Merge tag 'dt-5.15' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[linux-2.6-microblaze.git] / drivers / edac / edac_mc.c
1 /*
2  * edac_mc kernel module
3  * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4  * This file may be distributed under the terms of the
5  * GNU General Public License.
6  *
7  * Written by Thayne Harbaugh
8  * Based on work by Dan Hollis <goemon at anime dot net> and others.
9  *      http://www.anime.net/~goemon/linux-ecc/
10  *
11  * Modified by Dave Peterson and Doug Thompson
12  *
13  */
14
15 #include <linux/module.h>
16 #include <linux/proc_fs.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/sysctl.h>
22 #include <linux/highmem.h>
23 #include <linux/timer.h>
24 #include <linux/slab.h>
25 #include <linux/jiffies.h>
26 #include <linux/spinlock.h>
27 #include <linux/list.h>
28 #include <linux/ctype.h>
29 #include <linux/edac.h>
30 #include <linux/bitops.h>
31 #include <linux/uaccess.h>
32 #include <asm/page.h>
33 #include "edac_mc.h"
34 #include "edac_module.h"
35 #include <ras/ras_event.h>
36
37 #ifdef CONFIG_EDAC_ATOMIC_SCRUB
38 #include <asm/edac.h>
39 #else
40 #define edac_atomic_scrub(va, size) do { } while (0)
41 #endif
42
43 int edac_op_state = EDAC_OPSTATE_INVAL;
44 EXPORT_SYMBOL_GPL(edac_op_state);
45
46 /* lock to memory controller's control array */
47 static DEFINE_MUTEX(mem_ctls_mutex);
48 static LIST_HEAD(mc_devices);
49
50 /*
51  * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
52  *      apei/ghes and i7core_edac to be used at the same time.
53  */
54 static const char *edac_mc_owner;
55
56 static struct mem_ctl_info *error_desc_to_mci(struct edac_raw_error_desc *e)
57 {
58         return container_of(e, struct mem_ctl_info, error_desc);
59 }
60
61 unsigned int edac_dimm_info_location(struct dimm_info *dimm, char *buf,
62                                      unsigned int len)
63 {
64         struct mem_ctl_info *mci = dimm->mci;
65         int i, n, count = 0;
66         char *p = buf;
67
68         for (i = 0; i < mci->n_layers; i++) {
69                 n = snprintf(p, len, "%s %d ",
70                               edac_layer_name[mci->layers[i].type],
71                               dimm->location[i]);
72                 p += n;
73                 len -= n;
74                 count += n;
75                 if (!len)
76                         break;
77         }
78
79         return count;
80 }
81
82 #ifdef CONFIG_EDAC_DEBUG
83
84 static void edac_mc_dump_channel(struct rank_info *chan)
85 {
86         edac_dbg(4, "  channel->chan_idx = %d\n", chan->chan_idx);
87         edac_dbg(4, "    channel = %p\n", chan);
88         edac_dbg(4, "    channel->csrow = %p\n", chan->csrow);
89         edac_dbg(4, "    channel->dimm = %p\n", chan->dimm);
90 }
91
92 static void edac_mc_dump_dimm(struct dimm_info *dimm)
93 {
94         char location[80];
95
96         if (!dimm->nr_pages)
97                 return;
98
99         edac_dimm_info_location(dimm, location, sizeof(location));
100
101         edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
102                  dimm->mci->csbased ? "rank" : "dimm",
103                  dimm->idx, location, dimm->csrow, dimm->cschannel);
104         edac_dbg(4, "  dimm = %p\n", dimm);
105         edac_dbg(4, "  dimm->label = '%s'\n", dimm->label);
106         edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
107         edac_dbg(4, "  dimm->grain = %d\n", dimm->grain);
108         edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
109 }
110
111 static void edac_mc_dump_csrow(struct csrow_info *csrow)
112 {
113         edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
114         edac_dbg(4, "  csrow = %p\n", csrow);
115         edac_dbg(4, "  csrow->first_page = 0x%lx\n", csrow->first_page);
116         edac_dbg(4, "  csrow->last_page = 0x%lx\n", csrow->last_page);
117         edac_dbg(4, "  csrow->page_mask = 0x%lx\n", csrow->page_mask);
118         edac_dbg(4, "  csrow->nr_channels = %d\n", csrow->nr_channels);
119         edac_dbg(4, "  csrow->channels = %p\n", csrow->channels);
120         edac_dbg(4, "  csrow->mci = %p\n", csrow->mci);
121 }
122
123 static void edac_mc_dump_mci(struct mem_ctl_info *mci)
124 {
125         edac_dbg(3, "\tmci = %p\n", mci);
126         edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
127         edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
128         edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
129         edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
130         edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
131                  mci->nr_csrows, mci->csrows);
132         edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
133                  mci->tot_dimms, mci->dimms);
134         edac_dbg(3, "\tdev = %p\n", mci->pdev);
135         edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
136                  mci->mod_name, mci->ctl_name);
137         edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
138 }
139
140 #endif                          /* CONFIG_EDAC_DEBUG */
141
142 const char * const edac_mem_types[] = {
143         [MEM_EMPTY]     = "Empty",
144         [MEM_RESERVED]  = "Reserved",
145         [MEM_UNKNOWN]   = "Unknown",
146         [MEM_FPM]       = "FPM",
147         [MEM_EDO]       = "EDO",
148         [MEM_BEDO]      = "BEDO",
149         [MEM_SDR]       = "Unbuffered-SDR",
150         [MEM_RDR]       = "Registered-SDR",
151         [MEM_DDR]       = "Unbuffered-DDR",
152         [MEM_RDDR]      = "Registered-DDR",
153         [MEM_RMBS]      = "RMBS",
154         [MEM_DDR2]      = "Unbuffered-DDR2",
155         [MEM_FB_DDR2]   = "FullyBuffered-DDR2",
156         [MEM_RDDR2]     = "Registered-DDR2",
157         [MEM_XDR]       = "XDR",
158         [MEM_DDR3]      = "Unbuffered-DDR3",
159         [MEM_RDDR3]     = "Registered-DDR3",
160         [MEM_LRDDR3]    = "Load-Reduced-DDR3-RAM",
161         [MEM_LPDDR3]    = "Low-Power-DDR3-RAM",
162         [MEM_DDR4]      = "Unbuffered-DDR4",
163         [MEM_RDDR4]     = "Registered-DDR4",
164         [MEM_LPDDR4]    = "Low-Power-DDR4-RAM",
165         [MEM_LRDDR4]    = "Load-Reduced-DDR4-RAM",
166         [MEM_DDR5]      = "Unbuffered-DDR5",
167         [MEM_NVDIMM]    = "Non-volatile-RAM",
168         [MEM_WIO2]      = "Wide-IO-2",
169         [MEM_HBM2]      = "High-bandwidth-memory-Gen2",
170 };
171 EXPORT_SYMBOL_GPL(edac_mem_types);
172
173 /**
174  * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
175  * @p:          pointer to a pointer with the memory offset to be used. At
176  *              return, this will be incremented to point to the next offset
177  * @size:       Size of the data structure to be reserved
178  * @n_elems:    Number of elements that should be reserved
179  *
180  * If 'size' is a constant, the compiler will optimize this whole function
181  * down to either a no-op or the addition of a constant to the value of '*p'.
182  *
183  * The 'p' pointer is absolutely needed to keep the proper advancing
184  * further in memory to the proper offsets when allocating the struct along
185  * with its embedded structs, as edac_device_alloc_ctl_info() does it
186  * above, for example.
187  *
188  * At return, the pointer 'p' will be incremented to be used on a next call
189  * to this function.
190  */
191 void *edac_align_ptr(void **p, unsigned int size, int n_elems)
192 {
193         unsigned int align, r;
194         void *ptr = *p;
195
196         *p += size * n_elems;
197
198         /*
199          * 'p' can possibly be an unaligned item X such that sizeof(X) is
200          * 'size'.  Adjust 'p' so that its alignment is at least as
201          * stringent as what the compiler would provide for X and return
202          * the aligned result.
203          * Here we assume that the alignment of a "long long" is the most
204          * stringent alignment that the compiler will ever provide by default.
205          * As far as I know, this is a reasonable assumption.
206          */
207         if (size > sizeof(long))
208                 align = sizeof(long long);
209         else if (size > sizeof(int))
210                 align = sizeof(long);
211         else if (size > sizeof(short))
212                 align = sizeof(int);
213         else if (size > sizeof(char))
214                 align = sizeof(short);
215         else
216                 return (char *)ptr;
217
218         r = (unsigned long)p % align;
219
220         if (r == 0)
221                 return (char *)ptr;
222
223         *p += align - r;
224
225         return (void *)(((unsigned long)ptr) + align - r);
226 }
227
228 static void _edac_mc_free(struct mem_ctl_info *mci)
229 {
230         put_device(&mci->dev);
231 }
232
233 static void mci_release(struct device *dev)
234 {
235         struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev);
236         struct csrow_info *csr;
237         int i, chn, row;
238
239         if (mci->dimms) {
240                 for (i = 0; i < mci->tot_dimms; i++)
241                         kfree(mci->dimms[i]);
242                 kfree(mci->dimms);
243         }
244
245         if (mci->csrows) {
246                 for (row = 0; row < mci->nr_csrows; row++) {
247                         csr = mci->csrows[row];
248                         if (!csr)
249                                 continue;
250
251                         if (csr->channels) {
252                                 for (chn = 0; chn < mci->num_cschannel; chn++)
253                                         kfree(csr->channels[chn]);
254                                 kfree(csr->channels);
255                         }
256                         kfree(csr);
257                 }
258                 kfree(mci->csrows);
259         }
260         kfree(mci);
261 }
262
263 static int edac_mc_alloc_csrows(struct mem_ctl_info *mci)
264 {
265         unsigned int tot_channels = mci->num_cschannel;
266         unsigned int tot_csrows = mci->nr_csrows;
267         unsigned int row, chn;
268
269         /*
270          * Alocate and fill the csrow/channels structs
271          */
272         mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
273         if (!mci->csrows)
274                 return -ENOMEM;
275
276         for (row = 0; row < tot_csrows; row++) {
277                 struct csrow_info *csr;
278
279                 csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
280                 if (!csr)
281                         return -ENOMEM;
282
283                 mci->csrows[row] = csr;
284                 csr->csrow_idx = row;
285                 csr->mci = mci;
286                 csr->nr_channels = tot_channels;
287                 csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
288                                         GFP_KERNEL);
289                 if (!csr->channels)
290                         return -ENOMEM;
291
292                 for (chn = 0; chn < tot_channels; chn++) {
293                         struct rank_info *chan;
294
295                         chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
296                         if (!chan)
297                                 return -ENOMEM;
298
299                         csr->channels[chn] = chan;
300                         chan->chan_idx = chn;
301                         chan->csrow = csr;
302                 }
303         }
304
305         return 0;
306 }
307
308 static int edac_mc_alloc_dimms(struct mem_ctl_info *mci)
309 {
310         unsigned int pos[EDAC_MAX_LAYERS];
311         unsigned int row, chn, idx;
312         int layer;
313         void *p;
314
315         /*
316          * Allocate and fill the dimm structs
317          */
318         mci->dimms  = kcalloc(mci->tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
319         if (!mci->dimms)
320                 return -ENOMEM;
321
322         memset(&pos, 0, sizeof(pos));
323         row = 0;
324         chn = 0;
325         for (idx = 0; idx < mci->tot_dimms; idx++) {
326                 struct dimm_info *dimm;
327                 struct rank_info *chan;
328                 int n, len;
329
330                 chan = mci->csrows[row]->channels[chn];
331
332                 dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
333                 if (!dimm)
334                         return -ENOMEM;
335                 mci->dimms[idx] = dimm;
336                 dimm->mci = mci;
337                 dimm->idx = idx;
338
339                 /*
340                  * Copy DIMM location and initialize it.
341                  */
342                 len = sizeof(dimm->label);
343                 p = dimm->label;
344                 n = snprintf(p, len, "mc#%u", mci->mc_idx);
345                 p += n;
346                 len -= n;
347                 for (layer = 0; layer < mci->n_layers; layer++) {
348                         n = snprintf(p, len, "%s#%u",
349                                      edac_layer_name[mci->layers[layer].type],
350                                      pos[layer]);
351                         p += n;
352                         len -= n;
353                         dimm->location[layer] = pos[layer];
354
355                         if (len <= 0)
356                                 break;
357                 }
358
359                 /* Link it to the csrows old API data */
360                 chan->dimm = dimm;
361                 dimm->csrow = row;
362                 dimm->cschannel = chn;
363
364                 /* Increment csrow location */
365                 if (mci->layers[0].is_virt_csrow) {
366                         chn++;
367                         if (chn == mci->num_cschannel) {
368                                 chn = 0;
369                                 row++;
370                         }
371                 } else {
372                         row++;
373                         if (row == mci->nr_csrows) {
374                                 row = 0;
375                                 chn++;
376                         }
377                 }
378
379                 /* Increment dimm location */
380                 for (layer = mci->n_layers - 1; layer >= 0; layer--) {
381                         pos[layer]++;
382                         if (pos[layer] < mci->layers[layer].size)
383                                 break;
384                         pos[layer] = 0;
385                 }
386         }
387
388         return 0;
389 }
390
391 struct mem_ctl_info *edac_mc_alloc(unsigned int mc_num,
392                                    unsigned int n_layers,
393                                    struct edac_mc_layer *layers,
394                                    unsigned int sz_pvt)
395 {
396         struct mem_ctl_info *mci;
397         struct edac_mc_layer *layer;
398         unsigned int idx, size, tot_dimms = 1;
399         unsigned int tot_csrows = 1, tot_channels = 1;
400         void *pvt, *ptr = NULL;
401         bool per_rank = false;
402
403         if (WARN_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0))
404                 return NULL;
405
406         /*
407          * Calculate the total amount of dimms and csrows/cschannels while
408          * in the old API emulation mode
409          */
410         for (idx = 0; idx < n_layers; idx++) {
411                 tot_dimms *= layers[idx].size;
412
413                 if (layers[idx].is_virt_csrow)
414                         tot_csrows *= layers[idx].size;
415                 else
416                         tot_channels *= layers[idx].size;
417
418                 if (layers[idx].type == EDAC_MC_LAYER_CHIP_SELECT)
419                         per_rank = true;
420         }
421
422         /* Figure out the offsets of the various items from the start of an mc
423          * structure.  We want the alignment of each item to be at least as
424          * stringent as what the compiler would provide if we could simply
425          * hardcode everything into a single struct.
426          */
427         mci     = edac_align_ptr(&ptr, sizeof(*mci), 1);
428         layer   = edac_align_ptr(&ptr, sizeof(*layer), n_layers);
429         pvt     = edac_align_ptr(&ptr, sz_pvt, 1);
430         size    = ((unsigned long)pvt) + sz_pvt;
431
432         edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
433                  size,
434                  tot_dimms,
435                  per_rank ? "ranks" : "dimms",
436                  tot_csrows * tot_channels);
437
438         mci = kzalloc(size, GFP_KERNEL);
439         if (mci == NULL)
440                 return NULL;
441
442         mci->dev.release = mci_release;
443         device_initialize(&mci->dev);
444
445         /* Adjust pointers so they point within the memory we just allocated
446          * rather than an imaginary chunk of memory located at address 0.
447          */
448         layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
449         pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
450
451         /* setup index and various internal pointers */
452         mci->mc_idx = mc_num;
453         mci->tot_dimms = tot_dimms;
454         mci->pvt_info = pvt;
455         mci->n_layers = n_layers;
456         mci->layers = layer;
457         memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
458         mci->nr_csrows = tot_csrows;
459         mci->num_cschannel = tot_channels;
460         mci->csbased = per_rank;
461
462         if (edac_mc_alloc_csrows(mci))
463                 goto error;
464
465         if (edac_mc_alloc_dimms(mci))
466                 goto error;
467
468         mci->op_state = OP_ALLOC;
469
470         return mci;
471
472 error:
473         _edac_mc_free(mci);
474
475         return NULL;
476 }
477 EXPORT_SYMBOL_GPL(edac_mc_alloc);
478
479 void edac_mc_free(struct mem_ctl_info *mci)
480 {
481         edac_dbg(1, "\n");
482
483         _edac_mc_free(mci);
484 }
485 EXPORT_SYMBOL_GPL(edac_mc_free);
486
487 bool edac_has_mcs(void)
488 {
489         bool ret;
490
491         mutex_lock(&mem_ctls_mutex);
492
493         ret = list_empty(&mc_devices);
494
495         mutex_unlock(&mem_ctls_mutex);
496
497         return !ret;
498 }
499 EXPORT_SYMBOL_GPL(edac_has_mcs);
500
501 /* Caller must hold mem_ctls_mutex */
502 static struct mem_ctl_info *__find_mci_by_dev(struct device *dev)
503 {
504         struct mem_ctl_info *mci;
505         struct list_head *item;
506
507         edac_dbg(3, "\n");
508
509         list_for_each(item, &mc_devices) {
510                 mci = list_entry(item, struct mem_ctl_info, link);
511
512                 if (mci->pdev == dev)
513                         return mci;
514         }
515
516         return NULL;
517 }
518
519 /**
520  * find_mci_by_dev
521  *
522  *      scan list of controllers looking for the one that manages
523  *      the 'dev' device
524  * @dev: pointer to a struct device related with the MCI
525  */
526 struct mem_ctl_info *find_mci_by_dev(struct device *dev)
527 {
528         struct mem_ctl_info *ret;
529
530         mutex_lock(&mem_ctls_mutex);
531         ret = __find_mci_by_dev(dev);
532         mutex_unlock(&mem_ctls_mutex);
533
534         return ret;
535 }
536 EXPORT_SYMBOL_GPL(find_mci_by_dev);
537
538 /*
539  * edac_mc_workq_function
540  *      performs the operation scheduled by a workq request
541  */
542 static void edac_mc_workq_function(struct work_struct *work_req)
543 {
544         struct delayed_work *d_work = to_delayed_work(work_req);
545         struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
546
547         mutex_lock(&mem_ctls_mutex);
548
549         if (mci->op_state != OP_RUNNING_POLL) {
550                 mutex_unlock(&mem_ctls_mutex);
551                 return;
552         }
553
554         if (edac_op_state == EDAC_OPSTATE_POLL)
555                 mci->edac_check(mci);
556
557         mutex_unlock(&mem_ctls_mutex);
558
559         /* Queue ourselves again. */
560         edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
561 }
562
563 /*
564  * edac_mc_reset_delay_period(unsigned long value)
565  *
566  *      user space has updated our poll period value, need to
567  *      reset our workq delays
568  */
569 void edac_mc_reset_delay_period(unsigned long value)
570 {
571         struct mem_ctl_info *mci;
572         struct list_head *item;
573
574         mutex_lock(&mem_ctls_mutex);
575
576         list_for_each(item, &mc_devices) {
577                 mci = list_entry(item, struct mem_ctl_info, link);
578
579                 if (mci->op_state == OP_RUNNING_POLL)
580                         edac_mod_work(&mci->work, value);
581         }
582         mutex_unlock(&mem_ctls_mutex);
583 }
584
585
586
587 /* Return 0 on success, 1 on failure.
588  * Before calling this function, caller must
589  * assign a unique value to mci->mc_idx.
590  *
591  *      locking model:
592  *
593  *              called with the mem_ctls_mutex lock held
594  */
595 static int add_mc_to_global_list(struct mem_ctl_info *mci)
596 {
597         struct list_head *item, *insert_before;
598         struct mem_ctl_info *p;
599
600         insert_before = &mc_devices;
601
602         p = __find_mci_by_dev(mci->pdev);
603         if (unlikely(p != NULL))
604                 goto fail0;
605
606         list_for_each(item, &mc_devices) {
607                 p = list_entry(item, struct mem_ctl_info, link);
608
609                 if (p->mc_idx >= mci->mc_idx) {
610                         if (unlikely(p->mc_idx == mci->mc_idx))
611                                 goto fail1;
612
613                         insert_before = item;
614                         break;
615                 }
616         }
617
618         list_add_tail_rcu(&mci->link, insert_before);
619         return 0;
620
621 fail0:
622         edac_printk(KERN_WARNING, EDAC_MC,
623                 "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
624                 edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
625         return 1;
626
627 fail1:
628         edac_printk(KERN_WARNING, EDAC_MC,
629                 "bug in low-level driver: attempt to assign\n"
630                 "    duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
631         return 1;
632 }
633
634 static int del_mc_from_global_list(struct mem_ctl_info *mci)
635 {
636         list_del_rcu(&mci->link);
637
638         /* these are for safe removal of devices from global list while
639          * NMI handlers may be traversing list
640          */
641         synchronize_rcu();
642         INIT_LIST_HEAD(&mci->link);
643
644         return list_empty(&mc_devices);
645 }
646
647 struct mem_ctl_info *edac_mc_find(int idx)
648 {
649         struct mem_ctl_info *mci;
650         struct list_head *item;
651
652         mutex_lock(&mem_ctls_mutex);
653
654         list_for_each(item, &mc_devices) {
655                 mci = list_entry(item, struct mem_ctl_info, link);
656                 if (mci->mc_idx == idx)
657                         goto unlock;
658         }
659
660         mci = NULL;
661 unlock:
662         mutex_unlock(&mem_ctls_mutex);
663         return mci;
664 }
665 EXPORT_SYMBOL(edac_mc_find);
666
667 const char *edac_get_owner(void)
668 {
669         return edac_mc_owner;
670 }
671 EXPORT_SYMBOL_GPL(edac_get_owner);
672
673 /* FIXME - should a warning be printed if no error detection? correction? */
674 int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci,
675                                const struct attribute_group **groups)
676 {
677         int ret = -EINVAL;
678         edac_dbg(0, "\n");
679
680 #ifdef CONFIG_EDAC_DEBUG
681         if (edac_debug_level >= 3)
682                 edac_mc_dump_mci(mci);
683
684         if (edac_debug_level >= 4) {
685                 struct dimm_info *dimm;
686                 int i;
687
688                 for (i = 0; i < mci->nr_csrows; i++) {
689                         struct csrow_info *csrow = mci->csrows[i];
690                         u32 nr_pages = 0;
691                         int j;
692
693                         for (j = 0; j < csrow->nr_channels; j++)
694                                 nr_pages += csrow->channels[j]->dimm->nr_pages;
695                         if (!nr_pages)
696                                 continue;
697                         edac_mc_dump_csrow(csrow);
698                         for (j = 0; j < csrow->nr_channels; j++)
699                                 if (csrow->channels[j]->dimm->nr_pages)
700                                         edac_mc_dump_channel(csrow->channels[j]);
701                 }
702
703                 mci_for_each_dimm(mci, dimm)
704                         edac_mc_dump_dimm(dimm);
705         }
706 #endif
707         mutex_lock(&mem_ctls_mutex);
708
709         if (edac_mc_owner && edac_mc_owner != mci->mod_name) {
710                 ret = -EPERM;
711                 goto fail0;
712         }
713
714         if (add_mc_to_global_list(mci))
715                 goto fail0;
716
717         /* set load time so that error rate can be tracked */
718         mci->start_time = jiffies;
719
720         mci->bus = edac_get_sysfs_subsys();
721
722         if (edac_create_sysfs_mci_device(mci, groups)) {
723                 edac_mc_printk(mci, KERN_WARNING,
724                         "failed to create sysfs device\n");
725                 goto fail1;
726         }
727
728         if (mci->edac_check) {
729                 mci->op_state = OP_RUNNING_POLL;
730
731                 INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
732                 edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
733
734         } else {
735                 mci->op_state = OP_RUNNING_INTERRUPT;
736         }
737
738         /* Report action taken */
739         edac_mc_printk(mci, KERN_INFO,
740                 "Giving out device to module %s controller %s: DEV %s (%s)\n",
741                 mci->mod_name, mci->ctl_name, mci->dev_name,
742                 edac_op_state_to_string(mci->op_state));
743
744         edac_mc_owner = mci->mod_name;
745
746         mutex_unlock(&mem_ctls_mutex);
747         return 0;
748
749 fail1:
750         del_mc_from_global_list(mci);
751
752 fail0:
753         mutex_unlock(&mem_ctls_mutex);
754         return ret;
755 }
756 EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups);
757
758 struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
759 {
760         struct mem_ctl_info *mci;
761
762         edac_dbg(0, "\n");
763
764         mutex_lock(&mem_ctls_mutex);
765
766         /* find the requested mci struct in the global list */
767         mci = __find_mci_by_dev(dev);
768         if (mci == NULL) {
769                 mutex_unlock(&mem_ctls_mutex);
770                 return NULL;
771         }
772
773         /* mark MCI offline: */
774         mci->op_state = OP_OFFLINE;
775
776         if (del_mc_from_global_list(mci))
777                 edac_mc_owner = NULL;
778
779         mutex_unlock(&mem_ctls_mutex);
780
781         if (mci->edac_check)
782                 edac_stop_work(&mci->work);
783
784         /* remove from sysfs */
785         edac_remove_sysfs_mci_device(mci);
786
787         edac_printk(KERN_INFO, EDAC_MC,
788                 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
789                 mci->mod_name, mci->ctl_name, edac_dev_name(mci));
790
791         return mci;
792 }
793 EXPORT_SYMBOL_GPL(edac_mc_del_mc);
794
795 static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
796                                 u32 size)
797 {
798         struct page *pg;
799         void *virt_addr;
800         unsigned long flags = 0;
801
802         edac_dbg(3, "\n");
803
804         /* ECC error page was not in our memory. Ignore it. */
805         if (!pfn_valid(page))
806                 return;
807
808         /* Find the actual page structure then map it and fix */
809         pg = pfn_to_page(page);
810
811         if (PageHighMem(pg))
812                 local_irq_save(flags);
813
814         virt_addr = kmap_atomic(pg);
815
816         /* Perform architecture specific atomic scrub operation */
817         edac_atomic_scrub(virt_addr + offset, size);
818
819         /* Unmap and complete */
820         kunmap_atomic(virt_addr);
821
822         if (PageHighMem(pg))
823                 local_irq_restore(flags);
824 }
825
826 /* FIXME - should return -1 */
827 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
828 {
829         struct csrow_info **csrows = mci->csrows;
830         int row, i, j, n;
831
832         edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
833         row = -1;
834
835         for (i = 0; i < mci->nr_csrows; i++) {
836                 struct csrow_info *csrow = csrows[i];
837                 n = 0;
838                 for (j = 0; j < csrow->nr_channels; j++) {
839                         struct dimm_info *dimm = csrow->channels[j]->dimm;
840                         n += dimm->nr_pages;
841                 }
842                 if (n == 0)
843                         continue;
844
845                 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
846                          mci->mc_idx,
847                          csrow->first_page, page, csrow->last_page,
848                          csrow->page_mask);
849
850                 if ((page >= csrow->first_page) &&
851                     (page <= csrow->last_page) &&
852                     ((page & csrow->page_mask) ==
853                      (csrow->first_page & csrow->page_mask))) {
854                         row = i;
855                         break;
856                 }
857         }
858
859         if (row == -1)
860                 edac_mc_printk(mci, KERN_ERR,
861                         "could not look up page error address %lx\n",
862                         (unsigned long)page);
863
864         return row;
865 }
866 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
867
868 const char *edac_layer_name[] = {
869         [EDAC_MC_LAYER_BRANCH] = "branch",
870         [EDAC_MC_LAYER_CHANNEL] = "channel",
871         [EDAC_MC_LAYER_SLOT] = "slot",
872         [EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
873         [EDAC_MC_LAYER_ALL_MEM] = "memory",
874 };
875 EXPORT_SYMBOL_GPL(edac_layer_name);
876
877 static void edac_inc_ce_error(struct edac_raw_error_desc *e)
878 {
879         int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
880         struct mem_ctl_info *mci = error_desc_to_mci(e);
881         struct dimm_info *dimm = edac_get_dimm(mci, pos[0], pos[1], pos[2]);
882
883         mci->ce_mc += e->error_count;
884
885         if (dimm)
886                 dimm->ce_count += e->error_count;
887         else
888                 mci->ce_noinfo_count += e->error_count;
889 }
890
891 static void edac_inc_ue_error(struct edac_raw_error_desc *e)
892 {
893         int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
894         struct mem_ctl_info *mci = error_desc_to_mci(e);
895         struct dimm_info *dimm = edac_get_dimm(mci, pos[0], pos[1], pos[2]);
896
897         mci->ue_mc += e->error_count;
898
899         if (dimm)
900                 dimm->ue_count += e->error_count;
901         else
902                 mci->ue_noinfo_count += e->error_count;
903 }
904
905 static void edac_ce_error(struct edac_raw_error_desc *e)
906 {
907         struct mem_ctl_info *mci = error_desc_to_mci(e);
908         unsigned long remapped_page;
909
910         if (edac_mc_get_log_ce()) {
911                 edac_mc_printk(mci, KERN_WARNING,
912                         "%d CE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx%s%s)\n",
913                         e->error_count, e->msg,
914                         *e->msg ? " " : "",
915                         e->label, e->location, e->page_frame_number, e->offset_in_page,
916                         e->grain, e->syndrome,
917                         *e->other_detail ? " - " : "",
918                         e->other_detail);
919         }
920
921         edac_inc_ce_error(e);
922
923         if (mci->scrub_mode == SCRUB_SW_SRC) {
924                 /*
925                         * Some memory controllers (called MCs below) can remap
926                         * memory so that it is still available at a different
927                         * address when PCI devices map into memory.
928                         * MC's that can't do this, lose the memory where PCI
929                         * devices are mapped. This mapping is MC-dependent
930                         * and so we call back into the MC driver for it to
931                         * map the MC page to a physical (CPU) page which can
932                         * then be mapped to a virtual page - which can then
933                         * be scrubbed.
934                         */
935                 remapped_page = mci->ctl_page_to_phys ?
936                         mci->ctl_page_to_phys(mci, e->page_frame_number) :
937                         e->page_frame_number;
938
939                 edac_mc_scrub_block(remapped_page, e->offset_in_page, e->grain);
940         }
941 }
942
943 static void edac_ue_error(struct edac_raw_error_desc *e)
944 {
945         struct mem_ctl_info *mci = error_desc_to_mci(e);
946
947         if (edac_mc_get_log_ue()) {
948                 edac_mc_printk(mci, KERN_WARNING,
949                         "%d UE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld%s%s)\n",
950                         e->error_count, e->msg,
951                         *e->msg ? " " : "",
952                         e->label, e->location, e->page_frame_number, e->offset_in_page,
953                         e->grain,
954                         *e->other_detail ? " - " : "",
955                         e->other_detail);
956         }
957
958         edac_inc_ue_error(e);
959
960         if (edac_mc_get_panic_on_ue()) {
961                 panic("UE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld%s%s)\n",
962                         e->msg,
963                         *e->msg ? " " : "",
964                         e->label, e->location, e->page_frame_number, e->offset_in_page,
965                         e->grain,
966                         *e->other_detail ? " - " : "",
967                         e->other_detail);
968         }
969 }
970
971 static void edac_inc_csrow(struct edac_raw_error_desc *e, int row, int chan)
972 {
973         struct mem_ctl_info *mci = error_desc_to_mci(e);
974         enum hw_event_mc_err_type type = e->type;
975         u16 count = e->error_count;
976
977         if (row < 0)
978                 return;
979
980         edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
981
982         if (type == HW_EVENT_ERR_CORRECTED) {
983                 mci->csrows[row]->ce_count += count;
984                 if (chan >= 0)
985                         mci->csrows[row]->channels[chan]->ce_count += count;
986         } else {
987                 mci->csrows[row]->ue_count += count;
988         }
989 }
990
991 void edac_raw_mc_handle_error(struct edac_raw_error_desc *e)
992 {
993         struct mem_ctl_info *mci = error_desc_to_mci(e);
994         u8 grain_bits;
995
996         /* Sanity-check driver-supplied grain value. */
997         if (WARN_ON_ONCE(!e->grain))
998                 e->grain = 1;
999
1000         grain_bits = fls_long(e->grain - 1);
1001
1002         /* Report the error via the trace interface */
1003         if (IS_ENABLED(CONFIG_RAS))
1004                 trace_mc_event(e->type, e->msg, e->label, e->error_count,
1005                                mci->mc_idx, e->top_layer, e->mid_layer,
1006                                e->low_layer,
1007                                (e->page_frame_number << PAGE_SHIFT) | e->offset_in_page,
1008                                grain_bits, e->syndrome, e->other_detail);
1009
1010         if (e->type == HW_EVENT_ERR_CORRECTED)
1011                 edac_ce_error(e);
1012         else
1013                 edac_ue_error(e);
1014 }
1015 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error);
1016
1017 void edac_mc_handle_error(const enum hw_event_mc_err_type type,
1018                           struct mem_ctl_info *mci,
1019                           const u16 error_count,
1020                           const unsigned long page_frame_number,
1021                           const unsigned long offset_in_page,
1022                           const unsigned long syndrome,
1023                           const int top_layer,
1024                           const int mid_layer,
1025                           const int low_layer,
1026                           const char *msg,
1027                           const char *other_detail)
1028 {
1029         struct dimm_info *dimm;
1030         char *p;
1031         int row = -1, chan = -1;
1032         int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
1033         int i, n_labels = 0;
1034         struct edac_raw_error_desc *e = &mci->error_desc;
1035         bool any_memory = true;
1036
1037         edac_dbg(3, "MC%d\n", mci->mc_idx);
1038
1039         /* Fills the error report buffer */
1040         memset(e, 0, sizeof (*e));
1041         e->error_count = error_count;
1042         e->type = type;
1043         e->top_layer = top_layer;
1044         e->mid_layer = mid_layer;
1045         e->low_layer = low_layer;
1046         e->page_frame_number = page_frame_number;
1047         e->offset_in_page = offset_in_page;
1048         e->syndrome = syndrome;
1049         /* need valid strings here for both: */
1050         e->msg = msg ?: "";
1051         e->other_detail = other_detail ?: "";
1052
1053         /*
1054          * Check if the event report is consistent and if the memory location is
1055          * known. If it is, the DIMM(s) label info will be filled and the DIMM's
1056          * error counters will be incremented.
1057          */
1058         for (i = 0; i < mci->n_layers; i++) {
1059                 if (pos[i] >= (int)mci->layers[i].size) {
1060
1061                         edac_mc_printk(mci, KERN_ERR,
1062                                        "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1063                                        edac_layer_name[mci->layers[i].type],
1064                                        pos[i], mci->layers[i].size);
1065                         /*
1066                          * Instead of just returning it, let's use what's
1067                          * known about the error. The increment routines and
1068                          * the DIMM filter logic will do the right thing by
1069                          * pointing the likely damaged DIMMs.
1070                          */
1071                         pos[i] = -1;
1072                 }
1073                 if (pos[i] >= 0)
1074                         any_memory = false;
1075         }
1076
1077         /*
1078          * Get the dimm label/grain that applies to the match criteria.
1079          * As the error algorithm may not be able to point to just one memory
1080          * stick, the logic here will get all possible labels that could
1081          * pottentially be affected by the error.
1082          * On FB-DIMM memory controllers, for uncorrected errors, it is common
1083          * to have only the MC channel and the MC dimm (also called "branch")
1084          * but the channel is not known, as the memory is arranged in pairs,
1085          * where each memory belongs to a separate channel within the same
1086          * branch.
1087          */
1088         p = e->label;
1089         *p = '\0';
1090
1091         mci_for_each_dimm(mci, dimm) {
1092                 if (top_layer >= 0 && top_layer != dimm->location[0])
1093                         continue;
1094                 if (mid_layer >= 0 && mid_layer != dimm->location[1])
1095                         continue;
1096                 if (low_layer >= 0 && low_layer != dimm->location[2])
1097                         continue;
1098
1099                 /* get the max grain, over the error match range */
1100                 if (dimm->grain > e->grain)
1101                         e->grain = dimm->grain;
1102
1103                 /*
1104                  * If the error is memory-controller wide, there's no need to
1105                  * seek for the affected DIMMs because the whole channel/memory
1106                  * controller/... may be affected. Also, don't show errors for
1107                  * empty DIMM slots.
1108                  */
1109                 if (!dimm->nr_pages)
1110                         continue;
1111
1112                 n_labels++;
1113                 if (n_labels > EDAC_MAX_LABELS) {
1114                         p = e->label;
1115                         *p = '\0';
1116                 } else {
1117                         if (p != e->label) {
1118                                 strcpy(p, OTHER_LABEL);
1119                                 p += strlen(OTHER_LABEL);
1120                         }
1121                         strcpy(p, dimm->label);
1122                         p += strlen(p);
1123                 }
1124
1125                 /*
1126                  * get csrow/channel of the DIMM, in order to allow
1127                  * incrementing the compat API counters
1128                  */
1129                 edac_dbg(4, "%s csrows map: (%d,%d)\n",
1130                         mci->csbased ? "rank" : "dimm",
1131                         dimm->csrow, dimm->cschannel);
1132                 if (row == -1)
1133                         row = dimm->csrow;
1134                 else if (row >= 0 && row != dimm->csrow)
1135                         row = -2;
1136
1137                 if (chan == -1)
1138                         chan = dimm->cschannel;
1139                 else if (chan >= 0 && chan != dimm->cschannel)
1140                         chan = -2;
1141         }
1142
1143         if (any_memory)
1144                 strcpy(e->label, "any memory");
1145         else if (!*e->label)
1146                 strcpy(e->label, "unknown memory");
1147
1148         edac_inc_csrow(e, row, chan);
1149
1150         /* Fill the RAM location data */
1151         p = e->location;
1152
1153         for (i = 0; i < mci->n_layers; i++) {
1154                 if (pos[i] < 0)
1155                         continue;
1156
1157                 p += sprintf(p, "%s:%d ",
1158                              edac_layer_name[mci->layers[i].type],
1159                              pos[i]);
1160         }
1161         if (p > e->location)
1162                 *(p - 1) = '\0';
1163
1164         edac_raw_mc_handle_error(e);
1165 }
1166 EXPORT_SYMBOL_GPL(edac_mc_handle_error);