drm/i915/uapi: reject set_domain for discrete
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / gem / i915_gem_domain.c
1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2014-2016 Intel Corporation
5  */
6
7 #include "display/intel_frontbuffer.h"
8 #include "gt/intel_gt.h"
9
10 #include "i915_drv.h"
11 #include "i915_gem_clflush.h"
12 #include "i915_gem_gtt.h"
13 #include "i915_gem_ioctls.h"
14 #include "i915_gem_object.h"
15 #include "i915_vma.h"
16 #include "i915_gem_lmem.h"
17 #include "i915_gem_mman.h"
18
19 static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
20 {
21         return !(obj->cache_level == I915_CACHE_NONE ||
22                  obj->cache_level == I915_CACHE_WT);
23 }
24
25 static void
26 flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
27 {
28         struct i915_vma *vma;
29
30         assert_object_held(obj);
31
32         if (!(obj->write_domain & flush_domains))
33                 return;
34
35         switch (obj->write_domain) {
36         case I915_GEM_DOMAIN_GTT:
37                 spin_lock(&obj->vma.lock);
38                 for_each_ggtt_vma(vma, obj) {
39                         if (i915_vma_unset_ggtt_write(vma))
40                                 intel_gt_flush_ggtt_writes(vma->vm->gt);
41                 }
42                 spin_unlock(&obj->vma.lock);
43
44                 i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
45                 break;
46
47         case I915_GEM_DOMAIN_WC:
48                 wmb();
49                 break;
50
51         case I915_GEM_DOMAIN_CPU:
52                 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
53                 break;
54
55         case I915_GEM_DOMAIN_RENDER:
56                 if (gpu_write_needs_clflush(obj))
57                         obj->cache_dirty = true;
58                 break;
59         }
60
61         obj->write_domain = 0;
62 }
63
64 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
65 {
66         /*
67          * We manually flush the CPU domain so that we can override and
68          * force the flush for the display, and perform it asyncrhonously.
69          */
70         flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
71         if (obj->cache_dirty)
72                 i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
73         obj->write_domain = 0;
74 }
75
76 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
77 {
78         if (!i915_gem_object_is_framebuffer(obj))
79                 return;
80
81         i915_gem_object_lock(obj, NULL);
82         __i915_gem_object_flush_for_display(obj);
83         i915_gem_object_unlock(obj);
84 }
85
86 void i915_gem_object_flush_if_display_locked(struct drm_i915_gem_object *obj)
87 {
88         if (i915_gem_object_is_framebuffer(obj))
89                 __i915_gem_object_flush_for_display(obj);
90 }
91
92 /**
93  * Moves a single object to the WC read, and possibly write domain.
94  * @obj: object to act on
95  * @write: ask for write access or read only
96  *
97  * This function returns when the move is complete, including waiting on
98  * flushes to occur.
99  */
100 int
101 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
102 {
103         int ret;
104
105         assert_object_held(obj);
106
107         ret = i915_gem_object_wait(obj,
108                                    I915_WAIT_INTERRUPTIBLE |
109                                    (write ? I915_WAIT_ALL : 0),
110                                    MAX_SCHEDULE_TIMEOUT);
111         if (ret)
112                 return ret;
113
114         if (obj->write_domain == I915_GEM_DOMAIN_WC)
115                 return 0;
116
117         /* Flush and acquire obj->pages so that we are coherent through
118          * direct access in memory with previous cached writes through
119          * shmemfs and that our cache domain tracking remains valid.
120          * For example, if the obj->filp was moved to swap without us
121          * being notified and releasing the pages, we would mistakenly
122          * continue to assume that the obj remained out of the CPU cached
123          * domain.
124          */
125         ret = i915_gem_object_pin_pages(obj);
126         if (ret)
127                 return ret;
128
129         flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
130
131         /* Serialise direct access to this object with the barriers for
132          * coherent writes from the GPU, by effectively invalidating the
133          * WC domain upon first access.
134          */
135         if ((obj->read_domains & I915_GEM_DOMAIN_WC) == 0)
136                 mb();
137
138         /* It should now be out of any other write domains, and we can update
139          * the domain values for our changes.
140          */
141         GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_WC) != 0);
142         obj->read_domains |= I915_GEM_DOMAIN_WC;
143         if (write) {
144                 obj->read_domains = I915_GEM_DOMAIN_WC;
145                 obj->write_domain = I915_GEM_DOMAIN_WC;
146                 obj->mm.dirty = true;
147         }
148
149         i915_gem_object_unpin_pages(obj);
150         return 0;
151 }
152
153 /**
154  * Moves a single object to the GTT read, and possibly write domain.
155  * @obj: object to act on
156  * @write: ask for write access or read only
157  *
158  * This function returns when the move is complete, including waiting on
159  * flushes to occur.
160  */
161 int
162 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
163 {
164         int ret;
165
166         assert_object_held(obj);
167
168         ret = i915_gem_object_wait(obj,
169                                    I915_WAIT_INTERRUPTIBLE |
170                                    (write ? I915_WAIT_ALL : 0),
171                                    MAX_SCHEDULE_TIMEOUT);
172         if (ret)
173                 return ret;
174
175         if (obj->write_domain == I915_GEM_DOMAIN_GTT)
176                 return 0;
177
178         /* Flush and acquire obj->pages so that we are coherent through
179          * direct access in memory with previous cached writes through
180          * shmemfs and that our cache domain tracking remains valid.
181          * For example, if the obj->filp was moved to swap without us
182          * being notified and releasing the pages, we would mistakenly
183          * continue to assume that the obj remained out of the CPU cached
184          * domain.
185          */
186         ret = i915_gem_object_pin_pages(obj);
187         if (ret)
188                 return ret;
189
190         flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
191
192         /* Serialise direct access to this object with the barriers for
193          * coherent writes from the GPU, by effectively invalidating the
194          * GTT domain upon first access.
195          */
196         if ((obj->read_domains & I915_GEM_DOMAIN_GTT) == 0)
197                 mb();
198
199         /* It should now be out of any other write domains, and we can update
200          * the domain values for our changes.
201          */
202         GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
203         obj->read_domains |= I915_GEM_DOMAIN_GTT;
204         if (write) {
205                 struct i915_vma *vma;
206
207                 obj->read_domains = I915_GEM_DOMAIN_GTT;
208                 obj->write_domain = I915_GEM_DOMAIN_GTT;
209                 obj->mm.dirty = true;
210
211                 spin_lock(&obj->vma.lock);
212                 for_each_ggtt_vma(vma, obj)
213                         if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
214                                 i915_vma_set_ggtt_write(vma);
215                 spin_unlock(&obj->vma.lock);
216         }
217
218         i915_gem_object_unpin_pages(obj);
219         return 0;
220 }
221
222 /**
223  * Changes the cache-level of an object across all VMA.
224  * @obj: object to act on
225  * @cache_level: new cache level to set for the object
226  *
227  * After this function returns, the object will be in the new cache-level
228  * across all GTT and the contents of the backing storage will be coherent,
229  * with respect to the new cache-level. In order to keep the backing storage
230  * coherent for all users, we only allow a single cache level to be set
231  * globally on the object and prevent it from being changed whilst the
232  * hardware is reading from the object. That is if the object is currently
233  * on the scanout it will be set to uncached (or equivalent display
234  * cache coherency) and all non-MOCS GPU access will also be uncached so
235  * that all direct access to the scanout remains coherent.
236  */
237 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
238                                     enum i915_cache_level cache_level)
239 {
240         int ret;
241
242         if (obj->cache_level == cache_level)
243                 return 0;
244
245         ret = i915_gem_object_wait(obj,
246                                    I915_WAIT_INTERRUPTIBLE |
247                                    I915_WAIT_ALL,
248                                    MAX_SCHEDULE_TIMEOUT);
249         if (ret)
250                 return ret;
251
252         /* Always invalidate stale cachelines */
253         if (obj->cache_level != cache_level) {
254                 i915_gem_object_set_cache_coherency(obj, cache_level);
255                 obj->cache_dirty = true;
256         }
257
258         /* The cache-level will be applied when each vma is rebound. */
259         return i915_gem_object_unbind(obj,
260                                       I915_GEM_OBJECT_UNBIND_ACTIVE |
261                                       I915_GEM_OBJECT_UNBIND_BARRIER);
262 }
263
264 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
265                                struct drm_file *file)
266 {
267         struct drm_i915_gem_caching *args = data;
268         struct drm_i915_gem_object *obj;
269         int err = 0;
270
271         if (IS_DGFX(to_i915(dev)))
272                 return -ENODEV;
273
274         rcu_read_lock();
275         obj = i915_gem_object_lookup_rcu(file, args->handle);
276         if (!obj) {
277                 err = -ENOENT;
278                 goto out;
279         }
280
281         switch (obj->cache_level) {
282         case I915_CACHE_LLC:
283         case I915_CACHE_L3_LLC:
284                 args->caching = I915_CACHING_CACHED;
285                 break;
286
287         case I915_CACHE_WT:
288                 args->caching = I915_CACHING_DISPLAY;
289                 break;
290
291         default:
292                 args->caching = I915_CACHING_NONE;
293                 break;
294         }
295 out:
296         rcu_read_unlock();
297         return err;
298 }
299
300 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
301                                struct drm_file *file)
302 {
303         struct drm_i915_private *i915 = to_i915(dev);
304         struct drm_i915_gem_caching *args = data;
305         struct drm_i915_gem_object *obj;
306         enum i915_cache_level level;
307         int ret = 0;
308
309         if (IS_DGFX(i915))
310                 return -ENODEV;
311
312         switch (args->caching) {
313         case I915_CACHING_NONE:
314                 level = I915_CACHE_NONE;
315                 break;
316         case I915_CACHING_CACHED:
317                 /*
318                  * Due to a HW issue on BXT A stepping, GPU stores via a
319                  * snooped mapping may leave stale data in a corresponding CPU
320                  * cacheline, whereas normally such cachelines would get
321                  * invalidated.
322                  */
323                 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
324                         return -ENODEV;
325
326                 level = I915_CACHE_LLC;
327                 break;
328         case I915_CACHING_DISPLAY:
329                 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
330                 break;
331         default:
332                 return -EINVAL;
333         }
334
335         obj = i915_gem_object_lookup(file, args->handle);
336         if (!obj)
337                 return -ENOENT;
338
339         /*
340          * The caching mode of proxy object is handled by its generator, and
341          * not allowed to be changed by userspace.
342          */
343         if (i915_gem_object_is_proxy(obj)) {
344                 /*
345                  * Silently allow cached for userptr; the vulkan driver
346                  * sets all objects to cached
347                  */
348                 if (!i915_gem_object_is_userptr(obj) ||
349                     args->caching != I915_CACHING_CACHED)
350                         ret = -ENXIO;
351
352                 goto out;
353         }
354
355         ret = i915_gem_object_lock_interruptible(obj, NULL);
356         if (ret)
357                 goto out;
358
359         ret = i915_gem_object_set_cache_level(obj, level);
360         i915_gem_object_unlock(obj);
361
362 out:
363         i915_gem_object_put(obj);
364         return ret;
365 }
366
367 /*
368  * Prepare buffer for display plane (scanout, cursors, etc). Can be called from
369  * an uninterruptible phase (modesetting) and allows any flushes to be pipelined
370  * (for pageflips). We only flush the caches while preparing the buffer for
371  * display, the callers are responsible for frontbuffer flush.
372  */
373 struct i915_vma *
374 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
375                                      struct i915_gem_ww_ctx *ww,
376                                      u32 alignment,
377                                      const struct i915_ggtt_view *view,
378                                      unsigned int flags)
379 {
380         struct drm_i915_private *i915 = to_i915(obj->base.dev);
381         struct i915_vma *vma;
382         int ret;
383
384         /* Frame buffer must be in LMEM */
385         if (HAS_LMEM(i915) && !i915_gem_object_is_lmem(obj))
386                 return ERR_PTR(-EINVAL);
387
388         /*
389          * The display engine is not coherent with the LLC cache on gen6.  As
390          * a result, we make sure that the pinning that is about to occur is
391          * done with uncached PTEs. This is lowest common denominator for all
392          * chipsets.
393          *
394          * However for gen6+, we could do better by using the GFDT bit instead
395          * of uncaching, which would allow us to flush all the LLC-cached data
396          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
397          */
398         ret = i915_gem_object_set_cache_level(obj,
399                                               HAS_WT(i915) ?
400                                               I915_CACHE_WT : I915_CACHE_NONE);
401         if (ret)
402                 return ERR_PTR(ret);
403
404         /*
405          * As the user may map the buffer once pinned in the display plane
406          * (e.g. libkms for the bootup splash), we have to ensure that we
407          * always use map_and_fenceable for all scanout buffers. However,
408          * it may simply be too big to fit into mappable, in which case
409          * put it anyway and hope that userspace can cope (but always first
410          * try to preserve the existing ABI).
411          */
412         vma = ERR_PTR(-ENOSPC);
413         if ((flags & PIN_MAPPABLE) == 0 &&
414             (!view || view->type == I915_GGTT_VIEW_NORMAL))
415                 vma = i915_gem_object_ggtt_pin_ww(obj, ww, view, 0, alignment,
416                                                   flags | PIN_MAPPABLE |
417                                                   PIN_NONBLOCK);
418         if (IS_ERR(vma) && vma != ERR_PTR(-EDEADLK))
419                 vma = i915_gem_object_ggtt_pin_ww(obj, ww, view, 0,
420                                                   alignment, flags);
421         if (IS_ERR(vma))
422                 return vma;
423
424         vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
425         i915_vma_mark_scanout(vma);
426
427         i915_gem_object_flush_if_display_locked(obj);
428
429         return vma;
430 }
431
432 /**
433  * Moves a single object to the CPU read, and possibly write domain.
434  * @obj: object to act on
435  * @write: requesting write or read-only access
436  *
437  * This function returns when the move is complete, including waiting on
438  * flushes to occur.
439  */
440 int
441 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
442 {
443         int ret;
444
445         assert_object_held(obj);
446
447         ret = i915_gem_object_wait(obj,
448                                    I915_WAIT_INTERRUPTIBLE |
449                                    (write ? I915_WAIT_ALL : 0),
450                                    MAX_SCHEDULE_TIMEOUT);
451         if (ret)
452                 return ret;
453
454         flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
455
456         /* Flush the CPU cache if it's still invalid. */
457         if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
458                 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
459                 obj->read_domains |= I915_GEM_DOMAIN_CPU;
460         }
461
462         /* It should now be out of any other write domains, and we can update
463          * the domain values for our changes.
464          */
465         GEM_BUG_ON(obj->write_domain & ~I915_GEM_DOMAIN_CPU);
466
467         /* If we're writing through the CPU, then the GPU read domains will
468          * need to be invalidated at next use.
469          */
470         if (write)
471                 __start_cpu_write(obj);
472
473         return 0;
474 }
475
476 /**
477  * Called when user space prepares to use an object with the CPU, either
478  * through the mmap ioctl's mapping or a GTT mapping.
479  * @dev: drm device
480  * @data: ioctl data blob
481  * @file: drm file
482  */
483 int
484 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
485                           struct drm_file *file)
486 {
487         struct drm_i915_gem_set_domain *args = data;
488         struct drm_i915_gem_object *obj;
489         u32 read_domains = args->read_domains;
490         u32 write_domain = args->write_domain;
491         int err;
492
493         if (IS_DGFX(to_i915(dev)))
494                 return -ENODEV;
495
496         /* Only handle setting domains to types used by the CPU. */
497         if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
498                 return -EINVAL;
499
500         /*
501          * Having something in the write domain implies it's in the read
502          * domain, and only that read domain.  Enforce that in the request.
503          */
504         if (write_domain && read_domains != write_domain)
505                 return -EINVAL;
506
507         if (!read_domains)
508                 return 0;
509
510         obj = i915_gem_object_lookup(file, args->handle);
511         if (!obj)
512                 return -ENOENT;
513
514         /*
515          * Try to flush the object off the GPU without holding the lock.
516          * We will repeat the flush holding the lock in the normal manner
517          * to catch cases where we are gazumped.
518          */
519         err = i915_gem_object_wait(obj,
520                                    I915_WAIT_INTERRUPTIBLE |
521                                    I915_WAIT_PRIORITY |
522                                    (write_domain ? I915_WAIT_ALL : 0),
523                                    MAX_SCHEDULE_TIMEOUT);
524         if (err)
525                 goto out;
526
527         if (i915_gem_object_is_userptr(obj)) {
528                 /*
529                  * Try to grab userptr pages, iris uses set_domain to check
530                  * userptr validity
531                  */
532                 err = i915_gem_object_userptr_validate(obj);
533                 if (!err)
534                         err = i915_gem_object_wait(obj,
535                                                    I915_WAIT_INTERRUPTIBLE |
536                                                    I915_WAIT_PRIORITY |
537                                                    (write_domain ? I915_WAIT_ALL : 0),
538                                                    MAX_SCHEDULE_TIMEOUT);
539                 goto out;
540         }
541
542         /*
543          * Proxy objects do not control access to the backing storage, ergo
544          * they cannot be used as a means to manipulate the cache domain
545          * tracking for that backing storage. The proxy object is always
546          * considered to be outside of any cache domain.
547          */
548         if (i915_gem_object_is_proxy(obj)) {
549                 err = -ENXIO;
550                 goto out;
551         }
552
553         err = i915_gem_object_lock_interruptible(obj, NULL);
554         if (err)
555                 goto out;
556
557         /*
558          * Flush and acquire obj->pages so that we are coherent through
559          * direct access in memory with previous cached writes through
560          * shmemfs and that our cache domain tracking remains valid.
561          * For example, if the obj->filp was moved to swap without us
562          * being notified and releasing the pages, we would mistakenly
563          * continue to assume that the obj remained out of the CPU cached
564          * domain.
565          */
566         err = i915_gem_object_pin_pages(obj);
567         if (err)
568                 goto out_unlock;
569
570         /*
571          * Already in the desired write domain? Nothing for us to do!
572          *
573          * We apply a little bit of cunning here to catch a broader set of
574          * no-ops. If obj->write_domain is set, we must be in the same
575          * obj->read_domains, and only that domain. Therefore, if that
576          * obj->write_domain matches the request read_domains, we are
577          * already in the same read/write domain and can skip the operation,
578          * without having to further check the requested write_domain.
579          */
580         if (READ_ONCE(obj->write_domain) == read_domains)
581                 goto out_unpin;
582
583         if (read_domains & I915_GEM_DOMAIN_WC)
584                 err = i915_gem_object_set_to_wc_domain(obj, write_domain);
585         else if (read_domains & I915_GEM_DOMAIN_GTT)
586                 err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
587         else
588                 err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
589
590 out_unpin:
591         i915_gem_object_unpin_pages(obj);
592
593 out_unlock:
594         i915_gem_object_unlock(obj);
595
596         if (!err && write_domain)
597                 i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
598
599 out:
600         i915_gem_object_put(obj);
601         return err;
602 }
603
604 /*
605  * Pins the specified object's pages and synchronizes the object with
606  * GPU accesses. Sets needs_clflush to non-zero if the caller should
607  * flush the object from the CPU cache.
608  */
609 int i915_gem_object_prepare_read(struct drm_i915_gem_object *obj,
610                                  unsigned int *needs_clflush)
611 {
612         int ret;
613
614         *needs_clflush = 0;
615         if (!i915_gem_object_has_struct_page(obj))
616                 return -ENODEV;
617
618         assert_object_held(obj);
619
620         ret = i915_gem_object_wait(obj,
621                                    I915_WAIT_INTERRUPTIBLE,
622                                    MAX_SCHEDULE_TIMEOUT);
623         if (ret)
624                 return ret;
625
626         ret = i915_gem_object_pin_pages(obj);
627         if (ret)
628                 return ret;
629
630         if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
631             !static_cpu_has(X86_FEATURE_CLFLUSH)) {
632                 ret = i915_gem_object_set_to_cpu_domain(obj, false);
633                 if (ret)
634                         goto err_unpin;
635                 else
636                         goto out;
637         }
638
639         flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
640
641         /* If we're not in the cpu read domain, set ourself into the gtt
642          * read domain and manually flush cachelines (if required). This
643          * optimizes for the case when the gpu will dirty the data
644          * anyway again before the next pread happens.
645          */
646         if (!obj->cache_dirty &&
647             !(obj->read_domains & I915_GEM_DOMAIN_CPU))
648                 *needs_clflush = CLFLUSH_BEFORE;
649
650 out:
651         /* return with the pages pinned */
652         return 0;
653
654 err_unpin:
655         i915_gem_object_unpin_pages(obj);
656         return ret;
657 }
658
659 int i915_gem_object_prepare_write(struct drm_i915_gem_object *obj,
660                                   unsigned int *needs_clflush)
661 {
662         int ret;
663
664         *needs_clflush = 0;
665         if (!i915_gem_object_has_struct_page(obj))
666                 return -ENODEV;
667
668         assert_object_held(obj);
669
670         ret = i915_gem_object_wait(obj,
671                                    I915_WAIT_INTERRUPTIBLE |
672                                    I915_WAIT_ALL,
673                                    MAX_SCHEDULE_TIMEOUT);
674         if (ret)
675                 return ret;
676
677         ret = i915_gem_object_pin_pages(obj);
678         if (ret)
679                 return ret;
680
681         if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
682             !static_cpu_has(X86_FEATURE_CLFLUSH)) {
683                 ret = i915_gem_object_set_to_cpu_domain(obj, true);
684                 if (ret)
685                         goto err_unpin;
686                 else
687                         goto out;
688         }
689
690         flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
691
692         /* If we're not in the cpu write domain, set ourself into the
693          * gtt write domain and manually flush cachelines (as required).
694          * This optimizes for the case when the gpu will use the data
695          * right away and we therefore have to clflush anyway.
696          */
697         if (!obj->cache_dirty) {
698                 *needs_clflush |= CLFLUSH_AFTER;
699
700                 /*
701                  * Same trick applies to invalidate partially written
702                  * cachelines read before writing.
703                  */
704                 if (!(obj->read_domains & I915_GEM_DOMAIN_CPU))
705                         *needs_clflush |= CLFLUSH_BEFORE;
706         }
707
708 out:
709         i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
710         obj->mm.dirty = true;
711         /* return with the pages pinned */
712         return 0;
713
714 err_unpin:
715         i915_gem_object_unpin_pages(obj);
716         return ret;
717 }