Merge tag 'devicetree-fixes-for-5.11-1' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / drivers / gpu / drm / amd / amdkfd / kfd_device.c
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22
23 #include <linux/bsearch.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include "kfd_priv.h"
27 #include "kfd_device_queue_manager.h"
28 #include "kfd_pm4_headers_vi.h"
29 #include "cwsr_trap_handler.h"
30 #include "kfd_iommu.h"
31 #include "amdgpu_amdkfd.h"
32 #include "kfd_smi_events.h"
33
34 #define MQD_SIZE_ALIGNED 768
35
36 /*
37  * kfd_locked is used to lock the kfd driver during suspend or reset
38  * once locked, kfd driver will stop any further GPU execution.
39  * create process (open) will return -EAGAIN.
40  */
41 static atomic_t kfd_locked = ATOMIC_INIT(0);
42
43 #ifdef CONFIG_DRM_AMDGPU_CIK
44 extern const struct kfd2kgd_calls gfx_v7_kfd2kgd;
45 #endif
46 extern const struct kfd2kgd_calls gfx_v8_kfd2kgd;
47 extern const struct kfd2kgd_calls gfx_v9_kfd2kgd;
48 extern const struct kfd2kgd_calls arcturus_kfd2kgd;
49 extern const struct kfd2kgd_calls gfx_v10_kfd2kgd;
50 extern const struct kfd2kgd_calls gfx_v10_3_kfd2kgd;
51
52 static const struct kfd2kgd_calls *kfd2kgd_funcs[] = {
53 #ifdef KFD_SUPPORT_IOMMU_V2
54 #ifdef CONFIG_DRM_AMDGPU_CIK
55         [CHIP_KAVERI] = &gfx_v7_kfd2kgd,
56 #endif
57         [CHIP_CARRIZO] = &gfx_v8_kfd2kgd,
58         [CHIP_RAVEN] = &gfx_v9_kfd2kgd,
59 #endif
60 #ifdef CONFIG_DRM_AMDGPU_CIK
61         [CHIP_HAWAII] = &gfx_v7_kfd2kgd,
62 #endif
63         [CHIP_TONGA] = &gfx_v8_kfd2kgd,
64         [CHIP_FIJI] = &gfx_v8_kfd2kgd,
65         [CHIP_POLARIS10] = &gfx_v8_kfd2kgd,
66         [CHIP_POLARIS11] = &gfx_v8_kfd2kgd,
67         [CHIP_POLARIS12] = &gfx_v8_kfd2kgd,
68         [CHIP_VEGAM] = &gfx_v8_kfd2kgd,
69         [CHIP_VEGA10] = &gfx_v9_kfd2kgd,
70         [CHIP_VEGA12] = &gfx_v9_kfd2kgd,
71         [CHIP_VEGA20] = &gfx_v9_kfd2kgd,
72         [CHIP_RENOIR] = &gfx_v9_kfd2kgd,
73         [CHIP_ARCTURUS] = &arcturus_kfd2kgd,
74         [CHIP_NAVI10] = &gfx_v10_kfd2kgd,
75         [CHIP_NAVI12] = &gfx_v10_kfd2kgd,
76         [CHIP_NAVI14] = &gfx_v10_kfd2kgd,
77         [CHIP_SIENNA_CICHLID] = &gfx_v10_3_kfd2kgd,
78         [CHIP_NAVY_FLOUNDER] = &gfx_v10_3_kfd2kgd,
79         [CHIP_VANGOGH] = &gfx_v10_3_kfd2kgd,
80         [CHIP_DIMGREY_CAVEFISH] = &gfx_v10_3_kfd2kgd,
81 };
82
83 #ifdef KFD_SUPPORT_IOMMU_V2
84 static const struct kfd_device_info kaveri_device_info = {
85         .asic_family = CHIP_KAVERI,
86         .asic_name = "kaveri",
87         .max_pasid_bits = 16,
88         /* max num of queues for KV.TODO should be a dynamic value */
89         .max_no_of_hqd  = 24,
90         .doorbell_size  = 4,
91         .ih_ring_entry_size = 4 * sizeof(uint32_t),
92         .event_interrupt_class = &event_interrupt_class_cik,
93         .num_of_watch_points = 4,
94         .mqd_size_aligned = MQD_SIZE_ALIGNED,
95         .supports_cwsr = false,
96         .needs_iommu_device = true,
97         .needs_pci_atomics = false,
98         .num_sdma_engines = 2,
99         .num_xgmi_sdma_engines = 0,
100         .num_sdma_queues_per_engine = 2,
101 };
102
103 static const struct kfd_device_info carrizo_device_info = {
104         .asic_family = CHIP_CARRIZO,
105         .asic_name = "carrizo",
106         .max_pasid_bits = 16,
107         /* max num of queues for CZ.TODO should be a dynamic value */
108         .max_no_of_hqd  = 24,
109         .doorbell_size  = 4,
110         .ih_ring_entry_size = 4 * sizeof(uint32_t),
111         .event_interrupt_class = &event_interrupt_class_cik,
112         .num_of_watch_points = 4,
113         .mqd_size_aligned = MQD_SIZE_ALIGNED,
114         .supports_cwsr = true,
115         .needs_iommu_device = true,
116         .needs_pci_atomics = false,
117         .num_sdma_engines = 2,
118         .num_xgmi_sdma_engines = 0,
119         .num_sdma_queues_per_engine = 2,
120 };
121 #endif
122
123 static const struct kfd_device_info raven_device_info = {
124         .asic_family = CHIP_RAVEN,
125         .asic_name = "raven",
126         .max_pasid_bits = 16,
127         .max_no_of_hqd  = 24,
128         .doorbell_size  = 8,
129         .ih_ring_entry_size = 8 * sizeof(uint32_t),
130         .event_interrupt_class = &event_interrupt_class_v9,
131         .num_of_watch_points = 4,
132         .mqd_size_aligned = MQD_SIZE_ALIGNED,
133         .supports_cwsr = true,
134         .needs_iommu_device = true,
135         .needs_pci_atomics = true,
136         .num_sdma_engines = 1,
137         .num_xgmi_sdma_engines = 0,
138         .num_sdma_queues_per_engine = 2,
139 };
140
141 static const struct kfd_device_info hawaii_device_info = {
142         .asic_family = CHIP_HAWAII,
143         .asic_name = "hawaii",
144         .max_pasid_bits = 16,
145         /* max num of queues for KV.TODO should be a dynamic value */
146         .max_no_of_hqd  = 24,
147         .doorbell_size  = 4,
148         .ih_ring_entry_size = 4 * sizeof(uint32_t),
149         .event_interrupt_class = &event_interrupt_class_cik,
150         .num_of_watch_points = 4,
151         .mqd_size_aligned = MQD_SIZE_ALIGNED,
152         .supports_cwsr = false,
153         .needs_iommu_device = false,
154         .needs_pci_atomics = false,
155         .num_sdma_engines = 2,
156         .num_xgmi_sdma_engines = 0,
157         .num_sdma_queues_per_engine = 2,
158 };
159
160 static const struct kfd_device_info tonga_device_info = {
161         .asic_family = CHIP_TONGA,
162         .asic_name = "tonga",
163         .max_pasid_bits = 16,
164         .max_no_of_hqd  = 24,
165         .doorbell_size  = 4,
166         .ih_ring_entry_size = 4 * sizeof(uint32_t),
167         .event_interrupt_class = &event_interrupt_class_cik,
168         .num_of_watch_points = 4,
169         .mqd_size_aligned = MQD_SIZE_ALIGNED,
170         .supports_cwsr = false,
171         .needs_iommu_device = false,
172         .needs_pci_atomics = true,
173         .num_sdma_engines = 2,
174         .num_xgmi_sdma_engines = 0,
175         .num_sdma_queues_per_engine = 2,
176 };
177
178 static const struct kfd_device_info fiji_device_info = {
179         .asic_family = CHIP_FIJI,
180         .asic_name = "fiji",
181         .max_pasid_bits = 16,
182         .max_no_of_hqd  = 24,
183         .doorbell_size  = 4,
184         .ih_ring_entry_size = 4 * sizeof(uint32_t),
185         .event_interrupt_class = &event_interrupt_class_cik,
186         .num_of_watch_points = 4,
187         .mqd_size_aligned = MQD_SIZE_ALIGNED,
188         .supports_cwsr = true,
189         .needs_iommu_device = false,
190         .needs_pci_atomics = true,
191         .num_sdma_engines = 2,
192         .num_xgmi_sdma_engines = 0,
193         .num_sdma_queues_per_engine = 2,
194 };
195
196 static const struct kfd_device_info fiji_vf_device_info = {
197         .asic_family = CHIP_FIJI,
198         .asic_name = "fiji",
199         .max_pasid_bits = 16,
200         .max_no_of_hqd  = 24,
201         .doorbell_size  = 4,
202         .ih_ring_entry_size = 4 * sizeof(uint32_t),
203         .event_interrupt_class = &event_interrupt_class_cik,
204         .num_of_watch_points = 4,
205         .mqd_size_aligned = MQD_SIZE_ALIGNED,
206         .supports_cwsr = true,
207         .needs_iommu_device = false,
208         .needs_pci_atomics = false,
209         .num_sdma_engines = 2,
210         .num_xgmi_sdma_engines = 0,
211         .num_sdma_queues_per_engine = 2,
212 };
213
214
215 static const struct kfd_device_info polaris10_device_info = {
216         .asic_family = CHIP_POLARIS10,
217         .asic_name = "polaris10",
218         .max_pasid_bits = 16,
219         .max_no_of_hqd  = 24,
220         .doorbell_size  = 4,
221         .ih_ring_entry_size = 4 * sizeof(uint32_t),
222         .event_interrupt_class = &event_interrupt_class_cik,
223         .num_of_watch_points = 4,
224         .mqd_size_aligned = MQD_SIZE_ALIGNED,
225         .supports_cwsr = true,
226         .needs_iommu_device = false,
227         .needs_pci_atomics = true,
228         .num_sdma_engines = 2,
229         .num_xgmi_sdma_engines = 0,
230         .num_sdma_queues_per_engine = 2,
231 };
232
233 static const struct kfd_device_info polaris10_vf_device_info = {
234         .asic_family = CHIP_POLARIS10,
235         .asic_name = "polaris10",
236         .max_pasid_bits = 16,
237         .max_no_of_hqd  = 24,
238         .doorbell_size  = 4,
239         .ih_ring_entry_size = 4 * sizeof(uint32_t),
240         .event_interrupt_class = &event_interrupt_class_cik,
241         .num_of_watch_points = 4,
242         .mqd_size_aligned = MQD_SIZE_ALIGNED,
243         .supports_cwsr = true,
244         .needs_iommu_device = false,
245         .needs_pci_atomics = false,
246         .num_sdma_engines = 2,
247         .num_xgmi_sdma_engines = 0,
248         .num_sdma_queues_per_engine = 2,
249 };
250
251 static const struct kfd_device_info polaris11_device_info = {
252         .asic_family = CHIP_POLARIS11,
253         .asic_name = "polaris11",
254         .max_pasid_bits = 16,
255         .max_no_of_hqd  = 24,
256         .doorbell_size  = 4,
257         .ih_ring_entry_size = 4 * sizeof(uint32_t),
258         .event_interrupt_class = &event_interrupt_class_cik,
259         .num_of_watch_points = 4,
260         .mqd_size_aligned = MQD_SIZE_ALIGNED,
261         .supports_cwsr = true,
262         .needs_iommu_device = false,
263         .needs_pci_atomics = true,
264         .num_sdma_engines = 2,
265         .num_xgmi_sdma_engines = 0,
266         .num_sdma_queues_per_engine = 2,
267 };
268
269 static const struct kfd_device_info polaris12_device_info = {
270         .asic_family = CHIP_POLARIS12,
271         .asic_name = "polaris12",
272         .max_pasid_bits = 16,
273         .max_no_of_hqd  = 24,
274         .doorbell_size  = 4,
275         .ih_ring_entry_size = 4 * sizeof(uint32_t),
276         .event_interrupt_class = &event_interrupt_class_cik,
277         .num_of_watch_points = 4,
278         .mqd_size_aligned = MQD_SIZE_ALIGNED,
279         .supports_cwsr = true,
280         .needs_iommu_device = false,
281         .needs_pci_atomics = true,
282         .num_sdma_engines = 2,
283         .num_xgmi_sdma_engines = 0,
284         .num_sdma_queues_per_engine = 2,
285 };
286
287 static const struct kfd_device_info vegam_device_info = {
288         .asic_family = CHIP_VEGAM,
289         .asic_name = "vegam",
290         .max_pasid_bits = 16,
291         .max_no_of_hqd  = 24,
292         .doorbell_size  = 4,
293         .ih_ring_entry_size = 4 * sizeof(uint32_t),
294         .event_interrupt_class = &event_interrupt_class_cik,
295         .num_of_watch_points = 4,
296         .mqd_size_aligned = MQD_SIZE_ALIGNED,
297         .supports_cwsr = true,
298         .needs_iommu_device = false,
299         .needs_pci_atomics = true,
300         .num_sdma_engines = 2,
301         .num_xgmi_sdma_engines = 0,
302         .num_sdma_queues_per_engine = 2,
303 };
304
305 static const struct kfd_device_info vega10_device_info = {
306         .asic_family = CHIP_VEGA10,
307         .asic_name = "vega10",
308         .max_pasid_bits = 16,
309         .max_no_of_hqd  = 24,
310         .doorbell_size  = 8,
311         .ih_ring_entry_size = 8 * sizeof(uint32_t),
312         .event_interrupt_class = &event_interrupt_class_v9,
313         .num_of_watch_points = 4,
314         .mqd_size_aligned = MQD_SIZE_ALIGNED,
315         .supports_cwsr = true,
316         .needs_iommu_device = false,
317         .needs_pci_atomics = false,
318         .num_sdma_engines = 2,
319         .num_xgmi_sdma_engines = 0,
320         .num_sdma_queues_per_engine = 2,
321 };
322
323 static const struct kfd_device_info vega10_vf_device_info = {
324         .asic_family = CHIP_VEGA10,
325         .asic_name = "vega10",
326         .max_pasid_bits = 16,
327         .max_no_of_hqd  = 24,
328         .doorbell_size  = 8,
329         .ih_ring_entry_size = 8 * sizeof(uint32_t),
330         .event_interrupt_class = &event_interrupt_class_v9,
331         .num_of_watch_points = 4,
332         .mqd_size_aligned = MQD_SIZE_ALIGNED,
333         .supports_cwsr = true,
334         .needs_iommu_device = false,
335         .needs_pci_atomics = false,
336         .num_sdma_engines = 2,
337         .num_xgmi_sdma_engines = 0,
338         .num_sdma_queues_per_engine = 2,
339 };
340
341 static const struct kfd_device_info vega12_device_info = {
342         .asic_family = CHIP_VEGA12,
343         .asic_name = "vega12",
344         .max_pasid_bits = 16,
345         .max_no_of_hqd  = 24,
346         .doorbell_size  = 8,
347         .ih_ring_entry_size = 8 * sizeof(uint32_t),
348         .event_interrupt_class = &event_interrupt_class_v9,
349         .num_of_watch_points = 4,
350         .mqd_size_aligned = MQD_SIZE_ALIGNED,
351         .supports_cwsr = true,
352         .needs_iommu_device = false,
353         .needs_pci_atomics = false,
354         .num_sdma_engines = 2,
355         .num_xgmi_sdma_engines = 0,
356         .num_sdma_queues_per_engine = 2,
357 };
358
359 static const struct kfd_device_info vega20_device_info = {
360         .asic_family = CHIP_VEGA20,
361         .asic_name = "vega20",
362         .max_pasid_bits = 16,
363         .max_no_of_hqd  = 24,
364         .doorbell_size  = 8,
365         .ih_ring_entry_size = 8 * sizeof(uint32_t),
366         .event_interrupt_class = &event_interrupt_class_v9,
367         .num_of_watch_points = 4,
368         .mqd_size_aligned = MQD_SIZE_ALIGNED,
369         .supports_cwsr = true,
370         .needs_iommu_device = false,
371         .needs_pci_atomics = false,
372         .num_sdma_engines = 2,
373         .num_xgmi_sdma_engines = 0,
374         .num_sdma_queues_per_engine = 8,
375 };
376
377 static const struct kfd_device_info arcturus_device_info = {
378         .asic_family = CHIP_ARCTURUS,
379         .asic_name = "arcturus",
380         .max_pasid_bits = 16,
381         .max_no_of_hqd  = 24,
382         .doorbell_size  = 8,
383         .ih_ring_entry_size = 8 * sizeof(uint32_t),
384         .event_interrupt_class = &event_interrupt_class_v9,
385         .num_of_watch_points = 4,
386         .mqd_size_aligned = MQD_SIZE_ALIGNED,
387         .supports_cwsr = true,
388         .needs_iommu_device = false,
389         .needs_pci_atomics = false,
390         .num_sdma_engines = 2,
391         .num_xgmi_sdma_engines = 6,
392         .num_sdma_queues_per_engine = 8,
393 };
394
395 static const struct kfd_device_info renoir_device_info = {
396         .asic_family = CHIP_RENOIR,
397         .asic_name = "renoir",
398         .max_pasid_bits = 16,
399         .max_no_of_hqd  = 24,
400         .doorbell_size  = 8,
401         .ih_ring_entry_size = 8 * sizeof(uint32_t),
402         .event_interrupt_class = &event_interrupt_class_v9,
403         .num_of_watch_points = 4,
404         .mqd_size_aligned = MQD_SIZE_ALIGNED,
405         .supports_cwsr = true,
406         .needs_iommu_device = false,
407         .needs_pci_atomics = false,
408         .num_sdma_engines = 1,
409         .num_xgmi_sdma_engines = 0,
410         .num_sdma_queues_per_engine = 2,
411 };
412
413 static const struct kfd_device_info navi10_device_info = {
414         .asic_family = CHIP_NAVI10,
415         .asic_name = "navi10",
416         .max_pasid_bits = 16,
417         .max_no_of_hqd  = 24,
418         .doorbell_size  = 8,
419         .ih_ring_entry_size = 8 * sizeof(uint32_t),
420         .event_interrupt_class = &event_interrupt_class_v9,
421         .num_of_watch_points = 4,
422         .mqd_size_aligned = MQD_SIZE_ALIGNED,
423         .needs_iommu_device = false,
424         .supports_cwsr = true,
425         .needs_pci_atomics = false,
426         .num_sdma_engines = 2,
427         .num_xgmi_sdma_engines = 0,
428         .num_sdma_queues_per_engine = 8,
429 };
430
431 static const struct kfd_device_info navi12_device_info = {
432         .asic_family = CHIP_NAVI12,
433         .asic_name = "navi12",
434         .max_pasid_bits = 16,
435         .max_no_of_hqd  = 24,
436         .doorbell_size  = 8,
437         .ih_ring_entry_size = 8 * sizeof(uint32_t),
438         .event_interrupt_class = &event_interrupt_class_v9,
439         .num_of_watch_points = 4,
440         .mqd_size_aligned = MQD_SIZE_ALIGNED,
441         .needs_iommu_device = false,
442         .supports_cwsr = true,
443         .needs_pci_atomics = false,
444         .num_sdma_engines = 2,
445         .num_xgmi_sdma_engines = 0,
446         .num_sdma_queues_per_engine = 8,
447 };
448
449 static const struct kfd_device_info navi14_device_info = {
450         .asic_family = CHIP_NAVI14,
451         .asic_name = "navi14",
452         .max_pasid_bits = 16,
453         .max_no_of_hqd  = 24,
454         .doorbell_size  = 8,
455         .ih_ring_entry_size = 8 * sizeof(uint32_t),
456         .event_interrupt_class = &event_interrupt_class_v9,
457         .num_of_watch_points = 4,
458         .mqd_size_aligned = MQD_SIZE_ALIGNED,
459         .needs_iommu_device = false,
460         .supports_cwsr = true,
461         .needs_pci_atomics = false,
462         .num_sdma_engines = 2,
463         .num_xgmi_sdma_engines = 0,
464         .num_sdma_queues_per_engine = 8,
465 };
466
467 static const struct kfd_device_info sienna_cichlid_device_info = {
468         .asic_family = CHIP_SIENNA_CICHLID,
469         .asic_name = "sienna_cichlid",
470         .max_pasid_bits = 16,
471         .max_no_of_hqd  = 24,
472         .doorbell_size  = 8,
473         .ih_ring_entry_size = 8 * sizeof(uint32_t),
474         .event_interrupt_class = &event_interrupt_class_v9,
475         .num_of_watch_points = 4,
476         .mqd_size_aligned = MQD_SIZE_ALIGNED,
477         .needs_iommu_device = false,
478         .supports_cwsr = true,
479         .needs_pci_atomics = false,
480         .num_sdma_engines = 4,
481         .num_xgmi_sdma_engines = 0,
482         .num_sdma_queues_per_engine = 8,
483 };
484
485 static const struct kfd_device_info navy_flounder_device_info = {
486         .asic_family = CHIP_NAVY_FLOUNDER,
487         .asic_name = "navy_flounder",
488         .max_pasid_bits = 16,
489         .max_no_of_hqd  = 24,
490         .doorbell_size  = 8,
491         .ih_ring_entry_size = 8 * sizeof(uint32_t),
492         .event_interrupt_class = &event_interrupt_class_v9,
493         .num_of_watch_points = 4,
494         .mqd_size_aligned = MQD_SIZE_ALIGNED,
495         .needs_iommu_device = false,
496         .supports_cwsr = true,
497         .needs_pci_atomics = false,
498         .num_sdma_engines = 2,
499         .num_xgmi_sdma_engines = 0,
500         .num_sdma_queues_per_engine = 8,
501 };
502
503 static const struct kfd_device_info vangogh_device_info = {
504         .asic_family = CHIP_VANGOGH,
505         .asic_name = "vangogh",
506         .max_pasid_bits = 16,
507         .max_no_of_hqd  = 24,
508         .doorbell_size  = 8,
509         .ih_ring_entry_size = 8 * sizeof(uint32_t),
510         .event_interrupt_class = &event_interrupt_class_v9,
511         .num_of_watch_points = 4,
512         .mqd_size_aligned = MQD_SIZE_ALIGNED,
513         .needs_iommu_device = false,
514         .supports_cwsr = true,
515         .needs_pci_atomics = false,
516         .num_sdma_engines = 1,
517         .num_xgmi_sdma_engines = 0,
518         .num_sdma_queues_per_engine = 2,
519 };
520
521 static const struct kfd_device_info dimgrey_cavefish_device_info = {
522         .asic_family = CHIP_DIMGREY_CAVEFISH,
523         .asic_name = "dimgrey_cavefish",
524         .max_pasid_bits = 16,
525         .max_no_of_hqd  = 24,
526         .doorbell_size  = 8,
527         .ih_ring_entry_size = 8 * sizeof(uint32_t),
528         .event_interrupt_class = &event_interrupt_class_v9,
529         .num_of_watch_points = 4,
530         .mqd_size_aligned = MQD_SIZE_ALIGNED,
531         .needs_iommu_device = false,
532         .supports_cwsr = true,
533         .needs_pci_atomics = false,
534         .num_sdma_engines = 2,
535         .num_xgmi_sdma_engines = 0,
536         .num_sdma_queues_per_engine = 8,
537 };
538
539
540 /* For each entry, [0] is regular and [1] is virtualisation device. */
541 static const struct kfd_device_info *kfd_supported_devices[][2] = {
542 #ifdef KFD_SUPPORT_IOMMU_V2
543         [CHIP_KAVERI] = {&kaveri_device_info, NULL},
544         [CHIP_CARRIZO] = {&carrizo_device_info, NULL},
545 #endif
546         [CHIP_RAVEN] = {&raven_device_info, NULL},
547         [CHIP_HAWAII] = {&hawaii_device_info, NULL},
548         [CHIP_TONGA] = {&tonga_device_info, NULL},
549         [CHIP_FIJI] = {&fiji_device_info, &fiji_vf_device_info},
550         [CHIP_POLARIS10] = {&polaris10_device_info, &polaris10_vf_device_info},
551         [CHIP_POLARIS11] = {&polaris11_device_info, NULL},
552         [CHIP_POLARIS12] = {&polaris12_device_info, NULL},
553         [CHIP_VEGAM] = {&vegam_device_info, NULL},
554         [CHIP_VEGA10] = {&vega10_device_info, &vega10_vf_device_info},
555         [CHIP_VEGA12] = {&vega12_device_info, NULL},
556         [CHIP_VEGA20] = {&vega20_device_info, NULL},
557         [CHIP_RENOIR] = {&renoir_device_info, NULL},
558         [CHIP_ARCTURUS] = {&arcturus_device_info, &arcturus_device_info},
559         [CHIP_NAVI10] = {&navi10_device_info, NULL},
560         [CHIP_NAVI12] = {&navi12_device_info, &navi12_device_info},
561         [CHIP_NAVI14] = {&navi14_device_info, NULL},
562         [CHIP_SIENNA_CICHLID] = {&sienna_cichlid_device_info, &sienna_cichlid_device_info},
563         [CHIP_NAVY_FLOUNDER] = {&navy_flounder_device_info, &navy_flounder_device_info},
564         [CHIP_VANGOGH] = {&vangogh_device_info, NULL},
565         [CHIP_DIMGREY_CAVEFISH] = {&dimgrey_cavefish_device_info, &dimgrey_cavefish_device_info},
566 };
567
568 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
569                                 unsigned int chunk_size);
570 static void kfd_gtt_sa_fini(struct kfd_dev *kfd);
571
572 static int kfd_resume(struct kfd_dev *kfd);
573
574 struct kfd_dev *kgd2kfd_probe(struct kgd_dev *kgd,
575         struct pci_dev *pdev, unsigned int asic_type, bool vf)
576 {
577         struct kfd_dev *kfd;
578         const struct kfd_device_info *device_info;
579         const struct kfd2kgd_calls *f2g;
580
581         if (asic_type >= sizeof(kfd_supported_devices) / (sizeof(void *) * 2)
582                 || asic_type >= sizeof(kfd2kgd_funcs) / sizeof(void *)) {
583                 dev_err(kfd_device, "asic_type %d out of range\n", asic_type);
584                 return NULL; /* asic_type out of range */
585         }
586
587         device_info = kfd_supported_devices[asic_type][vf];
588         f2g = kfd2kgd_funcs[asic_type];
589
590         if (!device_info || !f2g) {
591                 dev_err(kfd_device, "%s %s not supported in kfd\n",
592                         amdgpu_asic_name[asic_type], vf ? "VF" : "");
593                 return NULL;
594         }
595
596         kfd = kzalloc(sizeof(*kfd), GFP_KERNEL);
597         if (!kfd)
598                 return NULL;
599
600         /* Allow BIF to recode atomics to PCIe 3.0 AtomicOps.
601          * 32 and 64-bit requests are possible and must be
602          * supported.
603          */
604         kfd->pci_atomic_requested = amdgpu_amdkfd_have_atomics_support(kgd);
605         if (device_info->needs_pci_atomics &&
606             !kfd->pci_atomic_requested) {
607                 dev_info(kfd_device,
608                          "skipped device %x:%x, PCI rejects atomics\n",
609                          pdev->vendor, pdev->device);
610                 kfree(kfd);
611                 return NULL;
612         }
613
614         kfd->kgd = kgd;
615         kfd->device_info = device_info;
616         kfd->pdev = pdev;
617         kfd->init_complete = false;
618         kfd->kfd2kgd = f2g;
619         atomic_set(&kfd->compute_profile, 0);
620
621         mutex_init(&kfd->doorbell_mutex);
622         memset(&kfd->doorbell_available_index, 0,
623                 sizeof(kfd->doorbell_available_index));
624
625         atomic_set(&kfd->sram_ecc_flag, 0);
626
627         ida_init(&kfd->doorbell_ida);
628
629         return kfd;
630 }
631
632 static void kfd_cwsr_init(struct kfd_dev *kfd)
633 {
634         if (cwsr_enable && kfd->device_info->supports_cwsr) {
635                 if (kfd->device_info->asic_family < CHIP_VEGA10) {
636                         BUILD_BUG_ON(sizeof(cwsr_trap_gfx8_hex) > PAGE_SIZE);
637                         kfd->cwsr_isa = cwsr_trap_gfx8_hex;
638                         kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx8_hex);
639                 } else if (kfd->device_info->asic_family == CHIP_ARCTURUS) {
640                         BUILD_BUG_ON(sizeof(cwsr_trap_arcturus_hex) > PAGE_SIZE);
641                         kfd->cwsr_isa = cwsr_trap_arcturus_hex;
642                         kfd->cwsr_isa_size = sizeof(cwsr_trap_arcturus_hex);
643                 } else if (kfd->device_info->asic_family < CHIP_NAVI10) {
644                         BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_hex) > PAGE_SIZE);
645                         kfd->cwsr_isa = cwsr_trap_gfx9_hex;
646                         kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_hex);
647                 } else if (kfd->device_info->asic_family < CHIP_SIENNA_CICHLID) {
648                         BUILD_BUG_ON(sizeof(cwsr_trap_nv1x_hex) > PAGE_SIZE);
649                         kfd->cwsr_isa = cwsr_trap_nv1x_hex;
650                         kfd->cwsr_isa_size = sizeof(cwsr_trap_nv1x_hex);
651                 } else {
652                         BUILD_BUG_ON(sizeof(cwsr_trap_gfx10_hex) > PAGE_SIZE);
653                         kfd->cwsr_isa = cwsr_trap_gfx10_hex;
654                         kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx10_hex);
655                 }
656
657                 kfd->cwsr_enabled = true;
658         }
659 }
660
661 static int kfd_gws_init(struct kfd_dev *kfd)
662 {
663         int ret = 0;
664
665         if (kfd->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS)
666                 return 0;
667
668         if (hws_gws_support
669                 || (kfd->device_info->asic_family == CHIP_VEGA10
670                         && kfd->mec2_fw_version >= 0x81b3)
671                 || (kfd->device_info->asic_family >= CHIP_VEGA12
672                         && kfd->device_info->asic_family <= CHIP_RAVEN
673                         && kfd->mec2_fw_version >= 0x1b3)
674                 || (kfd->device_info->asic_family == CHIP_ARCTURUS
675                         && kfd->mec2_fw_version >= 0x30))
676                 ret = amdgpu_amdkfd_alloc_gws(kfd->kgd,
677                                 amdgpu_amdkfd_get_num_gws(kfd->kgd), &kfd->gws);
678
679         return ret;
680 }
681
682 static void kfd_smi_init(struct kfd_dev *dev) {
683         INIT_LIST_HEAD(&dev->smi_clients);
684         spin_lock_init(&dev->smi_lock);
685 }
686
687 bool kgd2kfd_device_init(struct kfd_dev *kfd,
688                          struct drm_device *ddev,
689                          const struct kgd2kfd_shared_resources *gpu_resources)
690 {
691         unsigned int size;
692
693         kfd->ddev = ddev;
694         kfd->mec_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd,
695                         KGD_ENGINE_MEC1);
696         kfd->mec2_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd,
697                         KGD_ENGINE_MEC2);
698         kfd->sdma_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd,
699                         KGD_ENGINE_SDMA1);
700         kfd->shared_resources = *gpu_resources;
701
702         kfd->vm_info.first_vmid_kfd = ffs(gpu_resources->compute_vmid_bitmap)-1;
703         kfd->vm_info.last_vmid_kfd = fls(gpu_resources->compute_vmid_bitmap)-1;
704         kfd->vm_info.vmid_num_kfd = kfd->vm_info.last_vmid_kfd
705                         - kfd->vm_info.first_vmid_kfd + 1;
706
707         /* Verify module parameters regarding mapped process number*/
708         if ((hws_max_conc_proc < 0)
709                         || (hws_max_conc_proc > kfd->vm_info.vmid_num_kfd)) {
710                 dev_err(kfd_device,
711                         "hws_max_conc_proc %d must be between 0 and %d, use %d instead\n",
712                         hws_max_conc_proc, kfd->vm_info.vmid_num_kfd,
713                         kfd->vm_info.vmid_num_kfd);
714                 kfd->max_proc_per_quantum = kfd->vm_info.vmid_num_kfd;
715         } else
716                 kfd->max_proc_per_quantum = hws_max_conc_proc;
717
718         /* calculate max size of mqds needed for queues */
719         size = max_num_of_queues_per_device *
720                         kfd->device_info->mqd_size_aligned;
721
722         /*
723          * calculate max size of runlist packet.
724          * There can be only 2 packets at once
725          */
726         size += (KFD_MAX_NUM_OF_PROCESSES * sizeof(struct pm4_mes_map_process) +
727                 max_num_of_queues_per_device * sizeof(struct pm4_mes_map_queues)
728                 + sizeof(struct pm4_mes_runlist)) * 2;
729
730         /* Add size of HIQ & DIQ */
731         size += KFD_KERNEL_QUEUE_SIZE * 2;
732
733         /* add another 512KB for all other allocations on gart (HPD, fences) */
734         size += 512 * 1024;
735
736         if (amdgpu_amdkfd_alloc_gtt_mem(
737                         kfd->kgd, size, &kfd->gtt_mem,
738                         &kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr,
739                         false)) {
740                 dev_err(kfd_device, "Could not allocate %d bytes\n", size);
741                 goto alloc_gtt_mem_failure;
742         }
743
744         dev_info(kfd_device, "Allocated %d bytes on gart\n", size);
745
746         /* Initialize GTT sa with 512 byte chunk size */
747         if (kfd_gtt_sa_init(kfd, size, 512) != 0) {
748                 dev_err(kfd_device, "Error initializing gtt sub-allocator\n");
749                 goto kfd_gtt_sa_init_error;
750         }
751
752         if (kfd_doorbell_init(kfd)) {
753                 dev_err(kfd_device,
754                         "Error initializing doorbell aperture\n");
755                 goto kfd_doorbell_error;
756         }
757
758         kfd->hive_id = amdgpu_amdkfd_get_hive_id(kfd->kgd);
759
760         kfd->noretry = amdgpu_amdkfd_get_noretry(kfd->kgd);
761
762         if (kfd_interrupt_init(kfd)) {
763                 dev_err(kfd_device, "Error initializing interrupts\n");
764                 goto kfd_interrupt_error;
765         }
766
767         kfd->dqm = device_queue_manager_init(kfd);
768         if (!kfd->dqm) {
769                 dev_err(kfd_device, "Error initializing queue manager\n");
770                 goto device_queue_manager_error;
771         }
772
773         /* If supported on this device, allocate global GWS that is shared
774          * by all KFD processes
775          */
776         if (kfd_gws_init(kfd)) {
777                 dev_err(kfd_device, "Could not allocate %d gws\n",
778                         amdgpu_amdkfd_get_num_gws(kfd->kgd));
779                 goto gws_error;
780         }
781
782         /* If CRAT is broken, won't set iommu enabled */
783         kfd_double_confirm_iommu_support(kfd);
784
785         if (kfd_iommu_device_init(kfd)) {
786                 dev_err(kfd_device, "Error initializing iommuv2\n");
787                 goto device_iommu_error;
788         }
789
790         kfd_cwsr_init(kfd);
791
792         if (kfd_resume(kfd))
793                 goto kfd_resume_error;
794
795         kfd->dbgmgr = NULL;
796
797         if (kfd_topology_add_device(kfd)) {
798                 dev_err(kfd_device, "Error adding device to topology\n");
799                 goto kfd_topology_add_device_error;
800         }
801
802         kfd_smi_init(kfd);
803
804         kfd->init_complete = true;
805         dev_info(kfd_device, "added device %x:%x\n", kfd->pdev->vendor,
806                  kfd->pdev->device);
807
808         pr_debug("Starting kfd with the following scheduling policy %d\n",
809                 kfd->dqm->sched_policy);
810
811         goto out;
812
813 kfd_topology_add_device_error:
814 kfd_resume_error:
815 device_iommu_error:
816 gws_error:
817         device_queue_manager_uninit(kfd->dqm);
818 device_queue_manager_error:
819         kfd_interrupt_exit(kfd);
820 kfd_interrupt_error:
821         kfd_doorbell_fini(kfd);
822 kfd_doorbell_error:
823         kfd_gtt_sa_fini(kfd);
824 kfd_gtt_sa_init_error:
825         amdgpu_amdkfd_free_gtt_mem(kfd->kgd, kfd->gtt_mem);
826 alloc_gtt_mem_failure:
827         if (kfd->gws)
828                 amdgpu_amdkfd_free_gws(kfd->kgd, kfd->gws);
829         dev_err(kfd_device,
830                 "device %x:%x NOT added due to errors\n",
831                 kfd->pdev->vendor, kfd->pdev->device);
832 out:
833         return kfd->init_complete;
834 }
835
836 void kgd2kfd_device_exit(struct kfd_dev *kfd)
837 {
838         if (kfd->init_complete) {
839                 kgd2kfd_suspend(kfd, false);
840                 device_queue_manager_uninit(kfd->dqm);
841                 kfd_interrupt_exit(kfd);
842                 kfd_topology_remove_device(kfd);
843                 kfd_doorbell_fini(kfd);
844                 ida_destroy(&kfd->doorbell_ida);
845                 kfd_gtt_sa_fini(kfd);
846                 amdgpu_amdkfd_free_gtt_mem(kfd->kgd, kfd->gtt_mem);
847                 if (kfd->gws)
848                         amdgpu_amdkfd_free_gws(kfd->kgd, kfd->gws);
849         }
850
851         kfree(kfd);
852 }
853
854 int kgd2kfd_pre_reset(struct kfd_dev *kfd)
855 {
856         if (!kfd->init_complete)
857                 return 0;
858
859         kfd_smi_event_update_gpu_reset(kfd, false);
860
861         kfd->dqm->ops.pre_reset(kfd->dqm);
862
863         kgd2kfd_suspend(kfd, false);
864
865         kfd_signal_reset_event(kfd);
866         return 0;
867 }
868
869 /*
870  * Fix me. KFD won't be able to resume existing process for now.
871  * We will keep all existing process in a evicted state and
872  * wait the process to be terminated.
873  */
874
875 int kgd2kfd_post_reset(struct kfd_dev *kfd)
876 {
877         int ret;
878
879         if (!kfd->init_complete)
880                 return 0;
881
882         ret = kfd_resume(kfd);
883         if (ret)
884                 return ret;
885         atomic_dec(&kfd_locked);
886
887         atomic_set(&kfd->sram_ecc_flag, 0);
888
889         kfd_smi_event_update_gpu_reset(kfd, true);
890
891         return 0;
892 }
893
894 bool kfd_is_locked(void)
895 {
896         return  (atomic_read(&kfd_locked) > 0);
897 }
898
899 void kgd2kfd_suspend(struct kfd_dev *kfd, bool run_pm)
900 {
901         if (!kfd->init_complete)
902                 return;
903
904         /* for runtime suspend, skip locking kfd */
905         if (!run_pm) {
906                 /* For first KFD device suspend all the KFD processes */
907                 if (atomic_inc_return(&kfd_locked) == 1)
908                         kfd_suspend_all_processes();
909         }
910
911         kfd->dqm->ops.stop(kfd->dqm);
912         kfd_iommu_suspend(kfd);
913 }
914
915 int kgd2kfd_resume(struct kfd_dev *kfd, bool run_pm)
916 {
917         int ret, count;
918
919         if (!kfd->init_complete)
920                 return 0;
921
922         ret = kfd_resume(kfd);
923         if (ret)
924                 return ret;
925
926         /* for runtime resume, skip unlocking kfd */
927         if (!run_pm) {
928                 count = atomic_dec_return(&kfd_locked);
929                 WARN_ONCE(count < 0, "KFD suspend / resume ref. error");
930                 if (count == 0)
931                         ret = kfd_resume_all_processes();
932         }
933
934         return ret;
935 }
936
937 static int kfd_resume(struct kfd_dev *kfd)
938 {
939         int err = 0;
940
941         err = kfd_iommu_resume(kfd);
942         if (err) {
943                 dev_err(kfd_device,
944                         "Failed to resume IOMMU for device %x:%x\n",
945                         kfd->pdev->vendor, kfd->pdev->device);
946                 return err;
947         }
948
949         err = kfd->dqm->ops.start(kfd->dqm);
950         if (err) {
951                 dev_err(kfd_device,
952                         "Error starting queue manager for device %x:%x\n",
953                         kfd->pdev->vendor, kfd->pdev->device);
954                 goto dqm_start_error;
955         }
956
957         return err;
958
959 dqm_start_error:
960         kfd_iommu_suspend(kfd);
961         return err;
962 }
963
964 static inline void kfd_queue_work(struct workqueue_struct *wq,
965                                   struct work_struct *work)
966 {
967         int cpu, new_cpu;
968
969         cpu = new_cpu = smp_processor_id();
970         do {
971                 new_cpu = cpumask_next(new_cpu, cpu_online_mask) % nr_cpu_ids;
972                 if (cpu_to_node(new_cpu) == numa_node_id())
973                         break;
974         } while (cpu != new_cpu);
975
976         queue_work_on(new_cpu, wq, work);
977 }
978
979 /* This is called directly from KGD at ISR. */
980 void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry)
981 {
982         uint32_t patched_ihre[KFD_MAX_RING_ENTRY_SIZE];
983         bool is_patched = false;
984         unsigned long flags;
985
986         if (!kfd->init_complete)
987                 return;
988
989         if (kfd->device_info->ih_ring_entry_size > sizeof(patched_ihre)) {
990                 dev_err_once(kfd_device, "Ring entry too small\n");
991                 return;
992         }
993
994         spin_lock_irqsave(&kfd->interrupt_lock, flags);
995
996         if (kfd->interrupts_active
997             && interrupt_is_wanted(kfd, ih_ring_entry,
998                                    patched_ihre, &is_patched)
999             && enqueue_ih_ring_entry(kfd,
1000                                      is_patched ? patched_ihre : ih_ring_entry))
1001                 kfd_queue_work(kfd->ih_wq, &kfd->interrupt_work);
1002
1003         spin_unlock_irqrestore(&kfd->interrupt_lock, flags);
1004 }
1005
1006 int kgd2kfd_quiesce_mm(struct mm_struct *mm)
1007 {
1008         struct kfd_process *p;
1009         int r;
1010
1011         /* Because we are called from arbitrary context (workqueue) as opposed
1012          * to process context, kfd_process could attempt to exit while we are
1013          * running so the lookup function increments the process ref count.
1014          */
1015         p = kfd_lookup_process_by_mm(mm);
1016         if (!p)
1017                 return -ESRCH;
1018
1019         WARN(debug_evictions, "Evicting pid %d", p->lead_thread->pid);
1020         r = kfd_process_evict_queues(p);
1021
1022         kfd_unref_process(p);
1023         return r;
1024 }
1025
1026 int kgd2kfd_resume_mm(struct mm_struct *mm)
1027 {
1028         struct kfd_process *p;
1029         int r;
1030
1031         /* Because we are called from arbitrary context (workqueue) as opposed
1032          * to process context, kfd_process could attempt to exit while we are
1033          * running so the lookup function increments the process ref count.
1034          */
1035         p = kfd_lookup_process_by_mm(mm);
1036         if (!p)
1037                 return -ESRCH;
1038
1039         r = kfd_process_restore_queues(p);
1040
1041         kfd_unref_process(p);
1042         return r;
1043 }
1044
1045 /** kgd2kfd_schedule_evict_and_restore_process - Schedules work queue that will
1046  *   prepare for safe eviction of KFD BOs that belong to the specified
1047  *   process.
1048  *
1049  * @mm: mm_struct that identifies the specified KFD process
1050  * @fence: eviction fence attached to KFD process BOs
1051  *
1052  */
1053 int kgd2kfd_schedule_evict_and_restore_process(struct mm_struct *mm,
1054                                                struct dma_fence *fence)
1055 {
1056         struct kfd_process *p;
1057         unsigned long active_time;
1058         unsigned long delay_jiffies = msecs_to_jiffies(PROCESS_ACTIVE_TIME_MS);
1059
1060         if (!fence)
1061                 return -EINVAL;
1062
1063         if (dma_fence_is_signaled(fence))
1064                 return 0;
1065
1066         p = kfd_lookup_process_by_mm(mm);
1067         if (!p)
1068                 return -ENODEV;
1069
1070         if (fence->seqno == p->last_eviction_seqno)
1071                 goto out;
1072
1073         p->last_eviction_seqno = fence->seqno;
1074
1075         /* Avoid KFD process starvation. Wait for at least
1076          * PROCESS_ACTIVE_TIME_MS before evicting the process again
1077          */
1078         active_time = get_jiffies_64() - p->last_restore_timestamp;
1079         if (delay_jiffies > active_time)
1080                 delay_jiffies -= active_time;
1081         else
1082                 delay_jiffies = 0;
1083
1084         /* During process initialization eviction_work.dwork is initialized
1085          * to kfd_evict_bo_worker
1086          */
1087         WARN(debug_evictions, "Scheduling eviction of pid %d in %ld jiffies",
1088              p->lead_thread->pid, delay_jiffies);
1089         schedule_delayed_work(&p->eviction_work, delay_jiffies);
1090 out:
1091         kfd_unref_process(p);
1092         return 0;
1093 }
1094
1095 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
1096                                 unsigned int chunk_size)
1097 {
1098         unsigned int num_of_longs;
1099
1100         if (WARN_ON(buf_size < chunk_size))
1101                 return -EINVAL;
1102         if (WARN_ON(buf_size == 0))
1103                 return -EINVAL;
1104         if (WARN_ON(chunk_size == 0))
1105                 return -EINVAL;
1106
1107         kfd->gtt_sa_chunk_size = chunk_size;
1108         kfd->gtt_sa_num_of_chunks = buf_size / chunk_size;
1109
1110         num_of_longs = (kfd->gtt_sa_num_of_chunks + BITS_PER_LONG - 1) /
1111                 BITS_PER_LONG;
1112
1113         kfd->gtt_sa_bitmap = kcalloc(num_of_longs, sizeof(long), GFP_KERNEL);
1114
1115         if (!kfd->gtt_sa_bitmap)
1116                 return -ENOMEM;
1117
1118         pr_debug("gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n",
1119                         kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap);
1120
1121         mutex_init(&kfd->gtt_sa_lock);
1122
1123         return 0;
1124
1125 }
1126
1127 static void kfd_gtt_sa_fini(struct kfd_dev *kfd)
1128 {
1129         mutex_destroy(&kfd->gtt_sa_lock);
1130         kfree(kfd->gtt_sa_bitmap);
1131 }
1132
1133 static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,
1134                                                 unsigned int bit_num,
1135                                                 unsigned int chunk_size)
1136 {
1137         return start_addr + bit_num * chunk_size;
1138 }
1139
1140 static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr,
1141                                                 unsigned int bit_num,
1142                                                 unsigned int chunk_size)
1143 {
1144         return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size);
1145 }
1146
1147 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
1148                         struct kfd_mem_obj **mem_obj)
1149 {
1150         unsigned int found, start_search, cur_size;
1151
1152         if (size == 0)
1153                 return -EINVAL;
1154
1155         if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size)
1156                 return -ENOMEM;
1157
1158         *mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
1159         if (!(*mem_obj))
1160                 return -ENOMEM;
1161
1162         pr_debug("Allocated mem_obj = %p for size = %d\n", *mem_obj, size);
1163
1164         start_search = 0;
1165
1166         mutex_lock(&kfd->gtt_sa_lock);
1167
1168 kfd_gtt_restart_search:
1169         /* Find the first chunk that is free */
1170         found = find_next_zero_bit(kfd->gtt_sa_bitmap,
1171                                         kfd->gtt_sa_num_of_chunks,
1172                                         start_search);
1173
1174         pr_debug("Found = %d\n", found);
1175
1176         /* If there wasn't any free chunk, bail out */
1177         if (found == kfd->gtt_sa_num_of_chunks)
1178                 goto kfd_gtt_no_free_chunk;
1179
1180         /* Update fields of mem_obj */
1181         (*mem_obj)->range_start = found;
1182         (*mem_obj)->range_end = found;
1183         (*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr(
1184                                         kfd->gtt_start_gpu_addr,
1185                                         found,
1186                                         kfd->gtt_sa_chunk_size);
1187         (*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr(
1188                                         kfd->gtt_start_cpu_ptr,
1189                                         found,
1190                                         kfd->gtt_sa_chunk_size);
1191
1192         pr_debug("gpu_addr = %p, cpu_addr = %p\n",
1193                         (uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr);
1194
1195         /* If we need only one chunk, mark it as allocated and get out */
1196         if (size <= kfd->gtt_sa_chunk_size) {
1197                 pr_debug("Single bit\n");
1198                 set_bit(found, kfd->gtt_sa_bitmap);
1199                 goto kfd_gtt_out;
1200         }
1201
1202         /* Otherwise, try to see if we have enough contiguous chunks */
1203         cur_size = size - kfd->gtt_sa_chunk_size;
1204         do {
1205                 (*mem_obj)->range_end =
1206                         find_next_zero_bit(kfd->gtt_sa_bitmap,
1207                                         kfd->gtt_sa_num_of_chunks, ++found);
1208                 /*
1209                  * If next free chunk is not contiguous than we need to
1210                  * restart our search from the last free chunk we found (which
1211                  * wasn't contiguous to the previous ones
1212                  */
1213                 if ((*mem_obj)->range_end != found) {
1214                         start_search = found;
1215                         goto kfd_gtt_restart_search;
1216                 }
1217
1218                 /*
1219                  * If we reached end of buffer, bail out with error
1220                  */
1221                 if (found == kfd->gtt_sa_num_of_chunks)
1222                         goto kfd_gtt_no_free_chunk;
1223
1224                 /* Check if we don't need another chunk */
1225                 if (cur_size <= kfd->gtt_sa_chunk_size)
1226                         cur_size = 0;
1227                 else
1228                         cur_size -= kfd->gtt_sa_chunk_size;
1229
1230         } while (cur_size > 0);
1231
1232         pr_debug("range_start = %d, range_end = %d\n",
1233                 (*mem_obj)->range_start, (*mem_obj)->range_end);
1234
1235         /* Mark the chunks as allocated */
1236         for (found = (*mem_obj)->range_start;
1237                 found <= (*mem_obj)->range_end;
1238                 found++)
1239                 set_bit(found, kfd->gtt_sa_bitmap);
1240
1241 kfd_gtt_out:
1242         mutex_unlock(&kfd->gtt_sa_lock);
1243         return 0;
1244
1245 kfd_gtt_no_free_chunk:
1246         pr_debug("Allocation failed with mem_obj = %p\n", *mem_obj);
1247         mutex_unlock(&kfd->gtt_sa_lock);
1248         kfree(*mem_obj);
1249         return -ENOMEM;
1250 }
1251
1252 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj)
1253 {
1254         unsigned int bit;
1255
1256         /* Act like kfree when trying to free a NULL object */
1257         if (!mem_obj)
1258                 return 0;
1259
1260         pr_debug("Free mem_obj = %p, range_start = %d, range_end = %d\n",
1261                         mem_obj, mem_obj->range_start, mem_obj->range_end);
1262
1263         mutex_lock(&kfd->gtt_sa_lock);
1264
1265         /* Mark the chunks as free */
1266         for (bit = mem_obj->range_start;
1267                 bit <= mem_obj->range_end;
1268                 bit++)
1269                 clear_bit(bit, kfd->gtt_sa_bitmap);
1270
1271         mutex_unlock(&kfd->gtt_sa_lock);
1272
1273         kfree(mem_obj);
1274         return 0;
1275 }
1276
1277 void kgd2kfd_set_sram_ecc_flag(struct kfd_dev *kfd)
1278 {
1279         if (kfd)
1280                 atomic_inc(&kfd->sram_ecc_flag);
1281 }
1282
1283 void kfd_inc_compute_active(struct kfd_dev *kfd)
1284 {
1285         if (atomic_inc_return(&kfd->compute_profile) == 1)
1286                 amdgpu_amdkfd_set_compute_idle(kfd->kgd, false);
1287 }
1288
1289 void kfd_dec_compute_active(struct kfd_dev *kfd)
1290 {
1291         int count = atomic_dec_return(&kfd->compute_profile);
1292
1293         if (count == 0)
1294                 amdgpu_amdkfd_set_compute_idle(kfd->kgd, true);
1295         WARN_ONCE(count < 0, "Compute profile ref. count error");
1296 }
1297
1298 void kgd2kfd_smi_event_throttle(struct kfd_dev *kfd, uint32_t throttle_bitmask)
1299 {
1300         if (kfd)
1301                 kfd_smi_event_update_thermal_throttling(kfd, throttle_bitmask);
1302 }
1303
1304 #if defined(CONFIG_DEBUG_FS)
1305
1306 /* This function will send a package to HIQ to hang the HWS
1307  * which will trigger a GPU reset and bring the HWS back to normal state
1308  */
1309 int kfd_debugfs_hang_hws(struct kfd_dev *dev)
1310 {
1311         int r = 0;
1312
1313         if (dev->dqm->sched_policy != KFD_SCHED_POLICY_HWS) {
1314                 pr_err("HWS is not enabled");
1315                 return -EINVAL;
1316         }
1317
1318         r = pm_debugfs_hang_hws(&dev->dqm->packets);
1319         if (!r)
1320                 r = dqm_debugfs_execute_queues(dev->dqm);
1321
1322         return r;
1323 }
1324
1325 #endif