Merge tag 'defconfig-5.15' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[linux-2.6-microblaze.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_amdkfd_gfx_v9.c
1 /*
2  * Copyright 2014-2018 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 #include "amdgpu.h"
23 #include "amdgpu_amdkfd.h"
24 #include "gc/gc_9_0_offset.h"
25 #include "gc/gc_9_0_sh_mask.h"
26 #include "vega10_enum.h"
27 #include "sdma0/sdma0_4_0_offset.h"
28 #include "sdma0/sdma0_4_0_sh_mask.h"
29 #include "sdma1/sdma1_4_0_offset.h"
30 #include "sdma1/sdma1_4_0_sh_mask.h"
31 #include "athub/athub_1_0_offset.h"
32 #include "athub/athub_1_0_sh_mask.h"
33 #include "oss/osssys_4_0_offset.h"
34 #include "oss/osssys_4_0_sh_mask.h"
35 #include "soc15_common.h"
36 #include "v9_structs.h"
37 #include "soc15.h"
38 #include "soc15d.h"
39 #include "gfx_v9_0.h"
40 #include "amdgpu_amdkfd_gfx_v9.h"
41
42 enum hqd_dequeue_request_type {
43         NO_ACTION = 0,
44         DRAIN_PIPE,
45         RESET_WAVES,
46         SAVE_WAVES
47 };
48
49 static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd)
50 {
51         return (struct amdgpu_device *)kgd;
52 }
53
54 static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
55                         uint32_t queue, uint32_t vmid)
56 {
57         struct amdgpu_device *adev = get_amdgpu_device(kgd);
58
59         mutex_lock(&adev->srbm_mutex);
60         soc15_grbm_select(adev, mec, pipe, queue, vmid);
61 }
62
63 static void unlock_srbm(struct kgd_dev *kgd)
64 {
65         struct amdgpu_device *adev = get_amdgpu_device(kgd);
66
67         soc15_grbm_select(adev, 0, 0, 0, 0);
68         mutex_unlock(&adev->srbm_mutex);
69 }
70
71 static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
72                                 uint32_t queue_id)
73 {
74         struct amdgpu_device *adev = get_amdgpu_device(kgd);
75
76         uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
77         uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
78
79         lock_srbm(kgd, mec, pipe, queue_id, 0);
80 }
81
82 static uint64_t get_queue_mask(struct amdgpu_device *adev,
83                                uint32_t pipe_id, uint32_t queue_id)
84 {
85         unsigned int bit = pipe_id * adev->gfx.mec.num_queue_per_pipe +
86                         queue_id;
87
88         return 1ull << bit;
89 }
90
91 static void release_queue(struct kgd_dev *kgd)
92 {
93         unlock_srbm(kgd);
94 }
95
96 void kgd_gfx_v9_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
97                                         uint32_t sh_mem_config,
98                                         uint32_t sh_mem_ape1_base,
99                                         uint32_t sh_mem_ape1_limit,
100                                         uint32_t sh_mem_bases)
101 {
102         struct amdgpu_device *adev = get_amdgpu_device(kgd);
103
104         lock_srbm(kgd, 0, 0, 0, vmid);
105
106         WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmSH_MEM_CONFIG), sh_mem_config);
107         WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmSH_MEM_BASES), sh_mem_bases);
108         /* APE1 no longer exists on GFX9 */
109
110         unlock_srbm(kgd);
111 }
112
113 int kgd_gfx_v9_set_pasid_vmid_mapping(struct kgd_dev *kgd, u32 pasid,
114                                         unsigned int vmid)
115 {
116         struct amdgpu_device *adev = get_amdgpu_device(kgd);
117
118         /*
119          * We have to assume that there is no outstanding mapping.
120          * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
121          * a mapping is in progress or because a mapping finished
122          * and the SW cleared it.
123          * So the protocol is to always wait & clear.
124          */
125         uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
126                         ATC_VMID0_PASID_MAPPING__VALID_MASK;
127
128         /*
129          * need to do this twice, once for gfx and once for mmhub
130          * for ATC add 16 to VMID for mmhub, for IH different registers.
131          * ATC_VMID0..15 registers are separate from ATC_VMID16..31.
132          */
133
134         WREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING) + vmid,
135                pasid_mapping);
136
137         while (!(RREG32(SOC15_REG_OFFSET(
138                                 ATHUB, 0,
139                                 mmATC_VMID_PASID_MAPPING_UPDATE_STATUS)) &
140                  (1U << vmid)))
141                 cpu_relax();
142
143         WREG32(SOC15_REG_OFFSET(ATHUB, 0,
144                                 mmATC_VMID_PASID_MAPPING_UPDATE_STATUS),
145                1U << vmid);
146
147         /* Mapping vmid to pasid also for IH block */
148         WREG32(SOC15_REG_OFFSET(OSSSYS, 0, mmIH_VMID_0_LUT) + vmid,
149                pasid_mapping);
150
151         WREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID16_PASID_MAPPING) + vmid,
152                pasid_mapping);
153
154         while (!(RREG32(SOC15_REG_OFFSET(
155                                 ATHUB, 0,
156                                 mmATC_VMID_PASID_MAPPING_UPDATE_STATUS)) &
157                  (1U << (vmid + 16))))
158                 cpu_relax();
159
160         WREG32(SOC15_REG_OFFSET(ATHUB, 0,
161                                 mmATC_VMID_PASID_MAPPING_UPDATE_STATUS),
162                1U << (vmid + 16));
163
164         /* Mapping vmid to pasid also for IH block */
165         WREG32(SOC15_REG_OFFSET(OSSSYS, 0, mmIH_VMID_0_LUT_MM) + vmid,
166                pasid_mapping);
167         return 0;
168 }
169
170 /* TODO - RING0 form of field is obsolete, seems to date back to SI
171  * but still works
172  */
173
174 int kgd_gfx_v9_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
175 {
176         struct amdgpu_device *adev = get_amdgpu_device(kgd);
177         uint32_t mec;
178         uint32_t pipe;
179
180         mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
181         pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
182
183         lock_srbm(kgd, mec, pipe, 0, 0);
184
185         WREG32(SOC15_REG_OFFSET(GC, 0, mmCPC_INT_CNTL),
186                 CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
187                 CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
188
189         unlock_srbm(kgd);
190
191         return 0;
192 }
193
194 static uint32_t get_sdma_rlc_reg_offset(struct amdgpu_device *adev,
195                                 unsigned int engine_id,
196                                 unsigned int queue_id)
197 {
198         uint32_t sdma_engine_reg_base = 0;
199         uint32_t sdma_rlc_reg_offset;
200
201         switch (engine_id) {
202         default:
203                 dev_warn(adev->dev,
204                          "Invalid sdma engine id (%d), using engine id 0\n",
205                          engine_id);
206                 fallthrough;
207         case 0:
208                 sdma_engine_reg_base = SOC15_REG_OFFSET(SDMA0, 0,
209                                 mmSDMA0_RLC0_RB_CNTL) - mmSDMA0_RLC0_RB_CNTL;
210                 break;
211         case 1:
212                 sdma_engine_reg_base = SOC15_REG_OFFSET(SDMA1, 0,
213                                 mmSDMA1_RLC0_RB_CNTL) - mmSDMA0_RLC0_RB_CNTL;
214                 break;
215         }
216
217         sdma_rlc_reg_offset = sdma_engine_reg_base
218                 + queue_id * (mmSDMA0_RLC1_RB_CNTL - mmSDMA0_RLC0_RB_CNTL);
219
220         pr_debug("RLC register offset for SDMA%d RLC%d: 0x%x\n", engine_id,
221                  queue_id, sdma_rlc_reg_offset);
222
223         return sdma_rlc_reg_offset;
224 }
225
226 static inline struct v9_mqd *get_mqd(void *mqd)
227 {
228         return (struct v9_mqd *)mqd;
229 }
230
231 static inline struct v9_sdma_mqd *get_sdma_mqd(void *mqd)
232 {
233         return (struct v9_sdma_mqd *)mqd;
234 }
235
236 int kgd_gfx_v9_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
237                         uint32_t queue_id, uint32_t __user *wptr,
238                         uint32_t wptr_shift, uint32_t wptr_mask,
239                         struct mm_struct *mm)
240 {
241         struct amdgpu_device *adev = get_amdgpu_device(kgd);
242         struct v9_mqd *m;
243         uint32_t *mqd_hqd;
244         uint32_t reg, hqd_base, data;
245
246         m = get_mqd(mqd);
247
248         acquire_queue(kgd, pipe_id, queue_id);
249
250         /* HQD registers extend from CP_MQD_BASE_ADDR to CP_HQD_EOP_WPTR_MEM. */
251         mqd_hqd = &m->cp_mqd_base_addr_lo;
252         hqd_base = SOC15_REG_OFFSET(GC, 0, mmCP_MQD_BASE_ADDR);
253
254         for (reg = hqd_base;
255              reg <= SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_HI); reg++)
256                 WREG32_RLC(reg, mqd_hqd[reg - hqd_base]);
257
258
259         /* Activate doorbell logic before triggering WPTR poll. */
260         data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
261                              CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
262         WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_DOORBELL_CONTROL), data);
263
264         if (wptr) {
265                 /* Don't read wptr with get_user because the user
266                  * context may not be accessible (if this function
267                  * runs in a work queue). Instead trigger a one-shot
268                  * polling read from memory in the CP. This assumes
269                  * that wptr is GPU-accessible in the queue's VMID via
270                  * ATC or SVM. WPTR==RPTR before starting the poll so
271                  * the CP starts fetching new commands from the right
272                  * place.
273                  *
274                  * Guessing a 64-bit WPTR from a 32-bit RPTR is a bit
275                  * tricky. Assume that the queue didn't overflow. The
276                  * number of valid bits in the 32-bit RPTR depends on
277                  * the queue size. The remaining bits are taken from
278                  * the saved 64-bit WPTR. If the WPTR wrapped, add the
279                  * queue size.
280                  */
281                 uint32_t queue_size =
282                         2 << REG_GET_FIELD(m->cp_hqd_pq_control,
283                                            CP_HQD_PQ_CONTROL, QUEUE_SIZE);
284                 uint64_t guessed_wptr = m->cp_hqd_pq_rptr & (queue_size - 1);
285
286                 if ((m->cp_hqd_pq_wptr_lo & (queue_size - 1)) < guessed_wptr)
287                         guessed_wptr += queue_size;
288                 guessed_wptr += m->cp_hqd_pq_wptr_lo & ~(queue_size - 1);
289                 guessed_wptr += (uint64_t)m->cp_hqd_pq_wptr_hi << 32;
290
291                 WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_LO),
292                        lower_32_bits(guessed_wptr));
293                 WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_HI),
294                        upper_32_bits(guessed_wptr));
295                 WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_POLL_ADDR),
296                        lower_32_bits((uintptr_t)wptr));
297                 WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_POLL_ADDR_HI),
298                        upper_32_bits((uintptr_t)wptr));
299                 WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_PQ_WPTR_POLL_CNTL1),
300                        (uint32_t)get_queue_mask(adev, pipe_id, queue_id));
301         }
302
303         /* Start the EOP fetcher */
304         WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_EOP_RPTR),
305                REG_SET_FIELD(m->cp_hqd_eop_rptr,
306                              CP_HQD_EOP_RPTR, INIT_FETCHER, 1));
307
308         data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
309         WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_ACTIVE), data);
310
311         release_queue(kgd);
312
313         return 0;
314 }
315
316 int kgd_gfx_v9_hiq_mqd_load(struct kgd_dev *kgd, void *mqd,
317                             uint32_t pipe_id, uint32_t queue_id,
318                             uint32_t doorbell_off)
319 {
320         struct amdgpu_device *adev = get_amdgpu_device(kgd);
321         struct amdgpu_ring *kiq_ring = &adev->gfx.kiq.ring;
322         struct v9_mqd *m;
323         uint32_t mec, pipe;
324         int r;
325
326         m = get_mqd(mqd);
327
328         acquire_queue(kgd, pipe_id, queue_id);
329
330         mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
331         pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
332
333         pr_debug("kfd: set HIQ, mec:%d, pipe:%d, queue:%d.\n",
334                  mec, pipe, queue_id);
335
336         spin_lock(&adev->gfx.kiq.ring_lock);
337         r = amdgpu_ring_alloc(kiq_ring, 7);
338         if (r) {
339                 pr_err("Failed to alloc KIQ (%d).\n", r);
340                 goto out_unlock;
341         }
342
343         amdgpu_ring_write(kiq_ring, PACKET3(PACKET3_MAP_QUEUES, 5));
344         amdgpu_ring_write(kiq_ring,
345                           PACKET3_MAP_QUEUES_QUEUE_SEL(0) | /* Queue_Sel */
346                           PACKET3_MAP_QUEUES_VMID(m->cp_hqd_vmid) | /* VMID */
347                           PACKET3_MAP_QUEUES_QUEUE(queue_id) |
348                           PACKET3_MAP_QUEUES_PIPE(pipe) |
349                           PACKET3_MAP_QUEUES_ME((mec - 1)) |
350                           PACKET3_MAP_QUEUES_QUEUE_TYPE(0) | /*queue_type: normal compute queue */
351                           PACKET3_MAP_QUEUES_ALLOC_FORMAT(0) | /* alloc format: all_on_one_pipe */
352                           PACKET3_MAP_QUEUES_ENGINE_SEL(1) | /* engine_sel: hiq */
353                           PACKET3_MAP_QUEUES_NUM_QUEUES(1)); /* num_queues: must be 1 */
354         amdgpu_ring_write(kiq_ring,
355                           PACKET3_MAP_QUEUES_DOORBELL_OFFSET(doorbell_off));
356         amdgpu_ring_write(kiq_ring, m->cp_mqd_base_addr_lo);
357         amdgpu_ring_write(kiq_ring, m->cp_mqd_base_addr_hi);
358         amdgpu_ring_write(kiq_ring, m->cp_hqd_pq_wptr_poll_addr_lo);
359         amdgpu_ring_write(kiq_ring, m->cp_hqd_pq_wptr_poll_addr_hi);
360         amdgpu_ring_commit(kiq_ring);
361
362 out_unlock:
363         spin_unlock(&adev->gfx.kiq.ring_lock);
364         release_queue(kgd);
365
366         return r;
367 }
368
369 int kgd_gfx_v9_hqd_dump(struct kgd_dev *kgd,
370                         uint32_t pipe_id, uint32_t queue_id,
371                         uint32_t (**dump)[2], uint32_t *n_regs)
372 {
373         struct amdgpu_device *adev = get_amdgpu_device(kgd);
374         uint32_t i = 0, reg;
375 #define HQD_N_REGS 56
376 #define DUMP_REG(addr) do {                             \
377                 if (WARN_ON_ONCE(i >= HQD_N_REGS))      \
378                         break;                          \
379                 (*dump)[i][0] = (addr) << 2;            \
380                 (*dump)[i++][1] = RREG32(addr);         \
381         } while (0)
382
383         *dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
384         if (*dump == NULL)
385                 return -ENOMEM;
386
387         acquire_queue(kgd, pipe_id, queue_id);
388
389         for (reg = SOC15_REG_OFFSET(GC, 0, mmCP_MQD_BASE_ADDR);
390              reg <= SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_HI); reg++)
391                 DUMP_REG(reg);
392
393         release_queue(kgd);
394
395         WARN_ON_ONCE(i != HQD_N_REGS);
396         *n_regs = i;
397
398         return 0;
399 }
400
401 static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
402                              uint32_t __user *wptr, struct mm_struct *mm)
403 {
404         struct amdgpu_device *adev = get_amdgpu_device(kgd);
405         struct v9_sdma_mqd *m;
406         uint32_t sdma_rlc_reg_offset;
407         unsigned long end_jiffies;
408         uint32_t data;
409         uint64_t data64;
410         uint64_t __user *wptr64 = (uint64_t __user *)wptr;
411
412         m = get_sdma_mqd(mqd);
413         sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
414                                             m->sdma_queue_id);
415
416         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
417                 m->sdmax_rlcx_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
418
419         end_jiffies = msecs_to_jiffies(2000) + jiffies;
420         while (true) {
421                 data = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
422                 if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
423                         break;
424                 if (time_after(jiffies, end_jiffies)) {
425                         pr_err("SDMA RLC not idle in %s\n", __func__);
426                         return -ETIME;
427                 }
428                 usleep_range(500, 1000);
429         }
430
431         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL_OFFSET,
432                m->sdmax_rlcx_doorbell_offset);
433
434         data = REG_SET_FIELD(m->sdmax_rlcx_doorbell, SDMA0_RLC0_DOORBELL,
435                              ENABLE, 1);
436         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, data);
437         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR,
438                                 m->sdmax_rlcx_rb_rptr);
439         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_HI,
440                                 m->sdmax_rlcx_rb_rptr_hi);
441
442         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_MINOR_PTR_UPDATE, 1);
443         if (read_user_wptr(mm, wptr64, data64)) {
444                 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR,
445                        lower_32_bits(data64));
446                 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR_HI,
447                        upper_32_bits(data64));
448         } else {
449                 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR,
450                        m->sdmax_rlcx_rb_rptr);
451                 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR_HI,
452                        m->sdmax_rlcx_rb_rptr_hi);
453         }
454         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_MINOR_PTR_UPDATE, 0);
455
456         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE, m->sdmax_rlcx_rb_base);
457         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE_HI,
458                         m->sdmax_rlcx_rb_base_hi);
459         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
460                         m->sdmax_rlcx_rb_rptr_addr_lo);
461         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
462                         m->sdmax_rlcx_rb_rptr_addr_hi);
463
464         data = REG_SET_FIELD(m->sdmax_rlcx_rb_cntl, SDMA0_RLC0_RB_CNTL,
465                              RB_ENABLE, 1);
466         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, data);
467
468         return 0;
469 }
470
471 static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
472                              uint32_t engine_id, uint32_t queue_id,
473                              uint32_t (**dump)[2], uint32_t *n_regs)
474 {
475         struct amdgpu_device *adev = get_amdgpu_device(kgd);
476         uint32_t sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev,
477                         engine_id, queue_id);
478         uint32_t i = 0, reg;
479 #undef HQD_N_REGS
480 #define HQD_N_REGS (19+6+7+10)
481
482         *dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
483         if (*dump == NULL)
484                 return -ENOMEM;
485
486         for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
487                 DUMP_REG(sdma_rlc_reg_offset + reg);
488         for (reg = mmSDMA0_RLC0_STATUS; reg <= mmSDMA0_RLC0_CSA_ADDR_HI; reg++)
489                 DUMP_REG(sdma_rlc_reg_offset + reg);
490         for (reg = mmSDMA0_RLC0_IB_SUB_REMAIN;
491              reg <= mmSDMA0_RLC0_MINOR_PTR_UPDATE; reg++)
492                 DUMP_REG(sdma_rlc_reg_offset + reg);
493         for (reg = mmSDMA0_RLC0_MIDCMD_DATA0;
494              reg <= mmSDMA0_RLC0_MIDCMD_CNTL; reg++)
495                 DUMP_REG(sdma_rlc_reg_offset + reg);
496
497         WARN_ON_ONCE(i != HQD_N_REGS);
498         *n_regs = i;
499
500         return 0;
501 }
502
503 bool kgd_gfx_v9_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
504                                 uint32_t pipe_id, uint32_t queue_id)
505 {
506         struct amdgpu_device *adev = get_amdgpu_device(kgd);
507         uint32_t act;
508         bool retval = false;
509         uint32_t low, high;
510
511         acquire_queue(kgd, pipe_id, queue_id);
512         act = RREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_ACTIVE));
513         if (act) {
514                 low = lower_32_bits(queue_address >> 8);
515                 high = upper_32_bits(queue_address >> 8);
516
517                 if (low == RREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_BASE)) &&
518                    high == RREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_BASE_HI)))
519                         retval = true;
520         }
521         release_queue(kgd);
522         return retval;
523 }
524
525 static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
526 {
527         struct amdgpu_device *adev = get_amdgpu_device(kgd);
528         struct v9_sdma_mqd *m;
529         uint32_t sdma_rlc_reg_offset;
530         uint32_t sdma_rlc_rb_cntl;
531
532         m = get_sdma_mqd(mqd);
533         sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
534                                             m->sdma_queue_id);
535
536         sdma_rlc_rb_cntl = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
537
538         if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
539                 return true;
540
541         return false;
542 }
543
544 int kgd_gfx_v9_hqd_destroy(struct kgd_dev *kgd, void *mqd,
545                                 enum kfd_preempt_type reset_type,
546                                 unsigned int utimeout, uint32_t pipe_id,
547                                 uint32_t queue_id)
548 {
549         struct amdgpu_device *adev = get_amdgpu_device(kgd);
550         enum hqd_dequeue_request_type type;
551         unsigned long end_jiffies;
552         uint32_t temp;
553         struct v9_mqd *m = get_mqd(mqd);
554
555         if (amdgpu_in_reset(adev))
556                 return -EIO;
557
558         acquire_queue(kgd, pipe_id, queue_id);
559
560         if (m->cp_hqd_vmid == 0)
561                 WREG32_FIELD15_RLC(GC, 0, RLC_CP_SCHEDULERS, scheduler1, 0);
562
563         switch (reset_type) {
564         case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
565                 type = DRAIN_PIPE;
566                 break;
567         case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
568                 type = RESET_WAVES;
569                 break;
570         case KFD_PREEMPT_TYPE_WAVEFRONT_SAVE:
571                 type = SAVE_WAVES;
572                 break;
573         default:
574                 type = DRAIN_PIPE;
575                 break;
576         }
577
578         WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_DEQUEUE_REQUEST), type);
579
580         end_jiffies = (utimeout * HZ / 1000) + jiffies;
581         while (true) {
582                 temp = RREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_ACTIVE));
583                 if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
584                         break;
585                 if (time_after(jiffies, end_jiffies)) {
586                         pr_err("cp queue preemption time out.\n");
587                         release_queue(kgd);
588                         return -ETIME;
589                 }
590                 usleep_range(500, 1000);
591         }
592
593         release_queue(kgd);
594         return 0;
595 }
596
597 static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
598                                 unsigned int utimeout)
599 {
600         struct amdgpu_device *adev = get_amdgpu_device(kgd);
601         struct v9_sdma_mqd *m;
602         uint32_t sdma_rlc_reg_offset;
603         uint32_t temp;
604         unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
605
606         m = get_sdma_mqd(mqd);
607         sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
608                                             m->sdma_queue_id);
609
610         temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
611         temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
612         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, temp);
613
614         while (true) {
615                 temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
616                 if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
617                         break;
618                 if (time_after(jiffies, end_jiffies)) {
619                         pr_err("SDMA RLC not idle in %s\n", __func__);
620                         return -ETIME;
621                 }
622                 usleep_range(500, 1000);
623         }
624
625         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, 0);
626         WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
627                 RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL) |
628                 SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
629
630         m->sdmax_rlcx_rb_rptr = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR);
631         m->sdmax_rlcx_rb_rptr_hi =
632                 RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_HI);
633
634         return 0;
635 }
636
637 bool kgd_gfx_v9_get_atc_vmid_pasid_mapping_info(struct kgd_dev *kgd,
638                                         uint8_t vmid, uint16_t *p_pasid)
639 {
640         uint32_t value;
641         struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
642
643         value = RREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING)
644                      + vmid);
645         *p_pasid = value & ATC_VMID0_PASID_MAPPING__PASID_MASK;
646
647         return !!(value & ATC_VMID0_PASID_MAPPING__VALID_MASK);
648 }
649
650 int kgd_gfx_v9_address_watch_disable(struct kgd_dev *kgd)
651 {
652         return 0;
653 }
654
655 int kgd_gfx_v9_address_watch_execute(struct kgd_dev *kgd,
656                                         unsigned int watch_point_id,
657                                         uint32_t cntl_val,
658                                         uint32_t addr_hi,
659                                         uint32_t addr_lo)
660 {
661         return 0;
662 }
663
664 int kgd_gfx_v9_wave_control_execute(struct kgd_dev *kgd,
665                                         uint32_t gfx_index_val,
666                                         uint32_t sq_cmd)
667 {
668         struct amdgpu_device *adev = get_amdgpu_device(kgd);
669         uint32_t data = 0;
670
671         mutex_lock(&adev->grbm_idx_mutex);
672
673         WREG32_SOC15_RLC_SHADOW(GC, 0, mmGRBM_GFX_INDEX, gfx_index_val);
674         WREG32(SOC15_REG_OFFSET(GC, 0, mmSQ_CMD), sq_cmd);
675
676         data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
677                 INSTANCE_BROADCAST_WRITES, 1);
678         data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
679                 SH_BROADCAST_WRITES, 1);
680         data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
681                 SE_BROADCAST_WRITES, 1);
682
683         WREG32_SOC15_RLC_SHADOW(GC, 0, mmGRBM_GFX_INDEX, data);
684         mutex_unlock(&adev->grbm_idx_mutex);
685
686         return 0;
687 }
688
689 uint32_t kgd_gfx_v9_address_watch_get_offset(struct kgd_dev *kgd,
690                                         unsigned int watch_point_id,
691                                         unsigned int reg_offset)
692 {
693         return 0;
694 }
695
696 void kgd_gfx_v9_set_vm_context_page_table_base(struct kgd_dev *kgd,
697                         uint32_t vmid, uint64_t page_table_base)
698 {
699         struct amdgpu_device *adev = get_amdgpu_device(kgd);
700
701         if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
702                 pr_err("trying to set page table base for wrong VMID %u\n",
703                        vmid);
704                 return;
705         }
706
707         adev->mmhub.funcs->setup_vm_pt_regs(adev, vmid, page_table_base);
708
709         adev->gfxhub.funcs->setup_vm_pt_regs(adev, vmid, page_table_base);
710 }
711
712 static void lock_spi_csq_mutexes(struct amdgpu_device *adev)
713 {
714         mutex_lock(&adev->srbm_mutex);
715         mutex_lock(&adev->grbm_idx_mutex);
716
717 }
718
719 static void unlock_spi_csq_mutexes(struct amdgpu_device *adev)
720 {
721         mutex_unlock(&adev->grbm_idx_mutex);
722         mutex_unlock(&adev->srbm_mutex);
723 }
724
725 /**
726  * get_wave_count: Read device registers to get number of waves in flight for
727  * a particular queue. The method also returns the VMID associated with the
728  * queue.
729  *
730  * @adev: Handle of device whose registers are to be read
731  * @queue_idx: Index of queue in the queue-map bit-field
732  * @wave_cnt: Output parameter updated with number of waves in flight
733  * @vmid: Output parameter updated with VMID of queue whose wave count
734  * is being collected
735  */
736 static void get_wave_count(struct amdgpu_device *adev, int queue_idx,
737                 int *wave_cnt, int *vmid)
738 {
739         int pipe_idx;
740         int queue_slot;
741         unsigned int reg_val;
742
743         /*
744          * Program GRBM with appropriate MEID, PIPEID, QUEUEID and VMID
745          * parameters to read out waves in flight. Get VMID if there are
746          * non-zero waves in flight.
747          */
748         *vmid = 0xFF;
749         *wave_cnt = 0;
750         pipe_idx = queue_idx / adev->gfx.mec.num_queue_per_pipe;
751         queue_slot = queue_idx % adev->gfx.mec.num_queue_per_pipe;
752         soc15_grbm_select(adev, 1, pipe_idx, queue_slot, 0);
753         reg_val = RREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_CSQ_WF_ACTIVE_COUNT_0) +
754                          queue_slot);
755         *wave_cnt = reg_val & SPI_CSQ_WF_ACTIVE_COUNT_0__COUNT_MASK;
756         if (*wave_cnt != 0)
757                 *vmid = (RREG32_SOC15(GC, 0, mmCP_HQD_VMID) &
758                          CP_HQD_VMID__VMID_MASK) >> CP_HQD_VMID__VMID__SHIFT;
759 }
760
761 /**
762  * kgd_gfx_v9_get_cu_occupancy: Reads relevant registers associated with each
763  * shader engine and aggregates the number of waves that are in flight for the
764  * process whose pasid is provided as a parameter. The process could have ZERO
765  * or more queues running and submitting waves to compute units.
766  *
767  * @kgd: Handle of device from which to get number of waves in flight
768  * @pasid: Identifies the process for which this query call is invoked
769  * @pasid_wave_cnt: Output parameter updated with number of waves in flight that
770  * belong to process with given pasid
771  * @max_waves_per_cu: Output parameter updated with maximum number of waves
772  * possible per Compute Unit
773  *
774  * Note: It's possible that the device has too many queues (oversubscription)
775  * in which case a VMID could be remapped to a different PASID. This could lead
776  * to an iaccurate wave count. Following is a high-level sequence:
777  *    Time T1: vmid = getVmid(); vmid is associated with Pasid P1
778  *    Time T2: passId = getPasId(vmid); vmid is associated with Pasid P2
779  * In the sequence above wave count obtained from time T1 will be incorrectly
780  * lost or added to total wave count.
781  *
782  * The registers that provide the waves in flight are:
783  *
784  *  SPI_CSQ_WF_ACTIVE_STATUS - bit-map of queues per pipe. The bit is ON if a
785  *  queue is slotted, OFF if there is no queue. A process could have ZERO or
786  *  more queues slotted and submitting waves to be run on compute units. Even
787  *  when there is a queue it is possible there could be zero wave fronts, this
788  *  can happen when queue is waiting on top-of-pipe events - e.g. waitRegMem
789  *  command
790  *
791  *  For each bit that is ON from above:
792  *
793  *    Read (SPI_CSQ_WF_ACTIVE_COUNT_0 + queue_idx) register. It provides the
794  *    number of waves that are in flight for the queue at specified index. The
795  *    index ranges from 0 to 7.
796  *
797  *    If non-zero waves are in flight, read CP_HQD_VMID register to obtain VMID
798  *    of the wave(s).
799  *
800  *    Determine if VMID from above step maps to pasid provided as parameter. If
801  *    it matches agrregate the wave count. That the VMID will not match pasid is
802  *    a normal condition i.e. a device is expected to support multiple queues
803  *    from multiple proceses.
804  *
805  *  Reading registers referenced above involves programming GRBM appropriately
806  */
807 void kgd_gfx_v9_get_cu_occupancy(struct kgd_dev *kgd, int pasid,
808                 int *pasid_wave_cnt, int *max_waves_per_cu)
809 {
810         int qidx;
811         int vmid;
812         int se_idx;
813         int sh_idx;
814         int se_cnt;
815         int sh_cnt;
816         int wave_cnt;
817         int queue_map;
818         int pasid_tmp;
819         int max_queue_cnt;
820         int vmid_wave_cnt = 0;
821         struct amdgpu_device *adev;
822         DECLARE_BITMAP(cp_queue_bitmap, KGD_MAX_QUEUES);
823
824         adev = get_amdgpu_device(kgd);
825         lock_spi_csq_mutexes(adev);
826         soc15_grbm_select(adev, 1, 0, 0, 0);
827
828         /*
829          * Iterate through the shader engines and arrays of the device
830          * to get number of waves in flight
831          */
832         bitmap_complement(cp_queue_bitmap, adev->gfx.mec.queue_bitmap,
833                           KGD_MAX_QUEUES);
834         max_queue_cnt = adev->gfx.mec.num_pipe_per_mec *
835                         adev->gfx.mec.num_queue_per_pipe;
836         sh_cnt = adev->gfx.config.max_sh_per_se;
837         se_cnt = adev->gfx.config.max_shader_engines;
838         for (se_idx = 0; se_idx < se_cnt; se_idx++) {
839                 for (sh_idx = 0; sh_idx < sh_cnt; sh_idx++) {
840
841                         gfx_v9_0_select_se_sh(adev, se_idx, sh_idx, 0xffffffff);
842                         queue_map = RREG32(SOC15_REG_OFFSET(GC, 0,
843                                            mmSPI_CSQ_WF_ACTIVE_STATUS));
844
845                         /*
846                          * Assumption: queue map encodes following schema: four
847                          * pipes per each micro-engine, with each pipe mapping
848                          * eight queues. This schema is true for GFX9 devices
849                          * and must be verified for newer device families
850                          */
851                         for (qidx = 0; qidx < max_queue_cnt; qidx++) {
852
853                                 /* Skip qeueus that are not associated with
854                                  * compute functions
855                                  */
856                                 if (!test_bit(qidx, cp_queue_bitmap))
857                                         continue;
858
859                                 if (!(queue_map & (1 << qidx)))
860                                         continue;
861
862                                 /* Get number of waves in flight and aggregate them */
863                                 get_wave_count(adev, qidx, &wave_cnt, &vmid);
864                                 if (wave_cnt != 0) {
865                                         pasid_tmp =
866                                           RREG32(SOC15_REG_OFFSET(OSSSYS, 0,
867                                                  mmIH_VMID_0_LUT) + vmid);
868                                         if (pasid_tmp == pasid)
869                                                 vmid_wave_cnt += wave_cnt;
870                                 }
871                         }
872                 }
873         }
874
875         gfx_v9_0_select_se_sh(adev, 0xffffffff, 0xffffffff, 0xffffffff);
876         soc15_grbm_select(adev, 0, 0, 0, 0);
877         unlock_spi_csq_mutexes(adev);
878
879         /* Update the output parameters and return */
880         *pasid_wave_cnt = vmid_wave_cnt;
881         *max_waves_per_cu = adev->gfx.cu_info.simd_per_cu *
882                                 adev->gfx.cu_info.max_waves_per_simd;
883 }
884
885 void kgd_gfx_v9_program_trap_handler_settings(struct kgd_dev *kgd,
886                         uint32_t vmid, uint64_t tba_addr, uint64_t tma_addr)
887 {
888         struct amdgpu_device *adev = get_amdgpu_device(kgd);
889
890         lock_srbm(kgd, 0, 0, 0, vmid);
891
892         /*
893          * Program TBA registers
894          */
895         WREG32(SOC15_REG_OFFSET(GC, 0, mmSQ_SHADER_TBA_LO),
896                         lower_32_bits(tba_addr >> 8));
897         WREG32(SOC15_REG_OFFSET(GC, 0, mmSQ_SHADER_TBA_HI),
898                         upper_32_bits(tba_addr >> 8));
899
900         /*
901          * Program TMA registers
902          */
903         WREG32(SOC15_REG_OFFSET(GC, 0, mmSQ_SHADER_TMA_LO),
904                         lower_32_bits(tma_addr >> 8));
905         WREG32(SOC15_REG_OFFSET(GC, 0, mmSQ_SHADER_TMA_HI),
906                         upper_32_bits(tma_addr >> 8));
907
908         unlock_srbm(kgd);
909 }
910
911 const struct kfd2kgd_calls gfx_v9_kfd2kgd = {
912         .program_sh_mem_settings = kgd_gfx_v9_program_sh_mem_settings,
913         .set_pasid_vmid_mapping = kgd_gfx_v9_set_pasid_vmid_mapping,
914         .init_interrupts = kgd_gfx_v9_init_interrupts,
915         .hqd_load = kgd_gfx_v9_hqd_load,
916         .hiq_mqd_load = kgd_gfx_v9_hiq_mqd_load,
917         .hqd_sdma_load = kgd_hqd_sdma_load,
918         .hqd_dump = kgd_gfx_v9_hqd_dump,
919         .hqd_sdma_dump = kgd_hqd_sdma_dump,
920         .hqd_is_occupied = kgd_gfx_v9_hqd_is_occupied,
921         .hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
922         .hqd_destroy = kgd_gfx_v9_hqd_destroy,
923         .hqd_sdma_destroy = kgd_hqd_sdma_destroy,
924         .address_watch_disable = kgd_gfx_v9_address_watch_disable,
925         .address_watch_execute = kgd_gfx_v9_address_watch_execute,
926         .wave_control_execute = kgd_gfx_v9_wave_control_execute,
927         .address_watch_get_offset = kgd_gfx_v9_address_watch_get_offset,
928         .get_atc_vmid_pasid_mapping_info =
929                         kgd_gfx_v9_get_atc_vmid_pasid_mapping_info,
930         .set_vm_context_page_table_base = kgd_gfx_v9_set_vm_context_page_table_base,
931         .get_cu_occupancy = kgd_gfx_v9_get_cu_occupancy,
932         .program_trap_handler_settings = kgd_gfx_v9_program_trap_handler_settings,
933 };