Merge tag 'defconfig-5.15' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[linux-2.6-microblaze.git] / drivers / gpu / drm / amd / amdkfd / kfd_device.c
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22
23 #include <linux/bsearch.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include "kfd_priv.h"
27 #include "kfd_device_queue_manager.h"
28 #include "kfd_pm4_headers_vi.h"
29 #include "kfd_pm4_headers_aldebaran.h"
30 #include "cwsr_trap_handler.h"
31 #include "kfd_iommu.h"
32 #include "amdgpu_amdkfd.h"
33 #include "kfd_smi_events.h"
34 #include "kfd_migrate.h"
35
36 #define MQD_SIZE_ALIGNED 768
37
38 /*
39  * kfd_locked is used to lock the kfd driver during suspend or reset
40  * once locked, kfd driver will stop any further GPU execution.
41  * create process (open) will return -EAGAIN.
42  */
43 static atomic_t kfd_locked = ATOMIC_INIT(0);
44
45 #ifdef CONFIG_DRM_AMDGPU_CIK
46 extern const struct kfd2kgd_calls gfx_v7_kfd2kgd;
47 #endif
48 extern const struct kfd2kgd_calls gfx_v8_kfd2kgd;
49 extern const struct kfd2kgd_calls gfx_v9_kfd2kgd;
50 extern const struct kfd2kgd_calls arcturus_kfd2kgd;
51 extern const struct kfd2kgd_calls aldebaran_kfd2kgd;
52 extern const struct kfd2kgd_calls gfx_v10_kfd2kgd;
53 extern const struct kfd2kgd_calls gfx_v10_3_kfd2kgd;
54
55 static const struct kfd2kgd_calls *kfd2kgd_funcs[] = {
56 #ifdef KFD_SUPPORT_IOMMU_V2
57 #ifdef CONFIG_DRM_AMDGPU_CIK
58         [CHIP_KAVERI] = &gfx_v7_kfd2kgd,
59 #endif
60         [CHIP_CARRIZO] = &gfx_v8_kfd2kgd,
61         [CHIP_RAVEN] = &gfx_v9_kfd2kgd,
62 #endif
63 #ifdef CONFIG_DRM_AMDGPU_CIK
64         [CHIP_HAWAII] = &gfx_v7_kfd2kgd,
65 #endif
66         [CHIP_TONGA] = &gfx_v8_kfd2kgd,
67         [CHIP_FIJI] = &gfx_v8_kfd2kgd,
68         [CHIP_POLARIS10] = &gfx_v8_kfd2kgd,
69         [CHIP_POLARIS11] = &gfx_v8_kfd2kgd,
70         [CHIP_POLARIS12] = &gfx_v8_kfd2kgd,
71         [CHIP_VEGAM] = &gfx_v8_kfd2kgd,
72         [CHIP_VEGA10] = &gfx_v9_kfd2kgd,
73         [CHIP_VEGA12] = &gfx_v9_kfd2kgd,
74         [CHIP_VEGA20] = &gfx_v9_kfd2kgd,
75         [CHIP_RENOIR] = &gfx_v9_kfd2kgd,
76         [CHIP_ARCTURUS] = &arcturus_kfd2kgd,
77         [CHIP_ALDEBARAN] = &aldebaran_kfd2kgd,
78         [CHIP_NAVI10] = &gfx_v10_kfd2kgd,
79         [CHIP_NAVI12] = &gfx_v10_kfd2kgd,
80         [CHIP_NAVI14] = &gfx_v10_kfd2kgd,
81         [CHIP_SIENNA_CICHLID] = &gfx_v10_3_kfd2kgd,
82         [CHIP_NAVY_FLOUNDER] = &gfx_v10_3_kfd2kgd,
83         [CHIP_VANGOGH] = &gfx_v10_3_kfd2kgd,
84         [CHIP_DIMGREY_CAVEFISH] = &gfx_v10_3_kfd2kgd,
85         [CHIP_BEIGE_GOBY] = &gfx_v10_3_kfd2kgd,
86         [CHIP_YELLOW_CARP] = &gfx_v10_3_kfd2kgd,
87         [CHIP_CYAN_SKILLFISH] = &gfx_v10_kfd2kgd,
88 };
89
90 #ifdef KFD_SUPPORT_IOMMU_V2
91 static const struct kfd_device_info kaveri_device_info = {
92         .asic_family = CHIP_KAVERI,
93         .asic_name = "kaveri",
94         .gfx_target_version = 70000,
95         .max_pasid_bits = 16,
96         /* max num of queues for KV.TODO should be a dynamic value */
97         .max_no_of_hqd  = 24,
98         .doorbell_size  = 4,
99         .ih_ring_entry_size = 4 * sizeof(uint32_t),
100         .event_interrupt_class = &event_interrupt_class_cik,
101         .num_of_watch_points = 4,
102         .mqd_size_aligned = MQD_SIZE_ALIGNED,
103         .supports_cwsr = false,
104         .needs_iommu_device = true,
105         .needs_pci_atomics = false,
106         .num_sdma_engines = 2,
107         .num_xgmi_sdma_engines = 0,
108         .num_sdma_queues_per_engine = 2,
109 };
110
111 static const struct kfd_device_info carrizo_device_info = {
112         .asic_family = CHIP_CARRIZO,
113         .asic_name = "carrizo",
114         .gfx_target_version = 80001,
115         .max_pasid_bits = 16,
116         /* max num of queues for CZ.TODO should be a dynamic value */
117         .max_no_of_hqd  = 24,
118         .doorbell_size  = 4,
119         .ih_ring_entry_size = 4 * sizeof(uint32_t),
120         .event_interrupt_class = &event_interrupt_class_cik,
121         .num_of_watch_points = 4,
122         .mqd_size_aligned = MQD_SIZE_ALIGNED,
123         .supports_cwsr = true,
124         .needs_iommu_device = true,
125         .needs_pci_atomics = false,
126         .num_sdma_engines = 2,
127         .num_xgmi_sdma_engines = 0,
128         .num_sdma_queues_per_engine = 2,
129 };
130 #endif
131
132 static const struct kfd_device_info raven_device_info = {
133         .asic_family = CHIP_RAVEN,
134         .asic_name = "raven",
135         .gfx_target_version = 90002,
136         .max_pasid_bits = 16,
137         .max_no_of_hqd  = 24,
138         .doorbell_size  = 8,
139         .ih_ring_entry_size = 8 * sizeof(uint32_t),
140         .event_interrupt_class = &event_interrupt_class_v9,
141         .num_of_watch_points = 4,
142         .mqd_size_aligned = MQD_SIZE_ALIGNED,
143         .supports_cwsr = true,
144         .needs_iommu_device = true,
145         .needs_pci_atomics = true,
146         .num_sdma_engines = 1,
147         .num_xgmi_sdma_engines = 0,
148         .num_sdma_queues_per_engine = 2,
149 };
150
151 static const struct kfd_device_info hawaii_device_info = {
152         .asic_family = CHIP_HAWAII,
153         .asic_name = "hawaii",
154         .gfx_target_version = 70001,
155         .max_pasid_bits = 16,
156         /* max num of queues for KV.TODO should be a dynamic value */
157         .max_no_of_hqd  = 24,
158         .doorbell_size  = 4,
159         .ih_ring_entry_size = 4 * sizeof(uint32_t),
160         .event_interrupt_class = &event_interrupt_class_cik,
161         .num_of_watch_points = 4,
162         .mqd_size_aligned = MQD_SIZE_ALIGNED,
163         .supports_cwsr = false,
164         .needs_iommu_device = false,
165         .needs_pci_atomics = false,
166         .num_sdma_engines = 2,
167         .num_xgmi_sdma_engines = 0,
168         .num_sdma_queues_per_engine = 2,
169 };
170
171 static const struct kfd_device_info tonga_device_info = {
172         .asic_family = CHIP_TONGA,
173         .asic_name = "tonga",
174         .gfx_target_version = 80002,
175         .max_pasid_bits = 16,
176         .max_no_of_hqd  = 24,
177         .doorbell_size  = 4,
178         .ih_ring_entry_size = 4 * sizeof(uint32_t),
179         .event_interrupt_class = &event_interrupt_class_cik,
180         .num_of_watch_points = 4,
181         .mqd_size_aligned = MQD_SIZE_ALIGNED,
182         .supports_cwsr = false,
183         .needs_iommu_device = false,
184         .needs_pci_atomics = true,
185         .num_sdma_engines = 2,
186         .num_xgmi_sdma_engines = 0,
187         .num_sdma_queues_per_engine = 2,
188 };
189
190 static const struct kfd_device_info fiji_device_info = {
191         .asic_family = CHIP_FIJI,
192         .asic_name = "fiji",
193         .gfx_target_version = 80003,
194         .max_pasid_bits = 16,
195         .max_no_of_hqd  = 24,
196         .doorbell_size  = 4,
197         .ih_ring_entry_size = 4 * sizeof(uint32_t),
198         .event_interrupt_class = &event_interrupt_class_cik,
199         .num_of_watch_points = 4,
200         .mqd_size_aligned = MQD_SIZE_ALIGNED,
201         .supports_cwsr = true,
202         .needs_iommu_device = false,
203         .needs_pci_atomics = true,
204         .num_sdma_engines = 2,
205         .num_xgmi_sdma_engines = 0,
206         .num_sdma_queues_per_engine = 2,
207 };
208
209 static const struct kfd_device_info fiji_vf_device_info = {
210         .asic_family = CHIP_FIJI,
211         .asic_name = "fiji",
212         .gfx_target_version = 80003,
213         .max_pasid_bits = 16,
214         .max_no_of_hqd  = 24,
215         .doorbell_size  = 4,
216         .ih_ring_entry_size = 4 * sizeof(uint32_t),
217         .event_interrupt_class = &event_interrupt_class_cik,
218         .num_of_watch_points = 4,
219         .mqd_size_aligned = MQD_SIZE_ALIGNED,
220         .supports_cwsr = true,
221         .needs_iommu_device = false,
222         .needs_pci_atomics = false,
223         .num_sdma_engines = 2,
224         .num_xgmi_sdma_engines = 0,
225         .num_sdma_queues_per_engine = 2,
226 };
227
228
229 static const struct kfd_device_info polaris10_device_info = {
230         .asic_family = CHIP_POLARIS10,
231         .asic_name = "polaris10",
232         .gfx_target_version = 80003,
233         .max_pasid_bits = 16,
234         .max_no_of_hqd  = 24,
235         .doorbell_size  = 4,
236         .ih_ring_entry_size = 4 * sizeof(uint32_t),
237         .event_interrupt_class = &event_interrupt_class_cik,
238         .num_of_watch_points = 4,
239         .mqd_size_aligned = MQD_SIZE_ALIGNED,
240         .supports_cwsr = true,
241         .needs_iommu_device = false,
242         .needs_pci_atomics = true,
243         .num_sdma_engines = 2,
244         .num_xgmi_sdma_engines = 0,
245         .num_sdma_queues_per_engine = 2,
246 };
247
248 static const struct kfd_device_info polaris10_vf_device_info = {
249         .asic_family = CHIP_POLARIS10,
250         .asic_name = "polaris10",
251         .gfx_target_version = 80003,
252         .max_pasid_bits = 16,
253         .max_no_of_hqd  = 24,
254         .doorbell_size  = 4,
255         .ih_ring_entry_size = 4 * sizeof(uint32_t),
256         .event_interrupt_class = &event_interrupt_class_cik,
257         .num_of_watch_points = 4,
258         .mqd_size_aligned = MQD_SIZE_ALIGNED,
259         .supports_cwsr = true,
260         .needs_iommu_device = false,
261         .needs_pci_atomics = false,
262         .num_sdma_engines = 2,
263         .num_xgmi_sdma_engines = 0,
264         .num_sdma_queues_per_engine = 2,
265 };
266
267 static const struct kfd_device_info polaris11_device_info = {
268         .asic_family = CHIP_POLARIS11,
269         .asic_name = "polaris11",
270         .gfx_target_version = 80003,
271         .max_pasid_bits = 16,
272         .max_no_of_hqd  = 24,
273         .doorbell_size  = 4,
274         .ih_ring_entry_size = 4 * sizeof(uint32_t),
275         .event_interrupt_class = &event_interrupt_class_cik,
276         .num_of_watch_points = 4,
277         .mqd_size_aligned = MQD_SIZE_ALIGNED,
278         .supports_cwsr = true,
279         .needs_iommu_device = false,
280         .needs_pci_atomics = true,
281         .num_sdma_engines = 2,
282         .num_xgmi_sdma_engines = 0,
283         .num_sdma_queues_per_engine = 2,
284 };
285
286 static const struct kfd_device_info polaris12_device_info = {
287         .asic_family = CHIP_POLARIS12,
288         .asic_name = "polaris12",
289         .gfx_target_version = 80003,
290         .max_pasid_bits = 16,
291         .max_no_of_hqd  = 24,
292         .doorbell_size  = 4,
293         .ih_ring_entry_size = 4 * sizeof(uint32_t),
294         .event_interrupt_class = &event_interrupt_class_cik,
295         .num_of_watch_points = 4,
296         .mqd_size_aligned = MQD_SIZE_ALIGNED,
297         .supports_cwsr = true,
298         .needs_iommu_device = false,
299         .needs_pci_atomics = true,
300         .num_sdma_engines = 2,
301         .num_xgmi_sdma_engines = 0,
302         .num_sdma_queues_per_engine = 2,
303 };
304
305 static const struct kfd_device_info vegam_device_info = {
306         .asic_family = CHIP_VEGAM,
307         .asic_name = "vegam",
308         .gfx_target_version = 80003,
309         .max_pasid_bits = 16,
310         .max_no_of_hqd  = 24,
311         .doorbell_size  = 4,
312         .ih_ring_entry_size = 4 * sizeof(uint32_t),
313         .event_interrupt_class = &event_interrupt_class_cik,
314         .num_of_watch_points = 4,
315         .mqd_size_aligned = MQD_SIZE_ALIGNED,
316         .supports_cwsr = true,
317         .needs_iommu_device = false,
318         .needs_pci_atomics = true,
319         .num_sdma_engines = 2,
320         .num_xgmi_sdma_engines = 0,
321         .num_sdma_queues_per_engine = 2,
322 };
323
324 static const struct kfd_device_info vega10_device_info = {
325         .asic_family = CHIP_VEGA10,
326         .asic_name = "vega10",
327         .gfx_target_version = 90000,
328         .max_pasid_bits = 16,
329         .max_no_of_hqd  = 24,
330         .doorbell_size  = 8,
331         .ih_ring_entry_size = 8 * sizeof(uint32_t),
332         .event_interrupt_class = &event_interrupt_class_v9,
333         .num_of_watch_points = 4,
334         .mqd_size_aligned = MQD_SIZE_ALIGNED,
335         .supports_cwsr = true,
336         .needs_iommu_device = false,
337         .needs_pci_atomics = false,
338         .num_sdma_engines = 2,
339         .num_xgmi_sdma_engines = 0,
340         .num_sdma_queues_per_engine = 2,
341 };
342
343 static const struct kfd_device_info vega10_vf_device_info = {
344         .asic_family = CHIP_VEGA10,
345         .asic_name = "vega10",
346         .gfx_target_version = 90000,
347         .max_pasid_bits = 16,
348         .max_no_of_hqd  = 24,
349         .doorbell_size  = 8,
350         .ih_ring_entry_size = 8 * sizeof(uint32_t),
351         .event_interrupt_class = &event_interrupt_class_v9,
352         .num_of_watch_points = 4,
353         .mqd_size_aligned = MQD_SIZE_ALIGNED,
354         .supports_cwsr = true,
355         .needs_iommu_device = false,
356         .needs_pci_atomics = false,
357         .num_sdma_engines = 2,
358         .num_xgmi_sdma_engines = 0,
359         .num_sdma_queues_per_engine = 2,
360 };
361
362 static const struct kfd_device_info vega12_device_info = {
363         .asic_family = CHIP_VEGA12,
364         .asic_name = "vega12",
365         .gfx_target_version = 90004,
366         .max_pasid_bits = 16,
367         .max_no_of_hqd  = 24,
368         .doorbell_size  = 8,
369         .ih_ring_entry_size = 8 * sizeof(uint32_t),
370         .event_interrupt_class = &event_interrupt_class_v9,
371         .num_of_watch_points = 4,
372         .mqd_size_aligned = MQD_SIZE_ALIGNED,
373         .supports_cwsr = true,
374         .needs_iommu_device = false,
375         .needs_pci_atomics = false,
376         .num_sdma_engines = 2,
377         .num_xgmi_sdma_engines = 0,
378         .num_sdma_queues_per_engine = 2,
379 };
380
381 static const struct kfd_device_info vega20_device_info = {
382         .asic_family = CHIP_VEGA20,
383         .asic_name = "vega20",
384         .gfx_target_version = 90006,
385         .max_pasid_bits = 16,
386         .max_no_of_hqd  = 24,
387         .doorbell_size  = 8,
388         .ih_ring_entry_size = 8 * sizeof(uint32_t),
389         .event_interrupt_class = &event_interrupt_class_v9,
390         .num_of_watch_points = 4,
391         .mqd_size_aligned = MQD_SIZE_ALIGNED,
392         .supports_cwsr = true,
393         .needs_iommu_device = false,
394         .needs_pci_atomics = false,
395         .num_sdma_engines = 2,
396         .num_xgmi_sdma_engines = 0,
397         .num_sdma_queues_per_engine = 8,
398 };
399
400 static const struct kfd_device_info arcturus_device_info = {
401         .asic_family = CHIP_ARCTURUS,
402         .asic_name = "arcturus",
403         .gfx_target_version = 90008,
404         .max_pasid_bits = 16,
405         .max_no_of_hqd  = 24,
406         .doorbell_size  = 8,
407         .ih_ring_entry_size = 8 * sizeof(uint32_t),
408         .event_interrupt_class = &event_interrupt_class_v9,
409         .num_of_watch_points = 4,
410         .mqd_size_aligned = MQD_SIZE_ALIGNED,
411         .supports_cwsr = true,
412         .needs_iommu_device = false,
413         .needs_pci_atomics = false,
414         .num_sdma_engines = 2,
415         .num_xgmi_sdma_engines = 6,
416         .num_sdma_queues_per_engine = 8,
417 };
418
419 static const struct kfd_device_info aldebaran_device_info = {
420         .asic_family = CHIP_ALDEBARAN,
421         .asic_name = "aldebaran",
422         .gfx_target_version = 90010,
423         .max_pasid_bits = 16,
424         .max_no_of_hqd  = 24,
425         .doorbell_size  = 8,
426         .ih_ring_entry_size = 8 * sizeof(uint32_t),
427         .event_interrupt_class = &event_interrupt_class_v9,
428         .num_of_watch_points = 4,
429         .mqd_size_aligned = MQD_SIZE_ALIGNED,
430         .supports_cwsr = true,
431         .needs_iommu_device = false,
432         .needs_pci_atomics = false,
433         .num_sdma_engines = 2,
434         .num_xgmi_sdma_engines = 3,
435         .num_sdma_queues_per_engine = 8,
436 };
437
438 static const struct kfd_device_info renoir_device_info = {
439         .asic_family = CHIP_RENOIR,
440         .asic_name = "renoir",
441         .gfx_target_version = 90002,
442         .max_pasid_bits = 16,
443         .max_no_of_hqd  = 24,
444         .doorbell_size  = 8,
445         .ih_ring_entry_size = 8 * sizeof(uint32_t),
446         .event_interrupt_class = &event_interrupt_class_v9,
447         .num_of_watch_points = 4,
448         .mqd_size_aligned = MQD_SIZE_ALIGNED,
449         .supports_cwsr = true,
450         .needs_iommu_device = false,
451         .needs_pci_atomics = false,
452         .num_sdma_engines = 1,
453         .num_xgmi_sdma_engines = 0,
454         .num_sdma_queues_per_engine = 2,
455 };
456
457 static const struct kfd_device_info navi10_device_info = {
458         .asic_family = CHIP_NAVI10,
459         .asic_name = "navi10",
460         .gfx_target_version = 100100,
461         .max_pasid_bits = 16,
462         .max_no_of_hqd  = 24,
463         .doorbell_size  = 8,
464         .ih_ring_entry_size = 8 * sizeof(uint32_t),
465         .event_interrupt_class = &event_interrupt_class_v9,
466         .num_of_watch_points = 4,
467         .mqd_size_aligned = MQD_SIZE_ALIGNED,
468         .needs_iommu_device = false,
469         .supports_cwsr = true,
470         .needs_pci_atomics = true,
471         .num_sdma_engines = 2,
472         .num_xgmi_sdma_engines = 0,
473         .num_sdma_queues_per_engine = 8,
474 };
475
476 static const struct kfd_device_info navi12_device_info = {
477         .asic_family = CHIP_NAVI12,
478         .asic_name = "navi12",
479         .gfx_target_version = 100101,
480         .max_pasid_bits = 16,
481         .max_no_of_hqd  = 24,
482         .doorbell_size  = 8,
483         .ih_ring_entry_size = 8 * sizeof(uint32_t),
484         .event_interrupt_class = &event_interrupt_class_v9,
485         .num_of_watch_points = 4,
486         .mqd_size_aligned = MQD_SIZE_ALIGNED,
487         .needs_iommu_device = false,
488         .supports_cwsr = true,
489         .needs_pci_atomics = true,
490         .num_sdma_engines = 2,
491         .num_xgmi_sdma_engines = 0,
492         .num_sdma_queues_per_engine = 8,
493 };
494
495 static const struct kfd_device_info navi14_device_info = {
496         .asic_family = CHIP_NAVI14,
497         .asic_name = "navi14",
498         .gfx_target_version = 100102,
499         .max_pasid_bits = 16,
500         .max_no_of_hqd  = 24,
501         .doorbell_size  = 8,
502         .ih_ring_entry_size = 8 * sizeof(uint32_t),
503         .event_interrupt_class = &event_interrupt_class_v9,
504         .num_of_watch_points = 4,
505         .mqd_size_aligned = MQD_SIZE_ALIGNED,
506         .needs_iommu_device = false,
507         .supports_cwsr = true,
508         .needs_pci_atomics = true,
509         .num_sdma_engines = 2,
510         .num_xgmi_sdma_engines = 0,
511         .num_sdma_queues_per_engine = 8,
512 };
513
514 static const struct kfd_device_info sienna_cichlid_device_info = {
515         .asic_family = CHIP_SIENNA_CICHLID,
516         .asic_name = "sienna_cichlid",
517         .gfx_target_version = 100300,
518         .max_pasid_bits = 16,
519         .max_no_of_hqd  = 24,
520         .doorbell_size  = 8,
521         .ih_ring_entry_size = 8 * sizeof(uint32_t),
522         .event_interrupt_class = &event_interrupt_class_v9,
523         .num_of_watch_points = 4,
524         .mqd_size_aligned = MQD_SIZE_ALIGNED,
525         .needs_iommu_device = false,
526         .supports_cwsr = true,
527         .needs_pci_atomics = true,
528         .num_sdma_engines = 4,
529         .num_xgmi_sdma_engines = 0,
530         .num_sdma_queues_per_engine = 8,
531 };
532
533 static const struct kfd_device_info navy_flounder_device_info = {
534         .asic_family = CHIP_NAVY_FLOUNDER,
535         .asic_name = "navy_flounder",
536         .gfx_target_version = 100301,
537         .max_pasid_bits = 16,
538         .max_no_of_hqd  = 24,
539         .doorbell_size  = 8,
540         .ih_ring_entry_size = 8 * sizeof(uint32_t),
541         .event_interrupt_class = &event_interrupt_class_v9,
542         .num_of_watch_points = 4,
543         .mqd_size_aligned = MQD_SIZE_ALIGNED,
544         .needs_iommu_device = false,
545         .supports_cwsr = true,
546         .needs_pci_atomics = true,
547         .num_sdma_engines = 2,
548         .num_xgmi_sdma_engines = 0,
549         .num_sdma_queues_per_engine = 8,
550 };
551
552 static const struct kfd_device_info vangogh_device_info = {
553         .asic_family = CHIP_VANGOGH,
554         .asic_name = "vangogh",
555         .gfx_target_version = 100303,
556         .max_pasid_bits = 16,
557         .max_no_of_hqd  = 24,
558         .doorbell_size  = 8,
559         .ih_ring_entry_size = 8 * sizeof(uint32_t),
560         .event_interrupt_class = &event_interrupt_class_v9,
561         .num_of_watch_points = 4,
562         .mqd_size_aligned = MQD_SIZE_ALIGNED,
563         .needs_iommu_device = false,
564         .supports_cwsr = true,
565         .needs_pci_atomics = false,
566         .num_sdma_engines = 1,
567         .num_xgmi_sdma_engines = 0,
568         .num_sdma_queues_per_engine = 2,
569 };
570
571 static const struct kfd_device_info dimgrey_cavefish_device_info = {
572         .asic_family = CHIP_DIMGREY_CAVEFISH,
573         .asic_name = "dimgrey_cavefish",
574         .gfx_target_version = 100302,
575         .max_pasid_bits = 16,
576         .max_no_of_hqd  = 24,
577         .doorbell_size  = 8,
578         .ih_ring_entry_size = 8 * sizeof(uint32_t),
579         .event_interrupt_class = &event_interrupt_class_v9,
580         .num_of_watch_points = 4,
581         .mqd_size_aligned = MQD_SIZE_ALIGNED,
582         .needs_iommu_device = false,
583         .supports_cwsr = true,
584         .needs_pci_atomics = true,
585         .num_sdma_engines = 2,
586         .num_xgmi_sdma_engines = 0,
587         .num_sdma_queues_per_engine = 8,
588 };
589
590 static const struct kfd_device_info beige_goby_device_info = {
591         .asic_family = CHIP_BEIGE_GOBY,
592         .asic_name = "beige_goby",
593         .gfx_target_version = 100304,
594         .max_pasid_bits = 16,
595         .max_no_of_hqd  = 24,
596         .doorbell_size  = 8,
597         .ih_ring_entry_size = 8 * sizeof(uint32_t),
598         .event_interrupt_class = &event_interrupt_class_v9,
599         .num_of_watch_points = 4,
600         .mqd_size_aligned = MQD_SIZE_ALIGNED,
601         .needs_iommu_device = false,
602         .supports_cwsr = true,
603         .needs_pci_atomics = true,
604         .num_sdma_engines = 1,
605         .num_xgmi_sdma_engines = 0,
606         .num_sdma_queues_per_engine = 8,
607 };
608
609 static const struct kfd_device_info yellow_carp_device_info = {
610         .asic_family = CHIP_YELLOW_CARP,
611         .asic_name = "yellow_carp",
612         .gfx_target_version = 100305,
613         .max_pasid_bits = 16,
614         .max_no_of_hqd  = 24,
615         .doorbell_size  = 8,
616         .ih_ring_entry_size = 8 * sizeof(uint32_t),
617         .event_interrupt_class = &event_interrupt_class_v9,
618         .num_of_watch_points = 4,
619         .mqd_size_aligned = MQD_SIZE_ALIGNED,
620         .needs_iommu_device = false,
621         .supports_cwsr = true,
622         .needs_pci_atomics = false,
623         .num_sdma_engines = 1,
624         .num_xgmi_sdma_engines = 0,
625         .num_sdma_queues_per_engine = 2,
626 };
627
628 static const struct kfd_device_info cyan_skillfish_device_info = {
629         .asic_family = CHIP_CYAN_SKILLFISH,
630         .asic_name = "cyan_skillfish",
631         .gfx_target_version = 100103,
632         .max_pasid_bits = 16,
633         .max_no_of_hqd  = 24,
634         .doorbell_size  = 8,
635         .ih_ring_entry_size = 8 * sizeof(uint32_t),
636         .event_interrupt_class = &event_interrupt_class_v9,
637         .num_of_watch_points = 4,
638         .mqd_size_aligned = MQD_SIZE_ALIGNED,
639         .needs_iommu_device = false,
640         .supports_cwsr = true,
641         .needs_pci_atomics = true,
642         .num_sdma_engines = 2,
643         .num_xgmi_sdma_engines = 0,
644         .num_sdma_queues_per_engine = 8,
645 };
646
647 /* For each entry, [0] is regular and [1] is virtualisation device. */
648 static const struct kfd_device_info *kfd_supported_devices[][2] = {
649 #ifdef KFD_SUPPORT_IOMMU_V2
650         [CHIP_KAVERI] = {&kaveri_device_info, NULL},
651         [CHIP_CARRIZO] = {&carrizo_device_info, NULL},
652 #endif
653         [CHIP_RAVEN] = {&raven_device_info, NULL},
654         [CHIP_HAWAII] = {&hawaii_device_info, NULL},
655         [CHIP_TONGA] = {&tonga_device_info, NULL},
656         [CHIP_FIJI] = {&fiji_device_info, &fiji_vf_device_info},
657         [CHIP_POLARIS10] = {&polaris10_device_info, &polaris10_vf_device_info},
658         [CHIP_POLARIS11] = {&polaris11_device_info, NULL},
659         [CHIP_POLARIS12] = {&polaris12_device_info, NULL},
660         [CHIP_VEGAM] = {&vegam_device_info, NULL},
661         [CHIP_VEGA10] = {&vega10_device_info, &vega10_vf_device_info},
662         [CHIP_VEGA12] = {&vega12_device_info, NULL},
663         [CHIP_VEGA20] = {&vega20_device_info, NULL},
664         [CHIP_RENOIR] = {&renoir_device_info, NULL},
665         [CHIP_ARCTURUS] = {&arcturus_device_info, &arcturus_device_info},
666         [CHIP_ALDEBARAN] = {&aldebaran_device_info, &aldebaran_device_info},
667         [CHIP_NAVI10] = {&navi10_device_info, NULL},
668         [CHIP_NAVI12] = {&navi12_device_info, &navi12_device_info},
669         [CHIP_NAVI14] = {&navi14_device_info, NULL},
670         [CHIP_SIENNA_CICHLID] = {&sienna_cichlid_device_info, &sienna_cichlid_device_info},
671         [CHIP_NAVY_FLOUNDER] = {&navy_flounder_device_info, &navy_flounder_device_info},
672         [CHIP_VANGOGH] = {&vangogh_device_info, NULL},
673         [CHIP_DIMGREY_CAVEFISH] = {&dimgrey_cavefish_device_info, &dimgrey_cavefish_device_info},
674         [CHIP_BEIGE_GOBY] = {&beige_goby_device_info, &beige_goby_device_info},
675         [CHIP_YELLOW_CARP] = {&yellow_carp_device_info, NULL},
676         [CHIP_CYAN_SKILLFISH] = {&cyan_skillfish_device_info, NULL},
677 };
678
679 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
680                                 unsigned int chunk_size);
681 static void kfd_gtt_sa_fini(struct kfd_dev *kfd);
682
683 static int kfd_resume(struct kfd_dev *kfd);
684
685 struct kfd_dev *kgd2kfd_probe(struct kgd_dev *kgd,
686         struct pci_dev *pdev, unsigned int asic_type, bool vf)
687 {
688         struct kfd_dev *kfd;
689         const struct kfd_device_info *device_info;
690         const struct kfd2kgd_calls *f2g;
691
692         if (asic_type >= sizeof(kfd_supported_devices) / (sizeof(void *) * 2)
693                 || asic_type >= sizeof(kfd2kgd_funcs) / sizeof(void *)) {
694                 dev_err(kfd_device, "asic_type %d out of range\n", asic_type);
695                 return NULL; /* asic_type out of range */
696         }
697
698         device_info = kfd_supported_devices[asic_type][vf];
699         f2g = kfd2kgd_funcs[asic_type];
700
701         if (!device_info || !f2g) {
702                 dev_err(kfd_device, "%s %s not supported in kfd\n",
703                         amdgpu_asic_name[asic_type], vf ? "VF" : "");
704                 return NULL;
705         }
706
707         kfd = kzalloc(sizeof(*kfd), GFP_KERNEL);
708         if (!kfd)
709                 return NULL;
710
711         /* Allow BIF to recode atomics to PCIe 3.0 AtomicOps.
712          * 32 and 64-bit requests are possible and must be
713          * supported.
714          */
715         kfd->pci_atomic_requested = amdgpu_amdkfd_have_atomics_support(kgd);
716         if (device_info->needs_pci_atomics &&
717             !kfd->pci_atomic_requested) {
718                 dev_info(kfd_device,
719                          "skipped device %x:%x, PCI rejects atomics\n",
720                          pdev->vendor, pdev->device);
721                 kfree(kfd);
722                 return NULL;
723         }
724
725         kfd->kgd = kgd;
726         kfd->device_info = device_info;
727         kfd->pdev = pdev;
728         kfd->init_complete = false;
729         kfd->kfd2kgd = f2g;
730         atomic_set(&kfd->compute_profile, 0);
731
732         mutex_init(&kfd->doorbell_mutex);
733         memset(&kfd->doorbell_available_index, 0,
734                 sizeof(kfd->doorbell_available_index));
735
736         atomic_set(&kfd->sram_ecc_flag, 0);
737
738         ida_init(&kfd->doorbell_ida);
739
740         return kfd;
741 }
742
743 static void kfd_cwsr_init(struct kfd_dev *kfd)
744 {
745         if (cwsr_enable && kfd->device_info->supports_cwsr) {
746                 if (kfd->device_info->asic_family < CHIP_VEGA10) {
747                         BUILD_BUG_ON(sizeof(cwsr_trap_gfx8_hex) > PAGE_SIZE);
748                         kfd->cwsr_isa = cwsr_trap_gfx8_hex;
749                         kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx8_hex);
750                 } else if (kfd->device_info->asic_family == CHIP_ARCTURUS) {
751                         BUILD_BUG_ON(sizeof(cwsr_trap_arcturus_hex) > PAGE_SIZE);
752                         kfd->cwsr_isa = cwsr_trap_arcturus_hex;
753                         kfd->cwsr_isa_size = sizeof(cwsr_trap_arcturus_hex);
754                 } else if (kfd->device_info->asic_family == CHIP_ALDEBARAN) {
755                         BUILD_BUG_ON(sizeof(cwsr_trap_aldebaran_hex) > PAGE_SIZE);
756                         kfd->cwsr_isa = cwsr_trap_aldebaran_hex;
757                         kfd->cwsr_isa_size = sizeof(cwsr_trap_aldebaran_hex);
758                 } else if (kfd->device_info->asic_family < CHIP_NAVI10) {
759                         BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_hex) > PAGE_SIZE);
760                         kfd->cwsr_isa = cwsr_trap_gfx9_hex;
761                         kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_hex);
762                 } else if (kfd->device_info->asic_family < CHIP_SIENNA_CICHLID) {
763                         BUILD_BUG_ON(sizeof(cwsr_trap_nv1x_hex) > PAGE_SIZE);
764                         kfd->cwsr_isa = cwsr_trap_nv1x_hex;
765                         kfd->cwsr_isa_size = sizeof(cwsr_trap_nv1x_hex);
766                 } else {
767                         BUILD_BUG_ON(sizeof(cwsr_trap_gfx10_hex) > PAGE_SIZE);
768                         kfd->cwsr_isa = cwsr_trap_gfx10_hex;
769                         kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx10_hex);
770                 }
771
772                 kfd->cwsr_enabled = true;
773         }
774 }
775
776 static int kfd_gws_init(struct kfd_dev *kfd)
777 {
778         int ret = 0;
779
780         if (kfd->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS)
781                 return 0;
782
783         if (hws_gws_support
784                 || (kfd->device_info->asic_family == CHIP_VEGA10
785                         && kfd->mec2_fw_version >= 0x81b3)
786                 || (kfd->device_info->asic_family >= CHIP_VEGA12
787                         && kfd->device_info->asic_family <= CHIP_RAVEN
788                         && kfd->mec2_fw_version >= 0x1b3)
789                 || (kfd->device_info->asic_family == CHIP_ARCTURUS
790                         && kfd->mec2_fw_version >= 0x30)
791                 || (kfd->device_info->asic_family == CHIP_ALDEBARAN
792                         && kfd->mec2_fw_version >= 0x28))
793                 ret = amdgpu_amdkfd_alloc_gws(kfd->kgd,
794                                 amdgpu_amdkfd_get_num_gws(kfd->kgd), &kfd->gws);
795
796         return ret;
797 }
798
799 static void kfd_smi_init(struct kfd_dev *dev) {
800         INIT_LIST_HEAD(&dev->smi_clients);
801         spin_lock_init(&dev->smi_lock);
802 }
803
804 bool kgd2kfd_device_init(struct kfd_dev *kfd,
805                          struct drm_device *ddev,
806                          const struct kgd2kfd_shared_resources *gpu_resources)
807 {
808         unsigned int size, map_process_packet_size;
809
810         kfd->ddev = ddev;
811         kfd->mec_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd,
812                         KGD_ENGINE_MEC1);
813         kfd->mec2_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd,
814                         KGD_ENGINE_MEC2);
815         kfd->sdma_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd,
816                         KGD_ENGINE_SDMA1);
817         kfd->shared_resources = *gpu_resources;
818
819         kfd->vm_info.first_vmid_kfd = ffs(gpu_resources->compute_vmid_bitmap)-1;
820         kfd->vm_info.last_vmid_kfd = fls(gpu_resources->compute_vmid_bitmap)-1;
821         kfd->vm_info.vmid_num_kfd = kfd->vm_info.last_vmid_kfd
822                         - kfd->vm_info.first_vmid_kfd + 1;
823
824         /* Verify module parameters regarding mapped process number*/
825         if ((hws_max_conc_proc < 0)
826                         || (hws_max_conc_proc > kfd->vm_info.vmid_num_kfd)) {
827                 dev_err(kfd_device,
828                         "hws_max_conc_proc %d must be between 0 and %d, use %d instead\n",
829                         hws_max_conc_proc, kfd->vm_info.vmid_num_kfd,
830                         kfd->vm_info.vmid_num_kfd);
831                 kfd->max_proc_per_quantum = kfd->vm_info.vmid_num_kfd;
832         } else
833                 kfd->max_proc_per_quantum = hws_max_conc_proc;
834
835         /* calculate max size of mqds needed for queues */
836         size = max_num_of_queues_per_device *
837                         kfd->device_info->mqd_size_aligned;
838
839         /*
840          * calculate max size of runlist packet.
841          * There can be only 2 packets at once
842          */
843         map_process_packet_size =
844                         kfd->device_info->asic_family == CHIP_ALDEBARAN ?
845                                 sizeof(struct pm4_mes_map_process_aldebaran) :
846                                         sizeof(struct pm4_mes_map_process);
847         size += (KFD_MAX_NUM_OF_PROCESSES * map_process_packet_size +
848                 max_num_of_queues_per_device * sizeof(struct pm4_mes_map_queues)
849                 + sizeof(struct pm4_mes_runlist)) * 2;
850
851         /* Add size of HIQ & DIQ */
852         size += KFD_KERNEL_QUEUE_SIZE * 2;
853
854         /* add another 512KB for all other allocations on gart (HPD, fences) */
855         size += 512 * 1024;
856
857         if (amdgpu_amdkfd_alloc_gtt_mem(
858                         kfd->kgd, size, &kfd->gtt_mem,
859                         &kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr,
860                         false)) {
861                 dev_err(kfd_device, "Could not allocate %d bytes\n", size);
862                 goto alloc_gtt_mem_failure;
863         }
864
865         dev_info(kfd_device, "Allocated %d bytes on gart\n", size);
866
867         /* Initialize GTT sa with 512 byte chunk size */
868         if (kfd_gtt_sa_init(kfd, size, 512) != 0) {
869                 dev_err(kfd_device, "Error initializing gtt sub-allocator\n");
870                 goto kfd_gtt_sa_init_error;
871         }
872
873         if (kfd_doorbell_init(kfd)) {
874                 dev_err(kfd_device,
875                         "Error initializing doorbell aperture\n");
876                 goto kfd_doorbell_error;
877         }
878
879         kfd->hive_id = amdgpu_amdkfd_get_hive_id(kfd->kgd);
880
881         kfd->noretry = amdgpu_amdkfd_get_noretry(kfd->kgd);
882
883         if (kfd_interrupt_init(kfd)) {
884                 dev_err(kfd_device, "Error initializing interrupts\n");
885                 goto kfd_interrupt_error;
886         }
887
888         kfd->dqm = device_queue_manager_init(kfd);
889         if (!kfd->dqm) {
890                 dev_err(kfd_device, "Error initializing queue manager\n");
891                 goto device_queue_manager_error;
892         }
893
894         /* If supported on this device, allocate global GWS that is shared
895          * by all KFD processes
896          */
897         if (kfd_gws_init(kfd)) {
898                 dev_err(kfd_device, "Could not allocate %d gws\n",
899                         amdgpu_amdkfd_get_num_gws(kfd->kgd));
900                 goto gws_error;
901         }
902
903         /* If CRAT is broken, won't set iommu enabled */
904         kfd_double_confirm_iommu_support(kfd);
905
906         if (kfd_iommu_device_init(kfd)) {
907                 dev_err(kfd_device, "Error initializing iommuv2\n");
908                 goto device_iommu_error;
909         }
910
911         kfd_cwsr_init(kfd);
912
913         svm_migrate_init((struct amdgpu_device *)kfd->kgd);
914
915         if (kfd_resume(kfd))
916                 goto kfd_resume_error;
917
918         kfd->dbgmgr = NULL;
919
920         if (kfd_topology_add_device(kfd)) {
921                 dev_err(kfd_device, "Error adding device to topology\n");
922                 goto kfd_topology_add_device_error;
923         }
924
925         kfd_smi_init(kfd);
926
927         kfd->init_complete = true;
928         dev_info(kfd_device, "added device %x:%x\n", kfd->pdev->vendor,
929                  kfd->pdev->device);
930
931         pr_debug("Starting kfd with the following scheduling policy %d\n",
932                 kfd->dqm->sched_policy);
933
934         goto out;
935
936 kfd_topology_add_device_error:
937 kfd_resume_error:
938 device_iommu_error:
939 gws_error:
940         device_queue_manager_uninit(kfd->dqm);
941 device_queue_manager_error:
942         kfd_interrupt_exit(kfd);
943 kfd_interrupt_error:
944         kfd_doorbell_fini(kfd);
945 kfd_doorbell_error:
946         kfd_gtt_sa_fini(kfd);
947 kfd_gtt_sa_init_error:
948         amdgpu_amdkfd_free_gtt_mem(kfd->kgd, kfd->gtt_mem);
949 alloc_gtt_mem_failure:
950         if (kfd->gws)
951                 amdgpu_amdkfd_free_gws(kfd->kgd, kfd->gws);
952         dev_err(kfd_device,
953                 "device %x:%x NOT added due to errors\n",
954                 kfd->pdev->vendor, kfd->pdev->device);
955 out:
956         return kfd->init_complete;
957 }
958
959 void kgd2kfd_device_exit(struct kfd_dev *kfd)
960 {
961         if (kfd->init_complete) {
962                 svm_migrate_fini((struct amdgpu_device *)kfd->kgd);
963                 device_queue_manager_uninit(kfd->dqm);
964                 kfd_interrupt_exit(kfd);
965                 kfd_topology_remove_device(kfd);
966                 kfd_doorbell_fini(kfd);
967                 ida_destroy(&kfd->doorbell_ida);
968                 kfd_gtt_sa_fini(kfd);
969                 amdgpu_amdkfd_free_gtt_mem(kfd->kgd, kfd->gtt_mem);
970                 if (kfd->gws)
971                         amdgpu_amdkfd_free_gws(kfd->kgd, kfd->gws);
972         }
973
974         kfree(kfd);
975 }
976
977 int kgd2kfd_pre_reset(struct kfd_dev *kfd)
978 {
979         if (!kfd->init_complete)
980                 return 0;
981
982         kfd_smi_event_update_gpu_reset(kfd, false);
983
984         kfd->dqm->ops.pre_reset(kfd->dqm);
985
986         kgd2kfd_suspend(kfd, false);
987
988         kfd_signal_reset_event(kfd);
989         return 0;
990 }
991
992 /*
993  * Fix me. KFD won't be able to resume existing process for now.
994  * We will keep all existing process in a evicted state and
995  * wait the process to be terminated.
996  */
997
998 int kgd2kfd_post_reset(struct kfd_dev *kfd)
999 {
1000         int ret;
1001
1002         if (!kfd->init_complete)
1003                 return 0;
1004
1005         ret = kfd_resume(kfd);
1006         if (ret)
1007                 return ret;
1008         atomic_dec(&kfd_locked);
1009
1010         atomic_set(&kfd->sram_ecc_flag, 0);
1011
1012         kfd_smi_event_update_gpu_reset(kfd, true);
1013
1014         return 0;
1015 }
1016
1017 bool kfd_is_locked(void)
1018 {
1019         return  (atomic_read(&kfd_locked) > 0);
1020 }
1021
1022 void kgd2kfd_suspend(struct kfd_dev *kfd, bool run_pm)
1023 {
1024         if (!kfd->init_complete)
1025                 return;
1026
1027         /* for runtime suspend, skip locking kfd */
1028         if (!run_pm) {
1029                 /* For first KFD device suspend all the KFD processes */
1030                 if (atomic_inc_return(&kfd_locked) == 1)
1031                         kfd_suspend_all_processes();
1032         }
1033
1034         kfd->dqm->ops.stop(kfd->dqm);
1035         kfd_iommu_suspend(kfd);
1036 }
1037
1038 int kgd2kfd_resume(struct kfd_dev *kfd, bool run_pm)
1039 {
1040         int ret, count;
1041
1042         if (!kfd->init_complete)
1043                 return 0;
1044
1045         ret = kfd_resume(kfd);
1046         if (ret)
1047                 return ret;
1048
1049         /* for runtime resume, skip unlocking kfd */
1050         if (!run_pm) {
1051                 count = atomic_dec_return(&kfd_locked);
1052                 WARN_ONCE(count < 0, "KFD suspend / resume ref. error");
1053                 if (count == 0)
1054                         ret = kfd_resume_all_processes();
1055         }
1056
1057         return ret;
1058 }
1059
1060 static int kfd_resume(struct kfd_dev *kfd)
1061 {
1062         int err = 0;
1063
1064         err = kfd_iommu_resume(kfd);
1065         if (err) {
1066                 dev_err(kfd_device,
1067                         "Failed to resume IOMMU for device %x:%x\n",
1068                         kfd->pdev->vendor, kfd->pdev->device);
1069                 return err;
1070         }
1071
1072         err = kfd->dqm->ops.start(kfd->dqm);
1073         if (err) {
1074                 dev_err(kfd_device,
1075                         "Error starting queue manager for device %x:%x\n",
1076                         kfd->pdev->vendor, kfd->pdev->device);
1077                 goto dqm_start_error;
1078         }
1079
1080         return err;
1081
1082 dqm_start_error:
1083         kfd_iommu_suspend(kfd);
1084         return err;
1085 }
1086
1087 static inline void kfd_queue_work(struct workqueue_struct *wq,
1088                                   struct work_struct *work)
1089 {
1090         int cpu, new_cpu;
1091
1092         cpu = new_cpu = smp_processor_id();
1093         do {
1094                 new_cpu = cpumask_next(new_cpu, cpu_online_mask) % nr_cpu_ids;
1095                 if (cpu_to_node(new_cpu) == numa_node_id())
1096                         break;
1097         } while (cpu != new_cpu);
1098
1099         queue_work_on(new_cpu, wq, work);
1100 }
1101
1102 /* This is called directly from KGD at ISR. */
1103 void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry)
1104 {
1105         uint32_t patched_ihre[KFD_MAX_RING_ENTRY_SIZE];
1106         bool is_patched = false;
1107         unsigned long flags;
1108
1109         if (!kfd->init_complete)
1110                 return;
1111
1112         if (kfd->device_info->ih_ring_entry_size > sizeof(patched_ihre)) {
1113                 dev_err_once(kfd_device, "Ring entry too small\n");
1114                 return;
1115         }
1116
1117         spin_lock_irqsave(&kfd->interrupt_lock, flags);
1118
1119         if (kfd->interrupts_active
1120             && interrupt_is_wanted(kfd, ih_ring_entry,
1121                                    patched_ihre, &is_patched)
1122             && enqueue_ih_ring_entry(kfd,
1123                                      is_patched ? patched_ihre : ih_ring_entry))
1124                 kfd_queue_work(kfd->ih_wq, &kfd->interrupt_work);
1125
1126         spin_unlock_irqrestore(&kfd->interrupt_lock, flags);
1127 }
1128
1129 int kgd2kfd_quiesce_mm(struct mm_struct *mm)
1130 {
1131         struct kfd_process *p;
1132         int r;
1133
1134         /* Because we are called from arbitrary context (workqueue) as opposed
1135          * to process context, kfd_process could attempt to exit while we are
1136          * running so the lookup function increments the process ref count.
1137          */
1138         p = kfd_lookup_process_by_mm(mm);
1139         if (!p)
1140                 return -ESRCH;
1141
1142         WARN(debug_evictions, "Evicting pid %d", p->lead_thread->pid);
1143         r = kfd_process_evict_queues(p);
1144
1145         kfd_unref_process(p);
1146         return r;
1147 }
1148
1149 int kgd2kfd_resume_mm(struct mm_struct *mm)
1150 {
1151         struct kfd_process *p;
1152         int r;
1153
1154         /* Because we are called from arbitrary context (workqueue) as opposed
1155          * to process context, kfd_process could attempt to exit while we are
1156          * running so the lookup function increments the process ref count.
1157          */
1158         p = kfd_lookup_process_by_mm(mm);
1159         if (!p)
1160                 return -ESRCH;
1161
1162         r = kfd_process_restore_queues(p);
1163
1164         kfd_unref_process(p);
1165         return r;
1166 }
1167
1168 /** kgd2kfd_schedule_evict_and_restore_process - Schedules work queue that will
1169  *   prepare for safe eviction of KFD BOs that belong to the specified
1170  *   process.
1171  *
1172  * @mm: mm_struct that identifies the specified KFD process
1173  * @fence: eviction fence attached to KFD process BOs
1174  *
1175  */
1176 int kgd2kfd_schedule_evict_and_restore_process(struct mm_struct *mm,
1177                                                struct dma_fence *fence)
1178 {
1179         struct kfd_process *p;
1180         unsigned long active_time;
1181         unsigned long delay_jiffies = msecs_to_jiffies(PROCESS_ACTIVE_TIME_MS);
1182
1183         if (!fence)
1184                 return -EINVAL;
1185
1186         if (dma_fence_is_signaled(fence))
1187                 return 0;
1188
1189         p = kfd_lookup_process_by_mm(mm);
1190         if (!p)
1191                 return -ENODEV;
1192
1193         if (fence->seqno == p->last_eviction_seqno)
1194                 goto out;
1195
1196         p->last_eviction_seqno = fence->seqno;
1197
1198         /* Avoid KFD process starvation. Wait for at least
1199          * PROCESS_ACTIVE_TIME_MS before evicting the process again
1200          */
1201         active_time = get_jiffies_64() - p->last_restore_timestamp;
1202         if (delay_jiffies > active_time)
1203                 delay_jiffies -= active_time;
1204         else
1205                 delay_jiffies = 0;
1206
1207         /* During process initialization eviction_work.dwork is initialized
1208          * to kfd_evict_bo_worker
1209          */
1210         WARN(debug_evictions, "Scheduling eviction of pid %d in %ld jiffies",
1211              p->lead_thread->pid, delay_jiffies);
1212         schedule_delayed_work(&p->eviction_work, delay_jiffies);
1213 out:
1214         kfd_unref_process(p);
1215         return 0;
1216 }
1217
1218 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
1219                                 unsigned int chunk_size)
1220 {
1221         unsigned int num_of_longs;
1222
1223         if (WARN_ON(buf_size < chunk_size))
1224                 return -EINVAL;
1225         if (WARN_ON(buf_size == 0))
1226                 return -EINVAL;
1227         if (WARN_ON(chunk_size == 0))
1228                 return -EINVAL;
1229
1230         kfd->gtt_sa_chunk_size = chunk_size;
1231         kfd->gtt_sa_num_of_chunks = buf_size / chunk_size;
1232
1233         num_of_longs = (kfd->gtt_sa_num_of_chunks + BITS_PER_LONG - 1) /
1234                 BITS_PER_LONG;
1235
1236         kfd->gtt_sa_bitmap = kcalloc(num_of_longs, sizeof(long), GFP_KERNEL);
1237
1238         if (!kfd->gtt_sa_bitmap)
1239                 return -ENOMEM;
1240
1241         pr_debug("gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n",
1242                         kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap);
1243
1244         mutex_init(&kfd->gtt_sa_lock);
1245
1246         return 0;
1247
1248 }
1249
1250 static void kfd_gtt_sa_fini(struct kfd_dev *kfd)
1251 {
1252         mutex_destroy(&kfd->gtt_sa_lock);
1253         kfree(kfd->gtt_sa_bitmap);
1254 }
1255
1256 static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,
1257                                                 unsigned int bit_num,
1258                                                 unsigned int chunk_size)
1259 {
1260         return start_addr + bit_num * chunk_size;
1261 }
1262
1263 static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr,
1264                                                 unsigned int bit_num,
1265                                                 unsigned int chunk_size)
1266 {
1267         return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size);
1268 }
1269
1270 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
1271                         struct kfd_mem_obj **mem_obj)
1272 {
1273         unsigned int found, start_search, cur_size;
1274
1275         if (size == 0)
1276                 return -EINVAL;
1277
1278         if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size)
1279                 return -ENOMEM;
1280
1281         *mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
1282         if (!(*mem_obj))
1283                 return -ENOMEM;
1284
1285         pr_debug("Allocated mem_obj = %p for size = %d\n", *mem_obj, size);
1286
1287         start_search = 0;
1288
1289         mutex_lock(&kfd->gtt_sa_lock);
1290
1291 kfd_gtt_restart_search:
1292         /* Find the first chunk that is free */
1293         found = find_next_zero_bit(kfd->gtt_sa_bitmap,
1294                                         kfd->gtt_sa_num_of_chunks,
1295                                         start_search);
1296
1297         pr_debug("Found = %d\n", found);
1298
1299         /* If there wasn't any free chunk, bail out */
1300         if (found == kfd->gtt_sa_num_of_chunks)
1301                 goto kfd_gtt_no_free_chunk;
1302
1303         /* Update fields of mem_obj */
1304         (*mem_obj)->range_start = found;
1305         (*mem_obj)->range_end = found;
1306         (*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr(
1307                                         kfd->gtt_start_gpu_addr,
1308                                         found,
1309                                         kfd->gtt_sa_chunk_size);
1310         (*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr(
1311                                         kfd->gtt_start_cpu_ptr,
1312                                         found,
1313                                         kfd->gtt_sa_chunk_size);
1314
1315         pr_debug("gpu_addr = %p, cpu_addr = %p\n",
1316                         (uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr);
1317
1318         /* If we need only one chunk, mark it as allocated and get out */
1319         if (size <= kfd->gtt_sa_chunk_size) {
1320                 pr_debug("Single bit\n");
1321                 set_bit(found, kfd->gtt_sa_bitmap);
1322                 goto kfd_gtt_out;
1323         }
1324
1325         /* Otherwise, try to see if we have enough contiguous chunks */
1326         cur_size = size - kfd->gtt_sa_chunk_size;
1327         do {
1328                 (*mem_obj)->range_end =
1329                         find_next_zero_bit(kfd->gtt_sa_bitmap,
1330                                         kfd->gtt_sa_num_of_chunks, ++found);
1331                 /*
1332                  * If next free chunk is not contiguous than we need to
1333                  * restart our search from the last free chunk we found (which
1334                  * wasn't contiguous to the previous ones
1335                  */
1336                 if ((*mem_obj)->range_end != found) {
1337                         start_search = found;
1338                         goto kfd_gtt_restart_search;
1339                 }
1340
1341                 /*
1342                  * If we reached end of buffer, bail out with error
1343                  */
1344                 if (found == kfd->gtt_sa_num_of_chunks)
1345                         goto kfd_gtt_no_free_chunk;
1346
1347                 /* Check if we don't need another chunk */
1348                 if (cur_size <= kfd->gtt_sa_chunk_size)
1349                         cur_size = 0;
1350                 else
1351                         cur_size -= kfd->gtt_sa_chunk_size;
1352
1353         } while (cur_size > 0);
1354
1355         pr_debug("range_start = %d, range_end = %d\n",
1356                 (*mem_obj)->range_start, (*mem_obj)->range_end);
1357
1358         /* Mark the chunks as allocated */
1359         for (found = (*mem_obj)->range_start;
1360                 found <= (*mem_obj)->range_end;
1361                 found++)
1362                 set_bit(found, kfd->gtt_sa_bitmap);
1363
1364 kfd_gtt_out:
1365         mutex_unlock(&kfd->gtt_sa_lock);
1366         return 0;
1367
1368 kfd_gtt_no_free_chunk:
1369         pr_debug("Allocation failed with mem_obj = %p\n", *mem_obj);
1370         mutex_unlock(&kfd->gtt_sa_lock);
1371         kfree(*mem_obj);
1372         return -ENOMEM;
1373 }
1374
1375 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj)
1376 {
1377         unsigned int bit;
1378
1379         /* Act like kfree when trying to free a NULL object */
1380         if (!mem_obj)
1381                 return 0;
1382
1383         pr_debug("Free mem_obj = %p, range_start = %d, range_end = %d\n",
1384                         mem_obj, mem_obj->range_start, mem_obj->range_end);
1385
1386         mutex_lock(&kfd->gtt_sa_lock);
1387
1388         /* Mark the chunks as free */
1389         for (bit = mem_obj->range_start;
1390                 bit <= mem_obj->range_end;
1391                 bit++)
1392                 clear_bit(bit, kfd->gtt_sa_bitmap);
1393
1394         mutex_unlock(&kfd->gtt_sa_lock);
1395
1396         kfree(mem_obj);
1397         return 0;
1398 }
1399
1400 void kgd2kfd_set_sram_ecc_flag(struct kfd_dev *kfd)
1401 {
1402         if (kfd)
1403                 atomic_inc(&kfd->sram_ecc_flag);
1404 }
1405
1406 void kfd_inc_compute_active(struct kfd_dev *kfd)
1407 {
1408         if (atomic_inc_return(&kfd->compute_profile) == 1)
1409                 amdgpu_amdkfd_set_compute_idle(kfd->kgd, false);
1410 }
1411
1412 void kfd_dec_compute_active(struct kfd_dev *kfd)
1413 {
1414         int count = atomic_dec_return(&kfd->compute_profile);
1415
1416         if (count == 0)
1417                 amdgpu_amdkfd_set_compute_idle(kfd->kgd, true);
1418         WARN_ONCE(count < 0, "Compute profile ref. count error");
1419 }
1420
1421 void kgd2kfd_smi_event_throttle(struct kfd_dev *kfd, uint64_t throttle_bitmask)
1422 {
1423         if (kfd && kfd->init_complete)
1424                 kfd_smi_event_update_thermal_throttling(kfd, throttle_bitmask);
1425 }
1426
1427 #if defined(CONFIG_DEBUG_FS)
1428
1429 /* This function will send a package to HIQ to hang the HWS
1430  * which will trigger a GPU reset and bring the HWS back to normal state
1431  */
1432 int kfd_debugfs_hang_hws(struct kfd_dev *dev)
1433 {
1434         if (dev->dqm->sched_policy != KFD_SCHED_POLICY_HWS) {
1435                 pr_err("HWS is not enabled");
1436                 return -EINVAL;
1437         }
1438
1439         return dqm_debugfs_hang_hws(dev->dqm);
1440 }
1441
1442 #endif