Merge tag 'media/v5.15-1' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[linux-2.6-microblaze.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_ras_eeprom.c
1 /*
2  * Copyright 2019 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23
24 #include "amdgpu_ras_eeprom.h"
25 #include "amdgpu.h"
26 #include "amdgpu_ras.h"
27 #include <linux/bits.h>
28 #include "atom.h"
29 #include "amdgpu_atomfirmware.h"
30
31 #define EEPROM_I2C_TARGET_ADDR_VEGA20           0xA0
32 #define EEPROM_I2C_TARGET_ADDR_ARCTURUS         0xA8
33 #define EEPROM_I2C_TARGET_ADDR_ARCTURUS_D342    0xA0
34 #define EEPROM_I2C_TARGET_ADDR_SIENNA_CICHLID   0xA0
35 #define EEPROM_I2C_TARGET_ADDR_ALDEBARAN        0xA0
36
37 /*
38  * The 2 macros bellow represent the actual size in bytes that
39  * those entities occupy in the EEPROM memory.
40  * EEPROM_TABLE_RECORD_SIZE is different than sizeof(eeprom_table_record) which
41  * uses uint64 to store 6b fields such as retired_page.
42  */
43 #define EEPROM_TABLE_HEADER_SIZE 20
44 #define EEPROM_TABLE_RECORD_SIZE 24
45
46 #define EEPROM_ADDRESS_SIZE 0x2
47
48 /* Table hdr is 'AMDR' */
49 #define EEPROM_TABLE_HDR_VAL 0x414d4452
50 #define EEPROM_TABLE_VER 0x00010000
51
52 /* Bad GPU tag ‘BADG’ */
53 #define EEPROM_TABLE_HDR_BAD 0x42414447
54
55 /* Assume 2 Mbit size */
56 #define EEPROM_SIZE_BYTES 256000
57 #define EEPROM_PAGE__SIZE_BYTES 256
58 #define EEPROM_HDR_START 0
59 #define EEPROM_RECORD_START (EEPROM_HDR_START + EEPROM_TABLE_HEADER_SIZE)
60 #define EEPROM_MAX_RECORD_NUM ((EEPROM_SIZE_BYTES - EEPROM_TABLE_HEADER_SIZE) / EEPROM_TABLE_RECORD_SIZE)
61 #define EEPROM_ADDR_MSB_MASK GENMASK(17, 8)
62
63 #define to_amdgpu_device(x) (container_of(x, struct amdgpu_ras, eeprom_control))->adev
64
65 static bool __is_ras_eeprom_supported(struct amdgpu_device *adev)
66 {
67         if ((adev->asic_type == CHIP_VEGA20) ||
68             (adev->asic_type == CHIP_ARCTURUS) ||
69             (adev->asic_type == CHIP_SIENNA_CICHLID) ||
70             (adev->asic_type == CHIP_ALDEBARAN))
71                 return true;
72
73         return false;
74 }
75
76 static bool __get_eeprom_i2c_addr_arct(struct amdgpu_device *adev,
77                                        uint16_t *i2c_addr)
78 {
79         struct atom_context *atom_ctx = adev->mode_info.atom_context;
80
81         if (!i2c_addr || !atom_ctx)
82                 return false;
83
84         if (strnstr(atom_ctx->vbios_version,
85                     "D342",
86                     sizeof(atom_ctx->vbios_version)))
87                 *i2c_addr = EEPROM_I2C_TARGET_ADDR_ARCTURUS_D342;
88         else
89                 *i2c_addr = EEPROM_I2C_TARGET_ADDR_ARCTURUS;
90
91         return true;
92 }
93
94 static bool __get_eeprom_i2c_addr(struct amdgpu_device *adev,
95                                   uint16_t *i2c_addr)
96 {
97         if (!i2c_addr)
98                 return false;
99
100         if (amdgpu_atomfirmware_ras_rom_addr(adev, (uint8_t*)i2c_addr))
101                 return true;
102
103         switch (adev->asic_type) {
104         case CHIP_VEGA20:
105                 *i2c_addr = EEPROM_I2C_TARGET_ADDR_VEGA20;
106                 break;
107
108         case CHIP_ARCTURUS:
109                 return __get_eeprom_i2c_addr_arct(adev, i2c_addr);
110
111         case CHIP_SIENNA_CICHLID:
112                 *i2c_addr = EEPROM_I2C_TARGET_ADDR_SIENNA_CICHLID;
113                 break;
114
115         case CHIP_ALDEBARAN:
116                 *i2c_addr = EEPROM_I2C_TARGET_ADDR_ALDEBARAN;
117                 break;
118
119         default:
120                 return false;
121         }
122
123         return true;
124 }
125
126 static void __encode_table_header_to_buff(struct amdgpu_ras_eeprom_table_header *hdr,
127                                           unsigned char *buff)
128 {
129         uint32_t *pp = (uint32_t *) buff;
130
131         pp[0] = cpu_to_le32(hdr->header);
132         pp[1] = cpu_to_le32(hdr->version);
133         pp[2] = cpu_to_le32(hdr->first_rec_offset);
134         pp[3] = cpu_to_le32(hdr->tbl_size);
135         pp[4] = cpu_to_le32(hdr->checksum);
136 }
137
138 static void __decode_table_header_from_buff(struct amdgpu_ras_eeprom_table_header *hdr,
139                                           unsigned char *buff)
140 {
141         uint32_t *pp = (uint32_t *)buff;
142
143         hdr->header           = le32_to_cpu(pp[0]);
144         hdr->version          = le32_to_cpu(pp[1]);
145         hdr->first_rec_offset = le32_to_cpu(pp[2]);
146         hdr->tbl_size         = le32_to_cpu(pp[3]);
147         hdr->checksum         = le32_to_cpu(pp[4]);
148 }
149
150 static int __update_table_header(struct amdgpu_ras_eeprom_control *control,
151                                  unsigned char *buff)
152 {
153         int ret = 0;
154         struct amdgpu_device *adev = to_amdgpu_device(control);
155         struct i2c_msg msg = {
156                         .addr   = 0,
157                         .flags  = 0,
158                         .len    = EEPROM_ADDRESS_SIZE + EEPROM_TABLE_HEADER_SIZE,
159                         .buf    = buff,
160         };
161
162
163         *(uint16_t *)buff = EEPROM_HDR_START;
164         __encode_table_header_to_buff(&control->tbl_hdr, buff + EEPROM_ADDRESS_SIZE);
165
166         msg.addr = control->i2c_address;
167
168         /* i2c may be unstable in gpu reset */
169         down_read(&adev->reset_sem);
170         ret = i2c_transfer(&adev->pm.smu_i2c, &msg, 1);
171         up_read(&adev->reset_sem);
172
173         if (ret < 1)
174                 DRM_ERROR("Failed to write EEPROM table header, ret:%d", ret);
175
176         return ret;
177 }
178
179 static uint32_t  __calc_hdr_byte_sum(struct amdgpu_ras_eeprom_control *control)
180 {
181         int i;
182         uint32_t tbl_sum = 0;
183
184         /* Header checksum, skip checksum field in the calculation */
185         for (i = 0; i < sizeof(control->tbl_hdr) - sizeof(control->tbl_hdr.checksum); i++)
186                 tbl_sum += *(((unsigned char *)&control->tbl_hdr) + i);
187
188         return tbl_sum;
189 }
190
191 static uint32_t  __calc_recs_byte_sum(struct eeprom_table_record *records,
192                                       int num)
193 {
194         int i, j;
195         uint32_t tbl_sum = 0;
196
197         /* Records checksum */
198         for (i = 0; i < num; i++) {
199                 struct eeprom_table_record *record = &records[i];
200
201                 for (j = 0; j < sizeof(*record); j++) {
202                         tbl_sum += *(((unsigned char *)record) + j);
203                 }
204         }
205
206         return tbl_sum;
207 }
208
209 static inline uint32_t  __calc_tbl_byte_sum(struct amdgpu_ras_eeprom_control *control,
210                                   struct eeprom_table_record *records, int num)
211 {
212         return __calc_hdr_byte_sum(control) + __calc_recs_byte_sum(records, num);
213 }
214
215 /* Checksum = 256 -((sum of all table entries) mod 256) */
216 static void __update_tbl_checksum(struct amdgpu_ras_eeprom_control *control,
217                                   struct eeprom_table_record *records, int num,
218                                   uint32_t old_hdr_byte_sum)
219 {
220         /*
221          * This will update the table sum with new records.
222          *
223          * TODO: What happens when the EEPROM table is to be wrapped around
224          * and old records from start will get overridden.
225          */
226
227         /* need to recalculate updated header byte sum */
228         control->tbl_byte_sum -= old_hdr_byte_sum;
229         control->tbl_byte_sum += __calc_tbl_byte_sum(control, records, num);
230
231         control->tbl_hdr.checksum = 256 - (control->tbl_byte_sum % 256);
232 }
233
234 /* table sum mod 256 + checksum must equals 256 */
235 static bool __validate_tbl_checksum(struct amdgpu_ras_eeprom_control *control,
236                             struct eeprom_table_record *records, int num)
237 {
238         control->tbl_byte_sum = __calc_tbl_byte_sum(control, records, num);
239
240         if (control->tbl_hdr.checksum + (control->tbl_byte_sum % 256) != 256) {
241                 DRM_WARN("Checksum mismatch, checksum: %u ", control->tbl_hdr.checksum);
242                 return false;
243         }
244
245         return true;
246 }
247
248 static int amdgpu_ras_eeprom_correct_header_tag(
249                                 struct amdgpu_ras_eeprom_control *control,
250                                 uint32_t header)
251 {
252         unsigned char buff[EEPROM_ADDRESS_SIZE + EEPROM_TABLE_HEADER_SIZE];
253         struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr;
254         int ret = 0;
255
256         memset(buff, 0, EEPROM_ADDRESS_SIZE + EEPROM_TABLE_HEADER_SIZE);
257
258         mutex_lock(&control->tbl_mutex);
259         hdr->header = header;
260         ret = __update_table_header(control, buff);
261         mutex_unlock(&control->tbl_mutex);
262
263         return ret;
264 }
265
266 int amdgpu_ras_eeprom_reset_table(struct amdgpu_ras_eeprom_control *control)
267 {
268         unsigned char buff[EEPROM_ADDRESS_SIZE + EEPROM_TABLE_HEADER_SIZE] = { 0 };
269         struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr;
270         int ret = 0;
271
272         mutex_lock(&control->tbl_mutex);
273
274         hdr->header = EEPROM_TABLE_HDR_VAL;
275         hdr->version = EEPROM_TABLE_VER;
276         hdr->first_rec_offset = EEPROM_RECORD_START;
277         hdr->tbl_size = EEPROM_TABLE_HEADER_SIZE;
278
279         control->tbl_byte_sum = 0;
280         __update_tbl_checksum(control, NULL, 0, 0);
281         control->next_addr = EEPROM_RECORD_START;
282
283         ret = __update_table_header(control, buff);
284
285         mutex_unlock(&control->tbl_mutex);
286
287         return ret;
288
289 }
290
291 int amdgpu_ras_eeprom_init(struct amdgpu_ras_eeprom_control *control,
292                         bool *exceed_err_limit)
293 {
294         int ret = 0;
295         struct amdgpu_device *adev = to_amdgpu_device(control);
296         unsigned char buff[EEPROM_ADDRESS_SIZE + EEPROM_TABLE_HEADER_SIZE] = { 0 };
297         struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr;
298         struct amdgpu_ras *ras = amdgpu_ras_get_context(adev);
299         struct i2c_msg msg = {
300                         .addr   = 0,
301                         .flags  = I2C_M_RD,
302                         .len    = EEPROM_ADDRESS_SIZE + EEPROM_TABLE_HEADER_SIZE,
303                         .buf    = buff,
304         };
305
306         *exceed_err_limit = false;
307
308         if (!__is_ras_eeprom_supported(adev))
309                 return 0;
310
311         /* Verify i2c adapter is initialized */
312         if (!adev->pm.smu_i2c.algo)
313                 return -ENOENT;
314
315         if (!__get_eeprom_i2c_addr(adev, &control->i2c_address))
316                 return -EINVAL;
317
318         mutex_init(&control->tbl_mutex);
319
320         msg.addr = control->i2c_address;
321         /* Read/Create table header from EEPROM address 0 */
322         ret = i2c_transfer(&adev->pm.smu_i2c, &msg, 1);
323         if (ret < 1) {
324                 DRM_ERROR("Failed to read EEPROM table header, ret:%d", ret);
325                 return ret;
326         }
327
328         __decode_table_header_from_buff(hdr, &buff[2]);
329
330         if (hdr->header == EEPROM_TABLE_HDR_VAL) {
331                 control->num_recs = (hdr->tbl_size - EEPROM_TABLE_HEADER_SIZE) /
332                                     EEPROM_TABLE_RECORD_SIZE;
333                 control->tbl_byte_sum = __calc_hdr_byte_sum(control);
334                 control->next_addr = EEPROM_RECORD_START;
335
336                 DRM_DEBUG_DRIVER("Found existing EEPROM table with %d records",
337                                  control->num_recs);
338
339         } else if ((hdr->header == EEPROM_TABLE_HDR_BAD) &&
340                         (amdgpu_bad_page_threshold != 0)) {
341                 if (ras->bad_page_cnt_threshold > control->num_recs) {
342                         dev_info(adev->dev, "Using one valid bigger bad page "
343                                 "threshold and correcting eeprom header tag.\n");
344                         ret = amdgpu_ras_eeprom_correct_header_tag(control,
345                                                         EEPROM_TABLE_HDR_VAL);
346                 } else {
347                         *exceed_err_limit = true;
348                         dev_err(adev->dev, "Exceeding the bad_page_threshold parameter, "
349                                 "disabling the GPU.\n");
350                 }
351         } else {
352                 DRM_INFO("Creating new EEPROM table");
353
354                 ret = amdgpu_ras_eeprom_reset_table(control);
355         }
356
357         return ret == 1 ? 0 : -EIO;
358 }
359
360 static void __encode_table_record_to_buff(struct amdgpu_ras_eeprom_control *control,
361                                           struct eeprom_table_record *record,
362                                           unsigned char *buff)
363 {
364         __le64 tmp = 0;
365         int i = 0;
366
367         /* Next are all record fields according to EEPROM page spec in LE foramt */
368         buff[i++] = record->err_type;
369
370         buff[i++] = record->bank;
371
372         tmp = cpu_to_le64(record->ts);
373         memcpy(buff + i, &tmp, 8);
374         i += 8;
375
376         tmp = cpu_to_le64((record->offset & 0xffffffffffff));
377         memcpy(buff + i, &tmp, 6);
378         i += 6;
379
380         buff[i++] = record->mem_channel;
381         buff[i++] = record->mcumc_id;
382
383         tmp = cpu_to_le64((record->retired_page & 0xffffffffffff));
384         memcpy(buff + i, &tmp, 6);
385 }
386
387 static void __decode_table_record_from_buff(struct amdgpu_ras_eeprom_control *control,
388                                             struct eeprom_table_record *record,
389                                             unsigned char *buff)
390 {
391         __le64 tmp = 0;
392         int i =  0;
393
394         /* Next are all record fields according to EEPROM page spec in LE foramt */
395         record->err_type = buff[i++];
396
397         record->bank = buff[i++];
398
399         memcpy(&tmp, buff + i, 8);
400         record->ts = le64_to_cpu(tmp);
401         i += 8;
402
403         memcpy(&tmp, buff + i, 6);
404         record->offset = (le64_to_cpu(tmp) & 0xffffffffffff);
405         i += 6;
406
407         record->mem_channel = buff[i++];
408         record->mcumc_id = buff[i++];
409
410         memcpy(&tmp, buff + i,  6);
411         record->retired_page = (le64_to_cpu(tmp) & 0xffffffffffff);
412 }
413
414 /*
415  * When reaching end of EEPROM memory jump back to 0 record address
416  * When next record access will go beyond EEPROM page boundary modify bits A17/A8
417  * in I2C selector to go to next page
418  */
419 static uint32_t __correct_eeprom_dest_address(uint32_t curr_address)
420 {
421         uint32_t next_address = curr_address + EEPROM_TABLE_RECORD_SIZE;
422
423         /* When all EEPROM memory used jump back to 0 address */
424         if (next_address > EEPROM_SIZE_BYTES) {
425                 DRM_INFO("Reached end of EEPROM memory, jumping to 0 "
426                          "and overriding old record");
427                 return EEPROM_RECORD_START;
428         }
429
430         /*
431          * To check if we overflow page boundary  compare next address with
432          * current and see if bits 17/8 of the EEPROM address will change
433          * If they do start from the next 256b page
434          *
435          * https://www.st.com/resource/en/datasheet/m24m02-dr.pdf sec. 5.1.2
436          */
437         if ((curr_address & EEPROM_ADDR_MSB_MASK) != (next_address & EEPROM_ADDR_MSB_MASK)) {
438                 DRM_DEBUG_DRIVER("Reached end of EEPROM memory page, jumping to next: %lx",
439                                 (next_address & EEPROM_ADDR_MSB_MASK));
440
441                 return  (next_address & EEPROM_ADDR_MSB_MASK);
442         }
443
444         return curr_address;
445 }
446
447 bool amdgpu_ras_eeprom_check_err_threshold(struct amdgpu_device *adev)
448 {
449         struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
450
451         if (!__is_ras_eeprom_supported(adev))
452                 return false;
453
454         /* skip check eeprom table for VEGA20 Gaming */
455         if (!con)
456                 return false;
457         else
458                 if (!(con->features & BIT(AMDGPU_RAS_BLOCK__UMC)))
459                         return false;
460
461         if (con->eeprom_control.tbl_hdr.header == EEPROM_TABLE_HDR_BAD) {
462                 dev_warn(adev->dev, "This GPU is in BAD status.");
463                 dev_warn(adev->dev, "Please retire it or setting one bigger "
464                                 "threshold value when reloading driver.\n");
465                 return true;
466         }
467
468         return false;
469 }
470
471 int amdgpu_ras_eeprom_process_recods(struct amdgpu_ras_eeprom_control *control,
472                                             struct eeprom_table_record *records,
473                                             bool write,
474                                             int num)
475 {
476         int i, ret = 0;
477         struct i2c_msg *msgs, *msg;
478         unsigned char *buffs, *buff;
479         struct eeprom_table_record *record;
480         struct amdgpu_device *adev = to_amdgpu_device(control);
481         struct amdgpu_ras *ras = amdgpu_ras_get_context(adev);
482
483         if (!__is_ras_eeprom_supported(adev))
484                 return 0;
485
486         buffs = kcalloc(num, EEPROM_ADDRESS_SIZE + EEPROM_TABLE_RECORD_SIZE,
487                          GFP_KERNEL);
488         if (!buffs)
489                 return -ENOMEM;
490
491         mutex_lock(&control->tbl_mutex);
492
493         msgs = kcalloc(num, sizeof(*msgs), GFP_KERNEL);
494         if (!msgs) {
495                 ret = -ENOMEM;
496                 goto free_buff;
497         }
498
499         /*
500          * If saved bad pages number exceeds the bad page threshold for
501          * the whole VRAM, update table header to mark the BAD GPU tag
502          * and schedule one ras recovery after eeprom write is done,
503          * this can avoid the missing for latest records.
504          *
505          * This new header will be picked up and checked in the bootup
506          * by ras recovery, which may break bootup process to notify
507          * user this GPU is in bad state and to retire such GPU for
508          * further check.
509          */
510         if (write && (amdgpu_bad_page_threshold != 0) &&
511                 ((control->num_recs + num) >= ras->bad_page_cnt_threshold)) {
512                 dev_warn(adev->dev,
513                         "Saved bad pages(%d) reaches threshold value(%d).\n",
514                         control->num_recs + num, ras->bad_page_cnt_threshold);
515                 control->tbl_hdr.header = EEPROM_TABLE_HDR_BAD;
516         }
517
518         /* In case of overflow just start from beginning to not lose newest records */
519         if (write && (control->next_addr + EEPROM_TABLE_RECORD_SIZE * num > EEPROM_SIZE_BYTES))
520                 control->next_addr = EEPROM_RECORD_START;
521
522         /*
523          * TODO Currently makes EEPROM writes for each record, this creates
524          * internal fragmentation. Optimized the code to do full page write of
525          * 256b
526          */
527         for (i = 0; i < num; i++) {
528                 buff = &buffs[i * (EEPROM_ADDRESS_SIZE + EEPROM_TABLE_RECORD_SIZE)];
529                 record = &records[i];
530                 msg = &msgs[i];
531
532                 control->next_addr = __correct_eeprom_dest_address(control->next_addr);
533
534                 /*
535                  * Update bits 16,17 of EEPROM address in I2C address by setting them
536                  * to bits 1,2 of Device address byte
537                  */
538                 msg->addr = control->i2c_address |
539                                 ((control->next_addr & EEPROM_ADDR_MSB_MASK) >> 15);
540                 msg->flags      = write ? 0 : I2C_M_RD;
541                 msg->len        = EEPROM_ADDRESS_SIZE + EEPROM_TABLE_RECORD_SIZE;
542                 msg->buf        = buff;
543
544                 /* Insert the EEPROM dest addess, bits 0-15 */
545                 buff[0] = ((control->next_addr >> 8) & 0xff);
546                 buff[1] = (control->next_addr & 0xff);
547
548                 /* EEPROM table content is stored in LE format */
549                 if (write)
550                         __encode_table_record_to_buff(control, record, buff + EEPROM_ADDRESS_SIZE);
551
552                 /*
553                  * The destination EEPROM address might need to be corrected to account
554                  * for page or entire memory wrapping
555                  */
556                 control->next_addr += EEPROM_TABLE_RECORD_SIZE;
557         }
558
559         /* i2c may be unstable in gpu reset */
560         down_read(&adev->reset_sem);
561         ret = i2c_transfer(&adev->pm.smu_i2c, msgs, num);
562         up_read(&adev->reset_sem);
563
564         if (ret < 1) {
565                 DRM_ERROR("Failed to process EEPROM table records, ret:%d", ret);
566
567                 /* TODO Restore prev next EEPROM address ? */
568                 goto free_msgs;
569         }
570
571
572         if (!write) {
573                 for (i = 0; i < num; i++) {
574                         buff = &buffs[i*(EEPROM_ADDRESS_SIZE + EEPROM_TABLE_RECORD_SIZE)];
575                         record = &records[i];
576
577                         __decode_table_record_from_buff(control, record, buff + EEPROM_ADDRESS_SIZE);
578                 }
579         }
580
581         if (write) {
582                 uint32_t old_hdr_byte_sum = __calc_hdr_byte_sum(control);
583
584                 /*
585                  * Update table header with size and CRC and account for table
586                  * wrap around where the assumption is that we treat it as empty
587                  * table
588                  *
589                  * TODO - Check the assumption is correct
590                  */
591                 control->num_recs += num;
592                 control->num_recs %= EEPROM_MAX_RECORD_NUM;
593                 control->tbl_hdr.tbl_size += EEPROM_TABLE_RECORD_SIZE * num;
594                 if (control->tbl_hdr.tbl_size > EEPROM_SIZE_BYTES)
595                         control->tbl_hdr.tbl_size = EEPROM_TABLE_HEADER_SIZE +
596                         control->num_recs * EEPROM_TABLE_RECORD_SIZE;
597
598                 __update_tbl_checksum(control, records, num, old_hdr_byte_sum);
599
600                 __update_table_header(control, buffs);
601         } else if (!__validate_tbl_checksum(control, records, num)) {
602                 DRM_WARN("EEPROM Table checksum mismatch!");
603                 /* TODO Uncomment when EEPROM read/write is relliable */
604                 /* ret = -EIO; */
605         }
606
607 free_msgs:
608         kfree(msgs);
609
610 free_buff:
611         kfree(buffs);
612
613         mutex_unlock(&control->tbl_mutex);
614
615         return ret == num ? 0 : -EIO;
616 }
617
618 inline uint32_t amdgpu_ras_eeprom_get_record_max_length(void)
619 {
620         return EEPROM_MAX_RECORD_NUM;
621 }
622
623 /* Used for testing if bugs encountered */
624 #if 0
625 void amdgpu_ras_eeprom_test(struct amdgpu_ras_eeprom_control *control)
626 {
627         int i;
628         struct eeprom_table_record *recs = kcalloc(1, sizeof(*recs), GFP_KERNEL);
629
630         if (!recs)
631                 return;
632
633         for (i = 0; i < 1 ; i++) {
634                 recs[i].address = 0xdeadbeef;
635                 recs[i].retired_page = i;
636         }
637
638         if (!amdgpu_ras_eeprom_process_recods(control, recs, true, 1)) {
639
640                 memset(recs, 0, sizeof(*recs) * 1);
641
642                 control->next_addr = EEPROM_RECORD_START;
643
644                 if (!amdgpu_ras_eeprom_process_recods(control, recs, false, 1)) {
645                         for (i = 0; i < 1; i++)
646                                 DRM_INFO("rec.address :0x%llx, rec.retired_page :%llu",
647                                          recs[i].address, recs[i].retired_page);
648                 } else
649                         DRM_ERROR("Failed in reading from table");
650
651         } else
652                 DRM_ERROR("Failed in writing to table");
653 }
654 #endif