Merge tag 'dt-5.15' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[linux-2.6-microblaze.git] / drivers / dma / stm32-dma.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for STM32 DMA controller
4  *
5  * Inspired by dma-jz4740.c and tegra20-apb-dma.c
6  *
7  * Copyright (C) M'boumba Cedric Madianga 2015
8  * Author: M'boumba Cedric Madianga <cedric.madianga@gmail.com>
9  *         Pierre-Yves Mordret <pierre-yves.mordret@st.com>
10  */
11
12 #include <linux/clk.h>
13 #include <linux/delay.h>
14 #include <linux/dmaengine.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/err.h>
17 #include <linux/init.h>
18 #include <linux/iopoll.h>
19 #include <linux/jiffies.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/of_dma.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/reset.h>
28 #include <linux/sched.h>
29 #include <linux/slab.h>
30
31 #include "virt-dma.h"
32
33 #define STM32_DMA_LISR                  0x0000 /* DMA Low Int Status Reg */
34 #define STM32_DMA_HISR                  0x0004 /* DMA High Int Status Reg */
35 #define STM32_DMA_LIFCR                 0x0008 /* DMA Low Int Flag Clear Reg */
36 #define STM32_DMA_HIFCR                 0x000c /* DMA High Int Flag Clear Reg */
37 #define STM32_DMA_TCI                   BIT(5) /* Transfer Complete Interrupt */
38 #define STM32_DMA_HTI                   BIT(4) /* Half Transfer Interrupt */
39 #define STM32_DMA_TEI                   BIT(3) /* Transfer Error Interrupt */
40 #define STM32_DMA_DMEI                  BIT(2) /* Direct Mode Error Interrupt */
41 #define STM32_DMA_FEI                   BIT(0) /* FIFO Error Interrupt */
42 #define STM32_DMA_MASKI                 (STM32_DMA_TCI \
43                                          | STM32_DMA_TEI \
44                                          | STM32_DMA_DMEI \
45                                          | STM32_DMA_FEI)
46
47 /* DMA Stream x Configuration Register */
48 #define STM32_DMA_SCR(x)                (0x0010 + 0x18 * (x)) /* x = 0..7 */
49 #define STM32_DMA_SCR_REQ(n)            ((n & 0x7) << 25)
50 #define STM32_DMA_SCR_MBURST_MASK       GENMASK(24, 23)
51 #define STM32_DMA_SCR_MBURST(n)         ((n & 0x3) << 23)
52 #define STM32_DMA_SCR_PBURST_MASK       GENMASK(22, 21)
53 #define STM32_DMA_SCR_PBURST(n)         ((n & 0x3) << 21)
54 #define STM32_DMA_SCR_PL_MASK           GENMASK(17, 16)
55 #define STM32_DMA_SCR_PL(n)             ((n & 0x3) << 16)
56 #define STM32_DMA_SCR_MSIZE_MASK        GENMASK(14, 13)
57 #define STM32_DMA_SCR_MSIZE(n)          ((n & 0x3) << 13)
58 #define STM32_DMA_SCR_PSIZE_MASK        GENMASK(12, 11)
59 #define STM32_DMA_SCR_PSIZE(n)          ((n & 0x3) << 11)
60 #define STM32_DMA_SCR_PSIZE_GET(n)      ((n & STM32_DMA_SCR_PSIZE_MASK) >> 11)
61 #define STM32_DMA_SCR_DIR_MASK          GENMASK(7, 6)
62 #define STM32_DMA_SCR_DIR(n)            ((n & 0x3) << 6)
63 #define STM32_DMA_SCR_CT                BIT(19) /* Target in double buffer */
64 #define STM32_DMA_SCR_DBM               BIT(18) /* Double Buffer Mode */
65 #define STM32_DMA_SCR_PINCOS            BIT(15) /* Peripheral inc offset size */
66 #define STM32_DMA_SCR_MINC              BIT(10) /* Memory increment mode */
67 #define STM32_DMA_SCR_PINC              BIT(9) /* Peripheral increment mode */
68 #define STM32_DMA_SCR_CIRC              BIT(8) /* Circular mode */
69 #define STM32_DMA_SCR_PFCTRL            BIT(5) /* Peripheral Flow Controller */
70 #define STM32_DMA_SCR_TCIE              BIT(4) /* Transfer Complete Int Enable
71                                                 */
72 #define STM32_DMA_SCR_TEIE              BIT(2) /* Transfer Error Int Enable */
73 #define STM32_DMA_SCR_DMEIE             BIT(1) /* Direct Mode Err Int Enable */
74 #define STM32_DMA_SCR_EN                BIT(0) /* Stream Enable */
75 #define STM32_DMA_SCR_CFG_MASK          (STM32_DMA_SCR_PINC \
76                                         | STM32_DMA_SCR_MINC \
77                                         | STM32_DMA_SCR_PINCOS \
78                                         | STM32_DMA_SCR_PL_MASK)
79 #define STM32_DMA_SCR_IRQ_MASK          (STM32_DMA_SCR_TCIE \
80                                         | STM32_DMA_SCR_TEIE \
81                                         | STM32_DMA_SCR_DMEIE)
82
83 /* DMA Stream x number of data register */
84 #define STM32_DMA_SNDTR(x)              (0x0014 + 0x18 * (x))
85
86 /* DMA stream peripheral address register */
87 #define STM32_DMA_SPAR(x)               (0x0018 + 0x18 * (x))
88
89 /* DMA stream x memory 0 address register */
90 #define STM32_DMA_SM0AR(x)              (0x001c + 0x18 * (x))
91
92 /* DMA stream x memory 1 address register */
93 #define STM32_DMA_SM1AR(x)              (0x0020 + 0x18 * (x))
94
95 /* DMA stream x FIFO control register */
96 #define STM32_DMA_SFCR(x)               (0x0024 + 0x18 * (x))
97 #define STM32_DMA_SFCR_FTH_MASK         GENMASK(1, 0)
98 #define STM32_DMA_SFCR_FTH(n)           (n & STM32_DMA_SFCR_FTH_MASK)
99 #define STM32_DMA_SFCR_FEIE             BIT(7) /* FIFO error interrupt enable */
100 #define STM32_DMA_SFCR_DMDIS            BIT(2) /* Direct mode disable */
101 #define STM32_DMA_SFCR_MASK             (STM32_DMA_SFCR_FEIE \
102                                         | STM32_DMA_SFCR_DMDIS)
103
104 /* DMA direction */
105 #define STM32_DMA_DEV_TO_MEM            0x00
106 #define STM32_DMA_MEM_TO_DEV            0x01
107 #define STM32_DMA_MEM_TO_MEM            0x02
108
109 /* DMA priority level */
110 #define STM32_DMA_PRIORITY_LOW          0x00
111 #define STM32_DMA_PRIORITY_MEDIUM       0x01
112 #define STM32_DMA_PRIORITY_HIGH         0x02
113 #define STM32_DMA_PRIORITY_VERY_HIGH    0x03
114
115 /* DMA FIFO threshold selection */
116 #define STM32_DMA_FIFO_THRESHOLD_1QUARTERFULL           0x00
117 #define STM32_DMA_FIFO_THRESHOLD_HALFFULL               0x01
118 #define STM32_DMA_FIFO_THRESHOLD_3QUARTERSFULL          0x02
119 #define STM32_DMA_FIFO_THRESHOLD_FULL                   0x03
120 #define STM32_DMA_FIFO_THRESHOLD_NONE                   0x04
121
122 #define STM32_DMA_MAX_DATA_ITEMS        0xffff
123 /*
124  * Valid transfer starts from @0 to @0xFFFE leading to unaligned scatter
125  * gather at boundary. Thus it's safer to round down this value on FIFO
126  * size (16 Bytes)
127  */
128 #define STM32_DMA_ALIGNED_MAX_DATA_ITEMS        \
129         ALIGN_DOWN(STM32_DMA_MAX_DATA_ITEMS, 16)
130 #define STM32_DMA_MAX_CHANNELS          0x08
131 #define STM32_DMA_MAX_REQUEST_ID        0x08
132 #define STM32_DMA_MAX_DATA_PARAM        0x03
133 #define STM32_DMA_FIFO_SIZE             16      /* FIFO is 16 bytes */
134 #define STM32_DMA_MIN_BURST             4
135 #define STM32_DMA_MAX_BURST             16
136
137 /* DMA Features */
138 #define STM32_DMA_THRESHOLD_FTR_MASK    GENMASK(1, 0)
139 #define STM32_DMA_THRESHOLD_FTR_GET(n)  ((n) & STM32_DMA_THRESHOLD_FTR_MASK)
140 #define STM32_DMA_DIRECT_MODE_MASK      BIT(2)
141 #define STM32_DMA_DIRECT_MODE_GET(n)    (((n) & STM32_DMA_DIRECT_MODE_MASK) \
142                                          >> 2)
143
144 enum stm32_dma_width {
145         STM32_DMA_BYTE,
146         STM32_DMA_HALF_WORD,
147         STM32_DMA_WORD,
148 };
149
150 enum stm32_dma_burst_size {
151         STM32_DMA_BURST_SINGLE,
152         STM32_DMA_BURST_INCR4,
153         STM32_DMA_BURST_INCR8,
154         STM32_DMA_BURST_INCR16,
155 };
156
157 /**
158  * struct stm32_dma_cfg - STM32 DMA custom configuration
159  * @channel_id: channel ID
160  * @request_line: DMA request
161  * @stream_config: 32bit mask specifying the DMA channel configuration
162  * @features: 32bit mask specifying the DMA Feature list
163  */
164 struct stm32_dma_cfg {
165         u32 channel_id;
166         u32 request_line;
167         u32 stream_config;
168         u32 features;
169 };
170
171 struct stm32_dma_chan_reg {
172         u32 dma_lisr;
173         u32 dma_hisr;
174         u32 dma_lifcr;
175         u32 dma_hifcr;
176         u32 dma_scr;
177         u32 dma_sndtr;
178         u32 dma_spar;
179         u32 dma_sm0ar;
180         u32 dma_sm1ar;
181         u32 dma_sfcr;
182 };
183
184 struct stm32_dma_sg_req {
185         u32 len;
186         struct stm32_dma_chan_reg chan_reg;
187 };
188
189 struct stm32_dma_desc {
190         struct virt_dma_desc vdesc;
191         bool cyclic;
192         u32 num_sgs;
193         struct stm32_dma_sg_req sg_req[];
194 };
195
196 struct stm32_dma_chan {
197         struct virt_dma_chan vchan;
198         bool config_init;
199         bool busy;
200         u32 id;
201         u32 irq;
202         struct stm32_dma_desc *desc;
203         u32 next_sg;
204         struct dma_slave_config dma_sconfig;
205         struct stm32_dma_chan_reg chan_reg;
206         u32 threshold;
207         u32 mem_burst;
208         u32 mem_width;
209 };
210
211 struct stm32_dma_device {
212         struct dma_device ddev;
213         void __iomem *base;
214         struct clk *clk;
215         bool mem2mem;
216         struct stm32_dma_chan chan[STM32_DMA_MAX_CHANNELS];
217 };
218
219 static struct stm32_dma_device *stm32_dma_get_dev(struct stm32_dma_chan *chan)
220 {
221         return container_of(chan->vchan.chan.device, struct stm32_dma_device,
222                             ddev);
223 }
224
225 static struct stm32_dma_chan *to_stm32_dma_chan(struct dma_chan *c)
226 {
227         return container_of(c, struct stm32_dma_chan, vchan.chan);
228 }
229
230 static struct stm32_dma_desc *to_stm32_dma_desc(struct virt_dma_desc *vdesc)
231 {
232         return container_of(vdesc, struct stm32_dma_desc, vdesc);
233 }
234
235 static struct device *chan2dev(struct stm32_dma_chan *chan)
236 {
237         return &chan->vchan.chan.dev->device;
238 }
239
240 static u32 stm32_dma_read(struct stm32_dma_device *dmadev, u32 reg)
241 {
242         return readl_relaxed(dmadev->base + reg);
243 }
244
245 static void stm32_dma_write(struct stm32_dma_device *dmadev, u32 reg, u32 val)
246 {
247         writel_relaxed(val, dmadev->base + reg);
248 }
249
250 static int stm32_dma_get_width(struct stm32_dma_chan *chan,
251                                enum dma_slave_buswidth width)
252 {
253         switch (width) {
254         case DMA_SLAVE_BUSWIDTH_1_BYTE:
255                 return STM32_DMA_BYTE;
256         case DMA_SLAVE_BUSWIDTH_2_BYTES:
257                 return STM32_DMA_HALF_WORD;
258         case DMA_SLAVE_BUSWIDTH_4_BYTES:
259                 return STM32_DMA_WORD;
260         default:
261                 dev_err(chan2dev(chan), "Dma bus width not supported\n");
262                 return -EINVAL;
263         }
264 }
265
266 static enum dma_slave_buswidth stm32_dma_get_max_width(u32 buf_len,
267                                                        dma_addr_t buf_addr,
268                                                        u32 threshold)
269 {
270         enum dma_slave_buswidth max_width;
271         u64 addr = buf_addr;
272
273         if (threshold == STM32_DMA_FIFO_THRESHOLD_FULL)
274                 max_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
275         else
276                 max_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
277
278         while ((buf_len < max_width  || buf_len % max_width) &&
279                max_width > DMA_SLAVE_BUSWIDTH_1_BYTE)
280                 max_width = max_width >> 1;
281
282         if (do_div(addr, max_width))
283                 max_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
284
285         return max_width;
286 }
287
288 static bool stm32_dma_fifo_threshold_is_allowed(u32 burst, u32 threshold,
289                                                 enum dma_slave_buswidth width)
290 {
291         u32 remaining;
292
293         if (threshold == STM32_DMA_FIFO_THRESHOLD_NONE)
294                 return false;
295
296         if (width != DMA_SLAVE_BUSWIDTH_UNDEFINED) {
297                 if (burst != 0) {
298                         /*
299                          * If number of beats fit in several whole bursts
300                          * this configuration is allowed.
301                          */
302                         remaining = ((STM32_DMA_FIFO_SIZE / width) *
303                                      (threshold + 1) / 4) % burst;
304
305                         if (remaining == 0)
306                                 return true;
307                 } else {
308                         return true;
309                 }
310         }
311
312         return false;
313 }
314
315 static bool stm32_dma_is_burst_possible(u32 buf_len, u32 threshold)
316 {
317         /* If FIFO direct mode, burst is not possible */
318         if (threshold == STM32_DMA_FIFO_THRESHOLD_NONE)
319                 return false;
320
321         /*
322          * Buffer or period length has to be aligned on FIFO depth.
323          * Otherwise bytes may be stuck within FIFO at buffer or period
324          * length.
325          */
326         return ((buf_len % ((threshold + 1) * 4)) == 0);
327 }
328
329 static u32 stm32_dma_get_best_burst(u32 buf_len, u32 max_burst, u32 threshold,
330                                     enum dma_slave_buswidth width)
331 {
332         u32 best_burst = max_burst;
333
334         if (best_burst == 1 || !stm32_dma_is_burst_possible(buf_len, threshold))
335                 return 0;
336
337         while ((buf_len < best_burst * width && best_burst > 1) ||
338                !stm32_dma_fifo_threshold_is_allowed(best_burst, threshold,
339                                                     width)) {
340                 if (best_burst > STM32_DMA_MIN_BURST)
341                         best_burst = best_burst >> 1;
342                 else
343                         best_burst = 0;
344         }
345
346         return best_burst;
347 }
348
349 static int stm32_dma_get_burst(struct stm32_dma_chan *chan, u32 maxburst)
350 {
351         switch (maxburst) {
352         case 0:
353         case 1:
354                 return STM32_DMA_BURST_SINGLE;
355         case 4:
356                 return STM32_DMA_BURST_INCR4;
357         case 8:
358                 return STM32_DMA_BURST_INCR8;
359         case 16:
360                 return STM32_DMA_BURST_INCR16;
361         default:
362                 dev_err(chan2dev(chan), "Dma burst size not supported\n");
363                 return -EINVAL;
364         }
365 }
366
367 static void stm32_dma_set_fifo_config(struct stm32_dma_chan *chan,
368                                       u32 src_burst, u32 dst_burst)
369 {
370         chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_MASK;
371         chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_DMEIE;
372
373         if (!src_burst && !dst_burst) {
374                 /* Using direct mode */
375                 chan->chan_reg.dma_scr |= STM32_DMA_SCR_DMEIE;
376         } else {
377                 /* Using FIFO mode */
378                 chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
379         }
380 }
381
382 static int stm32_dma_slave_config(struct dma_chan *c,
383                                   struct dma_slave_config *config)
384 {
385         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
386
387         memcpy(&chan->dma_sconfig, config, sizeof(*config));
388
389         chan->config_init = true;
390
391         return 0;
392 }
393
394 static u32 stm32_dma_irq_status(struct stm32_dma_chan *chan)
395 {
396         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
397         u32 flags, dma_isr;
398
399         /*
400          * Read "flags" from DMA_xISR register corresponding to the selected
401          * DMA channel at the correct bit offset inside that register.
402          *
403          * If (ch % 4) is 2 or 3, left shift the mask by 16 bits.
404          * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
405          */
406
407         if (chan->id & 4)
408                 dma_isr = stm32_dma_read(dmadev, STM32_DMA_HISR);
409         else
410                 dma_isr = stm32_dma_read(dmadev, STM32_DMA_LISR);
411
412         flags = dma_isr >> (((chan->id & 2) << 3) | ((chan->id & 1) * 6));
413
414         return flags & STM32_DMA_MASKI;
415 }
416
417 static void stm32_dma_irq_clear(struct stm32_dma_chan *chan, u32 flags)
418 {
419         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
420         u32 dma_ifcr;
421
422         /*
423          * Write "flags" to the DMA_xIFCR register corresponding to the selected
424          * DMA channel at the correct bit offset inside that register.
425          *
426          * If (ch % 4) is 2 or 3, left shift the mask by 16 bits.
427          * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
428          */
429         flags &= STM32_DMA_MASKI;
430         dma_ifcr = flags << (((chan->id & 2) << 3) | ((chan->id & 1) * 6));
431
432         if (chan->id & 4)
433                 stm32_dma_write(dmadev, STM32_DMA_HIFCR, dma_ifcr);
434         else
435                 stm32_dma_write(dmadev, STM32_DMA_LIFCR, dma_ifcr);
436 }
437
438 static int stm32_dma_disable_chan(struct stm32_dma_chan *chan)
439 {
440         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
441         u32 dma_scr, id, reg;
442
443         id = chan->id;
444         reg = STM32_DMA_SCR(id);
445         dma_scr = stm32_dma_read(dmadev, reg);
446
447         if (dma_scr & STM32_DMA_SCR_EN) {
448                 dma_scr &= ~STM32_DMA_SCR_EN;
449                 stm32_dma_write(dmadev, reg, dma_scr);
450
451                 return readl_relaxed_poll_timeout_atomic(dmadev->base + reg,
452                                         dma_scr, !(dma_scr & STM32_DMA_SCR_EN),
453                                         10, 1000000);
454         }
455
456         return 0;
457 }
458
459 static void stm32_dma_stop(struct stm32_dma_chan *chan)
460 {
461         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
462         u32 dma_scr, dma_sfcr, status;
463         int ret;
464
465         /* Disable interrupts */
466         dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
467         dma_scr &= ~STM32_DMA_SCR_IRQ_MASK;
468         stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
469         dma_sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
470         dma_sfcr &= ~STM32_DMA_SFCR_FEIE;
471         stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), dma_sfcr);
472
473         /* Disable DMA */
474         ret = stm32_dma_disable_chan(chan);
475         if (ret < 0)
476                 return;
477
478         /* Clear interrupt status if it is there */
479         status = stm32_dma_irq_status(chan);
480         if (status) {
481                 dev_dbg(chan2dev(chan), "%s(): clearing interrupt: 0x%08x\n",
482                         __func__, status);
483                 stm32_dma_irq_clear(chan, status);
484         }
485
486         chan->busy = false;
487 }
488
489 static int stm32_dma_terminate_all(struct dma_chan *c)
490 {
491         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
492         unsigned long flags;
493         LIST_HEAD(head);
494
495         spin_lock_irqsave(&chan->vchan.lock, flags);
496
497         if (chan->desc) {
498                 vchan_terminate_vdesc(&chan->desc->vdesc);
499                 if (chan->busy)
500                         stm32_dma_stop(chan);
501                 chan->desc = NULL;
502         }
503
504         vchan_get_all_descriptors(&chan->vchan, &head);
505         spin_unlock_irqrestore(&chan->vchan.lock, flags);
506         vchan_dma_desc_free_list(&chan->vchan, &head);
507
508         return 0;
509 }
510
511 static void stm32_dma_synchronize(struct dma_chan *c)
512 {
513         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
514
515         vchan_synchronize(&chan->vchan);
516 }
517
518 static void stm32_dma_dump_reg(struct stm32_dma_chan *chan)
519 {
520         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
521         u32 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
522         u32 ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
523         u32 spar = stm32_dma_read(dmadev, STM32_DMA_SPAR(chan->id));
524         u32 sm0ar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(chan->id));
525         u32 sm1ar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(chan->id));
526         u32 sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
527
528         dev_dbg(chan2dev(chan), "SCR:   0x%08x\n", scr);
529         dev_dbg(chan2dev(chan), "NDTR:  0x%08x\n", ndtr);
530         dev_dbg(chan2dev(chan), "SPAR:  0x%08x\n", spar);
531         dev_dbg(chan2dev(chan), "SM0AR: 0x%08x\n", sm0ar);
532         dev_dbg(chan2dev(chan), "SM1AR: 0x%08x\n", sm1ar);
533         dev_dbg(chan2dev(chan), "SFCR:  0x%08x\n", sfcr);
534 }
535
536 static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan);
537
538 static void stm32_dma_start_transfer(struct stm32_dma_chan *chan)
539 {
540         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
541         struct virt_dma_desc *vdesc;
542         struct stm32_dma_sg_req *sg_req;
543         struct stm32_dma_chan_reg *reg;
544         u32 status;
545         int ret;
546
547         ret = stm32_dma_disable_chan(chan);
548         if (ret < 0)
549                 return;
550
551         if (!chan->desc) {
552                 vdesc = vchan_next_desc(&chan->vchan);
553                 if (!vdesc)
554                         return;
555
556                 list_del(&vdesc->node);
557
558                 chan->desc = to_stm32_dma_desc(vdesc);
559                 chan->next_sg = 0;
560         }
561
562         if (chan->next_sg == chan->desc->num_sgs)
563                 chan->next_sg = 0;
564
565         sg_req = &chan->desc->sg_req[chan->next_sg];
566         reg = &sg_req->chan_reg;
567
568         reg->dma_scr &= ~STM32_DMA_SCR_EN;
569         stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
570         stm32_dma_write(dmadev, STM32_DMA_SPAR(chan->id), reg->dma_spar);
571         stm32_dma_write(dmadev, STM32_DMA_SM0AR(chan->id), reg->dma_sm0ar);
572         stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), reg->dma_sfcr);
573         stm32_dma_write(dmadev, STM32_DMA_SM1AR(chan->id), reg->dma_sm1ar);
574         stm32_dma_write(dmadev, STM32_DMA_SNDTR(chan->id), reg->dma_sndtr);
575
576         chan->next_sg++;
577
578         /* Clear interrupt status if it is there */
579         status = stm32_dma_irq_status(chan);
580         if (status)
581                 stm32_dma_irq_clear(chan, status);
582
583         if (chan->desc->cyclic)
584                 stm32_dma_configure_next_sg(chan);
585
586         stm32_dma_dump_reg(chan);
587
588         /* Start DMA */
589         reg->dma_scr |= STM32_DMA_SCR_EN;
590         stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
591
592         chan->busy = true;
593
594         dev_dbg(chan2dev(chan), "vchan %pK: started\n", &chan->vchan);
595 }
596
597 static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan)
598 {
599         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
600         struct stm32_dma_sg_req *sg_req;
601         u32 dma_scr, dma_sm0ar, dma_sm1ar, id;
602
603         id = chan->id;
604         dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
605
606         if (dma_scr & STM32_DMA_SCR_DBM) {
607                 if (chan->next_sg == chan->desc->num_sgs)
608                         chan->next_sg = 0;
609
610                 sg_req = &chan->desc->sg_req[chan->next_sg];
611
612                 if (dma_scr & STM32_DMA_SCR_CT) {
613                         dma_sm0ar = sg_req->chan_reg.dma_sm0ar;
614                         stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), dma_sm0ar);
615                         dev_dbg(chan2dev(chan), "CT=1 <=> SM0AR: 0x%08x\n",
616                                 stm32_dma_read(dmadev, STM32_DMA_SM0AR(id)));
617                 } else {
618                         dma_sm1ar = sg_req->chan_reg.dma_sm1ar;
619                         stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), dma_sm1ar);
620                         dev_dbg(chan2dev(chan), "CT=0 <=> SM1AR: 0x%08x\n",
621                                 stm32_dma_read(dmadev, STM32_DMA_SM1AR(id)));
622                 }
623         }
624 }
625
626 static void stm32_dma_handle_chan_done(struct stm32_dma_chan *chan)
627 {
628         if (chan->desc) {
629                 if (chan->desc->cyclic) {
630                         vchan_cyclic_callback(&chan->desc->vdesc);
631                         chan->next_sg++;
632                         stm32_dma_configure_next_sg(chan);
633                 } else {
634                         chan->busy = false;
635                         if (chan->next_sg == chan->desc->num_sgs) {
636                                 vchan_cookie_complete(&chan->desc->vdesc);
637                                 chan->desc = NULL;
638                         }
639                         stm32_dma_start_transfer(chan);
640                 }
641         }
642 }
643
644 static irqreturn_t stm32_dma_chan_irq(int irq, void *devid)
645 {
646         struct stm32_dma_chan *chan = devid;
647         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
648         u32 status, scr, sfcr;
649
650         spin_lock(&chan->vchan.lock);
651
652         status = stm32_dma_irq_status(chan);
653         scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
654         sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
655
656         if (status & STM32_DMA_FEI) {
657                 stm32_dma_irq_clear(chan, STM32_DMA_FEI);
658                 status &= ~STM32_DMA_FEI;
659                 if (sfcr & STM32_DMA_SFCR_FEIE) {
660                         if (!(scr & STM32_DMA_SCR_EN) &&
661                             !(status & STM32_DMA_TCI))
662                                 dev_err(chan2dev(chan), "FIFO Error\n");
663                         else
664                                 dev_dbg(chan2dev(chan), "FIFO over/underrun\n");
665                 }
666         }
667         if (status & STM32_DMA_DMEI) {
668                 stm32_dma_irq_clear(chan, STM32_DMA_DMEI);
669                 status &= ~STM32_DMA_DMEI;
670                 if (sfcr & STM32_DMA_SCR_DMEIE)
671                         dev_dbg(chan2dev(chan), "Direct mode overrun\n");
672         }
673
674         if (status & STM32_DMA_TCI) {
675                 stm32_dma_irq_clear(chan, STM32_DMA_TCI);
676                 if (scr & STM32_DMA_SCR_TCIE)
677                         stm32_dma_handle_chan_done(chan);
678                 status &= ~STM32_DMA_TCI;
679         }
680
681         if (status & STM32_DMA_HTI) {
682                 stm32_dma_irq_clear(chan, STM32_DMA_HTI);
683                 status &= ~STM32_DMA_HTI;
684         }
685
686         if (status) {
687                 stm32_dma_irq_clear(chan, status);
688                 dev_err(chan2dev(chan), "DMA error: status=0x%08x\n", status);
689                 if (!(scr & STM32_DMA_SCR_EN))
690                         dev_err(chan2dev(chan), "chan disabled by HW\n");
691         }
692
693         spin_unlock(&chan->vchan.lock);
694
695         return IRQ_HANDLED;
696 }
697
698 static void stm32_dma_issue_pending(struct dma_chan *c)
699 {
700         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
701         unsigned long flags;
702
703         spin_lock_irqsave(&chan->vchan.lock, flags);
704         if (vchan_issue_pending(&chan->vchan) && !chan->desc && !chan->busy) {
705                 dev_dbg(chan2dev(chan), "vchan %pK: issued\n", &chan->vchan);
706                 stm32_dma_start_transfer(chan);
707
708         }
709         spin_unlock_irqrestore(&chan->vchan.lock, flags);
710 }
711
712 static int stm32_dma_set_xfer_param(struct stm32_dma_chan *chan,
713                                     enum dma_transfer_direction direction,
714                                     enum dma_slave_buswidth *buswidth,
715                                     u32 buf_len, dma_addr_t buf_addr)
716 {
717         enum dma_slave_buswidth src_addr_width, dst_addr_width;
718         int src_bus_width, dst_bus_width;
719         int src_burst_size, dst_burst_size;
720         u32 src_maxburst, dst_maxburst, src_best_burst, dst_best_burst;
721         u32 dma_scr, fifoth;
722
723         src_addr_width = chan->dma_sconfig.src_addr_width;
724         dst_addr_width = chan->dma_sconfig.dst_addr_width;
725         src_maxburst = chan->dma_sconfig.src_maxburst;
726         dst_maxburst = chan->dma_sconfig.dst_maxburst;
727         fifoth = chan->threshold;
728
729         switch (direction) {
730         case DMA_MEM_TO_DEV:
731                 /* Set device data size */
732                 dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
733                 if (dst_bus_width < 0)
734                         return dst_bus_width;
735
736                 /* Set device burst size */
737                 dst_best_burst = stm32_dma_get_best_burst(buf_len,
738                                                           dst_maxburst,
739                                                           fifoth,
740                                                           dst_addr_width);
741
742                 dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
743                 if (dst_burst_size < 0)
744                         return dst_burst_size;
745
746                 /* Set memory data size */
747                 src_addr_width = stm32_dma_get_max_width(buf_len, buf_addr,
748                                                          fifoth);
749                 chan->mem_width = src_addr_width;
750                 src_bus_width = stm32_dma_get_width(chan, src_addr_width);
751                 if (src_bus_width < 0)
752                         return src_bus_width;
753
754                 /* Set memory burst size */
755                 src_maxburst = STM32_DMA_MAX_BURST;
756                 src_best_burst = stm32_dma_get_best_burst(buf_len,
757                                                           src_maxburst,
758                                                           fifoth,
759                                                           src_addr_width);
760                 src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
761                 if (src_burst_size < 0)
762                         return src_burst_size;
763
764                 dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_DEV) |
765                         STM32_DMA_SCR_PSIZE(dst_bus_width) |
766                         STM32_DMA_SCR_MSIZE(src_bus_width) |
767                         STM32_DMA_SCR_PBURST(dst_burst_size) |
768                         STM32_DMA_SCR_MBURST(src_burst_size);
769
770                 /* Set FIFO threshold */
771                 chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
772                 if (fifoth != STM32_DMA_FIFO_THRESHOLD_NONE)
773                         chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(fifoth);
774
775                 /* Set peripheral address */
776                 chan->chan_reg.dma_spar = chan->dma_sconfig.dst_addr;
777                 *buswidth = dst_addr_width;
778                 break;
779
780         case DMA_DEV_TO_MEM:
781                 /* Set device data size */
782                 src_bus_width = stm32_dma_get_width(chan, src_addr_width);
783                 if (src_bus_width < 0)
784                         return src_bus_width;
785
786                 /* Set device burst size */
787                 src_best_burst = stm32_dma_get_best_burst(buf_len,
788                                                           src_maxburst,
789                                                           fifoth,
790                                                           src_addr_width);
791                 chan->mem_burst = src_best_burst;
792                 src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
793                 if (src_burst_size < 0)
794                         return src_burst_size;
795
796                 /* Set memory data size */
797                 dst_addr_width = stm32_dma_get_max_width(buf_len, buf_addr,
798                                                          fifoth);
799                 chan->mem_width = dst_addr_width;
800                 dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
801                 if (dst_bus_width < 0)
802                         return dst_bus_width;
803
804                 /* Set memory burst size */
805                 dst_maxburst = STM32_DMA_MAX_BURST;
806                 dst_best_burst = stm32_dma_get_best_burst(buf_len,
807                                                           dst_maxburst,
808                                                           fifoth,
809                                                           dst_addr_width);
810                 chan->mem_burst = dst_best_burst;
811                 dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
812                 if (dst_burst_size < 0)
813                         return dst_burst_size;
814
815                 dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_DEV_TO_MEM) |
816                         STM32_DMA_SCR_PSIZE(src_bus_width) |
817                         STM32_DMA_SCR_MSIZE(dst_bus_width) |
818                         STM32_DMA_SCR_PBURST(src_burst_size) |
819                         STM32_DMA_SCR_MBURST(dst_burst_size);
820
821                 /* Set FIFO threshold */
822                 chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
823                 if (fifoth != STM32_DMA_FIFO_THRESHOLD_NONE)
824                         chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(fifoth);
825
826                 /* Set peripheral address */
827                 chan->chan_reg.dma_spar = chan->dma_sconfig.src_addr;
828                 *buswidth = chan->dma_sconfig.src_addr_width;
829                 break;
830
831         default:
832                 dev_err(chan2dev(chan), "Dma direction is not supported\n");
833                 return -EINVAL;
834         }
835
836         stm32_dma_set_fifo_config(chan, src_best_burst, dst_best_burst);
837
838         /* Set DMA control register */
839         chan->chan_reg.dma_scr &= ~(STM32_DMA_SCR_DIR_MASK |
840                         STM32_DMA_SCR_PSIZE_MASK | STM32_DMA_SCR_MSIZE_MASK |
841                         STM32_DMA_SCR_PBURST_MASK | STM32_DMA_SCR_MBURST_MASK);
842         chan->chan_reg.dma_scr |= dma_scr;
843
844         return 0;
845 }
846
847 static void stm32_dma_clear_reg(struct stm32_dma_chan_reg *regs)
848 {
849         memset(regs, 0, sizeof(struct stm32_dma_chan_reg));
850 }
851
852 static struct dma_async_tx_descriptor *stm32_dma_prep_slave_sg(
853         struct dma_chan *c, struct scatterlist *sgl,
854         u32 sg_len, enum dma_transfer_direction direction,
855         unsigned long flags, void *context)
856 {
857         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
858         struct stm32_dma_desc *desc;
859         struct scatterlist *sg;
860         enum dma_slave_buswidth buswidth;
861         u32 nb_data_items;
862         int i, ret;
863
864         if (!chan->config_init) {
865                 dev_err(chan2dev(chan), "dma channel is not configured\n");
866                 return NULL;
867         }
868
869         if (sg_len < 1) {
870                 dev_err(chan2dev(chan), "Invalid segment length %d\n", sg_len);
871                 return NULL;
872         }
873
874         desc = kzalloc(struct_size(desc, sg_req, sg_len), GFP_NOWAIT);
875         if (!desc)
876                 return NULL;
877
878         /* Set peripheral flow controller */
879         if (chan->dma_sconfig.device_fc)
880                 chan->chan_reg.dma_scr |= STM32_DMA_SCR_PFCTRL;
881         else
882                 chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
883
884         for_each_sg(sgl, sg, sg_len, i) {
885                 ret = stm32_dma_set_xfer_param(chan, direction, &buswidth,
886                                                sg_dma_len(sg),
887                                                sg_dma_address(sg));
888                 if (ret < 0)
889                         goto err;
890
891                 desc->sg_req[i].len = sg_dma_len(sg);
892
893                 nb_data_items = desc->sg_req[i].len / buswidth;
894                 if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
895                         dev_err(chan2dev(chan), "nb items not supported\n");
896                         goto err;
897                 }
898
899                 stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
900                 desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
901                 desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
902                 desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
903                 desc->sg_req[i].chan_reg.dma_sm0ar = sg_dma_address(sg);
904                 desc->sg_req[i].chan_reg.dma_sm1ar = sg_dma_address(sg);
905                 desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
906         }
907
908         desc->num_sgs = sg_len;
909         desc->cyclic = false;
910
911         return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
912
913 err:
914         kfree(desc);
915         return NULL;
916 }
917
918 static struct dma_async_tx_descriptor *stm32_dma_prep_dma_cyclic(
919         struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len,
920         size_t period_len, enum dma_transfer_direction direction,
921         unsigned long flags)
922 {
923         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
924         struct stm32_dma_desc *desc;
925         enum dma_slave_buswidth buswidth;
926         u32 num_periods, nb_data_items;
927         int i, ret;
928
929         if (!buf_len || !period_len) {
930                 dev_err(chan2dev(chan), "Invalid buffer/period len\n");
931                 return NULL;
932         }
933
934         if (!chan->config_init) {
935                 dev_err(chan2dev(chan), "dma channel is not configured\n");
936                 return NULL;
937         }
938
939         if (buf_len % period_len) {
940                 dev_err(chan2dev(chan), "buf_len not multiple of period_len\n");
941                 return NULL;
942         }
943
944         /*
945          * We allow to take more number of requests till DMA is
946          * not started. The driver will loop over all requests.
947          * Once DMA is started then new requests can be queued only after
948          * terminating the DMA.
949          */
950         if (chan->busy) {
951                 dev_err(chan2dev(chan), "Request not allowed when dma busy\n");
952                 return NULL;
953         }
954
955         ret = stm32_dma_set_xfer_param(chan, direction, &buswidth, period_len,
956                                        buf_addr);
957         if (ret < 0)
958                 return NULL;
959
960         nb_data_items = period_len / buswidth;
961         if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
962                 dev_err(chan2dev(chan), "number of items not supported\n");
963                 return NULL;
964         }
965
966         /*  Enable Circular mode or double buffer mode */
967         if (buf_len == period_len)
968                 chan->chan_reg.dma_scr |= STM32_DMA_SCR_CIRC;
969         else
970                 chan->chan_reg.dma_scr |= STM32_DMA_SCR_DBM;
971
972         /* Clear periph ctrl if client set it */
973         chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
974
975         num_periods = buf_len / period_len;
976
977         desc = kzalloc(struct_size(desc, sg_req, num_periods), GFP_NOWAIT);
978         if (!desc)
979                 return NULL;
980
981         for (i = 0; i < num_periods; i++) {
982                 desc->sg_req[i].len = period_len;
983
984                 stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
985                 desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
986                 desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
987                 desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
988                 desc->sg_req[i].chan_reg.dma_sm0ar = buf_addr;
989                 desc->sg_req[i].chan_reg.dma_sm1ar = buf_addr;
990                 desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
991                 buf_addr += period_len;
992         }
993
994         desc->num_sgs = num_periods;
995         desc->cyclic = true;
996
997         return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
998 }
999
1000 static struct dma_async_tx_descriptor *stm32_dma_prep_dma_memcpy(
1001         struct dma_chan *c, dma_addr_t dest,
1002         dma_addr_t src, size_t len, unsigned long flags)
1003 {
1004         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1005         enum dma_slave_buswidth max_width;
1006         struct stm32_dma_desc *desc;
1007         size_t xfer_count, offset;
1008         u32 num_sgs, best_burst, dma_burst, threshold;
1009         int i;
1010
1011         num_sgs = DIV_ROUND_UP(len, STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1012         desc = kzalloc(struct_size(desc, sg_req, num_sgs), GFP_NOWAIT);
1013         if (!desc)
1014                 return NULL;
1015
1016         threshold = chan->threshold;
1017
1018         for (offset = 0, i = 0; offset < len; offset += xfer_count, i++) {
1019                 xfer_count = min_t(size_t, len - offset,
1020                                    STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1021
1022                 /* Compute best burst size */
1023                 max_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1024                 best_burst = stm32_dma_get_best_burst(len, STM32_DMA_MAX_BURST,
1025                                                       threshold, max_width);
1026                 dma_burst = stm32_dma_get_burst(chan, best_burst);
1027
1028                 stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
1029                 desc->sg_req[i].chan_reg.dma_scr =
1030                         STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_MEM) |
1031                         STM32_DMA_SCR_PBURST(dma_burst) |
1032                         STM32_DMA_SCR_MBURST(dma_burst) |
1033                         STM32_DMA_SCR_MINC |
1034                         STM32_DMA_SCR_PINC |
1035                         STM32_DMA_SCR_TCIE |
1036                         STM32_DMA_SCR_TEIE;
1037                 desc->sg_req[i].chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
1038                 desc->sg_req[i].chan_reg.dma_sfcr |=
1039                         STM32_DMA_SFCR_FTH(threshold);
1040                 desc->sg_req[i].chan_reg.dma_spar = src + offset;
1041                 desc->sg_req[i].chan_reg.dma_sm0ar = dest + offset;
1042                 desc->sg_req[i].chan_reg.dma_sndtr = xfer_count;
1043                 desc->sg_req[i].len = xfer_count;
1044         }
1045
1046         desc->num_sgs = num_sgs;
1047         desc->cyclic = false;
1048
1049         return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
1050 }
1051
1052 static u32 stm32_dma_get_remaining_bytes(struct stm32_dma_chan *chan)
1053 {
1054         u32 dma_scr, width, ndtr;
1055         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1056
1057         dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
1058         width = STM32_DMA_SCR_PSIZE_GET(dma_scr);
1059         ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
1060
1061         return ndtr << width;
1062 }
1063
1064 /**
1065  * stm32_dma_is_current_sg - check that expected sg_req is currently transferred
1066  * @chan: dma channel
1067  *
1068  * This function called when IRQ are disable, checks that the hardware has not
1069  * switched on the next transfer in double buffer mode. The test is done by
1070  * comparing the next_sg memory address with the hardware related register
1071  * (based on CT bit value).
1072  *
1073  * Returns true if expected current transfer is still running or double
1074  * buffer mode is not activated.
1075  */
1076 static bool stm32_dma_is_current_sg(struct stm32_dma_chan *chan)
1077 {
1078         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1079         struct stm32_dma_sg_req *sg_req;
1080         u32 dma_scr, dma_smar, id;
1081
1082         id = chan->id;
1083         dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
1084
1085         if (!(dma_scr & STM32_DMA_SCR_DBM))
1086                 return true;
1087
1088         sg_req = &chan->desc->sg_req[chan->next_sg];
1089
1090         if (dma_scr & STM32_DMA_SCR_CT) {
1091                 dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(id));
1092                 return (dma_smar == sg_req->chan_reg.dma_sm0ar);
1093         }
1094
1095         dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(id));
1096
1097         return (dma_smar == sg_req->chan_reg.dma_sm1ar);
1098 }
1099
1100 static size_t stm32_dma_desc_residue(struct stm32_dma_chan *chan,
1101                                      struct stm32_dma_desc *desc,
1102                                      u32 next_sg)
1103 {
1104         u32 modulo, burst_size;
1105         u32 residue;
1106         u32 n_sg = next_sg;
1107         struct stm32_dma_sg_req *sg_req = &chan->desc->sg_req[chan->next_sg];
1108         int i;
1109
1110         /*
1111          * Calculate the residue means compute the descriptors
1112          * information:
1113          * - the sg_req currently transferred
1114          * - the Hardware remaining position in this sg (NDTR bits field).
1115          *
1116          * A race condition may occur if DMA is running in cyclic or double
1117          * buffer mode, since the DMA register are automatically reloaded at end
1118          * of period transfer. The hardware may have switched to the next
1119          * transfer (CT bit updated) just before the position (SxNDTR reg) is
1120          * read.
1121          * In this case the SxNDTR reg could (or not) correspond to the new
1122          * transfer position, and not the expected one.
1123          * The strategy implemented in the stm32 driver is to:
1124          *  - read the SxNDTR register
1125          *  - crosscheck that hardware is still in current transfer.
1126          * In case of switch, we can assume that the DMA is at the beginning of
1127          * the next transfer. So we approximate the residue in consequence, by
1128          * pointing on the beginning of next transfer.
1129          *
1130          * This race condition doesn't apply for none cyclic mode, as double
1131          * buffer is not used. In such situation registers are updated by the
1132          * software.
1133          */
1134
1135         residue = stm32_dma_get_remaining_bytes(chan);
1136
1137         if (!stm32_dma_is_current_sg(chan)) {
1138                 n_sg++;
1139                 if (n_sg == chan->desc->num_sgs)
1140                         n_sg = 0;
1141                 residue = sg_req->len;
1142         }
1143
1144         /*
1145          * In cyclic mode, for the last period, residue = remaining bytes
1146          * from NDTR,
1147          * else for all other periods in cyclic mode, and in sg mode,
1148          * residue = remaining bytes from NDTR + remaining
1149          * periods/sg to be transferred
1150          */
1151         if (!chan->desc->cyclic || n_sg != 0)
1152                 for (i = n_sg; i < desc->num_sgs; i++)
1153                         residue += desc->sg_req[i].len;
1154
1155         if (!chan->mem_burst)
1156                 return residue;
1157
1158         burst_size = chan->mem_burst * chan->mem_width;
1159         modulo = residue % burst_size;
1160         if (modulo)
1161                 residue = residue - modulo + burst_size;
1162
1163         return residue;
1164 }
1165
1166 static enum dma_status stm32_dma_tx_status(struct dma_chan *c,
1167                                            dma_cookie_t cookie,
1168                                            struct dma_tx_state *state)
1169 {
1170         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1171         struct virt_dma_desc *vdesc;
1172         enum dma_status status;
1173         unsigned long flags;
1174         u32 residue = 0;
1175
1176         status = dma_cookie_status(c, cookie, state);
1177         if (status == DMA_COMPLETE || !state)
1178                 return status;
1179
1180         spin_lock_irqsave(&chan->vchan.lock, flags);
1181         vdesc = vchan_find_desc(&chan->vchan, cookie);
1182         if (chan->desc && cookie == chan->desc->vdesc.tx.cookie)
1183                 residue = stm32_dma_desc_residue(chan, chan->desc,
1184                                                  chan->next_sg);
1185         else if (vdesc)
1186                 residue = stm32_dma_desc_residue(chan,
1187                                                  to_stm32_dma_desc(vdesc), 0);
1188         dma_set_residue(state, residue);
1189
1190         spin_unlock_irqrestore(&chan->vchan.lock, flags);
1191
1192         return status;
1193 }
1194
1195 static int stm32_dma_alloc_chan_resources(struct dma_chan *c)
1196 {
1197         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1198         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1199         int ret;
1200
1201         chan->config_init = false;
1202
1203         ret = pm_runtime_resume_and_get(dmadev->ddev.dev);
1204         if (ret < 0)
1205                 return ret;
1206
1207         ret = stm32_dma_disable_chan(chan);
1208         if (ret < 0)
1209                 pm_runtime_put(dmadev->ddev.dev);
1210
1211         return ret;
1212 }
1213
1214 static void stm32_dma_free_chan_resources(struct dma_chan *c)
1215 {
1216         struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1217         struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1218         unsigned long flags;
1219
1220         dev_dbg(chan2dev(chan), "Freeing channel %d\n", chan->id);
1221
1222         if (chan->busy) {
1223                 spin_lock_irqsave(&chan->vchan.lock, flags);
1224                 stm32_dma_stop(chan);
1225                 chan->desc = NULL;
1226                 spin_unlock_irqrestore(&chan->vchan.lock, flags);
1227         }
1228
1229         pm_runtime_put(dmadev->ddev.dev);
1230
1231         vchan_free_chan_resources(to_virt_chan(c));
1232         stm32_dma_clear_reg(&chan->chan_reg);
1233         chan->threshold = 0;
1234 }
1235
1236 static void stm32_dma_desc_free(struct virt_dma_desc *vdesc)
1237 {
1238         kfree(container_of(vdesc, struct stm32_dma_desc, vdesc));
1239 }
1240
1241 static void stm32_dma_set_config(struct stm32_dma_chan *chan,
1242                                  struct stm32_dma_cfg *cfg)
1243 {
1244         stm32_dma_clear_reg(&chan->chan_reg);
1245
1246         chan->chan_reg.dma_scr = cfg->stream_config & STM32_DMA_SCR_CFG_MASK;
1247         chan->chan_reg.dma_scr |= STM32_DMA_SCR_REQ(cfg->request_line);
1248
1249         /* Enable Interrupts  */
1250         chan->chan_reg.dma_scr |= STM32_DMA_SCR_TEIE | STM32_DMA_SCR_TCIE;
1251
1252         chan->threshold = STM32_DMA_THRESHOLD_FTR_GET(cfg->features);
1253         if (STM32_DMA_DIRECT_MODE_GET(cfg->features))
1254                 chan->threshold = STM32_DMA_FIFO_THRESHOLD_NONE;
1255 }
1256
1257 static struct dma_chan *stm32_dma_of_xlate(struct of_phandle_args *dma_spec,
1258                                            struct of_dma *ofdma)
1259 {
1260         struct stm32_dma_device *dmadev = ofdma->of_dma_data;
1261         struct device *dev = dmadev->ddev.dev;
1262         struct stm32_dma_cfg cfg;
1263         struct stm32_dma_chan *chan;
1264         struct dma_chan *c;
1265
1266         if (dma_spec->args_count < 4) {
1267                 dev_err(dev, "Bad number of cells\n");
1268                 return NULL;
1269         }
1270
1271         cfg.channel_id = dma_spec->args[0];
1272         cfg.request_line = dma_spec->args[1];
1273         cfg.stream_config = dma_spec->args[2];
1274         cfg.features = dma_spec->args[3];
1275
1276         if (cfg.channel_id >= STM32_DMA_MAX_CHANNELS ||
1277             cfg.request_line >= STM32_DMA_MAX_REQUEST_ID) {
1278                 dev_err(dev, "Bad channel and/or request id\n");
1279                 return NULL;
1280         }
1281
1282         chan = &dmadev->chan[cfg.channel_id];
1283
1284         c = dma_get_slave_channel(&chan->vchan.chan);
1285         if (!c) {
1286                 dev_err(dev, "No more channels available\n");
1287                 return NULL;
1288         }
1289
1290         stm32_dma_set_config(chan, &cfg);
1291
1292         return c;
1293 }
1294
1295 static const struct of_device_id stm32_dma_of_match[] = {
1296         { .compatible = "st,stm32-dma", },
1297         { /* sentinel */ },
1298 };
1299 MODULE_DEVICE_TABLE(of, stm32_dma_of_match);
1300
1301 static int stm32_dma_probe(struct platform_device *pdev)
1302 {
1303         struct stm32_dma_chan *chan;
1304         struct stm32_dma_device *dmadev;
1305         struct dma_device *dd;
1306         const struct of_device_id *match;
1307         struct resource *res;
1308         struct reset_control *rst;
1309         int i, ret;
1310
1311         match = of_match_device(stm32_dma_of_match, &pdev->dev);
1312         if (!match) {
1313                 dev_err(&pdev->dev, "Error: No device match found\n");
1314                 return -ENODEV;
1315         }
1316
1317         dmadev = devm_kzalloc(&pdev->dev, sizeof(*dmadev), GFP_KERNEL);
1318         if (!dmadev)
1319                 return -ENOMEM;
1320
1321         dd = &dmadev->ddev;
1322
1323         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1324         dmadev->base = devm_ioremap_resource(&pdev->dev, res);
1325         if (IS_ERR(dmadev->base))
1326                 return PTR_ERR(dmadev->base);
1327
1328         dmadev->clk = devm_clk_get(&pdev->dev, NULL);
1329         if (IS_ERR(dmadev->clk))
1330                 return dev_err_probe(&pdev->dev, PTR_ERR(dmadev->clk), "Can't get clock\n");
1331
1332         ret = clk_prepare_enable(dmadev->clk);
1333         if (ret < 0) {
1334                 dev_err(&pdev->dev, "clk_prep_enable error: %d\n", ret);
1335                 return ret;
1336         }
1337
1338         dmadev->mem2mem = of_property_read_bool(pdev->dev.of_node,
1339                                                 "st,mem2mem");
1340
1341         rst = devm_reset_control_get(&pdev->dev, NULL);
1342         if (IS_ERR(rst)) {
1343                 ret = PTR_ERR(rst);
1344                 if (ret == -EPROBE_DEFER)
1345                         goto clk_free;
1346         } else {
1347                 reset_control_assert(rst);
1348                 udelay(2);
1349                 reset_control_deassert(rst);
1350         }
1351
1352         dma_set_max_seg_size(&pdev->dev, STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1353
1354         dma_cap_set(DMA_SLAVE, dd->cap_mask);
1355         dma_cap_set(DMA_PRIVATE, dd->cap_mask);
1356         dma_cap_set(DMA_CYCLIC, dd->cap_mask);
1357         dd->device_alloc_chan_resources = stm32_dma_alloc_chan_resources;
1358         dd->device_free_chan_resources = stm32_dma_free_chan_resources;
1359         dd->device_tx_status = stm32_dma_tx_status;
1360         dd->device_issue_pending = stm32_dma_issue_pending;
1361         dd->device_prep_slave_sg = stm32_dma_prep_slave_sg;
1362         dd->device_prep_dma_cyclic = stm32_dma_prep_dma_cyclic;
1363         dd->device_config = stm32_dma_slave_config;
1364         dd->device_terminate_all = stm32_dma_terminate_all;
1365         dd->device_synchronize = stm32_dma_synchronize;
1366         dd->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1367                 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1368                 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1369         dd->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1370                 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1371                 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1372         dd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1373         dd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1374         dd->copy_align = DMAENGINE_ALIGN_32_BYTES;
1375         dd->max_burst = STM32_DMA_MAX_BURST;
1376         dd->descriptor_reuse = true;
1377         dd->dev = &pdev->dev;
1378         INIT_LIST_HEAD(&dd->channels);
1379
1380         if (dmadev->mem2mem) {
1381                 dma_cap_set(DMA_MEMCPY, dd->cap_mask);
1382                 dd->device_prep_dma_memcpy = stm32_dma_prep_dma_memcpy;
1383                 dd->directions |= BIT(DMA_MEM_TO_MEM);
1384         }
1385
1386         for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1387                 chan = &dmadev->chan[i];
1388                 chan->id = i;
1389                 chan->vchan.desc_free = stm32_dma_desc_free;
1390                 vchan_init(&chan->vchan, dd);
1391         }
1392
1393         ret = dma_async_device_register(dd);
1394         if (ret)
1395                 goto clk_free;
1396
1397         for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1398                 chan = &dmadev->chan[i];
1399                 ret = platform_get_irq(pdev, i);
1400                 if (ret < 0)
1401                         goto err_unregister;
1402                 chan->irq = ret;
1403
1404                 ret = devm_request_irq(&pdev->dev, chan->irq,
1405                                        stm32_dma_chan_irq, 0,
1406                                        dev_name(chan2dev(chan)), chan);
1407                 if (ret) {
1408                         dev_err(&pdev->dev,
1409                                 "request_irq failed with err %d channel %d\n",
1410                                 ret, i);
1411                         goto err_unregister;
1412                 }
1413         }
1414
1415         ret = of_dma_controller_register(pdev->dev.of_node,
1416                                          stm32_dma_of_xlate, dmadev);
1417         if (ret < 0) {
1418                 dev_err(&pdev->dev,
1419                         "STM32 DMA DMA OF registration failed %d\n", ret);
1420                 goto err_unregister;
1421         }
1422
1423         platform_set_drvdata(pdev, dmadev);
1424
1425         pm_runtime_set_active(&pdev->dev);
1426         pm_runtime_enable(&pdev->dev);
1427         pm_runtime_get_noresume(&pdev->dev);
1428         pm_runtime_put(&pdev->dev);
1429
1430         dev_info(&pdev->dev, "STM32 DMA driver registered\n");
1431
1432         return 0;
1433
1434 err_unregister:
1435         dma_async_device_unregister(dd);
1436 clk_free:
1437         clk_disable_unprepare(dmadev->clk);
1438
1439         return ret;
1440 }
1441
1442 #ifdef CONFIG_PM
1443 static int stm32_dma_runtime_suspend(struct device *dev)
1444 {
1445         struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1446
1447         clk_disable_unprepare(dmadev->clk);
1448
1449         return 0;
1450 }
1451
1452 static int stm32_dma_runtime_resume(struct device *dev)
1453 {
1454         struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1455         int ret;
1456
1457         ret = clk_prepare_enable(dmadev->clk);
1458         if (ret) {
1459                 dev_err(dev, "failed to prepare_enable clock\n");
1460                 return ret;
1461         }
1462
1463         return 0;
1464 }
1465 #endif
1466
1467 #ifdef CONFIG_PM_SLEEP
1468 static int stm32_dma_suspend(struct device *dev)
1469 {
1470         struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1471         int id, ret, scr;
1472
1473         ret = pm_runtime_resume_and_get(dev);
1474         if (ret < 0)
1475                 return ret;
1476
1477         for (id = 0; id < STM32_DMA_MAX_CHANNELS; id++) {
1478                 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
1479                 if (scr & STM32_DMA_SCR_EN) {
1480                         dev_warn(dev, "Suspend is prevented by Chan %i\n", id);
1481                         return -EBUSY;
1482                 }
1483         }
1484
1485         pm_runtime_put_sync(dev);
1486
1487         pm_runtime_force_suspend(dev);
1488
1489         return 0;
1490 }
1491
1492 static int stm32_dma_resume(struct device *dev)
1493 {
1494         return pm_runtime_force_resume(dev);
1495 }
1496 #endif
1497
1498 static const struct dev_pm_ops stm32_dma_pm_ops = {
1499         SET_SYSTEM_SLEEP_PM_OPS(stm32_dma_suspend, stm32_dma_resume)
1500         SET_RUNTIME_PM_OPS(stm32_dma_runtime_suspend,
1501                            stm32_dma_runtime_resume, NULL)
1502 };
1503
1504 static struct platform_driver stm32_dma_driver = {
1505         .driver = {
1506                 .name = "stm32-dma",
1507                 .of_match_table = stm32_dma_of_match,
1508                 .pm = &stm32_dma_pm_ops,
1509         },
1510         .probe = stm32_dma_probe,
1511 };
1512
1513 static int __init stm32_dma_init(void)
1514 {
1515         return platform_driver_register(&stm32_dma_driver);
1516 }
1517 subsys_initcall(stm32_dma_init);