_CTL, dig_hotplug_reg);
2191
2192                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2193                                    trigger_tc, dig_hotplug_reg,
2194                                    dev_priv->hotplug.hpd,
2195                                    gen11_port_hotplug_long_detect);
2196         }
2197
2198         if (trigger_tbt) {
2199                 u32 dig_hotplug_reg;
2200
2201                 dig_hotplug_reg = I915_READ(GEN11_TBT_HOTPLUG_CTL);
2202                 I915_WRITE(GEN11_TBT_HOTPLUG_CTL, dig_hotplug_reg);
2203
2204                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2205                                    trigger_tbt, dig_hotplug_reg,
2206                                    dev_priv->hotplug.hpd,
2207                                    gen11_port_hotplug_long_detect);
2208         }
2209
2210         if (pin_mask)
2211                 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2212         else
2213                 drm_err(&dev_priv->drm,
2214                         "Unexpected DE HPD interrupt 0x%08x\n", iir);
2215 }
2216
2217 static u32 gen8_de_port_aux_mask(struct drm_i915_private *dev_priv)
2218 {
2219         u32 mask;
2220
2221         if (INTEL_GEN(dev_priv) >= 12)
2222                 return TGL_DE_PORT_AUX_DDIA |
2223                         TGL_DE_PORT_AUX_DDIB |
2224                         TGL_DE_PORT_AUX_DDIC |
2225                         TGL_DE_PORT_AUX_USBC1 |
2226                         TGL_DE_PORT_AUX_USBC2 |
2227                         TGL_DE_PORT_AUX_USBC3 |
2228                         TGL_DE_PORT_AUX_USBC4 |
2229                         TGL_DE_PORT_AUX_USBC5 |
2230                         TGL_DE_PORT_AUX_USBC6;
2231
2232
2233         mask = GEN8_AUX_CHANNEL_A;
2234         if (INTEL_GEN(dev_priv) >= 9)
2235                 mask |= GEN9_AUX_CHANNEL_B |
2236                         GEN9_AUX_CHANNEL_C |
2237                         GEN9_AUX_CHANNEL_D;
2238
2239         if (IS_CNL_WITH_PORT_F(dev_priv) || IS_GEN(dev_priv, 11))
2240                 mask |= CNL_AUX_CHANNEL_F;
2241
2242         if (IS_GEN(dev_priv, 11))
2243                 mask |= ICL_AUX_CHANNEL_E;
2244
2245         return mask;
2246 }
2247
2248 static u32 gen8_de_pipe_fault_mask(struct drm_i915_private *dev_priv)
2249 {
2250         if (IS_ROCKETLAKE(dev_priv))
2251                 return RKL_DE_PIPE_IRQ_FAULT_ERRORS;
2252         else if (INTEL_GEN(dev_priv) >= 11)
2253                 return GEN11_DE_PIPE_IRQ_FAULT_ERRORS;
2254         else if (INTEL_GEN(dev_priv) >= 9)
2255                 return GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2256         else
2257                 return GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2258 }
2259
2260 static void
2261 gen8_de_misc_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2262 {
2263         bool found = false;
2264
2265         if (iir & GEN8_DE_MISC_GSE) {
2266                 intel_opregion_asle_intr(dev_priv);
2267                 found = true;
2268         }
2269
2270         if (iir & GEN8_DE_EDP_PSR) {
2271                 u32 psr_iir;
2272                 i915_reg_t iir_reg;
2273
2274                 if (INTEL_GEN(dev_priv) >= 12)
2275                         iir_reg = TRANS_PSR_IIR(dev_priv->psr.transcoder);
2276                 else
2277                         iir_reg = EDP_PSR_IIR;
2278
2279                 psr_iir = I915_READ(iir_reg);
2280                 I915_WRITE(iir_reg, psr_iir);
2281
2282                 if (psr_iir)
2283                         found = true;
2284
2285                 intel_psr_irq_handler(dev_priv, psr_iir);
2286         }
2287
2288         if (!found)
2289                 drm_err(&dev_priv->drm, "Unexpected DE Misc interrupt\n");
2290 }
2291
2292 static void gen11_dsi_te_interrupt_handler(struct drm_i915_private *dev_priv,
2293                                            u32 te_trigger)
2294 {
2295         enum pipe pipe = INVALID_PIPE;
2296         enum transcoder dsi_trans;
2297         enum port port;
2298         u32 val, tmp;
2299
2300         /*
2301          * Incase of dual link, TE comes from DSI_1
2302          * this is to check if dual link is enabled
2303          */
2304         val = I915_READ(TRANS_DDI_FUNC_CTL2(TRANSCODER_DSI_0));
2305         val &= PORT_SYNC_MODE_ENABLE;
2306
2307         /*
2308          * if dual link is enabled, then read DSI_0
2309          * transcoder registers
2310          */
2311         port = ((te_trigger & DSI1_TE && val) || (te_trigger & DSI0_TE)) ?
2312                                                   PORT_A : PORT_B;
2313         dsi_trans = (port == PORT_A) ? TRANSCODER_DSI_0 : TRANSCODER_DSI_1;
2314
2315         /* Check if DSI configured in command mode */
2316         val = I915_READ(DSI_TRANS_FUNC_CONF(dsi_trans));
2317         val = val & OP_MODE_MASK;
2318
2319         if (val != CMD_MODE_NO_GATE && val != CMD_MODE_TE_GATE) {
2320                 drm_err(&dev_priv->drm, "DSI trancoder not configured in command mode\n");
2321                 return;
2322         }
2323
2324         /* Get PIPE for handling VBLANK event */
2325         val = I915_READ(TRANS_DDI_FUNC_CTL(dsi_trans));
2326         switch (val & TRANS_DDI_EDP_INPUT_MASK) {
2327         case TRANS_DDI_EDP_INPUT_A_ON:
2328                 pipe = PIPE_A;
2329                 break;
2330         case TRANS_DDI_EDP_INPUT_B_ONOFF:
2331                 pipe = PIPE_B;
2332                 break;
2333         case TRANS_DDI_EDP_INPUT_C_ONOFF:
2334                 pipe = PIPE_C;
2335                 break;
2336         default:
2337                 drm_err(&dev_priv->drm, "Invalid PIPE\n");
2338                 return;
2339         }
2340
2341         intel_handle_vblank(dev_priv, pipe);
2342
2343         /* clear TE in dsi IIR */
2344         port = (te_trigger & DSI1_TE) ? PORT_B : PORT_A;
2345         tmp = I915_READ(DSI_INTR_IDENT_REG(port));
2346         I915_WRITE(DSI_INTR_IDENT_REG(port), tmp);
2347 }
2348
2349 static irqreturn_t
2350 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2351 {
2352         irqreturn_t ret = IRQ_NONE;
2353         u32 iir;
2354         enum pipe pipe;
2355
2356         if (master_ctl & GEN8_DE_MISC_IRQ) {
2357                 iir = I915_READ(GEN8_DE_MISC_IIR);
2358                 if (iir) {
2359                         I915_WRITE(GEN8_DE_MISC_IIR, iir);
2360                         ret = IRQ_HANDLED;
2361                         gen8_de_misc_irq_handler(dev_priv, iir);
2362                 } else {
2363                         drm_err(&dev_priv->drm,
2364                                 "The master control interrupt lied (DE MISC)!\n");
2365                 }
2366         }
2367
2368         if (INTEL_GEN(dev_priv) >= 11 && (master_ctl & GEN11_DE_HPD_IRQ)) {
2369                 iir = I915_READ(GEN11_DE_HPD_IIR);
2370                 if (iir) {
2371                         I915_WRITE(GEN11_DE_HPD_IIR, iir);
2372                         ret = IRQ_HANDLED;
2373                         gen11_hpd_irq_handler(dev_priv, iir);
2374                 } else {
2375                         drm_err(&dev_priv->drm,
2376                                 "The master control interrupt lied, (DE HPD)!\n");
2377                 }
2378         }
2379
2380         if (master_ctl & GEN8_DE_PORT_IRQ) {
2381                 iir = I915_READ(GEN8_DE_PORT_IIR);
2382                 if (iir) {
2383                         bool found = false;
2384
2385                         I915_WRITE(GEN8_DE_PORT_IIR, iir);
2386                         ret = IRQ_HANDLED;
2387
2388                         if (iir & gen8_de_port_aux_mask(dev_priv)) {
2389                                 dp_aux_irq_handler(dev_priv);
2390                                 found = true;
2391                         }
2392
2393                         if (IS_GEN9_LP(dev_priv)) {
2394                                 u32 hotplug_trigger = iir & BXT_DE_PORT_HOTPLUG_MASK;
2395
2396                                 if (hotplug_trigger) {
2397                                         bxt_hpd_irq_handler(dev_priv, hotplug_trigger);
2398                                         found = true;
2399                                 }
2400                         } else if (IS_BROADWELL(dev_priv)) {
2401                                 u32 hotplug_trigger = iir & BDW_DE_PORT_HOTPLUG_MASK;
2402
2403                                 if (hotplug_trigger) {
2404                                         ilk_hpd_irq_handler(dev_priv, hotplug_trigger);
2405                                         found = true;
2406                                 }
2407                         }
2408
2409                         if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2410                                 gmbus_irq_handler(dev_priv);
2411                                 found = true;
2412                         }
2413
2414                         if (INTEL_GEN(dev_priv) >= 11) {
2415                                 u32 te_trigger = iir & (DSI0_TE | DSI1_TE);
2416
2417                                 if (te_trigger) {
2418                                         gen11_dsi_te_interrupt_handler(dev_priv, te_trigger);
2419                                         found = true;
2420                                 }
2421                         }
2422
2423                         if (!found)
2424                                 drm_err(&dev_priv->drm,
2425                                         "Unexpected DE Port interrupt\n");
2426                 }
2427                 else
2428                         drm_err(&dev_priv->drm,
2429                                 "The master control interrupt lied (DE PORT)!\n");
2430         }
2431
2432         for_each_pipe(dev_priv, pipe) {
2433                 u32 fault_errors;
2434
2435                 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2436                         continue;
2437
2438                 iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2439                 if (!iir) {
2440                         drm_err(&dev_priv->drm,
2441                                 "The master control interrupt lied (DE PIPE)!\n");
2442                         continue;
2443                 }
2444
2445                 ret = IRQ_HANDLED;
2446                 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2447
2448                 if (iir & GEN8_PIPE_VBLANK)
2449                         intel_handle_vblank(dev_priv, pipe);
2450
2451                 if (iir & GEN9_PIPE_PLANE1_FLIP_DONE)
2452                         flip_done_handler(dev_priv, pipe);
2453
2454                 if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2455                         hsw_pipe_crc_irq_handler(dev_priv, pipe);
2456
2457                 if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2458                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2459
2460                 fault_errors = iir & gen8_de_pipe_fault_mask(dev_priv);
2461                 if (fault_errors)
2462                         drm_err(&dev_priv->drm,
2463                                 "Fault errors on pipe %c: 0x%08x\n",
2464                                 pipe_name(pipe),
2465                                 fault_errors);
2466         }
2467
2468         if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2469             master_ctl & GEN8_DE_PCH_IRQ) {
2470                 /*
2471                  * FIXME(BDW): Assume for now that the new interrupt handling
2472                  * scheme also closed the SDE interrupt handling race we've seen
2473                  * on older pch-split platforms. But this needs testing.
2474                  */
2475                 iir = I915_READ(SDEIIR);
2476                 if (iir) {
2477                         I915_WRITE(SDEIIR, iir);
2478                         ret = IRQ_HANDLED;
2479
2480                         if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2481                                 icp_irq_handler(dev_priv, iir);
2482                         else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
2483                                 spt_irq_handler(dev_priv, iir);
2484                         else
2485                                 cpt_irq_handler(dev_priv, iir);
2486                 } else {
2487                         /*
2488                          * Like on previous PCH there seems to be something
2489                          * fishy going on with forwarding PCH interrupts.
2490                          */
2491                         drm_dbg(&dev_priv->drm,
2492                                 "The master control interrupt lied (SDE)!\n");
2493                 }
2494         }
2495
2496         return ret;
2497 }
2498
2499 static inline u32 gen8_master_intr_disable(void __iomem * const regs)
2500 {
2501         raw_reg_write(regs, GEN8_MASTER_IRQ, 0);
2502
2503         /*
2504          * Now with master disabled, get a sample of level indications
2505          * for this interrupt. Indications will be cleared on related acks.
2506          * New indications can and will light up during processing,
2507          * and will generate new interrupt after enabling master.
2508          */
2509         return raw_reg_read(regs, GEN8_MASTER_IRQ);
2510 }
2511
2512 static inline void gen8_master_intr_enable(void __iomem * const regs)
2513 {
2514         raw_reg_write(regs, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2515 }
2516
2517 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2518 {
2519         struct drm_i915_private *dev_priv = arg;
2520         void __iomem * const regs = dev_priv->uncore.regs;
2521         u32 master_ctl;
2522
2523         if (!intel_irqs_enabled(dev_priv))
2524                 return IRQ_NONE;
2525
2526         master_ctl = gen8_master_intr_disable(regs);
2527         if (!master_ctl) {
2528                 gen8_master_intr_enable(regs);
2529                 return IRQ_NONE;
2530         }
2531
2532         /* Find, queue (onto bottom-halves), then clear each source */
2533         gen8_gt_irq_handler(&dev_priv->gt, master_ctl);
2534
2535         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2536         if (master_ctl & ~GEN8_GT_IRQS) {
2537                 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2538                 gen8_de_irq_handler(dev_priv, master_ctl);
2539                 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2540         }
2541
2542         gen8_master_intr_enable(regs);
2543
2544         return IRQ_HANDLED;
2545 }
2546
2547 static u32
2548 gen11_gu_misc_irq_ack(struct intel_gt *gt, const u32 master_ctl)
2549 {
2550         void __iomem * const regs = gt->uncore->regs;
2551         u32 iir;
2552
2553         if (!(master_ctl & GEN11_GU_MISC_IRQ))
2554                 return 0;
2555
2556         iir = raw_reg_read(regs, GEN11_GU_MISC_IIR);
2557         if (likely(iir))
2558                 raw_reg_write(regs, GEN11_GU_MISC_IIR, iir);
2559
2560         return iir;
2561 }
2562
2563 static void
2564 gen11_gu_misc_irq_handler(struct intel_gt *gt, const u32 iir)
2565 {
2566         if (iir & GEN11_GU_MISC_GSE)
2567                 intel_opregion_asle_intr(gt->i915);
2568 }
2569
2570 static inline u32 gen11_master_intr_disable(void __iomem * const regs)
2571 {
2572         raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, 0);
2573
2574         /*
2575          * Now with master disabled, get a sample of level indications
2576          * for this interrupt. Indications will be cleared on related acks.
2577          * New indications can and will light up during processing,
2578          * and will generate new interrupt after enabling master.
2579          */
2580         return raw_reg_read(regs, GEN11_GFX_MSTR_IRQ);
2581 }
2582
2583 static inline void gen11_master_intr_enable(void __iomem * const regs)
2584 {
2585         raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ);
2586 }
2587
2588 static void
2589 gen11_display_irq_handler(struct drm_i915_private *i915)
2590 {
2591         void __iomem * const regs = i915->uncore.regs;
2592         const u32 disp_ctl = raw_reg_read(regs, GEN11_DISPLAY_INT_CTL);
2593
2594         disable_rpm_wakeref_asserts(&i915->runtime_pm);
2595         /*
2596          * GEN11_DISPLAY_INT_CTL has same format as GEN8_MASTER_IRQ
2597          * for the display related bits.
2598          */
2599         raw_reg_write(regs, GEN11_DISPLAY_INT_CTL, 0x0);
2600         gen8_de_irq_handler(i915, disp_ctl);
2601         raw_reg_write(regs, GEN11_DISPLAY_INT_CTL,
2602                       GEN11_DISPLAY_IRQ_ENABLE);
2603
2604         enable_rpm_wakeref_asserts(&i915->runtime_pm);
2605 }
2606
2607 static __always_inline irqreturn_t
2608 __gen11_irq_handler(struct drm_i915_private * const i915,
2609                     u32 (*intr_disable)(void __iomem * const regs),
2610                     void (*intr_enable)(void __iomem * const regs))
2611 {
2612         void __iomem * const regs = i915->uncore.regs;
2613         struct intel_gt *gt = &i915->gt;
2614         u32 master_ctl;
2615         u32 gu_misc_iir;
2616
2617         if (!intel_irqs_enabled(i915))
2618                 return IRQ_NONE;
2619
2620         master_ctl = intr_disable(regs);
2621         if (!master_ctl) {
2622                 intr_enable(regs);
2623                 return IRQ_NONE;
2624         }
2625
2626         /* Find, queue (onto bottom-halves), then clear each source */
2627         gen11_gt_irq_handler(gt, master_ctl);
2628
2629         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2630         if (master_ctl & GEN11_DISPLAY_IRQ)
2631                 gen11_display_irq_handler(i915);
2632
2633         gu_misc_iir = gen11_gu_misc_irq_ack(gt, master_ctl);
2634
2635         intr_enable(regs);
2636
2637         gen11_gu_misc_irq_handler(gt, gu_misc_iir);
2638
2639         return IRQ_HANDLED;
2640 }
2641
2642 static irqreturn_t gen11_irq_handler(int irq, void *arg)
2643 {
2644         return __gen11_irq_handler(arg,
2645                                    gen11_master_intr_disable,
2646                                    gen11_master_intr_enable);
2647 }
2648
2649 static u32 dg1_master_intr_disable_and_ack(void __iomem * const regs)
2650 {
2651         u32 val;
2652
2653         /* First disable interrupts */
2654         raw_reg_write(regs, DG1_MSTR_UNIT_INTR, 0);
2655
2656         /* Get the indication levels and ack the master unit */
2657         val = raw_reg_read(regs, DG1_MSTR_UNIT_INTR);
2658         if (unlikely(!val))
2659                 return 0;
2660
2661         raw_reg_write(regs, DG1_MSTR_UNIT_INTR, val);
2662
2663         /*
2664          * Now with master disabled, get a sample of level indications
2665          * for this interrupt and ack them right away - we keep GEN11_MASTER_IRQ
2666          * out as this bit doesn't exist anymore for DG1
2667          */
2668         val = raw_reg_read(regs, GEN11_GFX_MSTR_IRQ) & ~GEN11_MASTER_IRQ;
2669         if (unlikely(!val))
2670                 return 0;
2671
2672         raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, val);
2673
2674         return val;
2675 }
2676
2677 static inline void dg1_master_intr_enable(void __iomem * const regs)
2678 {
2679         raw_reg_write(regs, DG1_MSTR_UNIT_INTR, DG1_MSTR_IRQ);
2680 }
2681
2682 static irqreturn_t dg1_irq_handler(int irq, void *arg)
2683 {
2684         return __gen11_irq_handler(arg,
2685                                    dg1_master_intr_disable_and_ack,
2686                                    dg1_master_intr_enable);
2687 }
2688
2689 /* Called from drm generic code, passed 'crtc' which
2690  * we use as a pipe index
2691  */
2692 int i8xx_enable_vblank(struct drm_crtc *crtc)
2693 {
2694         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2695         enum pipe pipe = to_intel_crtc(crtc)->pipe;
2696         unsigned long irqflags;
2697
2698         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2699         i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2700         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2701
2702         return 0;
2703 }
2704
2705 int i915gm_enable_vblank(struct drm_crtc *crtc)
2706 {
2707         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2708
2709         /*
2710          * Vblank interrupts fail to wake the device up from C2+.
2711          * Disabling render clock gating during C-states avoids
2712          * the problem. There is a small power cost so we do this
2713          * only when vblank interrupts are actually enabled.
2714          */
2715         if (dev_priv->vblank_enabled++ == 0)
2716                 I915_WRITE(SCPD0, _MASKED_BIT_ENABLE(CSTATE_RENDER_CLOCK_GATE_DISABLE));
2717
2718         return i8xx_enable_vblank(crtc);
2719 }
2720
2721 int i965_enable_vblank(struct drm_crtc *crtc)
2722 {
2723         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2724         enum pipe pipe = to_intel_crtc(crtc)->pipe;
2725         unsigned long irqflags;
2726
2727         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2728         i915_enable_pipestat(dev_priv, pipe,
2729                              PIPE_START_VBLANK_INTERRUPT_STATUS);
2730         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2731
2732         return 0;
2733 }
2734
2735 int ilk_enable_vblank(struct drm_crtc *crtc)
2736 {
2737         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2738         enum pipe pipe = to_intel_crtc(crtc)->pipe;
2739         unsigned long irqflags;
2740         u32 bit = INTEL_GEN(dev_priv) >= 7 ?
2741                 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2742
2743         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2744         ilk_enable_display_irq(dev_priv, bit);
2745         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2746
2747         /* Even though there is no DMC, frame counter can get stuck when
2748          * PSR is active as no frames are generated.
2749          */
2750         if (HAS_PSR(dev_priv))
2751                 drm_crtc_vblank_restore(crtc);
2752
2753         return 0;
2754 }
2755
2756 static bool gen11_dsi_configure_te(struct intel_crtc *intel_crtc,
2757                                    bool enable)
2758 {
2759         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
2760         enum port port;
2761         u32 tmp;
2762
2763         if (!(intel_crtc->mode_flags &
2764             (I915_MODE_FLAG_DSI_USE_TE1 | I915_MODE_FLAG_DSI_USE_TE0)))
2765                 return false;
2766
2767         /* for dual link cases we consider TE from slave */
2768         if (intel_crtc->mode_flags & I915_MODE_FLAG_DSI_USE_TE1)
2769                 port = PORT_B;
2770         else
2771                 port = PORT_A;
2772
2773         tmp =  I915_READ(DSI_INTR_MASK_REG(port));
2774         if (enable)
2775                 tmp &= ~DSI_TE_EVENT;
2776         else
2777                 tmp |= DSI_TE_EVENT;
2778
2779         I915_WRITE(DSI_INTR_MASK_REG(port), tmp);
2780
2781         tmp = I915_READ(DSI_INTR_IDENT_REG(port));
2782         I915_WRITE(DSI_INTR_IDENT_REG(port), tmp);
2783
2784         return true;
2785 }
2786
2787 int bdw_enable_vblank(struct drm_crtc *crtc)
2788 {
2789         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2790         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2791         enum pipe pipe = intel_crtc->pipe;
2792         unsigned long irqflags;
2793
2794         if (gen11_dsi_configure_te(intel_crtc, true))
2795                 return 0;
2796
2797         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2798         bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2799         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2800
2801         /* Even if there is no DMC, frame counter can get stuck when
2802          * PSR is active as no frames are generated, so check only for PSR.
2803          */
2804         if (HAS_PSR(dev_priv))
2805                 drm_crtc_vblank_restore(crtc);
2806
2807         return 0;
2808 }
2809
2810 void skl_enable_flip_done(struct intel_crtc *crtc)
2811 {
2812         struct drm_i915_private *i915 = to_i915(crtc->base.dev);
2813         enum pipe pipe = crtc->pipe;
2814         unsigned long irqflags;
2815
2816         spin_lock_irqsave(&i915->irq_lock, irqflags);
2817
2818         bdw_enable_pipe_irq(i915, pipe, GEN9_PIPE_PLANE1_FLIP_DONE);
2819
2820         spin_unlock_irqrestore(&i915->irq_lock, irqflags);
2821 }
2822
2823 /* Called from drm generic code, passed 'crtc' which
2824  * we use as a pipe index
2825  */
2826 void i8xx_disable_vblank(struct drm_crtc *crtc)
2827 {
2828         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2829         enum pipe pipe = to_intel_crtc(crtc)->pipe;
2830         unsigned long irqflags;
2831
2832         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2833         i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2834         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2835 }
2836
2837 void i915gm_disable_vblank(struct drm_crtc *crtc)
2838 {
2839         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2840
2841         i8xx_disable_vblank(crtc);
2842
2843         if (--dev_priv->vblank_enabled == 0)
2844                 I915_WRITE(SCPD0, _MASKED_BIT_DISABLE(CSTATE_RENDER_CLOCK_GATE_DISABLE));
2845 }
2846
2847 void i965_disable_vblank(struct drm_crtc *crtc)
2848 {
2849         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2850         enum pipe pipe = to_intel_crtc(crtc)->pipe;
2851         unsigned long irqflags;
2852
2853         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2854         i915_disable_pipestat(dev_priv, pipe,
2855                               PIPE_START_VBLANK_INTERRUPT_STATUS);
2856         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2857 }
2858
2859 void ilk_disable_vblank(struct drm_crtc *crtc)
2860 {
2861         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2862         enum pipe pipe = to_intel_crtc(crtc)->pipe;
2863         unsigned long irqflags;
2864         u32 bit = INTEL_GEN(dev_priv) >= 7 ?
2865                 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2866
2867         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2868         ilk_disable_display_irq(dev_priv, bit);
2869         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2870 }
2871
2872 void bdw_disable_vblank(struct drm_crtc *crtc)
2873 {
2874         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2875         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2876         enum pipe pipe = intel_crtc->pipe;
2877         unsigned long irqflags;
2878
2879         if (gen11_dsi_configure_te(intel_crtc, false))
2880                 return;
2881
2882         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2883         bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2884         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2885 }
2886
2887 void skl_disable_flip_done(struct intel_crtc *crtc)
2888 {
2889         struct drm_i915_private *i915 = to_i915(crtc->base.dev);
2890         enum pipe pipe = crtc->pipe;
2891         unsigned long irqflags;
2892
2893         spin_lock_irqsave(&i915->irq_lock, irqflags);
2894
2895         bdw_disable_pipe_irq(i915, pipe, GEN9_PIPE_PLANE1_FLIP_DONE);
2896
2897         spin_unlock_irqrestore(&i915->irq_lock, irqflags);
2898 }
2899
2900 static void ibx_irq_reset(struct drm_i915_private *dev_priv)
2901 {
2902         struct intel_uncore *uncore = &dev_priv->uncore;
2903
2904         if (HAS_PCH_NOP(dev_priv))
2905                 return;
2906
2907         GEN3_IRQ_RESET(uncore, SDE);
2908
2909         if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
2910                 I915_WRITE(SERR_INT, 0xffffffff);
2911 }
2912
2913 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
2914 {
2915         struct intel_uncore *uncore = &dev_priv->uncore;
2916
2917         if (IS_CHERRYVIEW(dev_priv))
2918                 intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
2919         else
2920                 intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK);
2921
2922         i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
2923         intel_uncore_write(uncore, PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2924
2925         i9xx_pipestat_irq_reset(dev_priv);
2926
2927         GEN3_IRQ_RESET(uncore, VLV_);
2928         dev_priv->irq_mask = ~0u;
2929 }
2930
2931 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
2932 {
2933         struct intel_uncore *uncore = &dev_priv->uncore;
2934
2935         u32 pipestat_mask;
2936         u32 enable_mask;
2937         enum pipe pipe;
2938
2939         pipestat_mask = PIPE_CRC_DONE_INTERRUPT_STATUS;
2940
2941         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
2942         for_each_pipe(dev_priv, pipe)
2943                 i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
2944
2945         enable_mask = I915_DISPLAY_PORT_INTERRUPT |
2946                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2947                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2948                 I915_LPE_PIPE_A_INTERRUPT |
2949                 I915_LPE_PIPE_B_INTERRUPT;
2950
2951         if (IS_CHERRYVIEW(dev_priv))
2952                 enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT |
2953                         I915_LPE_PIPE_C_INTERRUPT;
2954
2955         drm_WARN_ON(&dev_priv->drm, dev_priv->irq_mask != ~0u);
2956
2957         dev_priv->irq_mask = ~enable_mask;
2958
2959         GEN3_IRQ_INIT(uncore, VLV_, dev_priv->irq_mask, enable_mask);
2960 }
2961
2962 /* drm_dma.h hooks
2963 */
2964 static void ilk_irq_reset(struct drm_i915_private *dev_priv)
2965 {
2966         struct intel_uncore *uncore = &dev_priv->uncore;
2967
2968         GEN3_IRQ_RESET(uncore, DE);
2969         dev_priv->irq_mask = ~0u;
2970
2971         if (IS_GEN(dev_priv, 7))
2972                 intel_uncore_write(uncore, GEN7_ERR_INT, 0xffffffff);
2973
2974         if (IS_HASWELL(dev_priv)) {
2975                 intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
2976                 intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
2977         }
2978
2979         gen5_gt_irq_reset(&dev_priv->gt);
2980
2981         ibx_irq_reset(dev_priv);
2982 }
2983
2984 static void valleyview_irq_reset(struct drm_i915_private *dev_priv)
2985 {
2986         I915_WRITE(VLV_MASTER_IER, 0);
2987         POSTING_READ(VLV_MASTER_IER);
2988
2989         gen5_gt_irq_reset(&dev_priv->gt);
2990
2991         spin_lock_irq(&dev_priv->irq_lock);
2992         if (dev_priv->display_irqs_enabled)
2993                 vlv_display_irq_reset(dev_priv);
2994         spin_unlock_irq(&dev_priv->irq_lock);
2995 }
2996
2997 static void gen8_irq_reset(struct drm_i915_private *dev_priv)
2998 {
2999         struct intel_uncore *uncore = &dev_priv->uncore;
3000         enum pipe pipe;
3001
3002         gen8_master_intr_disable(dev_priv->uncore.regs);
3003
3004         gen8_gt_irq_reset(&dev_priv->gt);
3005
3006         intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
3007         intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
3008
3009         for_each_pipe(dev_priv, pipe)
3010                 if (intel_display_power_is_enabled(dev_priv,
3011                                                    POWER_DOMAIN_PIPE(pipe)))
3012                         GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
3013
3014         GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_);
3015         GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_);
3016         GEN3_IRQ_RESET(uncore, GEN8_PCU_);
3017
3018         if (HAS_PCH_SPLIT(dev_priv))
3019                 ibx_irq_reset(dev_priv);
3020 }
3021
3022 static void gen11_display_irq_reset(struct drm_i915_private *dev_priv)
3023 {
3024         struct intel_uncore *uncore = &dev_priv->uncore;
3025         enum pipe pipe;
3026         u32 trans_mask = BIT(TRANSCODER_A) | BIT(TRANSCODER_B) |
3027                 BIT(TRANSCODER_C) | BIT(TRANSCODER_D);
3028
3029         intel_uncore_write(uncore, GEN11_DISPLAY_INT_CTL, 0);
3030
3031         if (INTEL_GEN(dev_priv) >= 12) {
3032                 enum transcoder trans;
3033
3034                 for_each_cpu_transcoder_masked(dev_priv, trans, trans_mask) {
3035                         enum intel_display_power_domain domain;
3036
3037                         domain = POWER_DOMAIN_TRANSCODER(trans);
3038                         if (!intel_display_power_is_enabled(dev_priv, domain))
3039                                 continue;
3040
3041                         intel_uncore_write(uncore, TRANS_PSR_IMR(trans), 0xffffffff);
3042                         intel_uncore_write(uncore, TRANS_PSR_IIR(trans), 0xffffffff);
3043                 }
3044         } else {
3045                 intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
3046                 intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
3047         }
3048
3049         for_each_pipe(dev_priv, pipe)
3050                 if (intel_display_power_is_enabled(dev_priv,
3051                                                    POWER_DOMAIN_PIPE(pipe)))
3052                         GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
3053
3054         GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_);
3055         GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_);
3056         GEN3_IRQ_RESET(uncore, GEN11_DE_HPD_);
3057
3058         if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3059                 GEN3_IRQ_RESET(uncore, SDE);
3060
3061         /* Wa_14010685332:cnp/cmp,tgp,adp */
3062         if (INTEL_PCH_TYPE(dev_priv) == PCH_CNP ||
3063             (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP &&
3064              INTEL_PCH_TYPE(dev_priv) < PCH_DG1)) {
3065                 intel_uncore_rmw(uncore, SOUTH_CHICKEN1,
3066                                  SBCLK_RUN_REFCLK_DIS, SBCLK_RUN_REFCLK_DIS);
3067                 intel_uncore_rmw(uncore, SOUTH_CHICKEN1,
3068                                  SBCLK_RUN_REFCLK_DIS, 0);
3069         }
3070 }
3071
3072 static void gen11_irq_reset(struct drm_i915_private *dev_priv)
3073 {
3074         struct intel_uncore *uncore = &dev_priv->uncore;
3075
3076         if (HAS_MASTER_UNIT_IRQ(dev_priv))
3077                 dg1_master_intr_disable_and_ack(dev_priv->uncore.regs);
3078         else
3079                 gen11_master_intr_disable(dev_priv->uncore.regs);
3080
3081         gen11_gt_irq_reset(&dev_priv->gt);
3082         gen11_display_irq_reset(dev_priv);
3083
3084         GEN3_IRQ_RESET(uncore, GEN11_GU_MISC_);
3085         GEN3_IRQ_RESET(uncore, GEN8_PCU_);
3086 }
3087
3088 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3089                                      u8 pipe_mask)
3090 {
3091         struct intel_uncore *uncore = &dev_priv->uncore;
3092
3093         u32 extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3094         enum pipe pipe;
3095
3096         if (INTEL_GEN(dev_priv) >= 9)
3097                 extra_ier |= GEN9_PIPE_PLANE1_FLIP_DONE;
3098
3099         spin_lock_irq(&dev_priv->irq_lock);
3100
3101         if (!intel_irqs_enabled(dev_priv)) {
3102                 spin_unlock_irq(&dev_priv->irq_lock);
3103                 return;
3104         }
3105
3106         for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3107                 GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe,
3108                                   dev_priv->de_irq_mask[pipe],
3109                                   ~dev_priv->de_irq_mask[pipe] | extra_ier);
3110
3111         spin_unlock_irq(&dev_priv->irq_lock);
3112 }
3113
3114 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3115                                      u8 pipe_mask)
3116 {
3117         struct intel_uncore *uncore = &dev_priv->uncore;
3118         enum pipe pipe;
3119
3120         spin_lock_irq(&dev_priv->irq_lock);
3121
3122         if (!intel_irqs_enabled(dev_priv)) {
3123                 spin_unlock_irq(&dev_priv->irq_lock);
3124                 return;
3125         }
3126
3127         for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3128                 GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
3129
3130         spin_unlock_irq(&dev_priv->irq_lock);
3131
3132         /* make sure we're done processing display irqs */
3133         intel_synchronize_irq(dev_priv);
3134 }
3135
3136 static void cherryview_irq_reset(struct drm_i915_private *dev_priv)
3137 {
3138         struct intel_uncore *uncore = &dev_priv->uncore;
3139
3140         I915_WRITE(GEN8_MASTER_IRQ, 0);
3141         POSTING_READ(GEN8_MASTER_IRQ);
3142
3143         gen8_gt_irq_reset(&dev_priv->gt);
3144
3145         GEN3_IRQ_RESET(uncore, GEN8_PCU_);
3146
3147         spin_lock_irq(&dev_priv->irq_lock);
3148         if (dev_priv->display_irqs_enabled)
3149                 vlv_display_irq_reset(dev_priv);
3150         spin_unlock_irq(&dev_priv->irq_lock);
3151 }
3152
3153 static u32 ibx_hotplug_enables(struct drm_i915_private *i915,
3154                                enum hpd_pin pin)
3155 {
3156         switch (pin) {
3157         case HPD_PORT_A:
3158                 /*
3159                  * When CPU and PCH are on the same package, port A
3160                  * HPD must be enabled in both north and south.
3161                  */
3162                 return HAS_PCH_LPT_LP(i915) ?
3163                         PORTA_HOTPLUG_ENABLE : 0;
3164         case HPD_PORT_B:
3165                 return PORTB_HOTPLUG_ENABLE |
3166                         PORTB_PULSE_DURATION_2ms;
3167         case HPD_PORT_C:
3168                 return PORTC_HOTPLUG_ENABLE |
3169                         PORTC_PULSE_DURATION_2ms;
3170         case HPD_PORT_D:
3171                 return PORTD_HOTPLUG_ENABLE |
3172                         PORTD_PULSE_DURATION_2ms;
3173         default:
3174                 return 0;
3175         }
3176 }
3177
3178 static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv)
3179 {
3180         u32 hotplug;
3181
3182         /*
3183          * Enable digital hotplug on the PCH, and configure the DP short pulse
3184          * duration to 2ms (which is the minimum in the Display Port spec).
3185          * The pulse duration bits are reserved on LPT+.
3186          */
3187         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3188         hotplug &= ~(PORTA_HOTPLUG_ENABLE |
3189                      PORTB_HOTPLUG_ENABLE |
3190                      PORTC_HOTPLUG_ENABLE |
3191                      PORTD_HOTPLUG_ENABLE |
3192                      PORTB_PULSE_DURATION_MASK |
3193                      PORTC_PULSE_DURATION_MASK |
3194                      PORTD_PULSE_DURATION_MASK);
3195         hotplug |= intel_hpd_hotplug_enables(dev_priv, ibx_hotplug_enables);
3196         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3197 }
3198
3199 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3200 {
3201         u32 hotplug_irqs, enabled_irqs;
3202
3203         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3204         hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3205
3206         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3207
3208         ibx_hpd_detection_setup(dev_priv);
3209 }
3210
3211 static u32 icp_ddi_hotplug_enables(struct drm_i915_private *i915,
3212                                    enum hpd_pin pin)
3213 {
3214         switch (pin) {
3215         case HPD_PORT_A:
3216         case HPD_PORT_B:
3217         case HPD_PORT_C:
3218         case HPD_PORT_D:
3219                 return SHOTPLUG_CTL_DDI_HPD_ENABLE(pin);
3220         default:
3221                 return 0;
3222         }
3223 }
3224
3225 static u32 icp_tc_hotplug_enables(struct drm_i915_private *i915,
3226                                   enum hpd_pin pin)
3227 {
3228         switch (pin) {
3229         case HPD_PORT_TC1:
3230         case HPD_PORT_TC2:
3231         case HPD_PORT_TC3:
3232         case HPD_PORT_TC4:
3233         case HPD_PORT_TC5:
3234         case HPD_PORT_TC6:
3235                 return ICP_TC_HPD_ENABLE(pin);
3236         default:
3237                 return 0;
3238         }
3239 }
3240
3241 static void icp_ddi_hpd_detection_setup(struct drm_i915_private *dev_priv)
3242 {
3243         u32 hotplug;
3244
3245         hotplug = I915_READ(SHOTPLUG_CTL_DDI);
3246         hotplug &= ~(SHOTPLUG_CTL_DDI_HPD_ENABLE(HPD_PORT_A) |
3247                      SHOTPLUG_CTL_DDI_HPD_ENABLE(HPD_PORT_B) |
3248                      SHOTPLUG_CTL_DDI_HPD_ENABLE(HPD_PORT_C) |
3249                      SHOTPLUG_CTL_DDI_HPD_ENABLE(HPD_PORT_D));
3250         hotplug |= intel_hpd_hotplug_enables(dev_priv, icp_ddi_hotplug_enables);
3251         I915_WRITE(SHOTPLUG_CTL_DDI, hotplug);
3252 }
3253
3254 static void icp_tc_hpd_detection_setup(struct drm_i915_private *dev_priv)
3255 {
3256         u32 hotplug;
3257
3258         hotplug = I915_READ(SHOTPLUG_CTL_TC);
3259         hotplug &= ~(ICP_TC_HPD_ENABLE(HPD_PORT_TC1) |
3260                      ICP_TC_HPD_ENABLE(HPD_PORT_TC2) |
3261                      ICP_TC_HPD_ENABLE(HPD_PORT_TC3) |
3262                      ICP_TC_HPD_ENABLE(HPD_PORT_TC4) |
3263                      ICP_TC_HPD_ENABLE(HPD_PORT_TC5) |
3264                      ICP_TC_HPD_ENABLE(HPD_PORT_TC6));
3265         hotplug |= intel_hpd_hotplug_enables(dev_priv, icp_tc_hotplug_enables);
3266         I915_WRITE(SHOTPLUG_CTL_TC, hotplug);
3267 }
3268
3269 static void icp_hpd_irq_setup(struct drm_i915_private *dev_priv)
3270 {
3271         u32 hotplug_irqs, enabled_irqs;
3272
3273         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3274         hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3275
3276         if (INTEL_PCH_TYPE(dev_priv) <= PCH_TGP)
3277                 I915_WRITE(SHPD_FILTER_CNT, SHPD_FILTER_CNT_500_ADJ);
3278
3279         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3280
3281         icp_ddi_hpd_detection_setup(dev_priv);
3282         icp_tc_hpd_detection_setup(dev_priv);
3283 }
3284
3285 static u32 gen11_hotplug_enables(struct drm_i915_private *i915,
3286                                  enum hpd_pin pin)
3287 {
3288         switch (pin) {
3289         case HPD_PORT_TC1:
3290         case HPD_PORT_TC2:
3291         case HPD_PORT_TC3:
3292         case HPD_PORT_TC4:
3293         case HPD_PORT_TC5:
3294         case HPD_PORT_TC6:
3295                 return GEN11_HOTPLUG_CTL_ENABLE(pin);
3296         default:
3297                 return 0;
3298         }
3299 }
3300
3301 static void dg1_hpd_irq_setup(struct drm_i915_private *dev_priv)
3302 {
3303         u32 val;
3304
3305         val = I915_READ(SOUTH_CHICKEN1);
3306         val |= (INVERT_DDIA_HPD |
3307                 INVERT_DDIB_HPD |
3308                 INVERT_DDIC_HPD |
3309                 INVERT_DDID_HPD);
3310         I915_WRITE(SOUTH_CHICKEN1, val);
3311
3312         icp_hpd_irq_setup(dev_priv);
3313 }
3314
3315 static void gen11_tc_hpd_detection_setup(struct drm_i915_private *dev_priv)
3316 {
3317         u32 hotplug;
3318
3319         hotplug = I915_READ(GEN11_TC_HOTPLUG_CTL);
3320         hotplug &= ~(GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC1) |
3321                      GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC2) |
3322                      GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC3) |
3323                      GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC4) |
3324                      GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC5) |
3325                      GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC6));
3326         hotplug |= intel_hpd_hotplug_enables(dev_priv, gen11_hotplug_enables);
3327         I915_WRITE(GEN11_TC_HOTPLUG_CTL, hotplug);
3328 }
3329
3330 static void gen11_tbt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3331 {
3332         u32 hotplug;
3333
3334         hotplug = I915_READ(GEN11_TBT_HOTPLUG_CTL);
3335         hotplug &= ~(GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC1) |
3336                      GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC2) |
3337                      GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC3) |
3338                      GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC4) |
3339                      GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC5) |
3340                      GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC6));
3341         hotplug |= intel_hpd_hotplug_enables(dev_priv, gen11_hotplug_enables);
3342         I915_WRITE(GEN11_TBT_HOTPLUG_CTL, hotplug);
3343 }
3344
3345 static void gen11_hpd_irq_setup(struct drm_i915_private *dev_priv)
3346 {
3347         u32 hotplug_irqs, enabled_irqs;
3348         u32 val;
3349
3350         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.hpd);
3351         hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.hpd);
3352
3353         val = I915_READ(GEN11_DE_HPD_IMR);
3354         val &= ~hotplug_irqs;
3355         val |= ~enabled_irqs & hotplug_irqs;
3356         I915_WRITE(GEN11_DE_HPD_IMR, val);
3357         POSTING_READ(GEN11_DE_HPD_IMR);
3358
3359         gen11_tc_hpd_detection_setup(dev_priv);
3360         gen11_tbt_hpd_detection_setup(dev_priv);
3361
3362         if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3363                 icp_hpd_irq_setup(dev_priv);
3364 }
3365
3366 static u32 spt_hotplug_enables(struct drm_i915_private *i915,
3367                                enum hpd_pin pin)
3368 {
3369         switch (pin) {
3370         case HPD_PORT_A:
3371                 return PORTA_HOTPLUG_ENABLE;
3372         case HPD_PORT_B:
3373                 return PORTB_HOTPLUG_ENABLE;
3374         case HPD_PORT_C:
3375                 return PORTC_HOTPLUG_ENABLE;
3376         case HPD_PORT_D:
3377                 return PORTD_HOTPLUG_ENABLE;
3378         default:
3379                 return 0;
3380         }
3381 }
3382
3383 static u32 spt_hotplug2_enables(struct drm_i915_private *i915,
3384                                 enum hpd_pin pin)
3385 {
3386         switch (pin) {
3387         case HPD_PORT_E:
3388                 return PORTE_HOTPLUG_ENABLE;
3389         default:
3390                 return 0;
3391         }
3392 }
3393
3394 static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3395 {
3396         u32 val, hotplug;
3397
3398         /* Display WA #1179 WaHardHangonHotPlug: cnp */
3399         if (HAS_PCH_CNP(dev_priv)) {
3400                 val = I915_READ(SOUTH_CHICKEN1);
3401                 val &= ~CHASSIS_CLK_REQ_DURATION_MASK;
3402                 val |= CHASSIS_CLK_REQ_DURATION(0xf);
3403                 I915_WRITE(SOUTH_CHICKEN1, val);
3404         }
3405
3406         /* Enable digital hotplug on the PCH */
3407         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3408         hotplug &= ~(PORTA_HOTPLUG_ENABLE |
3409                      PORTB_HOTPLUG_ENABLE |
3410                      PORTC_HOTPLUG_ENABLE |
3411                      PORTD_HOTPLUG_ENABLE);
3412         hotplug |= intel_hpd_hotplug_enables(dev_priv, spt_hotplug_enables);
3413         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3414
3415         hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3416         hotplug &= ~PORTE_HOTPLUG_ENABLE;
3417         hotplug |= intel_hpd_hotplug_enables(dev_priv, spt_hotplug2_enables);
3418         I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3419 }
3420
3421 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3422 {
3423         u32 hotplug_irqs, enabled_irqs;
3424
3425         if (INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
3426                 I915_WRITE(SHPD_FILTER_CNT, SHPD_FILTER_CNT_500_ADJ);
3427
3428         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3429         hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3430
3431         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3432
3433         spt_hpd_detection_setup(dev_priv);
3434 }
3435
3436 static u32 ilk_hotplug_enables(struct drm_i915_private *i915,
3437                                enum hpd_pin pin)
3438 {
3439         switch (pin) {
3440         case HPD_PORT_A:
3441                 return DIGITAL_PORTA_HOTPLUG_ENABLE |
3442                         DIGITAL_PORTA_PULSE_DURATION_2ms;
3443         default:
3444                 return 0;
3445         }
3446 }
3447
3448 static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv)
3449 {
3450         u32 hotplug;
3451
3452         /*
3453          * Enable digital hotplug on the CPU, and configure the DP short pulse
3454          * duration to 2ms (which is the minimum in the Display Port spec)
3455          * The pulse duration bits are reserved on HSW+.
3456          */
3457         hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3458         hotplug &= ~(DIGITAL_PORTA_HOTPLUG_ENABLE |
3459                      DIGITAL_PORTA_PULSE_DURATION_MASK);
3460         hotplug |= intel_hpd_hotplug_enables(dev_priv, ilk_hotplug_enables);
3461         I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3462 }
3463
3464 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3465 {
3466         u32 hotplug_irqs, enabled_irqs;
3467
3468         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.hpd);
3469         hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.hpd);
3470
3471         if (INTEL_GEN(dev_priv) >= 8)
3472                 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3473         else
3474                 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3475
3476         ilk_hpd_detection_setup(dev_priv);
3477
3478         ibx_hpd_irq_setup(dev_priv);
3479 }
3480
3481 static u32 bxt_hotplug_enables(struct drm_i915_private *i915,
3482                                enum hpd_pin pin)
3483 {
3484         u32 hotplug;
3485
3486         switch (pin) {
3487         case HPD_PORT_A:
3488                 hotplug = PORTA_HOTPLUG_ENABLE;
3489                 if (intel_bios_is_port_hpd_inverted(i915, PORT_A))
3490                         hotplug |= BXT_DDIA_HPD_INVERT;
3491                 return hotplug;
3492         case HPD_PORT_B:
3493                 hotplug = PORTB_HOTPLUG_ENABLE;
3494                 if (intel_bios_is_port_hpd_inverted(i915, PORT_B))
3495                         hotplug |= BXT_DDIB_HPD_INVERT;
3496                 return hotplug;
3497         case HPD_PORT_C:
3498                 hotplug = PORTC_HOTPLUG_ENABLE;
3499                 if (intel_bios_is_port_hpd_inverted(i915, PORT_C))
3500                         hotplug |= BXT_DDIC_HPD_INVERT;
3501                 return hotplug;
3502         default:
3503                 return 0;
3504         }
3505 }
3506
3507 static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3508 {
3509         u32 hotplug;
3510
3511         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3512         hotplug &= ~(PORTA_HOTPLUG_ENABLE |
3513                      PORTB_HOTPLUG_ENABLE |
3514                      PORTC_HOTPLUG_ENABLE |
3515                      BXT_DDIA_HPD_INVERT |
3516                      BXT_DDIB_HPD_INVERT |
3517                      BXT_DDIC_HPD_INVERT);
3518         hotplug |= intel_hpd_hotplug_enables(dev_priv, bxt_hotplug_enables);
3519         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3520 }
3521
3522 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3523 {
3524         u32 hotplug_irqs, enabled_irqs;
3525
3526         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.hpd);
3527         hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.hpd);
3528
3529         bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3530
3531         bxt_hpd_detection_setup(dev_priv);
3532 }
3533
3534 /*
3535  * SDEIER is also touched by the interrupt handler to work around missed PCH
3536  * interrupts. Hence we can't update it after the interrupt handler is enabled -
3537  * instead we unconditionally enable all PCH interrupt sources here, but then
3538  * only unmask them as needed with SDEIMR.
3539  *
3540  * Note that we currently do this after installing the interrupt handler,
3541  * but before we enable the master interrupt. That should be sufficient
3542  * to avoid races with the irq handler, assuming we have MSI. Shared legacy
3543  * interrupts could still race.
3544  */
3545 static void ibx_irq_postinstall(struct drm_i915_private *dev_priv)
3546 {
3547         struct intel_uncore *uncore = &dev_priv->uncore;
3548         u32 mask;
3549
3550         if (HAS_PCH_NOP(dev_priv))
3551                 return;
3552
3553         if (HAS_PCH_IBX(dev_priv))
3554                 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3555         else if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3556                 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3557         else
3558                 mask = SDE_GMBUS_CPT;
3559
3560         GEN3_IRQ_INIT(uncore, SDE, ~mask, 0xffffffff);
3561 }
3562
3563 static void ilk_irq_postinstall(struct drm_i915_private *dev_priv)
3564 {
3565         struct intel_uncore *uncore = &dev_priv->uncore;
3566         u32 display_mask, extra_mask;
3567
3568         if (INTEL_GEN(dev_priv) >= 7) {
3569                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3570                                 DE_PCH_EVENT_IVB | DE_AUX_CHANNEL_A_IVB);
3571                 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3572                               DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3573                               DE_DP_A_HOTPLUG_IVB);
3574         } else {
3575                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3576                                 DE_AUX_CHANNEL_A | DE_PIPEB_CRC_DONE |
3577                                 DE_PIPEA_CRC_DONE | DE_POISON);
3578                 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK |
3579                               DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3580                               DE_DP_A_HOTPLUG);
3581         }
3582
3583         if (IS_HASWELL(dev_priv)) {
3584                 gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR);
3585                 display_mask |= DE_EDP_PSR_INT_HSW;
3586         }
3587
3588         if (IS_IRONLAKE_M(dev_priv))
3589                 extra_mask |= DE_PCU_EVENT;
3590
3591         dev_priv->irq_mask = ~display_mask;
3592
3593         ibx_irq_postinstall(dev_priv);
3594
3595         gen5_gt_irq_postinstall(&dev_priv->gt);
3596
3597         GEN3_IRQ_INIT(uncore, DE, dev_priv->irq_mask,
3598                       display_mask | extra_mask);
3599 }
3600
3601 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3602 {
3603         lockdep_assert_held(&dev_priv->irq_lock);
3604
3605         if (dev_priv->display_irqs_enabled)
3606                 return;
3607
3608         dev_priv->display_irqs_enabled = true;
3609
3610         if (intel_irqs_enabled(dev_priv)) {
3611                 vlv_display_irq_reset(dev_priv);
3612                 vlv_display_irq_postinstall(dev_priv);
3613         }
3614 }
3615
3616 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3617 {
3618         lockdep_assert_held(&dev_priv->irq_lock);
3619
3620         if (!dev_priv->display_irqs_enabled)
3621                 return;
3622
3623         dev_priv->display_irqs_enabled = false;
3624
3625         if (intel_irqs_enabled(dev_priv))
3626                 vlv_display_irq_reset(dev_priv);
3627 }
3628
3629
3630 static void valleyview_irq_postinstall(struct drm_i915_private *dev_priv)
3631 {
3632         gen5_gt_irq_postinstall(&dev_priv->gt);
3633
3634         spin_lock_irq(&dev_priv->irq_lock);
3635         if (dev_priv->display_irqs_enabled)
3636                 vlv_display_irq_postinstall(dev_priv);
3637         spin_unlock_irq(&dev_priv->irq_lock);
3638
3639         I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3640         POSTING_READ(VLV_MASTER_IER);
3641 }
3642
3643 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3644 {
3645         struct intel_uncore *uncore = &dev_priv->uncore;
3646
3647         u32 de_pipe_masked = gen8_de_pipe_fault_mask(dev_priv) |
3648                 GEN8_PIPE_CDCLK_CRC_DONE;
3649         u32 de_pipe_enables;
3650         u32 de_port_masked = gen8_de_port_aux_mask(dev_priv);
3651         u32 de_port_enables;
3652         u32 de_misc_masked = GEN8_DE_EDP_PSR;
3653         u32 trans_mask = BIT(TRANSCODER_A) | BIT(TRANSCODER_B) |
3654                 BIT(TRANSCODER_C) | BIT(TRANSCODER_D);
3655         enum pipe pipe;
3656
3657         if (INTEL_GEN(dev_priv) <= 10)
3658                 de_misc_masked |= GEN8_DE_MISC_GSE;
3659
3660         if (IS_GEN9_LP(dev_priv))
3661                 de_port_masked |= BXT_DE_PORT_GMBUS;
3662
3663         if (INTEL_GEN(dev_priv) >= 11) {
3664                 enum port port;
3665
3666                 if (intel_bios_is_dsi_present(dev_priv, &port))
3667                         de_port_masked |= DSI0_TE | DSI1_TE;
3668         }
3669
3670         de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3671                                            GEN8_PIPE_FIFO_UNDERRUN;
3672
3673         if (INTEL_GEN(dev_priv) >= 9)
3674                 de_pipe_enables |= GEN9_PIPE_PLANE1_FLIP_DONE;
3675
3676         de_port_enables = de_port_masked;
3677         if (IS_GEN9_LP(dev_priv))
3678                 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3679         else if (IS_BROADWELL(dev_priv))
3680                 de_port_enables |= BDW_DE_PORT_HOTPLUG_MASK;
3681
3682         if (INTEL_GEN(dev_priv) >= 12) {
3683                 enum transcoder trans;
3684
3685                 for_each_cpu_transcoder_masked(dev_priv, trans, trans_mask) {
3686                         enum intel_display_power_domain domain;
3687
3688                         domain = POWER_DOMAIN_TRANSCODER(trans);
3689                         if (!intel_display_power_is_enabled(dev_priv, domain))
3690                                 continue;
3691
3692                         gen3_assert_iir_is_zero(uncore, TRANS_PSR_IIR(trans));
3693                 }
3694         } else {
3695                 gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR);
3696         }
3697
3698         for_each_pipe(dev_priv, pipe) {
3699                 dev_priv->de_irq_mask[pipe] = ~de_pipe_masked;
3700
3701                 if (intel_display_power_is_enabled(dev_priv,
3702                                 POWER_DOMAIN_PIPE(pipe)))
3703                         GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe,
3704                                           dev_priv->de_irq_mask[pipe],
3705                                           de_pipe_enables);
3706         }
3707
3708         GEN3_IRQ_INIT(uncore, GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3709         GEN3_IRQ_INIT(uncore, GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
3710
3711         if (INTEL_GEN(dev_priv) >= 11) {
3712                 u32 de_hpd_masked = 0;
3713                 u32 de_hpd_enables = GEN11_DE_TC_HOTPLUG_MASK |
3714                                      GEN11_DE_TBT_HOTPLUG_MASK;
3715
3716                 GEN3_IRQ_INIT(uncore, GEN11_DE_HPD_, ~de_hpd_masked,
3717                               de_hpd_enables);
3718         }
3719 }
3720
3721 static void gen8_irq_postinstall(struct drm_i915_private *dev_priv)
3722 {
3723         if (HAS_PCH_SPLIT(dev_priv))
3724                 ibx_irq_postinstall(dev_priv);
3725
3726         gen8_gt_irq_postinstall(&dev_priv->gt);
3727         gen8_de_irq_postinstall(dev_priv);
3728
3729         gen8_master_intr_enable(dev_priv->uncore.regs);
3730 }
3731
3732 static void icp_irq_postinstall(struct drm_i915_private *dev_priv)
3733 {
3734         struct intel_uncore *uncore = &dev_priv->uncore;
3735         u32 mask = SDE_GMBUS_ICP;
3736
3737         GEN3_IRQ_INIT(uncore, SDE, ~mask, 0xffffffff);
3738 }
3739
3740 static void gen11_irq_postinstall(struct drm_i915_private *dev_priv)
3741 {
3742         struct intel_uncore *uncore = &dev_priv->uncore;
3743         u32 gu_misc_masked = GEN11_GU_MISC_GSE;
3744
3745         if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3746                 icp_irq_postinstall(dev_priv);
3747
3748         gen11_gt_irq_postinstall(&dev_priv->gt);
3749         gen8_de_irq_postinstall(dev_priv);
3750
3751         GEN3_IRQ_INIT(uncore, GEN11_GU_MISC_, ~gu_misc_masked, gu_misc_masked);
3752
3753         I915_WRITE(GEN11_DISPLAY_INT_CTL, GEN11_DISPLAY_IRQ_ENABLE);
3754
3755         if (HAS_MASTER_UNIT_IRQ(dev_priv)) {
3756                 dg1_master_intr_enable(uncore->regs);
3757                 POSTING_READ(DG1_MSTR_UNIT_INTR);
3758         } else {
3759                 gen11_master_intr_enable(uncore->regs);
3760                 POSTING_READ(GEN11_GFX_MSTR_IRQ);
3761         }
3762 }
3763
3764 static void cherryview_irq_postinstall(struct drm_i915_private *dev_priv)
3765 {
3766         gen8_gt_irq_postinstall(&dev_priv->gt);
3767
3768         spin_lock_irq(&dev_priv->irq_lock);
3769         if (dev_priv->display_irqs_enabled)
3770                 vlv_display_irq_postinstall(dev_priv);
3771         spin_unlock_irq(&dev_priv->irq_lock);
3772
3773         I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3774         POSTING_READ(GEN8_MASTER_IRQ);
3775 }
3776
3777 static void i8xx_irq_reset(struct drm_i915_private *dev_priv)
3778 {
3779         struct intel_uncore *uncore = &dev_priv->uncore;
3780
3781         i9xx_pipestat_irq_reset(dev_priv);
3782
3783         GEN2_IRQ_RESET(uncore);
3784         dev_priv->irq_mask = ~0u;
3785 }
3786
3787 static void i8xx_irq_postinstall(struct drm_i915_private *dev_priv)
3788 {
3789         struct intel_uncore *uncore = &dev_priv->uncore;
3790         u16 enable_mask;
3791
3792         intel_uncore_write16(uncore,
3793                              EMR,
3794                              ~(I915_ERROR_PAGE_TABLE |
3795                                I915_ERROR_MEMORY_REFRESH));
3796
3797         /* Unmask the interrupts that we always want on. */
3798         dev_priv->irq_mask =
3799                 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3800                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3801                   I915_MASTER_ERROR_INTERRUPT);
3802
3803         enable_mask =
3804                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3805                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3806                 I915_MASTER_ERROR_INTERRUPT |
3807                 I915_USER_INTERRUPT;
3808
3809         GEN2_IRQ_INIT(uncore, dev_priv->irq_mask, enable_mask);
3810
3811         /* Interrupt setup is already guaranteed to be single-threaded, this is
3812          * just to make the assert_spin_locked check happy. */
3813         spin_lock_irq(&dev_priv->irq_lock);
3814         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3815         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3816         spin_unlock_irq(&dev_priv->irq_lock);
3817 }
3818
3819 static void i8xx_error_irq_ack(struct drm_i915_private *i915,
3820                                u16 *eir, u16 *eir_stuck)
3821 {
3822         struct intel_uncore *uncore = &i915->uncore;
3823         u16 emr;
3824
3825         *eir = intel_uncore_read16(uncore, EIR);
3826
3827         if (*eir)
3828                 intel_uncore_write16(uncore, EIR, *eir);
3829
3830         *eir_stuck = intel_uncore_read16(uncore, EIR);
3831         if (*eir_stuck == 0)
3832                 return;
3833
3834         /*
3835          * Toggle all EMR bits to make sure we get an edge
3836          * in the ISR master error bit if we don't clear
3837          * all the EIR bits. Otherwise the edge triggered
3838          * IIR on i965/g4x wouldn't notice that an interrupt
3839          * is still pending. Also some EIR bits can't be
3840          * cleared except by handling the underlying error
3841          * (or by a GPU reset) so we mask any bit that
3842          * remains set.
3843          */
3844         emr = intel_uncore_read16(uncore, EMR);
3845         intel_uncore_write16(uncore, EMR, 0xffff);
3846         intel_uncore_write16(uncore, EMR, emr | *eir_stuck);
3847 }
3848
3849 static void i8xx_error_irq_handler(struct drm_i915_private *dev_priv,
3850                                    u16 eir, u16 eir_stuck)
3851 {
3852         DRM_DEBUG("Master Error: EIR 0x%04x\n", eir);
3853
3854         if (eir_stuck)
3855                 drm_dbg(&dev_priv->drm, "EIR stuck: 0x%04x, masked\n",
3856                         eir_stuck);
3857 }
3858
3859 static void i9xx_error_irq_ack(struct drm_i915_private *dev_priv,
3860                                u32 *eir, u32 *eir_stuck)
3861 {
3862         u32 emr;
3863
3864         *eir = I915_READ(EIR);
3865
3866         I915_WRITE(EIR, *eir);
3867
3868         *eir_stuck = I915_READ(EIR);
3869         if (*eir_stuck == 0)
3870                 return;
3871
3872         /*
3873          * Toggle all EMR bits to make sure we get an edge
3874          * in the ISR master error bit if we don't clear
3875          * all the EIR bits. Otherwise the edge triggered
3876          * IIR on i965/g4x wouldn't notice that an interrupt
3877          * is still pending. Also some EIR bits can't be
3878          * cleared except by handling the underlying error
3879          * (or by a GPU reset) so we mask any bit that
3880          * remains set.
3881          */
3882         emr = I915_READ(EMR);
3883         I915_WRITE(EMR, 0xffffffff);
3884         I915_WRITE(EMR, emr | *eir_stuck);
3885 }
3886
3887 static void i9xx_error_irq_handler(struct drm_i915_private *dev_priv,
3888                                    u32 eir, u32 eir_stuck)
3889 {
3890         DRM_DEBUG("Master Error, EIR 0x%08x\n", eir);
3891
3892         if (eir_stuck)
3893                 drm_dbg(&dev_priv->drm, "EIR stuck: 0x%08x, masked\n",
3894                         eir_stuck);
3895 }
3896
3897 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3898 {
3899         struct drm_i915_private *dev_priv = arg;
3900         irqreturn_t ret = IRQ_NONE;
3901
3902         if (!intel_irqs_enabled(dev_priv))
3903                 return IRQ_NONE;
3904
3905         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3906         disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3907
3908         do {
3909                 u32 pipe_stats[I915_MAX_PIPES] = {};
3910                 u16 eir = 0, eir_stuck = 0;
3911                 u16 iir;
3912
3913                 iir = intel_uncore_read16(&dev_priv->uncore, GEN2_IIR);
3914                 if (iir == 0)
3915                         break;
3916
3917                 ret = IRQ_HANDLED;
3918
3919                 /* Call regardless, as some status bits might not be
3920                  * signalled in iir */
3921                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
3922
3923                 if (iir & I915_MASTER_ERROR_INTERRUPT)
3924                         i8xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
3925
3926                 intel_uncore_write16(&dev_priv->uncore, GEN2_IIR, iir);
3927
3928                 if (iir & I915_USER_INTERRUPT)
3929                         intel_engine_signal_breadcrumbs(dev_priv->gt.engine[RCS0]);
3930
3931                 if (iir & I915_MASTER_ERROR_INTERRUPT)
3932                         i8xx_error_irq_handler(dev_priv, eir, eir_stuck);
3933
3934                 i8xx_pipestat_irq_handler(dev_priv, iir, pipe_stats);
3935         } while (0);
3936
3937         enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3938
3939         return ret;
3940 }
3941
3942 static void i915_irq_reset(struct drm_i915_private *dev_priv)
3943 {
3944         struct intel_uncore *uncore = &dev_priv->uncore;
3945
3946         if (I915_HAS_HOTPLUG(dev_priv)) {
3947                 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3948                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3949         }
3950
3951         i9xx_pipestat_irq_reset(dev_priv);
3952
3953         GEN3_IRQ_RESET(uncore, GEN2_);
3954         dev_priv->irq_mask = ~0u;
3955 }
3956
3957 static void i915_irq_postinstall(struct drm_i915_private *dev_priv)
3958 {
3959         struct intel_uncore *uncore = &dev_priv->uncore;
3960         u32 enable_mask;
3961
3962         I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE |
3963                           I915_ERROR_MEMORY_REFRESH));
3964
3965         /* Unmask the interrupts that we always want on. */
3966         dev_priv->irq_mask =
3967                 ~(I915_ASLE_INTERRUPT |
3968                   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3969                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3970                   I915_MASTER_ERROR_INTERRUPT);
3971
3972         enable_mask =
3973                 I915_ASLE_INTERRUPT |
3974                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3975                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3976                 I915_MASTER_ERROR_INTERRUPT |
3977                 I915_USER_INTERRUPT;
3978
3979         if (I915_HAS_HOTPLUG(dev_priv)) {
3980                 /* Enable in IER... */
3981                 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3982                 /* and unmask in IMR */
3983                 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3984         }
3985
3986         GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
3987
3988         /* Interrupt setup is already guaranteed to be single-threaded, this is
3989          * just to make the assert_spin_locked check happy. */
3990         spin_lock_irq(&dev_priv->irq_lock);
3991         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3992         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3993         spin_unlock_irq(&dev_priv->irq_lock);
3994
3995         i915_enable_asle_pipestat(dev_priv);
3996 }
3997
3998 static irqreturn_t i915_irq_handler(int irq, void *arg)
3999 {
4000         struct drm_i915_private *dev_priv = arg;
4001         irqreturn_t ret = IRQ_NONE;
4002
4003         if (!intel_irqs_enabled(dev_priv))
4004                 return IRQ_NONE;
4005
4006         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4007         disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4008
4009         do {
4010                 u32 pipe_stats[I915_MAX_PIPES] = {};
4011                 u32 eir = 0, eir_stuck = 0;
4012                 u32 hotplug_status = 0;
4013                 u32 iir;
4014
4015                 iir = I915_READ(GEN2_IIR);
4016                 if (iir == 0)
4017                         break;
4018
4019                 ret = IRQ_HANDLED;
4020
4021                 if (I915_HAS_HOTPLUG(dev_priv) &&
4022                     iir & I915_DISPLAY_PORT_INTERRUPT)
4023                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4024
4025                 /* Call regardless, as some status bits might not be
4026                  * signalled in iir */
4027                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4028
4029                 if (iir & I915_MASTER_ERROR_INTERRUPT)
4030                         i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4031
4032                 I915_WRITE(GEN2_IIR, iir);
4033
4034                 if (iir & I915_USER_INTERRUPT)
4035                         intel_engine_signal_breadcrumbs(dev_priv->gt.engine[RCS0]);
4036
4037                 if (iir & I915_MASTER_ERROR_INTERRUPT)
4038                         i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
4039
4040                 if (hotplug_status)
4041                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4042
4043                 i915_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4044         } while (0);
4045
4046         enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4047
4048         return ret;
4049 }
4050
4051 static void i965_irq_reset(struct drm_i915_private *dev_priv)
4052 {
4053         struct intel_uncore *uncore = &dev_priv->uncore;
4054
4055         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4056         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4057
4058         i9xx_pipestat_irq_reset(dev_priv);
4059
4060         GEN3_IRQ_RESET(uncore, GEN2_);
4061         dev_priv->irq_mask = ~0u;
4062 }
4063
4064 static void i965_irq_postinstall(struct drm_i915_private *dev_priv)
4065 {
4066         struct intel_uncore *uncore = &dev_priv->uncore;
4067         u32 enable_mask;
4068         u32 error_mask;
4069
4070         /*
4071          * Enable some error detection, note the instruction error mask
4072          * bit is reserved, so we leave it masked.
4073          */
4074         if (IS_G4X(dev_priv)) {
4075                 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4076                                GM45_ERROR_MEM_PRIV |
4077                                GM45_ERROR_CP_PRIV |
4078                                I915_ERROR_MEMORY_REFRESH);
4079         } else {
4080                 error_mask = ~(I915_ERROR_PAGE_TABLE |
4081                                I915_ERROR_MEMORY_REFRESH);
4082         }
4083         I915_WRITE(EMR, error_mask);
4084
4085         /* Unmask the interrupts that we always want on. */
4086         dev_priv->irq_mask =
4087                 ~(I915_ASLE_INTERRUPT |
4088                   I915_DISPLAY_PORT_INTERRUPT |
4089                   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4090                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4091                   I915_MASTER_ERROR_INTERRUPT);
4092
4093         enable_mask =
4094                 I915_ASLE_INTERRUPT |
4095                 I915_DISPLAY_PORT_INTERRUPT |
4096                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4097                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4098                 I915_MASTER_ERROR_INTERRUPT |
4099                 I915_USER_INTERRUPT;
4100
4101         if (IS_G4X(dev_priv))
4102                 enable_mask |= I915_BSD_USER_INTERRUPT;
4103
4104         GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
4105
4106         /* Interrupt setup is already guaranteed to be single-threaded, this is
4107          * just to make the assert_spin_locked check happy. */
4108         spin_lock_irq(&dev_priv->irq_lock);
4109         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4110         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4111         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4112         spin_unlock_irq(&dev_priv->irq_lock);
4113
4114         i915_enable_asle_pipestat(dev_priv);
4115 }
4116
4117 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
4118 {
4119         u32 hotplug_en;
4120
4121         lockdep_assert_held(&dev_priv->irq_lock);
4122
4123         /* Note HDMI and DP share hotplug bits */
4124         /* enable bits are the same for all generations */
4125         hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
4126         /* Programming the CRT detection parameters tends
4127            to generate a spurious hotplug event about three
4128            seconds later.  So just do it once.
4129         */
4130         if (IS_G4X(dev_priv))
4131                 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4132         hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4133
4134         /* Ignore TV since it's buggy */
4135         i915_hotplug_interrupt_update_locked(dev_priv,
4136                                              HOTPLUG_INT_EN_MASK |
4137                                              CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4138                                              CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4139                                              hotplug_en);
4140 }
4141
4142 static irqreturn_t i965_irq_handler(int irq, void *arg)
4143 {
4144         struct drm_i915_private *dev_priv = arg;
4145         irqreturn_t ret = IRQ_NONE;
4146
4147         if (!intel_irqs_enabled(dev_priv))
4148                 return IRQ_NONE;
4149
4150         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4151         disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4152
4153         do {
4154                 u32 pipe_stats[I915_MAX_PIPES] = {};
4155                 u32 eir = 0, eir_stuck = 0;
4156                 u32 hotplug_status = 0;
4157                 u32 iir;
4158
4159                 iir = I915_READ(GEN2_IIR);
4160                 if (iir == 0)
4161                         break;
4162
4163                 ret = IRQ_HANDLED;
4164
4165                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
4166                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4167
4168                 /* Call regardless, as some status bits might not be
4169                  * signalled in iir */
4170                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4171
4172                 if (iir & I915_MASTER_ERROR_INTERRUPT)
4173                         i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4174
4175                 I915_WRITE(GEN2_IIR, iir);
4176
4177                 if (iir & I915_USER_INTERRUPT)
4178                         intel_engine_signal_breadcrumbs(dev_priv->gt.engine[RCS0]);
4179
4180                 if (iir & I915_BSD_USER_INTERRUPT)
4181                         intel_engine_signal_breadcrumbs(dev_priv->gt.engine[VCS0]);
4182
4183                 if (iir & I915_MASTER_ERROR_INTERRUPT)
4184                         i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
4185
4186                 if (hotplug_status)
4187                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4188
4189                 i965_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4190         } while (0);
4191
4192         enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4193
4194         return ret;
4195 }
4196
4197 /**
4198  * intel_irq_init - initializes irq support
4199  * @dev_priv: i915 device instance
4200  *
4201  * This function initializes all the irq support including work items, timers
4202  * and all the vtables. It does not setup the interrupt itself though.
4203  */
4204 void intel_irq_init(struct drm_i915_private *dev_priv)
4205 {
4206         struct drm_device *dev = &dev_priv->drm;
4207         int i;
4208
4209         INIT_WORK(&dev_priv->l3_parity.error_work, ivb_parity_work);
4210         for (i = 0; i < MAX_L3_SLICES; ++i)
4211                 dev_priv->l3_parity.remap_info[i] = NULL;
4212
4213         /* pre-gen11 the guc irqs bits are in the upper 16 bits of the pm reg */
4214         if (HAS_GT_UC(dev_priv) && INTEL_GEN(dev_priv) < 11)
4215                 dev_priv->gt.pm_guc_events = GUC_INTR_GUC2HOST << 16;
4216
4217         if (!HAS_DISPLAY(dev_priv))
4218                 return;
4219
4220         intel_hpd_init_pins(dev_priv);
4221
4222         intel_hpd_init_work(dev_priv);
4223
4224         dev->vblank_disable_immediate = true;
4225
4226         /* Most platforms treat the display irq block as an always-on
4227          * power domain. vlv/chv can disable it at runtime and need
4228          * special care to avoid writing any of the display block registers
4229          * outside of the power domain. We defer setting up the display irqs
4230          * in this case to the runtime pm.
4231          */
4232         dev_priv->display_irqs_enabled = true;
4233         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4234                 dev_priv->display_irqs_enabled = false;
4235
4236         dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD;
4237         /* If we have MST support, we want to avoid doing short HPD IRQ storm
4238          * detection, as short HPD storms will occur as a natural part of
4239          * sideband messaging with MST.
4240          * On older platforms however, IRQ storms can occur with both long and
4241          * short pulses, as seen on some G4x systems.
4242          */
4243         dev_priv->hotplug.hpd_short_storm_enabled = !HAS_DP_MST(dev_priv);
4244
4245         if (HAS_GMCH(dev_priv)) {
4246                 if (I915_HAS_HOTPLUG(dev_priv))
4247                         dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4248         } else {
4249                 if (HAS_PCH_DG1(dev_priv))
4250                         dev_priv->display.hpd_irq_setup = dg1_hpd_irq_setup;
4251                 else if (INTEL_GEN(dev_priv) >= 11)
4252                         dev_priv->display.hpd_irq_setup = gen11_hpd_irq_setup;
4253                 else if (IS_GEN9_LP(dev_priv))
4254                         dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4255                 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
4256                         dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4257                 else
4258                         dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4259         }
4260 }
4261
4262 /**
4263  * intel_irq_fini - deinitializes IRQ support
4264  * @i915: i915 device instance
4265  *
4266  * This function deinitializes all the IRQ support.
4267  */
4268 void intel_irq_fini(struct drm_i915_private *i915)
4269 {
4270         int i;
4271
4272         for (i = 0; i < MAX_L3_SLICES; ++i)
4273                 kfree(i915->l3_parity.remap_info[i]);
4274 }
4275
4276 static irq_handler_t intel_irq_handler(struct drm_i915_private *dev_priv)
4277 {
4278         if (HAS_GMCH(dev_priv)) {
4279                 if (IS_CHERRYVIEW(dev_priv))
4280                         return cherryview_irq_handler;
4281                 else if (IS_VALLEYVIEW(dev_priv))
4282                         return valleyview_irq_handler;
4283                 else if (IS_GEN(dev_priv, 4))
4284                         return i965_irq_handler;
4285                 else if (IS_GEN(dev_priv, 3))
4286                         return i915_irq_handler;
4287                 else
4288                         return i8xx_irq_handler;
4289         } else {
4290                 if (HAS_MASTER_UNIT_IRQ(dev_priv))
4291                         return dg1_irq_handler;
4292                 if (INTEL_GEN(dev_priv) >= 11)
4293                         return gen11_irq_handler;
4294                 else if (INTEL_GEN(dev_priv) >= 8)
4295                         return gen8_irq_handler;
4296                 else
4297                         return ilk_irq_handler;
4298         }
4299 }
4300
4301 static void intel_irq_reset(struct drm_i915_private *dev_priv)
4302 {
4303         if (HAS_GMCH(dev_priv)) {
4304                 if (IS_CHERRYVIEW(dev_priv))
4305                         cherryview_irq_reset(dev_priv);
4306                 else if (IS_VALLEYVIEW(dev_priv))
4307                         valleyview_irq_reset(dev_priv);
4308                 else if (IS_GEN(dev_priv, 4))
4309                         i965_irq_reset(dev_priv);
4310                 else if (IS_GEN(dev_priv, 3))
4311                         i915_irq_reset(dev_priv);
4312                 else
4313                         i8xx_irq_reset(dev_priv);
4314         } else {
4315                 if (INTEL_GEN(dev_priv) >= 11)
4316                         gen11_irq_reset(dev_priv);
4317                 else if (INTEL_GEN(dev_priv) >= 8)
4318                         gen8_irq_reset(dev_priv);
4319                 else
4320                         ilk_irq_reset(dev_priv);
4321         }
4322 }
4323
4324 static void intel_irq_postinstall(struct drm_i915_private *dev_priv)
4325 {
4326         if (HAS_GMCH(dev_priv)) {
4327                 if (IS_CHERRYVIEW(dev_priv))
4328                         cherryview_irq_postinstall(dev_priv);
4329                 else if (IS_VALLEYVIEW(dev_priv))
4330                         valleyview_irq_postinstall(dev_priv);
4331                 else if (IS_GEN(dev_priv, 4))
4332                         i965_irq_postinstall(dev_priv);
4333                 else if (IS_GEN(dev_priv, 3))
4334                         i915_irq_postinstall(dev_priv);
4335                 else
4336                         i8xx_irq_postinstall(dev_priv);
4337         } else {
4338                 if (INTEL_GEN(dev_priv) >= 11)
4339                         gen11_irq_postinstall(dev_priv);
4340                 else if (INTEL_GEN(dev_priv) >= 8)
4341                         gen8_irq_postinstall(dev_priv);
4342                 else
4343                         ilk_irq_postinstall(dev_priv);
4344         }
4345 }
4346
4347 /**
4348  * intel_irq_install - enables the hardware interrupt
4349  * @dev_priv: i915 device instance
4350  *
4351  * This function enables the hardware interrupt handling, but leaves the hotplug
4352  * handling still disabled. It is called after intel_irq_init().
4353  *
4354  * In the driver load and resume code we need working interrupts in a few places
4355  * but don't want to deal with the hassle of concurrent probe and hotplug
4356  * workers. Hence the split into this two-stage approach.
4357  */
4358 int intel_irq_install(struct drm_i915_private *dev_priv)
4359 {
4360         int irq = dev_priv->drm.pdev->irq;
4361         int ret;
4362
4363         /*
4364          * We enable some interrupt sources in our postinstall hooks, so mark
4365          * interrupts as enabled _before_ actually enabling them to avoid
4366          * special cases in our ordering checks.
4367          */
4368         dev_priv->runtime_pm.irqs_enabled = true;
4369
4370         dev_priv->drm.irq_enabled = true;
4371
4372         intel_irq_reset(dev_priv);
4373
4374         ret = request_irq(irq, intel_irq_handler(dev_priv),
4375                           IRQF_SHARED, DRIVER_NAME, dev_priv);
4376         if (ret < 0) {
4377                 dev_priv->drm.irq_enabled = false;
4378                 return ret;
4379         }
4380
4381         intel_irq_postinstall(dev_priv);
4382
4383         return ret;
4384 }
4385
4386 /**
4387  * intel_irq_uninstall - finilizes all irq handling
4388  * @dev_priv: i915 device instance
4389  *
4390  * This stops interrupt and hotplug handling and unregisters and frees all
4391  * resources acquired in the init functions.
4392  */
4393 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4394 {
4395         int irq = dev_priv->drm.pdev->irq;
4396
4397         /*
4398          * FIXME we can get called twice during driver probe
4399          * error handling as well as during driver remove due to
4400          * intel_modeset_driver_remove() calling us out of sequence.
4401          * Would be nice if it didn't do that...
4402          */
4403         if (!dev_priv->drm.irq_enabled)
4404                 return;
4405
4406         dev_priv->drm.irq_enabled = false;
4407
4408         intel_irq_reset(dev_priv);
4409
4410         free_irq(irq, dev_priv);
4411
4412         intel_hpd_cancel_work(dev_priv);
4413         dev_priv->runtime_pm.irqs_enabled = false;
4414 }
4415
4416 /**
4417  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4418  * @dev_priv: i915 device instance
4419  *
4420  * This function is used to disable interrupts at runtime, both in the runtime
4421  * pm and the system suspend/resume code.
4422  */
4423 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4424 {
4425         intel_irq_reset(dev_priv);
4426         dev_priv->runtime_pm.irqs_enabled = false;
4427         intel_synchronize_irq(dev_priv);
4428 }
4429
4430 /**
4431  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4432  * @dev_priv: i915 device instance
4433  *
4434  * This function is used to enable interrupts at runtime, both in the runtime
4435  * pm and the system suspend/resume code.
4436  */
4437 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4438 {
4439         dev_priv->runtime_pm.irqs_enabled = true;
4440         intel_irq_reset(dev_priv);
4441         intel_irq_postinstall(dev_priv);
4442 }
4443
4444 bool intel_irqs_enabled(struct drm_i915_private *dev_priv)
4445 {
4446         /*
4447          * We only use drm_irq_uninstall() at unload and VT switch, so
4448          * this is the only thing we need to check.
4449          */
4450         return dev_priv->runtime_pm.irqs_enabled;
4451 }
4452
4453 void intel_synchronize_irq(struct drm_i915_private *i915)
4454 {
4455         synchronize_irq(i915->drm.pdev->irq);
4456 }