Merge tag 'defconfig-5.15' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[linux-2.6-microblaze.git] / drivers / cpufreq / intel_pstate.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * intel_pstate.c: Native P state management for Intel processors
4  *
5  * (C) Copyright 2012 Intel Corporation
6  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/module.h>
14 #include <linux/ktime.h>
15 #include <linux/hrtimer.h>
16 #include <linux/tick.h>
17 #include <linux/slab.h>
18 #include <linux/sched/cpufreq.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/sysfs.h>
23 #include <linux/types.h>
24 #include <linux/fs.h>
25 #include <linux/acpi.h>
26 #include <linux/vmalloc.h>
27 #include <linux/pm_qos.h>
28 #include <trace/events/power.h>
29
30 #include <asm/div64.h>
31 #include <asm/msr.h>
32 #include <asm/cpu_device_id.h>
33 #include <asm/cpufeature.h>
34 #include <asm/intel-family.h>
35 #include "../drivers/thermal/intel/thermal_interrupt.h"
36
37 #define INTEL_PSTATE_SAMPLING_INTERVAL  (10 * NSEC_PER_MSEC)
38
39 #define INTEL_CPUFREQ_TRANSITION_LATENCY        20000
40 #define INTEL_CPUFREQ_TRANSITION_DELAY_HWP      5000
41 #define INTEL_CPUFREQ_TRANSITION_DELAY          500
42
43 #ifdef CONFIG_ACPI
44 #include <acpi/processor.h>
45 #include <acpi/cppc_acpi.h>
46 #endif
47
48 #define FRAC_BITS 8
49 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
50 #define fp_toint(X) ((X) >> FRAC_BITS)
51
52 #define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))
53
54 #define EXT_BITS 6
55 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
56 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
57 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
58
59 static inline int32_t mul_fp(int32_t x, int32_t y)
60 {
61         return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
62 }
63
64 static inline int32_t div_fp(s64 x, s64 y)
65 {
66         return div64_s64((int64_t)x << FRAC_BITS, y);
67 }
68
69 static inline int ceiling_fp(int32_t x)
70 {
71         int mask, ret;
72
73         ret = fp_toint(x);
74         mask = (1 << FRAC_BITS) - 1;
75         if (x & mask)
76                 ret += 1;
77         return ret;
78 }
79
80 static inline u64 mul_ext_fp(u64 x, u64 y)
81 {
82         return (x * y) >> EXT_FRAC_BITS;
83 }
84
85 static inline u64 div_ext_fp(u64 x, u64 y)
86 {
87         return div64_u64(x << EXT_FRAC_BITS, y);
88 }
89
90 /**
91  * struct sample -      Store performance sample
92  * @core_avg_perf:      Ratio of APERF/MPERF which is the actual average
93  *                      performance during last sample period
94  * @busy_scaled:        Scaled busy value which is used to calculate next
95  *                      P state. This can be different than core_avg_perf
96  *                      to account for cpu idle period
97  * @aperf:              Difference of actual performance frequency clock count
98  *                      read from APERF MSR between last and current sample
99  * @mperf:              Difference of maximum performance frequency clock count
100  *                      read from MPERF MSR between last and current sample
101  * @tsc:                Difference of time stamp counter between last and
102  *                      current sample
103  * @time:               Current time from scheduler
104  *
105  * This structure is used in the cpudata structure to store performance sample
106  * data for choosing next P State.
107  */
108 struct sample {
109         int32_t core_avg_perf;
110         int32_t busy_scaled;
111         u64 aperf;
112         u64 mperf;
113         u64 tsc;
114         u64 time;
115 };
116
117 /**
118  * struct pstate_data - Store P state data
119  * @current_pstate:     Current requested P state
120  * @min_pstate:         Min P state possible for this platform
121  * @max_pstate:         Max P state possible for this platform
122  * @max_pstate_physical:This is physical Max P state for a processor
123  *                      This can be higher than the max_pstate which can
124  *                      be limited by platform thermal design power limits
125  * @perf_ctl_scaling:   PERF_CTL P-state to frequency scaling factor
126  * @scaling:            Scaling factor between performance and frequency
127  * @turbo_pstate:       Max Turbo P state possible for this platform
128  * @min_freq:           @min_pstate frequency in cpufreq units
129  * @max_freq:           @max_pstate frequency in cpufreq units
130  * @turbo_freq:         @turbo_pstate frequency in cpufreq units
131  *
132  * Stores the per cpu model P state limits and current P state.
133  */
134 struct pstate_data {
135         int     current_pstate;
136         int     min_pstate;
137         int     max_pstate;
138         int     max_pstate_physical;
139         int     perf_ctl_scaling;
140         int     scaling;
141         int     turbo_pstate;
142         unsigned int min_freq;
143         unsigned int max_freq;
144         unsigned int turbo_freq;
145 };
146
147 /**
148  * struct vid_data -    Stores voltage information data
149  * @min:                VID data for this platform corresponding to
150  *                      the lowest P state
151  * @max:                VID data corresponding to the highest P State.
152  * @turbo:              VID data for turbo P state
153  * @ratio:              Ratio of (vid max - vid min) /
154  *                      (max P state - Min P State)
155  *
156  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
157  * This data is used in Atom platforms, where in addition to target P state,
158  * the voltage data needs to be specified to select next P State.
159  */
160 struct vid_data {
161         int min;
162         int max;
163         int turbo;
164         int32_t ratio;
165 };
166
167 /**
168  * struct global_params - Global parameters, mostly tunable via sysfs.
169  * @no_turbo:           Whether or not to use turbo P-states.
170  * @turbo_disabled:     Whether or not turbo P-states are available at all,
171  *                      based on the MSR_IA32_MISC_ENABLE value and whether or
172  *                      not the maximum reported turbo P-state is different from
173  *                      the maximum reported non-turbo one.
174  * @turbo_disabled_mf:  The @turbo_disabled value reflected by cpuinfo.max_freq.
175  * @min_perf_pct:       Minimum capacity limit in percent of the maximum turbo
176  *                      P-state capacity.
177  * @max_perf_pct:       Maximum capacity limit in percent of the maximum turbo
178  *                      P-state capacity.
179  */
180 struct global_params {
181         bool no_turbo;
182         bool turbo_disabled;
183         bool turbo_disabled_mf;
184         int max_perf_pct;
185         int min_perf_pct;
186 };
187
188 /**
189  * struct cpudata -     Per CPU instance data storage
190  * @cpu:                CPU number for this instance data
191  * @policy:             CPUFreq policy value
192  * @update_util:        CPUFreq utility callback information
193  * @update_util_set:    CPUFreq utility callback is set
194  * @iowait_boost:       iowait-related boost fraction
195  * @last_update:        Time of the last update.
196  * @pstate:             Stores P state limits for this CPU
197  * @vid:                Stores VID limits for this CPU
198  * @last_sample_time:   Last Sample time
199  * @aperf_mperf_shift:  APERF vs MPERF counting frequency difference
200  * @prev_aperf:         Last APERF value read from APERF MSR
201  * @prev_mperf:         Last MPERF value read from MPERF MSR
202  * @prev_tsc:           Last timestamp counter (TSC) value
203  * @prev_cummulative_iowait: IO Wait time difference from last and
204  *                      current sample
205  * @sample:             Storage for storing last Sample data
206  * @min_perf_ratio:     Minimum capacity in terms of PERF or HWP ratios
207  * @max_perf_ratio:     Maximum capacity in terms of PERF or HWP ratios
208  * @acpi_perf_data:     Stores ACPI perf information read from _PSS
209  * @valid_pss_table:    Set to true for valid ACPI _PSS entries found
210  * @epp_powersave:      Last saved HWP energy performance preference
211  *                      (EPP) or energy performance bias (EPB),
212  *                      when policy switched to performance
213  * @epp_policy:         Last saved policy used to set EPP/EPB
214  * @epp_default:        Power on default HWP energy performance
215  *                      preference/bias
216  * @epp_cached          Cached HWP energy-performance preference value
217  * @hwp_req_cached:     Cached value of the last HWP Request MSR
218  * @hwp_cap_cached:     Cached value of the last HWP Capabilities MSR
219  * @last_io_update:     Last time when IO wake flag was set
220  * @sched_flags:        Store scheduler flags for possible cross CPU update
221  * @hwp_boost_min:      Last HWP boosted min performance
222  * @suspended:          Whether or not the driver has been suspended.
223  * @hwp_notify_work:    workqueue for HWP notifications.
224  *
225  * This structure stores per CPU instance data for all CPUs.
226  */
227 struct cpudata {
228         int cpu;
229
230         unsigned int policy;
231         struct update_util_data update_util;
232         bool   update_util_set;
233
234         struct pstate_data pstate;
235         struct vid_data vid;
236
237         u64     last_update;
238         u64     last_sample_time;
239         u64     aperf_mperf_shift;
240         u64     prev_aperf;
241         u64     prev_mperf;
242         u64     prev_tsc;
243         u64     prev_cummulative_iowait;
244         struct sample sample;
245         int32_t min_perf_ratio;
246         int32_t max_perf_ratio;
247 #ifdef CONFIG_ACPI
248         struct acpi_processor_performance acpi_perf_data;
249         bool valid_pss_table;
250 #endif
251         unsigned int iowait_boost;
252         s16 epp_powersave;
253         s16 epp_policy;
254         s16 epp_default;
255         s16 epp_cached;
256         u64 hwp_req_cached;
257         u64 hwp_cap_cached;
258         u64 last_io_update;
259         unsigned int sched_flags;
260         u32 hwp_boost_min;
261         bool suspended;
262         struct delayed_work hwp_notify_work;
263 };
264
265 static struct cpudata **all_cpu_data;
266
267 /**
268  * struct pstate_funcs - Per CPU model specific callbacks
269  * @get_max:            Callback to get maximum non turbo effective P state
270  * @get_max_physical:   Callback to get maximum non turbo physical P state
271  * @get_min:            Callback to get minimum P state
272  * @get_turbo:          Callback to get turbo P state
273  * @get_scaling:        Callback to get frequency scaling factor
274  * @get_aperf_mperf_shift: Callback to get the APERF vs MPERF frequency difference
275  * @get_val:            Callback to convert P state to actual MSR write value
276  * @get_vid:            Callback to get VID data for Atom platforms
277  *
278  * Core and Atom CPU models have different way to get P State limits. This
279  * structure is used to store those callbacks.
280  */
281 struct pstate_funcs {
282         int (*get_max)(void);
283         int (*get_max_physical)(void);
284         int (*get_min)(void);
285         int (*get_turbo)(void);
286         int (*get_scaling)(void);
287         int (*get_aperf_mperf_shift)(void);
288         u64 (*get_val)(struct cpudata*, int pstate);
289         void (*get_vid)(struct cpudata *);
290 };
291
292 static struct pstate_funcs pstate_funcs __read_mostly;
293
294 static int hwp_active __read_mostly;
295 static int hwp_mode_bdw __read_mostly;
296 static bool per_cpu_limits __read_mostly;
297 static bool hwp_boost __read_mostly;
298
299 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
300
301 #ifdef CONFIG_ACPI
302 static bool acpi_ppc;
303 #endif
304
305 static struct global_params global;
306
307 static DEFINE_MUTEX(intel_pstate_driver_lock);
308 static DEFINE_MUTEX(intel_pstate_limits_lock);
309
310 #ifdef CONFIG_ACPI
311
312 static bool intel_pstate_acpi_pm_profile_server(void)
313 {
314         if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
315             acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
316                 return true;
317
318         return false;
319 }
320
321 static bool intel_pstate_get_ppc_enable_status(void)
322 {
323         if (intel_pstate_acpi_pm_profile_server())
324                 return true;
325
326         return acpi_ppc;
327 }
328
329 #ifdef CONFIG_ACPI_CPPC_LIB
330
331 /* The work item is needed to avoid CPU hotplug locking issues */
332 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
333 {
334         sched_set_itmt_support();
335 }
336
337 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
338
339 static void intel_pstate_set_itmt_prio(int cpu)
340 {
341         struct cppc_perf_caps cppc_perf;
342         static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
343         int ret;
344
345         ret = cppc_get_perf_caps(cpu, &cppc_perf);
346         if (ret)
347                 return;
348
349         /*
350          * The priorities can be set regardless of whether or not
351          * sched_set_itmt_support(true) has been called and it is valid to
352          * update them at any time after it has been called.
353          */
354         sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
355
356         if (max_highest_perf <= min_highest_perf) {
357                 if (cppc_perf.highest_perf > max_highest_perf)
358                         max_highest_perf = cppc_perf.highest_perf;
359
360                 if (cppc_perf.highest_perf < min_highest_perf)
361                         min_highest_perf = cppc_perf.highest_perf;
362
363                 if (max_highest_perf > min_highest_perf) {
364                         /*
365                          * This code can be run during CPU online under the
366                          * CPU hotplug locks, so sched_set_itmt_support()
367                          * cannot be called from here.  Queue up a work item
368                          * to invoke it.
369                          */
370                         schedule_work(&sched_itmt_work);
371                 }
372         }
373 }
374
375 static int intel_pstate_get_cppc_guaranteed(int cpu)
376 {
377         struct cppc_perf_caps cppc_perf;
378         int ret;
379
380         ret = cppc_get_perf_caps(cpu, &cppc_perf);
381         if (ret)
382                 return ret;
383
384         if (cppc_perf.guaranteed_perf)
385                 return cppc_perf.guaranteed_perf;
386
387         return cppc_perf.nominal_perf;
388 }
389
390 #else /* CONFIG_ACPI_CPPC_LIB */
391 static inline void intel_pstate_set_itmt_prio(int cpu)
392 {
393 }
394 #endif /* CONFIG_ACPI_CPPC_LIB */
395
396 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
397 {
398         struct cpudata *cpu;
399         int ret;
400         int i;
401
402         if (hwp_active) {
403                 intel_pstate_set_itmt_prio(policy->cpu);
404                 return;
405         }
406
407         if (!intel_pstate_get_ppc_enable_status())
408                 return;
409
410         cpu = all_cpu_data[policy->cpu];
411
412         ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
413                                                   policy->cpu);
414         if (ret)
415                 return;
416
417         /*
418          * Check if the control value in _PSS is for PERF_CTL MSR, which should
419          * guarantee that the states returned by it map to the states in our
420          * list directly.
421          */
422         if (cpu->acpi_perf_data.control_register.space_id !=
423                                                 ACPI_ADR_SPACE_FIXED_HARDWARE)
424                 goto err;
425
426         /*
427          * If there is only one entry _PSS, simply ignore _PSS and continue as
428          * usual without taking _PSS into account
429          */
430         if (cpu->acpi_perf_data.state_count < 2)
431                 goto err;
432
433         pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
434         for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
435                 pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
436                          (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
437                          (u32) cpu->acpi_perf_data.states[i].core_frequency,
438                          (u32) cpu->acpi_perf_data.states[i].power,
439                          (u32) cpu->acpi_perf_data.states[i].control);
440         }
441
442         /*
443          * The _PSS table doesn't contain whole turbo frequency range.
444          * This just contains +1 MHZ above the max non turbo frequency,
445          * with control value corresponding to max turbo ratio. But
446          * when cpufreq set policy is called, it will call with this
447          * max frequency, which will cause a reduced performance as
448          * this driver uses real max turbo frequency as the max
449          * frequency. So correct this frequency in _PSS table to
450          * correct max turbo frequency based on the turbo state.
451          * Also need to convert to MHz as _PSS freq is in MHz.
452          */
453         if (!global.turbo_disabled)
454                 cpu->acpi_perf_data.states[0].core_frequency =
455                                         policy->cpuinfo.max_freq / 1000;
456         cpu->valid_pss_table = true;
457         pr_debug("_PPC limits will be enforced\n");
458
459         return;
460
461  err:
462         cpu->valid_pss_table = false;
463         acpi_processor_unregister_performance(policy->cpu);
464 }
465
466 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
467 {
468         struct cpudata *cpu;
469
470         cpu = all_cpu_data[policy->cpu];
471         if (!cpu->valid_pss_table)
472                 return;
473
474         acpi_processor_unregister_performance(policy->cpu);
475 }
476
477 static bool intel_pstate_cppc_perf_valid(u32 perf, struct cppc_perf_caps *caps)
478 {
479         return perf && perf <= caps->highest_perf && perf >= caps->lowest_perf;
480 }
481
482 static bool intel_pstate_cppc_perf_caps(struct cpudata *cpu,
483                                         struct cppc_perf_caps *caps)
484 {
485         if (cppc_get_perf_caps(cpu->cpu, caps))
486                 return false;
487
488         return caps->highest_perf && caps->lowest_perf <= caps->highest_perf;
489 }
490 #else /* CONFIG_ACPI */
491 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
492 {
493 }
494
495 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
496 {
497 }
498
499 static inline bool intel_pstate_acpi_pm_profile_server(void)
500 {
501         return false;
502 }
503 #endif /* CONFIG_ACPI */
504
505 #ifndef CONFIG_ACPI_CPPC_LIB
506 static inline int intel_pstate_get_cppc_guaranteed(int cpu)
507 {
508         return -ENOTSUPP;
509 }
510 #endif /* CONFIG_ACPI_CPPC_LIB */
511
512 static void intel_pstate_hybrid_hwp_perf_ctl_parity(struct cpudata *cpu)
513 {
514         pr_debug("CPU%d: Using PERF_CTL scaling for HWP\n", cpu->cpu);
515
516         cpu->pstate.scaling = cpu->pstate.perf_ctl_scaling;
517 }
518
519 /**
520  * intel_pstate_hybrid_hwp_calibrate - Calibrate HWP performance levels.
521  * @cpu: Target CPU.
522  *
523  * On hybrid processors, HWP may expose more performance levels than there are
524  * P-states accessible through the PERF_CTL interface.  If that happens, the
525  * scaling factor between HWP performance levels and CPU frequency will be less
526  * than the scaling factor between P-state values and CPU frequency.
527  *
528  * In that case, the scaling factor between HWP performance levels and CPU
529  * frequency needs to be determined which can be done with the help of the
530  * observation that certain HWP performance levels should correspond to certain
531  * P-states, like for example the HWP highest performance should correspond
532  * to the maximum turbo P-state of the CPU.
533  */
534 static void intel_pstate_hybrid_hwp_calibrate(struct cpudata *cpu)
535 {
536         int perf_ctl_max_phys = cpu->pstate.max_pstate_physical;
537         int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
538         int perf_ctl_turbo = pstate_funcs.get_turbo();
539         int turbo_freq = perf_ctl_turbo * perf_ctl_scaling;
540         int perf_ctl_max = pstate_funcs.get_max();
541         int max_freq = perf_ctl_max * perf_ctl_scaling;
542         int scaling = INT_MAX;
543         int freq;
544
545         pr_debug("CPU%d: perf_ctl_max_phys = %d\n", cpu->cpu, perf_ctl_max_phys);
546         pr_debug("CPU%d: perf_ctl_max = %d\n", cpu->cpu, perf_ctl_max);
547         pr_debug("CPU%d: perf_ctl_turbo = %d\n", cpu->cpu, perf_ctl_turbo);
548         pr_debug("CPU%d: perf_ctl_scaling = %d\n", cpu->cpu, perf_ctl_scaling);
549
550         pr_debug("CPU%d: HWP_CAP guaranteed = %d\n", cpu->cpu, cpu->pstate.max_pstate);
551         pr_debug("CPU%d: HWP_CAP highest = %d\n", cpu->cpu, cpu->pstate.turbo_pstate);
552
553 #ifdef CONFIG_ACPI
554         if (IS_ENABLED(CONFIG_ACPI_CPPC_LIB)) {
555                 struct cppc_perf_caps caps;
556
557                 if (intel_pstate_cppc_perf_caps(cpu, &caps)) {
558                         if (intel_pstate_cppc_perf_valid(caps.nominal_perf, &caps)) {
559                                 pr_debug("CPU%d: Using CPPC nominal\n", cpu->cpu);
560
561                                 /*
562                                  * If the CPPC nominal performance is valid, it
563                                  * can be assumed to correspond to cpu_khz.
564                                  */
565                                 if (caps.nominal_perf == perf_ctl_max_phys) {
566                                         intel_pstate_hybrid_hwp_perf_ctl_parity(cpu);
567                                         return;
568                                 }
569                                 scaling = DIV_ROUND_UP(cpu_khz, caps.nominal_perf);
570                         } else if (intel_pstate_cppc_perf_valid(caps.guaranteed_perf, &caps)) {
571                                 pr_debug("CPU%d: Using CPPC guaranteed\n", cpu->cpu);
572
573                                 /*
574                                  * If the CPPC guaranteed performance is valid,
575                                  * it can be assumed to correspond to max_freq.
576                                  */
577                                 if (caps.guaranteed_perf == perf_ctl_max) {
578                                         intel_pstate_hybrid_hwp_perf_ctl_parity(cpu);
579                                         return;
580                                 }
581                                 scaling = DIV_ROUND_UP(max_freq, caps.guaranteed_perf);
582                         }
583                 }
584         }
585 #endif
586         /*
587          * If using the CPPC data to compute the HWP-to-frequency scaling factor
588          * doesn't work, use the HWP_CAP gauranteed perf for this purpose with
589          * the assumption that it corresponds to max_freq.
590          */
591         if (scaling > perf_ctl_scaling) {
592                 pr_debug("CPU%d: Using HWP_CAP guaranteed\n", cpu->cpu);
593
594                 if (cpu->pstate.max_pstate == perf_ctl_max) {
595                         intel_pstate_hybrid_hwp_perf_ctl_parity(cpu);
596                         return;
597                 }
598                 scaling = DIV_ROUND_UP(max_freq, cpu->pstate.max_pstate);
599                 if (scaling > perf_ctl_scaling) {
600                         /*
601                          * This should not happen, because it would mean that
602                          * the number of HWP perf levels was less than the
603                          * number of P-states, so use the PERF_CTL scaling in
604                          * that case.
605                          */
606                         pr_debug("CPU%d: scaling (%d) out of range\n", cpu->cpu,
607                                 scaling);
608
609                         intel_pstate_hybrid_hwp_perf_ctl_parity(cpu);
610                         return;
611                 }
612         }
613
614         /*
615          * If the product of the HWP performance scaling factor obtained above
616          * and the HWP_CAP highest performance is greater than the maximum turbo
617          * frequency corresponding to the pstate_funcs.get_turbo() return value,
618          * the scaling factor is too high, so recompute it so that the HWP_CAP
619          * highest performance corresponds to the maximum turbo frequency.
620          */
621         if (turbo_freq < cpu->pstate.turbo_pstate * scaling) {
622                 pr_debug("CPU%d: scaling too high (%d)\n", cpu->cpu, scaling);
623
624                 cpu->pstate.turbo_freq = turbo_freq;
625                 scaling = DIV_ROUND_UP(turbo_freq, cpu->pstate.turbo_pstate);
626         }
627
628         cpu->pstate.scaling = scaling;
629
630         pr_debug("CPU%d: HWP-to-frequency scaling factor: %d\n", cpu->cpu, scaling);
631
632         cpu->pstate.max_freq = rounddown(cpu->pstate.max_pstate * scaling,
633                                          perf_ctl_scaling);
634
635         freq = perf_ctl_max_phys * perf_ctl_scaling;
636         cpu->pstate.max_pstate_physical = DIV_ROUND_UP(freq, scaling);
637
638         cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling;
639         /*
640          * Cast the min P-state value retrieved via pstate_funcs.get_min() to
641          * the effective range of HWP performance levels.
642          */
643         cpu->pstate.min_pstate = DIV_ROUND_UP(cpu->pstate.min_freq, scaling);
644 }
645
646 static inline void update_turbo_state(void)
647 {
648         u64 misc_en;
649         struct cpudata *cpu;
650
651         cpu = all_cpu_data[0];
652         rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
653         global.turbo_disabled =
654                 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
655                  cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
656 }
657
658 static int min_perf_pct_min(void)
659 {
660         struct cpudata *cpu = all_cpu_data[0];
661         int turbo_pstate = cpu->pstate.turbo_pstate;
662
663         return turbo_pstate ?
664                 (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
665 }
666
667 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
668 {
669         u64 epb;
670         int ret;
671
672         if (!boot_cpu_has(X86_FEATURE_EPB))
673                 return -ENXIO;
674
675         ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
676         if (ret)
677                 return (s16)ret;
678
679         return (s16)(epb & 0x0f);
680 }
681
682 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
683 {
684         s16 epp;
685
686         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
687                 /*
688                  * When hwp_req_data is 0, means that caller didn't read
689                  * MSR_HWP_REQUEST, so need to read and get EPP.
690                  */
691                 if (!hwp_req_data) {
692                         epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
693                                             &hwp_req_data);
694                         if (epp)
695                                 return epp;
696                 }
697                 epp = (hwp_req_data >> 24) & 0xff;
698         } else {
699                 /* When there is no EPP present, HWP uses EPB settings */
700                 epp = intel_pstate_get_epb(cpu_data);
701         }
702
703         return epp;
704 }
705
706 static int intel_pstate_set_epb(int cpu, s16 pref)
707 {
708         u64 epb;
709         int ret;
710
711         if (!boot_cpu_has(X86_FEATURE_EPB))
712                 return -ENXIO;
713
714         ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
715         if (ret)
716                 return ret;
717
718         epb = (epb & ~0x0f) | pref;
719         wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
720
721         return 0;
722 }
723
724 /*
725  * EPP/EPB display strings corresponding to EPP index in the
726  * energy_perf_strings[]
727  *      index           String
728  *-------------------------------------
729  *      0               default
730  *      1               performance
731  *      2               balance_performance
732  *      3               balance_power
733  *      4               power
734  */
735 static const char * const energy_perf_strings[] = {
736         "default",
737         "performance",
738         "balance_performance",
739         "balance_power",
740         "power",
741         NULL
742 };
743 static const unsigned int epp_values[] = {
744         HWP_EPP_PERFORMANCE,
745         HWP_EPP_BALANCE_PERFORMANCE,
746         HWP_EPP_BALANCE_POWERSAVE,
747         HWP_EPP_POWERSAVE
748 };
749
750 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data, int *raw_epp)
751 {
752         s16 epp;
753         int index = -EINVAL;
754
755         *raw_epp = 0;
756         epp = intel_pstate_get_epp(cpu_data, 0);
757         if (epp < 0)
758                 return epp;
759
760         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
761                 if (epp == HWP_EPP_PERFORMANCE)
762                         return 1;
763                 if (epp == HWP_EPP_BALANCE_PERFORMANCE)
764                         return 2;
765                 if (epp == HWP_EPP_BALANCE_POWERSAVE)
766                         return 3;
767                 if (epp == HWP_EPP_POWERSAVE)
768                         return 4;
769                 *raw_epp = epp;
770                 return 0;
771         } else if (boot_cpu_has(X86_FEATURE_EPB)) {
772                 /*
773                  * Range:
774                  *      0x00-0x03       :       Performance
775                  *      0x04-0x07       :       Balance performance
776                  *      0x08-0x0B       :       Balance power
777                  *      0x0C-0x0F       :       Power
778                  * The EPB is a 4 bit value, but our ranges restrict the
779                  * value which can be set. Here only using top two bits
780                  * effectively.
781                  */
782                 index = (epp >> 2) + 1;
783         }
784
785         return index;
786 }
787
788 static int intel_pstate_set_epp(struct cpudata *cpu, u32 epp)
789 {
790         int ret;
791
792         /*
793          * Use the cached HWP Request MSR value, because in the active mode the
794          * register itself may be updated by intel_pstate_hwp_boost_up() or
795          * intel_pstate_hwp_boost_down() at any time.
796          */
797         u64 value = READ_ONCE(cpu->hwp_req_cached);
798
799         value &= ~GENMASK_ULL(31, 24);
800         value |= (u64)epp << 24;
801         /*
802          * The only other updater of hwp_req_cached in the active mode,
803          * intel_pstate_hwp_set(), is called under the same lock as this
804          * function, so it cannot run in parallel with the update below.
805          */
806         WRITE_ONCE(cpu->hwp_req_cached, value);
807         ret = wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
808         if (!ret)
809                 cpu->epp_cached = epp;
810
811         return ret;
812 }
813
814 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
815                                               int pref_index, bool use_raw,
816                                               u32 raw_epp)
817 {
818         int epp = -EINVAL;
819         int ret;
820
821         if (!pref_index)
822                 epp = cpu_data->epp_default;
823
824         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
825                 if (use_raw)
826                         epp = raw_epp;
827                 else if (epp == -EINVAL)
828                         epp = epp_values[pref_index - 1];
829
830                 /*
831                  * To avoid confusion, refuse to set EPP to any values different
832                  * from 0 (performance) if the current policy is "performance",
833                  * because those values would be overridden.
834                  */
835                 if (epp > 0 && cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
836                         return -EBUSY;
837
838                 ret = intel_pstate_set_epp(cpu_data, epp);
839         } else {
840                 if (epp == -EINVAL)
841                         epp = (pref_index - 1) << 2;
842                 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
843         }
844
845         return ret;
846 }
847
848 static ssize_t show_energy_performance_available_preferences(
849                                 struct cpufreq_policy *policy, char *buf)
850 {
851         int i = 0;
852         int ret = 0;
853
854         while (energy_perf_strings[i] != NULL)
855                 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
856
857         ret += sprintf(&buf[ret], "\n");
858
859         return ret;
860 }
861
862 cpufreq_freq_attr_ro(energy_performance_available_preferences);
863
864 static struct cpufreq_driver intel_pstate;
865
866 static ssize_t store_energy_performance_preference(
867                 struct cpufreq_policy *policy, const char *buf, size_t count)
868 {
869         struct cpudata *cpu = all_cpu_data[policy->cpu];
870         char str_preference[21];
871         bool raw = false;
872         ssize_t ret;
873         u32 epp = 0;
874
875         ret = sscanf(buf, "%20s", str_preference);
876         if (ret != 1)
877                 return -EINVAL;
878
879         ret = match_string(energy_perf_strings, -1, str_preference);
880         if (ret < 0) {
881                 if (!boot_cpu_has(X86_FEATURE_HWP_EPP))
882                         return ret;
883
884                 ret = kstrtouint(buf, 10, &epp);
885                 if (ret)
886                         return ret;
887
888                 if (epp > 255)
889                         return -EINVAL;
890
891                 raw = true;
892         }
893
894         /*
895          * This function runs with the policy R/W semaphore held, which
896          * guarantees that the driver pointer will not change while it is
897          * running.
898          */
899         if (!intel_pstate_driver)
900                 return -EAGAIN;
901
902         mutex_lock(&intel_pstate_limits_lock);
903
904         if (intel_pstate_driver == &intel_pstate) {
905                 ret = intel_pstate_set_energy_pref_index(cpu, ret, raw, epp);
906         } else {
907                 /*
908                  * In the passive mode the governor needs to be stopped on the
909                  * target CPU before the EPP update and restarted after it,
910                  * which is super-heavy-weight, so make sure it is worth doing
911                  * upfront.
912                  */
913                 if (!raw)
914                         epp = ret ? epp_values[ret - 1] : cpu->epp_default;
915
916                 if (cpu->epp_cached != epp) {
917                         int err;
918
919                         cpufreq_stop_governor(policy);
920                         ret = intel_pstate_set_epp(cpu, epp);
921                         err = cpufreq_start_governor(policy);
922                         if (!ret)
923                                 ret = err;
924                 }
925         }
926
927         mutex_unlock(&intel_pstate_limits_lock);
928
929         return ret ?: count;
930 }
931
932 static ssize_t show_energy_performance_preference(
933                                 struct cpufreq_policy *policy, char *buf)
934 {
935         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
936         int preference, raw_epp;
937
938         preference = intel_pstate_get_energy_pref_index(cpu_data, &raw_epp);
939         if (preference < 0)
940                 return preference;
941
942         if (raw_epp)
943                 return  sprintf(buf, "%d\n", raw_epp);
944         else
945                 return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
946 }
947
948 cpufreq_freq_attr_rw(energy_performance_preference);
949
950 static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
951 {
952         struct cpudata *cpu = all_cpu_data[policy->cpu];
953         int ratio, freq;
954
955         ratio = intel_pstate_get_cppc_guaranteed(policy->cpu);
956         if (ratio <= 0) {
957                 u64 cap;
958
959                 rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
960                 ratio = HWP_GUARANTEED_PERF(cap);
961         }
962
963         freq = ratio * cpu->pstate.scaling;
964         if (cpu->pstate.scaling != cpu->pstate.perf_ctl_scaling)
965                 freq = rounddown(freq, cpu->pstate.perf_ctl_scaling);
966
967         return sprintf(buf, "%d\n", freq);
968 }
969
970 cpufreq_freq_attr_ro(base_frequency);
971
972 static struct freq_attr *hwp_cpufreq_attrs[] = {
973         &energy_performance_preference,
974         &energy_performance_available_preferences,
975         &base_frequency,
976         NULL,
977 };
978
979 static void __intel_pstate_get_hwp_cap(struct cpudata *cpu)
980 {
981         u64 cap;
982
983         rdmsrl_on_cpu(cpu->cpu, MSR_HWP_CAPABILITIES, &cap);
984         WRITE_ONCE(cpu->hwp_cap_cached, cap);
985         cpu->pstate.max_pstate = HWP_GUARANTEED_PERF(cap);
986         cpu->pstate.turbo_pstate = HWP_HIGHEST_PERF(cap);
987 }
988
989 static void intel_pstate_get_hwp_cap(struct cpudata *cpu)
990 {
991         int scaling = cpu->pstate.scaling;
992
993         __intel_pstate_get_hwp_cap(cpu);
994
995         cpu->pstate.max_freq = cpu->pstate.max_pstate * scaling;
996         cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * scaling;
997         if (scaling != cpu->pstate.perf_ctl_scaling) {
998                 int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
999
1000                 cpu->pstate.max_freq = rounddown(cpu->pstate.max_freq,
1001                                                  perf_ctl_scaling);
1002                 cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_freq,
1003                                                    perf_ctl_scaling);
1004         }
1005 }
1006
1007 static void intel_pstate_hwp_set(unsigned int cpu)
1008 {
1009         struct cpudata *cpu_data = all_cpu_data[cpu];
1010         int max, min;
1011         u64 value;
1012         s16 epp;
1013
1014         max = cpu_data->max_perf_ratio;
1015         min = cpu_data->min_perf_ratio;
1016
1017         if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
1018                 min = max;
1019
1020         rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
1021
1022         value &= ~HWP_MIN_PERF(~0L);
1023         value |= HWP_MIN_PERF(min);
1024
1025         value &= ~HWP_MAX_PERF(~0L);
1026         value |= HWP_MAX_PERF(max);
1027
1028         if (cpu_data->epp_policy == cpu_data->policy)
1029                 goto skip_epp;
1030
1031         cpu_data->epp_policy = cpu_data->policy;
1032
1033         if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
1034                 epp = intel_pstate_get_epp(cpu_data, value);
1035                 cpu_data->epp_powersave = epp;
1036                 /* If EPP read was failed, then don't try to write */
1037                 if (epp < 0)
1038                         goto skip_epp;
1039
1040                 epp = 0;
1041         } else {
1042                 /* skip setting EPP, when saved value is invalid */
1043                 if (cpu_data->epp_powersave < 0)
1044                         goto skip_epp;
1045
1046                 /*
1047                  * No need to restore EPP when it is not zero. This
1048                  * means:
1049                  *  - Policy is not changed
1050                  *  - user has manually changed
1051                  *  - Error reading EPB
1052                  */
1053                 epp = intel_pstate_get_epp(cpu_data, value);
1054                 if (epp)
1055                         goto skip_epp;
1056
1057                 epp = cpu_data->epp_powersave;
1058         }
1059         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
1060                 value &= ~GENMASK_ULL(31, 24);
1061                 value |= (u64)epp << 24;
1062         } else {
1063                 intel_pstate_set_epb(cpu, epp);
1064         }
1065 skip_epp:
1066         WRITE_ONCE(cpu_data->hwp_req_cached, value);
1067         wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
1068 }
1069
1070 static void intel_pstate_hwp_offline(struct cpudata *cpu)
1071 {
1072         u64 value = READ_ONCE(cpu->hwp_req_cached);
1073         int min_perf;
1074
1075         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
1076                 /*
1077                  * In case the EPP has been set to "performance" by the
1078                  * active mode "performance" scaling algorithm, replace that
1079                  * temporary value with the cached EPP one.
1080                  */
1081                 value &= ~GENMASK_ULL(31, 24);
1082                 value |= HWP_ENERGY_PERF_PREFERENCE(cpu->epp_cached);
1083                 WRITE_ONCE(cpu->hwp_req_cached, value);
1084         }
1085
1086         value &= ~GENMASK_ULL(31, 0);
1087         min_perf = HWP_LOWEST_PERF(READ_ONCE(cpu->hwp_cap_cached));
1088
1089         /* Set hwp_max = hwp_min */
1090         value |= HWP_MAX_PERF(min_perf);
1091         value |= HWP_MIN_PERF(min_perf);
1092
1093         /* Set EPP to min */
1094         if (boot_cpu_has(X86_FEATURE_HWP_EPP))
1095                 value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
1096
1097         wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
1098 }
1099
1100 #define POWER_CTL_EE_ENABLE     1
1101 #define POWER_CTL_EE_DISABLE    2
1102
1103 static int power_ctl_ee_state;
1104
1105 static void set_power_ctl_ee_state(bool input)
1106 {
1107         u64 power_ctl;
1108
1109         mutex_lock(&intel_pstate_driver_lock);
1110         rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1111         if (input) {
1112                 power_ctl &= ~BIT(MSR_IA32_POWER_CTL_BIT_EE);
1113                 power_ctl_ee_state = POWER_CTL_EE_ENABLE;
1114         } else {
1115                 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1116                 power_ctl_ee_state = POWER_CTL_EE_DISABLE;
1117         }
1118         wrmsrl(MSR_IA32_POWER_CTL, power_ctl);
1119         mutex_unlock(&intel_pstate_driver_lock);
1120 }
1121
1122 static void intel_pstate_hwp_enable(struct cpudata *cpudata);
1123
1124 static void intel_pstate_hwp_reenable(struct cpudata *cpu)
1125 {
1126         intel_pstate_hwp_enable(cpu);
1127         wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, READ_ONCE(cpu->hwp_req_cached));
1128 }
1129
1130 static int intel_pstate_suspend(struct cpufreq_policy *policy)
1131 {
1132         struct cpudata *cpu = all_cpu_data[policy->cpu];
1133
1134         pr_debug("CPU %d suspending\n", cpu->cpu);
1135
1136         cpu->suspended = true;
1137
1138         return 0;
1139 }
1140
1141 static int intel_pstate_resume(struct cpufreq_policy *policy)
1142 {
1143         struct cpudata *cpu = all_cpu_data[policy->cpu];
1144
1145         pr_debug("CPU %d resuming\n", cpu->cpu);
1146
1147         /* Only restore if the system default is changed */
1148         if (power_ctl_ee_state == POWER_CTL_EE_ENABLE)
1149                 set_power_ctl_ee_state(true);
1150         else if (power_ctl_ee_state == POWER_CTL_EE_DISABLE)
1151                 set_power_ctl_ee_state(false);
1152
1153         if (cpu->suspended && hwp_active) {
1154                 mutex_lock(&intel_pstate_limits_lock);
1155
1156                 /* Re-enable HWP, because "online" has not done that. */
1157                 intel_pstate_hwp_reenable(cpu);
1158
1159                 mutex_unlock(&intel_pstate_limits_lock);
1160         }
1161
1162         cpu->suspended = false;
1163
1164         return 0;
1165 }
1166
1167 static void intel_pstate_update_policies(void)
1168 {
1169         int cpu;
1170
1171         for_each_possible_cpu(cpu)
1172                 cpufreq_update_policy(cpu);
1173 }
1174
1175 static void intel_pstate_update_max_freq(unsigned int cpu)
1176 {
1177         struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
1178         struct cpudata *cpudata;
1179
1180         if (!policy)
1181                 return;
1182
1183         cpudata = all_cpu_data[cpu];
1184         policy->cpuinfo.max_freq = global.turbo_disabled_mf ?
1185                         cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;
1186
1187         refresh_frequency_limits(policy);
1188
1189         cpufreq_cpu_release(policy);
1190 }
1191
1192 static void intel_pstate_update_limits(unsigned int cpu)
1193 {
1194         mutex_lock(&intel_pstate_driver_lock);
1195
1196         update_turbo_state();
1197         /*
1198          * If turbo has been turned on or off globally, policy limits for
1199          * all CPUs need to be updated to reflect that.
1200          */
1201         if (global.turbo_disabled_mf != global.turbo_disabled) {
1202                 global.turbo_disabled_mf = global.turbo_disabled;
1203                 arch_set_max_freq_ratio(global.turbo_disabled);
1204                 for_each_possible_cpu(cpu)
1205                         intel_pstate_update_max_freq(cpu);
1206         } else {
1207                 cpufreq_update_policy(cpu);
1208         }
1209
1210         mutex_unlock(&intel_pstate_driver_lock);
1211 }
1212
1213 /************************** sysfs begin ************************/
1214 #define show_one(file_name, object)                                     \
1215         static ssize_t show_##file_name                                 \
1216         (struct kobject *kobj, struct kobj_attribute *attr, char *buf)  \
1217         {                                                               \
1218                 return sprintf(buf, "%u\n", global.object);             \
1219         }
1220
1221 static ssize_t intel_pstate_show_status(char *buf);
1222 static int intel_pstate_update_status(const char *buf, size_t size);
1223
1224 static ssize_t show_status(struct kobject *kobj,
1225                            struct kobj_attribute *attr, char *buf)
1226 {
1227         ssize_t ret;
1228
1229         mutex_lock(&intel_pstate_driver_lock);
1230         ret = intel_pstate_show_status(buf);
1231         mutex_unlock(&intel_pstate_driver_lock);
1232
1233         return ret;
1234 }
1235
1236 static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
1237                             const char *buf, size_t count)
1238 {
1239         char *p = memchr(buf, '\n', count);
1240         int ret;
1241
1242         mutex_lock(&intel_pstate_driver_lock);
1243         ret = intel_pstate_update_status(buf, p ? p - buf : count);
1244         mutex_unlock(&intel_pstate_driver_lock);
1245
1246         return ret < 0 ? ret : count;
1247 }
1248
1249 static ssize_t show_turbo_pct(struct kobject *kobj,
1250                                 struct kobj_attribute *attr, char *buf)
1251 {
1252         struct cpudata *cpu;
1253         int total, no_turbo, turbo_pct;
1254         uint32_t turbo_fp;
1255
1256         mutex_lock(&intel_pstate_driver_lock);
1257
1258         if (!intel_pstate_driver) {
1259                 mutex_unlock(&intel_pstate_driver_lock);
1260                 return -EAGAIN;
1261         }
1262
1263         cpu = all_cpu_data[0];
1264
1265         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1266         no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1267         turbo_fp = div_fp(no_turbo, total);
1268         turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1269
1270         mutex_unlock(&intel_pstate_driver_lock);
1271
1272         return sprintf(buf, "%u\n", turbo_pct);
1273 }
1274
1275 static ssize_t show_num_pstates(struct kobject *kobj,
1276                                 struct kobj_attribute *attr, char *buf)
1277 {
1278         struct cpudata *cpu;
1279         int total;
1280
1281         mutex_lock(&intel_pstate_driver_lock);
1282
1283         if (!intel_pstate_driver) {
1284                 mutex_unlock(&intel_pstate_driver_lock);
1285                 return -EAGAIN;
1286         }
1287
1288         cpu = all_cpu_data[0];
1289         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1290
1291         mutex_unlock(&intel_pstate_driver_lock);
1292
1293         return sprintf(buf, "%u\n", total);
1294 }
1295
1296 static ssize_t show_no_turbo(struct kobject *kobj,
1297                              struct kobj_attribute *attr, char *buf)
1298 {
1299         ssize_t ret;
1300
1301         mutex_lock(&intel_pstate_driver_lock);
1302
1303         if (!intel_pstate_driver) {
1304                 mutex_unlock(&intel_pstate_driver_lock);
1305                 return -EAGAIN;
1306         }
1307
1308         update_turbo_state();
1309         if (global.turbo_disabled)
1310                 ret = sprintf(buf, "%u\n", global.turbo_disabled);
1311         else
1312                 ret = sprintf(buf, "%u\n", global.no_turbo);
1313
1314         mutex_unlock(&intel_pstate_driver_lock);
1315
1316         return ret;
1317 }
1318
1319 static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1320                               const char *buf, size_t count)
1321 {
1322         unsigned int input;
1323         int ret;
1324
1325         ret = sscanf(buf, "%u", &input);
1326         if (ret != 1)
1327                 return -EINVAL;
1328
1329         mutex_lock(&intel_pstate_driver_lock);
1330
1331         if (!intel_pstate_driver) {
1332                 mutex_unlock(&intel_pstate_driver_lock);
1333                 return -EAGAIN;
1334         }
1335
1336         mutex_lock(&intel_pstate_limits_lock);
1337
1338         update_turbo_state();
1339         if (global.turbo_disabled) {
1340                 pr_notice_once("Turbo disabled by BIOS or unavailable on processor\n");
1341                 mutex_unlock(&intel_pstate_limits_lock);
1342                 mutex_unlock(&intel_pstate_driver_lock);
1343                 return -EPERM;
1344         }
1345
1346         global.no_turbo = clamp_t(int, input, 0, 1);
1347
1348         if (global.no_turbo) {
1349                 struct cpudata *cpu = all_cpu_data[0];
1350                 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1351
1352                 /* Squash the global minimum into the permitted range. */
1353                 if (global.min_perf_pct > pct)
1354                         global.min_perf_pct = pct;
1355         }
1356
1357         mutex_unlock(&intel_pstate_limits_lock);
1358
1359         intel_pstate_update_policies();
1360
1361         mutex_unlock(&intel_pstate_driver_lock);
1362
1363         return count;
1364 }
1365
1366 static void update_qos_request(enum freq_qos_req_type type)
1367 {
1368         struct freq_qos_request *req;
1369         struct cpufreq_policy *policy;
1370         int i;
1371
1372         for_each_possible_cpu(i) {
1373                 struct cpudata *cpu = all_cpu_data[i];
1374                 unsigned int freq, perf_pct;
1375
1376                 policy = cpufreq_cpu_get(i);
1377                 if (!policy)
1378                         continue;
1379
1380                 req = policy->driver_data;
1381                 cpufreq_cpu_put(policy);
1382
1383                 if (!req)
1384                         continue;
1385
1386                 if (hwp_active)
1387                         intel_pstate_get_hwp_cap(cpu);
1388
1389                 if (type == FREQ_QOS_MIN) {
1390                         perf_pct = global.min_perf_pct;
1391                 } else {
1392                         req++;
1393                         perf_pct = global.max_perf_pct;
1394                 }
1395
1396                 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * perf_pct, 100);
1397
1398                 if (freq_qos_update_request(req, freq) < 0)
1399                         pr_warn("Failed to update freq constraint: CPU%d\n", i);
1400         }
1401 }
1402
1403 static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1404                                   const char *buf, size_t count)
1405 {
1406         unsigned int input;
1407         int ret;
1408
1409         ret = sscanf(buf, "%u", &input);
1410         if (ret != 1)
1411                 return -EINVAL;
1412
1413         mutex_lock(&intel_pstate_driver_lock);
1414
1415         if (!intel_pstate_driver) {
1416                 mutex_unlock(&intel_pstate_driver_lock);
1417                 return -EAGAIN;
1418         }
1419
1420         mutex_lock(&intel_pstate_limits_lock);
1421
1422         global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1423
1424         mutex_unlock(&intel_pstate_limits_lock);
1425
1426         if (intel_pstate_driver == &intel_pstate)
1427                 intel_pstate_update_policies();
1428         else
1429                 update_qos_request(FREQ_QOS_MAX);
1430
1431         mutex_unlock(&intel_pstate_driver_lock);
1432
1433         return count;
1434 }
1435
1436 static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1437                                   const char *buf, size_t count)
1438 {
1439         unsigned int input;
1440         int ret;
1441
1442         ret = sscanf(buf, "%u", &input);
1443         if (ret != 1)
1444                 return -EINVAL;
1445
1446         mutex_lock(&intel_pstate_driver_lock);
1447
1448         if (!intel_pstate_driver) {
1449                 mutex_unlock(&intel_pstate_driver_lock);
1450                 return -EAGAIN;
1451         }
1452
1453         mutex_lock(&intel_pstate_limits_lock);
1454
1455         global.min_perf_pct = clamp_t(int, input,
1456                                       min_perf_pct_min(), global.max_perf_pct);
1457
1458         mutex_unlock(&intel_pstate_limits_lock);
1459
1460         if (intel_pstate_driver == &intel_pstate)
1461                 intel_pstate_update_policies();
1462         else
1463                 update_qos_request(FREQ_QOS_MIN);
1464
1465         mutex_unlock(&intel_pstate_driver_lock);
1466
1467         return count;
1468 }
1469
1470 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1471                                 struct kobj_attribute *attr, char *buf)
1472 {
1473         return sprintf(buf, "%u\n", hwp_boost);
1474 }
1475
1476 static ssize_t store_hwp_dynamic_boost(struct kobject *a,
1477                                        struct kobj_attribute *b,
1478                                        const char *buf, size_t count)
1479 {
1480         unsigned int input;
1481         int ret;
1482
1483         ret = kstrtouint(buf, 10, &input);
1484         if (ret)
1485                 return ret;
1486
1487         mutex_lock(&intel_pstate_driver_lock);
1488         hwp_boost = !!input;
1489         intel_pstate_update_policies();
1490         mutex_unlock(&intel_pstate_driver_lock);
1491
1492         return count;
1493 }
1494
1495 static ssize_t show_energy_efficiency(struct kobject *kobj, struct kobj_attribute *attr,
1496                                       char *buf)
1497 {
1498         u64 power_ctl;
1499         int enable;
1500
1501         rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1502         enable = !!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE));
1503         return sprintf(buf, "%d\n", !enable);
1504 }
1505
1506 static ssize_t store_energy_efficiency(struct kobject *a, struct kobj_attribute *b,
1507                                        const char *buf, size_t count)
1508 {
1509         bool input;
1510         int ret;
1511
1512         ret = kstrtobool(buf, &input);
1513         if (ret)
1514                 return ret;
1515
1516         set_power_ctl_ee_state(input);
1517
1518         return count;
1519 }
1520
1521 show_one(max_perf_pct, max_perf_pct);
1522 show_one(min_perf_pct, min_perf_pct);
1523
1524 define_one_global_rw(status);
1525 define_one_global_rw(no_turbo);
1526 define_one_global_rw(max_perf_pct);
1527 define_one_global_rw(min_perf_pct);
1528 define_one_global_ro(turbo_pct);
1529 define_one_global_ro(num_pstates);
1530 define_one_global_rw(hwp_dynamic_boost);
1531 define_one_global_rw(energy_efficiency);
1532
1533 static struct attribute *intel_pstate_attributes[] = {
1534         &status.attr,
1535         &no_turbo.attr,
1536         NULL
1537 };
1538
1539 static const struct attribute_group intel_pstate_attr_group = {
1540         .attrs = intel_pstate_attributes,
1541 };
1542
1543 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[];
1544
1545 static struct kobject *intel_pstate_kobject;
1546
1547 static void __init intel_pstate_sysfs_expose_params(void)
1548 {
1549         int rc;
1550
1551         intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1552                                                 &cpu_subsys.dev_root->kobj);
1553         if (WARN_ON(!intel_pstate_kobject))
1554                 return;
1555
1556         rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1557         if (WARN_ON(rc))
1558                 return;
1559
1560         if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1561                 rc = sysfs_create_file(intel_pstate_kobject, &turbo_pct.attr);
1562                 WARN_ON(rc);
1563
1564                 rc = sysfs_create_file(intel_pstate_kobject, &num_pstates.attr);
1565                 WARN_ON(rc);
1566         }
1567
1568         /*
1569          * If per cpu limits are enforced there are no global limits, so
1570          * return without creating max/min_perf_pct attributes
1571          */
1572         if (per_cpu_limits)
1573                 return;
1574
1575         rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1576         WARN_ON(rc);
1577
1578         rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1579         WARN_ON(rc);
1580
1581         if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) {
1582                 rc = sysfs_create_file(intel_pstate_kobject, &energy_efficiency.attr);
1583                 WARN_ON(rc);
1584         }
1585 }
1586
1587 static void __init intel_pstate_sysfs_remove(void)
1588 {
1589         if (!intel_pstate_kobject)
1590                 return;
1591
1592         sysfs_remove_group(intel_pstate_kobject, &intel_pstate_attr_group);
1593
1594         if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1595                 sysfs_remove_file(intel_pstate_kobject, &num_pstates.attr);
1596                 sysfs_remove_file(intel_pstate_kobject, &turbo_pct.attr);
1597         }
1598
1599         if (!per_cpu_limits) {
1600                 sysfs_remove_file(intel_pstate_kobject, &max_perf_pct.attr);
1601                 sysfs_remove_file(intel_pstate_kobject, &min_perf_pct.attr);
1602
1603                 if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids))
1604                         sysfs_remove_file(intel_pstate_kobject, &energy_efficiency.attr);
1605         }
1606
1607         kobject_put(intel_pstate_kobject);
1608 }
1609
1610 static void intel_pstate_sysfs_expose_hwp_dynamic_boost(void)
1611 {
1612         int rc;
1613
1614         if (!hwp_active)
1615                 return;
1616
1617         rc = sysfs_create_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1618         WARN_ON_ONCE(rc);
1619 }
1620
1621 static void intel_pstate_sysfs_hide_hwp_dynamic_boost(void)
1622 {
1623         if (!hwp_active)
1624                 return;
1625
1626         sysfs_remove_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1627 }
1628
1629 /************************** sysfs end ************************/
1630
1631 static void intel_pstate_notify_work(struct work_struct *work)
1632 {
1633         mutex_lock(&intel_pstate_driver_lock);
1634         cpufreq_update_policy(smp_processor_id());
1635         wrmsrl(MSR_HWP_STATUS, 0);
1636         mutex_unlock(&intel_pstate_driver_lock);
1637 }
1638
1639 void notify_hwp_interrupt(void)
1640 {
1641         unsigned int this_cpu = smp_processor_id();
1642         struct cpudata *cpudata;
1643         u64 value;
1644
1645         if (!hwp_active || !boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1646                 return;
1647
1648         rdmsrl(MSR_HWP_STATUS, value);
1649         if (!(value & 0x01))
1650                 return;
1651
1652         cpudata = all_cpu_data[this_cpu];
1653         schedule_delayed_work_on(this_cpu, &cpudata->hwp_notify_work, msecs_to_jiffies(10));
1654 }
1655
1656 static void intel_pstate_enable_hwp_interrupt(struct cpudata *cpudata)
1657 {
1658         /* Enable HWP notification interrupt for guaranteed performance change */
1659         if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY)) {
1660                 INIT_DELAYED_WORK(&cpudata->hwp_notify_work, intel_pstate_notify_work);
1661                 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x01);
1662         }
1663 }
1664
1665 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1666 {
1667         /* First disable HWP notification interrupt as we don't process them */
1668         if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1669                 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1670
1671         wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1672         if (cpudata->epp_default == -EINVAL)
1673                 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1674
1675         intel_pstate_enable_hwp_interrupt(cpudata);
1676 }
1677
1678 static int atom_get_min_pstate(void)
1679 {
1680         u64 value;
1681
1682         rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1683         return (value >> 8) & 0x7F;
1684 }
1685
1686 static int atom_get_max_pstate(void)
1687 {
1688         u64 value;
1689
1690         rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1691         return (value >> 16) & 0x7F;
1692 }
1693
1694 static int atom_get_turbo_pstate(void)
1695 {
1696         u64 value;
1697
1698         rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1699         return value & 0x7F;
1700 }
1701
1702 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1703 {
1704         u64 val;
1705         int32_t vid_fp;
1706         u32 vid;
1707
1708         val = (u64)pstate << 8;
1709         if (global.no_turbo && !global.turbo_disabled)
1710                 val |= (u64)1 << 32;
1711
1712         vid_fp = cpudata->vid.min + mul_fp(
1713                 int_tofp(pstate - cpudata->pstate.min_pstate),
1714                 cpudata->vid.ratio);
1715
1716         vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1717         vid = ceiling_fp(vid_fp);
1718
1719         if (pstate > cpudata->pstate.max_pstate)
1720                 vid = cpudata->vid.turbo;
1721
1722         return val | vid;
1723 }
1724
1725 static int silvermont_get_scaling(void)
1726 {
1727         u64 value;
1728         int i;
1729         /* Defined in Table 35-6 from SDM (Sept 2015) */
1730         static int silvermont_freq_table[] = {
1731                 83300, 100000, 133300, 116700, 80000};
1732
1733         rdmsrl(MSR_FSB_FREQ, value);
1734         i = value & 0x7;
1735         WARN_ON(i > 4);
1736
1737         return silvermont_freq_table[i];
1738 }
1739
1740 static int airmont_get_scaling(void)
1741 {
1742         u64 value;
1743         int i;
1744         /* Defined in Table 35-10 from SDM (Sept 2015) */
1745         static int airmont_freq_table[] = {
1746                 83300, 100000, 133300, 116700, 80000,
1747                 93300, 90000, 88900, 87500};
1748
1749         rdmsrl(MSR_FSB_FREQ, value);
1750         i = value & 0xF;
1751         WARN_ON(i > 8);
1752
1753         return airmont_freq_table[i];
1754 }
1755
1756 static void atom_get_vid(struct cpudata *cpudata)
1757 {
1758         u64 value;
1759
1760         rdmsrl(MSR_ATOM_CORE_VIDS, value);
1761         cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1762         cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1763         cpudata->vid.ratio = div_fp(
1764                 cpudata->vid.max - cpudata->vid.min,
1765                 int_tofp(cpudata->pstate.max_pstate -
1766                         cpudata->pstate.min_pstate));
1767
1768         rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1769         cpudata->vid.turbo = value & 0x7f;
1770 }
1771
1772 static int core_get_min_pstate(void)
1773 {
1774         u64 value;
1775
1776         rdmsrl(MSR_PLATFORM_INFO, value);
1777         return (value >> 40) & 0xFF;
1778 }
1779
1780 static int core_get_max_pstate_physical(void)
1781 {
1782         u64 value;
1783
1784         rdmsrl(MSR_PLATFORM_INFO, value);
1785         return (value >> 8) & 0xFF;
1786 }
1787
1788 static int core_get_tdp_ratio(u64 plat_info)
1789 {
1790         /* Check how many TDP levels present */
1791         if (plat_info & 0x600000000) {
1792                 u64 tdp_ctrl;
1793                 u64 tdp_ratio;
1794                 int tdp_msr;
1795                 int err;
1796
1797                 /* Get the TDP level (0, 1, 2) to get ratios */
1798                 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1799                 if (err)
1800                         return err;
1801
1802                 /* TDP MSR are continuous starting at 0x648 */
1803                 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1804                 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1805                 if (err)
1806                         return err;
1807
1808                 /* For level 1 and 2, bits[23:16] contain the ratio */
1809                 if (tdp_ctrl & 0x03)
1810                         tdp_ratio >>= 16;
1811
1812                 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1813                 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1814
1815                 return (int)tdp_ratio;
1816         }
1817
1818         return -ENXIO;
1819 }
1820
1821 static int core_get_max_pstate(void)
1822 {
1823         u64 tar;
1824         u64 plat_info;
1825         int max_pstate;
1826         int tdp_ratio;
1827         int err;
1828
1829         rdmsrl(MSR_PLATFORM_INFO, plat_info);
1830         max_pstate = (plat_info >> 8) & 0xFF;
1831
1832         tdp_ratio = core_get_tdp_ratio(plat_info);
1833         if (tdp_ratio <= 0)
1834                 return max_pstate;
1835
1836         if (hwp_active) {
1837                 /* Turbo activation ratio is not used on HWP platforms */
1838                 return tdp_ratio;
1839         }
1840
1841         err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1842         if (!err) {
1843                 int tar_levels;
1844
1845                 /* Do some sanity checking for safety */
1846                 tar_levels = tar & 0xff;
1847                 if (tdp_ratio - 1 == tar_levels) {
1848                         max_pstate = tar_levels;
1849                         pr_debug("max_pstate=TAC %x\n", max_pstate);
1850                 }
1851         }
1852
1853         return max_pstate;
1854 }
1855
1856 static int core_get_turbo_pstate(void)
1857 {
1858         u64 value;
1859         int nont, ret;
1860
1861         rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1862         nont = core_get_max_pstate();
1863         ret = (value) & 255;
1864         if (ret <= nont)
1865                 ret = nont;
1866         return ret;
1867 }
1868
1869 static inline int core_get_scaling(void)
1870 {
1871         return 100000;
1872 }
1873
1874 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1875 {
1876         u64 val;
1877
1878         val = (u64)pstate << 8;
1879         if (global.no_turbo && !global.turbo_disabled)
1880                 val |= (u64)1 << 32;
1881
1882         return val;
1883 }
1884
1885 static int knl_get_aperf_mperf_shift(void)
1886 {
1887         return 10;
1888 }
1889
1890 static int knl_get_turbo_pstate(void)
1891 {
1892         u64 value;
1893         int nont, ret;
1894
1895         rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1896         nont = core_get_max_pstate();
1897         ret = (((value) >> 8) & 0xFF);
1898         if (ret <= nont)
1899                 ret = nont;
1900         return ret;
1901 }
1902
1903 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1904 {
1905         trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1906         cpu->pstate.current_pstate = pstate;
1907         /*
1908          * Generally, there is no guarantee that this code will always run on
1909          * the CPU being updated, so force the register update to run on the
1910          * right CPU.
1911          */
1912         wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1913                       pstate_funcs.get_val(cpu, pstate));
1914 }
1915
1916 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1917 {
1918         intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1919 }
1920
1921 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1922 {
1923         int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1924
1925         update_turbo_state();
1926         intel_pstate_set_pstate(cpu, pstate);
1927 }
1928
1929 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1930 {
1931         bool hybrid_cpu = boot_cpu_has(X86_FEATURE_HYBRID_CPU);
1932         int perf_ctl_max_phys = pstate_funcs.get_max_physical();
1933         int perf_ctl_scaling = hybrid_cpu ? cpu_khz / perf_ctl_max_phys :
1934                                             pstate_funcs.get_scaling();
1935
1936         cpu->pstate.min_pstate = pstate_funcs.get_min();
1937         cpu->pstate.max_pstate_physical = perf_ctl_max_phys;
1938         cpu->pstate.perf_ctl_scaling = perf_ctl_scaling;
1939
1940         if (hwp_active && !hwp_mode_bdw) {
1941                 __intel_pstate_get_hwp_cap(cpu);
1942
1943                 if (hybrid_cpu)
1944                         intel_pstate_hybrid_hwp_calibrate(cpu);
1945                 else
1946                         cpu->pstate.scaling = perf_ctl_scaling;
1947         } else {
1948                 cpu->pstate.scaling = perf_ctl_scaling;
1949                 cpu->pstate.max_pstate = pstate_funcs.get_max();
1950                 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1951         }
1952
1953         if (cpu->pstate.scaling == perf_ctl_scaling) {
1954                 cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling;
1955                 cpu->pstate.max_freq = cpu->pstate.max_pstate * perf_ctl_scaling;
1956                 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * perf_ctl_scaling;
1957         }
1958
1959         if (pstate_funcs.get_aperf_mperf_shift)
1960                 cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
1961
1962         if (pstate_funcs.get_vid)
1963                 pstate_funcs.get_vid(cpu);
1964
1965         intel_pstate_set_min_pstate(cpu);
1966 }
1967
1968 /*
1969  * Long hold time will keep high perf limits for long time,
1970  * which negatively impacts perf/watt for some workloads,
1971  * like specpower. 3ms is based on experiements on some
1972  * workoads.
1973  */
1974 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
1975
1976 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
1977 {
1978         u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
1979         u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
1980         u32 max_limit = (hwp_req & 0xff00) >> 8;
1981         u32 min_limit = (hwp_req & 0xff);
1982         u32 boost_level1;
1983
1984         /*
1985          * Cases to consider (User changes via sysfs or boot time):
1986          * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
1987          *      No boost, return.
1988          * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
1989          *     Should result in one level boost only for P0.
1990          * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
1991          *     Should result in two level boost:
1992          *         (min + p1)/2 and P1.
1993          * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
1994          *     Should result in three level boost:
1995          *        (min + p1)/2, P1 and P0.
1996          */
1997
1998         /* If max and min are equal or already at max, nothing to boost */
1999         if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
2000                 return;
2001
2002         if (!cpu->hwp_boost_min)
2003                 cpu->hwp_boost_min = min_limit;
2004
2005         /* level at half way mark between min and guranteed */
2006         boost_level1 = (HWP_GUARANTEED_PERF(hwp_cap) + min_limit) >> 1;
2007
2008         if (cpu->hwp_boost_min < boost_level1)
2009                 cpu->hwp_boost_min = boost_level1;
2010         else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(hwp_cap))
2011                 cpu->hwp_boost_min = HWP_GUARANTEED_PERF(hwp_cap);
2012         else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(hwp_cap) &&
2013                  max_limit != HWP_GUARANTEED_PERF(hwp_cap))
2014                 cpu->hwp_boost_min = max_limit;
2015         else
2016                 return;
2017
2018         hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
2019         wrmsrl(MSR_HWP_REQUEST, hwp_req);
2020         cpu->last_update = cpu->sample.time;
2021 }
2022
2023 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
2024 {
2025         if (cpu->hwp_boost_min) {
2026                 bool expired;
2027
2028                 /* Check if we are idle for hold time to boost down */
2029                 expired = time_after64(cpu->sample.time, cpu->last_update +
2030                                        hwp_boost_hold_time_ns);
2031                 if (expired) {
2032                         wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
2033                         cpu->hwp_boost_min = 0;
2034                 }
2035         }
2036         cpu->last_update = cpu->sample.time;
2037 }
2038
2039 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
2040                                                       u64 time)
2041 {
2042         cpu->sample.time = time;
2043
2044         if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
2045                 bool do_io = false;
2046
2047                 cpu->sched_flags = 0;
2048                 /*
2049                  * Set iowait_boost flag and update time. Since IO WAIT flag
2050                  * is set all the time, we can't just conclude that there is
2051                  * some IO bound activity is scheduled on this CPU with just
2052                  * one occurrence. If we receive at least two in two
2053                  * consecutive ticks, then we treat as boost candidate.
2054                  */
2055                 if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
2056                         do_io = true;
2057
2058                 cpu->last_io_update = time;
2059
2060                 if (do_io)
2061                         intel_pstate_hwp_boost_up(cpu);
2062
2063         } else {
2064                 intel_pstate_hwp_boost_down(cpu);
2065         }
2066 }
2067
2068 static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
2069                                                 u64 time, unsigned int flags)
2070 {
2071         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2072
2073         cpu->sched_flags |= flags;
2074
2075         if (smp_processor_id() == cpu->cpu)
2076                 intel_pstate_update_util_hwp_local(cpu, time);
2077 }
2078
2079 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
2080 {
2081         struct sample *sample = &cpu->sample;
2082
2083         sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
2084 }
2085
2086 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
2087 {
2088         u64 aperf, mperf;
2089         unsigned long flags;
2090         u64 tsc;
2091
2092         local_irq_save(flags);
2093         rdmsrl(MSR_IA32_APERF, aperf);
2094         rdmsrl(MSR_IA32_MPERF, mperf);
2095         tsc = rdtsc();
2096         if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
2097                 local_irq_restore(flags);
2098                 return false;
2099         }
2100         local_irq_restore(flags);
2101
2102         cpu->last_sample_time = cpu->sample.time;
2103         cpu->sample.time = time;
2104         cpu->sample.aperf = aperf;
2105         cpu->sample.mperf = mperf;
2106         cpu->sample.tsc =  tsc;
2107         cpu->sample.aperf -= cpu->prev_aperf;
2108         cpu->sample.mperf -= cpu->prev_mperf;
2109         cpu->sample.tsc -= cpu->prev_tsc;
2110
2111         cpu->prev_aperf = aperf;
2112         cpu->prev_mperf = mperf;
2113         cpu->prev_tsc = tsc;
2114         /*
2115          * First time this function is invoked in a given cycle, all of the
2116          * previous sample data fields are equal to zero or stale and they must
2117          * be populated with meaningful numbers for things to work, so assume
2118          * that sample.time will always be reset before setting the utilization
2119          * update hook and make the caller skip the sample then.
2120          */
2121         if (cpu->last_sample_time) {
2122                 intel_pstate_calc_avg_perf(cpu);
2123                 return true;
2124         }
2125         return false;
2126 }
2127
2128 static inline int32_t get_avg_frequency(struct cpudata *cpu)
2129 {
2130         return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
2131 }
2132
2133 static inline int32_t get_avg_pstate(struct cpudata *cpu)
2134 {
2135         return mul_ext_fp(cpu->pstate.max_pstate_physical,
2136                           cpu->sample.core_avg_perf);
2137 }
2138
2139 static inline int32_t get_target_pstate(struct cpudata *cpu)
2140 {
2141         struct sample *sample = &cpu->sample;
2142         int32_t busy_frac;
2143         int target, avg_pstate;
2144
2145         busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
2146                            sample->tsc);
2147
2148         if (busy_frac < cpu->iowait_boost)
2149                 busy_frac = cpu->iowait_boost;
2150
2151         sample->busy_scaled = busy_frac * 100;
2152
2153         target = global.no_turbo || global.turbo_disabled ?
2154                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2155         target += target >> 2;
2156         target = mul_fp(target, busy_frac);
2157         if (target < cpu->pstate.min_pstate)
2158                 target = cpu->pstate.min_pstate;
2159
2160         /*
2161          * If the average P-state during the previous cycle was higher than the
2162          * current target, add 50% of the difference to the target to reduce
2163          * possible performance oscillations and offset possible performance
2164          * loss related to moving the workload from one CPU to another within
2165          * a package/module.
2166          */
2167         avg_pstate = get_avg_pstate(cpu);
2168         if (avg_pstate > target)
2169                 target += (avg_pstate - target) >> 1;
2170
2171         return target;
2172 }
2173
2174 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
2175 {
2176         int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
2177         int max_pstate = max(min_pstate, cpu->max_perf_ratio);
2178
2179         return clamp_t(int, pstate, min_pstate, max_pstate);
2180 }
2181
2182 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
2183 {
2184         if (pstate == cpu->pstate.current_pstate)
2185                 return;
2186
2187         cpu->pstate.current_pstate = pstate;
2188         wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
2189 }
2190
2191 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
2192 {
2193         int from = cpu->pstate.current_pstate;
2194         struct sample *sample;
2195         int target_pstate;
2196
2197         update_turbo_state();
2198
2199         target_pstate = get_target_pstate(cpu);
2200         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2201         trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
2202         intel_pstate_update_pstate(cpu, target_pstate);
2203
2204         sample = &cpu->sample;
2205         trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
2206                 fp_toint(sample->busy_scaled),
2207                 from,
2208                 cpu->pstate.current_pstate,
2209                 sample->mperf,
2210                 sample->aperf,
2211                 sample->tsc,
2212                 get_avg_frequency(cpu),
2213                 fp_toint(cpu->iowait_boost * 100));
2214 }
2215
2216 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
2217                                      unsigned int flags)
2218 {
2219         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2220         u64 delta_ns;
2221
2222         /* Don't allow remote callbacks */
2223         if (smp_processor_id() != cpu->cpu)
2224                 return;
2225
2226         delta_ns = time - cpu->last_update;
2227         if (flags & SCHED_CPUFREQ_IOWAIT) {
2228                 /* Start over if the CPU may have been idle. */
2229                 if (delta_ns > TICK_NSEC) {
2230                         cpu->iowait_boost = ONE_EIGHTH_FP;
2231                 } else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
2232                         cpu->iowait_boost <<= 1;
2233                         if (cpu->iowait_boost > int_tofp(1))
2234                                 cpu->iowait_boost = int_tofp(1);
2235                 } else {
2236                         cpu->iowait_boost = ONE_EIGHTH_FP;
2237                 }
2238         } else if (cpu->iowait_boost) {
2239                 /* Clear iowait_boost if the CPU may have been idle. */
2240                 if (delta_ns > TICK_NSEC)
2241                         cpu->iowait_boost = 0;
2242                 else
2243                         cpu->iowait_boost >>= 1;
2244         }
2245         cpu->last_update = time;
2246         delta_ns = time - cpu->sample.time;
2247         if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
2248                 return;
2249
2250         if (intel_pstate_sample(cpu, time))
2251                 intel_pstate_adjust_pstate(cpu);
2252 }
2253
2254 static struct pstate_funcs core_funcs = {
2255         .get_max = core_get_max_pstate,
2256         .get_max_physical = core_get_max_pstate_physical,
2257         .get_min = core_get_min_pstate,
2258         .get_turbo = core_get_turbo_pstate,
2259         .get_scaling = core_get_scaling,
2260         .get_val = core_get_val,
2261 };
2262
2263 static const struct pstate_funcs silvermont_funcs = {
2264         .get_max = atom_get_max_pstate,
2265         .get_max_physical = atom_get_max_pstate,
2266         .get_min = atom_get_min_pstate,
2267         .get_turbo = atom_get_turbo_pstate,
2268         .get_val = atom_get_val,
2269         .get_scaling = silvermont_get_scaling,
2270         .get_vid = atom_get_vid,
2271 };
2272
2273 static const struct pstate_funcs airmont_funcs = {
2274         .get_max = atom_get_max_pstate,
2275         .get_max_physical = atom_get_max_pstate,
2276         .get_min = atom_get_min_pstate,
2277         .get_turbo = atom_get_turbo_pstate,
2278         .get_val = atom_get_val,
2279         .get_scaling = airmont_get_scaling,
2280         .get_vid = atom_get_vid,
2281 };
2282
2283 static const struct pstate_funcs knl_funcs = {
2284         .get_max = core_get_max_pstate,
2285         .get_max_physical = core_get_max_pstate_physical,
2286         .get_min = core_get_min_pstate,
2287         .get_turbo = knl_get_turbo_pstate,
2288         .get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
2289         .get_scaling = core_get_scaling,
2290         .get_val = core_get_val,
2291 };
2292
2293 #define X86_MATCH(model, policy)                                         \
2294         X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
2295                                            X86_FEATURE_APERFMPERF, &policy)
2296
2297 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
2298         X86_MATCH(SANDYBRIDGE,          core_funcs),
2299         X86_MATCH(SANDYBRIDGE_X,        core_funcs),
2300         X86_MATCH(ATOM_SILVERMONT,      silvermont_funcs),
2301         X86_MATCH(IVYBRIDGE,            core_funcs),
2302         X86_MATCH(HASWELL,              core_funcs),
2303         X86_MATCH(BROADWELL,            core_funcs),
2304         X86_MATCH(IVYBRIDGE_X,          core_funcs),
2305         X86_MATCH(HASWELL_X,            core_funcs),
2306         X86_MATCH(HASWELL_L,            core_funcs),
2307         X86_MATCH(HASWELL_G,            core_funcs),
2308         X86_MATCH(BROADWELL_G,          core_funcs),
2309         X86_MATCH(ATOM_AIRMONT,         airmont_funcs),
2310         X86_MATCH(SKYLAKE_L,            core_funcs),
2311         X86_MATCH(BROADWELL_X,          core_funcs),
2312         X86_MATCH(SKYLAKE,              core_funcs),
2313         X86_MATCH(BROADWELL_D,          core_funcs),
2314         X86_MATCH(XEON_PHI_KNL,         knl_funcs),
2315         X86_MATCH(XEON_PHI_KNM,         knl_funcs),
2316         X86_MATCH(ATOM_GOLDMONT,        core_funcs),
2317         X86_MATCH(ATOM_GOLDMONT_PLUS,   core_funcs),
2318         X86_MATCH(SKYLAKE_X,            core_funcs),
2319         X86_MATCH(COMETLAKE,            core_funcs),
2320         X86_MATCH(ICELAKE_X,            core_funcs),
2321         {}
2322 };
2323 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
2324
2325 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
2326         X86_MATCH(BROADWELL_D,          core_funcs),
2327         X86_MATCH(BROADWELL_X,          core_funcs),
2328         X86_MATCH(SKYLAKE_X,            core_funcs),
2329         {}
2330 };
2331
2332 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
2333         X86_MATCH(KABYLAKE,             core_funcs),
2334         {}
2335 };
2336
2337 static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
2338         X86_MATCH(SKYLAKE_X,            core_funcs),
2339         X86_MATCH(SKYLAKE,              core_funcs),
2340         {}
2341 };
2342
2343 static int intel_pstate_init_cpu(unsigned int cpunum)
2344 {
2345         struct cpudata *cpu;
2346
2347         cpu = all_cpu_data[cpunum];
2348
2349         if (!cpu) {
2350                 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
2351                 if (!cpu)
2352                         return -ENOMEM;
2353
2354                 all_cpu_data[cpunum] = cpu;
2355
2356                 cpu->cpu = cpunum;
2357
2358                 cpu->epp_default = -EINVAL;
2359
2360                 if (hwp_active) {
2361                         const struct x86_cpu_id *id;
2362
2363                         intel_pstate_hwp_enable(cpu);
2364
2365                         id = x86_match_cpu(intel_pstate_hwp_boost_ids);
2366                         if (id && intel_pstate_acpi_pm_profile_server())
2367                                 hwp_boost = true;
2368                 }
2369         } else if (hwp_active) {
2370                 /*
2371                  * Re-enable HWP in case this happens after a resume from ACPI
2372                  * S3 if the CPU was offline during the whole system/resume
2373                  * cycle.
2374                  */
2375                 intel_pstate_hwp_reenable(cpu);
2376         }
2377
2378         cpu->epp_powersave = -EINVAL;
2379         cpu->epp_policy = 0;
2380
2381         intel_pstate_get_cpu_pstates(cpu);
2382
2383         pr_debug("controlling: cpu %d\n", cpunum);
2384
2385         return 0;
2386 }
2387
2388 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2389 {
2390         struct cpudata *cpu = all_cpu_data[cpu_num];
2391
2392         if (hwp_active && !hwp_boost)
2393                 return;
2394
2395         if (cpu->update_util_set)
2396                 return;
2397
2398         /* Prevent intel_pstate_update_util() from using stale data. */
2399         cpu->sample.time = 0;
2400         cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2401                                      (hwp_active ?
2402                                       intel_pstate_update_util_hwp :
2403                                       intel_pstate_update_util));
2404         cpu->update_util_set = true;
2405 }
2406
2407 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
2408 {
2409         struct cpudata *cpu_data = all_cpu_data[cpu];
2410
2411         if (!cpu_data->update_util_set)
2412                 return;
2413
2414         cpufreq_remove_update_util_hook(cpu);
2415         cpu_data->update_util_set = false;
2416         synchronize_rcu();
2417 }
2418
2419 static int intel_pstate_get_max_freq(struct cpudata *cpu)
2420 {
2421         return global.turbo_disabled || global.no_turbo ?
2422                         cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2423 }
2424
2425 static void intel_pstate_update_perf_limits(struct cpudata *cpu,
2426                                             unsigned int policy_min,
2427                                             unsigned int policy_max)
2428 {
2429         int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
2430         int32_t max_policy_perf, min_policy_perf;
2431
2432         max_policy_perf = policy_max / perf_ctl_scaling;
2433         if (policy_max == policy_min) {
2434                 min_policy_perf = max_policy_perf;
2435         } else {
2436                 min_policy_perf = policy_min / perf_ctl_scaling;
2437                 min_policy_perf = clamp_t(int32_t, min_policy_perf,
2438                                           0, max_policy_perf);
2439         }
2440
2441         /*
2442          * HWP needs some special consideration, because HWP_REQUEST uses
2443          * abstract values to represent performance rather than pure ratios.
2444          */
2445         if (hwp_active) {
2446                 intel_pstate_get_hwp_cap(cpu);
2447
2448                 if (cpu->pstate.scaling != perf_ctl_scaling) {
2449                         int scaling = cpu->pstate.scaling;
2450                         int freq;
2451
2452                         freq = max_policy_perf * perf_ctl_scaling;
2453                         max_policy_perf = DIV_ROUND_UP(freq, scaling);
2454                         freq = min_policy_perf * perf_ctl_scaling;
2455                         min_policy_perf = DIV_ROUND_UP(freq, scaling);
2456                 }
2457         }
2458
2459         pr_debug("cpu:%d min_policy_perf:%d max_policy_perf:%d\n",
2460                  cpu->cpu, min_policy_perf, max_policy_perf);
2461
2462         /* Normalize user input to [min_perf, max_perf] */
2463         if (per_cpu_limits) {
2464                 cpu->min_perf_ratio = min_policy_perf;
2465                 cpu->max_perf_ratio = max_policy_perf;
2466         } else {
2467                 int turbo_max = cpu->pstate.turbo_pstate;
2468                 int32_t global_min, global_max;
2469
2470                 /* Global limits are in percent of the maximum turbo P-state. */
2471                 global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2472                 global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2473                 global_min = clamp_t(int32_t, global_min, 0, global_max);
2474
2475                 pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu,
2476                          global_min, global_max);
2477
2478                 cpu->min_perf_ratio = max(min_policy_perf, global_min);
2479                 cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2480                 cpu->max_perf_ratio = min(max_policy_perf, global_max);
2481                 cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2482
2483                 /* Make sure min_perf <= max_perf */
2484                 cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2485                                           cpu->max_perf_ratio);
2486
2487         }
2488         pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu,
2489                  cpu->max_perf_ratio,
2490                  cpu->min_perf_ratio);
2491 }
2492
2493 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2494 {
2495         struct cpudata *cpu;
2496
2497         if (!policy->cpuinfo.max_freq)
2498                 return -ENODEV;
2499
2500         pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2501                  policy->cpuinfo.max_freq, policy->max);
2502
2503         cpu = all_cpu_data[policy->cpu];
2504         cpu->policy = policy->policy;
2505
2506         mutex_lock(&intel_pstate_limits_lock);
2507
2508         intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2509
2510         if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2511                 /*
2512                  * NOHZ_FULL CPUs need this as the governor callback may not
2513                  * be invoked on them.
2514                  */
2515                 intel_pstate_clear_update_util_hook(policy->cpu);
2516                 intel_pstate_max_within_limits(cpu);
2517         } else {
2518                 intel_pstate_set_update_util_hook(policy->cpu);
2519         }
2520
2521         if (hwp_active) {
2522                 /*
2523                  * When hwp_boost was active before and dynamically it
2524                  * was turned off, in that case we need to clear the
2525                  * update util hook.
2526                  */
2527                 if (!hwp_boost)
2528                         intel_pstate_clear_update_util_hook(policy->cpu);
2529                 intel_pstate_hwp_set(policy->cpu);
2530         }
2531
2532         mutex_unlock(&intel_pstate_limits_lock);
2533
2534         return 0;
2535 }
2536
2537 static void intel_pstate_adjust_policy_max(struct cpudata *cpu,
2538                                            struct cpufreq_policy_data *policy)
2539 {
2540         if (!hwp_active &&
2541             cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2542             policy->max < policy->cpuinfo.max_freq &&
2543             policy->max > cpu->pstate.max_freq) {
2544                 pr_debug("policy->max > max non turbo frequency\n");
2545                 policy->max = policy->cpuinfo.max_freq;
2546         }
2547 }
2548
2549 static void intel_pstate_verify_cpu_policy(struct cpudata *cpu,
2550                                            struct cpufreq_policy_data *policy)
2551 {
2552         int max_freq;
2553
2554         update_turbo_state();
2555         if (hwp_active) {
2556                 intel_pstate_get_hwp_cap(cpu);
2557                 max_freq = global.no_turbo || global.turbo_disabled ?
2558                                 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2559         } else {
2560                 max_freq = intel_pstate_get_max_freq(cpu);
2561         }
2562         cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq, max_freq);
2563
2564         intel_pstate_adjust_policy_max(cpu, policy);
2565 }
2566
2567 static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy)
2568 {
2569         intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy);
2570
2571         return 0;
2572 }
2573
2574 static int intel_cpufreq_cpu_offline(struct cpufreq_policy *policy)
2575 {
2576         struct cpudata *cpu = all_cpu_data[policy->cpu];
2577
2578         pr_debug("CPU %d going offline\n", cpu->cpu);
2579
2580         if (cpu->suspended)
2581                 return 0;
2582
2583         /*
2584          * If the CPU is an SMT thread and it goes offline with the performance
2585          * settings different from the minimum, it will prevent its sibling
2586          * from getting to lower performance levels, so force the minimum
2587          * performance on CPU offline to prevent that from happening.
2588          */
2589         if (hwp_active)
2590                 intel_pstate_hwp_offline(cpu);
2591         else
2592                 intel_pstate_set_min_pstate(cpu);
2593
2594         intel_pstate_exit_perf_limits(policy);
2595
2596         return 0;
2597 }
2598
2599 static int intel_pstate_cpu_online(struct cpufreq_policy *policy)
2600 {
2601         struct cpudata *cpu = all_cpu_data[policy->cpu];
2602
2603         pr_debug("CPU %d going online\n", cpu->cpu);
2604
2605         intel_pstate_init_acpi_perf_limits(policy);
2606
2607         if (hwp_active) {
2608                 /*
2609                  * Re-enable HWP and clear the "suspended" flag to let "resume"
2610                  * know that it need not do that.
2611                  */
2612                 intel_pstate_hwp_reenable(cpu);
2613                 cpu->suspended = false;
2614         }
2615
2616         return 0;
2617 }
2618
2619 static int intel_pstate_cpu_offline(struct cpufreq_policy *policy)
2620 {
2621         intel_pstate_clear_update_util_hook(policy->cpu);
2622
2623         return intel_cpufreq_cpu_offline(policy);
2624 }
2625
2626 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2627 {
2628         pr_debug("CPU %d exiting\n", policy->cpu);
2629
2630         policy->fast_switch_possible = false;
2631
2632         return 0;
2633 }
2634
2635 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2636 {
2637         struct cpudata *cpu;
2638         int rc;
2639
2640         rc = intel_pstate_init_cpu(policy->cpu);
2641         if (rc)
2642                 return rc;
2643
2644         cpu = all_cpu_data[policy->cpu];
2645
2646         cpu->max_perf_ratio = 0xFF;
2647         cpu->min_perf_ratio = 0;
2648
2649         /* cpuinfo and default policy values */
2650         policy->cpuinfo.min_freq = cpu->pstate.min_freq;
2651         update_turbo_state();
2652         global.turbo_disabled_mf = global.turbo_disabled;
2653         policy->cpuinfo.max_freq = global.turbo_disabled ?
2654                         cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2655
2656         policy->min = policy->cpuinfo.min_freq;
2657         policy->max = policy->cpuinfo.max_freq;
2658
2659         intel_pstate_init_acpi_perf_limits(policy);
2660
2661         policy->fast_switch_possible = true;
2662
2663         return 0;
2664 }
2665
2666 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2667 {
2668         int ret = __intel_pstate_cpu_init(policy);
2669
2670         if (ret)
2671                 return ret;
2672
2673         /*
2674          * Set the policy to powersave to provide a valid fallback value in case
2675          * the default cpufreq governor is neither powersave nor performance.
2676          */
2677         policy->policy = CPUFREQ_POLICY_POWERSAVE;
2678
2679         if (hwp_active) {
2680                 struct cpudata *cpu = all_cpu_data[policy->cpu];
2681
2682                 cpu->epp_cached = intel_pstate_get_epp(cpu, 0);
2683         }
2684
2685         return 0;
2686 }
2687
2688 static struct cpufreq_driver intel_pstate = {
2689         .flags          = CPUFREQ_CONST_LOOPS,
2690         .verify         = intel_pstate_verify_policy,
2691         .setpolicy      = intel_pstate_set_policy,
2692         .suspend        = intel_pstate_suspend,
2693         .resume         = intel_pstate_resume,
2694         .init           = intel_pstate_cpu_init,
2695         .exit           = intel_pstate_cpu_exit,
2696         .offline        = intel_pstate_cpu_offline,
2697         .online         = intel_pstate_cpu_online,
2698         .update_limits  = intel_pstate_update_limits,
2699         .name           = "intel_pstate",
2700 };
2701
2702 static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy)
2703 {
2704         struct cpudata *cpu = all_cpu_data[policy->cpu];
2705
2706         intel_pstate_verify_cpu_policy(cpu, policy);
2707         intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2708
2709         return 0;
2710 }
2711
2712 /* Use of trace in passive mode:
2713  *
2714  * In passive mode the trace core_busy field (also known as the
2715  * performance field, and lablelled as such on the graphs; also known as
2716  * core_avg_perf) is not needed and so is re-assigned to indicate if the
2717  * driver call was via the normal or fast switch path. Various graphs
2718  * output from the intel_pstate_tracer.py utility that include core_busy
2719  * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
2720  * so we use 10 to indicate the normal path through the driver, and
2721  * 90 to indicate the fast switch path through the driver.
2722  * The scaled_busy field is not used, and is set to 0.
2723  */
2724
2725 #define INTEL_PSTATE_TRACE_TARGET 10
2726 #define INTEL_PSTATE_TRACE_FAST_SWITCH 90
2727
2728 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
2729 {
2730         struct sample *sample;
2731
2732         if (!trace_pstate_sample_enabled())
2733                 return;
2734
2735         if (!intel_pstate_sample(cpu, ktime_get()))
2736                 return;
2737
2738         sample = &cpu->sample;
2739         trace_pstate_sample(trace_type,
2740                 0,
2741                 old_pstate,
2742                 cpu->pstate.current_pstate,
2743                 sample->mperf,
2744                 sample->aperf,
2745                 sample->tsc,
2746                 get_avg_frequency(cpu),
2747                 fp_toint(cpu->iowait_boost * 100));
2748 }
2749
2750 static void intel_cpufreq_hwp_update(struct cpudata *cpu, u32 min, u32 max,
2751                                      u32 desired, bool fast_switch)
2752 {
2753         u64 prev = READ_ONCE(cpu->hwp_req_cached), value = prev;
2754
2755         value &= ~HWP_MIN_PERF(~0L);
2756         value |= HWP_MIN_PERF(min);
2757
2758         value &= ~HWP_MAX_PERF(~0L);
2759         value |= HWP_MAX_PERF(max);
2760
2761         value &= ~HWP_DESIRED_PERF(~0L);
2762         value |= HWP_DESIRED_PERF(desired);
2763
2764         if (value == prev)
2765                 return;
2766
2767         WRITE_ONCE(cpu->hwp_req_cached, value);
2768         if (fast_switch)
2769                 wrmsrl(MSR_HWP_REQUEST, value);
2770         else
2771                 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
2772 }
2773
2774 static void intel_cpufreq_perf_ctl_update(struct cpudata *cpu,
2775                                           u32 target_pstate, bool fast_switch)
2776 {
2777         if (fast_switch)
2778                 wrmsrl(MSR_IA32_PERF_CTL,
2779                        pstate_funcs.get_val(cpu, target_pstate));
2780         else
2781                 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
2782                               pstate_funcs.get_val(cpu, target_pstate));
2783 }
2784
2785 static int intel_cpufreq_update_pstate(struct cpufreq_policy *policy,
2786                                        int target_pstate, bool fast_switch)
2787 {
2788         struct cpudata *cpu = all_cpu_data[policy->cpu];
2789         int old_pstate = cpu->pstate.current_pstate;
2790
2791         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2792         if (hwp_active) {
2793                 int max_pstate = policy->strict_target ?
2794                                         target_pstate : cpu->max_perf_ratio;
2795
2796                 intel_cpufreq_hwp_update(cpu, target_pstate, max_pstate, 0,
2797                                          fast_switch);
2798         } else if (target_pstate != old_pstate) {
2799                 intel_cpufreq_perf_ctl_update(cpu, target_pstate, fast_switch);
2800         }
2801
2802         cpu->pstate.current_pstate = target_pstate;
2803
2804         intel_cpufreq_trace(cpu, fast_switch ? INTEL_PSTATE_TRACE_FAST_SWITCH :
2805                             INTEL_PSTATE_TRACE_TARGET, old_pstate);
2806
2807         return target_pstate;
2808 }
2809
2810 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2811                                 unsigned int target_freq,
2812                                 unsigned int relation)
2813 {
2814         struct cpudata *cpu = all_cpu_data[policy->cpu];
2815         struct cpufreq_freqs freqs;
2816         int target_pstate;
2817
2818         update_turbo_state();
2819
2820         freqs.old = policy->cur;
2821         freqs.new = target_freq;
2822
2823         cpufreq_freq_transition_begin(policy, &freqs);
2824
2825         switch (relation) {
2826         case CPUFREQ_RELATION_L:
2827                 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2828                 break;
2829         case CPUFREQ_RELATION_H:
2830                 target_pstate = freqs.new / cpu->pstate.scaling;
2831                 break;
2832         default:
2833                 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2834                 break;
2835         }
2836
2837         target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, false);
2838
2839         freqs.new = target_pstate * cpu->pstate.scaling;
2840
2841         cpufreq_freq_transition_end(policy, &freqs, false);
2842
2843         return 0;
2844 }
2845
2846 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2847                                               unsigned int target_freq)
2848 {
2849         struct cpudata *cpu = all_cpu_data[policy->cpu];
2850         int target_pstate;
2851
2852         update_turbo_state();
2853
2854         target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2855
2856         target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, true);
2857
2858         return target_pstate * cpu->pstate.scaling;
2859 }
2860
2861 static void intel_cpufreq_adjust_perf(unsigned int cpunum,
2862                                       unsigned long min_perf,
2863                                       unsigned long target_perf,
2864                                       unsigned long capacity)
2865 {
2866         struct cpudata *cpu = all_cpu_data[cpunum];
2867         u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
2868         int old_pstate = cpu->pstate.current_pstate;
2869         int cap_pstate, min_pstate, max_pstate, target_pstate;
2870
2871         update_turbo_state();
2872         cap_pstate = global.turbo_disabled ? HWP_GUARANTEED_PERF(hwp_cap) :
2873                                              HWP_HIGHEST_PERF(hwp_cap);
2874
2875         /* Optimization: Avoid unnecessary divisions. */
2876
2877         target_pstate = cap_pstate;
2878         if (target_perf < capacity)
2879                 target_pstate = DIV_ROUND_UP(cap_pstate * target_perf, capacity);
2880
2881         min_pstate = cap_pstate;
2882         if (min_perf < capacity)
2883                 min_pstate = DIV_ROUND_UP(cap_pstate * min_perf, capacity);
2884
2885         if (min_pstate < cpu->pstate.min_pstate)
2886                 min_pstate = cpu->pstate.min_pstate;
2887
2888         if (min_pstate < cpu->min_perf_ratio)
2889                 min_pstate = cpu->min_perf_ratio;
2890
2891         max_pstate = min(cap_pstate, cpu->max_perf_ratio);
2892         if (max_pstate < min_pstate)
2893                 max_pstate = min_pstate;
2894
2895         target_pstate = clamp_t(int, target_pstate, min_pstate, max_pstate);
2896
2897         intel_cpufreq_hwp_update(cpu, min_pstate, max_pstate, target_pstate, true);
2898
2899         cpu->pstate.current_pstate = target_pstate;
2900         intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2901 }
2902
2903 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2904 {
2905         struct freq_qos_request *req;
2906         struct cpudata *cpu;
2907         struct device *dev;
2908         int ret, freq;
2909
2910         dev = get_cpu_device(policy->cpu);
2911         if (!dev)
2912                 return -ENODEV;
2913
2914         ret = __intel_pstate_cpu_init(policy);
2915         if (ret)
2916                 return ret;
2917
2918         policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2919         /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2920         policy->cur = policy->cpuinfo.min_freq;
2921
2922         req = kcalloc(2, sizeof(*req), GFP_KERNEL);
2923         if (!req) {
2924                 ret = -ENOMEM;
2925                 goto pstate_exit;
2926         }
2927
2928         cpu = all_cpu_data[policy->cpu];
2929
2930         if (hwp_active) {
2931                 u64 value;
2932
2933                 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY_HWP;
2934
2935                 intel_pstate_get_hwp_cap(cpu);
2936
2937                 rdmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, &value);
2938                 WRITE_ONCE(cpu->hwp_req_cached, value);
2939
2940                 cpu->epp_cached = intel_pstate_get_epp(cpu, value);
2941         } else {
2942                 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2943         }
2944
2945         freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.min_perf_pct, 100);
2946
2947         ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN,
2948                                    freq);
2949         if (ret < 0) {
2950                 dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
2951                 goto free_req;
2952         }
2953
2954         freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.max_perf_pct, 100);
2955
2956         ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX,
2957                                    freq);
2958         if (ret < 0) {
2959                 dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
2960                 goto remove_min_req;
2961         }
2962
2963         policy->driver_data = req;
2964
2965         return 0;
2966
2967 remove_min_req:
2968         freq_qos_remove_request(req);
2969 free_req:
2970         kfree(req);
2971 pstate_exit:
2972         intel_pstate_exit_perf_limits(policy);
2973
2974         return ret;
2975 }
2976
2977 static int intel_cpufreq_cpu_exit(struct cpufreq_policy *policy)
2978 {
2979         struct freq_qos_request *req;
2980
2981         req = policy->driver_data;
2982
2983         freq_qos_remove_request(req + 1);
2984         freq_qos_remove_request(req);
2985         kfree(req);
2986
2987         return intel_pstate_cpu_exit(policy);
2988 }
2989
2990 static struct cpufreq_driver intel_cpufreq = {
2991         .flags          = CPUFREQ_CONST_LOOPS,
2992         .verify         = intel_cpufreq_verify_policy,
2993         .target         = intel_cpufreq_target,
2994         .fast_switch    = intel_cpufreq_fast_switch,
2995         .init           = intel_cpufreq_cpu_init,
2996         .exit           = intel_cpufreq_cpu_exit,
2997         .offline        = intel_cpufreq_cpu_offline,
2998         .online         = intel_pstate_cpu_online,
2999         .suspend        = intel_pstate_suspend,
3000         .resume         = intel_pstate_resume,
3001         .update_limits  = intel_pstate_update_limits,
3002         .name           = "intel_cpufreq",
3003 };
3004
3005 static struct cpufreq_driver *default_driver;
3006
3007 static void intel_pstate_driver_cleanup(void)
3008 {
3009         unsigned int cpu;
3010
3011         cpus_read_lock();
3012         for_each_online_cpu(cpu) {
3013                 if (all_cpu_data[cpu]) {
3014                         if (intel_pstate_driver == &intel_pstate)
3015                                 intel_pstate_clear_update_util_hook(cpu);
3016
3017                         kfree(all_cpu_data[cpu]);
3018                         all_cpu_data[cpu] = NULL;
3019                 }
3020         }
3021         cpus_read_unlock();
3022
3023         intel_pstate_driver = NULL;
3024 }
3025
3026 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
3027 {
3028         int ret;
3029
3030         if (driver == &intel_pstate)
3031                 intel_pstate_sysfs_expose_hwp_dynamic_boost();
3032
3033         memset(&global, 0, sizeof(global));
3034         global.max_perf_pct = 100;
3035
3036         intel_pstate_driver = driver;
3037         ret = cpufreq_register_driver(intel_pstate_driver);
3038         if (ret) {
3039                 intel_pstate_driver_cleanup();
3040                 return ret;
3041         }
3042
3043         global.min_perf_pct = min_perf_pct_min();
3044
3045         return 0;
3046 }
3047
3048 static ssize_t intel_pstate_show_status(char *buf)
3049 {
3050         if (!intel_pstate_driver)
3051                 return sprintf(buf, "off\n");
3052
3053         return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
3054                                         "active" : "passive");
3055 }
3056
3057 static int intel_pstate_update_status(const char *buf, size_t size)
3058 {
3059         if (size == 3 && !strncmp(buf, "off", size)) {
3060                 if (!intel_pstate_driver)
3061                         return -EINVAL;
3062
3063                 if (hwp_active)
3064                         return -EBUSY;
3065
3066                 cpufreq_unregister_driver(intel_pstate_driver);
3067                 intel_pstate_driver_cleanup();
3068                 return 0;
3069         }
3070
3071         if (size == 6 && !strncmp(buf, "active", size)) {
3072                 if (intel_pstate_driver) {
3073                         if (intel_pstate_driver == &intel_pstate)
3074                                 return 0;
3075
3076                         cpufreq_unregister_driver(intel_pstate_driver);
3077                 }
3078
3079                 return intel_pstate_register_driver(&intel_pstate);
3080         }
3081
3082         if (size == 7 && !strncmp(buf, "passive", size)) {
3083                 if (intel_pstate_driver) {
3084                         if (intel_pstate_driver == &intel_cpufreq)
3085                                 return 0;
3086
3087                         cpufreq_unregister_driver(intel_pstate_driver);
3088                         intel_pstate_sysfs_hide_hwp_dynamic_boost();
3089                 }
3090
3091                 return intel_pstate_register_driver(&intel_cpufreq);
3092         }
3093
3094         return -EINVAL;
3095 }
3096
3097 static int no_load __initdata;
3098 static int no_hwp __initdata;
3099 static int hwp_only __initdata;
3100 static unsigned int force_load __initdata;
3101
3102 static int __init intel_pstate_msrs_not_valid(void)
3103 {
3104         if (!pstate_funcs.get_max() ||
3105             !pstate_funcs.get_min() ||
3106             !pstate_funcs.get_turbo())
3107                 return -ENODEV;
3108
3109         return 0;
3110 }
3111
3112 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
3113 {
3114         pstate_funcs.get_max   = funcs->get_max;
3115         pstate_funcs.get_max_physical = funcs->get_max_physical;
3116         pstate_funcs.get_min   = funcs->get_min;
3117         pstate_funcs.get_turbo = funcs->get_turbo;
3118         pstate_funcs.get_scaling = funcs->get_scaling;
3119         pstate_funcs.get_val   = funcs->get_val;
3120         pstate_funcs.get_vid   = funcs->get_vid;
3121         pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
3122 }
3123
3124 #ifdef CONFIG_ACPI
3125
3126 static bool __init intel_pstate_no_acpi_pss(void)
3127 {
3128         int i;
3129
3130         for_each_possible_cpu(i) {
3131                 acpi_status status;
3132                 union acpi_object *pss;
3133                 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
3134                 struct acpi_processor *pr = per_cpu(processors, i);
3135
3136                 if (!pr)
3137                         continue;
3138
3139                 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
3140                 if (ACPI_FAILURE(status))
3141                         continue;
3142
3143                 pss = buffer.pointer;
3144                 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
3145                         kfree(pss);
3146                         return false;
3147                 }
3148
3149                 kfree(pss);
3150         }
3151
3152         pr_debug("ACPI _PSS not found\n");
3153         return true;
3154 }
3155
3156 static bool __init intel_pstate_no_acpi_pcch(void)
3157 {
3158         acpi_status status;
3159         acpi_handle handle;
3160
3161         status = acpi_get_handle(NULL, "\\_SB", &handle);
3162         if (ACPI_FAILURE(status))
3163                 goto not_found;
3164
3165         if (acpi_has_method(handle, "PCCH"))
3166                 return false;
3167
3168 not_found:
3169         pr_debug("ACPI PCCH not found\n");
3170         return true;
3171 }
3172
3173 static bool __init intel_pstate_has_acpi_ppc(void)
3174 {
3175         int i;
3176
3177         for_each_possible_cpu(i) {
3178                 struct acpi_processor *pr = per_cpu(processors, i);
3179
3180                 if (!pr)
3181                         continue;
3182                 if (acpi_has_method(pr->handle, "_PPC"))
3183                         return true;
3184         }
3185         pr_debug("ACPI _PPC not found\n");
3186         return false;
3187 }
3188
3189 enum {
3190         PSS,
3191         PPC,
3192 };
3193
3194 /* Hardware vendor-specific info that has its own power management modes */
3195 static struct acpi_platform_list plat_info[] __initdata = {
3196         {"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS},
3197         {"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3198         {"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3199         {"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3200         {"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3201         {"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3202         {"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3203         {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3204         {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3205         {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3206         {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3207         {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3208         {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3209         {"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3210         {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3211         { } /* End */
3212 };
3213
3214 #define BITMASK_OOB     (BIT(8) | BIT(18))
3215
3216 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
3217 {
3218         const struct x86_cpu_id *id;
3219         u64 misc_pwr;
3220         int idx;
3221
3222         id = x86_match_cpu(intel_pstate_cpu_oob_ids);
3223         if (id) {
3224                 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
3225                 if (misc_pwr & BITMASK_OOB) {
3226                         pr_debug("Bit 8 or 18 in the MISC_PWR_MGMT MSR set\n");
3227                         pr_debug("P states are controlled in Out of Band mode by the firmware/hardware\n");
3228                         return true;
3229                 }
3230         }
3231
3232         idx = acpi_match_platform_list(plat_info);
3233         if (idx < 0)
3234                 return false;
3235
3236         switch (plat_info[idx].data) {
3237         case PSS:
3238                 if (!intel_pstate_no_acpi_pss())
3239                         return false;
3240
3241                 return intel_pstate_no_acpi_pcch();
3242         case PPC:
3243                 return intel_pstate_has_acpi_ppc() && !force_load;
3244         }
3245
3246         return false;
3247 }
3248
3249 static void intel_pstate_request_control_from_smm(void)
3250 {
3251         /*
3252          * It may be unsafe to request P-states control from SMM if _PPC support
3253          * has not been enabled.
3254          */
3255         if (acpi_ppc)
3256                 acpi_processor_pstate_control();
3257 }
3258 #else /* CONFIG_ACPI not enabled */
3259 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
3260 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
3261 static inline void intel_pstate_request_control_from_smm(void) {}
3262 #endif /* CONFIG_ACPI */
3263
3264 #define INTEL_PSTATE_HWP_BROADWELL      0x01
3265
3266 #define X86_MATCH_HWP(model, hwp_mode)                                  \
3267         X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
3268                                            X86_FEATURE_HWP, hwp_mode)
3269
3270 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
3271         X86_MATCH_HWP(BROADWELL_X,      INTEL_PSTATE_HWP_BROADWELL),
3272         X86_MATCH_HWP(BROADWELL_D,      INTEL_PSTATE_HWP_BROADWELL),
3273         X86_MATCH_HWP(ANY,              0),
3274         {}
3275 };
3276
3277 static bool intel_pstate_hwp_is_enabled(void)
3278 {
3279         u64 value;
3280
3281         rdmsrl(MSR_PM_ENABLE, value);
3282         return !!(value & 0x1);
3283 }
3284
3285 static int __init intel_pstate_init(void)
3286 {
3287         const struct x86_cpu_id *id;
3288         int rc;
3289
3290         if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
3291                 return -ENODEV;
3292
3293         if (no_load)
3294                 return -ENODEV;
3295
3296         id = x86_match_cpu(hwp_support_ids);
3297         if (id) {
3298                 copy_cpu_funcs(&core_funcs);
3299                 /*
3300                  * Avoid enabling HWP for processors without EPP support,
3301                  * because that means incomplete HWP implementation which is a
3302                  * corner case and supporting it is generally problematic.
3303                  *
3304                  * If HWP is enabled already, though, there is no choice but to
3305                  * deal with it.
3306                  */
3307                 if ((!no_hwp && boot_cpu_has(X86_FEATURE_HWP_EPP)) ||
3308                     intel_pstate_hwp_is_enabled()) {
3309                         hwp_active++;
3310                         hwp_mode_bdw = id->driver_data;
3311                         intel_pstate.attr = hwp_cpufreq_attrs;
3312                         intel_cpufreq.attr = hwp_cpufreq_attrs;
3313                         intel_cpufreq.flags |= CPUFREQ_NEED_UPDATE_LIMITS;
3314                         intel_cpufreq.adjust_perf = intel_cpufreq_adjust_perf;
3315                         if (!default_driver)
3316                                 default_driver = &intel_pstate;
3317
3318                         goto hwp_cpu_matched;
3319                 }
3320         } else {
3321                 id = x86_match_cpu(intel_pstate_cpu_ids);
3322                 if (!id) {
3323                         pr_info("CPU model not supported\n");
3324                         return -ENODEV;
3325                 }
3326
3327                 copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
3328         }
3329
3330         if (intel_pstate_msrs_not_valid()) {
3331                 pr_info("Invalid MSRs\n");
3332                 return -ENODEV;
3333         }
3334         /* Without HWP start in the passive mode. */
3335         if (!default_driver)
3336                 default_driver = &intel_cpufreq;
3337
3338 hwp_cpu_matched:
3339         /*
3340          * The Intel pstate driver will be ignored if the platform
3341          * firmware has its own power management modes.
3342          */
3343         if (intel_pstate_platform_pwr_mgmt_exists()) {
3344                 pr_info("P-states controlled by the platform\n");
3345                 return -ENODEV;
3346         }
3347
3348         if (!hwp_active && hwp_only)
3349                 return -ENOTSUPP;
3350
3351         pr_info("Intel P-state driver initializing\n");
3352
3353         all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
3354         if (!all_cpu_data)
3355                 return -ENOMEM;
3356
3357         intel_pstate_request_control_from_smm();
3358
3359         intel_pstate_sysfs_expose_params();
3360
3361         mutex_lock(&intel_pstate_driver_lock);
3362         rc = intel_pstate_register_driver(default_driver);
3363         mutex_unlock(&intel_pstate_driver_lock);
3364         if (rc) {
3365                 intel_pstate_sysfs_remove();
3366                 return rc;
3367         }
3368
3369         if (hwp_active) {
3370                 const struct x86_cpu_id *id;
3371
3372                 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
3373                 if (id) {
3374                         set_power_ctl_ee_state(false);
3375                         pr_info("Disabling energy efficiency optimization\n");
3376                 }
3377
3378                 pr_info("HWP enabled\n");
3379         } else if (boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
3380                 pr_warn("Problematic setup: Hybrid processor with disabled HWP\n");
3381         }
3382
3383         return 0;
3384 }
3385 device_initcall(intel_pstate_init);
3386
3387 static int __init intel_pstate_setup(char *str)
3388 {
3389         if (!str)
3390                 return -EINVAL;
3391
3392         if (!strcmp(str, "disable"))
3393                 no_load = 1;
3394         else if (!strcmp(str, "active"))
3395                 default_driver = &intel_pstate;
3396         else if (!strcmp(str, "passive"))
3397                 default_driver = &intel_cpufreq;
3398
3399         if (!strcmp(str, "no_hwp")) {
3400                 pr_info("HWP disabled\n");
3401                 no_hwp = 1;
3402         }
3403         if (!strcmp(str, "force"))
3404                 force_load = 1;
3405         if (!strcmp(str, "hwp_only"))
3406                 hwp_only = 1;
3407         if (!strcmp(str, "per_cpu_perf_limits"))
3408                 per_cpu_limits = true;
3409
3410 #ifdef CONFIG_ACPI
3411         if (!strcmp(str, "support_acpi_ppc"))
3412                 acpi_ppc = true;
3413 #endif
3414
3415         return 0;
3416 }
3417 early_param("intel_pstate", intel_pstate_setup);
3418
3419 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
3420 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
3421 MODULE_LICENSE("GPL");