Merge tag 'defconfig-5.15' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[linux-2.6-microblaze.git] / drivers / dma / uniphier-xdmac.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * External DMA controller driver for UniPhier SoCs
4  * Copyright 2019 Socionext Inc.
5  * Author: Kunihiko Hayashi <hayashi.kunihiko@socionext.com>
6  */
7
8 #include <linux/bitops.h>
9 #include <linux/bitfield.h>
10 #include <linux/iopoll.h>
11 #include <linux/module.h>
12 #include <linux/of.h>
13 #include <linux/of_dma.h>
14 #include <linux/platform_device.h>
15 #include <linux/slab.h>
16
17 #include "dmaengine.h"
18 #include "virt-dma.h"
19
20 #define XDMAC_CH_WIDTH          0x100
21
22 #define XDMAC_TFA               0x08
23 #define XDMAC_TFA_MCNT_MASK     GENMASK(23, 16)
24 #define XDMAC_TFA_MASK          GENMASK(5, 0)
25 #define XDMAC_SADM              0x10
26 #define XDMAC_SADM_STW_MASK     GENMASK(25, 24)
27 #define XDMAC_SADM_SAM          BIT(4)
28 #define XDMAC_SADM_SAM_FIXED    XDMAC_SADM_SAM
29 #define XDMAC_SADM_SAM_INC      0
30 #define XDMAC_DADM              0x14
31 #define XDMAC_DADM_DTW_MASK     XDMAC_SADM_STW_MASK
32 #define XDMAC_DADM_DAM          XDMAC_SADM_SAM
33 #define XDMAC_DADM_DAM_FIXED    XDMAC_SADM_SAM_FIXED
34 #define XDMAC_DADM_DAM_INC      XDMAC_SADM_SAM_INC
35 #define XDMAC_EXSAD             0x18
36 #define XDMAC_EXDAD             0x1c
37 #define XDMAC_SAD               0x20
38 #define XDMAC_DAD               0x24
39 #define XDMAC_ITS               0x28
40 #define XDMAC_ITS_MASK          GENMASK(25, 0)
41 #define XDMAC_TNUM              0x2c
42 #define XDMAC_TNUM_MASK         GENMASK(15, 0)
43 #define XDMAC_TSS               0x30
44 #define XDMAC_TSS_REQ           BIT(0)
45 #define XDMAC_IEN               0x34
46 #define XDMAC_IEN_ERRIEN        BIT(1)
47 #define XDMAC_IEN_ENDIEN        BIT(0)
48 #define XDMAC_STAT              0x40
49 #define XDMAC_STAT_TENF         BIT(0)
50 #define XDMAC_IR                0x44
51 #define XDMAC_IR_ERRF           BIT(1)
52 #define XDMAC_IR_ENDF           BIT(0)
53 #define XDMAC_ID                0x48
54 #define XDMAC_ID_ERRIDF         BIT(1)
55 #define XDMAC_ID_ENDIDF         BIT(0)
56
57 #define XDMAC_MAX_CHANS         16
58 #define XDMAC_INTERVAL_CLKS     20
59 #define XDMAC_MAX_WORDS         XDMAC_TNUM_MASK
60
61 /* cut lower bit for maintain alignment of maximum transfer size */
62 #define XDMAC_MAX_WORD_SIZE     (XDMAC_ITS_MASK & ~GENMASK(3, 0))
63
64 #define UNIPHIER_XDMAC_BUSWIDTHS \
65         (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
66          BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
67          BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
68          BIT(DMA_SLAVE_BUSWIDTH_8_BYTES))
69
70 struct uniphier_xdmac_desc_node {
71         dma_addr_t src;
72         dma_addr_t dst;
73         u32 burst_size;
74         u32 nr_burst;
75 };
76
77 struct uniphier_xdmac_desc {
78         struct virt_dma_desc vd;
79
80         unsigned int nr_node;
81         unsigned int cur_node;
82         enum dma_transfer_direction dir;
83         struct uniphier_xdmac_desc_node nodes[];
84 };
85
86 struct uniphier_xdmac_chan {
87         struct virt_dma_chan vc;
88         struct uniphier_xdmac_device *xdev;
89         struct uniphier_xdmac_desc *xd;
90         void __iomem *reg_ch_base;
91         struct dma_slave_config sconfig;
92         int id;
93         unsigned int req_factor;
94 };
95
96 struct uniphier_xdmac_device {
97         struct dma_device ddev;
98         void __iomem *reg_base;
99         int nr_chans;
100         struct uniphier_xdmac_chan channels[];
101 };
102
103 static struct uniphier_xdmac_chan *
104 to_uniphier_xdmac_chan(struct virt_dma_chan *vc)
105 {
106         return container_of(vc, struct uniphier_xdmac_chan, vc);
107 }
108
109 static struct uniphier_xdmac_desc *
110 to_uniphier_xdmac_desc(struct virt_dma_desc *vd)
111 {
112         return container_of(vd, struct uniphier_xdmac_desc, vd);
113 }
114
115 /* xc->vc.lock must be held by caller */
116 static struct uniphier_xdmac_desc *
117 uniphier_xdmac_next_desc(struct uniphier_xdmac_chan *xc)
118 {
119         struct virt_dma_desc *vd;
120
121         vd = vchan_next_desc(&xc->vc);
122         if (!vd)
123                 return NULL;
124
125         list_del(&vd->node);
126
127         return to_uniphier_xdmac_desc(vd);
128 }
129
130 /* xc->vc.lock must be held by caller */
131 static void uniphier_xdmac_chan_start(struct uniphier_xdmac_chan *xc,
132                                       struct uniphier_xdmac_desc *xd)
133 {
134         u32 src_mode, src_addr, src_width;
135         u32 dst_mode, dst_addr, dst_width;
136         u32 val, its, tnum;
137         enum dma_slave_buswidth buswidth;
138
139         src_addr = xd->nodes[xd->cur_node].src;
140         dst_addr = xd->nodes[xd->cur_node].dst;
141         its      = xd->nodes[xd->cur_node].burst_size;
142         tnum     = xd->nodes[xd->cur_node].nr_burst;
143
144         /*
145          * The width of MEM side must be 4 or 8 bytes, that does not
146          * affect that of DEV side and transfer size.
147          */
148         if (xd->dir == DMA_DEV_TO_MEM) {
149                 src_mode = XDMAC_SADM_SAM_FIXED;
150                 buswidth = xc->sconfig.src_addr_width;
151         } else {
152                 src_mode = XDMAC_SADM_SAM_INC;
153                 buswidth = DMA_SLAVE_BUSWIDTH_8_BYTES;
154         }
155         src_width = FIELD_PREP(XDMAC_SADM_STW_MASK, __ffs(buswidth));
156
157         if (xd->dir == DMA_MEM_TO_DEV) {
158                 dst_mode = XDMAC_DADM_DAM_FIXED;
159                 buswidth = xc->sconfig.dst_addr_width;
160         } else {
161                 dst_mode = XDMAC_DADM_DAM_INC;
162                 buswidth = DMA_SLAVE_BUSWIDTH_8_BYTES;
163         }
164         dst_width = FIELD_PREP(XDMAC_DADM_DTW_MASK, __ffs(buswidth));
165
166         /* setup transfer factor */
167         val = FIELD_PREP(XDMAC_TFA_MCNT_MASK, XDMAC_INTERVAL_CLKS);
168         val |= FIELD_PREP(XDMAC_TFA_MASK, xc->req_factor);
169         writel(val, xc->reg_ch_base + XDMAC_TFA);
170
171         /* setup the channel */
172         writel(lower_32_bits(src_addr), xc->reg_ch_base + XDMAC_SAD);
173         writel(upper_32_bits(src_addr), xc->reg_ch_base + XDMAC_EXSAD);
174
175         writel(lower_32_bits(dst_addr), xc->reg_ch_base + XDMAC_DAD);
176         writel(upper_32_bits(dst_addr), xc->reg_ch_base + XDMAC_EXDAD);
177
178         src_mode |= src_width;
179         dst_mode |= dst_width;
180         writel(src_mode, xc->reg_ch_base + XDMAC_SADM);
181         writel(dst_mode, xc->reg_ch_base + XDMAC_DADM);
182
183         writel(its, xc->reg_ch_base + XDMAC_ITS);
184         writel(tnum, xc->reg_ch_base + XDMAC_TNUM);
185
186         /* enable interrupt */
187         writel(XDMAC_IEN_ENDIEN | XDMAC_IEN_ERRIEN,
188                xc->reg_ch_base + XDMAC_IEN);
189
190         /* start XDMAC */
191         val = readl(xc->reg_ch_base + XDMAC_TSS);
192         val |= XDMAC_TSS_REQ;
193         writel(val, xc->reg_ch_base + XDMAC_TSS);
194 }
195
196 /* xc->vc.lock must be held by caller */
197 static int uniphier_xdmac_chan_stop(struct uniphier_xdmac_chan *xc)
198 {
199         u32 val;
200
201         /* disable interrupt */
202         val = readl(xc->reg_ch_base + XDMAC_IEN);
203         val &= ~(XDMAC_IEN_ENDIEN | XDMAC_IEN_ERRIEN);
204         writel(val, xc->reg_ch_base + XDMAC_IEN);
205
206         /* stop XDMAC */
207         val = readl(xc->reg_ch_base + XDMAC_TSS);
208         val &= ~XDMAC_TSS_REQ;
209         writel(0, xc->reg_ch_base + XDMAC_TSS);
210
211         /* wait until transfer is stopped */
212         return readl_poll_timeout_atomic(xc->reg_ch_base + XDMAC_STAT, val,
213                                          !(val & XDMAC_STAT_TENF), 100, 1000);
214 }
215
216 /* xc->vc.lock must be held by caller */
217 static void uniphier_xdmac_start(struct uniphier_xdmac_chan *xc)
218 {
219         struct uniphier_xdmac_desc *xd;
220
221         xd = uniphier_xdmac_next_desc(xc);
222         if (xd)
223                 uniphier_xdmac_chan_start(xc, xd);
224
225         /* set desc to chan regardless of xd is null */
226         xc->xd = xd;
227 }
228
229 static void uniphier_xdmac_chan_irq(struct uniphier_xdmac_chan *xc)
230 {
231         u32 stat;
232         int ret;
233
234         spin_lock(&xc->vc.lock);
235
236         stat = readl(xc->reg_ch_base + XDMAC_ID);
237
238         if (stat & XDMAC_ID_ERRIDF) {
239                 ret = uniphier_xdmac_chan_stop(xc);
240                 if (ret)
241                         dev_err(xc->xdev->ddev.dev,
242                                 "DMA transfer error with aborting issue\n");
243                 else
244                         dev_err(xc->xdev->ddev.dev,
245                                 "DMA transfer error\n");
246
247         } else if ((stat & XDMAC_ID_ENDIDF) && xc->xd) {
248                 xc->xd->cur_node++;
249                 if (xc->xd->cur_node >= xc->xd->nr_node) {
250                         vchan_cookie_complete(&xc->xd->vd);
251                         uniphier_xdmac_start(xc);
252                 } else {
253                         uniphier_xdmac_chan_start(xc, xc->xd);
254                 }
255         }
256
257         /* write bits to clear */
258         writel(stat, xc->reg_ch_base + XDMAC_IR);
259
260         spin_unlock(&xc->vc.lock);
261 }
262
263 static irqreturn_t uniphier_xdmac_irq_handler(int irq, void *dev_id)
264 {
265         struct uniphier_xdmac_device *xdev = dev_id;
266         int i;
267
268         for (i = 0; i < xdev->nr_chans; i++)
269                 uniphier_xdmac_chan_irq(&xdev->channels[i]);
270
271         return IRQ_HANDLED;
272 }
273
274 static void uniphier_xdmac_free_chan_resources(struct dma_chan *chan)
275 {
276         vchan_free_chan_resources(to_virt_chan(chan));
277 }
278
279 static struct dma_async_tx_descriptor *
280 uniphier_xdmac_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dst,
281                                dma_addr_t src, size_t len, unsigned long flags)
282 {
283         struct virt_dma_chan *vc = to_virt_chan(chan);
284         struct uniphier_xdmac_desc *xd;
285         unsigned int nr;
286         size_t burst_size, tlen;
287         int i;
288
289         if (len > XDMAC_MAX_WORD_SIZE * XDMAC_MAX_WORDS)
290                 return NULL;
291
292         nr = 1 + len / XDMAC_MAX_WORD_SIZE;
293
294         xd = kzalloc(struct_size(xd, nodes, nr), GFP_NOWAIT);
295         if (!xd)
296                 return NULL;
297
298         for (i = 0; i < nr; i++) {
299                 burst_size = min_t(size_t, len, XDMAC_MAX_WORD_SIZE);
300                 xd->nodes[i].src = src;
301                 xd->nodes[i].dst = dst;
302                 xd->nodes[i].burst_size = burst_size;
303                 xd->nodes[i].nr_burst = len / burst_size;
304                 tlen = rounddown(len, burst_size);
305                 src += tlen;
306                 dst += tlen;
307                 len -= tlen;
308         }
309
310         xd->dir = DMA_MEM_TO_MEM;
311         xd->nr_node = nr;
312         xd->cur_node = 0;
313
314         return vchan_tx_prep(vc, &xd->vd, flags);
315 }
316
317 static struct dma_async_tx_descriptor *
318 uniphier_xdmac_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
319                              unsigned int sg_len,
320                              enum dma_transfer_direction direction,
321                              unsigned long flags, void *context)
322 {
323         struct virt_dma_chan *vc = to_virt_chan(chan);
324         struct uniphier_xdmac_chan *xc = to_uniphier_xdmac_chan(vc);
325         struct uniphier_xdmac_desc *xd;
326         struct scatterlist *sg;
327         enum dma_slave_buswidth buswidth;
328         u32 maxburst;
329         int i;
330
331         if (!is_slave_direction(direction))
332                 return NULL;
333
334         if (direction == DMA_DEV_TO_MEM) {
335                 buswidth = xc->sconfig.src_addr_width;
336                 maxburst = xc->sconfig.src_maxburst;
337         } else {
338                 buswidth = xc->sconfig.dst_addr_width;
339                 maxburst = xc->sconfig.dst_maxburst;
340         }
341
342         if (!maxburst)
343                 maxburst = 1;
344         if (maxburst > xc->xdev->ddev.max_burst) {
345                 dev_err(xc->xdev->ddev.dev,
346                         "Exceed maximum number of burst words\n");
347                 return NULL;
348         }
349
350         xd = kzalloc(struct_size(xd, nodes, sg_len), GFP_NOWAIT);
351         if (!xd)
352                 return NULL;
353
354         for_each_sg(sgl, sg, sg_len, i) {
355                 xd->nodes[i].src = (direction == DMA_DEV_TO_MEM)
356                         ? xc->sconfig.src_addr : sg_dma_address(sg);
357                 xd->nodes[i].dst = (direction == DMA_MEM_TO_DEV)
358                         ? xc->sconfig.dst_addr : sg_dma_address(sg);
359                 xd->nodes[i].burst_size = maxburst * buswidth;
360                 xd->nodes[i].nr_burst =
361                         sg_dma_len(sg) / xd->nodes[i].burst_size;
362
363                 /*
364                  * Currently transfer that size doesn't align the unit size
365                  * (the number of burst words * bus-width) is not allowed,
366                  * because the driver does not support the way to transfer
367                  * residue size. As a matter of fact, in order to transfer
368                  * arbitrary size, 'src_maxburst' or 'dst_maxburst' of
369                  * dma_slave_config must be 1.
370                  */
371                 if (sg_dma_len(sg) % xd->nodes[i].burst_size) {
372                         dev_err(xc->xdev->ddev.dev,
373                                 "Unaligned transfer size: %d", sg_dma_len(sg));
374                         kfree(xd);
375                         return NULL;
376                 }
377
378                 if (xd->nodes[i].nr_burst > XDMAC_MAX_WORDS) {
379                         dev_err(xc->xdev->ddev.dev,
380                                 "Exceed maximum transfer size");
381                         kfree(xd);
382                         return NULL;
383                 }
384         }
385
386         xd->dir = direction;
387         xd->nr_node = sg_len;
388         xd->cur_node = 0;
389
390         return vchan_tx_prep(vc, &xd->vd, flags);
391 }
392
393 static int uniphier_xdmac_slave_config(struct dma_chan *chan,
394                                        struct dma_slave_config *config)
395 {
396         struct virt_dma_chan *vc = to_virt_chan(chan);
397         struct uniphier_xdmac_chan *xc = to_uniphier_xdmac_chan(vc);
398
399         memcpy(&xc->sconfig, config, sizeof(*config));
400
401         return 0;
402 }
403
404 static int uniphier_xdmac_terminate_all(struct dma_chan *chan)
405 {
406         struct virt_dma_chan *vc = to_virt_chan(chan);
407         struct uniphier_xdmac_chan *xc = to_uniphier_xdmac_chan(vc);
408         unsigned long flags;
409         int ret = 0;
410         LIST_HEAD(head);
411
412         spin_lock_irqsave(&vc->lock, flags);
413
414         if (xc->xd) {
415                 vchan_terminate_vdesc(&xc->xd->vd);
416                 xc->xd = NULL;
417                 ret = uniphier_xdmac_chan_stop(xc);
418         }
419
420         vchan_get_all_descriptors(vc, &head);
421
422         spin_unlock_irqrestore(&vc->lock, flags);
423
424         vchan_dma_desc_free_list(vc, &head);
425
426         return ret;
427 }
428
429 static void uniphier_xdmac_synchronize(struct dma_chan *chan)
430 {
431         vchan_synchronize(to_virt_chan(chan));
432 }
433
434 static void uniphier_xdmac_issue_pending(struct dma_chan *chan)
435 {
436         struct virt_dma_chan *vc = to_virt_chan(chan);
437         struct uniphier_xdmac_chan *xc = to_uniphier_xdmac_chan(vc);
438         unsigned long flags;
439
440         spin_lock_irqsave(&vc->lock, flags);
441
442         if (vchan_issue_pending(vc) && !xc->xd)
443                 uniphier_xdmac_start(xc);
444
445         spin_unlock_irqrestore(&vc->lock, flags);
446 }
447
448 static void uniphier_xdmac_desc_free(struct virt_dma_desc *vd)
449 {
450         kfree(to_uniphier_xdmac_desc(vd));
451 }
452
453 static void uniphier_xdmac_chan_init(struct uniphier_xdmac_device *xdev,
454                                      int ch)
455 {
456         struct uniphier_xdmac_chan *xc = &xdev->channels[ch];
457
458         xc->xdev = xdev;
459         xc->reg_ch_base = xdev->reg_base + XDMAC_CH_WIDTH * ch;
460         xc->vc.desc_free = uniphier_xdmac_desc_free;
461
462         vchan_init(&xc->vc, &xdev->ddev);
463 }
464
465 static struct dma_chan *of_dma_uniphier_xlate(struct of_phandle_args *dma_spec,
466                                               struct of_dma *ofdma)
467 {
468         struct uniphier_xdmac_device *xdev = ofdma->of_dma_data;
469         int chan_id = dma_spec->args[0];
470
471         if (chan_id >= xdev->nr_chans)
472                 return NULL;
473
474         xdev->channels[chan_id].id = chan_id;
475         xdev->channels[chan_id].req_factor = dma_spec->args[1];
476
477         return dma_get_slave_channel(&xdev->channels[chan_id].vc.chan);
478 }
479
480 static int uniphier_xdmac_probe(struct platform_device *pdev)
481 {
482         struct uniphier_xdmac_device *xdev;
483         struct device *dev = &pdev->dev;
484         struct dma_device *ddev;
485         int irq;
486         int nr_chans;
487         int i, ret;
488
489         if (of_property_read_u32(dev->of_node, "dma-channels", &nr_chans))
490                 return -EINVAL;
491         if (nr_chans > XDMAC_MAX_CHANS)
492                 nr_chans = XDMAC_MAX_CHANS;
493
494         xdev = devm_kzalloc(dev, struct_size(xdev, channels, nr_chans),
495                             GFP_KERNEL);
496         if (!xdev)
497                 return -ENOMEM;
498
499         xdev->nr_chans = nr_chans;
500         xdev->reg_base = devm_platform_ioremap_resource(pdev, 0);
501         if (IS_ERR(xdev->reg_base))
502                 return PTR_ERR(xdev->reg_base);
503
504         ddev = &xdev->ddev;
505         ddev->dev = dev;
506         dma_cap_zero(ddev->cap_mask);
507         dma_cap_set(DMA_MEMCPY, ddev->cap_mask);
508         dma_cap_set(DMA_SLAVE, ddev->cap_mask);
509         ddev->src_addr_widths = UNIPHIER_XDMAC_BUSWIDTHS;
510         ddev->dst_addr_widths = UNIPHIER_XDMAC_BUSWIDTHS;
511         ddev->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV) |
512                            BIT(DMA_MEM_TO_MEM);
513         ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
514         ddev->max_burst = XDMAC_MAX_WORDS;
515         ddev->device_free_chan_resources = uniphier_xdmac_free_chan_resources;
516         ddev->device_prep_dma_memcpy = uniphier_xdmac_prep_dma_memcpy;
517         ddev->device_prep_slave_sg = uniphier_xdmac_prep_slave_sg;
518         ddev->device_config = uniphier_xdmac_slave_config;
519         ddev->device_terminate_all = uniphier_xdmac_terminate_all;
520         ddev->device_synchronize = uniphier_xdmac_synchronize;
521         ddev->device_tx_status = dma_cookie_status;
522         ddev->device_issue_pending = uniphier_xdmac_issue_pending;
523         INIT_LIST_HEAD(&ddev->channels);
524
525         for (i = 0; i < nr_chans; i++)
526                 uniphier_xdmac_chan_init(xdev, i);
527
528         irq = platform_get_irq(pdev, 0);
529         if (irq < 0)
530                 return irq;
531
532         ret = devm_request_irq(dev, irq, uniphier_xdmac_irq_handler,
533                                IRQF_SHARED, "xdmac", xdev);
534         if (ret) {
535                 dev_err(dev, "Failed to request IRQ\n");
536                 return ret;
537         }
538
539         ret = dma_async_device_register(ddev);
540         if (ret) {
541                 dev_err(dev, "Failed to register XDMA device\n");
542                 return ret;
543         }
544
545         ret = of_dma_controller_register(dev->of_node,
546                                          of_dma_uniphier_xlate, xdev);
547         if (ret) {
548                 dev_err(dev, "Failed to register XDMA controller\n");
549                 goto out_unregister_dmac;
550         }
551
552         platform_set_drvdata(pdev, xdev);
553
554         dev_info(&pdev->dev, "UniPhier XDMAC driver (%d channels)\n",
555                  nr_chans);
556
557         return 0;
558
559 out_unregister_dmac:
560         dma_async_device_unregister(ddev);
561
562         return ret;
563 }
564
565 static int uniphier_xdmac_remove(struct platform_device *pdev)
566 {
567         struct uniphier_xdmac_device *xdev = platform_get_drvdata(pdev);
568         struct dma_device *ddev = &xdev->ddev;
569         struct dma_chan *chan;
570         int ret;
571
572         /*
573          * Before reaching here, almost all descriptors have been freed by the
574          * ->device_free_chan_resources() hook. However, each channel might
575          * be still holding one descriptor that was on-flight at that moment.
576          * Terminate it to make sure this hardware is no longer running. Then,
577          * free the channel resources once again to avoid memory leak.
578          */
579         list_for_each_entry(chan, &ddev->channels, device_node) {
580                 ret = dmaengine_terminate_sync(chan);
581                 if (ret)
582                         return ret;
583                 uniphier_xdmac_free_chan_resources(chan);
584         }
585
586         of_dma_controller_free(pdev->dev.of_node);
587         dma_async_device_unregister(ddev);
588
589         return 0;
590 }
591
592 static const struct of_device_id uniphier_xdmac_match[] = {
593         { .compatible = "socionext,uniphier-xdmac" },
594         { /* sentinel */ }
595 };
596 MODULE_DEVICE_TABLE(of, uniphier_xdmac_match);
597
598 static struct platform_driver uniphier_xdmac_driver = {
599         .probe = uniphier_xdmac_probe,
600         .remove = uniphier_xdmac_remove,
601         .driver = {
602                 .name = "uniphier-xdmac",
603                 .of_match_table = uniphier_xdmac_match,
604         },
605 };
606 module_platform_driver(uniphier_xdmac_driver);
607
608 MODULE_AUTHOR("Kunihiko Hayashi <hayashi.kunihiko@socionext.com>");
609 MODULE_DESCRIPTION("UniPhier external DMA controller driver");
610 MODULE_LICENSE("GPL v2");