tools headers UAPI: Update tools's copy of drm.h headers
[linux-2.6-microblaze.git] / drivers / cpufreq / intel_pstate.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * intel_pstate.c: Native P state management for Intel processors
4  *
5  * (C) Copyright 2012 Intel Corporation
6  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/module.h>
14 #include <linux/ktime.h>
15 #include <linux/hrtimer.h>
16 #include <linux/tick.h>
17 #include <linux/slab.h>
18 #include <linux/sched/cpufreq.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/sysfs.h>
23 #include <linux/types.h>
24 #include <linux/fs.h>
25 #include <linux/acpi.h>
26 #include <linux/vmalloc.h>
27 #include <linux/pm_qos.h>
28 #include <trace/events/power.h>
29
30 #include <asm/div64.h>
31 #include <asm/msr.h>
32 #include <asm/cpu_device_id.h>
33 #include <asm/cpufeature.h>
34 #include <asm/intel-family.h>
35
36 #define INTEL_PSTATE_SAMPLING_INTERVAL  (10 * NSEC_PER_MSEC)
37
38 #define INTEL_CPUFREQ_TRANSITION_LATENCY        20000
39 #define INTEL_CPUFREQ_TRANSITION_DELAY_HWP      5000
40 #define INTEL_CPUFREQ_TRANSITION_DELAY          500
41
42 #ifdef CONFIG_ACPI
43 #include <acpi/processor.h>
44 #include <acpi/cppc_acpi.h>
45 #endif
46
47 #define FRAC_BITS 8
48 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
49 #define fp_toint(X) ((X) >> FRAC_BITS)
50
51 #define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))
52
53 #define EXT_BITS 6
54 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
55 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
56 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
57
58 static inline int32_t mul_fp(int32_t x, int32_t y)
59 {
60         return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
61 }
62
63 static inline int32_t div_fp(s64 x, s64 y)
64 {
65         return div64_s64((int64_t)x << FRAC_BITS, y);
66 }
67
68 static inline int ceiling_fp(int32_t x)
69 {
70         int mask, ret;
71
72         ret = fp_toint(x);
73         mask = (1 << FRAC_BITS) - 1;
74         if (x & mask)
75                 ret += 1;
76         return ret;
77 }
78
79 static inline u64 mul_ext_fp(u64 x, u64 y)
80 {
81         return (x * y) >> EXT_FRAC_BITS;
82 }
83
84 static inline u64 div_ext_fp(u64 x, u64 y)
85 {
86         return div64_u64(x << EXT_FRAC_BITS, y);
87 }
88
89 /**
90  * struct sample -      Store performance sample
91  * @core_avg_perf:      Ratio of APERF/MPERF which is the actual average
92  *                      performance during last sample period
93  * @busy_scaled:        Scaled busy value which is used to calculate next
94  *                      P state. This can be different than core_avg_perf
95  *                      to account for cpu idle period
96  * @aperf:              Difference of actual performance frequency clock count
97  *                      read from APERF MSR between last and current sample
98  * @mperf:              Difference of maximum performance frequency clock count
99  *                      read from MPERF MSR between last and current sample
100  * @tsc:                Difference of time stamp counter between last and
101  *                      current sample
102  * @time:               Current time from scheduler
103  *
104  * This structure is used in the cpudata structure to store performance sample
105  * data for choosing next P State.
106  */
107 struct sample {
108         int32_t core_avg_perf;
109         int32_t busy_scaled;
110         u64 aperf;
111         u64 mperf;
112         u64 tsc;
113         u64 time;
114 };
115
116 /**
117  * struct pstate_data - Store P state data
118  * @current_pstate:     Current requested P state
119  * @min_pstate:         Min P state possible for this platform
120  * @max_pstate:         Max P state possible for this platform
121  * @max_pstate_physical:This is physical Max P state for a processor
122  *                      This can be higher than the max_pstate which can
123  *                      be limited by platform thermal design power limits
124  * @perf_ctl_scaling:   PERF_CTL P-state to frequency scaling factor
125  * @scaling:            Scaling factor between performance and frequency
126  * @turbo_pstate:       Max Turbo P state possible for this platform
127  * @min_freq:           @min_pstate frequency in cpufreq units
128  * @max_freq:           @max_pstate frequency in cpufreq units
129  * @turbo_freq:         @turbo_pstate frequency in cpufreq units
130  *
131  * Stores the per cpu model P state limits and current P state.
132  */
133 struct pstate_data {
134         int     current_pstate;
135         int     min_pstate;
136         int     max_pstate;
137         int     max_pstate_physical;
138         int     perf_ctl_scaling;
139         int     scaling;
140         int     turbo_pstate;
141         unsigned int min_freq;
142         unsigned int max_freq;
143         unsigned int turbo_freq;
144 };
145
146 /**
147  * struct vid_data -    Stores voltage information data
148  * @min:                VID data for this platform corresponding to
149  *                      the lowest P state
150  * @max:                VID data corresponding to the highest P State.
151  * @turbo:              VID data for turbo P state
152  * @ratio:              Ratio of (vid max - vid min) /
153  *                      (max P state - Min P State)
154  *
155  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
156  * This data is used in Atom platforms, where in addition to target P state,
157  * the voltage data needs to be specified to select next P State.
158  */
159 struct vid_data {
160         int min;
161         int max;
162         int turbo;
163         int32_t ratio;
164 };
165
166 /**
167  * struct global_params - Global parameters, mostly tunable via sysfs.
168  * @no_turbo:           Whether or not to use turbo P-states.
169  * @turbo_disabled:     Whether or not turbo P-states are available at all,
170  *                      based on the MSR_IA32_MISC_ENABLE value and whether or
171  *                      not the maximum reported turbo P-state is different from
172  *                      the maximum reported non-turbo one.
173  * @turbo_disabled_mf:  The @turbo_disabled value reflected by cpuinfo.max_freq.
174  * @min_perf_pct:       Minimum capacity limit in percent of the maximum turbo
175  *                      P-state capacity.
176  * @max_perf_pct:       Maximum capacity limit in percent of the maximum turbo
177  *                      P-state capacity.
178  */
179 struct global_params {
180         bool no_turbo;
181         bool turbo_disabled;
182         bool turbo_disabled_mf;
183         int max_perf_pct;
184         int min_perf_pct;
185 };
186
187 /**
188  * struct cpudata -     Per CPU instance data storage
189  * @cpu:                CPU number for this instance data
190  * @policy:             CPUFreq policy value
191  * @update_util:        CPUFreq utility callback information
192  * @update_util_set:    CPUFreq utility callback is set
193  * @iowait_boost:       iowait-related boost fraction
194  * @last_update:        Time of the last update.
195  * @pstate:             Stores P state limits for this CPU
196  * @vid:                Stores VID limits for this CPU
197  * @last_sample_time:   Last Sample time
198  * @aperf_mperf_shift:  APERF vs MPERF counting frequency difference
199  * @prev_aperf:         Last APERF value read from APERF MSR
200  * @prev_mperf:         Last MPERF value read from MPERF MSR
201  * @prev_tsc:           Last timestamp counter (TSC) value
202  * @prev_cummulative_iowait: IO Wait time difference from last and
203  *                      current sample
204  * @sample:             Storage for storing last Sample data
205  * @min_perf_ratio:     Minimum capacity in terms of PERF or HWP ratios
206  * @max_perf_ratio:     Maximum capacity in terms of PERF or HWP ratios
207  * @acpi_perf_data:     Stores ACPI perf information read from _PSS
208  * @valid_pss_table:    Set to true for valid ACPI _PSS entries found
209  * @epp_powersave:      Last saved HWP energy performance preference
210  *                      (EPP) or energy performance bias (EPB),
211  *                      when policy switched to performance
212  * @epp_policy:         Last saved policy used to set EPP/EPB
213  * @epp_default:        Power on default HWP energy performance
214  *                      preference/bias
215  * @epp_cached          Cached HWP energy-performance preference value
216  * @hwp_req_cached:     Cached value of the last HWP Request MSR
217  * @hwp_cap_cached:     Cached value of the last HWP Capabilities MSR
218  * @last_io_update:     Last time when IO wake flag was set
219  * @sched_flags:        Store scheduler flags for possible cross CPU update
220  * @hwp_boost_min:      Last HWP boosted min performance
221  * @suspended:          Whether or not the driver has been suspended.
222  *
223  * This structure stores per CPU instance data for all CPUs.
224  */
225 struct cpudata {
226         int cpu;
227
228         unsigned int policy;
229         struct update_util_data update_util;
230         bool   update_util_set;
231
232         struct pstate_data pstate;
233         struct vid_data vid;
234
235         u64     last_update;
236         u64     last_sample_time;
237         u64     aperf_mperf_shift;
238         u64     prev_aperf;
239         u64     prev_mperf;
240         u64     prev_tsc;
241         u64     prev_cummulative_iowait;
242         struct sample sample;
243         int32_t min_perf_ratio;
244         int32_t max_perf_ratio;
245 #ifdef CONFIG_ACPI
246         struct acpi_processor_performance acpi_perf_data;
247         bool valid_pss_table;
248 #endif
249         unsigned int iowait_boost;
250         s16 epp_powersave;
251         s16 epp_policy;
252         s16 epp_default;
253         s16 epp_cached;
254         u64 hwp_req_cached;
255         u64 hwp_cap_cached;
256         u64 last_io_update;
257         unsigned int sched_flags;
258         u32 hwp_boost_min;
259         bool suspended;
260 };
261
262 static struct cpudata **all_cpu_data;
263
264 /**
265  * struct pstate_funcs - Per CPU model specific callbacks
266  * @get_max:            Callback to get maximum non turbo effective P state
267  * @get_max_physical:   Callback to get maximum non turbo physical P state
268  * @get_min:            Callback to get minimum P state
269  * @get_turbo:          Callback to get turbo P state
270  * @get_scaling:        Callback to get frequency scaling factor
271  * @get_aperf_mperf_shift: Callback to get the APERF vs MPERF frequency difference
272  * @get_val:            Callback to convert P state to actual MSR write value
273  * @get_vid:            Callback to get VID data for Atom platforms
274  *
275  * Core and Atom CPU models have different way to get P State limits. This
276  * structure is used to store those callbacks.
277  */
278 struct pstate_funcs {
279         int (*get_max)(void);
280         int (*get_max_physical)(void);
281         int (*get_min)(void);
282         int (*get_turbo)(void);
283         int (*get_scaling)(void);
284         int (*get_aperf_mperf_shift)(void);
285         u64 (*get_val)(struct cpudata*, int pstate);
286         void (*get_vid)(struct cpudata *);
287 };
288
289 static struct pstate_funcs pstate_funcs __read_mostly;
290
291 static int hwp_active __read_mostly;
292 static int hwp_mode_bdw __read_mostly;
293 static bool per_cpu_limits __read_mostly;
294 static bool hwp_boost __read_mostly;
295
296 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
297
298 #ifdef CONFIG_ACPI
299 static bool acpi_ppc;
300 #endif
301
302 static struct global_params global;
303
304 static DEFINE_MUTEX(intel_pstate_driver_lock);
305 static DEFINE_MUTEX(intel_pstate_limits_lock);
306
307 #ifdef CONFIG_ACPI
308
309 static bool intel_pstate_acpi_pm_profile_server(void)
310 {
311         if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
312             acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
313                 return true;
314
315         return false;
316 }
317
318 static bool intel_pstate_get_ppc_enable_status(void)
319 {
320         if (intel_pstate_acpi_pm_profile_server())
321                 return true;
322
323         return acpi_ppc;
324 }
325
326 #ifdef CONFIG_ACPI_CPPC_LIB
327
328 /* The work item is needed to avoid CPU hotplug locking issues */
329 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
330 {
331         sched_set_itmt_support();
332 }
333
334 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
335
336 static void intel_pstate_set_itmt_prio(int cpu)
337 {
338         struct cppc_perf_caps cppc_perf;
339         static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
340         int ret;
341
342         ret = cppc_get_perf_caps(cpu, &cppc_perf);
343         if (ret)
344                 return;
345
346         /*
347          * The priorities can be set regardless of whether or not
348          * sched_set_itmt_support(true) has been called and it is valid to
349          * update them at any time after it has been called.
350          */
351         sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
352
353         if (max_highest_perf <= min_highest_perf) {
354                 if (cppc_perf.highest_perf > max_highest_perf)
355                         max_highest_perf = cppc_perf.highest_perf;
356
357                 if (cppc_perf.highest_perf < min_highest_perf)
358                         min_highest_perf = cppc_perf.highest_perf;
359
360                 if (max_highest_perf > min_highest_perf) {
361                         /*
362                          * This code can be run during CPU online under the
363                          * CPU hotplug locks, so sched_set_itmt_support()
364                          * cannot be called from here.  Queue up a work item
365                          * to invoke it.
366                          */
367                         schedule_work(&sched_itmt_work);
368                 }
369         }
370 }
371
372 static int intel_pstate_get_cppc_guaranteed(int cpu)
373 {
374         struct cppc_perf_caps cppc_perf;
375         int ret;
376
377         ret = cppc_get_perf_caps(cpu, &cppc_perf);
378         if (ret)
379                 return ret;
380
381         if (cppc_perf.guaranteed_perf)
382                 return cppc_perf.guaranteed_perf;
383
384         return cppc_perf.nominal_perf;
385 }
386
387 #else /* CONFIG_ACPI_CPPC_LIB */
388 static inline void intel_pstate_set_itmt_prio(int cpu)
389 {
390 }
391 #endif /* CONFIG_ACPI_CPPC_LIB */
392
393 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
394 {
395         struct cpudata *cpu;
396         int ret;
397         int i;
398
399         if (hwp_active) {
400                 intel_pstate_set_itmt_prio(policy->cpu);
401                 return;
402         }
403
404         if (!intel_pstate_get_ppc_enable_status())
405                 return;
406
407         cpu = all_cpu_data[policy->cpu];
408
409         ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
410                                                   policy->cpu);
411         if (ret)
412                 return;
413
414         /*
415          * Check if the control value in _PSS is for PERF_CTL MSR, which should
416          * guarantee that the states returned by it map to the states in our
417          * list directly.
418          */
419         if (cpu->acpi_perf_data.control_register.space_id !=
420                                                 ACPI_ADR_SPACE_FIXED_HARDWARE)
421                 goto err;
422
423         /*
424          * If there is only one entry _PSS, simply ignore _PSS and continue as
425          * usual without taking _PSS into account
426          */
427         if (cpu->acpi_perf_data.state_count < 2)
428                 goto err;
429
430         pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
431         for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
432                 pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
433                          (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
434                          (u32) cpu->acpi_perf_data.states[i].core_frequency,
435                          (u32) cpu->acpi_perf_data.states[i].power,
436                          (u32) cpu->acpi_perf_data.states[i].control);
437         }
438
439         /*
440          * The _PSS table doesn't contain whole turbo frequency range.
441          * This just contains +1 MHZ above the max non turbo frequency,
442          * with control value corresponding to max turbo ratio. But
443          * when cpufreq set policy is called, it will call with this
444          * max frequency, which will cause a reduced performance as
445          * this driver uses real max turbo frequency as the max
446          * frequency. So correct this frequency in _PSS table to
447          * correct max turbo frequency based on the turbo state.
448          * Also need to convert to MHz as _PSS freq is in MHz.
449          */
450         if (!global.turbo_disabled)
451                 cpu->acpi_perf_data.states[0].core_frequency =
452                                         policy->cpuinfo.max_freq / 1000;
453         cpu->valid_pss_table = true;
454         pr_debug("_PPC limits will be enforced\n");
455
456         return;
457
458  err:
459         cpu->valid_pss_table = false;
460         acpi_processor_unregister_performance(policy->cpu);
461 }
462
463 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
464 {
465         struct cpudata *cpu;
466
467         cpu = all_cpu_data[policy->cpu];
468         if (!cpu->valid_pss_table)
469                 return;
470
471         acpi_processor_unregister_performance(policy->cpu);
472 }
473
474 static bool intel_pstate_cppc_perf_valid(u32 perf, struct cppc_perf_caps *caps)
475 {
476         return perf && perf <= caps->highest_perf && perf >= caps->lowest_perf;
477 }
478
479 static bool intel_pstate_cppc_perf_caps(struct cpudata *cpu,
480                                         struct cppc_perf_caps *caps)
481 {
482         if (cppc_get_perf_caps(cpu->cpu, caps))
483                 return false;
484
485         return caps->highest_perf && caps->lowest_perf <= caps->highest_perf;
486 }
487 #else /* CONFIG_ACPI */
488 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
489 {
490 }
491
492 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
493 {
494 }
495
496 static inline bool intel_pstate_acpi_pm_profile_server(void)
497 {
498         return false;
499 }
500 #endif /* CONFIG_ACPI */
501
502 #ifndef CONFIG_ACPI_CPPC_LIB
503 static inline int intel_pstate_get_cppc_guaranteed(int cpu)
504 {
505         return -ENOTSUPP;
506 }
507 #endif /* CONFIG_ACPI_CPPC_LIB */
508
509 static void intel_pstate_hybrid_hwp_perf_ctl_parity(struct cpudata *cpu)
510 {
511         pr_debug("CPU%d: Using PERF_CTL scaling for HWP\n", cpu->cpu);
512
513         cpu->pstate.scaling = cpu->pstate.perf_ctl_scaling;
514 }
515
516 /**
517  * intel_pstate_hybrid_hwp_calibrate - Calibrate HWP performance levels.
518  * @cpu: Target CPU.
519  *
520  * On hybrid processors, HWP may expose more performance levels than there are
521  * P-states accessible through the PERF_CTL interface.  If that happens, the
522  * scaling factor between HWP performance levels and CPU frequency will be less
523  * than the scaling factor between P-state values and CPU frequency.
524  *
525  * In that case, the scaling factor between HWP performance levels and CPU
526  * frequency needs to be determined which can be done with the help of the
527  * observation that certain HWP performance levels should correspond to certain
528  * P-states, like for example the HWP highest performance should correspond
529  * to the maximum turbo P-state of the CPU.
530  */
531 static void intel_pstate_hybrid_hwp_calibrate(struct cpudata *cpu)
532 {
533         int perf_ctl_max_phys = cpu->pstate.max_pstate_physical;
534         int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
535         int perf_ctl_turbo = pstate_funcs.get_turbo();
536         int turbo_freq = perf_ctl_turbo * perf_ctl_scaling;
537         int perf_ctl_max = pstate_funcs.get_max();
538         int max_freq = perf_ctl_max * perf_ctl_scaling;
539         int scaling = INT_MAX;
540         int freq;
541
542         pr_debug("CPU%d: perf_ctl_max_phys = %d\n", cpu->cpu, perf_ctl_max_phys);
543         pr_debug("CPU%d: perf_ctl_max = %d\n", cpu->cpu, perf_ctl_max);
544         pr_debug("CPU%d: perf_ctl_turbo = %d\n", cpu->cpu, perf_ctl_turbo);
545         pr_debug("CPU%d: perf_ctl_scaling = %d\n", cpu->cpu, perf_ctl_scaling);
546
547         pr_debug("CPU%d: HWP_CAP guaranteed = %d\n", cpu->cpu, cpu->pstate.max_pstate);
548         pr_debug("CPU%d: HWP_CAP highest = %d\n", cpu->cpu, cpu->pstate.turbo_pstate);
549
550 #ifdef CONFIG_ACPI
551         if (IS_ENABLED(CONFIG_ACPI_CPPC_LIB)) {
552                 struct cppc_perf_caps caps;
553
554                 if (intel_pstate_cppc_perf_caps(cpu, &caps)) {
555                         if (intel_pstate_cppc_perf_valid(caps.nominal_perf, &caps)) {
556                                 pr_debug("CPU%d: Using CPPC nominal\n", cpu->cpu);
557
558                                 /*
559                                  * If the CPPC nominal performance is valid, it
560                                  * can be assumed to correspond to cpu_khz.
561                                  */
562                                 if (caps.nominal_perf == perf_ctl_max_phys) {
563                                         intel_pstate_hybrid_hwp_perf_ctl_parity(cpu);
564                                         return;
565                                 }
566                                 scaling = DIV_ROUND_UP(cpu_khz, caps.nominal_perf);
567                         } else if (intel_pstate_cppc_perf_valid(caps.guaranteed_perf, &caps)) {
568                                 pr_debug("CPU%d: Using CPPC guaranteed\n", cpu->cpu);
569
570                                 /*
571                                  * If the CPPC guaranteed performance is valid,
572                                  * it can be assumed to correspond to max_freq.
573                                  */
574                                 if (caps.guaranteed_perf == perf_ctl_max) {
575                                         intel_pstate_hybrid_hwp_perf_ctl_parity(cpu);
576                                         return;
577                                 }
578                                 scaling = DIV_ROUND_UP(max_freq, caps.guaranteed_perf);
579                         }
580                 }
581         }
582 #endif
583         /*
584          * If using the CPPC data to compute the HWP-to-frequency scaling factor
585          * doesn't work, use the HWP_CAP gauranteed perf for this purpose with
586          * the assumption that it corresponds to max_freq.
587          */
588         if (scaling > perf_ctl_scaling) {
589                 pr_debug("CPU%d: Using HWP_CAP guaranteed\n", cpu->cpu);
590
591                 if (cpu->pstate.max_pstate == perf_ctl_max) {
592                         intel_pstate_hybrid_hwp_perf_ctl_parity(cpu);
593                         return;
594                 }
595                 scaling = DIV_ROUND_UP(max_freq, cpu->pstate.max_pstate);
596                 if (scaling > perf_ctl_scaling) {
597                         /*
598                          * This should not happen, because it would mean that
599                          * the number of HWP perf levels was less than the
600                          * number of P-states, so use the PERF_CTL scaling in
601                          * that case.
602                          */
603                         pr_debug("CPU%d: scaling (%d) out of range\n", cpu->cpu,
604                                 scaling);
605
606                         intel_pstate_hybrid_hwp_perf_ctl_parity(cpu);
607                         return;
608                 }
609         }
610
611         /*
612          * If the product of the HWP performance scaling factor obtained above
613          * and the HWP_CAP highest performance is greater than the maximum turbo
614          * frequency corresponding to the pstate_funcs.get_turbo() return value,
615          * the scaling factor is too high, so recompute it so that the HWP_CAP
616          * highest performance corresponds to the maximum turbo frequency.
617          */
618         if (turbo_freq < cpu->pstate.turbo_pstate * scaling) {
619                 pr_debug("CPU%d: scaling too high (%d)\n", cpu->cpu, scaling);
620
621                 cpu->pstate.turbo_freq = turbo_freq;
622                 scaling = DIV_ROUND_UP(turbo_freq, cpu->pstate.turbo_pstate);
623         }
624
625         cpu->pstate.scaling = scaling;
626
627         pr_debug("CPU%d: HWP-to-frequency scaling factor: %d\n", cpu->cpu, scaling);
628
629         cpu->pstate.max_freq = rounddown(cpu->pstate.max_pstate * scaling,
630                                          perf_ctl_scaling);
631
632         freq = perf_ctl_max_phys * perf_ctl_scaling;
633         cpu->pstate.max_pstate_physical = DIV_ROUND_UP(freq, scaling);
634
635         cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling;
636         /*
637          * Cast the min P-state value retrieved via pstate_funcs.get_min() to
638          * the effective range of HWP performance levels.
639          */
640         cpu->pstate.min_pstate = DIV_ROUND_UP(cpu->pstate.min_freq, scaling);
641 }
642
643 static inline void update_turbo_state(void)
644 {
645         u64 misc_en;
646         struct cpudata *cpu;
647
648         cpu = all_cpu_data[0];
649         rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
650         global.turbo_disabled =
651                 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
652                  cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
653 }
654
655 static int min_perf_pct_min(void)
656 {
657         struct cpudata *cpu = all_cpu_data[0];
658         int turbo_pstate = cpu->pstate.turbo_pstate;
659
660         return turbo_pstate ?
661                 (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
662 }
663
664 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
665 {
666         u64 epb;
667         int ret;
668
669         if (!boot_cpu_has(X86_FEATURE_EPB))
670                 return -ENXIO;
671
672         ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
673         if (ret)
674                 return (s16)ret;
675
676         return (s16)(epb & 0x0f);
677 }
678
679 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
680 {
681         s16 epp;
682
683         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
684                 /*
685                  * When hwp_req_data is 0, means that caller didn't read
686                  * MSR_HWP_REQUEST, so need to read and get EPP.
687                  */
688                 if (!hwp_req_data) {
689                         epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
690                                             &hwp_req_data);
691                         if (epp)
692                                 return epp;
693                 }
694                 epp = (hwp_req_data >> 24) & 0xff;
695         } else {
696                 /* When there is no EPP present, HWP uses EPB settings */
697                 epp = intel_pstate_get_epb(cpu_data);
698         }
699
700         return epp;
701 }
702
703 static int intel_pstate_set_epb(int cpu, s16 pref)
704 {
705         u64 epb;
706         int ret;
707
708         if (!boot_cpu_has(X86_FEATURE_EPB))
709                 return -ENXIO;
710
711         ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
712         if (ret)
713                 return ret;
714
715         epb = (epb & ~0x0f) | pref;
716         wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
717
718         return 0;
719 }
720
721 /*
722  * EPP/EPB display strings corresponding to EPP index in the
723  * energy_perf_strings[]
724  *      index           String
725  *-------------------------------------
726  *      0               default
727  *      1               performance
728  *      2               balance_performance
729  *      3               balance_power
730  *      4               power
731  */
732 static const char * const energy_perf_strings[] = {
733         "default",
734         "performance",
735         "balance_performance",
736         "balance_power",
737         "power",
738         NULL
739 };
740 static const unsigned int epp_values[] = {
741         HWP_EPP_PERFORMANCE,
742         HWP_EPP_BALANCE_PERFORMANCE,
743         HWP_EPP_BALANCE_POWERSAVE,
744         HWP_EPP_POWERSAVE
745 };
746
747 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data, int *raw_epp)
748 {
749         s16 epp;
750         int index = -EINVAL;
751
752         *raw_epp = 0;
753         epp = intel_pstate_get_epp(cpu_data, 0);
754         if (epp < 0)
755                 return epp;
756
757         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
758                 if (epp == HWP_EPP_PERFORMANCE)
759                         return 1;
760                 if (epp == HWP_EPP_BALANCE_PERFORMANCE)
761                         return 2;
762                 if (epp == HWP_EPP_BALANCE_POWERSAVE)
763                         return 3;
764                 if (epp == HWP_EPP_POWERSAVE)
765                         return 4;
766                 *raw_epp = epp;
767                 return 0;
768         } else if (boot_cpu_has(X86_FEATURE_EPB)) {
769                 /*
770                  * Range:
771                  *      0x00-0x03       :       Performance
772                  *      0x04-0x07       :       Balance performance
773                  *      0x08-0x0B       :       Balance power
774                  *      0x0C-0x0F       :       Power
775                  * The EPB is a 4 bit value, but our ranges restrict the
776                  * value which can be set. Here only using top two bits
777                  * effectively.
778                  */
779                 index = (epp >> 2) + 1;
780         }
781
782         return index;
783 }
784
785 static int intel_pstate_set_epp(struct cpudata *cpu, u32 epp)
786 {
787         int ret;
788
789         /*
790          * Use the cached HWP Request MSR value, because in the active mode the
791          * register itself may be updated by intel_pstate_hwp_boost_up() or
792          * intel_pstate_hwp_boost_down() at any time.
793          */
794         u64 value = READ_ONCE(cpu->hwp_req_cached);
795
796         value &= ~GENMASK_ULL(31, 24);
797         value |= (u64)epp << 24;
798         /*
799          * The only other updater of hwp_req_cached in the active mode,
800          * intel_pstate_hwp_set(), is called under the same lock as this
801          * function, so it cannot run in parallel with the update below.
802          */
803         WRITE_ONCE(cpu->hwp_req_cached, value);
804         ret = wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
805         if (!ret)
806                 cpu->epp_cached = epp;
807
808         return ret;
809 }
810
811 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
812                                               int pref_index, bool use_raw,
813                                               u32 raw_epp)
814 {
815         int epp = -EINVAL;
816         int ret;
817
818         if (!pref_index)
819                 epp = cpu_data->epp_default;
820
821         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
822                 if (use_raw)
823                         epp = raw_epp;
824                 else if (epp == -EINVAL)
825                         epp = epp_values[pref_index - 1];
826
827                 /*
828                  * To avoid confusion, refuse to set EPP to any values different
829                  * from 0 (performance) if the current policy is "performance",
830                  * because those values would be overridden.
831                  */
832                 if (epp > 0 && cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
833                         return -EBUSY;
834
835                 ret = intel_pstate_set_epp(cpu_data, epp);
836         } else {
837                 if (epp == -EINVAL)
838                         epp = (pref_index - 1) << 2;
839                 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
840         }
841
842         return ret;
843 }
844
845 static ssize_t show_energy_performance_available_preferences(
846                                 struct cpufreq_policy *policy, char *buf)
847 {
848         int i = 0;
849         int ret = 0;
850
851         while (energy_perf_strings[i] != NULL)
852                 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
853
854         ret += sprintf(&buf[ret], "\n");
855
856         return ret;
857 }
858
859 cpufreq_freq_attr_ro(energy_performance_available_preferences);
860
861 static struct cpufreq_driver intel_pstate;
862
863 static ssize_t store_energy_performance_preference(
864                 struct cpufreq_policy *policy, const char *buf, size_t count)
865 {
866         struct cpudata *cpu = all_cpu_data[policy->cpu];
867         char str_preference[21];
868         bool raw = false;
869         ssize_t ret;
870         u32 epp = 0;
871
872         ret = sscanf(buf, "%20s", str_preference);
873         if (ret != 1)
874                 return -EINVAL;
875
876         ret = match_string(energy_perf_strings, -1, str_preference);
877         if (ret < 0) {
878                 if (!boot_cpu_has(X86_FEATURE_HWP_EPP))
879                         return ret;
880
881                 ret = kstrtouint(buf, 10, &epp);
882                 if (ret)
883                         return ret;
884
885                 if (epp > 255)
886                         return -EINVAL;
887
888                 raw = true;
889         }
890
891         /*
892          * This function runs with the policy R/W semaphore held, which
893          * guarantees that the driver pointer will not change while it is
894          * running.
895          */
896         if (!intel_pstate_driver)
897                 return -EAGAIN;
898
899         mutex_lock(&intel_pstate_limits_lock);
900
901         if (intel_pstate_driver == &intel_pstate) {
902                 ret = intel_pstate_set_energy_pref_index(cpu, ret, raw, epp);
903         } else {
904                 /*
905                  * In the passive mode the governor needs to be stopped on the
906                  * target CPU before the EPP update and restarted after it,
907                  * which is super-heavy-weight, so make sure it is worth doing
908                  * upfront.
909                  */
910                 if (!raw)
911                         epp = ret ? epp_values[ret - 1] : cpu->epp_default;
912
913                 if (cpu->epp_cached != epp) {
914                         int err;
915
916                         cpufreq_stop_governor(policy);
917                         ret = intel_pstate_set_epp(cpu, epp);
918                         err = cpufreq_start_governor(policy);
919                         if (!ret)
920                                 ret = err;
921                 }
922         }
923
924         mutex_unlock(&intel_pstate_limits_lock);
925
926         return ret ?: count;
927 }
928
929 static ssize_t show_energy_performance_preference(
930                                 struct cpufreq_policy *policy, char *buf)
931 {
932         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
933         int preference, raw_epp;
934
935         preference = intel_pstate_get_energy_pref_index(cpu_data, &raw_epp);
936         if (preference < 0)
937                 return preference;
938
939         if (raw_epp)
940                 return  sprintf(buf, "%d\n", raw_epp);
941         else
942                 return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
943 }
944
945 cpufreq_freq_attr_rw(energy_performance_preference);
946
947 static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
948 {
949         struct cpudata *cpu = all_cpu_data[policy->cpu];
950         int ratio, freq;
951
952         ratio = intel_pstate_get_cppc_guaranteed(policy->cpu);
953         if (ratio <= 0) {
954                 u64 cap;
955
956                 rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
957                 ratio = HWP_GUARANTEED_PERF(cap);
958         }
959
960         freq = ratio * cpu->pstate.scaling;
961         if (cpu->pstate.scaling != cpu->pstate.perf_ctl_scaling)
962                 freq = rounddown(freq, cpu->pstate.perf_ctl_scaling);
963
964         return sprintf(buf, "%d\n", freq);
965 }
966
967 cpufreq_freq_attr_ro(base_frequency);
968
969 static struct freq_attr *hwp_cpufreq_attrs[] = {
970         &energy_performance_preference,
971         &energy_performance_available_preferences,
972         &base_frequency,
973         NULL,
974 };
975
976 static void __intel_pstate_get_hwp_cap(struct cpudata *cpu)
977 {
978         u64 cap;
979
980         rdmsrl_on_cpu(cpu->cpu, MSR_HWP_CAPABILITIES, &cap);
981         WRITE_ONCE(cpu->hwp_cap_cached, cap);
982         cpu->pstate.max_pstate = HWP_GUARANTEED_PERF(cap);
983         cpu->pstate.turbo_pstate = HWP_HIGHEST_PERF(cap);
984 }
985
986 static void intel_pstate_get_hwp_cap(struct cpudata *cpu)
987 {
988         int scaling = cpu->pstate.scaling;
989
990         __intel_pstate_get_hwp_cap(cpu);
991
992         cpu->pstate.max_freq = cpu->pstate.max_pstate * scaling;
993         cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * scaling;
994         if (scaling != cpu->pstate.perf_ctl_scaling) {
995                 int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
996
997                 cpu->pstate.max_freq = rounddown(cpu->pstate.max_freq,
998                                                  perf_ctl_scaling);
999                 cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_freq,
1000                                                    perf_ctl_scaling);
1001         }
1002 }
1003
1004 static void intel_pstate_hwp_set(unsigned int cpu)
1005 {
1006         struct cpudata *cpu_data = all_cpu_data[cpu];
1007         int max, min;
1008         u64 value;
1009         s16 epp;
1010
1011         max = cpu_data->max_perf_ratio;
1012         min = cpu_data->min_perf_ratio;
1013
1014         if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
1015                 min = max;
1016
1017         rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
1018
1019         value &= ~HWP_MIN_PERF(~0L);
1020         value |= HWP_MIN_PERF(min);
1021
1022         value &= ~HWP_MAX_PERF(~0L);
1023         value |= HWP_MAX_PERF(max);
1024
1025         if (cpu_data->epp_policy == cpu_data->policy)
1026                 goto skip_epp;
1027
1028         cpu_data->epp_policy = cpu_data->policy;
1029
1030         if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
1031                 epp = intel_pstate_get_epp(cpu_data, value);
1032                 cpu_data->epp_powersave = epp;
1033                 /* If EPP read was failed, then don't try to write */
1034                 if (epp < 0)
1035                         goto skip_epp;
1036
1037                 epp = 0;
1038         } else {
1039                 /* skip setting EPP, when saved value is invalid */
1040                 if (cpu_data->epp_powersave < 0)
1041                         goto skip_epp;
1042
1043                 /*
1044                  * No need to restore EPP when it is not zero. This
1045                  * means:
1046                  *  - Policy is not changed
1047                  *  - user has manually changed
1048                  *  - Error reading EPB
1049                  */
1050                 epp = intel_pstate_get_epp(cpu_data, value);
1051                 if (epp)
1052                         goto skip_epp;
1053
1054                 epp = cpu_data->epp_powersave;
1055         }
1056         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
1057                 value &= ~GENMASK_ULL(31, 24);
1058                 value |= (u64)epp << 24;
1059         } else {
1060                 intel_pstate_set_epb(cpu, epp);
1061         }
1062 skip_epp:
1063         WRITE_ONCE(cpu_data->hwp_req_cached, value);
1064         wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
1065 }
1066
1067 static void intel_pstate_hwp_offline(struct cpudata *cpu)
1068 {
1069         u64 value = READ_ONCE(cpu->hwp_req_cached);
1070         int min_perf;
1071
1072         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
1073                 /*
1074                  * In case the EPP has been set to "performance" by the
1075                  * active mode "performance" scaling algorithm, replace that
1076                  * temporary value with the cached EPP one.
1077                  */
1078                 value &= ~GENMASK_ULL(31, 24);
1079                 value |= HWP_ENERGY_PERF_PREFERENCE(cpu->epp_cached);
1080                 WRITE_ONCE(cpu->hwp_req_cached, value);
1081         }
1082
1083         value &= ~GENMASK_ULL(31, 0);
1084         min_perf = HWP_LOWEST_PERF(READ_ONCE(cpu->hwp_cap_cached));
1085
1086         /* Set hwp_max = hwp_min */
1087         value |= HWP_MAX_PERF(min_perf);
1088         value |= HWP_MIN_PERF(min_perf);
1089
1090         /* Set EPP to min */
1091         if (boot_cpu_has(X86_FEATURE_HWP_EPP))
1092                 value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
1093
1094         wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
1095 }
1096
1097 #define POWER_CTL_EE_ENABLE     1
1098 #define POWER_CTL_EE_DISABLE    2
1099
1100 static int power_ctl_ee_state;
1101
1102 static void set_power_ctl_ee_state(bool input)
1103 {
1104         u64 power_ctl;
1105
1106         mutex_lock(&intel_pstate_driver_lock);
1107         rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1108         if (input) {
1109                 power_ctl &= ~BIT(MSR_IA32_POWER_CTL_BIT_EE);
1110                 power_ctl_ee_state = POWER_CTL_EE_ENABLE;
1111         } else {
1112                 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1113                 power_ctl_ee_state = POWER_CTL_EE_DISABLE;
1114         }
1115         wrmsrl(MSR_IA32_POWER_CTL, power_ctl);
1116         mutex_unlock(&intel_pstate_driver_lock);
1117 }
1118
1119 static void intel_pstate_hwp_enable(struct cpudata *cpudata);
1120
1121 static void intel_pstate_hwp_reenable(struct cpudata *cpu)
1122 {
1123         intel_pstate_hwp_enable(cpu);
1124         wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, READ_ONCE(cpu->hwp_req_cached));
1125 }
1126
1127 static int intel_pstate_suspend(struct cpufreq_policy *policy)
1128 {
1129         struct cpudata *cpu = all_cpu_data[policy->cpu];
1130
1131         pr_debug("CPU %d suspending\n", cpu->cpu);
1132
1133         cpu->suspended = true;
1134
1135         return 0;
1136 }
1137
1138 static int intel_pstate_resume(struct cpufreq_policy *policy)
1139 {
1140         struct cpudata *cpu = all_cpu_data[policy->cpu];
1141
1142         pr_debug("CPU %d resuming\n", cpu->cpu);
1143
1144         /* Only restore if the system default is changed */
1145         if (power_ctl_ee_state == POWER_CTL_EE_ENABLE)
1146                 set_power_ctl_ee_state(true);
1147         else if (power_ctl_ee_state == POWER_CTL_EE_DISABLE)
1148                 set_power_ctl_ee_state(false);
1149
1150         if (cpu->suspended && hwp_active) {
1151                 mutex_lock(&intel_pstate_limits_lock);
1152
1153                 /* Re-enable HWP, because "online" has not done that. */
1154                 intel_pstate_hwp_reenable(cpu);
1155
1156                 mutex_unlock(&intel_pstate_limits_lock);
1157         }
1158
1159         cpu->suspended = false;
1160
1161         return 0;
1162 }
1163
1164 static void intel_pstate_update_policies(void)
1165 {
1166         int cpu;
1167
1168         for_each_possible_cpu(cpu)
1169                 cpufreq_update_policy(cpu);
1170 }
1171
1172 static void intel_pstate_update_max_freq(unsigned int cpu)
1173 {
1174         struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
1175         struct cpudata *cpudata;
1176
1177         if (!policy)
1178                 return;
1179
1180         cpudata = all_cpu_data[cpu];
1181         policy->cpuinfo.max_freq = global.turbo_disabled_mf ?
1182                         cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;
1183
1184         refresh_frequency_limits(policy);
1185
1186         cpufreq_cpu_release(policy);
1187 }
1188
1189 static void intel_pstate_update_limits(unsigned int cpu)
1190 {
1191         mutex_lock(&intel_pstate_driver_lock);
1192
1193         update_turbo_state();
1194         /*
1195          * If turbo has been turned on or off globally, policy limits for
1196          * all CPUs need to be updated to reflect that.
1197          */
1198         if (global.turbo_disabled_mf != global.turbo_disabled) {
1199                 global.turbo_disabled_mf = global.turbo_disabled;
1200                 arch_set_max_freq_ratio(global.turbo_disabled);
1201                 for_each_possible_cpu(cpu)
1202                         intel_pstate_update_max_freq(cpu);
1203         } else {
1204                 cpufreq_update_policy(cpu);
1205         }
1206
1207         mutex_unlock(&intel_pstate_driver_lock);
1208 }
1209
1210 /************************** sysfs begin ************************/
1211 #define show_one(file_name, object)                                     \
1212         static ssize_t show_##file_name                                 \
1213         (struct kobject *kobj, struct kobj_attribute *attr, char *buf)  \
1214         {                                                               \
1215                 return sprintf(buf, "%u\n", global.object);             \
1216         }
1217
1218 static ssize_t intel_pstate_show_status(char *buf);
1219 static int intel_pstate_update_status(const char *buf, size_t size);
1220
1221 static ssize_t show_status(struct kobject *kobj,
1222                            struct kobj_attribute *attr, char *buf)
1223 {
1224         ssize_t ret;
1225
1226         mutex_lock(&intel_pstate_driver_lock);
1227         ret = intel_pstate_show_status(buf);
1228         mutex_unlock(&intel_pstate_driver_lock);
1229
1230         return ret;
1231 }
1232
1233 static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
1234                             const char *buf, size_t count)
1235 {
1236         char *p = memchr(buf, '\n', count);
1237         int ret;
1238
1239         mutex_lock(&intel_pstate_driver_lock);
1240         ret = intel_pstate_update_status(buf, p ? p - buf : count);
1241         mutex_unlock(&intel_pstate_driver_lock);
1242
1243         return ret < 0 ? ret : count;
1244 }
1245
1246 static ssize_t show_turbo_pct(struct kobject *kobj,
1247                                 struct kobj_attribute *attr, char *buf)
1248 {
1249         struct cpudata *cpu;
1250         int total, no_turbo, turbo_pct;
1251         uint32_t turbo_fp;
1252
1253         mutex_lock(&intel_pstate_driver_lock);
1254
1255         if (!intel_pstate_driver) {
1256                 mutex_unlock(&intel_pstate_driver_lock);
1257                 return -EAGAIN;
1258         }
1259
1260         cpu = all_cpu_data[0];
1261
1262         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1263         no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1264         turbo_fp = div_fp(no_turbo, total);
1265         turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1266
1267         mutex_unlock(&intel_pstate_driver_lock);
1268
1269         return sprintf(buf, "%u\n", turbo_pct);
1270 }
1271
1272 static ssize_t show_num_pstates(struct kobject *kobj,
1273                                 struct kobj_attribute *attr, char *buf)
1274 {
1275         struct cpudata *cpu;
1276         int total;
1277
1278         mutex_lock(&intel_pstate_driver_lock);
1279
1280         if (!intel_pstate_driver) {
1281                 mutex_unlock(&intel_pstate_driver_lock);
1282                 return -EAGAIN;
1283         }
1284
1285         cpu = all_cpu_data[0];
1286         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1287
1288         mutex_unlock(&intel_pstate_driver_lock);
1289
1290         return sprintf(buf, "%u\n", total);
1291 }
1292
1293 static ssize_t show_no_turbo(struct kobject *kobj,
1294                              struct kobj_attribute *attr, char *buf)
1295 {
1296         ssize_t ret;
1297
1298         mutex_lock(&intel_pstate_driver_lock);
1299
1300         if (!intel_pstate_driver) {
1301                 mutex_unlock(&intel_pstate_driver_lock);
1302                 return -EAGAIN;
1303         }
1304
1305         update_turbo_state();
1306         if (global.turbo_disabled)
1307                 ret = sprintf(buf, "%u\n", global.turbo_disabled);
1308         else
1309                 ret = sprintf(buf, "%u\n", global.no_turbo);
1310
1311         mutex_unlock(&intel_pstate_driver_lock);
1312
1313         return ret;
1314 }
1315
1316 static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1317                               const char *buf, size_t count)
1318 {
1319         unsigned int input;
1320         int ret;
1321
1322         ret = sscanf(buf, "%u", &input);
1323         if (ret != 1)
1324                 return -EINVAL;
1325
1326         mutex_lock(&intel_pstate_driver_lock);
1327
1328         if (!intel_pstate_driver) {
1329                 mutex_unlock(&intel_pstate_driver_lock);
1330                 return -EAGAIN;
1331         }
1332
1333         mutex_lock(&intel_pstate_limits_lock);
1334
1335         update_turbo_state();
1336         if (global.turbo_disabled) {
1337                 pr_notice_once("Turbo disabled by BIOS or unavailable on processor\n");
1338                 mutex_unlock(&intel_pstate_limits_lock);
1339                 mutex_unlock(&intel_pstate_driver_lock);
1340                 return -EPERM;
1341         }
1342
1343         global.no_turbo = clamp_t(int, input, 0, 1);
1344
1345         if (global.no_turbo) {
1346                 struct cpudata *cpu = all_cpu_data[0];
1347                 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1348
1349                 /* Squash the global minimum into the permitted range. */
1350                 if (global.min_perf_pct > pct)
1351                         global.min_perf_pct = pct;
1352         }
1353
1354         mutex_unlock(&intel_pstate_limits_lock);
1355
1356         intel_pstate_update_policies();
1357
1358         mutex_unlock(&intel_pstate_driver_lock);
1359
1360         return count;
1361 }
1362
1363 static void update_qos_request(enum freq_qos_req_type type)
1364 {
1365         struct freq_qos_request *req;
1366         struct cpufreq_policy *policy;
1367         int i;
1368
1369         for_each_possible_cpu(i) {
1370                 struct cpudata *cpu = all_cpu_data[i];
1371                 unsigned int freq, perf_pct;
1372
1373                 policy = cpufreq_cpu_get(i);
1374                 if (!policy)
1375                         continue;
1376
1377                 req = policy->driver_data;
1378                 cpufreq_cpu_put(policy);
1379
1380                 if (!req)
1381                         continue;
1382
1383                 if (hwp_active)
1384                         intel_pstate_get_hwp_cap(cpu);
1385
1386                 if (type == FREQ_QOS_MIN) {
1387                         perf_pct = global.min_perf_pct;
1388                 } else {
1389                         req++;
1390                         perf_pct = global.max_perf_pct;
1391                 }
1392
1393                 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * perf_pct, 100);
1394
1395                 if (freq_qos_update_request(req, freq) < 0)
1396                         pr_warn("Failed to update freq constraint: CPU%d\n", i);
1397         }
1398 }
1399
1400 static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1401                                   const char *buf, size_t count)
1402 {
1403         unsigned int input;
1404         int ret;
1405
1406         ret = sscanf(buf, "%u", &input);
1407         if (ret != 1)
1408                 return -EINVAL;
1409
1410         mutex_lock(&intel_pstate_driver_lock);
1411
1412         if (!intel_pstate_driver) {
1413                 mutex_unlock(&intel_pstate_driver_lock);
1414                 return -EAGAIN;
1415         }
1416
1417         mutex_lock(&intel_pstate_limits_lock);
1418
1419         global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1420
1421         mutex_unlock(&intel_pstate_limits_lock);
1422
1423         if (intel_pstate_driver == &intel_pstate)
1424                 intel_pstate_update_policies();
1425         else
1426                 update_qos_request(FREQ_QOS_MAX);
1427
1428         mutex_unlock(&intel_pstate_driver_lock);
1429
1430         return count;
1431 }
1432
1433 static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1434                                   const char *buf, size_t count)
1435 {
1436         unsigned int input;
1437         int ret;
1438
1439         ret = sscanf(buf, "%u", &input);
1440         if (ret != 1)
1441                 return -EINVAL;
1442
1443         mutex_lock(&intel_pstate_driver_lock);
1444
1445         if (!intel_pstate_driver) {
1446                 mutex_unlock(&intel_pstate_driver_lock);
1447                 return -EAGAIN;
1448         }
1449
1450         mutex_lock(&intel_pstate_limits_lock);
1451
1452         global.min_perf_pct = clamp_t(int, input,
1453                                       min_perf_pct_min(), global.max_perf_pct);
1454
1455         mutex_unlock(&intel_pstate_limits_lock);
1456
1457         if (intel_pstate_driver == &intel_pstate)
1458                 intel_pstate_update_policies();
1459         else
1460                 update_qos_request(FREQ_QOS_MIN);
1461
1462         mutex_unlock(&intel_pstate_driver_lock);
1463
1464         return count;
1465 }
1466
1467 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1468                                 struct kobj_attribute *attr, char *buf)
1469 {
1470         return sprintf(buf, "%u\n", hwp_boost);
1471 }
1472
1473 static ssize_t store_hwp_dynamic_boost(struct kobject *a,
1474                                        struct kobj_attribute *b,
1475                                        const char *buf, size_t count)
1476 {
1477         unsigned int input;
1478         int ret;
1479
1480         ret = kstrtouint(buf, 10, &input);
1481         if (ret)
1482                 return ret;
1483
1484         mutex_lock(&intel_pstate_driver_lock);
1485         hwp_boost = !!input;
1486         intel_pstate_update_policies();
1487         mutex_unlock(&intel_pstate_driver_lock);
1488
1489         return count;
1490 }
1491
1492 static ssize_t show_energy_efficiency(struct kobject *kobj, struct kobj_attribute *attr,
1493                                       char *buf)
1494 {
1495         u64 power_ctl;
1496         int enable;
1497
1498         rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1499         enable = !!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE));
1500         return sprintf(buf, "%d\n", !enable);
1501 }
1502
1503 static ssize_t store_energy_efficiency(struct kobject *a, struct kobj_attribute *b,
1504                                        const char *buf, size_t count)
1505 {
1506         bool input;
1507         int ret;
1508
1509         ret = kstrtobool(buf, &input);
1510         if (ret)
1511                 return ret;
1512
1513         set_power_ctl_ee_state(input);
1514
1515         return count;
1516 }
1517
1518 show_one(max_perf_pct, max_perf_pct);
1519 show_one(min_perf_pct, min_perf_pct);
1520
1521 define_one_global_rw(status);
1522 define_one_global_rw(no_turbo);
1523 define_one_global_rw(max_perf_pct);
1524 define_one_global_rw(min_perf_pct);
1525 define_one_global_ro(turbo_pct);
1526 define_one_global_ro(num_pstates);
1527 define_one_global_rw(hwp_dynamic_boost);
1528 define_one_global_rw(energy_efficiency);
1529
1530 static struct attribute *intel_pstate_attributes[] = {
1531         &status.attr,
1532         &no_turbo.attr,
1533         NULL
1534 };
1535
1536 static const struct attribute_group intel_pstate_attr_group = {
1537         .attrs = intel_pstate_attributes,
1538 };
1539
1540 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[];
1541
1542 static struct kobject *intel_pstate_kobject;
1543
1544 static void __init intel_pstate_sysfs_expose_params(void)
1545 {
1546         int rc;
1547
1548         intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1549                                                 &cpu_subsys.dev_root->kobj);
1550         if (WARN_ON(!intel_pstate_kobject))
1551                 return;
1552
1553         rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1554         if (WARN_ON(rc))
1555                 return;
1556
1557         if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1558                 rc = sysfs_create_file(intel_pstate_kobject, &turbo_pct.attr);
1559                 WARN_ON(rc);
1560
1561                 rc = sysfs_create_file(intel_pstate_kobject, &num_pstates.attr);
1562                 WARN_ON(rc);
1563         }
1564
1565         /*
1566          * If per cpu limits are enforced there are no global limits, so
1567          * return without creating max/min_perf_pct attributes
1568          */
1569         if (per_cpu_limits)
1570                 return;
1571
1572         rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1573         WARN_ON(rc);
1574
1575         rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1576         WARN_ON(rc);
1577
1578         if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) {
1579                 rc = sysfs_create_file(intel_pstate_kobject, &energy_efficiency.attr);
1580                 WARN_ON(rc);
1581         }
1582 }
1583
1584 static void __init intel_pstate_sysfs_remove(void)
1585 {
1586         if (!intel_pstate_kobject)
1587                 return;
1588
1589         sysfs_remove_group(intel_pstate_kobject, &intel_pstate_attr_group);
1590
1591         if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1592                 sysfs_remove_file(intel_pstate_kobject, &num_pstates.attr);
1593                 sysfs_remove_file(intel_pstate_kobject, &turbo_pct.attr);
1594         }
1595
1596         if (!per_cpu_limits) {
1597                 sysfs_remove_file(intel_pstate_kobject, &max_perf_pct.attr);
1598                 sysfs_remove_file(intel_pstate_kobject, &min_perf_pct.attr);
1599
1600                 if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids))
1601                         sysfs_remove_file(intel_pstate_kobject, &energy_efficiency.attr);
1602         }
1603
1604         kobject_put(intel_pstate_kobject);
1605 }
1606
1607 static void intel_pstate_sysfs_expose_hwp_dynamic_boost(void)
1608 {
1609         int rc;
1610
1611         if (!hwp_active)
1612                 return;
1613
1614         rc = sysfs_create_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1615         WARN_ON_ONCE(rc);
1616 }
1617
1618 static void intel_pstate_sysfs_hide_hwp_dynamic_boost(void)
1619 {
1620         if (!hwp_active)
1621                 return;
1622
1623         sysfs_remove_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1624 }
1625
1626 /************************** sysfs end ************************/
1627
1628 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1629 {
1630         /* First disable HWP notification interrupt as we don't process them */
1631         if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1632                 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1633
1634         wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1635         if (cpudata->epp_default == -EINVAL)
1636                 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1637 }
1638
1639 static int atom_get_min_pstate(void)
1640 {
1641         u64 value;
1642
1643         rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1644         return (value >> 8) & 0x7F;
1645 }
1646
1647 static int atom_get_max_pstate(void)
1648 {
1649         u64 value;
1650
1651         rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1652         return (value >> 16) & 0x7F;
1653 }
1654
1655 static int atom_get_turbo_pstate(void)
1656 {
1657         u64 value;
1658
1659         rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1660         return value & 0x7F;
1661 }
1662
1663 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1664 {
1665         u64 val;
1666         int32_t vid_fp;
1667         u32 vid;
1668
1669         val = (u64)pstate << 8;
1670         if (global.no_turbo && !global.turbo_disabled)
1671                 val |= (u64)1 << 32;
1672
1673         vid_fp = cpudata->vid.min + mul_fp(
1674                 int_tofp(pstate - cpudata->pstate.min_pstate),
1675                 cpudata->vid.ratio);
1676
1677         vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1678         vid = ceiling_fp(vid_fp);
1679
1680         if (pstate > cpudata->pstate.max_pstate)
1681                 vid = cpudata->vid.turbo;
1682
1683         return val | vid;
1684 }
1685
1686 static int silvermont_get_scaling(void)
1687 {
1688         u64 value;
1689         int i;
1690         /* Defined in Table 35-6 from SDM (Sept 2015) */
1691         static int silvermont_freq_table[] = {
1692                 83300, 100000, 133300, 116700, 80000};
1693
1694         rdmsrl(MSR_FSB_FREQ, value);
1695         i = value & 0x7;
1696         WARN_ON(i > 4);
1697
1698         return silvermont_freq_table[i];
1699 }
1700
1701 static int airmont_get_scaling(void)
1702 {
1703         u64 value;
1704         int i;
1705         /* Defined in Table 35-10 from SDM (Sept 2015) */
1706         static int airmont_freq_table[] = {
1707                 83300, 100000, 133300, 116700, 80000,
1708                 93300, 90000, 88900, 87500};
1709
1710         rdmsrl(MSR_FSB_FREQ, value);
1711         i = value & 0xF;
1712         WARN_ON(i > 8);
1713
1714         return airmont_freq_table[i];
1715 }
1716
1717 static void atom_get_vid(struct cpudata *cpudata)
1718 {
1719         u64 value;
1720
1721         rdmsrl(MSR_ATOM_CORE_VIDS, value);
1722         cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1723         cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1724         cpudata->vid.ratio = div_fp(
1725                 cpudata->vid.max - cpudata->vid.min,
1726                 int_tofp(cpudata->pstate.max_pstate -
1727                         cpudata->pstate.min_pstate));
1728
1729         rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1730         cpudata->vid.turbo = value & 0x7f;
1731 }
1732
1733 static int core_get_min_pstate(void)
1734 {
1735         u64 value;
1736
1737         rdmsrl(MSR_PLATFORM_INFO, value);
1738         return (value >> 40) & 0xFF;
1739 }
1740
1741 static int core_get_max_pstate_physical(void)
1742 {
1743         u64 value;
1744
1745         rdmsrl(MSR_PLATFORM_INFO, value);
1746         return (value >> 8) & 0xFF;
1747 }
1748
1749 static int core_get_tdp_ratio(u64 plat_info)
1750 {
1751         /* Check how many TDP levels present */
1752         if (plat_info & 0x600000000) {
1753                 u64 tdp_ctrl;
1754                 u64 tdp_ratio;
1755                 int tdp_msr;
1756                 int err;
1757
1758                 /* Get the TDP level (0, 1, 2) to get ratios */
1759                 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1760                 if (err)
1761                         return err;
1762
1763                 /* TDP MSR are continuous starting at 0x648 */
1764                 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1765                 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1766                 if (err)
1767                         return err;
1768
1769                 /* For level 1 and 2, bits[23:16] contain the ratio */
1770                 if (tdp_ctrl & 0x03)
1771                         tdp_ratio >>= 16;
1772
1773                 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1774                 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1775
1776                 return (int)tdp_ratio;
1777         }
1778
1779         return -ENXIO;
1780 }
1781
1782 static int core_get_max_pstate(void)
1783 {
1784         u64 tar;
1785         u64 plat_info;
1786         int max_pstate;
1787         int tdp_ratio;
1788         int err;
1789
1790         rdmsrl(MSR_PLATFORM_INFO, plat_info);
1791         max_pstate = (plat_info >> 8) & 0xFF;
1792
1793         tdp_ratio = core_get_tdp_ratio(plat_info);
1794         if (tdp_ratio <= 0)
1795                 return max_pstate;
1796
1797         if (hwp_active) {
1798                 /* Turbo activation ratio is not used on HWP platforms */
1799                 return tdp_ratio;
1800         }
1801
1802         err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1803         if (!err) {
1804                 int tar_levels;
1805
1806                 /* Do some sanity checking for safety */
1807                 tar_levels = tar & 0xff;
1808                 if (tdp_ratio - 1 == tar_levels) {
1809                         max_pstate = tar_levels;
1810                         pr_debug("max_pstate=TAC %x\n", max_pstate);
1811                 }
1812         }
1813
1814         return max_pstate;
1815 }
1816
1817 static int core_get_turbo_pstate(void)
1818 {
1819         u64 value;
1820         int nont, ret;
1821
1822         rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1823         nont = core_get_max_pstate();
1824         ret = (value) & 255;
1825         if (ret <= nont)
1826                 ret = nont;
1827         return ret;
1828 }
1829
1830 static inline int core_get_scaling(void)
1831 {
1832         return 100000;
1833 }
1834
1835 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1836 {
1837         u64 val;
1838
1839         val = (u64)pstate << 8;
1840         if (global.no_turbo && !global.turbo_disabled)
1841                 val |= (u64)1 << 32;
1842
1843         return val;
1844 }
1845
1846 static int knl_get_aperf_mperf_shift(void)
1847 {
1848         return 10;
1849 }
1850
1851 static int knl_get_turbo_pstate(void)
1852 {
1853         u64 value;
1854         int nont, ret;
1855
1856         rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1857         nont = core_get_max_pstate();
1858         ret = (((value) >> 8) & 0xFF);
1859         if (ret <= nont)
1860                 ret = nont;
1861         return ret;
1862 }
1863
1864 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1865 {
1866         trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1867         cpu->pstate.current_pstate = pstate;
1868         /*
1869          * Generally, there is no guarantee that this code will always run on
1870          * the CPU being updated, so force the register update to run on the
1871          * right CPU.
1872          */
1873         wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1874                       pstate_funcs.get_val(cpu, pstate));
1875 }
1876
1877 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1878 {
1879         intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1880 }
1881
1882 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1883 {
1884         int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1885
1886         update_turbo_state();
1887         intel_pstate_set_pstate(cpu, pstate);
1888 }
1889
1890 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1891 {
1892         bool hybrid_cpu = boot_cpu_has(X86_FEATURE_HYBRID_CPU);
1893         int perf_ctl_max_phys = pstate_funcs.get_max_physical();
1894         int perf_ctl_scaling = hybrid_cpu ? cpu_khz / perf_ctl_max_phys :
1895                                             pstate_funcs.get_scaling();
1896
1897         cpu->pstate.min_pstate = pstate_funcs.get_min();
1898         cpu->pstate.max_pstate_physical = perf_ctl_max_phys;
1899         cpu->pstate.perf_ctl_scaling = perf_ctl_scaling;
1900
1901         if (hwp_active && !hwp_mode_bdw) {
1902                 __intel_pstate_get_hwp_cap(cpu);
1903
1904                 if (hybrid_cpu)
1905                         intel_pstate_hybrid_hwp_calibrate(cpu);
1906                 else
1907                         cpu->pstate.scaling = perf_ctl_scaling;
1908         } else {
1909                 cpu->pstate.scaling = perf_ctl_scaling;
1910                 cpu->pstate.max_pstate = pstate_funcs.get_max();
1911                 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1912         }
1913
1914         if (cpu->pstate.scaling == perf_ctl_scaling) {
1915                 cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling;
1916                 cpu->pstate.max_freq = cpu->pstate.max_pstate * perf_ctl_scaling;
1917                 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * perf_ctl_scaling;
1918         }
1919
1920         if (pstate_funcs.get_aperf_mperf_shift)
1921                 cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
1922
1923         if (pstate_funcs.get_vid)
1924                 pstate_funcs.get_vid(cpu);
1925
1926         intel_pstate_set_min_pstate(cpu);
1927 }
1928
1929 /*
1930  * Long hold time will keep high perf limits for long time,
1931  * which negatively impacts perf/watt for some workloads,
1932  * like specpower. 3ms is based on experiements on some
1933  * workoads.
1934  */
1935 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
1936
1937 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
1938 {
1939         u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
1940         u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
1941         u32 max_limit = (hwp_req & 0xff00) >> 8;
1942         u32 min_limit = (hwp_req & 0xff);
1943         u32 boost_level1;
1944
1945         /*
1946          * Cases to consider (User changes via sysfs or boot time):
1947          * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
1948          *      No boost, return.
1949          * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
1950          *     Should result in one level boost only for P0.
1951          * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
1952          *     Should result in two level boost:
1953          *         (min + p1)/2 and P1.
1954          * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
1955          *     Should result in three level boost:
1956          *        (min + p1)/2, P1 and P0.
1957          */
1958
1959         /* If max and min are equal or already at max, nothing to boost */
1960         if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
1961                 return;
1962
1963         if (!cpu->hwp_boost_min)
1964                 cpu->hwp_boost_min = min_limit;
1965
1966         /* level at half way mark between min and guranteed */
1967         boost_level1 = (HWP_GUARANTEED_PERF(hwp_cap) + min_limit) >> 1;
1968
1969         if (cpu->hwp_boost_min < boost_level1)
1970                 cpu->hwp_boost_min = boost_level1;
1971         else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(hwp_cap))
1972                 cpu->hwp_boost_min = HWP_GUARANTEED_PERF(hwp_cap);
1973         else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(hwp_cap) &&
1974                  max_limit != HWP_GUARANTEED_PERF(hwp_cap))
1975                 cpu->hwp_boost_min = max_limit;
1976         else
1977                 return;
1978
1979         hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
1980         wrmsrl(MSR_HWP_REQUEST, hwp_req);
1981         cpu->last_update = cpu->sample.time;
1982 }
1983
1984 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
1985 {
1986         if (cpu->hwp_boost_min) {
1987                 bool expired;
1988
1989                 /* Check if we are idle for hold time to boost down */
1990                 expired = time_after64(cpu->sample.time, cpu->last_update +
1991                                        hwp_boost_hold_time_ns);
1992                 if (expired) {
1993                         wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
1994                         cpu->hwp_boost_min = 0;
1995                 }
1996         }
1997         cpu->last_update = cpu->sample.time;
1998 }
1999
2000 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
2001                                                       u64 time)
2002 {
2003         cpu->sample.time = time;
2004
2005         if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
2006                 bool do_io = false;
2007
2008                 cpu->sched_flags = 0;
2009                 /*
2010                  * Set iowait_boost flag and update time. Since IO WAIT flag
2011                  * is set all the time, we can't just conclude that there is
2012                  * some IO bound activity is scheduled on this CPU with just
2013                  * one occurrence. If we receive at least two in two
2014                  * consecutive ticks, then we treat as boost candidate.
2015                  */
2016                 if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
2017                         do_io = true;
2018
2019                 cpu->last_io_update = time;
2020
2021                 if (do_io)
2022                         intel_pstate_hwp_boost_up(cpu);
2023
2024         } else {
2025                 intel_pstate_hwp_boost_down(cpu);
2026         }
2027 }
2028
2029 static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
2030                                                 u64 time, unsigned int flags)
2031 {
2032         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2033
2034         cpu->sched_flags |= flags;
2035
2036         if (smp_processor_id() == cpu->cpu)
2037                 intel_pstate_update_util_hwp_local(cpu, time);
2038 }
2039
2040 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
2041 {
2042         struct sample *sample = &cpu->sample;
2043
2044         sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
2045 }
2046
2047 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
2048 {
2049         u64 aperf, mperf;
2050         unsigned long flags;
2051         u64 tsc;
2052
2053         local_irq_save(flags);
2054         rdmsrl(MSR_IA32_APERF, aperf);
2055         rdmsrl(MSR_IA32_MPERF, mperf);
2056         tsc = rdtsc();
2057         if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
2058                 local_irq_restore(flags);
2059                 return false;
2060         }
2061         local_irq_restore(flags);
2062
2063         cpu->last_sample_time = cpu->sample.time;
2064         cpu->sample.time = time;
2065         cpu->sample.aperf = aperf;
2066         cpu->sample.mperf = mperf;
2067         cpu->sample.tsc =  tsc;
2068         cpu->sample.aperf -= cpu->prev_aperf;
2069         cpu->sample.mperf -= cpu->prev_mperf;
2070         cpu->sample.tsc -= cpu->prev_tsc;
2071
2072         cpu->prev_aperf = aperf;
2073         cpu->prev_mperf = mperf;
2074         cpu->prev_tsc = tsc;
2075         /*
2076          * First time this function is invoked in a given cycle, all of the
2077          * previous sample data fields are equal to zero or stale and they must
2078          * be populated with meaningful numbers for things to work, so assume
2079          * that sample.time will always be reset before setting the utilization
2080          * update hook and make the caller skip the sample then.
2081          */
2082         if (cpu->last_sample_time) {
2083                 intel_pstate_calc_avg_perf(cpu);
2084                 return true;
2085         }
2086         return false;
2087 }
2088
2089 static inline int32_t get_avg_frequency(struct cpudata *cpu)
2090 {
2091         return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
2092 }
2093
2094 static inline int32_t get_avg_pstate(struct cpudata *cpu)
2095 {
2096         return mul_ext_fp(cpu->pstate.max_pstate_physical,
2097                           cpu->sample.core_avg_perf);
2098 }
2099
2100 static inline int32_t get_target_pstate(struct cpudata *cpu)
2101 {
2102         struct sample *sample = &cpu->sample;
2103         int32_t busy_frac;
2104         int target, avg_pstate;
2105
2106         busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
2107                            sample->tsc);
2108
2109         if (busy_frac < cpu->iowait_boost)
2110                 busy_frac = cpu->iowait_boost;
2111
2112         sample->busy_scaled = busy_frac * 100;
2113
2114         target = global.no_turbo || global.turbo_disabled ?
2115                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2116         target += target >> 2;
2117         target = mul_fp(target, busy_frac);
2118         if (target < cpu->pstate.min_pstate)
2119                 target = cpu->pstate.min_pstate;
2120
2121         /*
2122          * If the average P-state during the previous cycle was higher than the
2123          * current target, add 50% of the difference to the target to reduce
2124          * possible performance oscillations and offset possible performance
2125          * loss related to moving the workload from one CPU to another within
2126          * a package/module.
2127          */
2128         avg_pstate = get_avg_pstate(cpu);
2129         if (avg_pstate > target)
2130                 target += (avg_pstate - target) >> 1;
2131
2132         return target;
2133 }
2134
2135 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
2136 {
2137         int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
2138         int max_pstate = max(min_pstate, cpu->max_perf_ratio);
2139
2140         return clamp_t(int, pstate, min_pstate, max_pstate);
2141 }
2142
2143 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
2144 {
2145         if (pstate == cpu->pstate.current_pstate)
2146                 return;
2147
2148         cpu->pstate.current_pstate = pstate;
2149         wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
2150 }
2151
2152 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
2153 {
2154         int from = cpu->pstate.current_pstate;
2155         struct sample *sample;
2156         int target_pstate;
2157
2158         update_turbo_state();
2159
2160         target_pstate = get_target_pstate(cpu);
2161         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2162         trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
2163         intel_pstate_update_pstate(cpu, target_pstate);
2164
2165         sample = &cpu->sample;
2166         trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
2167                 fp_toint(sample->busy_scaled),
2168                 from,
2169                 cpu->pstate.current_pstate,
2170                 sample->mperf,
2171                 sample->aperf,
2172                 sample->tsc,
2173                 get_avg_frequency(cpu),
2174                 fp_toint(cpu->iowait_boost * 100));
2175 }
2176
2177 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
2178                                      unsigned int flags)
2179 {
2180         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2181         u64 delta_ns;
2182
2183         /* Don't allow remote callbacks */
2184         if (smp_processor_id() != cpu->cpu)
2185                 return;
2186
2187         delta_ns = time - cpu->last_update;
2188         if (flags & SCHED_CPUFREQ_IOWAIT) {
2189                 /* Start over if the CPU may have been idle. */
2190                 if (delta_ns > TICK_NSEC) {
2191                         cpu->iowait_boost = ONE_EIGHTH_FP;
2192                 } else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
2193                         cpu->iowait_boost <<= 1;
2194                         if (cpu->iowait_boost > int_tofp(1))
2195                                 cpu->iowait_boost = int_tofp(1);
2196                 } else {
2197                         cpu->iowait_boost = ONE_EIGHTH_FP;
2198                 }
2199         } else if (cpu->iowait_boost) {
2200                 /* Clear iowait_boost if the CPU may have been idle. */
2201                 if (delta_ns > TICK_NSEC)
2202                         cpu->iowait_boost = 0;
2203                 else
2204                         cpu->iowait_boost >>= 1;
2205         }
2206         cpu->last_update = time;
2207         delta_ns = time - cpu->sample.time;
2208         if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
2209                 return;
2210
2211         if (intel_pstate_sample(cpu, time))
2212                 intel_pstate_adjust_pstate(cpu);
2213 }
2214
2215 static struct pstate_funcs core_funcs = {
2216         .get_max = core_get_max_pstate,
2217         .get_max_physical = core_get_max_pstate_physical,
2218         .get_min = core_get_min_pstate,
2219         .get_turbo = core_get_turbo_pstate,
2220         .get_scaling = core_get_scaling,
2221         .get_val = core_get_val,
2222 };
2223
2224 static const struct pstate_funcs silvermont_funcs = {
2225         .get_max = atom_get_max_pstate,
2226         .get_max_physical = atom_get_max_pstate,
2227         .get_min = atom_get_min_pstate,
2228         .get_turbo = atom_get_turbo_pstate,
2229         .get_val = atom_get_val,
2230         .get_scaling = silvermont_get_scaling,
2231         .get_vid = atom_get_vid,
2232 };
2233
2234 static const struct pstate_funcs airmont_funcs = {
2235         .get_max = atom_get_max_pstate,
2236         .get_max_physical = atom_get_max_pstate,
2237         .get_min = atom_get_min_pstate,
2238         .get_turbo = atom_get_turbo_pstate,
2239         .get_val = atom_get_val,
2240         .get_scaling = airmont_get_scaling,
2241         .get_vid = atom_get_vid,
2242 };
2243
2244 static const struct pstate_funcs knl_funcs = {
2245         .get_max = core_get_max_pstate,
2246         .get_max_physical = core_get_max_pstate_physical,
2247         .get_min = core_get_min_pstate,
2248         .get_turbo = knl_get_turbo_pstate,
2249         .get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
2250         .get_scaling = core_get_scaling,
2251         .get_val = core_get_val,
2252 };
2253
2254 #define X86_MATCH(model, policy)                                         \
2255         X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
2256                                            X86_FEATURE_APERFMPERF, &policy)
2257
2258 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
2259         X86_MATCH(SANDYBRIDGE,          core_funcs),
2260         X86_MATCH(SANDYBRIDGE_X,        core_funcs),
2261         X86_MATCH(ATOM_SILVERMONT,      silvermont_funcs),
2262         X86_MATCH(IVYBRIDGE,            core_funcs),
2263         X86_MATCH(HASWELL,              core_funcs),
2264         X86_MATCH(BROADWELL,            core_funcs),
2265         X86_MATCH(IVYBRIDGE_X,          core_funcs),
2266         X86_MATCH(HASWELL_X,            core_funcs),
2267         X86_MATCH(HASWELL_L,            core_funcs),
2268         X86_MATCH(HASWELL_G,            core_funcs),
2269         X86_MATCH(BROADWELL_G,          core_funcs),
2270         X86_MATCH(ATOM_AIRMONT,         airmont_funcs),
2271         X86_MATCH(SKYLAKE_L,            core_funcs),
2272         X86_MATCH(BROADWELL_X,          core_funcs),
2273         X86_MATCH(SKYLAKE,              core_funcs),
2274         X86_MATCH(BROADWELL_D,          core_funcs),
2275         X86_MATCH(XEON_PHI_KNL,         knl_funcs),
2276         X86_MATCH(XEON_PHI_KNM,         knl_funcs),
2277         X86_MATCH(ATOM_GOLDMONT,        core_funcs),
2278         X86_MATCH(ATOM_GOLDMONT_PLUS,   core_funcs),
2279         X86_MATCH(SKYLAKE_X,            core_funcs),
2280         X86_MATCH(COMETLAKE,            core_funcs),
2281         X86_MATCH(ICELAKE_X,            core_funcs),
2282         {}
2283 };
2284 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
2285
2286 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
2287         X86_MATCH(BROADWELL_D,          core_funcs),
2288         X86_MATCH(BROADWELL_X,          core_funcs),
2289         X86_MATCH(SKYLAKE_X,            core_funcs),
2290         {}
2291 };
2292
2293 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
2294         X86_MATCH(KABYLAKE,             core_funcs),
2295         {}
2296 };
2297
2298 static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
2299         X86_MATCH(SKYLAKE_X,            core_funcs),
2300         X86_MATCH(SKYLAKE,              core_funcs),
2301         {}
2302 };
2303
2304 static int intel_pstate_init_cpu(unsigned int cpunum)
2305 {
2306         struct cpudata *cpu;
2307
2308         cpu = all_cpu_data[cpunum];
2309
2310         if (!cpu) {
2311                 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
2312                 if (!cpu)
2313                         return -ENOMEM;
2314
2315                 all_cpu_data[cpunum] = cpu;
2316
2317                 cpu->cpu = cpunum;
2318
2319                 cpu->epp_default = -EINVAL;
2320
2321                 if (hwp_active) {
2322                         const struct x86_cpu_id *id;
2323
2324                         intel_pstate_hwp_enable(cpu);
2325
2326                         id = x86_match_cpu(intel_pstate_hwp_boost_ids);
2327                         if (id && intel_pstate_acpi_pm_profile_server())
2328                                 hwp_boost = true;
2329                 }
2330         } else if (hwp_active) {
2331                 /*
2332                  * Re-enable HWP in case this happens after a resume from ACPI
2333                  * S3 if the CPU was offline during the whole system/resume
2334                  * cycle.
2335                  */
2336                 intel_pstate_hwp_reenable(cpu);
2337         }
2338
2339         cpu->epp_powersave = -EINVAL;
2340         cpu->epp_policy = 0;
2341
2342         intel_pstate_get_cpu_pstates(cpu);
2343
2344         pr_debug("controlling: cpu %d\n", cpunum);
2345
2346         return 0;
2347 }
2348
2349 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2350 {
2351         struct cpudata *cpu = all_cpu_data[cpu_num];
2352
2353         if (hwp_active && !hwp_boost)
2354                 return;
2355
2356         if (cpu->update_util_set)
2357                 return;
2358
2359         /* Prevent intel_pstate_update_util() from using stale data. */
2360         cpu->sample.time = 0;
2361         cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2362                                      (hwp_active ?
2363                                       intel_pstate_update_util_hwp :
2364                                       intel_pstate_update_util));
2365         cpu->update_util_set = true;
2366 }
2367
2368 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
2369 {
2370         struct cpudata *cpu_data = all_cpu_data[cpu];
2371
2372         if (!cpu_data->update_util_set)
2373                 return;
2374
2375         cpufreq_remove_update_util_hook(cpu);
2376         cpu_data->update_util_set = false;
2377         synchronize_rcu();
2378 }
2379
2380 static int intel_pstate_get_max_freq(struct cpudata *cpu)
2381 {
2382         return global.turbo_disabled || global.no_turbo ?
2383                         cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2384 }
2385
2386 static void intel_pstate_update_perf_limits(struct cpudata *cpu,
2387                                             unsigned int policy_min,
2388                                             unsigned int policy_max)
2389 {
2390         int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
2391         int32_t max_policy_perf, min_policy_perf;
2392
2393         max_policy_perf = policy_max / perf_ctl_scaling;
2394         if (policy_max == policy_min) {
2395                 min_policy_perf = max_policy_perf;
2396         } else {
2397                 min_policy_perf = policy_min / perf_ctl_scaling;
2398                 min_policy_perf = clamp_t(int32_t, min_policy_perf,
2399                                           0, max_policy_perf);
2400         }
2401
2402         /*
2403          * HWP needs some special consideration, because HWP_REQUEST uses
2404          * abstract values to represent performance rather than pure ratios.
2405          */
2406         if (hwp_active) {
2407                 intel_pstate_get_hwp_cap(cpu);
2408
2409                 if (cpu->pstate.scaling != perf_ctl_scaling) {
2410                         int scaling = cpu->pstate.scaling;
2411                         int freq;
2412
2413                         freq = max_policy_perf * perf_ctl_scaling;
2414                         max_policy_perf = DIV_ROUND_UP(freq, scaling);
2415                         freq = min_policy_perf * perf_ctl_scaling;
2416                         min_policy_perf = DIV_ROUND_UP(freq, scaling);
2417                 }
2418         }
2419
2420         pr_debug("cpu:%d min_policy_perf:%d max_policy_perf:%d\n",
2421                  cpu->cpu, min_policy_perf, max_policy_perf);
2422
2423         /* Normalize user input to [min_perf, max_perf] */
2424         if (per_cpu_limits) {
2425                 cpu->min_perf_ratio = min_policy_perf;
2426                 cpu->max_perf_ratio = max_policy_perf;
2427         } else {
2428                 int turbo_max = cpu->pstate.turbo_pstate;
2429                 int32_t global_min, global_max;
2430
2431                 /* Global limits are in percent of the maximum turbo P-state. */
2432                 global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2433                 global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2434                 global_min = clamp_t(int32_t, global_min, 0, global_max);
2435
2436                 pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu,
2437                          global_min, global_max);
2438
2439                 cpu->min_perf_ratio = max(min_policy_perf, global_min);
2440                 cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2441                 cpu->max_perf_ratio = min(max_policy_perf, global_max);
2442                 cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2443
2444                 /* Make sure min_perf <= max_perf */
2445                 cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2446                                           cpu->max_perf_ratio);
2447
2448         }
2449         pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu,
2450                  cpu->max_perf_ratio,
2451                  cpu->min_perf_ratio);
2452 }
2453
2454 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2455 {
2456         struct cpudata *cpu;
2457
2458         if (!policy->cpuinfo.max_freq)
2459                 return -ENODEV;
2460
2461         pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2462                  policy->cpuinfo.max_freq, policy->max);
2463
2464         cpu = all_cpu_data[policy->cpu];
2465         cpu->policy = policy->policy;
2466
2467         mutex_lock(&intel_pstate_limits_lock);
2468
2469         intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2470
2471         if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2472                 /*
2473                  * NOHZ_FULL CPUs need this as the governor callback may not
2474                  * be invoked on them.
2475                  */
2476                 intel_pstate_clear_update_util_hook(policy->cpu);
2477                 intel_pstate_max_within_limits(cpu);
2478         } else {
2479                 intel_pstate_set_update_util_hook(policy->cpu);
2480         }
2481
2482         if (hwp_active) {
2483                 /*
2484                  * When hwp_boost was active before and dynamically it
2485                  * was turned off, in that case we need to clear the
2486                  * update util hook.
2487                  */
2488                 if (!hwp_boost)
2489                         intel_pstate_clear_update_util_hook(policy->cpu);
2490                 intel_pstate_hwp_set(policy->cpu);
2491         }
2492
2493         mutex_unlock(&intel_pstate_limits_lock);
2494
2495         return 0;
2496 }
2497
2498 static void intel_pstate_adjust_policy_max(struct cpudata *cpu,
2499                                            struct cpufreq_policy_data *policy)
2500 {
2501         if (!hwp_active &&
2502             cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2503             policy->max < policy->cpuinfo.max_freq &&
2504             policy->max > cpu->pstate.max_freq) {
2505                 pr_debug("policy->max > max non turbo frequency\n");
2506                 policy->max = policy->cpuinfo.max_freq;
2507         }
2508 }
2509
2510 static void intel_pstate_verify_cpu_policy(struct cpudata *cpu,
2511                                            struct cpufreq_policy_data *policy)
2512 {
2513         int max_freq;
2514
2515         update_turbo_state();
2516         if (hwp_active) {
2517                 intel_pstate_get_hwp_cap(cpu);
2518                 max_freq = global.no_turbo || global.turbo_disabled ?
2519                                 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2520         } else {
2521                 max_freq = intel_pstate_get_max_freq(cpu);
2522         }
2523         cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq, max_freq);
2524
2525         intel_pstate_adjust_policy_max(cpu, policy);
2526 }
2527
2528 static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy)
2529 {
2530         intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy);
2531
2532         return 0;
2533 }
2534
2535 static int intel_cpufreq_cpu_offline(struct cpufreq_policy *policy)
2536 {
2537         struct cpudata *cpu = all_cpu_data[policy->cpu];
2538
2539         pr_debug("CPU %d going offline\n", cpu->cpu);
2540
2541         if (cpu->suspended)
2542                 return 0;
2543
2544         /*
2545          * If the CPU is an SMT thread and it goes offline with the performance
2546          * settings different from the minimum, it will prevent its sibling
2547          * from getting to lower performance levels, so force the minimum
2548          * performance on CPU offline to prevent that from happening.
2549          */
2550         if (hwp_active)
2551                 intel_pstate_hwp_offline(cpu);
2552         else
2553                 intel_pstate_set_min_pstate(cpu);
2554
2555         intel_pstate_exit_perf_limits(policy);
2556
2557         return 0;
2558 }
2559
2560 static int intel_pstate_cpu_online(struct cpufreq_policy *policy)
2561 {
2562         struct cpudata *cpu = all_cpu_data[policy->cpu];
2563
2564         pr_debug("CPU %d going online\n", cpu->cpu);
2565
2566         intel_pstate_init_acpi_perf_limits(policy);
2567
2568         if (hwp_active) {
2569                 /*
2570                  * Re-enable HWP and clear the "suspended" flag to let "resume"
2571                  * know that it need not do that.
2572                  */
2573                 intel_pstate_hwp_reenable(cpu);
2574                 cpu->suspended = false;
2575         }
2576
2577         return 0;
2578 }
2579
2580 static int intel_pstate_cpu_offline(struct cpufreq_policy *policy)
2581 {
2582         intel_pstate_clear_update_util_hook(policy->cpu);
2583
2584         return intel_cpufreq_cpu_offline(policy);
2585 }
2586
2587 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2588 {
2589         pr_debug("CPU %d exiting\n", policy->cpu);
2590
2591         policy->fast_switch_possible = false;
2592
2593         return 0;
2594 }
2595
2596 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2597 {
2598         struct cpudata *cpu;
2599         int rc;
2600
2601         rc = intel_pstate_init_cpu(policy->cpu);
2602         if (rc)
2603                 return rc;
2604
2605         cpu = all_cpu_data[policy->cpu];
2606
2607         cpu->max_perf_ratio = 0xFF;
2608         cpu->min_perf_ratio = 0;
2609
2610         /* cpuinfo and default policy values */
2611         policy->cpuinfo.min_freq = cpu->pstate.min_freq;
2612         update_turbo_state();
2613         global.turbo_disabled_mf = global.turbo_disabled;
2614         policy->cpuinfo.max_freq = global.turbo_disabled ?
2615                         cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2616
2617         policy->min = policy->cpuinfo.min_freq;
2618         policy->max = policy->cpuinfo.max_freq;
2619
2620         intel_pstate_init_acpi_perf_limits(policy);
2621
2622         policy->fast_switch_possible = true;
2623
2624         return 0;
2625 }
2626
2627 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2628 {
2629         int ret = __intel_pstate_cpu_init(policy);
2630
2631         if (ret)
2632                 return ret;
2633
2634         /*
2635          * Set the policy to powersave to provide a valid fallback value in case
2636          * the default cpufreq governor is neither powersave nor performance.
2637          */
2638         policy->policy = CPUFREQ_POLICY_POWERSAVE;
2639
2640         if (hwp_active) {
2641                 struct cpudata *cpu = all_cpu_data[policy->cpu];
2642
2643                 cpu->epp_cached = intel_pstate_get_epp(cpu, 0);
2644         }
2645
2646         return 0;
2647 }
2648
2649 static struct cpufreq_driver intel_pstate = {
2650         .flags          = CPUFREQ_CONST_LOOPS,
2651         .verify         = intel_pstate_verify_policy,
2652         .setpolicy      = intel_pstate_set_policy,
2653         .suspend        = intel_pstate_suspend,
2654         .resume         = intel_pstate_resume,
2655         .init           = intel_pstate_cpu_init,
2656         .exit           = intel_pstate_cpu_exit,
2657         .offline        = intel_pstate_cpu_offline,
2658         .online         = intel_pstate_cpu_online,
2659         .update_limits  = intel_pstate_update_limits,
2660         .name           = "intel_pstate",
2661 };
2662
2663 static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy)
2664 {
2665         struct cpudata *cpu = all_cpu_data[policy->cpu];
2666
2667         intel_pstate_verify_cpu_policy(cpu, policy);
2668         intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2669
2670         return 0;
2671 }
2672
2673 /* Use of trace in passive mode:
2674  *
2675  * In passive mode the trace core_busy field (also known as the
2676  * performance field, and lablelled as such on the graphs; also known as
2677  * core_avg_perf) is not needed and so is re-assigned to indicate if the
2678  * driver call was via the normal or fast switch path. Various graphs
2679  * output from the intel_pstate_tracer.py utility that include core_busy
2680  * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
2681  * so we use 10 to indicate the normal path through the driver, and
2682  * 90 to indicate the fast switch path through the driver.
2683  * The scaled_busy field is not used, and is set to 0.
2684  */
2685
2686 #define INTEL_PSTATE_TRACE_TARGET 10
2687 #define INTEL_PSTATE_TRACE_FAST_SWITCH 90
2688
2689 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
2690 {
2691         struct sample *sample;
2692
2693         if (!trace_pstate_sample_enabled())
2694                 return;
2695
2696         if (!intel_pstate_sample(cpu, ktime_get()))
2697                 return;
2698
2699         sample = &cpu->sample;
2700         trace_pstate_sample(trace_type,
2701                 0,
2702                 old_pstate,
2703                 cpu->pstate.current_pstate,
2704                 sample->mperf,
2705                 sample->aperf,
2706                 sample->tsc,
2707                 get_avg_frequency(cpu),
2708                 fp_toint(cpu->iowait_boost * 100));
2709 }
2710
2711 static void intel_cpufreq_hwp_update(struct cpudata *cpu, u32 min, u32 max,
2712                                      u32 desired, bool fast_switch)
2713 {
2714         u64 prev = READ_ONCE(cpu->hwp_req_cached), value = prev;
2715
2716         value &= ~HWP_MIN_PERF(~0L);
2717         value |= HWP_MIN_PERF(min);
2718
2719         value &= ~HWP_MAX_PERF(~0L);
2720         value |= HWP_MAX_PERF(max);
2721
2722         value &= ~HWP_DESIRED_PERF(~0L);
2723         value |= HWP_DESIRED_PERF(desired);
2724
2725         if (value == prev)
2726                 return;
2727
2728         WRITE_ONCE(cpu->hwp_req_cached, value);
2729         if (fast_switch)
2730                 wrmsrl(MSR_HWP_REQUEST, value);
2731         else
2732                 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
2733 }
2734
2735 static void intel_cpufreq_perf_ctl_update(struct cpudata *cpu,
2736                                           u32 target_pstate, bool fast_switch)
2737 {
2738         if (fast_switch)
2739                 wrmsrl(MSR_IA32_PERF_CTL,
2740                        pstate_funcs.get_val(cpu, target_pstate));
2741         else
2742                 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
2743                               pstate_funcs.get_val(cpu, target_pstate));
2744 }
2745
2746 static int intel_cpufreq_update_pstate(struct cpufreq_policy *policy,
2747                                        int target_pstate, bool fast_switch)
2748 {
2749         struct cpudata *cpu = all_cpu_data[policy->cpu];
2750         int old_pstate = cpu->pstate.current_pstate;
2751
2752         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2753         if (hwp_active) {
2754                 int max_pstate = policy->strict_target ?
2755                                         target_pstate : cpu->max_perf_ratio;
2756
2757                 intel_cpufreq_hwp_update(cpu, target_pstate, max_pstate, 0,
2758                                          fast_switch);
2759         } else if (target_pstate != old_pstate) {
2760                 intel_cpufreq_perf_ctl_update(cpu, target_pstate, fast_switch);
2761         }
2762
2763         cpu->pstate.current_pstate = target_pstate;
2764
2765         intel_cpufreq_trace(cpu, fast_switch ? INTEL_PSTATE_TRACE_FAST_SWITCH :
2766                             INTEL_PSTATE_TRACE_TARGET, old_pstate);
2767
2768         return target_pstate;
2769 }
2770
2771 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2772                                 unsigned int target_freq,
2773                                 unsigned int relation)
2774 {
2775         struct cpudata *cpu = all_cpu_data[policy->cpu];
2776         struct cpufreq_freqs freqs;
2777         int target_pstate;
2778
2779         update_turbo_state();
2780
2781         freqs.old = policy->cur;
2782         freqs.new = target_freq;
2783
2784         cpufreq_freq_transition_begin(policy, &freqs);
2785
2786         switch (relation) {
2787         case CPUFREQ_RELATION_L:
2788                 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2789                 break;
2790         case CPUFREQ_RELATION_H:
2791                 target_pstate = freqs.new / cpu->pstate.scaling;
2792                 break;
2793         default:
2794                 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2795                 break;
2796         }
2797
2798         target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, false);
2799
2800         freqs.new = target_pstate * cpu->pstate.scaling;
2801
2802         cpufreq_freq_transition_end(policy, &freqs, false);
2803
2804         return 0;
2805 }
2806
2807 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2808                                               unsigned int target_freq)
2809 {
2810         struct cpudata *cpu = all_cpu_data[policy->cpu];
2811         int target_pstate;
2812
2813         update_turbo_state();
2814
2815         target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2816
2817         target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, true);
2818
2819         return target_pstate * cpu->pstate.scaling;
2820 }
2821
2822 static void intel_cpufreq_adjust_perf(unsigned int cpunum,
2823                                       unsigned long min_perf,
2824                                       unsigned long target_perf,
2825                                       unsigned long capacity)
2826 {
2827         struct cpudata *cpu = all_cpu_data[cpunum];
2828         u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
2829         int old_pstate = cpu->pstate.current_pstate;
2830         int cap_pstate, min_pstate, max_pstate, target_pstate;
2831
2832         update_turbo_state();
2833         cap_pstate = global.turbo_disabled ? HWP_GUARANTEED_PERF(hwp_cap) :
2834                                              HWP_HIGHEST_PERF(hwp_cap);
2835
2836         /* Optimization: Avoid unnecessary divisions. */
2837
2838         target_pstate = cap_pstate;
2839         if (target_perf < capacity)
2840                 target_pstate = DIV_ROUND_UP(cap_pstate * target_perf, capacity);
2841
2842         min_pstate = cap_pstate;
2843         if (min_perf < capacity)
2844                 min_pstate = DIV_ROUND_UP(cap_pstate * min_perf, capacity);
2845
2846         if (min_pstate < cpu->pstate.min_pstate)
2847                 min_pstate = cpu->pstate.min_pstate;
2848
2849         if (min_pstate < cpu->min_perf_ratio)
2850                 min_pstate = cpu->min_perf_ratio;
2851
2852         max_pstate = min(cap_pstate, cpu->max_perf_ratio);
2853         if (max_pstate < min_pstate)
2854                 max_pstate = min_pstate;
2855
2856         target_pstate = clamp_t(int, target_pstate, min_pstate, max_pstate);
2857
2858         intel_cpufreq_hwp_update(cpu, min_pstate, max_pstate, target_pstate, true);
2859
2860         cpu->pstate.current_pstate = target_pstate;
2861         intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2862 }
2863
2864 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2865 {
2866         struct freq_qos_request *req;
2867         struct cpudata *cpu;
2868         struct device *dev;
2869         int ret, freq;
2870
2871         dev = get_cpu_device(policy->cpu);
2872         if (!dev)
2873                 return -ENODEV;
2874
2875         ret = __intel_pstate_cpu_init(policy);
2876         if (ret)
2877                 return ret;
2878
2879         policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2880         /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2881         policy->cur = policy->cpuinfo.min_freq;
2882
2883         req = kcalloc(2, sizeof(*req), GFP_KERNEL);
2884         if (!req) {
2885                 ret = -ENOMEM;
2886                 goto pstate_exit;
2887         }
2888
2889         cpu = all_cpu_data[policy->cpu];
2890
2891         if (hwp_active) {
2892                 u64 value;
2893
2894                 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY_HWP;
2895
2896                 intel_pstate_get_hwp_cap(cpu);
2897
2898                 rdmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, &value);
2899                 WRITE_ONCE(cpu->hwp_req_cached, value);
2900
2901                 cpu->epp_cached = intel_pstate_get_epp(cpu, value);
2902         } else {
2903                 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2904         }
2905
2906         freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.min_perf_pct, 100);
2907
2908         ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN,
2909                                    freq);
2910         if (ret < 0) {
2911                 dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
2912                 goto free_req;
2913         }
2914
2915         freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.max_perf_pct, 100);
2916
2917         ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX,
2918                                    freq);
2919         if (ret < 0) {
2920                 dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
2921                 goto remove_min_req;
2922         }
2923
2924         policy->driver_data = req;
2925
2926         return 0;
2927
2928 remove_min_req:
2929         freq_qos_remove_request(req);
2930 free_req:
2931         kfree(req);
2932 pstate_exit:
2933         intel_pstate_exit_perf_limits(policy);
2934
2935         return ret;
2936 }
2937
2938 static int intel_cpufreq_cpu_exit(struct cpufreq_policy *policy)
2939 {
2940         struct freq_qos_request *req;
2941
2942         req = policy->driver_data;
2943
2944         freq_qos_remove_request(req + 1);
2945         freq_qos_remove_request(req);
2946         kfree(req);
2947
2948         return intel_pstate_cpu_exit(policy);
2949 }
2950
2951 static struct cpufreq_driver intel_cpufreq = {
2952         .flags          = CPUFREQ_CONST_LOOPS,
2953         .verify         = intel_cpufreq_verify_policy,
2954         .target         = intel_cpufreq_target,
2955         .fast_switch    = intel_cpufreq_fast_switch,
2956         .init           = intel_cpufreq_cpu_init,
2957         .exit           = intel_cpufreq_cpu_exit,
2958         .offline        = intel_cpufreq_cpu_offline,
2959         .online         = intel_pstate_cpu_online,
2960         .suspend        = intel_pstate_suspend,
2961         .resume         = intel_pstate_resume,
2962         .update_limits  = intel_pstate_update_limits,
2963         .name           = "intel_cpufreq",
2964 };
2965
2966 static struct cpufreq_driver *default_driver;
2967
2968 static void intel_pstate_driver_cleanup(void)
2969 {
2970         unsigned int cpu;
2971
2972         cpus_read_lock();
2973         for_each_online_cpu(cpu) {
2974                 if (all_cpu_data[cpu]) {
2975                         if (intel_pstate_driver == &intel_pstate)
2976                                 intel_pstate_clear_update_util_hook(cpu);
2977
2978                         kfree(all_cpu_data[cpu]);
2979                         all_cpu_data[cpu] = NULL;
2980                 }
2981         }
2982         cpus_read_unlock();
2983
2984         intel_pstate_driver = NULL;
2985 }
2986
2987 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2988 {
2989         int ret;
2990
2991         if (driver == &intel_pstate)
2992                 intel_pstate_sysfs_expose_hwp_dynamic_boost();
2993
2994         memset(&global, 0, sizeof(global));
2995         global.max_perf_pct = 100;
2996
2997         intel_pstate_driver = driver;
2998         ret = cpufreq_register_driver(intel_pstate_driver);
2999         if (ret) {
3000                 intel_pstate_driver_cleanup();
3001                 return ret;
3002         }
3003
3004         global.min_perf_pct = min_perf_pct_min();
3005
3006         return 0;
3007 }
3008
3009 static ssize_t intel_pstate_show_status(char *buf)
3010 {
3011         if (!intel_pstate_driver)
3012                 return sprintf(buf, "off\n");
3013
3014         return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
3015                                         "active" : "passive");
3016 }
3017
3018 static int intel_pstate_update_status(const char *buf, size_t size)
3019 {
3020         if (size == 3 && !strncmp(buf, "off", size)) {
3021                 if (!intel_pstate_driver)
3022                         return -EINVAL;
3023
3024                 if (hwp_active)
3025                         return -EBUSY;
3026
3027                 cpufreq_unregister_driver(intel_pstate_driver);
3028                 intel_pstate_driver_cleanup();
3029                 return 0;
3030         }
3031
3032         if (size == 6 && !strncmp(buf, "active", size)) {
3033                 if (intel_pstate_driver) {
3034                         if (intel_pstate_driver == &intel_pstate)
3035                                 return 0;
3036
3037                         cpufreq_unregister_driver(intel_pstate_driver);
3038                 }
3039
3040                 return intel_pstate_register_driver(&intel_pstate);
3041         }
3042
3043         if (size == 7 && !strncmp(buf, "passive", size)) {
3044                 if (intel_pstate_driver) {
3045                         if (intel_pstate_driver == &intel_cpufreq)
3046                                 return 0;
3047
3048                         cpufreq_unregister_driver(intel_pstate_driver);
3049                         intel_pstate_sysfs_hide_hwp_dynamic_boost();
3050                 }
3051
3052                 return intel_pstate_register_driver(&intel_cpufreq);
3053         }
3054
3055         return -EINVAL;
3056 }
3057
3058 static int no_load __initdata;
3059 static int no_hwp __initdata;
3060 static int hwp_only __initdata;
3061 static unsigned int force_load __initdata;
3062
3063 static int __init intel_pstate_msrs_not_valid(void)
3064 {
3065         if (!pstate_funcs.get_max() ||
3066             !pstate_funcs.get_min() ||
3067             !pstate_funcs.get_turbo())
3068                 return -ENODEV;
3069
3070         return 0;
3071 }
3072
3073 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
3074 {
3075         pstate_funcs.get_max   = funcs->get_max;
3076         pstate_funcs.get_max_physical = funcs->get_max_physical;
3077         pstate_funcs.get_min   = funcs->get_min;
3078         pstate_funcs.get_turbo = funcs->get_turbo;
3079         pstate_funcs.get_scaling = funcs->get_scaling;
3080         pstate_funcs.get_val   = funcs->get_val;
3081         pstate_funcs.get_vid   = funcs->get_vid;
3082         pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
3083 }
3084
3085 #ifdef CONFIG_ACPI
3086
3087 static bool __init intel_pstate_no_acpi_pss(void)
3088 {
3089         int i;
3090
3091         for_each_possible_cpu(i) {
3092                 acpi_status status;
3093                 union acpi_object *pss;
3094                 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
3095                 struct acpi_processor *pr = per_cpu(processors, i);
3096
3097                 if (!pr)
3098                         continue;
3099
3100                 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
3101                 if (ACPI_FAILURE(status))
3102                         continue;
3103
3104                 pss = buffer.pointer;
3105                 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
3106                         kfree(pss);
3107                         return false;
3108                 }
3109
3110                 kfree(pss);
3111         }
3112
3113         pr_debug("ACPI _PSS not found\n");
3114         return true;
3115 }
3116
3117 static bool __init intel_pstate_no_acpi_pcch(void)
3118 {
3119         acpi_status status;
3120         acpi_handle handle;
3121
3122         status = acpi_get_handle(NULL, "\\_SB", &handle);
3123         if (ACPI_FAILURE(status))
3124                 goto not_found;
3125
3126         if (acpi_has_method(handle, "PCCH"))
3127                 return false;
3128
3129 not_found:
3130         pr_debug("ACPI PCCH not found\n");
3131         return true;
3132 }
3133
3134 static bool __init intel_pstate_has_acpi_ppc(void)
3135 {
3136         int i;
3137
3138         for_each_possible_cpu(i) {
3139                 struct acpi_processor *pr = per_cpu(processors, i);
3140
3141                 if (!pr)
3142                         continue;
3143                 if (acpi_has_method(pr->handle, "_PPC"))
3144                         return true;
3145         }
3146         pr_debug("ACPI _PPC not found\n");
3147         return false;
3148 }
3149
3150 enum {
3151         PSS,
3152         PPC,
3153 };
3154
3155 /* Hardware vendor-specific info that has its own power management modes */
3156 static struct acpi_platform_list plat_info[] __initdata = {
3157         {"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS},
3158         {"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3159         {"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3160         {"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3161         {"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3162         {"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3163         {"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3164         {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3165         {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3166         {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3167         {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3168         {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3169         {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3170         {"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3171         {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3172         { } /* End */
3173 };
3174
3175 #define BITMASK_OOB     (BIT(8) | BIT(18))
3176
3177 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
3178 {
3179         const struct x86_cpu_id *id;
3180         u64 misc_pwr;
3181         int idx;
3182
3183         id = x86_match_cpu(intel_pstate_cpu_oob_ids);
3184         if (id) {
3185                 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
3186                 if (misc_pwr & BITMASK_OOB) {
3187                         pr_debug("Bit 8 or 18 in the MISC_PWR_MGMT MSR set\n");
3188                         pr_debug("P states are controlled in Out of Band mode by the firmware/hardware\n");
3189                         return true;
3190                 }
3191         }
3192
3193         idx = acpi_match_platform_list(plat_info);
3194         if (idx < 0)
3195                 return false;
3196
3197         switch (plat_info[idx].data) {
3198         case PSS:
3199                 if (!intel_pstate_no_acpi_pss())
3200                         return false;
3201
3202                 return intel_pstate_no_acpi_pcch();
3203         case PPC:
3204                 return intel_pstate_has_acpi_ppc() && !force_load;
3205         }
3206
3207         return false;
3208 }
3209
3210 static void intel_pstate_request_control_from_smm(void)
3211 {
3212         /*
3213          * It may be unsafe to request P-states control from SMM if _PPC support
3214          * has not been enabled.
3215          */
3216         if (acpi_ppc)
3217                 acpi_processor_pstate_control();
3218 }
3219 #else /* CONFIG_ACPI not enabled */
3220 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
3221 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
3222 static inline void intel_pstate_request_control_from_smm(void) {}
3223 #endif /* CONFIG_ACPI */
3224
3225 #define INTEL_PSTATE_HWP_BROADWELL      0x01
3226
3227 #define X86_MATCH_HWP(model, hwp_mode)                                  \
3228         X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
3229                                            X86_FEATURE_HWP, hwp_mode)
3230
3231 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
3232         X86_MATCH_HWP(BROADWELL_X,      INTEL_PSTATE_HWP_BROADWELL),
3233         X86_MATCH_HWP(BROADWELL_D,      INTEL_PSTATE_HWP_BROADWELL),
3234         X86_MATCH_HWP(ANY,              0),
3235         {}
3236 };
3237
3238 static bool intel_pstate_hwp_is_enabled(void)
3239 {
3240         u64 value;
3241
3242         rdmsrl(MSR_PM_ENABLE, value);
3243         return !!(value & 0x1);
3244 }
3245
3246 static int __init intel_pstate_init(void)
3247 {
3248         const struct x86_cpu_id *id;
3249         int rc;
3250
3251         if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
3252                 return -ENODEV;
3253
3254         if (no_load)
3255                 return -ENODEV;
3256
3257         id = x86_match_cpu(hwp_support_ids);
3258         if (id) {
3259                 copy_cpu_funcs(&core_funcs);
3260                 /*
3261                  * Avoid enabling HWP for processors without EPP support,
3262                  * because that means incomplete HWP implementation which is a
3263                  * corner case and supporting it is generally problematic.
3264                  *
3265                  * If HWP is enabled already, though, there is no choice but to
3266                  * deal with it.
3267                  */
3268                 if ((!no_hwp && boot_cpu_has(X86_FEATURE_HWP_EPP)) ||
3269                     intel_pstate_hwp_is_enabled()) {
3270                         hwp_active++;
3271                         hwp_mode_bdw = id->driver_data;
3272                         intel_pstate.attr = hwp_cpufreq_attrs;
3273                         intel_cpufreq.attr = hwp_cpufreq_attrs;
3274                         intel_cpufreq.flags |= CPUFREQ_NEED_UPDATE_LIMITS;
3275                         intel_cpufreq.adjust_perf = intel_cpufreq_adjust_perf;
3276                         if (!default_driver)
3277                                 default_driver = &intel_pstate;
3278
3279                         goto hwp_cpu_matched;
3280                 }
3281         } else {
3282                 id = x86_match_cpu(intel_pstate_cpu_ids);
3283                 if (!id) {
3284                         pr_info("CPU model not supported\n");
3285                         return -ENODEV;
3286                 }
3287
3288                 copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
3289         }
3290
3291         if (intel_pstate_msrs_not_valid()) {
3292                 pr_info("Invalid MSRs\n");
3293                 return -ENODEV;
3294         }
3295         /* Without HWP start in the passive mode. */
3296         if (!default_driver)
3297                 default_driver = &intel_cpufreq;
3298
3299 hwp_cpu_matched:
3300         /*
3301          * The Intel pstate driver will be ignored if the platform
3302          * firmware has its own power management modes.
3303          */
3304         if (intel_pstate_platform_pwr_mgmt_exists()) {
3305                 pr_info("P-states controlled by the platform\n");
3306                 return -ENODEV;
3307         }
3308
3309         if (!hwp_active && hwp_only)
3310                 return -ENOTSUPP;
3311
3312         pr_info("Intel P-state driver initializing\n");
3313
3314         all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
3315         if (!all_cpu_data)
3316                 return -ENOMEM;
3317
3318         intel_pstate_request_control_from_smm();
3319
3320         intel_pstate_sysfs_expose_params();
3321
3322         mutex_lock(&intel_pstate_driver_lock);
3323         rc = intel_pstate_register_driver(default_driver);
3324         mutex_unlock(&intel_pstate_driver_lock);
3325         if (rc) {
3326                 intel_pstate_sysfs_remove();
3327                 return rc;
3328         }
3329
3330         if (hwp_active) {
3331                 const struct x86_cpu_id *id;
3332
3333                 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
3334                 if (id) {
3335                         set_power_ctl_ee_state(false);
3336                         pr_info("Disabling energy efficiency optimization\n");
3337                 }
3338
3339                 pr_info("HWP enabled\n");
3340         } else if (boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
3341                 pr_warn("Problematic setup: Hybrid processor with disabled HWP\n");
3342         }
3343
3344         return 0;
3345 }
3346 device_initcall(intel_pstate_init);
3347
3348 static int __init intel_pstate_setup(char *str)
3349 {
3350         if (!str)
3351                 return -EINVAL;
3352
3353         if (!strcmp(str, "disable"))
3354                 no_load = 1;
3355         else if (!strcmp(str, "active"))
3356                 default_driver = &intel_pstate;
3357         else if (!strcmp(str, "passive"))
3358                 default_driver = &intel_cpufreq;
3359
3360         if (!strcmp(str, "no_hwp")) {
3361                 pr_info("HWP disabled\n");
3362                 no_hwp = 1;
3363         }
3364         if (!strcmp(str, "force"))
3365                 force_load = 1;
3366         if (!strcmp(str, "hwp_only"))
3367                 hwp_only = 1;
3368         if (!strcmp(str, "per_cpu_perf_limits"))
3369                 per_cpu_limits = true;
3370
3371 #ifdef CONFIG_ACPI
3372         if (!strcmp(str, "support_acpi_ppc"))
3373                 acpi_ppc = true;
3374 #endif
3375
3376         return 0;
3377 }
3378 early_param("intel_pstate", intel_pstate_setup);
3379
3380 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
3381 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
3382 MODULE_LICENSE("GPL");