Merge branches 'akpm' and 'akpm-hotfixes' (patches from Andrew)
[linux-2.6-microblaze.git] / drivers / dma / dw-axi-dmac / dw-axi-dmac-platform.c
1 // SPDX-License-Identifier:  GPL-2.0
2 // (C) 2017-2018 Synopsys, Inc. (www.synopsys.com)
3
4 /*
5  * Synopsys DesignWare AXI DMA Controller driver.
6  *
7  * Author: Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com>
8  */
9
10 #include <linux/bitops.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/dmaengine.h>
14 #include <linux/dmapool.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/err.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/iopoll.h>
20 #include <linux/io-64-nonatomic-lo-hi.h>
21 #include <linux/kernel.h>
22 #include <linux/module.h>
23 #include <linux/of.h>
24 #include <linux/of_dma.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/property.h>
28 #include <linux/slab.h>
29 #include <linux/types.h>
30
31 #include "dw-axi-dmac.h"
32 #include "../dmaengine.h"
33 #include "../virt-dma.h"
34
35 /*
36  * The set of bus widths supported by the DMA controller. DW AXI DMAC supports
37  * master data bus width up to 512 bits (for both AXI master interfaces), but
38  * it depends on IP block configurarion.
39  */
40 #define AXI_DMA_BUSWIDTHS                 \
41         (DMA_SLAVE_BUSWIDTH_1_BYTE      | \
42         DMA_SLAVE_BUSWIDTH_2_BYTES      | \
43         DMA_SLAVE_BUSWIDTH_4_BYTES      | \
44         DMA_SLAVE_BUSWIDTH_8_BYTES      | \
45         DMA_SLAVE_BUSWIDTH_16_BYTES     | \
46         DMA_SLAVE_BUSWIDTH_32_BYTES     | \
47         DMA_SLAVE_BUSWIDTH_64_BYTES)
48
49 static inline void
50 axi_dma_iowrite32(struct axi_dma_chip *chip, u32 reg, u32 val)
51 {
52         iowrite32(val, chip->regs + reg);
53 }
54
55 static inline u32 axi_dma_ioread32(struct axi_dma_chip *chip, u32 reg)
56 {
57         return ioread32(chip->regs + reg);
58 }
59
60 static inline void
61 axi_chan_iowrite32(struct axi_dma_chan *chan, u32 reg, u32 val)
62 {
63         iowrite32(val, chan->chan_regs + reg);
64 }
65
66 static inline u32 axi_chan_ioread32(struct axi_dma_chan *chan, u32 reg)
67 {
68         return ioread32(chan->chan_regs + reg);
69 }
70
71 static inline void
72 axi_chan_iowrite64(struct axi_dma_chan *chan, u32 reg, u64 val)
73 {
74         /*
75          * We split one 64 bit write for two 32 bit write as some HW doesn't
76          * support 64 bit access.
77          */
78         iowrite32(lower_32_bits(val), chan->chan_regs + reg);
79         iowrite32(upper_32_bits(val), chan->chan_regs + reg + 4);
80 }
81
82 static inline void axi_dma_disable(struct axi_dma_chip *chip)
83 {
84         u32 val;
85
86         val = axi_dma_ioread32(chip, DMAC_CFG);
87         val &= ~DMAC_EN_MASK;
88         axi_dma_iowrite32(chip, DMAC_CFG, val);
89 }
90
91 static inline void axi_dma_enable(struct axi_dma_chip *chip)
92 {
93         u32 val;
94
95         val = axi_dma_ioread32(chip, DMAC_CFG);
96         val |= DMAC_EN_MASK;
97         axi_dma_iowrite32(chip, DMAC_CFG, val);
98 }
99
100 static inline void axi_dma_irq_disable(struct axi_dma_chip *chip)
101 {
102         u32 val;
103
104         val = axi_dma_ioread32(chip, DMAC_CFG);
105         val &= ~INT_EN_MASK;
106         axi_dma_iowrite32(chip, DMAC_CFG, val);
107 }
108
109 static inline void axi_dma_irq_enable(struct axi_dma_chip *chip)
110 {
111         u32 val;
112
113         val = axi_dma_ioread32(chip, DMAC_CFG);
114         val |= INT_EN_MASK;
115         axi_dma_iowrite32(chip, DMAC_CFG, val);
116 }
117
118 static inline void axi_chan_irq_disable(struct axi_dma_chan *chan, u32 irq_mask)
119 {
120         u32 val;
121
122         if (likely(irq_mask == DWAXIDMAC_IRQ_ALL)) {
123                 axi_chan_iowrite32(chan, CH_INTSTATUS_ENA, DWAXIDMAC_IRQ_NONE);
124         } else {
125                 val = axi_chan_ioread32(chan, CH_INTSTATUS_ENA);
126                 val &= ~irq_mask;
127                 axi_chan_iowrite32(chan, CH_INTSTATUS_ENA, val);
128         }
129 }
130
131 static inline void axi_chan_irq_set(struct axi_dma_chan *chan, u32 irq_mask)
132 {
133         axi_chan_iowrite32(chan, CH_INTSTATUS_ENA, irq_mask);
134 }
135
136 static inline void axi_chan_irq_sig_set(struct axi_dma_chan *chan, u32 irq_mask)
137 {
138         axi_chan_iowrite32(chan, CH_INTSIGNAL_ENA, irq_mask);
139 }
140
141 static inline void axi_chan_irq_clear(struct axi_dma_chan *chan, u32 irq_mask)
142 {
143         axi_chan_iowrite32(chan, CH_INTCLEAR, irq_mask);
144 }
145
146 static inline u32 axi_chan_irq_read(struct axi_dma_chan *chan)
147 {
148         return axi_chan_ioread32(chan, CH_INTSTATUS);
149 }
150
151 static inline void axi_chan_disable(struct axi_dma_chan *chan)
152 {
153         u32 val;
154
155         val = axi_dma_ioread32(chan->chip, DMAC_CHEN);
156         val &= ~(BIT(chan->id) << DMAC_CHAN_EN_SHIFT);
157         val |=   BIT(chan->id) << DMAC_CHAN_EN_WE_SHIFT;
158         axi_dma_iowrite32(chan->chip, DMAC_CHEN, val);
159 }
160
161 static inline void axi_chan_enable(struct axi_dma_chan *chan)
162 {
163         u32 val;
164
165         val = axi_dma_ioread32(chan->chip, DMAC_CHEN);
166         val |= BIT(chan->id) << DMAC_CHAN_EN_SHIFT |
167                BIT(chan->id) << DMAC_CHAN_EN_WE_SHIFT;
168         axi_dma_iowrite32(chan->chip, DMAC_CHEN, val);
169 }
170
171 static inline bool axi_chan_is_hw_enable(struct axi_dma_chan *chan)
172 {
173         u32 val;
174
175         val = axi_dma_ioread32(chan->chip, DMAC_CHEN);
176
177         return !!(val & (BIT(chan->id) << DMAC_CHAN_EN_SHIFT));
178 }
179
180 static void axi_dma_hw_init(struct axi_dma_chip *chip)
181 {
182         u32 i;
183
184         for (i = 0; i < chip->dw->hdata->nr_channels; i++) {
185                 axi_chan_irq_disable(&chip->dw->chan[i], DWAXIDMAC_IRQ_ALL);
186                 axi_chan_disable(&chip->dw->chan[i]);
187         }
188 }
189
190 static u32 axi_chan_get_xfer_width(struct axi_dma_chan *chan, dma_addr_t src,
191                                    dma_addr_t dst, size_t len)
192 {
193         u32 max_width = chan->chip->dw->hdata->m_data_width;
194
195         return __ffs(src | dst | len | BIT(max_width));
196 }
197
198 static inline const char *axi_chan_name(struct axi_dma_chan *chan)
199 {
200         return dma_chan_name(&chan->vc.chan);
201 }
202
203 static struct axi_dma_desc *axi_desc_alloc(u32 num)
204 {
205         struct axi_dma_desc *desc;
206
207         desc = kzalloc(sizeof(*desc), GFP_NOWAIT);
208         if (!desc)
209                 return NULL;
210
211         desc->hw_desc = kcalloc(num, sizeof(*desc->hw_desc), GFP_NOWAIT);
212         if (!desc->hw_desc) {
213                 kfree(desc);
214                 return NULL;
215         }
216
217         return desc;
218 }
219
220 static struct axi_dma_lli *axi_desc_get(struct axi_dma_chan *chan,
221                                         dma_addr_t *addr)
222 {
223         struct axi_dma_lli *lli;
224         dma_addr_t phys;
225
226         lli = dma_pool_zalloc(chan->desc_pool, GFP_NOWAIT, &phys);
227         if (unlikely(!lli)) {
228                 dev_err(chan2dev(chan), "%s: not enough descriptors available\n",
229                         axi_chan_name(chan));
230                 return NULL;
231         }
232
233         atomic_inc(&chan->descs_allocated);
234         *addr = phys;
235
236         return lli;
237 }
238
239 static void axi_desc_put(struct axi_dma_desc *desc)
240 {
241         struct axi_dma_chan *chan = desc->chan;
242         int count = atomic_read(&chan->descs_allocated);
243         struct axi_dma_hw_desc *hw_desc;
244         int descs_put;
245
246         for (descs_put = 0; descs_put < count; descs_put++) {
247                 hw_desc = &desc->hw_desc[descs_put];
248                 dma_pool_free(chan->desc_pool, hw_desc->lli, hw_desc->llp);
249         }
250
251         kfree(desc->hw_desc);
252         kfree(desc);
253         atomic_sub(descs_put, &chan->descs_allocated);
254         dev_vdbg(chan2dev(chan), "%s: %d descs put, %d still allocated\n",
255                 axi_chan_name(chan), descs_put,
256                 atomic_read(&chan->descs_allocated));
257 }
258
259 static void vchan_desc_put(struct virt_dma_desc *vdesc)
260 {
261         axi_desc_put(vd_to_axi_desc(vdesc));
262 }
263
264 static enum dma_status
265 dma_chan_tx_status(struct dma_chan *dchan, dma_cookie_t cookie,
266                   struct dma_tx_state *txstate)
267 {
268         struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
269         struct virt_dma_desc *vdesc;
270         enum dma_status status;
271         u32 completed_length;
272         unsigned long flags;
273         u32 completed_blocks;
274         size_t bytes = 0;
275         u32 length;
276         u32 len;
277
278         status = dma_cookie_status(dchan, cookie, txstate);
279         if (status == DMA_COMPLETE || !txstate)
280                 return status;
281
282         spin_lock_irqsave(&chan->vc.lock, flags);
283
284         vdesc = vchan_find_desc(&chan->vc, cookie);
285         if (vdesc) {
286                 length = vd_to_axi_desc(vdesc)->length;
287                 completed_blocks = vd_to_axi_desc(vdesc)->completed_blocks;
288                 len = vd_to_axi_desc(vdesc)->hw_desc[0].len;
289                 completed_length = completed_blocks * len;
290                 bytes = length - completed_length;
291         } else {
292                 bytes = vd_to_axi_desc(vdesc)->length;
293         }
294
295         spin_unlock_irqrestore(&chan->vc.lock, flags);
296         dma_set_residue(txstate, bytes);
297
298         return status;
299 }
300
301 static void write_desc_llp(struct axi_dma_hw_desc *desc, dma_addr_t adr)
302 {
303         desc->lli->llp = cpu_to_le64(adr);
304 }
305
306 static void write_chan_llp(struct axi_dma_chan *chan, dma_addr_t adr)
307 {
308         axi_chan_iowrite64(chan, CH_LLP, adr);
309 }
310
311 static void dw_axi_dma_set_byte_halfword(struct axi_dma_chan *chan, bool set)
312 {
313         u32 offset = DMAC_APB_BYTE_WR_CH_EN;
314         u32 reg_width, val;
315
316         if (!chan->chip->apb_regs) {
317                 dev_dbg(chan->chip->dev, "apb_regs not initialized\n");
318                 return;
319         }
320
321         reg_width = __ffs(chan->config.dst_addr_width);
322         if (reg_width == DWAXIDMAC_TRANS_WIDTH_16)
323                 offset = DMAC_APB_HALFWORD_WR_CH_EN;
324
325         val = ioread32(chan->chip->apb_regs + offset);
326
327         if (set)
328                 val |= BIT(chan->id);
329         else
330                 val &= ~BIT(chan->id);
331
332         iowrite32(val, chan->chip->apb_regs + offset);
333 }
334 /* Called in chan locked context */
335 static void axi_chan_block_xfer_start(struct axi_dma_chan *chan,
336                                       struct axi_dma_desc *first)
337 {
338         u32 priority = chan->chip->dw->hdata->priority[chan->id];
339         u32 reg, irq_mask;
340         u8 lms = 0; /* Select AXI0 master for LLI fetching */
341
342         if (unlikely(axi_chan_is_hw_enable(chan))) {
343                 dev_err(chan2dev(chan), "%s is non-idle!\n",
344                         axi_chan_name(chan));
345
346                 return;
347         }
348
349         axi_dma_enable(chan->chip);
350
351         reg = (DWAXIDMAC_MBLK_TYPE_LL << CH_CFG_L_DST_MULTBLK_TYPE_POS |
352                DWAXIDMAC_MBLK_TYPE_LL << CH_CFG_L_SRC_MULTBLK_TYPE_POS);
353         axi_chan_iowrite32(chan, CH_CFG_L, reg);
354
355         reg = (DWAXIDMAC_TT_FC_MEM_TO_MEM_DMAC << CH_CFG_H_TT_FC_POS |
356                priority << CH_CFG_H_PRIORITY_POS |
357                DWAXIDMAC_HS_SEL_HW << CH_CFG_H_HS_SEL_DST_POS |
358                DWAXIDMAC_HS_SEL_HW << CH_CFG_H_HS_SEL_SRC_POS);
359         switch (chan->direction) {
360         case DMA_MEM_TO_DEV:
361                 dw_axi_dma_set_byte_halfword(chan, true);
362                 reg |= (chan->config.device_fc ?
363                         DWAXIDMAC_TT_FC_MEM_TO_PER_DST :
364                         DWAXIDMAC_TT_FC_MEM_TO_PER_DMAC)
365                         << CH_CFG_H_TT_FC_POS;
366                 break;
367         case DMA_DEV_TO_MEM:
368                 reg |= (chan->config.device_fc ?
369                         DWAXIDMAC_TT_FC_PER_TO_MEM_SRC :
370                         DWAXIDMAC_TT_FC_PER_TO_MEM_DMAC)
371                         << CH_CFG_H_TT_FC_POS;
372                 break;
373         default:
374                 break;
375         }
376         axi_chan_iowrite32(chan, CH_CFG_H, reg);
377
378         write_chan_llp(chan, first->hw_desc[0].llp | lms);
379
380         irq_mask = DWAXIDMAC_IRQ_DMA_TRF | DWAXIDMAC_IRQ_ALL_ERR;
381         axi_chan_irq_sig_set(chan, irq_mask);
382
383         /* Generate 'suspend' status but don't generate interrupt */
384         irq_mask |= DWAXIDMAC_IRQ_SUSPENDED;
385         axi_chan_irq_set(chan, irq_mask);
386
387         axi_chan_enable(chan);
388 }
389
390 static void axi_chan_start_first_queued(struct axi_dma_chan *chan)
391 {
392         struct axi_dma_desc *desc;
393         struct virt_dma_desc *vd;
394
395         vd = vchan_next_desc(&chan->vc);
396         if (!vd)
397                 return;
398
399         desc = vd_to_axi_desc(vd);
400         dev_vdbg(chan2dev(chan), "%s: started %u\n", axi_chan_name(chan),
401                 vd->tx.cookie);
402         axi_chan_block_xfer_start(chan, desc);
403 }
404
405 static void dma_chan_issue_pending(struct dma_chan *dchan)
406 {
407         struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
408         unsigned long flags;
409
410         spin_lock_irqsave(&chan->vc.lock, flags);
411         if (vchan_issue_pending(&chan->vc))
412                 axi_chan_start_first_queued(chan);
413         spin_unlock_irqrestore(&chan->vc.lock, flags);
414 }
415
416 static void dw_axi_dma_synchronize(struct dma_chan *dchan)
417 {
418         struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
419
420         vchan_synchronize(&chan->vc);
421 }
422
423 static int dma_chan_alloc_chan_resources(struct dma_chan *dchan)
424 {
425         struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
426
427         /* ASSERT: channel is idle */
428         if (axi_chan_is_hw_enable(chan)) {
429                 dev_err(chan2dev(chan), "%s is non-idle!\n",
430                         axi_chan_name(chan));
431                 return -EBUSY;
432         }
433
434         /* LLI address must be aligned to a 64-byte boundary */
435         chan->desc_pool = dma_pool_create(dev_name(chan2dev(chan)),
436                                           chan->chip->dev,
437                                           sizeof(struct axi_dma_lli),
438                                           64, 0);
439         if (!chan->desc_pool) {
440                 dev_err(chan2dev(chan), "No memory for descriptors\n");
441                 return -ENOMEM;
442         }
443         dev_vdbg(dchan2dev(dchan), "%s: allocating\n", axi_chan_name(chan));
444
445         pm_runtime_get(chan->chip->dev);
446
447         return 0;
448 }
449
450 static void dma_chan_free_chan_resources(struct dma_chan *dchan)
451 {
452         struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
453
454         /* ASSERT: channel is idle */
455         if (axi_chan_is_hw_enable(chan))
456                 dev_err(dchan2dev(dchan), "%s is non-idle!\n",
457                         axi_chan_name(chan));
458
459         axi_chan_disable(chan);
460         axi_chan_irq_disable(chan, DWAXIDMAC_IRQ_ALL);
461
462         vchan_free_chan_resources(&chan->vc);
463
464         dma_pool_destroy(chan->desc_pool);
465         chan->desc_pool = NULL;
466         dev_vdbg(dchan2dev(dchan),
467                  "%s: free resources, descriptor still allocated: %u\n",
468                  axi_chan_name(chan), atomic_read(&chan->descs_allocated));
469
470         pm_runtime_put(chan->chip->dev);
471 }
472
473 static void dw_axi_dma_set_hw_channel(struct axi_dma_chip *chip,
474                                       u32 handshake_num, bool set)
475 {
476         unsigned long start = 0;
477         unsigned long reg_value;
478         unsigned long reg_mask;
479         unsigned long reg_set;
480         unsigned long mask;
481         unsigned long val;
482
483         if (!chip->apb_regs) {
484                 dev_dbg(chip->dev, "apb_regs not initialized\n");
485                 return;
486         }
487
488         /*
489          * An unused DMA channel has a default value of 0x3F.
490          * Lock the DMA channel by assign a handshake number to the channel.
491          * Unlock the DMA channel by assign 0x3F to the channel.
492          */
493         if (set) {
494                 reg_set = UNUSED_CHANNEL;
495                 val = handshake_num;
496         } else {
497                 reg_set = handshake_num;
498                 val = UNUSED_CHANNEL;
499         }
500
501         reg_value = lo_hi_readq(chip->apb_regs + DMAC_APB_HW_HS_SEL_0);
502
503         for_each_set_clump8(start, reg_mask, &reg_value, 64) {
504                 if (reg_mask == reg_set) {
505                         mask = GENMASK_ULL(start + 7, start);
506                         reg_value &= ~mask;
507                         reg_value |= rol64(val, start);
508                         lo_hi_writeq(reg_value,
509                                      chip->apb_regs + DMAC_APB_HW_HS_SEL_0);
510                         break;
511                 }
512         }
513 }
514
515 /*
516  * If DW_axi_dmac sees CHx_CTL.ShadowReg_Or_LLI_Last bit of the fetched LLI
517  * as 1, it understands that the current block is the final block in the
518  * transfer and completes the DMA transfer operation at the end of current
519  * block transfer.
520  */
521 static void set_desc_last(struct axi_dma_hw_desc *desc)
522 {
523         u32 val;
524
525         val = le32_to_cpu(desc->lli->ctl_hi);
526         val |= CH_CTL_H_LLI_LAST;
527         desc->lli->ctl_hi = cpu_to_le32(val);
528 }
529
530 static void write_desc_sar(struct axi_dma_hw_desc *desc, dma_addr_t adr)
531 {
532         desc->lli->sar = cpu_to_le64(adr);
533 }
534
535 static void write_desc_dar(struct axi_dma_hw_desc *desc, dma_addr_t adr)
536 {
537         desc->lli->dar = cpu_to_le64(adr);
538 }
539
540 static void set_desc_src_master(struct axi_dma_hw_desc *desc)
541 {
542         u32 val;
543
544         /* Select AXI0 for source master */
545         val = le32_to_cpu(desc->lli->ctl_lo);
546         val &= ~CH_CTL_L_SRC_MAST;
547         desc->lli->ctl_lo = cpu_to_le32(val);
548 }
549
550 static void set_desc_dest_master(struct axi_dma_hw_desc *hw_desc,
551                                  struct axi_dma_desc *desc)
552 {
553         u32 val;
554
555         /* Select AXI1 for source master if available */
556         val = le32_to_cpu(hw_desc->lli->ctl_lo);
557         if (desc->chan->chip->dw->hdata->nr_masters > 1)
558                 val |= CH_CTL_L_DST_MAST;
559         else
560                 val &= ~CH_CTL_L_DST_MAST;
561
562         hw_desc->lli->ctl_lo = cpu_to_le32(val);
563 }
564
565 static int dw_axi_dma_set_hw_desc(struct axi_dma_chan *chan,
566                                   struct axi_dma_hw_desc *hw_desc,
567                                   dma_addr_t mem_addr, size_t len)
568 {
569         unsigned int data_width = BIT(chan->chip->dw->hdata->m_data_width);
570         unsigned int reg_width;
571         unsigned int mem_width;
572         dma_addr_t device_addr;
573         size_t axi_block_ts;
574         size_t block_ts;
575         u32 ctllo, ctlhi;
576         u32 burst_len;
577
578         axi_block_ts = chan->chip->dw->hdata->block_size[chan->id];
579
580         mem_width = __ffs(data_width | mem_addr | len);
581         if (mem_width > DWAXIDMAC_TRANS_WIDTH_32)
582                 mem_width = DWAXIDMAC_TRANS_WIDTH_32;
583
584         if (!IS_ALIGNED(mem_addr, 4)) {
585                 dev_err(chan->chip->dev, "invalid buffer alignment\n");
586                 return -EINVAL;
587         }
588
589         switch (chan->direction) {
590         case DMA_MEM_TO_DEV:
591                 reg_width = __ffs(chan->config.dst_addr_width);
592                 device_addr = chan->config.dst_addr;
593                 ctllo = reg_width << CH_CTL_L_DST_WIDTH_POS |
594                         mem_width << CH_CTL_L_SRC_WIDTH_POS |
595                         DWAXIDMAC_CH_CTL_L_NOINC << CH_CTL_L_DST_INC_POS |
596                         DWAXIDMAC_CH_CTL_L_INC << CH_CTL_L_SRC_INC_POS;
597                 block_ts = len >> mem_width;
598                 break;
599         case DMA_DEV_TO_MEM:
600                 reg_width = __ffs(chan->config.src_addr_width);
601                 device_addr = chan->config.src_addr;
602                 ctllo = reg_width << CH_CTL_L_SRC_WIDTH_POS |
603                         mem_width << CH_CTL_L_DST_WIDTH_POS |
604                         DWAXIDMAC_CH_CTL_L_INC << CH_CTL_L_DST_INC_POS |
605                         DWAXIDMAC_CH_CTL_L_NOINC << CH_CTL_L_SRC_INC_POS;
606                 block_ts = len >> reg_width;
607                 break;
608         default:
609                 return -EINVAL;
610         }
611
612         if (block_ts > axi_block_ts)
613                 return -EINVAL;
614
615         hw_desc->lli = axi_desc_get(chan, &hw_desc->llp);
616         if (unlikely(!hw_desc->lli))
617                 return -ENOMEM;
618
619         ctlhi = CH_CTL_H_LLI_VALID;
620
621         if (chan->chip->dw->hdata->restrict_axi_burst_len) {
622                 burst_len = chan->chip->dw->hdata->axi_rw_burst_len;
623                 ctlhi |= CH_CTL_H_ARLEN_EN | CH_CTL_H_AWLEN_EN |
624                          burst_len << CH_CTL_H_ARLEN_POS |
625                          burst_len << CH_CTL_H_AWLEN_POS;
626         }
627
628         hw_desc->lli->ctl_hi = cpu_to_le32(ctlhi);
629
630         if (chan->direction == DMA_MEM_TO_DEV) {
631                 write_desc_sar(hw_desc, mem_addr);
632                 write_desc_dar(hw_desc, device_addr);
633         } else {
634                 write_desc_sar(hw_desc, device_addr);
635                 write_desc_dar(hw_desc, mem_addr);
636         }
637
638         hw_desc->lli->block_ts_lo = cpu_to_le32(block_ts - 1);
639
640         ctllo |= DWAXIDMAC_BURST_TRANS_LEN_4 << CH_CTL_L_DST_MSIZE_POS |
641                  DWAXIDMAC_BURST_TRANS_LEN_4 << CH_CTL_L_SRC_MSIZE_POS;
642         hw_desc->lli->ctl_lo = cpu_to_le32(ctllo);
643
644         set_desc_src_master(hw_desc);
645
646         hw_desc->len = len;
647         return 0;
648 }
649
650 static size_t calculate_block_len(struct axi_dma_chan *chan,
651                                   dma_addr_t dma_addr, size_t buf_len,
652                                   enum dma_transfer_direction direction)
653 {
654         u32 data_width, reg_width, mem_width;
655         size_t axi_block_ts, block_len;
656
657         axi_block_ts = chan->chip->dw->hdata->block_size[chan->id];
658
659         switch (direction) {
660         case DMA_MEM_TO_DEV:
661                 data_width = BIT(chan->chip->dw->hdata->m_data_width);
662                 mem_width = __ffs(data_width | dma_addr | buf_len);
663                 if (mem_width > DWAXIDMAC_TRANS_WIDTH_32)
664                         mem_width = DWAXIDMAC_TRANS_WIDTH_32;
665
666                 block_len = axi_block_ts << mem_width;
667                 break;
668         case DMA_DEV_TO_MEM:
669                 reg_width = __ffs(chan->config.src_addr_width);
670                 block_len = axi_block_ts << reg_width;
671                 break;
672         default:
673                 block_len = 0;
674         }
675
676         return block_len;
677 }
678
679 static struct dma_async_tx_descriptor *
680 dw_axi_dma_chan_prep_cyclic(struct dma_chan *dchan, dma_addr_t dma_addr,
681                             size_t buf_len, size_t period_len,
682                             enum dma_transfer_direction direction,
683                             unsigned long flags)
684 {
685         struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
686         struct axi_dma_hw_desc *hw_desc = NULL;
687         struct axi_dma_desc *desc = NULL;
688         dma_addr_t src_addr = dma_addr;
689         u32 num_periods, num_segments;
690         size_t axi_block_len;
691         u32 total_segments;
692         u32 segment_len;
693         unsigned int i;
694         int status;
695         u64 llp = 0;
696         u8 lms = 0; /* Select AXI0 master for LLI fetching */
697
698         num_periods = buf_len / period_len;
699
700         axi_block_len = calculate_block_len(chan, dma_addr, buf_len, direction);
701         if (axi_block_len == 0)
702                 return NULL;
703
704         num_segments = DIV_ROUND_UP(period_len, axi_block_len);
705         segment_len = DIV_ROUND_UP(period_len, num_segments);
706
707         total_segments = num_periods * num_segments;
708
709         desc = axi_desc_alloc(total_segments);
710         if (unlikely(!desc))
711                 goto err_desc_get;
712
713         chan->direction = direction;
714         desc->chan = chan;
715         chan->cyclic = true;
716         desc->length = 0;
717         desc->period_len = period_len;
718
719         for (i = 0; i < total_segments; i++) {
720                 hw_desc = &desc->hw_desc[i];
721
722                 status = dw_axi_dma_set_hw_desc(chan, hw_desc, src_addr,
723                                                 segment_len);
724                 if (status < 0)
725                         goto err_desc_get;
726
727                 desc->length += hw_desc->len;
728                 /* Set end-of-link to the linked descriptor, so that cyclic
729                  * callback function can be triggered during interrupt.
730                  */
731                 set_desc_last(hw_desc);
732
733                 src_addr += segment_len;
734         }
735
736         llp = desc->hw_desc[0].llp;
737
738         /* Managed transfer list */
739         do {
740                 hw_desc = &desc->hw_desc[--total_segments];
741                 write_desc_llp(hw_desc, llp | lms);
742                 llp = hw_desc->llp;
743         } while (total_segments);
744
745         dw_axi_dma_set_hw_channel(chan->chip, chan->hw_handshake_num, true);
746
747         return vchan_tx_prep(&chan->vc, &desc->vd, flags);
748
749 err_desc_get:
750         if (desc)
751                 axi_desc_put(desc);
752
753         return NULL;
754 }
755
756 static struct dma_async_tx_descriptor *
757 dw_axi_dma_chan_prep_slave_sg(struct dma_chan *dchan, struct scatterlist *sgl,
758                               unsigned int sg_len,
759                               enum dma_transfer_direction direction,
760                               unsigned long flags, void *context)
761 {
762         struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
763         struct axi_dma_hw_desc *hw_desc = NULL;
764         struct axi_dma_desc *desc = NULL;
765         u32 num_segments, segment_len;
766         unsigned int loop = 0;
767         struct scatterlist *sg;
768         size_t axi_block_len;
769         u32 len, num_sgs = 0;
770         unsigned int i;
771         dma_addr_t mem;
772         int status;
773         u64 llp = 0;
774         u8 lms = 0; /* Select AXI0 master for LLI fetching */
775
776         if (unlikely(!is_slave_direction(direction) || !sg_len))
777                 return NULL;
778
779         mem = sg_dma_address(sgl);
780         len = sg_dma_len(sgl);
781
782         axi_block_len = calculate_block_len(chan, mem, len, direction);
783         if (axi_block_len == 0)
784                 return NULL;
785
786         for_each_sg(sgl, sg, sg_len, i)
787                 num_sgs += DIV_ROUND_UP(sg_dma_len(sg), axi_block_len);
788
789         desc = axi_desc_alloc(num_sgs);
790         if (unlikely(!desc))
791                 goto err_desc_get;
792
793         desc->chan = chan;
794         desc->length = 0;
795         chan->direction = direction;
796
797         for_each_sg(sgl, sg, sg_len, i) {
798                 mem = sg_dma_address(sg);
799                 len = sg_dma_len(sg);
800                 num_segments = DIV_ROUND_UP(sg_dma_len(sg), axi_block_len);
801                 segment_len = DIV_ROUND_UP(sg_dma_len(sg), num_segments);
802
803                 do {
804                         hw_desc = &desc->hw_desc[loop++];
805                         status = dw_axi_dma_set_hw_desc(chan, hw_desc, mem, segment_len);
806                         if (status < 0)
807                                 goto err_desc_get;
808
809                         desc->length += hw_desc->len;
810                         len -= segment_len;
811                         mem += segment_len;
812                 } while (len >= segment_len);
813         }
814
815         /* Set end-of-link to the last link descriptor of list */
816         set_desc_last(&desc->hw_desc[num_sgs - 1]);
817
818         /* Managed transfer list */
819         do {
820                 hw_desc = &desc->hw_desc[--num_sgs];
821                 write_desc_llp(hw_desc, llp | lms);
822                 llp = hw_desc->llp;
823         } while (num_sgs);
824
825         dw_axi_dma_set_hw_channel(chan->chip, chan->hw_handshake_num, true);
826
827         return vchan_tx_prep(&chan->vc, &desc->vd, flags);
828
829 err_desc_get:
830         if (desc)
831                 axi_desc_put(desc);
832
833         return NULL;
834 }
835
836 static struct dma_async_tx_descriptor *
837 dma_chan_prep_dma_memcpy(struct dma_chan *dchan, dma_addr_t dst_adr,
838                          dma_addr_t src_adr, size_t len, unsigned long flags)
839 {
840         struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
841         size_t block_ts, max_block_ts, xfer_len;
842         struct axi_dma_hw_desc *hw_desc = NULL;
843         struct axi_dma_desc *desc = NULL;
844         u32 xfer_width, reg, num;
845         u64 llp = 0;
846         u8 lms = 0; /* Select AXI0 master for LLI fetching */
847
848         dev_dbg(chan2dev(chan), "%s: memcpy: src: %pad dst: %pad length: %zd flags: %#lx",
849                 axi_chan_name(chan), &src_adr, &dst_adr, len, flags);
850
851         max_block_ts = chan->chip->dw->hdata->block_size[chan->id];
852         xfer_width = axi_chan_get_xfer_width(chan, src_adr, dst_adr, len);
853         num = DIV_ROUND_UP(len, max_block_ts << xfer_width);
854         desc = axi_desc_alloc(num);
855         if (unlikely(!desc))
856                 goto err_desc_get;
857
858         desc->chan = chan;
859         num = 0;
860         desc->length = 0;
861         while (len) {
862                 xfer_len = len;
863
864                 hw_desc = &desc->hw_desc[num];
865                 /*
866                  * Take care for the alignment.
867                  * Actually source and destination widths can be different, but
868                  * make them same to be simpler.
869                  */
870                 xfer_width = axi_chan_get_xfer_width(chan, src_adr, dst_adr, xfer_len);
871
872                 /*
873                  * block_ts indicates the total number of data of width
874                  * to be transferred in a DMA block transfer.
875                  * BLOCK_TS register should be set to block_ts - 1
876                  */
877                 block_ts = xfer_len >> xfer_width;
878                 if (block_ts > max_block_ts) {
879                         block_ts = max_block_ts;
880                         xfer_len = max_block_ts << xfer_width;
881                 }
882
883                 hw_desc->lli = axi_desc_get(chan, &hw_desc->llp);
884                 if (unlikely(!hw_desc->lli))
885                         goto err_desc_get;
886
887                 write_desc_sar(hw_desc, src_adr);
888                 write_desc_dar(hw_desc, dst_adr);
889                 hw_desc->lli->block_ts_lo = cpu_to_le32(block_ts - 1);
890
891                 reg = CH_CTL_H_LLI_VALID;
892                 if (chan->chip->dw->hdata->restrict_axi_burst_len) {
893                         u32 burst_len = chan->chip->dw->hdata->axi_rw_burst_len;
894
895                         reg |= (CH_CTL_H_ARLEN_EN |
896                                 burst_len << CH_CTL_H_ARLEN_POS |
897                                 CH_CTL_H_AWLEN_EN |
898                                 burst_len << CH_CTL_H_AWLEN_POS);
899                 }
900                 hw_desc->lli->ctl_hi = cpu_to_le32(reg);
901
902                 reg = (DWAXIDMAC_BURST_TRANS_LEN_4 << CH_CTL_L_DST_MSIZE_POS |
903                        DWAXIDMAC_BURST_TRANS_LEN_4 << CH_CTL_L_SRC_MSIZE_POS |
904                        xfer_width << CH_CTL_L_DST_WIDTH_POS |
905                        xfer_width << CH_CTL_L_SRC_WIDTH_POS |
906                        DWAXIDMAC_CH_CTL_L_INC << CH_CTL_L_DST_INC_POS |
907                        DWAXIDMAC_CH_CTL_L_INC << CH_CTL_L_SRC_INC_POS);
908                 hw_desc->lli->ctl_lo = cpu_to_le32(reg);
909
910                 set_desc_src_master(hw_desc);
911                 set_desc_dest_master(hw_desc, desc);
912
913                 hw_desc->len = xfer_len;
914                 desc->length += hw_desc->len;
915                 /* update the length and addresses for the next loop cycle */
916                 len -= xfer_len;
917                 dst_adr += xfer_len;
918                 src_adr += xfer_len;
919                 num++;
920         }
921
922         /* Set end-of-link to the last link descriptor of list */
923         set_desc_last(&desc->hw_desc[num - 1]);
924         /* Managed transfer list */
925         do {
926                 hw_desc = &desc->hw_desc[--num];
927                 write_desc_llp(hw_desc, llp | lms);
928                 llp = hw_desc->llp;
929         } while (num);
930
931         return vchan_tx_prep(&chan->vc, &desc->vd, flags);
932
933 err_desc_get:
934         if (desc)
935                 axi_desc_put(desc);
936         return NULL;
937 }
938
939 static int dw_axi_dma_chan_slave_config(struct dma_chan *dchan,
940                                         struct dma_slave_config *config)
941 {
942         struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
943
944         memcpy(&chan->config, config, sizeof(*config));
945
946         return 0;
947 }
948
949 static void axi_chan_dump_lli(struct axi_dma_chan *chan,
950                               struct axi_dma_hw_desc *desc)
951 {
952         dev_err(dchan2dev(&chan->vc.chan),
953                 "SAR: 0x%llx DAR: 0x%llx LLP: 0x%llx BTS 0x%x CTL: 0x%x:%08x",
954                 le64_to_cpu(desc->lli->sar),
955                 le64_to_cpu(desc->lli->dar),
956                 le64_to_cpu(desc->lli->llp),
957                 le32_to_cpu(desc->lli->block_ts_lo),
958                 le32_to_cpu(desc->lli->ctl_hi),
959                 le32_to_cpu(desc->lli->ctl_lo));
960 }
961
962 static void axi_chan_list_dump_lli(struct axi_dma_chan *chan,
963                                    struct axi_dma_desc *desc_head)
964 {
965         int count = atomic_read(&chan->descs_allocated);
966         int i;
967
968         for (i = 0; i < count; i++)
969                 axi_chan_dump_lli(chan, &desc_head->hw_desc[i]);
970 }
971
972 static noinline void axi_chan_handle_err(struct axi_dma_chan *chan, u32 status)
973 {
974         struct virt_dma_desc *vd;
975         unsigned long flags;
976
977         spin_lock_irqsave(&chan->vc.lock, flags);
978
979         axi_chan_disable(chan);
980
981         /* The bad descriptor currently is in the head of vc list */
982         vd = vchan_next_desc(&chan->vc);
983         /* Remove the completed descriptor from issued list */
984         list_del(&vd->node);
985
986         /* WARN about bad descriptor */
987         dev_err(chan2dev(chan),
988                 "Bad descriptor submitted for %s, cookie: %d, irq: 0x%08x\n",
989                 axi_chan_name(chan), vd->tx.cookie, status);
990         axi_chan_list_dump_lli(chan, vd_to_axi_desc(vd));
991
992         vchan_cookie_complete(vd);
993
994         /* Try to restart the controller */
995         axi_chan_start_first_queued(chan);
996
997         spin_unlock_irqrestore(&chan->vc.lock, flags);
998 }
999
1000 static void axi_chan_block_xfer_complete(struct axi_dma_chan *chan)
1001 {
1002         int count = atomic_read(&chan->descs_allocated);
1003         struct axi_dma_hw_desc *hw_desc;
1004         struct axi_dma_desc *desc;
1005         struct virt_dma_desc *vd;
1006         unsigned long flags;
1007         u64 llp;
1008         int i;
1009
1010         spin_lock_irqsave(&chan->vc.lock, flags);
1011         if (unlikely(axi_chan_is_hw_enable(chan))) {
1012                 dev_err(chan2dev(chan), "BUG: %s caught DWAXIDMAC_IRQ_DMA_TRF, but channel not idle!\n",
1013                         axi_chan_name(chan));
1014                 axi_chan_disable(chan);
1015         }
1016
1017         /* The completed descriptor currently is in the head of vc list */
1018         vd = vchan_next_desc(&chan->vc);
1019
1020         if (chan->cyclic) {
1021                 desc = vd_to_axi_desc(vd);
1022                 if (desc) {
1023                         llp = lo_hi_readq(chan->chan_regs + CH_LLP);
1024                         for (i = 0; i < count; i++) {
1025                                 hw_desc = &desc->hw_desc[i];
1026                                 if (hw_desc->llp == llp) {
1027                                         axi_chan_irq_clear(chan, hw_desc->lli->status_lo);
1028                                         hw_desc->lli->ctl_hi |= CH_CTL_H_LLI_VALID;
1029                                         desc->completed_blocks = i;
1030
1031                                         if (((hw_desc->len * (i + 1)) % desc->period_len) == 0)
1032                                                 vchan_cyclic_callback(vd);
1033                                         break;
1034                                 }
1035                         }
1036
1037                         axi_chan_enable(chan);
1038                 }
1039         } else {
1040                 /* Remove the completed descriptor from issued list before completing */
1041                 list_del(&vd->node);
1042                 vchan_cookie_complete(vd);
1043
1044                 /* Submit queued descriptors after processing the completed ones */
1045                 axi_chan_start_first_queued(chan);
1046         }
1047
1048         spin_unlock_irqrestore(&chan->vc.lock, flags);
1049 }
1050
1051 static irqreturn_t dw_axi_dma_interrupt(int irq, void *dev_id)
1052 {
1053         struct axi_dma_chip *chip = dev_id;
1054         struct dw_axi_dma *dw = chip->dw;
1055         struct axi_dma_chan *chan;
1056
1057         u32 status, i;
1058
1059         /* Disable DMAC inerrupts. We'll enable them after processing chanels */
1060         axi_dma_irq_disable(chip);
1061
1062         /* Poll, clear and process every chanel interrupt status */
1063         for (i = 0; i < dw->hdata->nr_channels; i++) {
1064                 chan = &dw->chan[i];
1065                 status = axi_chan_irq_read(chan);
1066                 axi_chan_irq_clear(chan, status);
1067
1068                 dev_vdbg(chip->dev, "%s %u IRQ status: 0x%08x\n",
1069                         axi_chan_name(chan), i, status);
1070
1071                 if (status & DWAXIDMAC_IRQ_ALL_ERR)
1072                         axi_chan_handle_err(chan, status);
1073                 else if (status & DWAXIDMAC_IRQ_DMA_TRF)
1074                         axi_chan_block_xfer_complete(chan);
1075         }
1076
1077         /* Re-enable interrupts */
1078         axi_dma_irq_enable(chip);
1079
1080         return IRQ_HANDLED;
1081 }
1082
1083 static int dma_chan_terminate_all(struct dma_chan *dchan)
1084 {
1085         struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
1086         u32 chan_active = BIT(chan->id) << DMAC_CHAN_EN_SHIFT;
1087         unsigned long flags;
1088         u32 val;
1089         int ret;
1090         LIST_HEAD(head);
1091
1092         axi_chan_disable(chan);
1093
1094         ret = readl_poll_timeout_atomic(chan->chip->regs + DMAC_CHEN, val,
1095                                         !(val & chan_active), 1000, 10000);
1096         if (ret == -ETIMEDOUT)
1097                 dev_warn(dchan2dev(dchan),
1098                          "%s failed to stop\n", axi_chan_name(chan));
1099
1100         if (chan->direction != DMA_MEM_TO_MEM)
1101                 dw_axi_dma_set_hw_channel(chan->chip,
1102                                           chan->hw_handshake_num, false);
1103         if (chan->direction == DMA_MEM_TO_DEV)
1104                 dw_axi_dma_set_byte_halfword(chan, false);
1105
1106         spin_lock_irqsave(&chan->vc.lock, flags);
1107
1108         vchan_get_all_descriptors(&chan->vc, &head);
1109
1110         chan->cyclic = false;
1111         spin_unlock_irqrestore(&chan->vc.lock, flags);
1112
1113         vchan_dma_desc_free_list(&chan->vc, &head);
1114
1115         dev_vdbg(dchan2dev(dchan), "terminated: %s\n", axi_chan_name(chan));
1116
1117         return 0;
1118 }
1119
1120 static int dma_chan_pause(struct dma_chan *dchan)
1121 {
1122         struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
1123         unsigned long flags;
1124         unsigned int timeout = 20; /* timeout iterations */
1125         u32 val;
1126
1127         spin_lock_irqsave(&chan->vc.lock, flags);
1128
1129         val = axi_dma_ioread32(chan->chip, DMAC_CHEN);
1130         val |= BIT(chan->id) << DMAC_CHAN_SUSP_SHIFT |
1131                BIT(chan->id) << DMAC_CHAN_SUSP_WE_SHIFT;
1132         axi_dma_iowrite32(chan->chip, DMAC_CHEN, val);
1133
1134         do  {
1135                 if (axi_chan_irq_read(chan) & DWAXIDMAC_IRQ_SUSPENDED)
1136                         break;
1137
1138                 udelay(2);
1139         } while (--timeout);
1140
1141         axi_chan_irq_clear(chan, DWAXIDMAC_IRQ_SUSPENDED);
1142
1143         chan->is_paused = true;
1144
1145         spin_unlock_irqrestore(&chan->vc.lock, flags);
1146
1147         return timeout ? 0 : -EAGAIN;
1148 }
1149
1150 /* Called in chan locked context */
1151 static inline void axi_chan_resume(struct axi_dma_chan *chan)
1152 {
1153         u32 val;
1154
1155         val = axi_dma_ioread32(chan->chip, DMAC_CHEN);
1156         val &= ~(BIT(chan->id) << DMAC_CHAN_SUSP_SHIFT);
1157         val |=  (BIT(chan->id) << DMAC_CHAN_SUSP_WE_SHIFT);
1158         axi_dma_iowrite32(chan->chip, DMAC_CHEN, val);
1159
1160         chan->is_paused = false;
1161 }
1162
1163 static int dma_chan_resume(struct dma_chan *dchan)
1164 {
1165         struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
1166         unsigned long flags;
1167
1168         spin_lock_irqsave(&chan->vc.lock, flags);
1169
1170         if (chan->is_paused)
1171                 axi_chan_resume(chan);
1172
1173         spin_unlock_irqrestore(&chan->vc.lock, flags);
1174
1175         return 0;
1176 }
1177
1178 static int axi_dma_suspend(struct axi_dma_chip *chip)
1179 {
1180         axi_dma_irq_disable(chip);
1181         axi_dma_disable(chip);
1182
1183         clk_disable_unprepare(chip->core_clk);
1184         clk_disable_unprepare(chip->cfgr_clk);
1185
1186         return 0;
1187 }
1188
1189 static int axi_dma_resume(struct axi_dma_chip *chip)
1190 {
1191         int ret;
1192
1193         ret = clk_prepare_enable(chip->cfgr_clk);
1194         if (ret < 0)
1195                 return ret;
1196
1197         ret = clk_prepare_enable(chip->core_clk);
1198         if (ret < 0)
1199                 return ret;
1200
1201         axi_dma_enable(chip);
1202         axi_dma_irq_enable(chip);
1203
1204         return 0;
1205 }
1206
1207 static int __maybe_unused axi_dma_runtime_suspend(struct device *dev)
1208 {
1209         struct axi_dma_chip *chip = dev_get_drvdata(dev);
1210
1211         return axi_dma_suspend(chip);
1212 }
1213
1214 static int __maybe_unused axi_dma_runtime_resume(struct device *dev)
1215 {
1216         struct axi_dma_chip *chip = dev_get_drvdata(dev);
1217
1218         return axi_dma_resume(chip);
1219 }
1220
1221 static struct dma_chan *dw_axi_dma_of_xlate(struct of_phandle_args *dma_spec,
1222                                             struct of_dma *ofdma)
1223 {
1224         struct dw_axi_dma *dw = ofdma->of_dma_data;
1225         struct axi_dma_chan *chan;
1226         struct dma_chan *dchan;
1227
1228         dchan = dma_get_any_slave_channel(&dw->dma);
1229         if (!dchan)
1230                 return NULL;
1231
1232         chan = dchan_to_axi_dma_chan(dchan);
1233         chan->hw_handshake_num = dma_spec->args[0];
1234         return dchan;
1235 }
1236
1237 static int parse_device_properties(struct axi_dma_chip *chip)
1238 {
1239         struct device *dev = chip->dev;
1240         u32 tmp, carr[DMAC_MAX_CHANNELS];
1241         int ret;
1242
1243         ret = device_property_read_u32(dev, "dma-channels", &tmp);
1244         if (ret)
1245                 return ret;
1246         if (tmp == 0 || tmp > DMAC_MAX_CHANNELS)
1247                 return -EINVAL;
1248
1249         chip->dw->hdata->nr_channels = tmp;
1250
1251         ret = device_property_read_u32(dev, "snps,dma-masters", &tmp);
1252         if (ret)
1253                 return ret;
1254         if (tmp == 0 || tmp > DMAC_MAX_MASTERS)
1255                 return -EINVAL;
1256
1257         chip->dw->hdata->nr_masters = tmp;
1258
1259         ret = device_property_read_u32(dev, "snps,data-width", &tmp);
1260         if (ret)
1261                 return ret;
1262         if (tmp > DWAXIDMAC_TRANS_WIDTH_MAX)
1263                 return -EINVAL;
1264
1265         chip->dw->hdata->m_data_width = tmp;
1266
1267         ret = device_property_read_u32_array(dev, "snps,block-size", carr,
1268                                              chip->dw->hdata->nr_channels);
1269         if (ret)
1270                 return ret;
1271         for (tmp = 0; tmp < chip->dw->hdata->nr_channels; tmp++) {
1272                 if (carr[tmp] == 0 || carr[tmp] > DMAC_MAX_BLK_SIZE)
1273                         return -EINVAL;
1274
1275                 chip->dw->hdata->block_size[tmp] = carr[tmp];
1276         }
1277
1278         ret = device_property_read_u32_array(dev, "snps,priority", carr,
1279                                              chip->dw->hdata->nr_channels);
1280         if (ret)
1281                 return ret;
1282         /* Priority value must be programmed within [0:nr_channels-1] range */
1283         for (tmp = 0; tmp < chip->dw->hdata->nr_channels; tmp++) {
1284                 if (carr[tmp] >= chip->dw->hdata->nr_channels)
1285                         return -EINVAL;
1286
1287                 chip->dw->hdata->priority[tmp] = carr[tmp];
1288         }
1289
1290         /* axi-max-burst-len is optional property */
1291         ret = device_property_read_u32(dev, "snps,axi-max-burst-len", &tmp);
1292         if (!ret) {
1293                 if (tmp > DWAXIDMAC_ARWLEN_MAX + 1)
1294                         return -EINVAL;
1295                 if (tmp < DWAXIDMAC_ARWLEN_MIN + 1)
1296                         return -EINVAL;
1297
1298                 chip->dw->hdata->restrict_axi_burst_len = true;
1299                 chip->dw->hdata->axi_rw_burst_len = tmp - 1;
1300         }
1301
1302         return 0;
1303 }
1304
1305 static int dw_probe(struct platform_device *pdev)
1306 {
1307         struct device_node *node = pdev->dev.of_node;
1308         struct axi_dma_chip *chip;
1309         struct resource *mem;
1310         struct dw_axi_dma *dw;
1311         struct dw_axi_dma_hcfg *hdata;
1312         u32 i;
1313         int ret;
1314
1315         chip = devm_kzalloc(&pdev->dev, sizeof(*chip), GFP_KERNEL);
1316         if (!chip)
1317                 return -ENOMEM;
1318
1319         dw = devm_kzalloc(&pdev->dev, sizeof(*dw), GFP_KERNEL);
1320         if (!dw)
1321                 return -ENOMEM;
1322
1323         hdata = devm_kzalloc(&pdev->dev, sizeof(*hdata), GFP_KERNEL);
1324         if (!hdata)
1325                 return -ENOMEM;
1326
1327         chip->dw = dw;
1328         chip->dev = &pdev->dev;
1329         chip->dw->hdata = hdata;
1330
1331         chip->irq = platform_get_irq(pdev, 0);
1332         if (chip->irq < 0)
1333                 return chip->irq;
1334
1335         mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1336         chip->regs = devm_ioremap_resource(chip->dev, mem);
1337         if (IS_ERR(chip->regs))
1338                 return PTR_ERR(chip->regs);
1339
1340         if (of_device_is_compatible(node, "intel,kmb-axi-dma")) {
1341                 chip->apb_regs = devm_platform_ioremap_resource(pdev, 1);
1342                 if (IS_ERR(chip->apb_regs))
1343                         return PTR_ERR(chip->apb_regs);
1344         }
1345
1346         chip->core_clk = devm_clk_get(chip->dev, "core-clk");
1347         if (IS_ERR(chip->core_clk))
1348                 return PTR_ERR(chip->core_clk);
1349
1350         chip->cfgr_clk = devm_clk_get(chip->dev, "cfgr-clk");
1351         if (IS_ERR(chip->cfgr_clk))
1352                 return PTR_ERR(chip->cfgr_clk);
1353
1354         ret = parse_device_properties(chip);
1355         if (ret)
1356                 return ret;
1357
1358         dw->chan = devm_kcalloc(chip->dev, hdata->nr_channels,
1359                                 sizeof(*dw->chan), GFP_KERNEL);
1360         if (!dw->chan)
1361                 return -ENOMEM;
1362
1363         ret = devm_request_irq(chip->dev, chip->irq, dw_axi_dma_interrupt,
1364                                IRQF_SHARED, KBUILD_MODNAME, chip);
1365         if (ret)
1366                 return ret;
1367
1368
1369         INIT_LIST_HEAD(&dw->dma.channels);
1370         for (i = 0; i < hdata->nr_channels; i++) {
1371                 struct axi_dma_chan *chan = &dw->chan[i];
1372
1373                 chan->chip = chip;
1374                 chan->id = i;
1375                 chan->chan_regs = chip->regs + COMMON_REG_LEN + i * CHAN_REG_LEN;
1376                 atomic_set(&chan->descs_allocated, 0);
1377
1378                 chan->vc.desc_free = vchan_desc_put;
1379                 vchan_init(&chan->vc, &dw->dma);
1380         }
1381
1382         /* Set capabilities */
1383         dma_cap_set(DMA_MEMCPY, dw->dma.cap_mask);
1384         dma_cap_set(DMA_SLAVE, dw->dma.cap_mask);
1385         dma_cap_set(DMA_CYCLIC, dw->dma.cap_mask);
1386
1387         /* DMA capabilities */
1388         dw->dma.chancnt = hdata->nr_channels;
1389         dw->dma.src_addr_widths = AXI_DMA_BUSWIDTHS;
1390         dw->dma.dst_addr_widths = AXI_DMA_BUSWIDTHS;
1391         dw->dma.directions = BIT(DMA_MEM_TO_MEM);
1392         dw->dma.directions |= BIT(DMA_MEM_TO_DEV) | BIT(DMA_DEV_TO_MEM);
1393         dw->dma.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1394
1395         dw->dma.dev = chip->dev;
1396         dw->dma.device_tx_status = dma_chan_tx_status;
1397         dw->dma.device_issue_pending = dma_chan_issue_pending;
1398         dw->dma.device_terminate_all = dma_chan_terminate_all;
1399         dw->dma.device_pause = dma_chan_pause;
1400         dw->dma.device_resume = dma_chan_resume;
1401
1402         dw->dma.device_alloc_chan_resources = dma_chan_alloc_chan_resources;
1403         dw->dma.device_free_chan_resources = dma_chan_free_chan_resources;
1404
1405         dw->dma.device_prep_dma_memcpy = dma_chan_prep_dma_memcpy;
1406         dw->dma.device_synchronize = dw_axi_dma_synchronize;
1407         dw->dma.device_config = dw_axi_dma_chan_slave_config;
1408         dw->dma.device_prep_slave_sg = dw_axi_dma_chan_prep_slave_sg;
1409         dw->dma.device_prep_dma_cyclic = dw_axi_dma_chan_prep_cyclic;
1410
1411         /*
1412          * Synopsis DesignWare AxiDMA datasheet mentioned Maximum
1413          * supported blocks is 1024. Device register width is 4 bytes.
1414          * Therefore, set constraint to 1024 * 4.
1415          */
1416         dw->dma.dev->dma_parms = &dw->dma_parms;
1417         dma_set_max_seg_size(&pdev->dev, MAX_BLOCK_SIZE);
1418         platform_set_drvdata(pdev, chip);
1419
1420         pm_runtime_enable(chip->dev);
1421
1422         /*
1423          * We can't just call pm_runtime_get here instead of
1424          * pm_runtime_get_noresume + axi_dma_resume because we need
1425          * driver to work also without Runtime PM.
1426          */
1427         pm_runtime_get_noresume(chip->dev);
1428         ret = axi_dma_resume(chip);
1429         if (ret < 0)
1430                 goto err_pm_disable;
1431
1432         axi_dma_hw_init(chip);
1433
1434         pm_runtime_put(chip->dev);
1435
1436         ret = dmaenginem_async_device_register(&dw->dma);
1437         if (ret)
1438                 goto err_pm_disable;
1439
1440         /* Register with OF helpers for DMA lookups */
1441         ret = of_dma_controller_register(pdev->dev.of_node,
1442                                          dw_axi_dma_of_xlate, dw);
1443         if (ret < 0)
1444                 dev_warn(&pdev->dev,
1445                          "Failed to register OF DMA controller, fallback to MEM_TO_MEM mode\n");
1446
1447         dev_info(chip->dev, "DesignWare AXI DMA Controller, %d channels\n",
1448                  dw->hdata->nr_channels);
1449
1450         return 0;
1451
1452 err_pm_disable:
1453         pm_runtime_disable(chip->dev);
1454
1455         return ret;
1456 }
1457
1458 static int dw_remove(struct platform_device *pdev)
1459 {
1460         struct axi_dma_chip *chip = platform_get_drvdata(pdev);
1461         struct dw_axi_dma *dw = chip->dw;
1462         struct axi_dma_chan *chan, *_chan;
1463         u32 i;
1464
1465         /* Enable clk before accessing to registers */
1466         clk_prepare_enable(chip->cfgr_clk);
1467         clk_prepare_enable(chip->core_clk);
1468         axi_dma_irq_disable(chip);
1469         for (i = 0; i < dw->hdata->nr_channels; i++) {
1470                 axi_chan_disable(&chip->dw->chan[i]);
1471                 axi_chan_irq_disable(&chip->dw->chan[i], DWAXIDMAC_IRQ_ALL);
1472         }
1473         axi_dma_disable(chip);
1474
1475         pm_runtime_disable(chip->dev);
1476         axi_dma_suspend(chip);
1477
1478         devm_free_irq(chip->dev, chip->irq, chip);
1479
1480         of_dma_controller_free(chip->dev->of_node);
1481
1482         list_for_each_entry_safe(chan, _chan, &dw->dma.channels,
1483                         vc.chan.device_node) {
1484                 list_del(&chan->vc.chan.device_node);
1485                 tasklet_kill(&chan->vc.task);
1486         }
1487
1488         return 0;
1489 }
1490
1491 static const struct dev_pm_ops dw_axi_dma_pm_ops = {
1492         SET_RUNTIME_PM_OPS(axi_dma_runtime_suspend, axi_dma_runtime_resume, NULL)
1493 };
1494
1495 static const struct of_device_id dw_dma_of_id_table[] = {
1496         { .compatible = "snps,axi-dma-1.01a" },
1497         { .compatible = "intel,kmb-axi-dma" },
1498         {}
1499 };
1500 MODULE_DEVICE_TABLE(of, dw_dma_of_id_table);
1501
1502 static struct platform_driver dw_driver = {
1503         .probe          = dw_probe,
1504         .remove         = dw_remove,
1505         .driver = {
1506                 .name   = KBUILD_MODNAME,
1507                 .of_match_table = dw_dma_of_id_table,
1508                 .pm = &dw_axi_dma_pm_ops,
1509         },
1510 };
1511 module_platform_driver(dw_driver);
1512
1513 MODULE_LICENSE("GPL v2");
1514 MODULE_DESCRIPTION("Synopsys DesignWare AXI DMA Controller platform driver");
1515 MODULE_AUTHOR("Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com>");