Merge branch 'misc.namei' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[linux-2.6-microblaze.git] / drivers / dma / dw-axi-dmac / dw-axi-dmac-platform.c
1 // SPDX-License-Identifier:  GPL-2.0
2 // (C) 2017-2018 Synopsys, Inc. (www.synopsys.com)
3
4 /*
5  * Synopsys DesignWare AXI DMA Controller driver.
6  *
7  * Author: Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com>
8  */
9
10 #include <linux/bitops.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/dmaengine.h>
14 #include <linux/dmapool.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/err.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/iopoll.h>
20 #include <linux/io-64-nonatomic-lo-hi.h>
21 #include <linux/kernel.h>
22 #include <linux/module.h>
23 #include <linux/of.h>
24 #include <linux/of_dma.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/property.h>
28 #include <linux/slab.h>
29 #include <linux/types.h>
30
31 #include "dw-axi-dmac.h"
32 #include "../dmaengine.h"
33 #include "../virt-dma.h"
34
35 /*
36  * The set of bus widths supported by the DMA controller. DW AXI DMAC supports
37  * master data bus width up to 512 bits (for both AXI master interfaces), but
38  * it depends on IP block configurarion.
39  */
40 #define AXI_DMA_BUSWIDTHS                 \
41         (DMA_SLAVE_BUSWIDTH_1_BYTE      | \
42         DMA_SLAVE_BUSWIDTH_2_BYTES      | \
43         DMA_SLAVE_BUSWIDTH_4_BYTES      | \
44         DMA_SLAVE_BUSWIDTH_8_BYTES      | \
45         DMA_SLAVE_BUSWIDTH_16_BYTES     | \
46         DMA_SLAVE_BUSWIDTH_32_BYTES     | \
47         DMA_SLAVE_BUSWIDTH_64_BYTES)
48
49 static inline void
50 axi_dma_iowrite32(struct axi_dma_chip *chip, u32 reg, u32 val)
51 {
52         iowrite32(val, chip->regs + reg);
53 }
54
55 static inline u32 axi_dma_ioread32(struct axi_dma_chip *chip, u32 reg)
56 {
57         return ioread32(chip->regs + reg);
58 }
59
60 static inline void
61 axi_chan_iowrite32(struct axi_dma_chan *chan, u32 reg, u32 val)
62 {
63         iowrite32(val, chan->chan_regs + reg);
64 }
65
66 static inline u32 axi_chan_ioread32(struct axi_dma_chan *chan, u32 reg)
67 {
68         return ioread32(chan->chan_regs + reg);
69 }
70
71 static inline void
72 axi_chan_iowrite64(struct axi_dma_chan *chan, u32 reg, u64 val)
73 {
74         /*
75          * We split one 64 bit write for two 32 bit write as some HW doesn't
76          * support 64 bit access.
77          */
78         iowrite32(lower_32_bits(val), chan->chan_regs + reg);
79         iowrite32(upper_32_bits(val), chan->chan_regs + reg + 4);
80 }
81
82 static inline void axi_dma_disable(struct axi_dma_chip *chip)
83 {
84         u32 val;
85
86         val = axi_dma_ioread32(chip, DMAC_CFG);
87         val &= ~DMAC_EN_MASK;
88         axi_dma_iowrite32(chip, DMAC_CFG, val);
89 }
90
91 static inline void axi_dma_enable(struct axi_dma_chip *chip)
92 {
93         u32 val;
94
95         val = axi_dma_ioread32(chip, DMAC_CFG);
96         val |= DMAC_EN_MASK;
97         axi_dma_iowrite32(chip, DMAC_CFG, val);
98 }
99
100 static inline void axi_dma_irq_disable(struct axi_dma_chip *chip)
101 {
102         u32 val;
103
104         val = axi_dma_ioread32(chip, DMAC_CFG);
105         val &= ~INT_EN_MASK;
106         axi_dma_iowrite32(chip, DMAC_CFG, val);
107 }
108
109 static inline void axi_dma_irq_enable(struct axi_dma_chip *chip)
110 {
111         u32 val;
112
113         val = axi_dma_ioread32(chip, DMAC_CFG);
114         val |= INT_EN_MASK;
115         axi_dma_iowrite32(chip, DMAC_CFG, val);
116 }
117
118 static inline void axi_chan_irq_disable(struct axi_dma_chan *chan, u32 irq_mask)
119 {
120         u32 val;
121
122         if (likely(irq_mask == DWAXIDMAC_IRQ_ALL)) {
123                 axi_chan_iowrite32(chan, CH_INTSTATUS_ENA, DWAXIDMAC_IRQ_NONE);
124         } else {
125                 val = axi_chan_ioread32(chan, CH_INTSTATUS_ENA);
126                 val &= ~irq_mask;
127                 axi_chan_iowrite32(chan, CH_INTSTATUS_ENA, val);
128         }
129 }
130
131 static inline void axi_chan_irq_set(struct axi_dma_chan *chan, u32 irq_mask)
132 {
133         axi_chan_iowrite32(chan, CH_INTSTATUS_ENA, irq_mask);
134 }
135
136 static inline void axi_chan_irq_sig_set(struct axi_dma_chan *chan, u32 irq_mask)
137 {
138         axi_chan_iowrite32(chan, CH_INTSIGNAL_ENA, irq_mask);
139 }
140
141 static inline void axi_chan_irq_clear(struct axi_dma_chan *chan, u32 irq_mask)
142 {
143         axi_chan_iowrite32(chan, CH_INTCLEAR, irq_mask);
144 }
145
146 static inline u32 axi_chan_irq_read(struct axi_dma_chan *chan)
147 {
148         return axi_chan_ioread32(chan, CH_INTSTATUS);
149 }
150
151 static inline void axi_chan_disable(struct axi_dma_chan *chan)
152 {
153         u32 val;
154
155         val = axi_dma_ioread32(chan->chip, DMAC_CHEN);
156         val &= ~(BIT(chan->id) << DMAC_CHAN_EN_SHIFT);
157         val |=   BIT(chan->id) << DMAC_CHAN_EN_WE_SHIFT;
158         axi_dma_iowrite32(chan->chip, DMAC_CHEN, val);
159 }
160
161 static inline void axi_chan_enable(struct axi_dma_chan *chan)
162 {
163         u32 val;
164
165         val = axi_dma_ioread32(chan->chip, DMAC_CHEN);
166         val |= BIT(chan->id) << DMAC_CHAN_EN_SHIFT |
167                BIT(chan->id) << DMAC_CHAN_EN_WE_SHIFT;
168         axi_dma_iowrite32(chan->chip, DMAC_CHEN, val);
169 }
170
171 static inline bool axi_chan_is_hw_enable(struct axi_dma_chan *chan)
172 {
173         u32 val;
174
175         val = axi_dma_ioread32(chan->chip, DMAC_CHEN);
176
177         return !!(val & (BIT(chan->id) << DMAC_CHAN_EN_SHIFT));
178 }
179
180 static void axi_dma_hw_init(struct axi_dma_chip *chip)
181 {
182         u32 i;
183
184         for (i = 0; i < chip->dw->hdata->nr_channels; i++) {
185                 axi_chan_irq_disable(&chip->dw->chan[i], DWAXIDMAC_IRQ_ALL);
186                 axi_chan_disable(&chip->dw->chan[i]);
187         }
188 }
189
190 static u32 axi_chan_get_xfer_width(struct axi_dma_chan *chan, dma_addr_t src,
191                                    dma_addr_t dst, size_t len)
192 {
193         u32 max_width = chan->chip->dw->hdata->m_data_width;
194
195         return __ffs(src | dst | len | BIT(max_width));
196 }
197
198 static inline const char *axi_chan_name(struct axi_dma_chan *chan)
199 {
200         return dma_chan_name(&chan->vc.chan);
201 }
202
203 static struct axi_dma_desc *axi_desc_alloc(u32 num)
204 {
205         struct axi_dma_desc *desc;
206
207         desc = kzalloc(sizeof(*desc), GFP_NOWAIT);
208         if (!desc)
209                 return NULL;
210
211         desc->hw_desc = kcalloc(num, sizeof(*desc->hw_desc), GFP_NOWAIT);
212         if (!desc->hw_desc) {
213                 kfree(desc);
214                 return NULL;
215         }
216
217         return desc;
218 }
219
220 static struct axi_dma_lli *axi_desc_get(struct axi_dma_chan *chan,
221                                         dma_addr_t *addr)
222 {
223         struct axi_dma_lli *lli;
224         dma_addr_t phys;
225
226         lli = dma_pool_zalloc(chan->desc_pool, GFP_NOWAIT, &phys);
227         if (unlikely(!lli)) {
228                 dev_err(chan2dev(chan), "%s: not enough descriptors available\n",
229                         axi_chan_name(chan));
230                 return NULL;
231         }
232
233         atomic_inc(&chan->descs_allocated);
234         *addr = phys;
235
236         return lli;
237 }
238
239 static void axi_desc_put(struct axi_dma_desc *desc)
240 {
241         struct axi_dma_chan *chan = desc->chan;
242         int count = atomic_read(&chan->descs_allocated);
243         struct axi_dma_hw_desc *hw_desc;
244         int descs_put;
245
246         for (descs_put = 0; descs_put < count; descs_put++) {
247                 hw_desc = &desc->hw_desc[descs_put];
248                 dma_pool_free(chan->desc_pool, hw_desc->lli, hw_desc->llp);
249         }
250
251         kfree(desc->hw_desc);
252         kfree(desc);
253         atomic_sub(descs_put, &chan->descs_allocated);
254         dev_vdbg(chan2dev(chan), "%s: %d descs put, %d still allocated\n",
255                 axi_chan_name(chan), descs_put,
256                 atomic_read(&chan->descs_allocated));
257 }
258
259 static void vchan_desc_put(struct virt_dma_desc *vdesc)
260 {
261         axi_desc_put(vd_to_axi_desc(vdesc));
262 }
263
264 static enum dma_status
265 dma_chan_tx_status(struct dma_chan *dchan, dma_cookie_t cookie,
266                   struct dma_tx_state *txstate)
267 {
268         struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
269         struct virt_dma_desc *vdesc;
270         enum dma_status status;
271         u32 completed_length;
272         unsigned long flags;
273         u32 completed_blocks;
274         size_t bytes = 0;
275         u32 length;
276         u32 len;
277
278         status = dma_cookie_status(dchan, cookie, txstate);
279         if (status == DMA_COMPLETE || !txstate)
280                 return status;
281
282         spin_lock_irqsave(&chan->vc.lock, flags);
283
284         vdesc = vchan_find_desc(&chan->vc, cookie);
285         if (vdesc) {
286                 length = vd_to_axi_desc(vdesc)->length;
287                 completed_blocks = vd_to_axi_desc(vdesc)->completed_blocks;
288                 len = vd_to_axi_desc(vdesc)->hw_desc[0].len;
289                 completed_length = completed_blocks * len;
290                 bytes = length - completed_length;
291         } else {
292                 bytes = vd_to_axi_desc(vdesc)->length;
293         }
294
295         spin_unlock_irqrestore(&chan->vc.lock, flags);
296         dma_set_residue(txstate, bytes);
297
298         return status;
299 }
300
301 static void write_desc_llp(struct axi_dma_hw_desc *desc, dma_addr_t adr)
302 {
303         desc->lli->llp = cpu_to_le64(adr);
304 }
305
306 static void write_chan_llp(struct axi_dma_chan *chan, dma_addr_t adr)
307 {
308         axi_chan_iowrite64(chan, CH_LLP, adr);
309 }
310
311 static void dw_axi_dma_set_byte_halfword(struct axi_dma_chan *chan, bool set)
312 {
313         u32 offset = DMAC_APB_BYTE_WR_CH_EN;
314         u32 reg_width, val;
315
316         if (!chan->chip->apb_regs) {
317                 dev_dbg(chan->chip->dev, "apb_regs not initialized\n");
318                 return;
319         }
320
321         reg_width = __ffs(chan->config.dst_addr_width);
322         if (reg_width == DWAXIDMAC_TRANS_WIDTH_16)
323                 offset = DMAC_APB_HALFWORD_WR_CH_EN;
324
325         val = ioread32(chan->chip->apb_regs + offset);
326
327         if (set)
328                 val |= BIT(chan->id);
329         else
330                 val &= ~BIT(chan->id);
331
332         iowrite32(val, chan->chip->apb_regs + offset);
333 }
334 /* Called in chan locked context */
335 static void axi_chan_block_xfer_start(struct axi_dma_chan *chan,
336                                       struct axi_dma_desc *first)
337 {
338         u32 priority = chan->chip->dw->hdata->priority[chan->id];
339         u32 reg, irq_mask;
340         u8 lms = 0; /* Select AXI0 master for LLI fetching */
341
342         if (unlikely(axi_chan_is_hw_enable(chan))) {
343                 dev_err(chan2dev(chan), "%s is non-idle!\n",
344                         axi_chan_name(chan));
345
346                 return;
347         }
348
349         axi_dma_enable(chan->chip);
350
351         reg = (DWAXIDMAC_MBLK_TYPE_LL << CH_CFG_L_DST_MULTBLK_TYPE_POS |
352                DWAXIDMAC_MBLK_TYPE_LL << CH_CFG_L_SRC_MULTBLK_TYPE_POS);
353         axi_chan_iowrite32(chan, CH_CFG_L, reg);
354
355         reg = (DWAXIDMAC_TT_FC_MEM_TO_MEM_DMAC << CH_CFG_H_TT_FC_POS |
356                priority << CH_CFG_H_PRIORITY_POS |
357                DWAXIDMAC_HS_SEL_HW << CH_CFG_H_HS_SEL_DST_POS |
358                DWAXIDMAC_HS_SEL_HW << CH_CFG_H_HS_SEL_SRC_POS);
359         switch (chan->direction) {
360         case DMA_MEM_TO_DEV:
361                 dw_axi_dma_set_byte_halfword(chan, true);
362                 reg |= (chan->config.device_fc ?
363                         DWAXIDMAC_TT_FC_MEM_TO_PER_DST :
364                         DWAXIDMAC_TT_FC_MEM_TO_PER_DMAC)
365                         << CH_CFG_H_TT_FC_POS;
366                 if (chan->chip->apb_regs)
367                         reg |= (chan->id << CH_CFG_H_DST_PER_POS);
368                 break;
369         case DMA_DEV_TO_MEM:
370                 reg |= (chan->config.device_fc ?
371                         DWAXIDMAC_TT_FC_PER_TO_MEM_SRC :
372                         DWAXIDMAC_TT_FC_PER_TO_MEM_DMAC)
373                         << CH_CFG_H_TT_FC_POS;
374                 if (chan->chip->apb_regs)
375                         reg |= (chan->id << CH_CFG_H_SRC_PER_POS);
376                 break;
377         default:
378                 break;
379         }
380         axi_chan_iowrite32(chan, CH_CFG_H, reg);
381
382         write_chan_llp(chan, first->hw_desc[0].llp | lms);
383
384         irq_mask = DWAXIDMAC_IRQ_DMA_TRF | DWAXIDMAC_IRQ_ALL_ERR;
385         axi_chan_irq_sig_set(chan, irq_mask);
386
387         /* Generate 'suspend' status but don't generate interrupt */
388         irq_mask |= DWAXIDMAC_IRQ_SUSPENDED;
389         axi_chan_irq_set(chan, irq_mask);
390
391         axi_chan_enable(chan);
392 }
393
394 static void axi_chan_start_first_queued(struct axi_dma_chan *chan)
395 {
396         struct axi_dma_desc *desc;
397         struct virt_dma_desc *vd;
398
399         vd = vchan_next_desc(&chan->vc);
400         if (!vd)
401                 return;
402
403         desc = vd_to_axi_desc(vd);
404         dev_vdbg(chan2dev(chan), "%s: started %u\n", axi_chan_name(chan),
405                 vd->tx.cookie);
406         axi_chan_block_xfer_start(chan, desc);
407 }
408
409 static void dma_chan_issue_pending(struct dma_chan *dchan)
410 {
411         struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
412         unsigned long flags;
413
414         spin_lock_irqsave(&chan->vc.lock, flags);
415         if (vchan_issue_pending(&chan->vc))
416                 axi_chan_start_first_queued(chan);
417         spin_unlock_irqrestore(&chan->vc.lock, flags);
418 }
419
420 static void dw_axi_dma_synchronize(struct dma_chan *dchan)
421 {
422         struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
423
424         vchan_synchronize(&chan->vc);
425 }
426
427 static int dma_chan_alloc_chan_resources(struct dma_chan *dchan)
428 {
429         struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
430
431         /* ASSERT: channel is idle */
432         if (axi_chan_is_hw_enable(chan)) {
433                 dev_err(chan2dev(chan), "%s is non-idle!\n",
434                         axi_chan_name(chan));
435                 return -EBUSY;
436         }
437
438         /* LLI address must be aligned to a 64-byte boundary */
439         chan->desc_pool = dma_pool_create(dev_name(chan2dev(chan)),
440                                           chan->chip->dev,
441                                           sizeof(struct axi_dma_lli),
442                                           64, 0);
443         if (!chan->desc_pool) {
444                 dev_err(chan2dev(chan), "No memory for descriptors\n");
445                 return -ENOMEM;
446         }
447         dev_vdbg(dchan2dev(dchan), "%s: allocating\n", axi_chan_name(chan));
448
449         pm_runtime_get(chan->chip->dev);
450
451         return 0;
452 }
453
454 static void dma_chan_free_chan_resources(struct dma_chan *dchan)
455 {
456         struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
457
458         /* ASSERT: channel is idle */
459         if (axi_chan_is_hw_enable(chan))
460                 dev_err(dchan2dev(dchan), "%s is non-idle!\n",
461                         axi_chan_name(chan));
462
463         axi_chan_disable(chan);
464         axi_chan_irq_disable(chan, DWAXIDMAC_IRQ_ALL);
465
466         vchan_free_chan_resources(&chan->vc);
467
468         dma_pool_destroy(chan->desc_pool);
469         chan->desc_pool = NULL;
470         dev_vdbg(dchan2dev(dchan),
471                  "%s: free resources, descriptor still allocated: %u\n",
472                  axi_chan_name(chan), atomic_read(&chan->descs_allocated));
473
474         pm_runtime_put(chan->chip->dev);
475 }
476
477 static void dw_axi_dma_set_hw_channel(struct axi_dma_chan *chan, bool set)
478 {
479         struct axi_dma_chip *chip = chan->chip;
480         unsigned long reg_value, val;
481
482         if (!chip->apb_regs) {
483                 dev_err(chip->dev, "apb_regs not initialized\n");
484                 return;
485         }
486
487         /*
488          * An unused DMA channel has a default value of 0x3F.
489          * Lock the DMA channel by assign a handshake number to the channel.
490          * Unlock the DMA channel by assign 0x3F to the channel.
491          */
492         if (set)
493                 val = chan->hw_handshake_num;
494         else
495                 val = UNUSED_CHANNEL;
496
497         reg_value = lo_hi_readq(chip->apb_regs + DMAC_APB_HW_HS_SEL_0);
498
499         /* Channel is already allocated, set handshake as per channel ID */
500         /* 64 bit write should handle for 8 channels */
501
502         reg_value &= ~(DMA_APB_HS_SEL_MASK <<
503                         (chan->id * DMA_APB_HS_SEL_BIT_SIZE));
504         reg_value |= (val << (chan->id * DMA_APB_HS_SEL_BIT_SIZE));
505         lo_hi_writeq(reg_value, chip->apb_regs + DMAC_APB_HW_HS_SEL_0);
506
507         return;
508 }
509
510 /*
511  * If DW_axi_dmac sees CHx_CTL.ShadowReg_Or_LLI_Last bit of the fetched LLI
512  * as 1, it understands that the current block is the final block in the
513  * transfer and completes the DMA transfer operation at the end of current
514  * block transfer.
515  */
516 static void set_desc_last(struct axi_dma_hw_desc *desc)
517 {
518         u32 val;
519
520         val = le32_to_cpu(desc->lli->ctl_hi);
521         val |= CH_CTL_H_LLI_LAST;
522         desc->lli->ctl_hi = cpu_to_le32(val);
523 }
524
525 static void write_desc_sar(struct axi_dma_hw_desc *desc, dma_addr_t adr)
526 {
527         desc->lli->sar = cpu_to_le64(adr);
528 }
529
530 static void write_desc_dar(struct axi_dma_hw_desc *desc, dma_addr_t adr)
531 {
532         desc->lli->dar = cpu_to_le64(adr);
533 }
534
535 static void set_desc_src_master(struct axi_dma_hw_desc *desc)
536 {
537         u32 val;
538
539         /* Select AXI0 for source master */
540         val = le32_to_cpu(desc->lli->ctl_lo);
541         val &= ~CH_CTL_L_SRC_MAST;
542         desc->lli->ctl_lo = cpu_to_le32(val);
543 }
544
545 static void set_desc_dest_master(struct axi_dma_hw_desc *hw_desc,
546                                  struct axi_dma_desc *desc)
547 {
548         u32 val;
549
550         /* Select AXI1 for source master if available */
551         val = le32_to_cpu(hw_desc->lli->ctl_lo);
552         if (desc->chan->chip->dw->hdata->nr_masters > 1)
553                 val |= CH_CTL_L_DST_MAST;
554         else
555                 val &= ~CH_CTL_L_DST_MAST;
556
557         hw_desc->lli->ctl_lo = cpu_to_le32(val);
558 }
559
560 static int dw_axi_dma_set_hw_desc(struct axi_dma_chan *chan,
561                                   struct axi_dma_hw_desc *hw_desc,
562                                   dma_addr_t mem_addr, size_t len)
563 {
564         unsigned int data_width = BIT(chan->chip->dw->hdata->m_data_width);
565         unsigned int reg_width;
566         unsigned int mem_width;
567         dma_addr_t device_addr;
568         size_t axi_block_ts;
569         size_t block_ts;
570         u32 ctllo, ctlhi;
571         u32 burst_len;
572
573         axi_block_ts = chan->chip->dw->hdata->block_size[chan->id];
574
575         mem_width = __ffs(data_width | mem_addr | len);
576         if (mem_width > DWAXIDMAC_TRANS_WIDTH_32)
577                 mem_width = DWAXIDMAC_TRANS_WIDTH_32;
578
579         if (!IS_ALIGNED(mem_addr, 4)) {
580                 dev_err(chan->chip->dev, "invalid buffer alignment\n");
581                 return -EINVAL;
582         }
583
584         switch (chan->direction) {
585         case DMA_MEM_TO_DEV:
586                 reg_width = __ffs(chan->config.dst_addr_width);
587                 device_addr = chan->config.dst_addr;
588                 ctllo = reg_width << CH_CTL_L_DST_WIDTH_POS |
589                         mem_width << CH_CTL_L_SRC_WIDTH_POS |
590                         DWAXIDMAC_CH_CTL_L_NOINC << CH_CTL_L_DST_INC_POS |
591                         DWAXIDMAC_CH_CTL_L_INC << CH_CTL_L_SRC_INC_POS;
592                 block_ts = len >> mem_width;
593                 break;
594         case DMA_DEV_TO_MEM:
595                 reg_width = __ffs(chan->config.src_addr_width);
596                 device_addr = chan->config.src_addr;
597                 ctllo = reg_width << CH_CTL_L_SRC_WIDTH_POS |
598                         mem_width << CH_CTL_L_DST_WIDTH_POS |
599                         DWAXIDMAC_CH_CTL_L_INC << CH_CTL_L_DST_INC_POS |
600                         DWAXIDMAC_CH_CTL_L_NOINC << CH_CTL_L_SRC_INC_POS;
601                 block_ts = len >> reg_width;
602                 break;
603         default:
604                 return -EINVAL;
605         }
606
607         if (block_ts > axi_block_ts)
608                 return -EINVAL;
609
610         hw_desc->lli = axi_desc_get(chan, &hw_desc->llp);
611         if (unlikely(!hw_desc->lli))
612                 return -ENOMEM;
613
614         ctlhi = CH_CTL_H_LLI_VALID;
615
616         if (chan->chip->dw->hdata->restrict_axi_burst_len) {
617                 burst_len = chan->chip->dw->hdata->axi_rw_burst_len;
618                 ctlhi |= CH_CTL_H_ARLEN_EN | CH_CTL_H_AWLEN_EN |
619                          burst_len << CH_CTL_H_ARLEN_POS |
620                          burst_len << CH_CTL_H_AWLEN_POS;
621         }
622
623         hw_desc->lli->ctl_hi = cpu_to_le32(ctlhi);
624
625         if (chan->direction == DMA_MEM_TO_DEV) {
626                 write_desc_sar(hw_desc, mem_addr);
627                 write_desc_dar(hw_desc, device_addr);
628         } else {
629                 write_desc_sar(hw_desc, device_addr);
630                 write_desc_dar(hw_desc, mem_addr);
631         }
632
633         hw_desc->lli->block_ts_lo = cpu_to_le32(block_ts - 1);
634
635         ctllo |= DWAXIDMAC_BURST_TRANS_LEN_4 << CH_CTL_L_DST_MSIZE_POS |
636                  DWAXIDMAC_BURST_TRANS_LEN_4 << CH_CTL_L_SRC_MSIZE_POS;
637         hw_desc->lli->ctl_lo = cpu_to_le32(ctllo);
638
639         set_desc_src_master(hw_desc);
640
641         hw_desc->len = len;
642         return 0;
643 }
644
645 static size_t calculate_block_len(struct axi_dma_chan *chan,
646                                   dma_addr_t dma_addr, size_t buf_len,
647                                   enum dma_transfer_direction direction)
648 {
649         u32 data_width, reg_width, mem_width;
650         size_t axi_block_ts, block_len;
651
652         axi_block_ts = chan->chip->dw->hdata->block_size[chan->id];
653
654         switch (direction) {
655         case DMA_MEM_TO_DEV:
656                 data_width = BIT(chan->chip->dw->hdata->m_data_width);
657                 mem_width = __ffs(data_width | dma_addr | buf_len);
658                 if (mem_width > DWAXIDMAC_TRANS_WIDTH_32)
659                         mem_width = DWAXIDMAC_TRANS_WIDTH_32;
660
661                 block_len = axi_block_ts << mem_width;
662                 break;
663         case DMA_DEV_TO_MEM:
664                 reg_width = __ffs(chan->config.src_addr_width);
665                 block_len = axi_block_ts << reg_width;
666                 break;
667         default:
668                 block_len = 0;
669         }
670
671         return block_len;
672 }
673
674 static struct dma_async_tx_descriptor *
675 dw_axi_dma_chan_prep_cyclic(struct dma_chan *dchan, dma_addr_t dma_addr,
676                             size_t buf_len, size_t period_len,
677                             enum dma_transfer_direction direction,
678                             unsigned long flags)
679 {
680         struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
681         struct axi_dma_hw_desc *hw_desc = NULL;
682         struct axi_dma_desc *desc = NULL;
683         dma_addr_t src_addr = dma_addr;
684         u32 num_periods, num_segments;
685         size_t axi_block_len;
686         u32 total_segments;
687         u32 segment_len;
688         unsigned int i;
689         int status;
690         u64 llp = 0;
691         u8 lms = 0; /* Select AXI0 master for LLI fetching */
692
693         num_periods = buf_len / period_len;
694
695         axi_block_len = calculate_block_len(chan, dma_addr, buf_len, direction);
696         if (axi_block_len == 0)
697                 return NULL;
698
699         num_segments = DIV_ROUND_UP(period_len, axi_block_len);
700         segment_len = DIV_ROUND_UP(period_len, num_segments);
701
702         total_segments = num_periods * num_segments;
703
704         desc = axi_desc_alloc(total_segments);
705         if (unlikely(!desc))
706                 goto err_desc_get;
707
708         chan->direction = direction;
709         desc->chan = chan;
710         chan->cyclic = true;
711         desc->length = 0;
712         desc->period_len = period_len;
713
714         for (i = 0; i < total_segments; i++) {
715                 hw_desc = &desc->hw_desc[i];
716
717                 status = dw_axi_dma_set_hw_desc(chan, hw_desc, src_addr,
718                                                 segment_len);
719                 if (status < 0)
720                         goto err_desc_get;
721
722                 desc->length += hw_desc->len;
723                 /* Set end-of-link to the linked descriptor, so that cyclic
724                  * callback function can be triggered during interrupt.
725                  */
726                 set_desc_last(hw_desc);
727
728                 src_addr += segment_len;
729         }
730
731         llp = desc->hw_desc[0].llp;
732
733         /* Managed transfer list */
734         do {
735                 hw_desc = &desc->hw_desc[--total_segments];
736                 write_desc_llp(hw_desc, llp | lms);
737                 llp = hw_desc->llp;
738         } while (total_segments);
739
740         dw_axi_dma_set_hw_channel(chan, true);
741
742         return vchan_tx_prep(&chan->vc, &desc->vd, flags);
743
744 err_desc_get:
745         if (desc)
746                 axi_desc_put(desc);
747
748         return NULL;
749 }
750
751 static struct dma_async_tx_descriptor *
752 dw_axi_dma_chan_prep_slave_sg(struct dma_chan *dchan, struct scatterlist *sgl,
753                               unsigned int sg_len,
754                               enum dma_transfer_direction direction,
755                               unsigned long flags, void *context)
756 {
757         struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
758         struct axi_dma_hw_desc *hw_desc = NULL;
759         struct axi_dma_desc *desc = NULL;
760         u32 num_segments, segment_len;
761         unsigned int loop = 0;
762         struct scatterlist *sg;
763         size_t axi_block_len;
764         u32 len, num_sgs = 0;
765         unsigned int i;
766         dma_addr_t mem;
767         int status;
768         u64 llp = 0;
769         u8 lms = 0; /* Select AXI0 master for LLI fetching */
770
771         if (unlikely(!is_slave_direction(direction) || !sg_len))
772                 return NULL;
773
774         mem = sg_dma_address(sgl);
775         len = sg_dma_len(sgl);
776
777         axi_block_len = calculate_block_len(chan, mem, len, direction);
778         if (axi_block_len == 0)
779                 return NULL;
780
781         for_each_sg(sgl, sg, sg_len, i)
782                 num_sgs += DIV_ROUND_UP(sg_dma_len(sg), axi_block_len);
783
784         desc = axi_desc_alloc(num_sgs);
785         if (unlikely(!desc))
786                 goto err_desc_get;
787
788         desc->chan = chan;
789         desc->length = 0;
790         chan->direction = direction;
791
792         for_each_sg(sgl, sg, sg_len, i) {
793                 mem = sg_dma_address(sg);
794                 len = sg_dma_len(sg);
795                 num_segments = DIV_ROUND_UP(sg_dma_len(sg), axi_block_len);
796                 segment_len = DIV_ROUND_UP(sg_dma_len(sg), num_segments);
797
798                 do {
799                         hw_desc = &desc->hw_desc[loop++];
800                         status = dw_axi_dma_set_hw_desc(chan, hw_desc, mem, segment_len);
801                         if (status < 0)
802                                 goto err_desc_get;
803
804                         desc->length += hw_desc->len;
805                         len -= segment_len;
806                         mem += segment_len;
807                 } while (len >= segment_len);
808         }
809
810         /* Set end-of-link to the last link descriptor of list */
811         set_desc_last(&desc->hw_desc[num_sgs - 1]);
812
813         /* Managed transfer list */
814         do {
815                 hw_desc = &desc->hw_desc[--num_sgs];
816                 write_desc_llp(hw_desc, llp | lms);
817                 llp = hw_desc->llp;
818         } while (num_sgs);
819
820         dw_axi_dma_set_hw_channel(chan, true);
821
822         return vchan_tx_prep(&chan->vc, &desc->vd, flags);
823
824 err_desc_get:
825         if (desc)
826                 axi_desc_put(desc);
827
828         return NULL;
829 }
830
831 static struct dma_async_tx_descriptor *
832 dma_chan_prep_dma_memcpy(struct dma_chan *dchan, dma_addr_t dst_adr,
833                          dma_addr_t src_adr, size_t len, unsigned long flags)
834 {
835         struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
836         size_t block_ts, max_block_ts, xfer_len;
837         struct axi_dma_hw_desc *hw_desc = NULL;
838         struct axi_dma_desc *desc = NULL;
839         u32 xfer_width, reg, num;
840         u64 llp = 0;
841         u8 lms = 0; /* Select AXI0 master for LLI fetching */
842
843         dev_dbg(chan2dev(chan), "%s: memcpy: src: %pad dst: %pad length: %zd flags: %#lx",
844                 axi_chan_name(chan), &src_adr, &dst_adr, len, flags);
845
846         max_block_ts = chan->chip->dw->hdata->block_size[chan->id];
847         xfer_width = axi_chan_get_xfer_width(chan, src_adr, dst_adr, len);
848         num = DIV_ROUND_UP(len, max_block_ts << xfer_width);
849         desc = axi_desc_alloc(num);
850         if (unlikely(!desc))
851                 goto err_desc_get;
852
853         desc->chan = chan;
854         num = 0;
855         desc->length = 0;
856         while (len) {
857                 xfer_len = len;
858
859                 hw_desc = &desc->hw_desc[num];
860                 /*
861                  * Take care for the alignment.
862                  * Actually source and destination widths can be different, but
863                  * make them same to be simpler.
864                  */
865                 xfer_width = axi_chan_get_xfer_width(chan, src_adr, dst_adr, xfer_len);
866
867                 /*
868                  * block_ts indicates the total number of data of width
869                  * to be transferred in a DMA block transfer.
870                  * BLOCK_TS register should be set to block_ts - 1
871                  */
872                 block_ts = xfer_len >> xfer_width;
873                 if (block_ts > max_block_ts) {
874                         block_ts = max_block_ts;
875                         xfer_len = max_block_ts << xfer_width;
876                 }
877
878                 hw_desc->lli = axi_desc_get(chan, &hw_desc->llp);
879                 if (unlikely(!hw_desc->lli))
880                         goto err_desc_get;
881
882                 write_desc_sar(hw_desc, src_adr);
883                 write_desc_dar(hw_desc, dst_adr);
884                 hw_desc->lli->block_ts_lo = cpu_to_le32(block_ts - 1);
885
886                 reg = CH_CTL_H_LLI_VALID;
887                 if (chan->chip->dw->hdata->restrict_axi_burst_len) {
888                         u32 burst_len = chan->chip->dw->hdata->axi_rw_burst_len;
889
890                         reg |= (CH_CTL_H_ARLEN_EN |
891                                 burst_len << CH_CTL_H_ARLEN_POS |
892                                 CH_CTL_H_AWLEN_EN |
893                                 burst_len << CH_CTL_H_AWLEN_POS);
894                 }
895                 hw_desc->lli->ctl_hi = cpu_to_le32(reg);
896
897                 reg = (DWAXIDMAC_BURST_TRANS_LEN_4 << CH_CTL_L_DST_MSIZE_POS |
898                        DWAXIDMAC_BURST_TRANS_LEN_4 << CH_CTL_L_SRC_MSIZE_POS |
899                        xfer_width << CH_CTL_L_DST_WIDTH_POS |
900                        xfer_width << CH_CTL_L_SRC_WIDTH_POS |
901                        DWAXIDMAC_CH_CTL_L_INC << CH_CTL_L_DST_INC_POS |
902                        DWAXIDMAC_CH_CTL_L_INC << CH_CTL_L_SRC_INC_POS);
903                 hw_desc->lli->ctl_lo = cpu_to_le32(reg);
904
905                 set_desc_src_master(hw_desc);
906                 set_desc_dest_master(hw_desc, desc);
907
908                 hw_desc->len = xfer_len;
909                 desc->length += hw_desc->len;
910                 /* update the length and addresses for the next loop cycle */
911                 len -= xfer_len;
912                 dst_adr += xfer_len;
913                 src_adr += xfer_len;
914                 num++;
915         }
916
917         /* Set end-of-link to the last link descriptor of list */
918         set_desc_last(&desc->hw_desc[num - 1]);
919         /* Managed transfer list */
920         do {
921                 hw_desc = &desc->hw_desc[--num];
922                 write_desc_llp(hw_desc, llp | lms);
923                 llp = hw_desc->llp;
924         } while (num);
925
926         return vchan_tx_prep(&chan->vc, &desc->vd, flags);
927
928 err_desc_get:
929         if (desc)
930                 axi_desc_put(desc);
931         return NULL;
932 }
933
934 static int dw_axi_dma_chan_slave_config(struct dma_chan *dchan,
935                                         struct dma_slave_config *config)
936 {
937         struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
938
939         memcpy(&chan->config, config, sizeof(*config));
940
941         return 0;
942 }
943
944 static void axi_chan_dump_lli(struct axi_dma_chan *chan,
945                               struct axi_dma_hw_desc *desc)
946 {
947         dev_err(dchan2dev(&chan->vc.chan),
948                 "SAR: 0x%llx DAR: 0x%llx LLP: 0x%llx BTS 0x%x CTL: 0x%x:%08x",
949                 le64_to_cpu(desc->lli->sar),
950                 le64_to_cpu(desc->lli->dar),
951                 le64_to_cpu(desc->lli->llp),
952                 le32_to_cpu(desc->lli->block_ts_lo),
953                 le32_to_cpu(desc->lli->ctl_hi),
954                 le32_to_cpu(desc->lli->ctl_lo));
955 }
956
957 static void axi_chan_list_dump_lli(struct axi_dma_chan *chan,
958                                    struct axi_dma_desc *desc_head)
959 {
960         int count = atomic_read(&chan->descs_allocated);
961         int i;
962
963         for (i = 0; i < count; i++)
964                 axi_chan_dump_lli(chan, &desc_head->hw_desc[i]);
965 }
966
967 static noinline void axi_chan_handle_err(struct axi_dma_chan *chan, u32 status)
968 {
969         struct virt_dma_desc *vd;
970         unsigned long flags;
971
972         spin_lock_irqsave(&chan->vc.lock, flags);
973
974         axi_chan_disable(chan);
975
976         /* The bad descriptor currently is in the head of vc list */
977         vd = vchan_next_desc(&chan->vc);
978         /* Remove the completed descriptor from issued list */
979         list_del(&vd->node);
980
981         /* WARN about bad descriptor */
982         dev_err(chan2dev(chan),
983                 "Bad descriptor submitted for %s, cookie: %d, irq: 0x%08x\n",
984                 axi_chan_name(chan), vd->tx.cookie, status);
985         axi_chan_list_dump_lli(chan, vd_to_axi_desc(vd));
986
987         vchan_cookie_complete(vd);
988
989         /* Try to restart the controller */
990         axi_chan_start_first_queued(chan);
991
992         spin_unlock_irqrestore(&chan->vc.lock, flags);
993 }
994
995 static void axi_chan_block_xfer_complete(struct axi_dma_chan *chan)
996 {
997         int count = atomic_read(&chan->descs_allocated);
998         struct axi_dma_hw_desc *hw_desc;
999         struct axi_dma_desc *desc;
1000         struct virt_dma_desc *vd;
1001         unsigned long flags;
1002         u64 llp;
1003         int i;
1004
1005         spin_lock_irqsave(&chan->vc.lock, flags);
1006         if (unlikely(axi_chan_is_hw_enable(chan))) {
1007                 dev_err(chan2dev(chan), "BUG: %s caught DWAXIDMAC_IRQ_DMA_TRF, but channel not idle!\n",
1008                         axi_chan_name(chan));
1009                 axi_chan_disable(chan);
1010         }
1011
1012         /* The completed descriptor currently is in the head of vc list */
1013         vd = vchan_next_desc(&chan->vc);
1014
1015         if (chan->cyclic) {
1016                 desc = vd_to_axi_desc(vd);
1017                 if (desc) {
1018                         llp = lo_hi_readq(chan->chan_regs + CH_LLP);
1019                         for (i = 0; i < count; i++) {
1020                                 hw_desc = &desc->hw_desc[i];
1021                                 if (hw_desc->llp == llp) {
1022                                         axi_chan_irq_clear(chan, hw_desc->lli->status_lo);
1023                                         hw_desc->lli->ctl_hi |= CH_CTL_H_LLI_VALID;
1024                                         desc->completed_blocks = i;
1025
1026                                         if (((hw_desc->len * (i + 1)) % desc->period_len) == 0)
1027                                                 vchan_cyclic_callback(vd);
1028                                         break;
1029                                 }
1030                         }
1031
1032                         axi_chan_enable(chan);
1033                 }
1034         } else {
1035                 /* Remove the completed descriptor from issued list before completing */
1036                 list_del(&vd->node);
1037                 vchan_cookie_complete(vd);
1038
1039                 /* Submit queued descriptors after processing the completed ones */
1040                 axi_chan_start_first_queued(chan);
1041         }
1042
1043         spin_unlock_irqrestore(&chan->vc.lock, flags);
1044 }
1045
1046 static irqreturn_t dw_axi_dma_interrupt(int irq, void *dev_id)
1047 {
1048         struct axi_dma_chip *chip = dev_id;
1049         struct dw_axi_dma *dw = chip->dw;
1050         struct axi_dma_chan *chan;
1051
1052         u32 status, i;
1053
1054         /* Disable DMAC inerrupts. We'll enable them after processing chanels */
1055         axi_dma_irq_disable(chip);
1056
1057         /* Poll, clear and process every chanel interrupt status */
1058         for (i = 0; i < dw->hdata->nr_channels; i++) {
1059                 chan = &dw->chan[i];
1060                 status = axi_chan_irq_read(chan);
1061                 axi_chan_irq_clear(chan, status);
1062
1063                 dev_vdbg(chip->dev, "%s %u IRQ status: 0x%08x\n",
1064                         axi_chan_name(chan), i, status);
1065
1066                 if (status & DWAXIDMAC_IRQ_ALL_ERR)
1067                         axi_chan_handle_err(chan, status);
1068                 else if (status & DWAXIDMAC_IRQ_DMA_TRF)
1069                         axi_chan_block_xfer_complete(chan);
1070         }
1071
1072         /* Re-enable interrupts */
1073         axi_dma_irq_enable(chip);
1074
1075         return IRQ_HANDLED;
1076 }
1077
1078 static int dma_chan_terminate_all(struct dma_chan *dchan)
1079 {
1080         struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
1081         u32 chan_active = BIT(chan->id) << DMAC_CHAN_EN_SHIFT;
1082         unsigned long flags;
1083         u32 val;
1084         int ret;
1085         LIST_HEAD(head);
1086
1087         axi_chan_disable(chan);
1088
1089         ret = readl_poll_timeout_atomic(chan->chip->regs + DMAC_CHEN, val,
1090                                         !(val & chan_active), 1000, 10000);
1091         if (ret == -ETIMEDOUT)
1092                 dev_warn(dchan2dev(dchan),
1093                          "%s failed to stop\n", axi_chan_name(chan));
1094
1095         if (chan->direction != DMA_MEM_TO_MEM)
1096                 dw_axi_dma_set_hw_channel(chan, false);
1097         if (chan->direction == DMA_MEM_TO_DEV)
1098                 dw_axi_dma_set_byte_halfword(chan, false);
1099
1100         spin_lock_irqsave(&chan->vc.lock, flags);
1101
1102         vchan_get_all_descriptors(&chan->vc, &head);
1103
1104         chan->cyclic = false;
1105         spin_unlock_irqrestore(&chan->vc.lock, flags);
1106
1107         vchan_dma_desc_free_list(&chan->vc, &head);
1108
1109         dev_vdbg(dchan2dev(dchan), "terminated: %s\n", axi_chan_name(chan));
1110
1111         return 0;
1112 }
1113
1114 static int dma_chan_pause(struct dma_chan *dchan)
1115 {
1116         struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
1117         unsigned long flags;
1118         unsigned int timeout = 20; /* timeout iterations */
1119         u32 val;
1120
1121         spin_lock_irqsave(&chan->vc.lock, flags);
1122
1123         val = axi_dma_ioread32(chan->chip, DMAC_CHEN);
1124         val |= BIT(chan->id) << DMAC_CHAN_SUSP_SHIFT |
1125                BIT(chan->id) << DMAC_CHAN_SUSP_WE_SHIFT;
1126         axi_dma_iowrite32(chan->chip, DMAC_CHEN, val);
1127
1128         do  {
1129                 if (axi_chan_irq_read(chan) & DWAXIDMAC_IRQ_SUSPENDED)
1130                         break;
1131
1132                 udelay(2);
1133         } while (--timeout);
1134
1135         axi_chan_irq_clear(chan, DWAXIDMAC_IRQ_SUSPENDED);
1136
1137         chan->is_paused = true;
1138
1139         spin_unlock_irqrestore(&chan->vc.lock, flags);
1140
1141         return timeout ? 0 : -EAGAIN;
1142 }
1143
1144 /* Called in chan locked context */
1145 static inline void axi_chan_resume(struct axi_dma_chan *chan)
1146 {
1147         u32 val;
1148
1149         val = axi_dma_ioread32(chan->chip, DMAC_CHEN);
1150         val &= ~(BIT(chan->id) << DMAC_CHAN_SUSP_SHIFT);
1151         val |=  (BIT(chan->id) << DMAC_CHAN_SUSP_WE_SHIFT);
1152         axi_dma_iowrite32(chan->chip, DMAC_CHEN, val);
1153
1154         chan->is_paused = false;
1155 }
1156
1157 static int dma_chan_resume(struct dma_chan *dchan)
1158 {
1159         struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
1160         unsigned long flags;
1161
1162         spin_lock_irqsave(&chan->vc.lock, flags);
1163
1164         if (chan->is_paused)
1165                 axi_chan_resume(chan);
1166
1167         spin_unlock_irqrestore(&chan->vc.lock, flags);
1168
1169         return 0;
1170 }
1171
1172 static int axi_dma_suspend(struct axi_dma_chip *chip)
1173 {
1174         axi_dma_irq_disable(chip);
1175         axi_dma_disable(chip);
1176
1177         clk_disable_unprepare(chip->core_clk);
1178         clk_disable_unprepare(chip->cfgr_clk);
1179
1180         return 0;
1181 }
1182
1183 static int axi_dma_resume(struct axi_dma_chip *chip)
1184 {
1185         int ret;
1186
1187         ret = clk_prepare_enable(chip->cfgr_clk);
1188         if (ret < 0)
1189                 return ret;
1190
1191         ret = clk_prepare_enable(chip->core_clk);
1192         if (ret < 0)
1193                 return ret;
1194
1195         axi_dma_enable(chip);
1196         axi_dma_irq_enable(chip);
1197
1198         return 0;
1199 }
1200
1201 static int __maybe_unused axi_dma_runtime_suspend(struct device *dev)
1202 {
1203         struct axi_dma_chip *chip = dev_get_drvdata(dev);
1204
1205         return axi_dma_suspend(chip);
1206 }
1207
1208 static int __maybe_unused axi_dma_runtime_resume(struct device *dev)
1209 {
1210         struct axi_dma_chip *chip = dev_get_drvdata(dev);
1211
1212         return axi_dma_resume(chip);
1213 }
1214
1215 static struct dma_chan *dw_axi_dma_of_xlate(struct of_phandle_args *dma_spec,
1216                                             struct of_dma *ofdma)
1217 {
1218         struct dw_axi_dma *dw = ofdma->of_dma_data;
1219         struct axi_dma_chan *chan;
1220         struct dma_chan *dchan;
1221
1222         dchan = dma_get_any_slave_channel(&dw->dma);
1223         if (!dchan)
1224                 return NULL;
1225
1226         chan = dchan_to_axi_dma_chan(dchan);
1227         chan->hw_handshake_num = dma_spec->args[0];
1228         return dchan;
1229 }
1230
1231 static int parse_device_properties(struct axi_dma_chip *chip)
1232 {
1233         struct device *dev = chip->dev;
1234         u32 tmp, carr[DMAC_MAX_CHANNELS];
1235         int ret;
1236
1237         ret = device_property_read_u32(dev, "dma-channels", &tmp);
1238         if (ret)
1239                 return ret;
1240         if (tmp == 0 || tmp > DMAC_MAX_CHANNELS)
1241                 return -EINVAL;
1242
1243         chip->dw->hdata->nr_channels = tmp;
1244
1245         ret = device_property_read_u32(dev, "snps,dma-masters", &tmp);
1246         if (ret)
1247                 return ret;
1248         if (tmp == 0 || tmp > DMAC_MAX_MASTERS)
1249                 return -EINVAL;
1250
1251         chip->dw->hdata->nr_masters = tmp;
1252
1253         ret = device_property_read_u32(dev, "snps,data-width", &tmp);
1254         if (ret)
1255                 return ret;
1256         if (tmp > DWAXIDMAC_TRANS_WIDTH_MAX)
1257                 return -EINVAL;
1258
1259         chip->dw->hdata->m_data_width = tmp;
1260
1261         ret = device_property_read_u32_array(dev, "snps,block-size", carr,
1262                                              chip->dw->hdata->nr_channels);
1263         if (ret)
1264                 return ret;
1265         for (tmp = 0; tmp < chip->dw->hdata->nr_channels; tmp++) {
1266                 if (carr[tmp] == 0 || carr[tmp] > DMAC_MAX_BLK_SIZE)
1267                         return -EINVAL;
1268
1269                 chip->dw->hdata->block_size[tmp] = carr[tmp];
1270         }
1271
1272         ret = device_property_read_u32_array(dev, "snps,priority", carr,
1273                                              chip->dw->hdata->nr_channels);
1274         if (ret)
1275                 return ret;
1276         /* Priority value must be programmed within [0:nr_channels-1] range */
1277         for (tmp = 0; tmp < chip->dw->hdata->nr_channels; tmp++) {
1278                 if (carr[tmp] >= chip->dw->hdata->nr_channels)
1279                         return -EINVAL;
1280
1281                 chip->dw->hdata->priority[tmp] = carr[tmp];
1282         }
1283
1284         /* axi-max-burst-len is optional property */
1285         ret = device_property_read_u32(dev, "snps,axi-max-burst-len", &tmp);
1286         if (!ret) {
1287                 if (tmp > DWAXIDMAC_ARWLEN_MAX + 1)
1288                         return -EINVAL;
1289                 if (tmp < DWAXIDMAC_ARWLEN_MIN + 1)
1290                         return -EINVAL;
1291
1292                 chip->dw->hdata->restrict_axi_burst_len = true;
1293                 chip->dw->hdata->axi_rw_burst_len = tmp;
1294         }
1295
1296         return 0;
1297 }
1298
1299 static int dw_probe(struct platform_device *pdev)
1300 {
1301         struct device_node *node = pdev->dev.of_node;
1302         struct axi_dma_chip *chip;
1303         struct resource *mem;
1304         struct dw_axi_dma *dw;
1305         struct dw_axi_dma_hcfg *hdata;
1306         u32 i;
1307         int ret;
1308
1309         chip = devm_kzalloc(&pdev->dev, sizeof(*chip), GFP_KERNEL);
1310         if (!chip)
1311                 return -ENOMEM;
1312
1313         dw = devm_kzalloc(&pdev->dev, sizeof(*dw), GFP_KERNEL);
1314         if (!dw)
1315                 return -ENOMEM;
1316
1317         hdata = devm_kzalloc(&pdev->dev, sizeof(*hdata), GFP_KERNEL);
1318         if (!hdata)
1319                 return -ENOMEM;
1320
1321         chip->dw = dw;
1322         chip->dev = &pdev->dev;
1323         chip->dw->hdata = hdata;
1324
1325         chip->irq = platform_get_irq(pdev, 0);
1326         if (chip->irq < 0)
1327                 return chip->irq;
1328
1329         mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1330         chip->regs = devm_ioremap_resource(chip->dev, mem);
1331         if (IS_ERR(chip->regs))
1332                 return PTR_ERR(chip->regs);
1333
1334         if (of_device_is_compatible(node, "intel,kmb-axi-dma")) {
1335                 chip->apb_regs = devm_platform_ioremap_resource(pdev, 1);
1336                 if (IS_ERR(chip->apb_regs))
1337                         return PTR_ERR(chip->apb_regs);
1338         }
1339
1340         chip->core_clk = devm_clk_get(chip->dev, "core-clk");
1341         if (IS_ERR(chip->core_clk))
1342                 return PTR_ERR(chip->core_clk);
1343
1344         chip->cfgr_clk = devm_clk_get(chip->dev, "cfgr-clk");
1345         if (IS_ERR(chip->cfgr_clk))
1346                 return PTR_ERR(chip->cfgr_clk);
1347
1348         ret = parse_device_properties(chip);
1349         if (ret)
1350                 return ret;
1351
1352         dw->chan = devm_kcalloc(chip->dev, hdata->nr_channels,
1353                                 sizeof(*dw->chan), GFP_KERNEL);
1354         if (!dw->chan)
1355                 return -ENOMEM;
1356
1357         ret = devm_request_irq(chip->dev, chip->irq, dw_axi_dma_interrupt,
1358                                IRQF_SHARED, KBUILD_MODNAME, chip);
1359         if (ret)
1360                 return ret;
1361
1362         INIT_LIST_HEAD(&dw->dma.channels);
1363         for (i = 0; i < hdata->nr_channels; i++) {
1364                 struct axi_dma_chan *chan = &dw->chan[i];
1365
1366                 chan->chip = chip;
1367                 chan->id = i;
1368                 chan->chan_regs = chip->regs + COMMON_REG_LEN + i * CHAN_REG_LEN;
1369                 atomic_set(&chan->descs_allocated, 0);
1370
1371                 chan->vc.desc_free = vchan_desc_put;
1372                 vchan_init(&chan->vc, &dw->dma);
1373         }
1374
1375         /* Set capabilities */
1376         dma_cap_set(DMA_MEMCPY, dw->dma.cap_mask);
1377         dma_cap_set(DMA_SLAVE, dw->dma.cap_mask);
1378         dma_cap_set(DMA_CYCLIC, dw->dma.cap_mask);
1379
1380         /* DMA capabilities */
1381         dw->dma.chancnt = hdata->nr_channels;
1382         dw->dma.max_burst = hdata->axi_rw_burst_len;
1383         dw->dma.src_addr_widths = AXI_DMA_BUSWIDTHS;
1384         dw->dma.dst_addr_widths = AXI_DMA_BUSWIDTHS;
1385         dw->dma.directions = BIT(DMA_MEM_TO_MEM);
1386         dw->dma.directions |= BIT(DMA_MEM_TO_DEV) | BIT(DMA_DEV_TO_MEM);
1387         dw->dma.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1388
1389         dw->dma.dev = chip->dev;
1390         dw->dma.device_tx_status = dma_chan_tx_status;
1391         dw->dma.device_issue_pending = dma_chan_issue_pending;
1392         dw->dma.device_terminate_all = dma_chan_terminate_all;
1393         dw->dma.device_pause = dma_chan_pause;
1394         dw->dma.device_resume = dma_chan_resume;
1395
1396         dw->dma.device_alloc_chan_resources = dma_chan_alloc_chan_resources;
1397         dw->dma.device_free_chan_resources = dma_chan_free_chan_resources;
1398
1399         dw->dma.device_prep_dma_memcpy = dma_chan_prep_dma_memcpy;
1400         dw->dma.device_synchronize = dw_axi_dma_synchronize;
1401         dw->dma.device_config = dw_axi_dma_chan_slave_config;
1402         dw->dma.device_prep_slave_sg = dw_axi_dma_chan_prep_slave_sg;
1403         dw->dma.device_prep_dma_cyclic = dw_axi_dma_chan_prep_cyclic;
1404
1405         /*
1406          * Synopsis DesignWare AxiDMA datasheet mentioned Maximum
1407          * supported blocks is 1024. Device register width is 4 bytes.
1408          * Therefore, set constraint to 1024 * 4.
1409          */
1410         dw->dma.dev->dma_parms = &dw->dma_parms;
1411         dma_set_max_seg_size(&pdev->dev, MAX_BLOCK_SIZE);
1412         platform_set_drvdata(pdev, chip);
1413
1414         pm_runtime_enable(chip->dev);
1415
1416         /*
1417          * We can't just call pm_runtime_get here instead of
1418          * pm_runtime_get_noresume + axi_dma_resume because we need
1419          * driver to work also without Runtime PM.
1420          */
1421         pm_runtime_get_noresume(chip->dev);
1422         ret = axi_dma_resume(chip);
1423         if (ret < 0)
1424                 goto err_pm_disable;
1425
1426         axi_dma_hw_init(chip);
1427
1428         pm_runtime_put(chip->dev);
1429
1430         ret = dmaenginem_async_device_register(&dw->dma);
1431         if (ret)
1432                 goto err_pm_disable;
1433
1434         /* Register with OF helpers for DMA lookups */
1435         ret = of_dma_controller_register(pdev->dev.of_node,
1436                                          dw_axi_dma_of_xlate, dw);
1437         if (ret < 0)
1438                 dev_warn(&pdev->dev,
1439                          "Failed to register OF DMA controller, fallback to MEM_TO_MEM mode\n");
1440
1441         dev_info(chip->dev, "DesignWare AXI DMA Controller, %d channels\n",
1442                  dw->hdata->nr_channels);
1443
1444         return 0;
1445
1446 err_pm_disable:
1447         pm_runtime_disable(chip->dev);
1448
1449         return ret;
1450 }
1451
1452 static int dw_remove(struct platform_device *pdev)
1453 {
1454         struct axi_dma_chip *chip = platform_get_drvdata(pdev);
1455         struct dw_axi_dma *dw = chip->dw;
1456         struct axi_dma_chan *chan, *_chan;
1457         u32 i;
1458
1459         /* Enable clk before accessing to registers */
1460         clk_prepare_enable(chip->cfgr_clk);
1461         clk_prepare_enable(chip->core_clk);
1462         axi_dma_irq_disable(chip);
1463         for (i = 0; i < dw->hdata->nr_channels; i++) {
1464                 axi_chan_disable(&chip->dw->chan[i]);
1465                 axi_chan_irq_disable(&chip->dw->chan[i], DWAXIDMAC_IRQ_ALL);
1466         }
1467         axi_dma_disable(chip);
1468
1469         pm_runtime_disable(chip->dev);
1470         axi_dma_suspend(chip);
1471
1472         devm_free_irq(chip->dev, chip->irq, chip);
1473
1474         of_dma_controller_free(chip->dev->of_node);
1475
1476         list_for_each_entry_safe(chan, _chan, &dw->dma.channels,
1477                         vc.chan.device_node) {
1478                 list_del(&chan->vc.chan.device_node);
1479                 tasklet_kill(&chan->vc.task);
1480         }
1481
1482         return 0;
1483 }
1484
1485 static const struct dev_pm_ops dw_axi_dma_pm_ops = {
1486         SET_RUNTIME_PM_OPS(axi_dma_runtime_suspend, axi_dma_runtime_resume, NULL)
1487 };
1488
1489 static const struct of_device_id dw_dma_of_id_table[] = {
1490         { .compatible = "snps,axi-dma-1.01a" },
1491         { .compatible = "intel,kmb-axi-dma" },
1492         {}
1493 };
1494 MODULE_DEVICE_TABLE(of, dw_dma_of_id_table);
1495
1496 static struct platform_driver dw_driver = {
1497         .probe          = dw_probe,
1498         .remove         = dw_remove,
1499         .driver = {
1500                 .name   = KBUILD_MODNAME,
1501                 .of_match_table = dw_dma_of_id_table,
1502                 .pm = &dw_axi_dma_pm_ops,
1503         },
1504 };
1505 module_platform_driver(dw_driver);
1506
1507 MODULE_LICENSE("GPL v2");
1508 MODULE_DESCRIPTION("Synopsys DesignWare AXI DMA Controller platform driver");
1509 MODULE_AUTHOR("Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com>");